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Abstract

The point vortex dynamics in background fields on surfaces is justified as
an Euler-Arnold flow in the sense of de Rham currents. We formulate a
current-valued solution of the Euler-Arnold equation with a regular-singular
decomposition. For the solution, we first prove that, if the singular part of the
vorticity is given by a linear combination of delta functions centered at qn(t)
for n = 1, . . . , N , qn(t) is a solution of the point vortex equation. Conversely,
we next prove that, if qn(t) is a solution of the point vortex equation for
n = 1, . . . , N , there exists a current-valued solution of the Euler-Arnold
equation with a regular-singular decomposition such that the singular part
of the vorticity is given by a linear combination of delta functions centered
at qn(t). From the viewpoint of applications, the mathematical justification
is of a significance since the point vortex dynamics in the rotational vector
field on the unit sphere is adapted as a mathematical model of geophysical
flows in order to take the effect of the Coriolis force on inviscid flows into
considerations.



1 Introduction

The motion of incompressible and inviscid fluids in the Euclidean plane is
governed by the Euler equation and its solution is called an Euler flow. Since
the fluid velocity and the pressure can be recovered from the vorticity, an
Euler flow is determined from a solution of the vorticity equation. Namely,
assuming ωt is a solution of the vorticity equation,

∂tωt + (−J grad⟨GH , ωt⟩·∇)ωt = 0,

where J is the symplectic matrix and GH is the Green function for the
Laplacian, we obtain an Euler flow (vt, pt) which is defined by

vt = −J grad⟨GH , ωt⟩, pt = ⟨GH , div(vt · ∇)vt⟩, (1)

On the other hand, the formulae (1) still make sense in the sense of distribu-
tions when we give a time-dependent distribution Ωt by a linear combination
of delta functions centered at qn(t) for n = 1, . . . , N . Then, replacing ωt by
Ωt in (1), we formally obtain a fluid velocity Vt and a pressure Pt. However,
we can not define the dynamics of qn(t) from the vorticity equation. Instead,
to determine the evolution of qn(t) by Vt, Helmholtz considered the following
regularized equation for qn(t) [21].

q̇n = lim
q→qn

[
Vt(q) + J grad⟨GH ,Γnδqn(t)⟩(q)

]
(2)

= −J grad
N∑

m=1
m ̸=n

ΓmGH(qn, qm) ≡ vn(qn).

It is called the point vortex equation, and the solution of (2) is called the
point vortex dynamics. Then, a natural question arises; How can we inter-
pret (Vt, Pt) as an Euler flow in an appropriate mathematical sense? In other
words, we need to determine a space of solutions of the Euler equation to
which (Vt, Pt) belongs. Since Lp space does not contains Ωt, a more sophis-
ticated space is to be considered. This is one of problems in the analysis of
the 2D Euler equation as discussed in [16, 17, 18].

From the viewpoint of applications, the point vortex dynamics is some-
times considered in the fluid velocity Xt ∈ Xr(R2) of an Euler flow, called
the point vortex dynamics in the background field Xt. Then, the evolution
of qn(t) is governed by the following equation.

q̇n(t) = βXXt(qn(t)) + βωvn(qn(t)), n = 1, . . . N (3)
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for a given parameter (βX , βω) ∈ R2. An experimental study confirms the
importance of background fields in two-dimensional turbulence [28].

The purpose of this paper is justifying the point vortex dynamics in back-
ground fields as an Euler flow mathematically. To this end, we establish a
weak formulation of the Euler equation in the space of currents, which is
developed in the theory of geometric analysis and geometric measure theory.
Since the notion of currents is defined not only for the Euclidean plane but
also general curved surface, the formulation established here can be natu-
rally generalized for surfaces. The Euler equation is generalized for the case
of surface by Arnold, whose generalization is called the Euler-Arnold equa-
tion. From the viewpoint of applications, it is of a significance to justify
the point vortex dynamics in a background field on curved surfaces as an
Euler-Arnold flow. Since the point vortex dynamics in the rotational vector
field on the unit sphere is adapted as a mathematical model of geophysical
flows in order to take the effect of the Coriolis force on inviscid flows into
considerations [20] for instance.

This paper is organized as follows. In Section 2, we reformulate vector
calculus in the plane from the viewpoint of differential forms. In Section 3,
we derive the Euler-Arnold equation and investigate steady solutions. In
Section 4, we introduce the point vortex dynamics and its generalizations as
another dynamical model of incompressible and inviscid fluids. In Section 5,
we review basic concepts of the theory of de Rham currents. Some notions
in vector calculus are reformulated for the application to fluid dynamics. In
Section 6, we examine the Euler-Arnold equation for more details from the
viewpoint of currents. We formulate a current-valued solution of the Euler-
Arnold equation on surfaces with a regular-singular decomposition, which
we call a Cr-decomposable weak Euler-Arnold flow. In Section 7, our main
results are stated and proved. In the first theorem, we prove that, for a given
Cr-decomposable weak Euler-Arnold flow, if the singular part of the vorticity
is given by a linear combination of delta functions centered at qn(t) for n =
1, . . . , N , qn(t) is the solution of the point vortex equation. Conversely, we
next prove that, if qn(t) is a solution of the point vortex equation for n =
1, . . . , N , there exists a Cr-decomposable weak Euler-Arnold flow such that
the singular part of the vorticity is given by a linear combination of delta
functions centered at qn(t). In Section 8, we apply the main results to some
problems in fluid dynamics. As a consequence, the point vortex dynamics in
a background field Xt (3) on a surface (M, g) is justified as Cr-decomposable
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weak Euler-Arnold flow and the pressure pt satisfies

pt = Pt + (2βX − 1)g(Xt, Vt −Xt) + (2βω − 1)|Vt −Xt|2/2,

for some a time-dependent function Pt ∈ Cr(M) as a Cr-decomposable weak
Euler-Arnold flow. The present paper is written as the author’s Ph.D thesis
to make the preprint [25] self-contained.
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2 Vector calculus on surfaces

We review vector calculus in the plane from the viewpoint of calculus of
differential forms. Let us remember that the curl operator curl : X =
T(X1, X2) ∈ Xr(R2) → curlX ∈ Cr−1(R2) and the divergence operator
div : X = T(X1, X2) ∈ Xr(R2) → divX ∈ Cr−1(R2) are defined by

curlX = ∂1X
2 − ∂2X

1, divX = ∂1X
1 + ∂2X

2.
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In particular, a vector field X ∈ Xr(R2) is said to be irrotational (or curl-
free), if curlX = 0. And a vector field X ∈ Xr(R2) is said to be incom-
pressible (or divergence-free), if divX = 0. For each X ∈ Xr(R2), the
function ω = curlX ∈ Cr−1(R2) is called the vorticity. A vector field
X = T(X1, X2) ∈ Xr(R2) is called the gradient vector field, if there ex-
ists a function ϕ ∈ Cr+1(R2) such that X = gradϕ = T(∂1ϕ, ∂2ϕ). Then, the
function ϕ is called the potential. A vector field X = T(X1, X2) ∈ Xr(R2) is
called the Hamiltonian vector field, if there exists a function ψ ∈ Cr+1(R2)
such that X = −J gradψ = T(∂2ψ,−∂1ψ), where J is the following matrix.

J =

(
0 −1
1 0

)
.

The function ψ is called the Hamiltonian, or the stream-function. Let us
remember that every irrotational vector field in the plane is a gradient vector
field and every incompressible vector field in the plane is a Hamiltonian vector
field. In addition, the following formula is useful in 2D fluid dynamics.

curlJ gradψ = △ψ, (4)

where △ = ∂21 +∂
2
2 is the Laplacian. Hence, every incompressible vector field

X ∈ Xr(R2) is written as X = −J gradψ for some ψ ∈ Cr+1(R2), and the
vorticity ω satisfies

ω = curl(−J gradψ) = −△ψ. (5)

Let GH denote the Green’s function for the Laplacian −△. Since the solution
ψ of the Poisson equation (5) is given as ψ = ⟨GH , ω⟩, the vector field can
be presented by the vorticity as

X = −J grad⟨GH , ω⟩, (6)

where ⟨GH , · ⟩ is the convolution with the Green function GH . The equal-
ity (6) is called the Biot-Savart law. In particular, sinceGH(x, y) = −(4π)−1 log(x2+
y2), the equation (6) is written as

X(x0, y0) =

∫
R2

T(−y, x)
2π(x2 + y2)

ω(x− x0, y − y0) d x d y.

Let us reformulate the fact stated the above in terms of vector calcu-
lus through differential forms. Note that every vector field X ∈ Xr(R2) is
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conventionally written as X = T(X1, X2). However, in the theory of man-
ifolds, it is rewritten as X = X1∂1 + X2∂2 by using an orthogonal basis
(∂1, ∂2) of a tangent space of R2. Let us remember that the orthogonal
basis is identified with the partial derivative acting on functions. Every
vector field X = X1∂1 + X2∂2 ∈ Xr(R2) is converted to a 1-form X♭ =
X1 dx1 +X2 dx2 ∈ Ω1

[r](R2). The operator ♭ : X ∈ Xr(R2) → X♭ ∈ Ω1
[r](R2)

is called the flat operator and the corresponding 1-form X♭ is called the ve-
locity form. Conversely, every 1-form α = α1 dx

1 + α2 dx
2 ∈ Ω1

[r](R2) is

also converted to a vector field α♯ = α1∂1 + α2∂2 ∈ Xr(R2). The opera-
tor ♯ : α ∈ Ω1

[r](R2) → α♯ ∈ Xr(R2) is called the sharp operator and the
corresponding vector field α♯ is called the dual vector field. It is clear that
X = (X♭)♯ and α = (α♯)

♭. We see that the curl operator and the divergence
operator is written by the differential operator d and the Hodge-∗ operator
as

curlX = ∗ dX♭, divX = ∗ d ∗X♭. (7)

To see this, let us remember the following property of the differential operator
d and the Hodge-∗ operator in the plane. For each p-form α ∈ Ωp

[r](R
2),

p = 0, 1, 2, dα ∈ Ωp+1
[r] (R2) and ∗α ∈ Ω2−p

[r] (R2) satisfy

dα =


∂1α dx1 + ∂2α dx2, if p = 0,

(∂1α2 − ∂2α1) d x
1 ∧ dx2, if p = 1,

0, if p = 2,

∗α =


α dx1 ∧ dx2, if p = 0,

−α2 dx
1 + α1 dx

2, if p = 1,

α12, if p = 2.

Hence, it follows that

∗ dX♭ = ∗ d(X1 dx1 +X2 dx2) = ∗(∂1X2 − ∂2X
1) d x1 ∧ dx2

= ∂1X
2 − ∂2X

1,

∗ d ∗X♭ = ∗ d ∗(X1 dx1 +X2 dx2) = ∗ d(−X2 dx1 +X1 dx2)

= ∗(∂1X1 + ∂2X
2) d x1 ∧ dx2 = ∂1X

1 + ∂2X
2.

In the same manner, we obtain

gradϕ = (dϕ)♯, J gradψ = (∗ dψ)♯, (8)
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since

dϕ = ∂1ϕ dx
1 + ∂2ϕ dx

2, ∗ dψ = −∂2ψ dx1 + ∂1ψ dx2.

Owing to ∗ d ∗ dψ = △ψ, the equality (4) is obtained.
Based on the reformulation of vector calculus, we naturally generalize

the above notions to those for the case of curved surfaces. Let (M, g) be a
connected orientable 2-dimensional Riemannian manifold, called a surface,
with or without boundary, which can be compact or non-compact. We extend
the Riemannian metric g on the tangent bundle TM to the metric on a vector
bundle E over M . Namely, g is defined as a section of (E ⊗ E)∗ such that
for all p ∈ M , gp is an inner product on the vector space Ep. Hodge-∗
operator associated with the metric g and the volume form dVolg is defined
by α ∧ ∗β = g(α, β)dVolg for all α, β ∈ Ωp

[r](M). In particular, ∗ rotates

vectors and covectors by the degree +π/2 owing to dimM = 2. We assume
the existence of the Green function for the Hodge Laplacian △ = δ d+d δ on
(M, g), where δ = ∗ d ∗ is the codifferential operator. Note that the existence
of a Green function on (M, g) is discussed in [3, 24]. If M is a surface
with boundary, we assume every vector field X satisfies the slip boundary
condition on ∂M , that is X|∂M ∈ X(∂M). We also assume every vector field
has compact support.

We first define the flat operator ♭ : X → Xr(M) → X♭ ∈ Ω1
[r](M) by

X♭ = g(X, · ). The sharp operator ♯ : α♯ ∈ Ω1
[r](M) → α♯ ∈ Xr(M) is defined

as the inverse of the flat operator. The flat operator and the sharp opera-
tor become isomorphisms between Xr(M) and Ω1

[r](M). From this reason,
the flat operator and the sharp operator are also called the musical isomor-
phisms. Based on the equality (7), for the case of surfaces, we next define
the curl operator curl : Xr(M) → Cr−1(M) and the divergence operator
div : Xr(M) → Cr−1(M) by

curlX = ∗ dX♭, divX = δX♭.

A vector field X ∈ Xr(M) is said to be irrotational, if curlX = 0. A vec-
tor field X ∈ Xr(M) is said to be incompressible, if divX = 0. For each
X ∈ Xr(M), the function ω = curlX ∈ Cr+1(M) is called the vorticity. Ow-
ing to the equality (8), we define the gradient operator grad : ϕ ∈ Cr(M) →
gradϕ ∈ Xr−1(M) by gradϕ = (dϕ)♯. The symplectic matrix J is inter-
preted as the complex structure J : X ∈ TM → (∗X♭)♯ ∈ TM . A vector
field X ∈ Xr(M) is called the gradient vector field, if there exists a function

7



ϕ ∈ Cr+1(M) such that X = gradϕ. Then, the function ϕ is called the po-
tential. A vector field X ∈ Xr(M) is called the Hamiltonian vector field on
the symplectic manifold (M, dVolg), if there exists a function ψ ∈ Cr+1(R2)
such that X = −J gradψ. Then, the equality (4) for the case of surfaces
holds true, since

curlJ gradψ = ∗ d(∗ dψ) = δ dψ = △ψ.

On the other hand, there is an incompressible vector field which is not
Hamiltonian vector field on the surface as long as M is simply connected
whereas, in the plane, every incompressible vector field is a Hamiltonian
vector field. Indeed, for every incompressible vector field X ∈ Xr(M), X♭ is
closed 1-form but it should be exact 1-form when X is a Hamiltonian vector
field. In the same reason, there is a irrotational vector field which is not a
gradient vector field. Hence, in order to recover incompressible vector fields
from the vorticity, we need to restrict the incompressible vector fields to
certain appropriate vector fields. As a trivial restriction, the incompressible
vector field X is taken as a Hamiltonian vector field −J gradψ. Then, the
vorticity ω of X = −J gradψ satisfies

ω = ∗ d(− ∗ dψ) = −△ψ, (9)

which yields that ψ is determined by a solution of the Poisson equation (9).
Owing to the slip boundary condition for X, ψ obeys the Dirichlet boundary
condition with a constant boundary value, since

dψ = ∗X♭ = 0 on ∂M.

We define GH ∈ C∞(M ×M \∆) as the fundamental solution of the above
Poisson problem and call it the hydrodynamic Green function.

Definition 2.1. A function GH ∈ C∞(M ×M \∆) is called a hydrodynamic
Green function, if the function GH is a solution of the following boundary
value problem in D′

0(M).

−△GH(x, x0)[ϕ] =

∗ϕ(x0)−
1

Area(M)

∫
M

ϕ, if M is closed,

∗ϕ(x0), otherwise,

GH(x, x0) = GH(x0, x),

dGH = 0 on ∂M.
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Let us recall the existence of GH is assumed throughout this paper. We
also note that the boundary value of GH is arbitrarily fixed as long as the
summation of the flux on each boundary component is equals to 1 and that
the difference of this choice is at most harmonic functions, say ψ0. There
are several definitions of the hydrodynamic Green’s function according to
the boundary value and asymptotic behavior near ends of surfaces [9, 11].
In what follows, let us choose a hydrodynamic Green function GH . Hence,
by solving the Poisson problem (30), we obtain ψ = ψ0 + ⟨GH , ω⟩ for some
harmonic function ψ0, which gives the Biot-Savart law on the surface.

X = −J gradψ = −J grad⟨GH , ω⟩. (10)

As another restriction, for an arbitrarily fixed incompressible vector field
X ∈ Xr(M), the incompressible vector field Y ∈ Xr(M) is given by Y =
X−J gradψ for some ψ ∈ Cr+1(M). The case stated the above corresponds
to the case of X = 0. Then, we can also recover the vector fields from the
vorticity, since the relative vorticity ω = ∗ d(Y −X)♭ ∈ Ω0

[r−1](M) satisfies

ω = ∗ d(−J gradψ)♭ = −△ψ,

which gives Y = X − J grad(ψ0 + ⟨GH , ω⟩). In this paper, we will use this
restriction to recover an incompressible vector field from a singular vorticity
in a weak sense.

3 Euler-Arnold flows on surfaces

The motion of incompressible and inviscid fluids on a simply connected do-
main U in the Euclidean plane is governed by the Euler equation,

∂tvt + (vt · ∇)vt = − grad pt, div vt = 0, (11)

where (vt · ∇) = v1t ∂1 + v2t ∂2. We consider the slip boundary condition
vt · n = 0 on the boundary of U . The fluid velocity field vt ∈ X(U) and
the scalar pressure pt ∈ C(U) are the unknowns at time t ∈ (0, T ]. A
solution of the Euler equation (11) is called an Euler flow. Applying the
curl operator to the Euler equation, we have the following equation for the
vorticity ωt = curl vt = ∂1v

2
t − ∂2v

1
t .

∂tωt + (vt · ∇)ωt = 0,
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which is called the vorticity equation. By the Biot-Savart law, we have

vt = −J grad⟨GH , ωt⟩,

which yields the vorticity equation is rewritten with ωt only.

∂tωt +−(J grad⟨GH , ωt⟩ · ∇)ωt = 0. (12)

Then, the pressure pt is also presented by ωt, since, applying the divergence
operator to (11), we obtain

div(vt · ∇)vt = − div grad pt = −△pt,

which implies that pt is determined as a solution of this Poisson equation.
Hence, if ωt is a solution of (12), the Euler flow (vt, pt) is given by

vt = −J grad⟨GH , ωt⟩, pt = ⟨GH , div(J grad⟨GH , ωt⟩ · ∇)J grad⟨GH , ωt⟩⟩.
(13)

Obviously, when ωt = 0 for each time t, it is a steady solution of (12).
Then, the velocity field vt is irrotational and the pressure satisfies the steady
Bernoulli law.

p = −|v|2/2.

When the flow field is a curved surface, we derive the Euler equation
as the variational equation for the kinematic energy of incompressible flows.
We denote the space of all incompressible vector fields on a surface (M, g)
with compact support by SVect(M) and the space of all area-preserving
diffeomorphisms on the surface with compact support by SDiff(M). Then,
every incompressible vector field v ∈ SVect(M) generates an area-preserving
diffeomorphism vt ∈ SDiff(M). Conversely, the infinitesimal generator of
Φ : t ∈ [0, T ] → Φt ∈ SDiff(M) is an incompressible vector field ∂tΦt ∈
SVect(M). For each path c : t ∈ [0, T ] → ct ∈ SDiff(M), we define the
L2-kinematic energy E(c) of the path c by

E(c) =
1

2

∫ T

0

∫
M

g(∂tct, ∂tct)dVolg d t.

Let us denote the variation of the path c by Φ : (−ε, ε) × [0, T ] → Φs
t ∈

SDiff(M), in which c = Φ0. It follows from the chain rule that the time-
dependent vector field ∂tΦ

0
t ∈ SVect(M), denoted by vt, satisfies

∂2tΦ
0
t (x)|t=τ = (∂tvt +∇vtvt)(Φτ (x))
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for each x ∈ M and each τ ∈ [0, T ] where ∇ is the Levi-Civita connection
on (M, g). We write the time-dependent vector field ∂sΦ

s
t |s=0 ∈ SVect(M)

by ut, which satisfies u0 = uT = 0. For the first variation of E, we obtain

d

d s
E(Φs)

∣∣∣∣
s=0

=

∫ T

0

∫
M

(∂tΦ
0
t , ∂s∂tΦ

s
t |s=0)dVolg d t

=

∫ T

0

∫
M

(∂tΦ
0
t , ∂tut)dVolg d t

=

[∫
M

(∂tΦ
0
t , ut)dVolg d t

]T
0

−
∫ T

0

∫
M

(∂2tΦ
0
t , ut)dVolg d t

= −
∫ T

0

∫
M

(∂tvt +∇vtvt, ut)dVolg d t.

Hence, if the path c is a critical point of E, then for every t ∈ [0, T ] and
every ut ∈ SVect(M), ∫

M

(∂tvt +∇vtvt, ut)dVolg = 0.

By Hodge-Kodaira decomposition, there exists a time-dependent function
pt ∈ Cr+1(M) such that

∂tvt +∇vtvt = − grad pt. (14)

The evolution equation (14) is called the Euler-Arnold equation [1, 2]. The
unknowns, vt and pt are called the fluid velocity and the pressure. The
solution (vt, pt) of (14) is called a (classical) Euler-Arnold flow.

In what follows, we fix an Euler-Arnold flow (vt, pt) ∈ Xr(M)×Cr(M) at
a time t ∈ (0, T ]. For convenience, we omit the subscript t unless otherwise
stated in what follows. Let us introduce some equivalent formulations of the
Euler-Arnold equation. They are derived from the following dual formula-
tion.

∂tv
♭ +∇vv

♭ = − d p. (15)

Based on the fact that

∇vv
♭ = Lv v

♭ − d |v|2/2, (16)

∇vv
♭ = iv d v

♭ + d |v|2/2, (17)
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we obtain two equivalent formulations of (15),

∂tv
♭ + Lv v

♭ = − d(p− |v|2/2), (18)

∂tv
♭ + iv d v

♭ = − d(p+ |v|2/2), (19)

where L and i are the Lie derivative and the interior multiplication respec-
tively. Applying the operator ∗ d to (18), we have the vorticity equation.

∂tω + Lv ω = 0. (20)

Hence, the vorticity of the Euler-Arnold flow is also a Lagrange invariance.
If v is a solution of (20), the pressure is determined by v, since, applying the
codifferential operator δ = ∗ d ∗ to (15), we have

div∇vv = δ∇vv
♭ = −△p,

which yields
p = ⟨GH , div∇vv⟩.

Moreover, if v is a Hamiltonian vector field, owing to the Biot-Savart law (10),
the vorticity equation is written with ω only.

∂tω + L−J grad⟨GH ,ω⟩ ω = 0. (21)

Hence, if ωt is a solution of (21), the Euler-Arnold flow (vt, pt) is given by

vt = −J grad⟨GH , ωt⟩, pt = ⟨GH , div∇−J grad⟨GH ,ωt⟩ − J grad⟨GH , ωt⟩⟩.
(22)

We notice that the equality (18) contains both v and v♭. On the other
hand, the equality (19) gives a formulation of the Euler-Arnold equation
with v♭ only. As a matter of fact, let us recall the Riemannian metric can
be extended to the metric on the cotangent bundle, which yields |v♭| makes
sense and |v♭| = |v| holds. Owing to dimM = 2, we have

iv d v
♭ = ωivdVolg = (∗ d v♭) ∗ v♭,

which yields that the equality (19) is deduced to

∂tv
♭ + (∗ d v♭) ∗ v♭ + d |v♭|2/2 = − d p.
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This formulation plays a key role in deriving a weak formulation of the Euler-
Arnold equation.

Let us examine these expressions of the advection term, (16) and (17)
in more detail. We will see that each of them leads to a steady solution of
the Euler-Arnold equation. They are derived from the covariant derivative
operator ∇v : X ∈ Xr(M) → ∇Xv ∈ Xr(M) and its adjoint operator ∇∗v
for each v ∈ Xr(M), which is defined by

g(∇∗v(X), Y ) = g(X,∇v(Y ))

for every X,Y ∈ Xr(M). In what follows, we fix vector fields v,X, Y ∈
Xr(M) arbitrarily. It follows from the compatibility of the metric that

g(∇∗v(v), X) = g(v,∇v(X)) = g(v,∇Xv) = X|v|2/2 = d |v|2/2(X),

which gives

∇∗v(v)♭ = d |v|2/2. (23)

Let us decompose ∇v into the symmetric part ∇symv and skew-symmetric
part ∇skv, that is, for each X ∈ Xr(M),

∇symv(X) = ∇v(X) +∇∗v(X),

∇skv(X) = ∇v(X)−∇∗v(X).

In particular, by (23), we obtain

∇symv(v)♭ = ∇v(v)♭ +∇∗v(v)♭ = ∇vv
♭ + d |v|2/2,

∇skv(v)♭ = ∇v(v)♭ −∇∗v(v)♭ = ∇vv
♭ − d |v|2/2.

By the definition of the Lie derivative, we have

(Lv g)(X,Y ) = vg(X,Y )− g([v,X], Y )− g(X, [v, Y ])

= g(∇vX,Y ) + g(X,∇vY )

− g(∇vX −∇Xv, Y )− g(X,∇vY −∇Y v)

= g(∇Xv, Y ) + g(X,∇Y v)

= g(∇v(X), Y ) + g(X,∇v(Y ))

= g(∇symv(X), Y ).
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Hence, the equality (16) holds true, since

(Lv v
♭)(X) = v(v♭(X))− v♭([v,X]) = vg(v,X)− g(v, [v,X])

= (Lv g)(v,X) = g(∇symv(v), X) = (∇vv
♭ + d |v|2/2)(X).

Let us compute d v♭ in the similar manner.

d v♭(X,Y ) = X(v♭(Y ))− Y (v♭(X))− v♭([X,Y ])

= Xg(v, Y )− Y g(v,X)− g(v, [X,Y ])

= g(∇Xv, Y ) + g(v,∇XY )− g(∇Y v,X)

− g(v,∇YX)− g(v,∇XY −∇YX)

= g(∇Xv, Y )− g(∇Y v,X)

= g(∇v(X), Y )− g(∇v(Y ), X)

= g(∇skv(X), Y ).

From this, we see that

iv d v
♭(X) = d v♭(v,X) = g(∇skv(v), X) = (∇vv

♭ − d |v|2/2)(X),

which establishes the equality (17). For example, when the flow field is the
Euclidean plane, we have

d |v|2/2 = (v1∂1v
1 + v2∂1v

2) d x1 + (v1∂2v
1 + v2∂2v

2) d x2,

∇vv
♭ = (v1∂1v

1 + v2∂2v
1) d x1 + (v1∂1v

2 + v2∂2v
2) d x2,

iv d v
♭ = (−v2∂1v2 + v2∂2v

1) d x1 + (v1∂1v
2 − v1∂2v

1) d x2,

Lv v
♭ = (2v1∂1v

1 + v2∂2v
1 + v2∂1v

2) d x1 + (2v2∂2v
2 + v1∂1v

2 + v1∂2v
1) d x2.

Let us derive steady solutions of the Euler-Arnold equation from the equal-
ities, (16) and (17). We first examine a vector field v ∈ Xr(M) such that
Lv g = 0, which is called the Killing vector field. Then, the Euler-Arnold
equation is deduced from (18) to

d(p− |v|2/2) = 0.

Hence, every Killing vector field v ∈ Xr(M) is the fluid velocity of a steady
Euler-Arnold flow (v, p) and the pressure satisfies p = |v|2/2 up to constant.

14



For instance, when the flow field is the Euclidean plane, the Killing vector
field has a constant vorticity. Our next concern is a vector field v ∈ Xr(M)
such that d v♭ = 0. Owing to ω = ∗ d v♭, the vector field is irrotational. In
the same manner as the case of the plane, we conclude every irrotational
vector field v ∈ Xr(M) is the fluid velocity of a steady Euler-Arnold flow
(v, p) and the pressure p satisfies p = −|v|2/2 up to constant owing to (19).

4 Point vortex dynamics

The point vortex dynamics is another dynamical model of incompressible
and inviscid fluids, which is formally derived from the Euler flow. As we see
in Section 3, if a time-dependent function ωt is a solution of the vorticity
equation (12), then an Euler flow (vt, pt) is determined by ωt as

vt = −J grad⟨GH , ωt⟩, pt = ⟨GH , div(J grad⟨GH , ωt⟩ · ∇)J grad⟨GH , ωt⟩⟩.
(24)

These formula (12) and (24) are still valid in the sense of distributions when
we give a time-dependent vorticity distribution Ωt =

∑N
n=1 Γnδqn(t) in which

(Γn)
N
n=1 ∈ (R \ {0})N , qn(t) is a given 1-parameter family, and δqn(t) denotes

the delta function centered at qn(t) for n = 1, . . . , N . Then, a time-dependent
vector field Vt ∈ X(U \ {qn(t)}Nn=1) and a time-dependent function Pt ∈
C(U \ {qn(t)}Nn=1) are given by

Vt(q) = −J grad
N∑

n=1

ΓnGH(q, qn(t)), Pt = ⟨GH , div(Vt·∇)Vt⟩. (25)

Since (Vt, Pt) is no longer an Euler flow in a regular sense, we can not de-
fine the dynamics of qn(t) from the Euler equation. Instead, to determine
the evolution of qn(t) by Vt, Helmholtz considered the following regularized
equation for qn(t) [21].

q̇n = lim
q→qn

[
Vt(q) + J grad⟨GH ,Γnδqn(t)⟩(q)

]
(26)

= −J grad
N∑

m=1
m ̸=n

ΓmGH(qn, qm) ≡ vn(qn).

It is called the point vortex equation, and the solution of (26) is called the
point vortex dynamics. Since the evolution equation for the vorticity Ωt are
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determined in a different way from the vorticity equation, the problem arises
as to whether the point vortex dynamics is an Euler flow in a mathematically
appropriate sense. Although the problem is not well-established mathemat-
ically, the equation (26) plays a significant role in the application of fluid
dynamics as mathematical models of many fluid phenomena with localized
vortex structures, in which the fluid velocity and the pressure are obtained
by (25). On the other hand, until this problem is solved, it is still unclear
whether qualitative understanding of the fluid phenomena based on the point
vortex dynamics is valid for Euler flows. With this reason, it is of a signifi-
cance to justify the point vortex dynamics as an Euler flow in an appropriate
mathematical sense.

The point vortex dynamics is sometimes considered in the presence of
the velocity Xt ∈ Xr(R2) of an Euler flow, in which the evolution of qn(t) is
governed by the following equation.

q̇n(t) = βXXt(qn(t)) + βωvn(qn(t)), n = 1, . . . N, (27)

for a given (βX , βω) ∈ R2. Some experimental studies confirm the importance
of background fields in two-dimensional turbulence [28]. For the solution
qn(t) of (27), a time-dependent vector field Vt and a time-dependent function
Pt are thus defined by

Vt(q) = Xt(q)− J grad
N∑

n=1

ΓnGH(q, qn(t)), Pt = ⟨GH , div(Vt·∇)Vt⟩. (28)

As is the case without background field, we are concerned with whether
(Vt, Pt) which is defined by (28) becomes an Euler flow. However, for general
background fields, even if the background field comes from a classical solution
of the Euler equation, any space of solutions containing (Vt, Pt) has not yet
been established.

When the flow field is a curved surface, in the same manner of the case of
the Euclidean plane, the point vortex dynamics is derived from the fact that,
if ωt is a solution of the vorticity equation (21), we obtain an Euler-Arnold
flow (vt, pt) which is defined by

vt = −J grad⟨GH , ωt⟩, pt = ⟨GH , div∇J grad⟨GH ,ωt⟩ J grad⟨GH , ωt⟩⟩.

Taking a linear combination of delta functions Ωt =
∑N

n=1 Γnδqn(t) for (Γn)
N
n=1

and qn(t) ∈M as the time-dependent distribution, we obtain a time-dependent
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vector field Vt ∈ X(M \ {qn(t)}Nn=1) and a time-dependent function Pt ∈
C(M \ {qn(t)}Nn=1).

Vt(q) = −J grad
N∑

n=1

ΓnGH(q, qn(t)), Pt = ⟨GH , div∇VtVt⟩.

As an analogy of the Helmholtz principle, let us consider the following regu-
larized equation for qn(t).

q̇n = lim
q→qn

[Vt(q) + J gradΓn log d(q, qn(t))] (29)

= −J gradqn

N∑
m=1
m̸=n

ΓmGH(qn, qm) + ΓnR(qn) ≡ vn(qn),

where d ∈ C∞(M×M) is the geodesic distance on (M, g). The equation (29)
is also called the point vortex equation, and the solution is called the point
vortex dynamics on the surface. The function R is referred to as the Robin
function [9, 11], which is defined by

R(q) = lim
q0→q

GH(q, q0) +
1

2π
log d(q, q0).

Point vortex dynamics on surfaces is originally motivated by the appli-
cations to geophysical fluids [4]. Later, the point vortex dynamics is investi-
gated in the many surfaces: a sphere [15], a hyperbolic disc [14], multiply con-
nected domains [22], a cylinder [19], a flat torus [27], the Bolza surface [10],
surfaces of revolution diffeomorphic to the plane [13], the sphere [7] and the
torus [23]. There are some derivations of the point vortex dynamics on sur-
faces. The derivation stated above is based on the analogy of Helmholtz
principle. Another derivation of point vortex dynamics from the vorticity
equation (20) and the generalized Newton law has been recently developed
in [11]. Note that point vortex dynamics on surfaces is formally derived in-
dependently from the Euler-Arnold flows. As is the case of the Euclidean
plane, we can ask whether (Vt, Pt) is an Euler-Arnold flow. However, there
is no result on the problem for curved surfaces as well as the plane. Besides
the problem as we see in the case of the Euclidean plane, due to the gener-
alization of point vortex dynamics to the case of curved surfaces, the other
problems arise in justifying the point vortex dynamics as an Euler-Arnold
flow. First, in the analogy of the Helmholtz principle, the fluid velocity is
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regularized by the geodesic distance. There is no particular reason why the
geodesic distance should be taken to regularize the fluid velocity. Another
choice of the regularizing function has been recently discussed in [12]. Second,
there exists an Euler-Arnold flow such that it is not Hamiltonian owing to
the Hodge decomposition, whereas the point vortex dynamics is formulated
as a Hamiltonian dynamics. Hence, there is a gap between non-Hamiltonian
Euler-Arnold flows and the point vortex dynamics.

For the case of a curved surface, the point vortex dynamics in a back-
ground field is formulated as well as for the cased of the plane by taking an
Euler-Arnold flow as the background field instead of an Euler flow. Namely,
the point vortex dynamics on the surface with a background fieldXt ∈ Xr(M)
is defined as a solution of

q̇n(t) = βXXt(qn(t)) + βωvn(qn(t)), n = 1, . . . N,

where (βX , βω) ∈ R2 is a given parameter and the vector field Xt ∈ Xr(M) is
the fluid velocity of a given Euler-Arnold flow. For example, in the applica-
tion to geophysical flows, the point vortex dynamics in a background field on
the unit sphere is adopted as a mathematical model of incompressible and
inviscid fluid flows on the unit sphere with Coriolis force [20]. On the other
hand, as is the case with no background field, there is no theoretical result
on the problem whether (Vt, Pt) is an Euler-Arnold flow.

5 de Rham current

5.1 Basic concepts and properties

We review some basic notions in the theory of de Rham currents, which
are alternatives of the Schwartz distributions in the Euclidean space and
which are required to give a weak formulation of the Euler-Arnold equation
on curved surfaces. Roughly speaking, currents are differential forms with
distribution coefficients in local charts. A good reference of the theory of de
Rham currents is given in [6].

A p-current is defined as a continuous linear functional overR onD2−p(M),
which is the space of all (2− p)-forms on M with compact support. Let T [ϕ]
denote the coupling of the p-current T and ϕ ∈ D2−p(M). The elements
of Dp(M) are often called test forms. The space of all p-currents on M is

18



denoted by D′
p(M). The calculus of differential forms such as the differen-

tial operator d, the Hodge-∗ operator, the codifferential operator δ = ∗ d ∗,
Hodge Laplacian △ = d δ+δ d can be extended to currents via test forms. In
fact, for a given T ∈ D′

p(M), d and ∗ are defined by dT [ϕ] = (−1)p+1T [dϕ]

for each ϕ ∈ D1−p(M) and ∗T [φ] = (−1)p(2−p)T [∗φ] for each φ ∈ Dp(M).
Thus the notions for differential forms such as (co)closedness, (co)exactness
and harmonicity can also be defined with respect to currents.

For instance, the space D′
0(M) corresponds to the space of distributions

on M . For any p-form α ∈ Ωp(M), it is naturally identified with a p-current
when we define a functional I(α) on D2−p(M) as I(α)[ϕ] =

∫
M
α ∧ ϕ. For

p ∈ M , we define the delta current, say δp ∈ D′
0(M), by δp[ϕ] = ∗ϕ(p). This

is the counterpart of the delta function in the theory of distributions.
We now introduce χp : v ∈ Xr(U) → χpv ∈ D′

1(M) for a given open
subset U ⊂ M and p ∈ U by χpv[ϕ] = ϕp(vp) for each ϕ ∈ D1(M). It
is characterized as a limit of the mean value for the vector field around a
geodesic circle as follows.

Proposition 5.1. Fix an open subset U ⊂M , p ∈ U and v ∈ Xr(U). Then
for any ϕ ∈ D1(M), we have

χpv[ϕ] = lim
ε→0

∫
∂Bε(p)

1

π
g(v,J grad log d(p, q))ϕq.

Proof. Let us take a complex coordinate (z) centered at p with z(p) = 0.
Since g is presented as g = λ2| d z|2 for some λ ∈ C∞(U), the distance d(p, q)
is written as d(p, q) = λ(0)|z| + O(ε). Writing v = vz∂z + vz̄∂z̄, we deduce
from ∗ d z = −i d z and ∗ d z̄ = i d z̄ that

g(v,J grad log d(p, q)) = ∗ d log d(p, q)[v] = ∗ d log |z|[v] +O(ε)

=
i

2

(
−d z

z
+

d z̄

z̄

)
[vz∂z + vz̄∂z̄] +O(ε)

=
i

2

(
−v

z

z
+
vz̄

z̄

)
+O(ε).
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By the residue theorem, we conclude that∫
∂Bε(p)

1

π
g(v,J grad log d(p, q))ϕ =

∫
∂Bε(p)

i

2π

(
−v

z

z
+
vz̄

z̄

)
(ϕz d z + ϕz̄ d z̄) +O(ε)

= vz(0)ϕz(0) + vz̄(0)ϕz̄(0) +O(ε)

→ χpv[ϕ].

Let Ωp
[r]loc(M) denote the space of all p-forms on nonempty open subset

U ⊂ M , which are called local p-form. In the same manner as Lp
loc(M), the

topology of Ωp
[r]loc(M) can be defined. For each local p-form α ∈ Ωp

[r]loc(M),

there exists a maximal open subset U such that α ∈ Ωp
[r](U). Then, the

closed subset Sr(α) =M \U is called the singular support of α. A p-current
T ∈ D′

p(M) is said to be Cr, if there exists a local p-form αT ∈ Ωp
[r]loc(M) such

that for every ϕ ∈ D2−p(M\Sr(αT )), T [ϕ] = I(αT )[ϕ]. Let D′r
p (M) denote the

space of all Cr p-currents. For each T ∈ D′r
p (M), the subset Sr(T ) = Sr(αT )

and the local p-form αT is called the singular support of T and the density
of T . Owing to the fundamental lemma of calculus of variation, the density
is uniquely determined. Thus, the map K : T ∈ D′r

p (M) → K(T ) = αT ∈
Ωp

[r]loc(M) is well-defined and called the derivative. For example, for each

p ∈ M , the delta current δp is C∞ since δp = I(0) in M \ {p}. We thus
obtain S∞(δp) = {p} and K(δp) = 0. In this paper, all currents are Cr and
the singular support consists of a finite set of points.

In Definition 2.1, we state the definition of the hydrodynamic Green func-
tion in the sense of distribution. Let us restate the definition in the sense
of currents. For each x0 ∈ M , we define Gx0 ∈ D′∞

0 (M) as K(Gx0)(x) =
GH(x, x0). Then, the definition of the hydrodynamic Green function GH ∈
C∞(M ×M \∆) is rewritten in terms of the current Gx0 as follows. For each
(x, x0) ∈M ×M \∆ and each ϕ ∈ D2(M),

−△Gx0 [ϕ] =

∗ϕ(x0)−
1

Area(M)

∫
M

ϕ, if M is closed,

∗ϕ(x0), otherwise,

Gx0 = Gx,

dK(Gx0) = 0 on ∂M.
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Let us remember that Ω1
[r](M) is identified with Xr(M) by the musical

isomorphism ♯ : α ∈ Ω1
[r](M) → α♯ ∈ Xr(M), satisfying α[X] = g(α♯, X)

for all X ∈ Xr(M). Every Cr 1-current T generates a vector field allowing
singularities in S(T ). For each T ∈ D′r

1 (M), we define T♯ ∈ Xr(M \ Sr(T ))
by T♯ = K(T )♯. As an example, for each ψ ∈ D′r

0 (M), we define J gradψ ∈
Xr−1(M \ Sr−1(dψ)) by J gradψ = K(∗ dψ)♯. The vector field J gradψ
stands for the Hamiltonian vector field induced from the Hamiltonian ψ
with singularities in S(ψ). We will use this notion when we take a vector
field generated by point vortices. In what follows, for a given T ∈ D′r

p (M),
we abbreviate Sr(T ) to S(T ). Moreover, we denote K(T ) briefly by T as long
as no confusion arises. In particular, for a given T ∈ D′r

1 (M), when we write
|T |2 , it stands for not the multiplication of currents but the multiplication
of the local 1-form |αT |2. Similarly, (∗ dT ) ∗ T means the multiplication of
the local 0-form ∗ dαT and the local 1-form ∗αT . This treatment is sensitive
when we formulate the nonlinear term in the sense of currents.

We define the principal value p.v. : T ∈ Ωp
[r]loc(M) → p.v. T ∈ D′

p(M) by

p.v. T [ϕ] = lim
ε→0

∫
M\Bε(S(T ))

T ∧ ϕ

for each ϕ ∈ D2−p(M) if the limit exists. The domain of p.v., say Dom(p.v.),
is defined as the space of p-currents in which the limit exists for every ϕ ∈
D2−p(M).

We apply the calculus of currents to the derivation of the Biot-Savart
kernel in the Euclidean plane (C, | d z|2). First, let us consider a 0-current
ψ = ⟨GH , δ0⟩ ∈ D′

0(C). Since ψ = I(GH(z, 0)) on C \ {0}, we deduce that ψ
is C∞ and that S(ψ) = {0}. We next compute u = − ∗ dψ ∈ D′∞

1 (C). For
each ϕ ∈ D1(C),

u[ϕ] = dψ[∗ϕ] = −ψ[d ∗ϕ] = −
∫
C\{0}

GH(z, 0) d ∗ϕ

=

∫
C\{0}

− d(GH(z, 0) ∗ ϕ) + dGH(z, 0) ∧ ∗ϕ

=

∫
C\{0}

− ∗ dGH(z, 0) ∧ ϕ = I(− ∗ dGH(z, 0))[ϕ],

which yields u = I(− ∗ dGH(z, 0)) in C \ {0}. It follows from ∗ d z = −i d z
and ∗ d z̄ = i d z̄ that − ∗ dGH(z, 0) = i(∂zGH(z, 0) d z − ∂z̄GH(z, 0) d z̄).

21



Therefore we obtain the Biot-Savart kernel as follows.

−J gradψ = (− ∗ dGH(z, 0))♯ = i(2∂zGH(z, 0)∂z̄ − 2∂z̄GH(z, 0)∂z)

= i

(
− 1

2πz
∂z̄ +

1

2πz̄
∂z

)
=

i

2π|z|2
(z∂z − z̄∂z̄)

=
1

2π(x2 + y2)
(−y∂x + x∂y).

Remark 1. We compute the vorticity of −J gradψ, in which p.v. plays a
key role in the computation by the density of ψ. Indeed, since u = I(− ∗
dGH(z, 0)) in C\{0}, ∗ du = I(−∗d ∗ dGH(z, 0)) = I(−△GH(z, 0)) = I(0)
in C\{0}. On the other hand, we have ∗ du = −∗d ∗ dψ = −△ψ = ω = δ0.
This indicates that we need to take the singular behavior into account in
order to calculate the vorticity by the density. For each ϕ ∈ D2(C), owing to
− ∗ dGH(z, 0) ∈ Ω1

[r]loc(C), we see that

∗ d p.v. u[ϕ] = p.v. u[d ∗ϕ] = lim
ε→0

∫
C\Bε(0)

− ∗ dGH(z, 0) ∧ d ∗ϕ

= lim
ε→0

∫
C\Bε(0)

d(∗ϕ ∗ dGH(z, 0))− ∗ϕ d ∗ dGH(z, 0)

= lim
ε→0

−
∫
∂Bε(0)

∗ϕ ∗ dGH(z, 0)

− lim
ε→0

∫
C\Bε(0)

∗ϕ△GH(z, 0) d z ∧ d z̄

= lim
ε→0

∫
∂Bε(0)

∗ϕi(∂zGH(z, 0) d z − ∂z̄GH(z, 0) d z̄)

= ∗ϕ(0),

which yields ∗ d p.v. u = δ0 in D′
0(C). Therefore, in order to recover the

vorticity from the density, we need to consider ∗ d p.v. u instead of ∗ du.
Let us introduce the operator L by L = dp.v. : T ∈ Ωp

[r]loc(M) → LT ∈
D′

p+1(M), which is called the localizing operator. For each ϕ ∈ Dp+1(M), we
have

LT [ϕ] = d p.v. T [ϕ] = (−1)p+1 p.v. T [dϕ].

The domain of L, Dom(L), is the space of p-currents T in which p.v. T [dϕ]
is well-defined for every ϕ ∈ D1−p(M). If T ∈ Dom(L) satisfies dT = 0 in
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M \ S(T ), then we obtain

LT [ϕ] = (−1)p+1 p.v. T [dϕ] = (−1)p+1 lim
ε→0

∫
M\Bε(S(T ))

T ∧ dϕ

= − lim
ε→0

∫
∂Bε(S(T ))

T ∧ ϕ,

since (−1)p+1T ∧ dϕ = − d(T ∧ ϕ) + dT ∧ ϕ. Hence, LT is determined by
the asymptotic behavior of T near the singular support S(T ). The name of
localizing operator is named after this property.

5.2 Weak formulation of vector fields

Based on the fact that Xr(M) is isomorphic to Ω1
[r](M) through the musical

isomorphism ♭ : v ∈ Xr(M) → v♭ = g(v, · ) ∈ Ω1
[r](M), we can extend the

notions associated with vector fields such as the divergence, the vorticity
and the slip-boundary condition in the sense of currents. We will use these
notions to formulate the Euler-Arnold equations in the sense of currents.

As we see in Section 2, the divergence and the vorticity of v ∈ Xr(M) is
defined by δv♭ ∈ Ω0

[r−1](M) and ∗ d v♭ ∈ Ω0
[r−1](M). Hence, it is reasonable

to define the divergence and the vorticity of a 1-current α ∈ D′
1(M) by

δα ∈ D′
0(M) and ∗ dα ∈ D′

0(M). Owing to dimM = 2, the slip boundary
condition v|∂M ∈ X(∂M) is written as the condition that ∗v♭ = 0 on ∂M . By
analogy, we define the slip boundary condition for a Cr 1-current α ∈ D′r

1 (M)
with ∂M ∩ S(α) = ∅ by ∗K(α) = 0 on ∂M . Next, we reformulate the notion
of the Biot-Savart law on surfaces in the sense of currents. As we see in
Section 2, for a given incompressible vector field X ∈ Xr(M) and a given
ψ ∈ Cr+1(M), the incompressible vector field Y = X − J gradψ ∈ Xr(M)
can be recovered from the vorticity Y = X − J grad⟨GH , ω⟩, where ω =
∗ d(Y − X)♭ ∈ Ω0

[r−1](M). Let us extend this formulation with respect to

vector fields to currents by replacing Y ♭ ∈ Ω1
[r](M) with α ∈ D′

1(M). That

is to say, for a given incompressible vector field X ∈ Xr(M), we consider
a 1-current α ∈ D′

1(M) such that α − X♭ is coexact, or equivalently there
exists ψ ∈ D′

0(M) such that α = X♭ − ∗ dψ. Defining the relative vorticity
ω ∈ D′

0(M) to X ∈ Xr(M) by ω = ∗ d(α−X♭) ∈ D′
0(M), we obtain

−△ψ = −δ dψ = ∗ d(α−X♭) = ω, (30)
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which yields ψ = ψ0 + ⟨GH , ω⟩ up to harmonic function ψ0 since the kernel
of the Laplacian −△ consists of harmonic functions. In the present paper,
we consider a special form of a singular vorticity as follows.

Definition 5.2. Fix N ∈ Z, (Γn)
N
n=1 ∈ (R \ {0})N and (qn)

N
n=1 ∈ QN =

(IntM)N \ {(qn)Nn=1 ∈ (IntM)N | ∃i, j, qi = qj}. A 0-current ω ∈ D′
0(M) is

called a singular vorticity of point vortices placed on {qn}Nn=1 ⊂ M , if for
each ϕ ∈ D2(M),

ω[ϕ] =
N∑

n=1

Γn ∗ ϕ(qn) + c

∫
M

ϕ,

where

c =

− 1

Area(M)

N∑
n=1

Γn, if M is closed,

0, otherwise.

Then every solution ψ ∈ D′∞
0 (M) of the Poisson problem −△ψ = ω is

presented by

ψ = ψ0 +
N∑

n=1

ΓnGqn

up to a harmonic function ψ0, since for each ϕ ∈ D2(M),

−△ψ[ϕ] = −△ψ0[ϕ] +
N∑

n=1

Γn(−△Gqn)

=
N∑

n=1

Γn

(
∗ϕ(qn) +

1

Area(M)

∫
M

ϕ

)
= ω.

Identifying the delta function with the Dirac measure, we see that

K(ω) = c, K(ψ)(p) = ψ0(p) +
N∑

n=1

ΓnGH(p, qn),

which yields S(ω) = S(ψ) = {qn}Nn=1.
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Let us now fix N ∈ Z, (Γn)
N
n=1 ∈ (R \ {0})N and (qn)

N
n=1 ∈ QN . For

each n ∈ {1, . . . , N}, a vector field vn ∈ X2(Br(qn)) with sufficiently small
r ∈ R>0 is defined by

vn(q) = −J gradq

[
N∑

m=1

ΓmGH(qm, q) +
Γn

2π
log d(qn, q)

]
.

It follows from the regularity theorem for a linear elliptic operator [3] that
vn is C1. Note that, in particular,

vn(qn) = −J gradqn

[
N∑

m̸=n

ΓmGH(qm, qn) + ΓnR(qn)

]
.

Since
∑N

m ̸=n ΓmGH(qm, qn) + ΓnR(qn) is smooth on QN , v : (qn)
N
n=1 ∈ QN →

(vn(qn))
N
n=1 ∈ TQN is a smooth vector field on QN . The point vortex dynam-

ics is defined by a solution of the following ordinary differential equation,

q̇n(t) = vn(qn(t)), n = 1, . . . , N.

For a given Euler-Arnold flow (Xt, Pt) ∈ Xr(M)×Cr(M) and (βX , βω) ∈ R2,
the point vortex dynamics in the background field Xt is defined as a solution
of the following ordinary differential equation,

q̇n(t) = βXXt(qn(t)) + βωvn(qn(t)), n = 1, . . . , N, (31)

called the point vortex equation.

6 Weak Euler-Arnold flows

As we see in Section 3, the Euler-Arnold equation on surfaces is presented as

∂tv
♭ + (∗ d v♭) ∗ v♭ + d |v♭|2/2 = − d p. (32)

Before we replace differential forms in (32) with currents, we need to deal
with the nonlinear term carefully in order to avoid multiplication of currents.
Based on the fact that multiplication of local p-forms is still valid and a local
p-form is converted to a current by taking the principle value, the Euler-
Arnold equation is reformulated for αt ∈ D′r

1 (M) and pt ∈ Ω0
[r]loc(M) as

follows.

∂t p.v. αt + p.v.{(∗ dαt) ∗ αt + d |αt|2/2} = − p.v. d pt in D′
1(M), (33)
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if each of terms is contained in Dom(p.v.), where we abbreviate K(αt) to
αt. When we focus on evolution of vorticity, the vorticity equation is useful
rather than the Euler-Arnold equation. Let us remember that the vorticity
equation is obtained by applying the differential operator d to the Euler-
Arnold equation. Hence, applying the differential operator d to (33), we
obtain the vorticity equation corresponding to (33) if each density in (33) is
contained in Dom(d p.v.) = Dom(L).

Definition 6.1. A pair of time-dependent currents (αt, pt) ∈ D′r
1 (M) ×

Ω0
[r]loc(M) is called a weak Euler-Arnold flow, if the following conditions are

satisfied:

1. αt ∈ Dom(L) and (∗ dαt) ∗ αt + d |αt|2/2 ∈ Dom(L);

2. d pt ∈ Dom(L);

3. ∂t Lαt + L {(∗ dαt) ∗ αt + d |αt|2/2} = −L d pt in D′
2(M);

4. δαt = 0 in D′
1(M);

5. ∂M ∩ S(αt) = ∅ and ∗αt = 0 on ∂M .

In particular, we call the third condition the weak Euler-Arnold equation and
αt the velocity current.

We decompose a weak Euler-Arnold flow into a regular part and a singular
part, thereby discussing the decomposition of each term of the weak Euler-
Arnold equation. As we see in Section 5.2, for a givenX ∈ Xr(M), a 1-current
α ∈ D′

1(M) is recovered from the relative vorticity ω = ∗ d(α−X♭), if α−X♭

is coexact. Based on this fact, we assume that, for a given weak Euler-
Arnold flow (αt, pt) ∈ D′r

1 (M) × Ω0
[r]loc(M), there exists a time-dependent

vector field Xt ∈ Xr(M) such that ut = αt − X♭
t is coexact for each time t,

that is, there exists ψt ∈ D′
0(M) such that αt − X♭

t = ut = − ∗ dψt. The
vorticity of X is denoted by ωX = ∗ dX♭

t . In other words, we consider a
weak Euler-Arnold flow such that the singular part of α can be described by
a Hamiltonian system on the surface in the sense of currents. Then, ψ and
u are determined by the relative vorticity ω = ∗ d(α −X♭) and a harmonic
function ψ0 as follows.

ψ = ψ0 + ⟨GH , ω⟩, u = − ∗ d(ψ0 + ⟨GH , ω⟩).
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For the corresponding densities, it follows from

∂t Lα− ∂t LX
♭ = ∂t Lu

L(∗ dα) ∗ α− LωX ∗X♭ = L(ω + ωX) ∗ (u+X♭)− LωX ∗X♭

= L{(ωX + ω) ∗ u+ ω ∗X♭},
L d |α|2 − L d |X|2 = L d g(X♭ + u,X♭ + u)− L d g(X♭, X♭)

= L d g(2X♭ + u, u)

that, if (X,P ) ∈ Xr(M)× Cr(M) is a classical Euler-Arnold flow,

∂tX
♭ + ωX ∗X♭ + d |X|2 = − dP,

the weak Euler-Arnold equation (Definition 6.1-3) is reduced to

∂t Lu+L{(ωX +ω) ∗ u+ω ∗X♭ +d g(2X♭ + u, u)/2} = −L d(p−P ). (34)

We shall compute the advection term and the pressure term when ω
is a singular vorticity of point vortices. To get insights on this calcula-
tion, let us compute these terms in the case where (M, g) is the Euclidean
plane (C, | d z|2) as an example. Let us take a weak Euler flow (αt, pt) ∈
D′r

1 (C) × Ω0
[r]loc(C). We also suppose that there exists a classical Euler flow

(Xt, Pt) ∈ Xr(M)×Cr(M) such that ut = αt−X♭
t ∈ D′r

1 (C) is coexact for each
time t, and its relative vorticity is given by

∑N
n=1 Γnδzn for a given N ∈ Z≥1,

(Γn)
N
n=1 ∈ (R\{0})N and {zn}Nn=1 ⊂ R2. Notice that S(u) = S(ω) = {zn}Nn=1.

Then, let us compute each terms of the weak Euler-Arnold equation (Defini-
tion 6.1-3). It follows from ω = I(0) that

Lω ∗ (u+X♭) = 0(L ∗u+ LX♭) = 0.

We can see LωX ∗ u = L ∗u = 0. Let us fix ϕ ∈ D0(C) and sufficiently small
ε > 0. Defining vn ∈ X∞(C \ {qm}Nm ̸=n) by v

♭
n = u− (Γn/2π) ∗ d log |z − zn|,

by the Stokes theorem, we deduce∫
C\Bε(S(u))

∗u ∧ dϕ =

∫
C\Bε(S(u))

− d(ϕ ∗ u) + ϕ d ∗u =
N∑

n=1

∫
∂Bε(zn)

ϕ ∗ u

=
N∑

n=1

∫
∂Bε(zn)

ϕ

(
v♭n −

Γn

2π
d log |z − zn|

)
= O(ε),
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which yields L ∗u = 0. Since∣∣∣∣∫
C\Bε(S(u))

ωX ∗ u ∧ dϕ

∣∣∣∣ ≤ ||ωX |supp dϕ||∞
∣∣∣∣∫

C\Bε(S(u))

∗u ∧ dϕ

∣∣∣∣ ,
it follows from L ∗u = 0 that LωX ∗u = 0. In contrast, Proposition 5.1 yields
that

L d g(X♭, u) = −
N∑

n=1

Γn dχznX, L d g(u, u)/2 = −
N∑

n=1

Γn dχznvn,

since∫
C\Bε(S(u))

d g(X♭, u) ∧ dϕ = −
N∑

n=1

∫
∂Bε(zn)

g(X♭, u) dϕ

= −
N∑

n=1

∫
∂Bε(zn)

(
g(X, v♭n) +

Γn

2π
g(X,J grad log |z|)

)
dϕ

→ −
N∑

n=1

Γn dχznX[ϕ] as ε→ 0,

and∫
C\Bε(S(u))

d g(u/2, u) ∧ dϕ = −
N∑

n=1

∫
∂Bε(zn)

g(u/2, u) dϕ

= −
N∑

n=1

∫
∂Bε(zn)

{
|vn|2/2 +

Γn

2π
g(vn,J grad log |z|)

}
dϕ

−
N∑

n=1

∫
∂Bε(zn)

1

2

(
Γn

2π
| ∗ d log |z − zn||

)2

dϕ

→ −
N∑

n=1

Γn dχznvn[ϕ] as ε→ 0.

This illustrates that the leading terms in the advection term consists of
L d g(X♭, u) and L d |u|2/2. This fact will be generally confirmed to hold
true for every surfaces in Lemma 7.3. Based on this, we introduce a model
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for the pressure that L p is killed out with a linear combination of singular
terms L d g(X♭, u) and L d |u|2/2, that is

p = P + (2βX − 1)g(X♭, u) + (2βω − 1)|u|2/2

for some (βX , βω) ∈ R2. This mathematical model can be interpreted that
the singular behavior of the pressure is balanced with the interaction energy
density g(X♭, u) and the kinetic energy density |u|2/2 with a growth rate
(βX , βω). Summarizing the above, we propose the following regular-singular
decomposition of a weak Euler-Arnold flow.

Definition 6.2. A weak Euler-Arnold flow (αt, pt) ∈ D′r
1 (M)×Ω0

[r]loc(M) is

said to be Cr decomposable (r ≥ 1), if there exists a classical Euler-Arnold
flow (Xt, Pt) ∈ Xr(M) × Cr(M) and (βX , βω) ∈ R2 such that the following
conditions are satisfied for each time t.

1. αt −X♭
t is coexact;

2. pt = Pt + (2βX − 1)g(X♭
t , ut) + (2βω − 1)|ut|2/2.

Then we call Xt a background field of αt, αt −Xt a relative velocity current
and (βX , βω) a growth rate of pt.

Let us note that the Cr decomposability of the weak Euler-Arnold flow
guarantees the existence of the decomposition but there is no mention of the
uniqueness of the decomposition. Hence, when we study a Cr decompos-
able weak Euler-Arnold flow (αt, pt) ∈ D′r

1 (M) × Ω0
[r]loc(M), we need to fix

a classical Euler-Arnold flow (Xt, Pt) ∈ Xr(M) × Cr(M) and a parameter
(βX , βω) ∈ R2 such that the velocity field Xt is a background field of αt and
the parameter (βX , βω) is a growth rate of pt. If a weak Euler-Arnold flow
(αt, pt) is C

r decomposable (r ≥ 1), the equation (34) is written without the
pressure term as follows.

∂t Lu+ L{(ωX + ω) ∗ u+ ω ∗X♭ + d g(2βXX
♭ + βωu, u)} = 0. (35)

7 Main results

Let us fix N ∈ Z≥1, (Γn)
N
n=1 ∈ (R\{0})N and a Cr one-parameter family Φ :

t ∈ [0, T ] → Φt ∈ Diffr(QN) in what follows. Let us denote by (qn(t))
N
n=1 =
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Φt((qn(0))
N
n=1) an orbit of Φ. We first prove that for a given Cr-decomposable

weak Euler-Arnold flow, if the relative vorticity is given by a singular vorticity
of point vortices placed on {qn(t)}Nn=1, qn(t) is a solution of the point vortex
equation (31), which defines the point vortex dynamics in a background field.

Theorem 7.1. Let (αt, pt) ∈ D′r
1 (M)×Ω0

[r]loc(M) be a Cr-decomposable weak

Euler-Arnold flow (r ≥ 1). Fix a background field Xt of αt, a growth rate
(βX , βω) of pt. Suppose the relative vorticity ωt is a singular vorticity of point
vortices placed on {qn(t)}Nn=1. Then, qn(t)(n = 1, . . . , N) is a solution of the
point vortex equation (31).

Conversely, we next prove that if qn(t) is a solution of the point vortex
equation (31), there exists a Cr-decomposable weak Euler-Arnold flow such
that the relative vorticity is given by a singular vorticity of point vortices
placed on {qn(t)}Nn=1.

Theorem 7.2. Fix a classical Euler-Arnold flow (Xt, Pt) ∈ Xr(M)×Cr(M)
and (βX , βω) ∈ R2. Let ωt ∈ D′

0(M) be a singular vorticity of point vortices
placed on {qn(t)}Nn=1. Define a time-dependent current ut ∈ D′∞

1 (M) by
ut = − ∗ d⟨GH , ωt⟩. Suppose qn(t)(n = 1, . . . , N) is a solution of the point
vortex equation (31). Then, the following pair of time-dependent currents αt

and pt defines a C
r-decomposable weak Euler-Arnold flow.

αt = X♭
t + ut ∈ D′r

1 (M),

pt = Pt + (2βX − 1)g(X♭
t , ut) + (2βω − 1)|ut|2/2 ∈ Ω0

[r]loc(M).

The following lemma plays a key role in the proofs of Theorem 7.1 and 7.2.

Lemma 7.3. Fix a time-dependent vector field Xt ∈ Xr(M), r ≥ 1 and
(βX , βω) ∈ R2. Let ωt be a singular vorticity of point vortices placed on
{qn(t)}Nn=1. Define a time-dependent current ut ∈ D′∞

1 (M) by ut = − ∗
d⟨GH , ωt⟩. Then, we have

∂t Lu =
N∑

n=1

Γn dχqn q̇n, (36)

L{(ωX + ω) ∗ u+ ω ∗X♭} = 0, (37)

L{d g(2βXX♭ + βωu, u)} = −
N∑

n=1

Γn dχqn(βXX + βωvn). (38)
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Proof. In what follows, since we fix t ∈ [0, T ], we may omit the subscript t
unless otherwise stated. We decompose u into the regular part v♭n and the
singular part ∗ dq(Γn/2π) log d(q, qn) as follows.

u = v♭n + ∗ dq
Γn

2π
log d(q, qn). (39)

Without loss of generality, a geodesic polar coordinate (ρ, θ) = (d(q, qn), θ)
can be taken in the neighborhood of qn, satisfying

∗ d log ρ = d θ +O(ρ). (40)

Let us fix ϕ ∈ D0(M) and sufficiently small ε > 0. We remember the relation
α ∧ dϕ = − d(ϕα) + ϕ dα for each α ∈ Ω1(M). To show (36), we see that
Lu = ω. By the Stokes theorem, we have∫

M\Bε(S(u))

u ∧ dϕ =

∫
M\Bε(S(u))

− d(ϕu) + ϕ du

=
N∑

n=1

∫
∂Bε(qn)

ϕu+

∫
M\Bε(S(ω))

ω ∗ ϕ.

It follows from (39) and (40) that the first term becomes∫
∂Bε(qn)

ϕu =

∫
∂Bε(qn)

(ϕ(q)− ϕ(qn) + ϕ(qn))

(
v♭n + ∗ dq

Γn

2π
log ρ(q)

)
=

Γn

2π
ϕ(qn)

∫
∂Bε(qn)

d θ +O(ε) = Γnϕ(qn) +O(ε).

Regarding the second term, we have∫
M\Bε(S(ω))

ω ∗ ϕ = c

∫
M\Bε(S(ω))

∗ϕ.

Thus we obtain

Lu[ϕ] =
N∑

n=1

Γnϕ(qn) + c

∫
M

∗ϕ = ω[ϕ],

which yields (36). We compute each term in (37). Owing to ω = I(c), we
have Lω ∗ X♭ = cL ∗X♭ = 0. Since Lω ∗ u = cL ∗u and |LωX ∗ u[ϕ]| ≤
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||ωX |supp dϕ||∞|L ∗u[ϕ]|, if we prove L ∗u = 0, the assertion (37) follows.
Indeed, we have

L ∗u[ϕ] = lim
ε→0

∫
M\Bε(S(u))

∗u ∧ dϕ = lim
ε→0

∫
M\Bε(S(u))

{− d(ϕ ∧ ∗u) + ϕ d ∗u}

=
N∑

n=1

lim
ε→0

∫
∂Bε(qn)

ϕ ∗ u =
N∑

n=1

lim
ε→0

∫
∂Bε(qn)

ϕ

(
∗v♭n − dq

Γn

2π
log ρ(q)

)
= 0.

It is easy to check (38) by Proposition 5.1. We see from (39) that∫
M\Bε(S(u))

d g(2βXX
♭, u) ∧ dϕ = −

N∑
n=1

∫
∂Bε(qn)

g(2βXX
♭, u) dϕ

= −
N∑

n=1

Γn

2π

∫
∂Bε(qn)

g(2βXX
♭, ∗ d log d(q, qn)) dϕ+O(ε)

= −
N∑

n=1

Γn

2π

∫
∂Bε(qn)

g(2βXX,J grad log d(q, qn)) dϕ+O(ε)

→ −
N∑

n=1

Γn dχqn(βXX)[ϕ] as ε→ 0,

32



and∫
M\Bε(S(u))

d g(βωu, u) ∧ dϕ = −
N∑

n=1

∫
∂Bε(qn)

g(βωu, u) dϕ

= −
N∑

n=1

Γn

2π

∫
∂Bε(qn)

g(βωv
♭
n, ∗ d log d(q, qn)) dϕ+O(ε)

−
N∑

n=1

Γn

2π

∫
∂Bε(qn)

Γn

2π
| ∗ d log d(q, qn)|2 dϕ+O(ε)

= −
N∑

n=1

Γn

2π

∫
∂Bε(qn)

g(2βωvn,J grad log d(q, qn)) dϕ+O(ε)

→ −
N∑

n=1

Γn dχqn(βωvn)[ϕ] as ε→ 0,

which completes the proof.

We now show the two main theorems by using Lemma 7.3.

Proof of Theorem 7.1. Since the background field X and the relative velocity
current u satisfy the assumptions of Lemma 7.3, the equalities (36)-(38) hold
true. Since X and u come from a Cr-decomposable weak Euler-Arnold flow,
they satisfy the equation (35). Substituting (36)-(38) into (35), we obtain

N∑
n=1

Γn dχqn {q̇n − (βXX + βωvn)} = 0,

which is the conclusion as desired.

Proof of Theorem 7.2. We first prove that (αt, pt) is a weak Euler-Arnold
flow. Owing to Lemma 7.3, it is easy to check that αt and pt satisfy the
conditions in Definition 6.1 except for the weak Euler-Arnold equation. In
addition, we see that

∂t Lα = ∂t L(X
♭ + u) = ∂t dX

♭ +
N∑

n=1

Γn dχqn q̇n,
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L{(∗ dα) ∗ α} = L{(∗ dX♭) ∗X♭}+ L{(ωX + ω) ∗ u+ ω ∗X♭}
= d{(∗ dX♭) ∗X♭}

and

L d(|α|2/2 + p) = L d(|X♭|2/2 + P ) + L{d g(2βXX♭ + βωu, u)}

= −
N∑

n=1

Γn dχqn(βXX + βωvn).

Since (X,P ) is an Euler-Arnold flow and qn is a solution of the point vortex
equation (31), we deduce

∂t Lαt+L{(∗ dαt)∗αt}+L d(|αt|2/2+pt) =
N∑

n=1

Γn dχqn {q̇n − (βXX + βωvn)} = 0,

which yields (αt, pt) is a weak Euler-Arnold flow. By definition, it is obvious
that the weak Euler-Arnold flow (αt, pt) is C

r-decomposable.

8 Applications

As applications of these theorems, we now discuss two examples of point
vortex dynamics in a background field: two identical point vortices in a
linear shear in the Euclidean plane (C, d z d z̄) and N -point vortices on a
surface in an irrotational flow.

Let us first check that the point vortex equation without any background
field in the plane is obtained from our results as a special case. Let us set
βX = 0 and βω = 1. Then, the point vortex equation (31) is deduced as
follows.

q̇n(t) = vn(qn). (41)

When the flow field is the plane, it follows from GH(z, z0) = −(1/2π) log |z−
z0| that for a given singular vorticity ω of point vortices placed on {zn}Nn=1 ⊂
C,

u = − ∗ d⟨GH , ω⟩ = I

(
− ∗ dψ0 − ∗ d

N∑
n=1

ΓnGH(z, zn)

)
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for some harmonic function ψ0. We can choose ψ0 = 0 without loss of
generality. From ∗ d z = −i d z we deduce that

− ∗ dGH(z, zn) = ∂zGH(− ∗ d z) + ∂z̄GH(− ∗ d z̄)
= i∂zGH d z − i∂z̄GH d z̄.

Therefore, the dual vector field of u, denoted by u♯ = uz∂z +uz̄∂z̄ ∈ X∞(M \
S(u)), can be written as

uz(z) =
N∑

n=1

Γn(−2i∂z̄GH(z, zn)) =
i

2π

N∑
n=1

Γn

z̄ − z̄n
,

since u♭♯ = uz d z̄ + uz̄ d z. In the same manner, denoting vn(z) by vn(z) =
vzn∂z + vz̄n∂z̄, we obtain

vzn(zn) =
N∑

m=1
m̸=n

Γm(−2i∂z̄nGH(zn, zm)) =
i

2π

N∑
m=1
m̸=n

Γm

z̄n − z̄m
.

Hence, we deduce from the point vortex equation (41) to the following equa-
tion.

żn =
i

2π

N∑
m=1
m ̸=n

Γm

z̄n − z̄m
.

Two identical point vortices in a linear shear Two identical point
vortices in a linear shear is used as a model of the vortex merger in [28].
The vortex merger is characterized as a fundamental process of the inverse
cascade in 2D turbulence. In the process, vortices with similarly small scales
are affected by the shear flow induced from the surrounding vortices. As a
result, small vortices combine to form a vortex with large scale. As a simple
model for the vortex merger, two identical point vortices in a linear shear is
adopted. To use the notations of this paper, let us set N = 2, Γ1 = Γ2 = γ
and the linear shear X = (cy, 0) where y = (z − z̄)/2i. Based on [28], the
evolution equation of two identical point vortices in a linear shear placed on
{qn(t)}2n=1 is given by

q̇n(t) = X(qn) + vn(qn).
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Let us apply the main theorems to this fact. First, Theorem 7.2 shows that
there exists a C∞-decomposable weak Euler flow (αt, pt) such that the relative
vorticity is a singular vorticity of point vortices placed on {qn(t)}2n=1. This
guarantees the dynamics in [28] comes from a weak Euler flow even though
the evolution equation is formally derived with no relation with Euler flows.
Second, as an application of Theorem 7.1, let us take a C∞-decomposable
weak Euler flow (αt, pt) such that the background field is the linear shear
X and the growth rate is (βX , βω) ∈ R2 and relative vorticity is a singular
vorticity of point vortices placed on {qn(t)}2n=1 with Γ1 = Γ2 = γ. From The-
orem 7.1, we can deduce that qn(t) satisfies the point vortex equation (31).
It has been established in [28] that vortex merger is determined by the pa-
rameter µ = cξ20/γ where ξ0 ∈ R is the initial distance between two point
vortices and it occurs if µ < 0. In the similar argument, we obtain the pa-
rameter µ′ of the criterion for our case, which gives µ′ = µβX/βω. Moreover,
the same criterion is valid, that is the vortex merger occurs if µ′ < 0. The
difference between the parameters µ′ and µ is whether it contains the growth
rate (βX , βω) of the pressure. Whereas the criterion by µ does not states
the relation between the vortex merger and the pressure, the criterion by µ′

tells us that the vortex merger is determined not only by the vorticity of the
background field and the circulation of point vortices but also by the growth
rate of the pressure relative to interaction energy density and kinetic energy
density. Therefore, Theorem 7.1 provides further physical insight into the
2D turbulence that vortex merger is governed by the sign of the growth rate
of the pressure pt.

N-point vortices on a surface in an irrotational flow. In the last case,
let us take a C∞-decomposable weak Euler-Arnold flow (αt, pt) such that the
background field is an irrotational fieldX ∈ X∞(M) and the relative vorticity
is a singular vorticity of point vortices placed on {qn(t)}Nn=1. As we see in
Section 3, the irrotational field is the fluid velocity of a steady Euler-Arnold
flow (X,P ) ∈ X∞(M) × C∞(M) and the pressure P ∈ C∞(M) satisfies
P = −|X|2/2. Let us fix the growth rate (βX , βω) ∈ R2 and the parameter
(Γn)

N
n=1 ∈ (R \ {0})N . For simplicity, we ignore the interaction between the

background field and point vortices, that is we can assume βX = 0. Then
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owing to Theorem 7.1, qn(t) and pt satisfy{
q̇n = βωvn(qn),

pt = −|Xt + ut|2 + βω|ut|2.
(42)

Let us focus on two cases βω = 0 and 1. In the case βω = 0, it follows from
q̇n(t) = 0 that each of point vortices does not move. Hence, we deduce that
(αt, pt) is a steady solution. Moreover, the pressure is a type of the steady
Bernoulli law p = −|X + u|2/2 = −|α|2/2. On the other hand, for βω = 1
we obtain the conventional point vortex equation and p = −|α|2/2 + |u|2.
This formula of the pressure is equivalent to the Bernoulli law with point
vortices for the unsteady solution. As a corollary, a generalization of steady
and unsteady Bernoulli law with N -point vortices to the case where the flow
field is a curved surface can be obtain as follows.

Corollary 8.1 (Generalized steady Bernoulli law with point vortices). If a
C∞-decomposable weak Euler-Arnold flow (αt, pt) on a surface satisfies that
the background field of αt is an irrotational field X ∈ X∞(M) and that the
pressure is given by pt = −|αt|2/2 and that the relative vorticity is a singular
vorticity of point vortices, then (αt, pt) is a steady solution of the weak Euler-
Arnold equations.

Corollary 8.2 (Generalized unsteady Bernoulli law with point vortices). If
a C∞-decomposable weak Euler-Arnold flow (αt, pt) on a surface satisfies that
the background field of αt is an irrotational field and that pt = −|αt|2/2+|ut|2
and that the relative vorticity is a singular vorticity of point vortices placed
on {qn(t)}Nn=1, then for every n ∈ {1, . . . , N}, qn(t) is a solution of the point
vortex equation:

q̇n(t) = vn(qn(t)).

Let us finally discuss the role of the growth rate βω in the motion of point
vortices and the pressure given in (42). Denoting Qn(t) by the solution of
Q̇n = vn(Qn), the solution qn(t) in (42) can be written as qn(t) = Qn(βωt).
Letting βω → 0, we see that qn moves very slowly on the orbit of Qn. In
this sense, βω stands for the flexibility of the motion of point vortices as well
as the growth rate of the pressure relative to the kinetic energy density. We
notice that as βω → 0 the pressure pt converges to −|αt|2/2 in Ω0

[r]loc(M),
which is consistent with the generalized steady Bernoulli law. From this we
can observe that point vortices are frozen if the pressure pt is sufficiently

37



close to the generalized steady Bernoulli law. As a consequence, we conclude
that βω describes the the flexibility of the motion of point vortices and the
growth rate of the pressure and that point vortices are slower to move as the
pressure is sufficiently close to the generalized steady Bernoulli law.
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