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Abstract

In this thesis, we define and study Loewner chains and evolution families on
finitely multiply-connected domains in the complex plane. These chains and
families consist of conformal mappings on parallel slit half-planes and have
one and two “time” parameters, respectively. By analogy with the case of
simply connected domains, we develop a general theory of Loewner chains
and evolution families on multiply connected domains and, in particular,
prove that they obey the chordal Komatu–Loewner differential equations
driven by measure-valued processes. Our method involves Brownian motion
with darning, as do some recent studies.
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Chapter 1

Introduction

The aim of this thesis is to study “Loewner chains” and “evolution families”
on finitely multiply-connected domains in the complex plane C. These two
concepts are originally defined on simply connected domains and connected
to the Loewner differential equation, which is of great use in complex analysis
and in probability theory. In this thesis, we first provide a review on previous
studies. We then develop a general theory of Loewner chains and evolution
families in our sense and, in particular, deduce the chordal Komatu–Loewner
differential equation.

1.1 Purpose of the study

In Chapter 6 of Pommerenke’s celebrated book [52], a Loewner chain on the
unit disk D of C is defined as a family of univalent functions ft : D → C,
t ∈ [0,∞), with the following properties:

• ft(0) = 0 and f ′t(0) = et for any t ≥ 0;

• fs(D) ⊂ ft(D) for any 0 ≤ s ≤ t.

Here, a complex-valued function on a domain in C is said to be univalent
if it is holomorphic and injective. We also use the adjective “conformal”
if it is also surjective. For a Loewner chain (ft)t≥0, the composites φt,s :=
f−1
t ◦ fs, 0 ≤ s ≤ t, “measure” the difference between ft and fs and enjoy

the semigroup property φu,s = φu,t ◦ φt,s for any 0 ≤ s ≤ t ≤ u. The family
(φt,s) is referred to as the evolution family of (ft). More generally, a family of
univalent self-mappings φt,s : D→ D, 0 ≤ s ≤ t, is called an evolution family
on D if the following are satisfied:

• φt,t(z) = z for any t ≥ 0;
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• φt,s(0) = 0 and φ′t,s(0) = e−(t−s) for any 0 ≤ s ≤ t;

• φu,s = φu,t ◦ φt,s for any 0 ≤ s ≤ t ≤ u.

A Loewner chain (ft)t≥0 and an evolution family (φt,s)0≤s≤t are absolutely
continuous solutions to the (radial) Loewner differential equations

∂ft(z)

∂t
= zf ′t(z)p(z, t) a.e. t ≥ 0, (1.1)

∂φt,s(z)

∂t
= −φt,s(z)p(φt,s(z), t) a.e. t ≥ s for each s ≥ 0. (1.2)

Here, p(z, t) is a Herglotz vector field, whose definition will be given later.
The differential equations (1.1) and (1.2) provide a powerful variational

method for studying univalent functions on D. Probably the most famous
application is de Branges’ proof [24] of Bieberbach’s conjecture, which says
that any univalent function f on D with f(0) = 0 and f ′(0) = 1 has a
Taylor expansion f(z) = z +

∑
n≥2 anz

n with |an| ≤ n for all n ≥ 2. Proving
this conjecture was a fairly difficult problem despite its simple statement.
Although the conjecture and Löwner’s work [47] on the case n = 3 were done
in 1916 and in 1923, respectively, a conclusive proof of de Branges was given
as late as 1985.

In 2000, another remarkable application of Loewner’s method was pro-
posed by Schramm [58] in probability theory. His theory concerns random
models related to statistical physics, such as percolation, Ising model, and
Gaussian free field. These models typically attach one of two (or more) val-
ues to every point of a simply connected domain, say the upper half-plane H,
under some probability law. Suppose that such a model on H has different
boundary conditions on the positive and negative real axes. Let γ be the
interface curve growing between two phases in H from the origin, which is
the border of the given boundary conditions. Schramm applied Loewner’s
method to a particular choice of Loewner chain. Namely, he considered the
random univalent functions gt : H \ γ(0, t] → H and obtain the (chordal)
Loewner differential equation

∂gt(z)

∂t
=

2

gt(z)−
√
κBt

. (1.3)

Here, (Bt)t≥0 is a one-dimensional Brownian motion. The constant κ depends
on the model. The family (gt)t≥0 is called the stochastic Loewner evolution
or Schramm–Loewner evolution with parameter κ (SLEκ for short). It is
a surprising fact that the information of several different two-dimensional
models can be encoded into one-dimensional Brownian motion via Loewner’s
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method. This feature brought a drastic progress to the research of two-
dimensional random models related to statistical physics. Several conjectures
coming from physics ideas, which had seemed hard to verify, were proved by
means of stochastic analysis.

From the viewpoints of geometric function theory and of statistical
physics, it is a natural problem to extend the above-mentioned concepts of
complex analysis and of probability theory to multiply connected domains.
The aim of this thesis, the development of a general theory of Loewner chains
and evolution families on multiply connected domains, is a central part of
this problem, indeed. With this aim, we go basically by analogy with the
theory on simply connected domains, but there are some difficulties in doing
so.

The proof of the Loewner equations (1.1) and (1.2) involves simple in-
equalities of holomorphic functions on D such as the Schwarz lemma, distor-
tion theorem, and growth theorem. For example, an application of Schwarz’s
lemma yields the inequality

|ft(z)− fs(z)| ≤ 8|z|
(1− |z|)4

(et − es), 0 ≤ s ≤ t,

which is important to show the t-differentiability of ft(z) (see Chapter 6 of
Pommerenke [52]). The nice quantitative properties listed above reflect the
simple forms of Möbius transformations, i.e., conformal automorphisms on D.
However, conformal transformations on multiply connected domains do not
have such simple forms, and holomorphic functions there are difficult to deal
with quantitatively. We need some ideas to deduce the (t-)differentiability
of Loewner chains and evolution families in our extended sense.

As a solution to the problem in the preceding paragraph, we make use
of probabilistic concepts and, in particular, develop some potential theory
of Brownian motion with darning (BMD for short). Its precise definition
is postponed until Section 3.1, but for an (N + 1)-connected domain D =
H \

⋃N
j=1Aj, BMD is a diffusion process on the set D∗ = D ∪ {a∗1, . . . , a∗N}.

This set is the quotient space of H obtained by regarding each hole Aj as
a single point a∗j . It turns out that BMD-harmonic functions on D∗ have
a close connection to holomorphic functions on D. This fact was efficiently
used in a series of papers written by Chen, Fukushima and Rohde [17], Chen
and Fukushima [16], and Chen, Fukushima and Suzuki [18]. We elaborate
part of their results and add some new estimates about BMD in Chapter 3.

Now, in order to specify our goal more, let us return to the definition
of p(z, t) in (1.1) and (1.2). A holomorphic function p(z) on D is called a
Herglotz function if p(0) = 1 and <p(z) > 0 for any z ∈ D. A function p(z, t)
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of two variables z ∈ D and t ∈ [0,∞) is called a Herglotz vector field if the
following hold:

• z 7→ p(z, t) is a Herglotz function for each t;

• t 7→ p(z, t) is a Lebesgue measurable function for each z.

The triangular diagram in the left of Figure 1.1 shows the one-to-one corre-
spondence given by the relations

φt,s(z) = (f−1
t ◦ fs)(z) for any 0 ≤ s ≤ t, (1.4)

fs(z) = lim
t→∞

etφt,s(z) for any s ≥ 0 (1.5)

in addition to (1.1) and (1.2). We note that any Herglotz function p(z) has
the Herglotz representation

p(z) =

∫
∂D
SD(z, ζ)µ(dζ) (1.6)

for some Borel probability measure µ on ∂D. Here, SD(z, ζ) := (ζ+z)/(ζ−z)
is the Schwarz kernel. Hence, for a Herglotz vector field p(z, t), there exists
a measure-valued process t 7→ νt such that

p(z, t) =

∫
∂D
SD(z, ζ) νt(dζ). (1.7)

Substituting this expression into (1.1) and (1.2), we observe that these dif-
ferential equations are driven by the process (νt)t≥0 via the kernel SD. This
interpretation of Loewner equations, illustrated in the right diagram of Fig-
ure 1.1, is quite natural in view of SLE. In the SLE case, the family (gt)t≥0

is generated from a multiple of Brownian motion, i.e., from the process of
Dirac measures δ√κBt , t ≥ 0, on R via (1.3), and the right-hand side of (1.3)
is given in terms of the Cauchy kernel (z− ζ)−1. It is such a relation among
Loewner chains, evolution families, and (measure-valued) driving processes
that we shall extend to multiply connected domains. The concrete way to do
this is summarized in the next subsection.

1.2 Overview of the results

We formulate our results on parallel slit half-planes. Here, a parallel slit
half-plane is a domain obtained by removing some line segments parallel to
the real axis from H. Any (N + 1)-connected domain is mapped conformally
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Figure 1.1: The relations studied in this thesis.

onto some parallel slit half-plane of N slits (see Courant [23, Theorem 2.3] for
example). In this sense, parallel slit half-planes can be regarded as “canon-
ical” representatives of conformal equivalence classes of multiply connected
domains.

Our main results are threefold. As preliminaries, basic assumptions are
introduced in Sections 4.1 and 4.2, which are imposed on univalent functions
throughout this thesis. Univalent functions treated in this thesis map a
parallel slit half-plane D1 into another slit domain D2 and are asymptotic to
the identity mapping z 7→ z as z →∞. For such a function f : D1 → D2, we
provide the integral representation

f(z) = z + π

∫
R

ΨD1(z, ξ)µf (dξ), z ∈ D1, (1.8)

with the measure µf given by µf (dξ) = π−1=f(ξ + i0) dξ in Theorem 4.3.
Here, the kernel ΨD1 is exactly the complex Poisson kernel of BMD on D∗1.
This is our first result.

The representation (1.8) on D1 corresponds to the Herglotz represen-
tation (1.6) on D. A typical way to prove the latter is applying Schwarz’s
formula, a complex version of Poisson’s integral formula, on the disk of radius
r ∈ (0, 1) and then taking the limit as r → 1. However, more work is required
for proving (1.8) along a similar line of reasoning, because we do not know
much about the dependence of the integral kernel ΨD1 on the parallel slit half-
plane D1. If we try to approximate D1 by a sequence (D(n))n∈N of smaller
slit domains, we have to show the convergence ΨD(n)(z, ξ) → ΨD1(z, ξ) in a
strong sense stated in Proposition 3.9. Also, we have to know the behavior of
ΨD1(z, ξ) as z →∞ because the normalization condition f(z) ∼ z (z →∞) is
imposed. Since existing results on ΨD1 in the above-mentioned works [17, 16]
are not sufficient, we refine part of them in Chapter 3, combining analytic
and probabilistic observations.

After proving the integral representation formula, we define Loewner
chains and evolution families on parallel slit half-planes. Let Dt, t ∈ [0, T ],
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Figure 1.2: A Loewner chain (ft)t over parallel slit half-planes (Dt)t.

and D be parallel slit half-planes. In our definition, a Loewner chain (ft)t∈[0,T ]

over (Dt)t∈[0,T ] consists of univalent functions ft : Dt → D with the property
that fs(Ds) ⊂ ft(Dt) for 0 ≤ s < t ≤ T (see Figure 1.2). This property
is analogous to the second one of Loewner chains on D in Section 1.1. An
evolution family (φt,s)0≤s≤t≤T over (Dt)t∈[0,T ] consists of univalent functions
φt,s : Dt → Ds which have the same semigroup property as that of f−1

t ◦ fs.
We apply (1.8) to φt,0 and define λ(t) := µφt,0(R). This quantity has two
meanings: the (angular) residue of φt,0 at infinity and the (BMD) half-plane
capacity of the hull1 Dt\φt,0(D0). We regard λ(t) as a “canonical” parameter
and derive the equality

∂̃λt φt,s(z) := lim
δ↓0

φt+δ,s(z)− φt−δ,s(z)

λ(t+ δ)− λ(t− δ)
= π

∫
R

ΨDt(φt,s(z), ξ) νt(dξ) (1.9)

in Theorem 5.7. Here, νt is a finite Borel measure on R. A differential
equation similar to (1.9) holds for a Loewner chain (ft)t∈[0,T ] as well. The
derivation of these equations is our second result, which is central to this
thesis. In view of the right diagram of Figure 1.1, this part corresponds to
the arrows from Loewner chains and from evolution families, respectively, to
driving processes.

The equation (1.9) is named the chordal Komatu–Loewner differential
equation after Komatu [40], who tried to extend Löwner’s work [47] to mul-
tiply connected domains. Refining his idea, Bauer and Friedrich [7] provided
a way for extending the chordal Loewner equation (1.3) and SLE to parallel
slit half-planes. Although the previous and our studies are different in some
technical points, we emphasize that the scope of our study is much larger
than that of the previous in that the hull Dt \ φt,0(D0) is allowed to be even
unbounded.

1A hull is a relatively closed subset of H whose complement in H is simply connected.
For example, if γ : (0,∞)→ H is a simple curve with γ(0+) = 0 as in (1.3), then the trace
γ(0, t] is a hull.
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The relationship between Loewner chains and evolution families is rela-
tively easy to show as in Proposition 5.11. Thus, our remaining problem is to
establish the correspondence from driving processes to Loewner chains or to
evolution families. This will be done by solving the differential equation (1.9)
for each s ≥ 0 and z ∈ Ds and by showing that the solutions φt,s(z) form
an evolution family. Here, it is important that the right-hand side of (1.9)
depends on Dt. Note that Ds 6= Dt generally, which is a big difference from
the classical theory on D or H. For this reason, we have to determine the
evolution of Dt as well as that of φt,s(z). Such a situation does not appear
in the general theory of (ordinary) differential equations.

For reducing the problem in the preceding paragraph to a simple one, it
is helpful to consider the evolution equation of Dt as Bauer and Friedrich [7]
did. In other words, we describe the evolution of the parallel slits of Dt,
using a differential equation similar to (1.9). Actually, if (φt,s)0≤s≤t≤T is an
evolution family over (Dt)t∈[0,T ], then the Komatu–Loewner equation for the
endpoints z`j(t) and zrj (t) of the slits holds:

∂̃λt z
`
j(t) = π

∫
R

ΨDt(z
`
j(t), ξ) νt(dξ), (1.10)

∂̃λt z
r
j (t) = π

∫
R

ΨDt(z
r
j (t), ξ) νt(dξ). (1.11)

These equations are obtained through extending (1.9) carefully to points on
the slits. Here, we note that this extension is not deduced from a formal re-
placement of φt,s(z) in (1.9) by z`j(t) and zrj (t). See Chen and Fukushima [16,
Remark 2.4].

Using (1.10) and (1.11), we discuss the two remaining arrows growing
from driving processes in the right diagram of Figure 1.1. This is our last
result. Let (νt)t be a measure-valued driving process. The Komatu–Loewner
equation (1.10) and (1.11) for the slits has a local solution, which determines
the evolution of Dt. Solutions to the Komatu–Loewner equation (1.9) for
evolution families then form a two-parameter family (φt,s)0≤s≤t≤T of univalent
functions. We prove in Theorem 6.9 that this family belongs to a slightly
larger class than the one of evolution families. These assertions are quite
close to the desired correspondence from a driving process to an evolution
family, but we lack the following two properties:

• the uniqueness of a solution to (1.10) and (1.11),

• the finiteness of the residue (or BMD half-plane capacity) at infinity of
the solution to (1.9).
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In Section 6.3.2, we prove that these properties do hold and that (φt,s)
becomes a genuine evolution family under the additional assumption that
supp νt is locally bounded in t ∈ [0,∞). Even if we assume this local bound-
edness, our results include all the known examples of driving processes in
the previous studies about Komatu–Loewner equations. We consider only
the arrow from driving processes to evolution families in Chapter 6, but it is
easily transferred into the arrow to Loewner chains through Proposition 5.11.

In addition to the main results explained above, we investigate some
relationship between the previous and present studies. Let (ft)t∈[0,T ] be a
Loewner chain over (Dt)t∈[0,T ]. We are particularly interested in the question
of how the driving process (νt)t∈[0,T ] reflects the “geometry” and “continuity”
of the domains ft(Dt), t ∈ [0, T ]. From this point of view, we apply our
results to two examples which were studied in previous papers.

1.3 Organization of this thesis

Chapter 2 presents a summary of related studies. We first explain Loewner’s
method on H developed by Goryainov and Ba [34] in Section 2.1. Their
argument and results are the model of Sections 4 and 5. We then return
to the review of SLE in Section 2.2. In particular, we choose the topic of
multiple SLE and its hydrodynamic limit, which is studied by del Monaco
and Schleißinger [25], as a probabilistic application of Loewner’s method on
H in Section 2.2.3. This topic is an example in which a measure-valued
driving process appears naturally in the study of SLE. Section 2.3 is devoted
to previous studies on the Komatu–Loewner differential equation.

In Chapter 3, we study the complex Poisson kernel ΨD(z, ξ) of BMD. Sec-
tion 3.1 collects potential-theoretic basics of BMD that are used subsequently.
We examine the integral operator defined by the (complex) Poisson kernel in
Section 3.2 and study the asymptotic behavior of ΨD(z, ξ) as z →∞ in Sec-
tion 3.3. Finally, we review the dependence of ΨD(z, ξ) on a variable domain
D in Section 3.4. The “local Lipschitz continuity” of ΨD(z, ξ) with respect
to the variation of D was investigated by Chen, Fukushima and Rohde [17],
and we give a partial improvement to be applied to our framework.

Chapters 4 through 7 go along the line of Section 1.2.
In Chapter 4, we study conformal mappings on parallel slit half-planes.

Section 4.1 provides a brief summary on normalization conditions of univa-
lent functions at infinity. We then state our first main result in Section 4.2:
the integral representation formula (1.8) for conformal mappings which are
suitably normalized at infinity on parallel slit half-planes. Section 4.3 treats
the enlargement of parallel slit half-planes across the slits and the analytic
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continuation of holomorphic functions defined on such slit domains. We con-
sider such analytic continuation in order to describe the behavior of conformal
mappings on the slits.

Chapter 5 is devoted to our second main result. We define evolution fam-
ilies over a family of parallel slit half-planes and collect their basic properties
in Section 5.1 and derive the Komatu–Loewner equation (1.9) for evolution
families in Section 5.2. We then define Loewner chains and transfer (1.9)
into the equation for Loewner chains in Section 5.3. Finally, we deduce the
Komatu–Loewner equation (1.10) and (1.11) for the slits in Section 5.4.

Chapter 6 presents our third main result. We confirm that the Komatu–
Loewner equation (1.10) and (1.11) for the slits enjoys the Carathéodory
condition for any driving process (νt)t in Section 6.1. This implies the ex-
istence of a local solution to (1.10) and (1.11). For domains (Dt)t deter-
mined by such a local solution, we study the behavior of the solutions to the
Komatu–Loewner equation (1.9) for evolution families in Sections 6.2 and
6.3. We show that the solutions form a two-parameter family of univalent
functions, but this family satisfies only a condition weaker than evolution
families should do. In Section 6.3.2, we prove that this family is actually
a unique evolution family associated to the driving process (νt)t under the
assumption that supp νt is uniformly bounded.

Chapter 7 is the application of our results. In Sections 7.1 and 7.2, we
derive the Komatu–Loewner equation for the mapping-out functions of hulls
with local growth. In Section 7.3, we derive the same kind of equation for the
mapping-out function of multiple paths. Although these equations have been
obtained in previous studies, our argument provides a new understanding on
them.

Chapter 8 collects some remarks for future studies.
Appendices A and B collect auxiliary results needed in Chapter 5. We

introduce a continuity condition, which we call (Lip)µ, on a one-parameter
family of holomorphic functions in Appendix A. This condition yields some
nice differentiable properties of this family with respect to its “time” param-
eter. Appendix B is a review of hyperbolic and quasi-hyperbolic distances.
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Chapter 2

Previous studies

2.1 Evolution families on the upper half-

plane

In Section 1.1, we have summarized a conceptual understanding of Loewner’s
method on D, following Pommerenke [52]. On the other hand, we shall owe
practical techniques mainly to Goryainov and Ba [34], who studied evolution
families on H. We review their study briefly.

A holomorphic self-mapping f : H→ H is called a Pick function and has
the Pick–Nevanlinna representation

f(z) = a+ bz +

∫
R

(
1

ξ − z
− ξ

1 + ξ2

)
µ(dξ). (2.1)

Here, a ∈ R, b ≥ 0, and µ is a Borel measure on R with
∫
R(1 + ξ2)−1 µ(dξ) <

∞. The representation of Pick–Nevanlinna (2.1) is equivalent to that of
Herglotz (1.6) through the Cauchy transform1.

In order to define evolution families on H appropriately, it turns out to
be natural to consider some normalization conditions on Pick functions. We
say that a Pick function f belongs to the class P if there exists a finite Borel
measure µ such that

f(z) = z +

∫
R

1

ξ − z
µ(dξ). (2.2)

In addition, we say that h ∈ R if h(z) =
∫
R(ξ − z)−1 µ(dξ) for some finite

Borel measure µ. We use (2.2) instead of (2.1) in what follows. Indeed, a

1We refer the reader to Section 3, Chapter 5 of Rosenblum and Rovnyak [56] or Bon-
desson [13, Theorem 2.4.1] for details.
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Pick function f belongs to P if and only if the following two normalization
conditions hold [34, Lemma 1]:

• It is hydrodynamically normalized at infinity in the sense that

lim
z→∞
=z>η

(f(z)− z) = 0 for any η > 0; (2.3)

• There exists a constant c such that

lim
z→∞

θ<arg z<π−θ
z(f(z)− z) = c for any θ ∈ (0, π/2).

The constant c is called the angular residue of f at infinity (see Aleksandrov
and Sobolev [3] for example) and given by c = −µ(R) with µ as in (2.2).

Let S := { f ∈ P ; f is univalent }. Goryainov and Ba [34] defined an
evolution family (φt,s)0≤s≤t≤T in S by the following three conditions:

• φt,t(z) = z for any t ∈ [0, T ];

• φu,s = φu,t ◦ φt,s for any 0 ≤ s ≤ t ≤ u ≤ T ;

• φt,s(z)→ z locally uniformly on H as s, t→ u.

The measure µ of (2.2) in the case f = φt,s is designated as µt,s. The
function λ(t) := µt,0(R) is non-decreasing and continuous, and the identity
µt,s(R) = λ(t)− λ(s) holds.

Theorem 2.1 (Goryainov and Ba [34, Theorem 3]). Suppose that λ(t) is
absolutely continuous. For each s ∈ [0, T ) and z ∈ H, the function w(t) :=
φt,s(z) is an absolutely continuous solution to the differential equation

dw(t)

dt
= λ̇(t)H(w(t), t) a.e. t ∈ [s, T ] (2.4)

with initial value w(s) = z. Here, H(z, t) is a function of two variables z ∈ H
and t ∈ [0, T ]. Moreover, the function t 7→ H(z, t) is Lebesgue measurable
for each z, and z 7→ H(z, t) belongs to R for each t.

Theorem 2.2 (Goryainov and Ba [34, Theorem 4]). Suppose that a func-
tion H(z, t) enjoys the same property as in Theorem 2.1. Then for every
s ∈ [0, T ) and z ∈ H, there exists a unique absolutely continuous solu-
tion w(t) = w(t; s, z) to (2.4) with initial value w(s) = z. The functions
φt,s : z 7→ w(t; s, z), 0 ≤ s ≤ t ≤ T , form an evolution family in S.

13



Since H(·, t) ∈ R in these theorems, there exists a driving process
(νt)t∈[0,T ] such that

H(z, t) =

∫
R

1

ξ − z
νt(dξ). (2.5)

We here sketch how this driving process appears and later will go along a
similar line of reasoning in Sections 5.1 and 5.2. Let 0 ≤ s ≤ u < v ≤ T . By
(2.2) in the case f = φv,u, we have

φv,s(z)− φu,s(z) = φv,u(φu,s(z))− φu,s(z) =

∫
R

1

ξ − φu,s(z)
µv,u(dξ)

= (λ(v)− λ(u))

∫
R

1

ξ − φu,s(z)

µv,u(dξ)

λ(v)− λ(u)
.

Since µv,u(R) = λ(v)−λ(u), the measures µv,u/(λ(v)−λ(u)), s ≤ u < v ≤ T ,
are probability ones. We can prove that this family of probability measures
converges vaguely to some finite measure νt as u, v → t for a.e. t ∈ [s, T ].
Thus, (2.4) holds with H(z, t) given by (2.5).

Goryainov and Ba [34] did not refer to Loewner chains on H, but a natural
definition must be unique. A Loewner chain on H is a family (ft)t∈[0,T ] ∈
C([0, T ];S) such that fs(H) ⊂ ft(H) for s < t. Using the fact that φt,s :=
f−1
t ◦ fs is an evolution family in S, we can easily transform (2.4) into the

partial differential equation of ft(z).

Remark 2.3 (radial vs. chordal). (i) Evolution families on H in this sub-
section are similar to evolution families on D in Section 1.1, but their
fixed points are different. An evolution family (φt,s) on D enjoys
φt,s(0) = 0, that is, fixes the interior point 0 of D. Such a family
is said to be radial. In contrast, an evolution family (φt,s) on H en-
joys limz→∞(φt,s(z)− z) = 0, that is, fixes the boundary point ∞ of H
(in the Riemann sphere Ĉ := C ∪ {∞}). Such a family is said to be
chordal. Since these two cases have fixed points with different topolog-
ical properties, we cannot derive one from the other just by operating
the Cayley transform. According to this classification, the theory devel-
oped in Sections 5 and 6 is a chordal case on finitely multiply-connected
domains.

(ii) Using the theory of complex dynamics, Bracci, Contreras and Diaz-
Madrigal [14] proposed a unified treatment of the radial and chordal
cases. Some authors call it the modern Loewner theory. We use part
of their idea in Chapter 5 but do not pursue such a great generality as
they established.

14



2.2 Stochastic Loewner evolution

2.2.1 Mathematical basics of chordal SLE

Recall from Section 1.1 that SLE arises from the study on the interface curve
γ of two phases in a random model of statistical physics. We have observed
only the radial Loewner equations in Section 1.1, whereas the equation (1.3)
in the definition of SLE is chordal. Thus, we have given merely an abstract
connection between (1.3) and Loewner’s method in Section 1.1. We now
provide a more concrete connection between (1.3) and (2.4).

Suppose that γ : [0, T ] → H is a simple curve with γ(0) ∈ ∂H and
γ(0, T ] ⊂ H. For the moment, it does not matter whether γ is random
or deterministic. By a version of Riemann’s mapping theorem, there exists a
unique conformal mapping gt : H \ γ(0, T ]→ H with the hydrodynamic nor-
malization limz→∞(gt(z) − z) = 0. This mapping is called the mapping-out
function of γ(0, T ] by some authors. The aim is to study the behavior of γ(t)
through the analysis of gt.

We can easily check that g−1
t ∈ S (cf. Proposition 4.1). In this case, the

residue at infinity can be given without (2.2) as follows: By Carathéodory’s
boundary correspondence2,

lim
z→x0
=gt(z) = 0, x0 ∈ ∂H \ {γ(0)}. (2.6)

The function gt(z)−z thus extends to a holomorphic function on Ĉ\(γ[0, t]∪
γ̄[0, t]) by Schwarz’s reflection principle. Here, γ̄(t) stands for the complex
conjugate of γ(t). The function gt(z) is now expanded as

gt(z) = z +
at
z

+ o(z−1), z →∞.

The positive constant at is, by definition, the residue of gt at infinity. We
also consider it to be a characteristic quantity of the curve γ. From this
viewpoint, at is called the half-plane capacity of the trace γ(0, t] and denoted
by hcap(γ(0, t]).

Since (g−1
T−t)t∈[0,T ] is a chordal Loewner chain, Theorem 2.1 applies. In

addition, we can obtain further information in this case. Suppose that γ is
reparametrized so that hcap(γ(0, t]) = 2t. Then gt(z) is C1 in t for each

2Chapter 2 of Pommerenke [53] contains a detailed exposition of the boundary corre-
spondence between two simply connected domains through a conformal mapping. This cor-
respondence also holds between two finitely multiply-connected domains. See Courant [23,
Theorem 2.4] and references therein.
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z ∈ H \ γ(0, t]. The chordal Loewner equation for gt(z) takes a simpler form

∂gt(z)

∂t
=

2

gt(z)− ξ(t)
, g0(z) = z ∈ H. (2.7)

Here, the driving function ξ(t) := limz→γ(t) gt(z) ∈ ∂H is the image of the tip
γ(t).

We note that the contrary to the preceding paragraph is not true in
general. The solutions gt(z), z ∈ H, to (2.7) form the mapping-out function
of a bounded hull, but this hull is not necessarily a curve. (We revisit this
fact in Section 7.1.) With regard to this point, SLEκ has nice properties
as follows: Let (Bt)t≥0 be the one-dimensional standard Brownian motion.
(1.3) is the same equation as (2.7) with ξ(t) =

√
κBt (κ > 0). The SLEκ hull

Ft := { z ∈ H ; the solution gt(z) (exists and) remains in H at t }
= H \ g−1

t (H), t ≥ 0,

is a.s. a simple curve if 0 < κ ≤ 4 [55, Theorem 6.1] whereas it is a.s. not a
simple curve if κ > 4 [55, Theorem 6.4]. Even in the latter case, the SLEκ

trace γ(t) := limy↓0 g
−1
t (
√
κBt + iy) is continuous, and Ft is generated by the

curve γ [55, Theorem 5.1]. Here, the last statement means that H \ Ft is a
unique unbounded component of H \ γ(0, t].

Remark 2.4 (Relationship between (2.4) and (2.7)). (i) In his original
work [47], Löwner studied a radial version of (2.7). Chapter 6 of
Ahlfors [1], for instance, gives a neat exposition on it. Our line of
argument on the two equations (2.4) and (2.7) is thus reversed, com-
pared with the history of Loewner equations.

(ii) In some literature on SLE, (2.4) is also discussed as a generalization of
(2.7). See Section 1, Chapter 4 of Lawler [44]. He examined (2.4) in
his own way under the assumption supp νt ⊂ [−a, a], a ∈ (0,∞). We
also impose this assumption in order for a solution to (1.10) and (1.11)
to be unique in Section 6.3.2.

2.2.2 Link to physics

SLEκ is proved to be the scaling limit of several stochastic processes on some
lattice as its mesh size goes to zero. For example, it is the limit of loop-
erased random walk (κ = 2), critical Ising interface (κ = 3), contour line of
Gaussian free field (κ = 4), critical percolation exploration process (κ = 6),
and uniform spanning tree (κ = 8). We briefly mention3 a physical structure

3See the references [29, 30, 41] for further details.
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lying behind these models in common. Before doing so, we refer the reader to
Schramm [58], Rohde and Schramm [55], and references therein for looking
at the correspondence of κ to discrete random models without assuming such
a particular knowledge of physics.

We consider a two-dimensional random model of statistical physics and
its (inverse) temperature. In many cases, the property of the model in low
temperature is much different from that in high temperature, and at criti-
cal temperature, the conformal covariance emerges. Characteristic physical
quantities of the critical model have a certain covariance under conformal
transformations. In particular, if we consider the interface curve as in Sec-
tion 1.1, the probability law of this curve should be conformally invariant.
This conformal invariance is a reason why Brownian motion appears in (1.3).

In general, the theory describing conformally covariant fields is called the
conformal field theory (CFT for short) in physics. In CFT, the infinitesimal
generators of conformal transformations form the Witt algebra, and the rep-
resentation theory of its central extension, the Virasoro algebra, describes
the property of conformally covariant fields. The central element c, which
can be regarded as a complex number, is called the central charge.

It is a natural question how SLE is related to CFT. There are several
approaches to this question, which we avoid listing here. In any approach,
the parameter κ and central charge c are connected by the relation

c = −(6− κ)(8− 3κ)

2κ
.

See Friedrich and Werner [30] for instance. Since CFT is a rather large
theory, links between SLE and CFT motivate us to study variants of SLE,
such as multiple(-path) SLE in Section 2.2.3 and SLE on multiply connected
domains (or on general Riemann surfaces) in Section 2.3.1.

2.2.3 Multiple-path SLE

In Sections 1.1, 2.2.1 and 2.2.2, we have considered the scaling limit of a single
interface curve in a critical statistical model. If we consider multiple interface
curves, then the multiple(-path)4 SLE appears accordingly (see Figure 2.1).
Precisely speaking, the n-multiple SLEκ for n ≥ 1 is the random family

4Here, the adjective “multiple” means that we consider several SLE traces which do
not collide with each other. This usage of “multiple” is irrelevant to the connectivity of
the underlying domain. Thus, there are no duplications of meaning in the phrase“multiple
SLE in a multiply connected domain”.
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Figure 2.1: The n-multiple SLE.

(gn,t)t≥0 determined by the Loewner equation

∂gn,t(z)

∂t
=

1

n

n∑
k=1

2

gn,t(z)− ξk(t)
, gn,0(z) = z ∈ H. (2.8)

The driving functions ξk(t), k = 1, . . . , n, are given by the stochastic differ-
ential equation (SDE for short)

dξk(t) =

√
κ

n
dBk(t) +

1

n

n∑
l=1
l 6=k

4

ξk(t)− ξl(t)
dt. (2.9)

Here, Bk(t), k = 1, . . . , n, are independent standard Brownian motions. See
e.g. Bauer, Bernard and Kytölä [4] and Kozdron and Lawler [42] for the
relation to single SLE and to CFT.

In this paper, we focus on a particular aspect of n-multiple SLE, apart
from the CFT context, that it has the limit as n → ∞. To see this, we
recall that (2.9) is exactly a linear time-change of the SDE of Dyson’s non-
colliding Brownian motions. We define the empirical distribution on R by
ν

(n)
t := n−1

∑n
k=1 δξk(t) ∈ P(R). Here, P(R) stands for the set of probability

measures on R endowed with the weak topology.

Theorem 2.5 (Rogers and Shi [54, Theorem 1]). (i) Suppose that the se-

quence of the initial configurations ν
(n)
0 , n = 1, 2, . . ., weakly con-

verges to a probability measure ν
(∞)
0 and that there exists a C∞ even

function f : R → [1,∞) diverging to +∞ as x → +∞ such that

supn≥1

∫
R f(x) ν

(n)
0 (dx) <∞. Then for each fixed T > 0, the stochastic

process (ν
(n)
t )t≥0 converges in distribution to a (deterministic) process

(ν
(∞)
t )t≥0 in the uniform topology of C([0, T ];P(R)).

(ii) νt weakly converges to a semicircle law as t→∞.
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Del Monaco and Schleißinger [25] studied the limit of n-multiple SLE
combining Theorem 2.5 with (2.8). They showed that the sequence of n-
multiple SLE (gn,t)t converges as n → ∞ to a family (g∞,t)t of conformal
mappings given by the equation

∂g∞,t(z)

∂t
=

∫
R

2

g∞,t(z)− ξ
ν

(∞)
t (dξ) (2.10)

in an appropriate sense. See also del Monaco, Hotta and Schleißinger [26]
and Hotta and Katori [36] for related studies. (2.10) shows that differential
equations like (2.4) rather than (2.7) and measure-valued driving processes
appear through a natural procedure also in probability theory.

Remark 2.6 (Other probabilistic models). In this section, we have seen
chordal SLE and its multiple version defined via the chordal Loewner equa-
tion (2.4). We can also consider radial SLE through the radial equation (1.1)
or (1.2). Moreover, there are another kind of planar random models, such
as (anisotropic) Hastings–Levitov cluster [38] and quantum Loewner evolu-
tion [48], defined via the radial Loewner equation. These models are confor-
mally invariant and compared with diffusion-limited aggregation (DLA for
brevity) in some contexts. DLA is a cluster which grows randomly as ran-
dom walkers come from the point at infinity and stick to this cluster one
after another. Although we do not know whether the scaling limit of DLA
is conformally invariant or not, some researchers expect that DLA and the
above two models have some properties in common.

2.3 Komatu–Loewner equations

2.3.1 Extending Löwner’s work and SLE

Komatu [39, 40] tried to extend Löwner’s original work [47] to a result on
multiply connected domains. Let D = Aq \

⋃N
j=1 Cj be a circularly slit

annulus, i.e., an annulus Aq = { z ∈ C ; q < |z| < 1 } with some concentric
arcs Cj ⊂ { z ; |z| = qj } (q < qj < 1, j = 1, . . . , N) removed. Suppose
that γ is a simple curve in D growing from a point on the outer boundary
∂D. Komatu showed that, if γ is parametrized appropriately, the conformal
mappings gt : D \ γ(0, t] → Dt, t ≥ 0, obey a differential equation, which is
called the bilateral5 Komatu–Loewner equation.

5The adjective “bilateral” means that gt is normalized on the outer and inner boundary
components. This case is not the same as radial or chordal one from a topological point
of view (see Remark 2.3).
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Bauer and Friedrich developed Komatu’s idea to obtain the Komatu–
Loewner equations on circularly slit disks [5, 6], circularly slit annuli and
parallel slit half-planes [7] and discussed a way to define “SLE on multiply
connected domains.” Below we give a quick review on their result in the
chordal setting.

Let Cj, j = 1, . . . , N be disjoint line segments in H parallel to ∂H, and

put D := H \
⋃N
j=1 Cj. Suppose that γ is a simple curve in D growing from

a point on ∂H. Then for each t ∈ (0, T ), there exists a unique pair of a
parallel slit half-plane Dt and a conformal mapping gt : D \γ(0, t]→ Dt with
limz→∞(gt(z)− z) = 0. Assuming that γ is parametrized in such a way that
hcapD(γ(0, t]) := limz→∞ z(gt(z)− z) = 2t, Bauer and Friedrich derived6 the
chordal Komatu–Loewner equation [7, Eq. (18)]

∂gt(z)

∂t
= −2πΨDt(gt(z), ξ(t)), g0(z) = z ∈ D, (2.11)

with ξ(t) := limz→γ(t) gt(z). We have already mentioned in Section 1.2 that
ΨDt(z, ξ) in (2.11) is the complex Poisson kernel of BMD7, but in the original
paper [7] this kernel was obtained in a purely complex-analytic manner based
on the Green function, harmonic measures, and their periods. This is a clas-
sical way to construct a conformal mapping from a given multiply-connected
domain onto a slit domain of some standard type (see Section 5, Chapter 6
of Ahlfors [2] for instance).

After deriving (2.11), Bauer and Friedrich considered the evolution equa-
tion for the slits of Dt. Let Cj,t be the slit of Dt associated with Cj by gt
for each j = 1, . . . , N . The left and right endpoints of Cj,t are designated by
z`j(t) and by zrj (t), respectively. Bauer and Friedrich derived the differential
equation [7, Eq. (30)]

dz`j(t)

dt
= −2πΨDt(z

`
j(t), ξ(t)),

dzrj (t)

dt
= −2πΨDt(z

r
j (t), ξ(t)), (2.12)

which was later called the Komatu–Loewner equation for the slits [16, Sec-
tion 2].

As explained in Section 1.2, the introduction of the equation (2.12) for
the slits enables us to solve the equation (2.11) for gt(z) in the usual manner
for ordinary differential equations. Namely, the solution to (2.12) determines

6Since their derivation focuses on the left t-derivative of gt(z), we refer the reader to
Chen, Fukushima and Rohde [17, Eqs. (1.4) and (9.38)] for a detailed way to obtain the
right derivative.

7We adopt the notation of Chen, Fukushima and Rohde [17] in this paper. As a result,
the kernel ΨDt in (2.11) differs from Ψt in [7, Eq. (18)] by a multiplicative constant 2π.
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the evolution of the slits Cj,t, j = 1, . . . , N , and hence of the domains Dt,
and then the solution to (2.11) with Dt so obtained determines the value
of gt(z). In particular, Bauer and Friedrich discussed a random evolution
(gt)t≥0 through these equations combined with a suitable SDE of the driving
function ξ(t). In order for the probability law to have conformal invariance
(and domain Markov property), this SDE must be of the form ([7, Section 5],
[16, Section 3])

dξ(t) = α(ξ(t), Dt) dBt + b(ξ(t), Dt) dt. (2.13)

Here, the coefficients enjoy the homogeneous properties α(rξ, rD) = α(ξ,D)
and b(rξ, rD) = r−1b(ξ,D) for any r > 0. Later, Chen and Fukushima [16]
called such an evolution (gt)t≥0 the stochastic Komatu–Loewner evolution
with coefficients α and b and abbreviated it as SKLEα,b.

Remark 2.7 (SKLE and moduli diffusion). (i) The slits Cj,t determines

the conformal equivalence class of Dt = H \
⋃N
j=1Cj,t, as is mentioned

at the beginning of Section 1.2. For this reason, Bauer and Friedrich
regarded (2.12) as a differential equation on the “moduli space” of
(N + 1)-connected planar domains with one marked point on bound-
ary. The system of equations (2.12) and (2.13) determines the “moduli
diffusion” (ξ(t), z`j(t), z

r
j (t)). In fact, Friedrich and Kalkkinen [29] and

Kontsevich [41] studied conformally invariant probability measures on
the space of paths on Riemann surfaces, which extends SLEκ, by means
of CFT and differential geometry. Compared with their algebraic and
geometric way, the moduli diffusion given by (2.12) and (2.13) expresses
the random motion of moduli in an analytic, coordinate-based manner.

(ii) Equations similar to (2.11)–(2.13) also appear in Section 3, Chapter 3
of Zhan’s thesis [60]. He defined “harmonic random Loewner chains”
on finite Riemann surfaces in a different manner of thinking without
solving (2.12) directly.

2.3.2 Probabilistic derivations

In his discussion on Laplacian-b motion [45] on multiply connected domains,
Lawler noticed that his method can be applied to another derivation of
chordal Komatu–Loewner equation (2.11). He gave a probabilistic expres-
sion of gt and showed that ΨDt is exactly the complex Poisson kernel of
the excursion reflected Brownian motion (ERBM for brevity) on parallel slit
half-planes [45, Section 5]. Drenning [28] later implemented Lawler’s idea in
detail.
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Up to this point, we have seen two standpoints from which (2.11) is
derived. Chen, Fukushima and Rohde [17] performed a systematic study on
the chordal Komatu–Loewner equation from both these two standpoints and
showed that their hybrid method is quite effective in proving the continuity
or differentiablity of the functions at issue. Moreover, they wrote down a
more thorough description of the Lipschitz continuity of ΨD as a function of
variable domain D than the previous one [7, Theorem 4.1]. Such a thorough
work helps the analysis of the system (2.12) and (2.13) in the subsequent
paper of Chen and Fukushima [16].

Chen, Fukushima and Rohde [17] employed BMD instead of ERBM to
elaborate their work. Although ERBM and BMD “essentially” have the
same distribution [17, Remark 2.2], the latter has a benefit of the theory of
Dirichlet forms and symmetric Markov processes. Chen, Fukushima and Ro-
hde investigated the connection between holomorphy and BMD-harmonicity,
identified ΨD with the complex Poisson kernel of BMD, and gave a proba-
bilistic expression of mapping-out functions based on BMD. We review some
of their results in Section 3.1.

On the basis of the elaborated work [17], Chen and Fukushima [16] closely
studied the equation for slits (2.12) and SKLEα,b, which enforces the frame-
work of Bauer and Friedrich [7]. Chen, Fukushima and Suzuki [18] studied
the relationship between SKLE and SLE as well. We can see the usefulness
of martingale theory in their work.

2.3.3 Böhm’s result for multiple-paths

Independently of Chen, Fukushima and Rohde [17], Böhm and Lauf [10]
established the radial Komatu–Loewner equation for the mapping-out func-
tions of traces of n disjoint simple curves in circularly slit disks. After their
paper, Böhm derived the Komatu–Loewner equations on circularly slit disks,
circularly slit annuli and parallel slit half-planes in a similar and unified way
in his doctor’s thesis [9]. Based on his thesis, the chordal equation is stated
as follows: Let D be a parallel slit half-plane and γk, k = 1, . . . , n, be n
disjoint simple curves in D growing from distinct points on ∂H. There exists
a unique conformal mapping gt : D \

⋃n
k=1 γk(0, t] → Dt hydrodynamically

normalized at infinity. Let at := limz→∞ z(gt(z)− z).

Theorem 2.8 (Böhm [9, Theorem 2.54]). There exist a Lebesgue null set
N ⊂ [0, T ] and functions ck(t) ≥ 0, k = 1, . . . , n, such that

• at and gt(z) are t-differentiable on [0, T ] \ N for each z ∈ D \⋃n
k=1 γk(0, T ];
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•
∑n

k=1 ck(t) = ȧt and

∂gt(z)

∂t
= −π

n

n∑
k=1

ck(t)ΨDt(gt(z), ξk(t)) (2.14)

holds for every z ∈ D \
⋃n
k=1 γk(0, T ] and t ∈ [0, T ] \N .

Here, ξk(t) := limz→γk(t) gt(z) for each k.

We note that, in contrast to Section 2.3.1, Theorem 2.8 is formulated
without reparametrizing γk(t)’s in a way that at = 2t. As long as at and gt(z)
are absolutely continuous8 in t, the differential equation (2.14) is equivalent
to its integrated form

gt(z) = z − π

n

n∑
k=1

∫ t

0

ck(u)ΨDu(gu(z), ξk(u)) du. (2.15)

We would like to generalize this connection even if at is not absolutely con-
tinuous. For example, if at is Lebesgue’s singular function, then ȧt = 0 for
a.e. t. Hence the right-hand side of (2.15) equals zero. As this example illus-
trates, we have to replace the derivative in t by the “derivative in at” itself
in (2.14) for our purpose. We shall in fact do this replacement in Section 7.3,
using the general theory constructed in Sections 4 and 5.

Remark 2.9 (Parametrization of multiple paths). The following assertion is
formally similar to Theorem 2.8 but certainly different from it: Given traces
Γ1, . . . ,Γn of simple curves, there exist parametrizations γk : [0, T ] → Γk,
k = 1, . . . , n, such that the conformal mapping gt associated with γk’s in the
above-mentioned way satisfies (2.14) for some constants ck, k = 1, . . . , n, and
all t ∈ [0, T ]. We do not study this type of problems in the present thesis. We
refer the reader to Böhm and Schleißinger [11], Roth and Schleissinger [57]
and Starnes [59] for this direction.

8Actually, if at is absolutely continuous, then so is gt(z). See Chapter 5.

23



Chapter 3

Complex Poisson kernel of
BMD

3.1 Basic facts

We collect basic facts on BMD needed later without proof. See Chen,
Fukushima and Rohde [17] for the detail.

For a parallel slit half-plane1 D = H \
⋃N
j=1 Cj, we put D∗ := D ∪

{c∗1, . . . , c∗N}. Here, c∗j ’s are distinct points not in D. To be precise, D∗

is the quotient topological space of H obtained by regarding each of the slits
Cj as a single point c∗j . The symbol mD∗ denotes the Lebesgue measure on D∗

that does not charge {c∗1, . . . , c∗N}. The BMD Z∗ = ((Z∗t )t≥0, (P∗z)z∈D∗) is a
unique mD∗-symmetric diffusion process on D∗ with the following properties:

• The part process of Z∗ in D is the absorbing Brownian motion on D;

• Z∗ admits no killings on {c∗1, . . . , c∗N}.

As absorbing Brownian motion is closely related to harmonic functions,
so is BMD to holomorphic functions. We say that a continuous function
v : D∗ → R is BMD-harmonic on D∗ if, for any relatively compact open
subset O of D∗, it holds that

v(z) = E∗z
[
v(Z∗τO)

]
, z ∈ O.

Here, τO is the first exit time of Z∗ from O. Suppose that a continuous
function v on D can be extended to a continuous one on D∗; that is, for any
sequence (zn)n∈N with dEucl(zn, Cj) → 0, the sequence (v(zn))n∈N converges
to a constant v(c∗j). Here, dEucl stands for the Euclidean distance. Such a

1We can define BMD on more general spaces. See Chen and Fukushima [15, Chapter 7].
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function v is BMD-harmonic if and only if it is harmonic on D in the usual
sense and enjoys ∫

γj

∂v

∂nz

(z) |dz| = 0

for any smooth closed simple curve γj surrounding Cj, j = 1, . . . , N . Here,
nz is the unit normal of γj at z pointing toward Cj. This integral is called
the period of v around Cj. The latter condition is also equivalent to the
existence of a global harmonic conjugate on D. Hence, a continuous function
v on D which is extendable to a one on D∗ is BMD-harmonic if and only if
there exists a holomorphic function f on D such that =f = v.

Let us now observe that other potential theoretic concepts as well as the
harmonicity with respect to BMD can be given by modifying those of absorb-
ing Brownian motions. The absorbing Brownian motion in H is designated
by ZH = ((ZH

t )t≥0, (PH
z )z∈H). We put, for each j,

ϕ(j)(z) := PH
z

(
ZH
σ⋃N

k=1
Ck

∈ Cj
)
, z ∈ D.

Here, σ⋃N
k=1 Ck

is the first hitting time of ZH to the slits
⋃N
k=1Ck. The N -tuple

ΦD(z) := (ϕ(j)(z))Nj=1 is called the harmonic basis of D. Let aij be the period

of ϕ(j) around Ci for each i, j ∈ {1, . . . , N}. The matrix AD = (aij)
N
i,j=1 is

called the period matrix of D. By Section 4 of [17], the continuous version
GD(z, w) of the 0-order resolvent kernel of the absorbing Brownian motion
ZD in D coincides with (π−1 times) the classical Green function of D. There
also exists a continuous version G∗D(z, w), z, w ∈ D∗, of the 0-order resolvent
kernel of Z∗, which is given by the relation

G∗D(z, w) = GD(z, w) + 2ΦD(z)A−1
D ΦD(w)tr, z, w ∈ D.

We also call G∗D the BMD Green function of D∗. Using this Green function,
we further define the BMD Poisson kernel

K∗D(z, ξ) := −1

2

∂

∂nξ

G∗D(z, ξ)

= KD(z, ξ)− ΦD(z)A−1
D

∂

∂nξ

ΦD(ξ)tr. (3.1)

for z ∈ D and ξ ∈ ∂H = R. Here, nξ is the unit normal at ξ pointing
downward, and KD(z, ξ) := −2−1∂nξGD(z, ξ) is the classical Poisson kernel
of D. Since K∗D(z, ξ) is BMD-harmonic in the first variable, there exists a
unique function ΨD(z, ξ) of two variables z ∈ D and ξ ∈ ∂H such that the
following hold:
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• =ΨD(z, ξ) = K∗D(z, ξ);

• For each ξ, the function z 7→ ΨD(z, ξ) is holomorphic;

• For each ξ, limz→∞ΨD(z, ξ) = 0.

ΨD(z, ξ) is, in fact, jointly continuous in (z, ξ) and called the BMD complex
Poisson kernel. The vector field ΨDt in (2.11) is exactly this kernel for Dt.

The Poisson kernel of H is given by

KH(x+ iy, ξ) =
1

π

y

(x− ξ)2 + y2
.

Hence, by abuse of notation, we write the complex Poisson kernel of H (i.e.,
the Cauchy kernel) as

ΨH(z, ξ) = − 1

π

1

z − ξ
.

For each ξ, this fraction is a conformal mapping from H onto H and maps ξ
and ∞ to ∞ and 0, respectively. For a parallel slit half-plane D, the func-
tion ΨD(·, ξ) is also a conformal mapping from D onto another parallel slit
half-plane and maps ξ and∞ to∞ and 0, respectively. In view of geometric
function theory, this property is trivial to experts from the construction. It
can be shown by a topological argument [17, Theorem 11.2] as well. More-
over, by Lemma 5.6 (ii) and Eq. (6.1) of [16], the Laurent expansion

ΨD(z, ξ) = ΨH(z, ξ) +
1

2π
bBMD(ξ;D) + o(1), z → ξ, (3.2)

around ξ holds. Here, bBMD(ξ;D) is called the BMD domain constant.
We state one more analogy to absorbing Brownian motion. Let v be a

BMD-harmonic function which is continuous and vanishing at infinity on D.
Then we have

v(z) = E∗z
[
v(Z∗ζ∗−)

]
=

∫
R
K∗D(z, ξ)v(ξ) dξ. (3.3)

Here, ζ∗ is the lifetime of Z∗. Moreover,∫
R
K∗D(z, ξ) dξ = P∗z

(
Z∗ζ∗− ∈ ∂H

)
= 1 (3.4)

for each z ∈ D∗. These two properties follow from the same argument as
in Sections 4 and 5 of [17] if D is a bounded domain. Then we can use the
conformal invariance of BMD (see Theorem 7.8.1 and Remark 7.8.2 of [15]).
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Finally, we give an identity that is the key to the proofs in Sections 3.2
and 3.3. By the strong Markov property of ZH, it holds that

GD(z, ξ) = GH(z, ξ)− EH
z

[
GH(ZH

σ⋃N
j=1

Cj

, ξ) ; σ⋃N
j=1 Cj

<∞
]
.

Taking the normal derivative and substituting it into (3.1), we have the key
identity

K∗D(z, ξ)−KH(z, ξ) = −EH
z

[
KH(ZH

σ⋃N
j=1

Cj

, ξ) ; σ⋃N
j=1 Cj

<∞
]

+ ΦD(z)A−1
D

∂

∂nξ

ΦD(ξ)tr.

(3.5)

3.2 Complex Poisson integrals

Let D = H \
⋃N
j=1Cj be a parallel slit half-plane. The aim of this subsection

is to study the basic properties of BMD complex Poisson kernel ΨD(z, ξ) as
an integral kernel. We begin with the following inversion formula for BMD
Poisson kernel K∗D(z, ξ):

Proposition 3.1. Let µ be a finite Borel measure on R. Then

lim
y↓0

∫
R

∫ b

a

K∗D(x+ iy, ξ) dxµ(dξ) = µ((a, b)) +
µ({a}) + µ({b})

2
(3.6)

holds for any a < b.

Proof. The formula (3.6) with K∗D replaced by the classical Poisson kernel
KH is the so-called Stieltjes inversion formula. See Chapter 5, Section 4 of
[56] or [13, Theorem 2.4.1] for instance. Therefore, it suffices to prove the
convergence

lim
y↓0

∫
R

∫ b

a

|K∗D(x+ iy, ξ)−KH(x+ iy, ξ)| dxµ(dξ) = 0. (3.7)

Let ZH = ((ZH
t )t≥0, (PH

z )z∈H) be the absorbing Brownian motion in H and
σA be the first hitting time of ZH to a set A ⊂ H. We put ηD := min{=z ;
z ∈

⋃N
j=1Cj }. Let z = x + iy ∈ D with 0 < y < ηD. By the gambler’s ruin

estimate,

PH
z

(
σ⋃N

j=1 Cj
<∞

)
≤ PH

z

(
σ{ z;=z=ηD } <∞

)
≤ y

ηD
.
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Hence we have

ϕ(j)(z) ≤ PH
z

(
σ⋃N

j=1 Cj
<∞

)
≤ y

ηD
, (3.8)

0 < − ∂

∂nξ

ϕ(j)(ξ) ≤ 1

ηD
(3.9)

and

EH
z

[
KH(ZH

σ⋃N
j=1

Cj

, ξ) ; σ⋃N
j=1 Cj

<∞
]

≤ EH
z

[
(π=ZH

σ⋃N
j=1

Cj

)−1 ; σ⋃N
j=1 Cj

<∞
]

≤ 1

πηD
PH
z

(
σ⋃N

j=1 Cj
<∞

)
≤ y

π(ηD)2
. (3.10)

Combining (3.8)–(3.10) with (3.5), we obtain

|K∗D(z, ξ)−KH(z, ξ)| ≤
(

1

π
+N max

1≤i,j≤N

∣∣(A−1
D )ij

∣∣) y

(ηD)2
, (3.11)

which yields (3.7).

The next lemma gives us a useful estimate on ΨD. Its proof is almost the
same as that of [50, Eq. (3.8)]. Here, dEucl stands for the Euclidean distance,
and a ∧ b := min{a, b}.

Lemma 3.2. The inequality

|ΨD(z, ξ)| ≤ 4

π

1

|z − ξ| ∧ dEucl(ξ,
⋃N
j=1Cj)

(3.12)

holds for z ∈ D and ξ ∈ ∂H.

Proof. It suffices to prove (3.12) in the case ξ = 0 because ΨD(z, ξ) =
ΨD−ξ(z − ξ, 0) holds for any ξ ∈ ∂H by [16, Eq. (3.31)]. Here, D − ξ =
{ z ; z + ξ ∈ D }.

We define rin
D := dEucl(0,

⋃N
j=1Cj) and T (z) := −1/z. For each r ∈ (0, rin

D],
the function

hr(z) :=
1

πr
(T ◦ΨD)(rz, 0)

is univalent on D. Its Taylor expansion around the origin is given by

hr(z) =
1

πr
· −1

− 1
πrz

+ 1
2π
bBMD(0;D)z + o(z)

= z +
rbBMD(0;D)

2
z2 + o(z2).
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Hence we have B(0, 1/4) ⊂ hr(D) by Koebe’s one-quarter theorem (e.g.
Chapter 7, Section 7 of [56]). This inclusion is equivalent to ΨD(rD, 0) ⊃
B(0, 4(πr)−1)c. Since ΨD(·, 0) is injective on D, we finally obtain

ΨD(D \ (rD), 0) ⊂ B(0, 4(πr)−1) (3.13)

for all r ∈ (0, rin
D], which yields (3.12) for ξ = 0.

Remark 3.3. We would like to correct minor mistakes in [50]. As seen
from the proof of Lemma 3.2, the right-hand side of [50, Eq. (3.8)] should be
4/(πr), not 1/(4πr). Also, the inequality in [50, Theorem 3.1 (ii)] should be
replaced by ζ ≥ y2

0/16.

Corollary 3.4. For each z ∈ D, the function ξ 7→ ΨD(z, ξ) belongs to
C∞(R), the set of (complex-valued) continuous functions on R vanishing at
infinity.

By Corollary 3.4, we can consider the integral of BMD complex Poisson
kernels with respect to finite Borel measures.

Lemma 3.5. (i) The integral

ΨD[µ](z) :=

∫
R

ΨD(z, ξ)µ(dξ)

defines a holomorphic function on D for any finite Borel measure µ on
R.

(ii) Let U ⊂ D be a set having an accumulation point in D. If there exist
two finite Borel measures µ1 and µ2 on R such that∫

R
ΨD(z, ξ)µ1(dξ) =

∫
R

ΨD(z, ξ)µ2(dξ) (3.14)

for all z ∈ U , then µ1 = µ2.

Proof. (i) The integrability of ΨD(z, ξ) relative to µ(dξ) is clear from Corol-
lary 3.4. Let U be any disk in D. Then for a smooth Jordan curve γ in
U , ∫

γ

ΨD[µ](z) dz =

∫
R

(∫
γ

ΨD(z, ξ) dz

)
µ(dξ) = 0

Here, Lemma 3.2 enables us to apply Fubuni’s theorem. By Morera’s theo-
rem, ΨD[µ] is holomorphic on U and hence on D.
(ii) By the identity theorem, (3.14) holds for all z ∈ D. Taking the imaginary
part of (3.14) and applying Proposition 3.1, we get µ1 = µ2.
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3.3 Asymptotic behavior around infinity

We carry over the notations from Section 3.2.

Proposition 3.6. The identity

lim
z→∞

zΨD(z, ξ) = − 1

π
(3.15)

holds for any ξ ∈ ∂H.

Proof. The function z 7→ ΨD(−1/z, ξ) is holomorphic around the origin and
has a zero at z = 0. Hence, zΨD(z, ξ) converges as z →∞, and the limit α
is given by

α := lim
z→∞

zΨD(z, ξ) = − lim
z→0

1

z
ΨD(−1

z
, ξ) = − d

dz
ΨD(−1

z
, ξ)

∣∣∣∣
z=0

.

In particular, since ΨD(x, ξ) is real for x ∈ R \ {ξ}, we have

α = lim
x→∞
x∈R

xΨD(x, ξ) ∈ R.

Thus,

α = lim
y↑∞
y∈R

<(iyΨD(iy, ξ)) = − lim
y↑∞
y∈R

yK∗D(iy, ξ) = − 1

π
.

Here, the last equality follows from [16, Eq. (A.23)].

The rate of convergence in (3.15) may depend on ξ, but the next lemma
shows that a certain uniform boundedness holds on every sectorial domain
4θ := { z ∈ H ; θ < arg z < π − θ }, θ ∈ (0, π/2).

Lemma 3.7. For any θ ∈ (0, π/2), it holds that

lim sup
z→∞

z∈D∩4θ

sup
ξ∈∂H
|zΨD(z, ξ)| <∞. (3.16)

Proof. (3.16) with D replaced by H is trivial from the inequality

sup
ξ∈∂H
|zΨH(z, ξ)| = |z|

π=z
<

1

π sin θ
, z ∈ 4θ.

Therefore, it suffices to prove

lim sup
z→∞

z∈D∩4θ

sup
ξ∈∂H
|z(ΨD(z, ξ)−ΨH(z, ξ))| <∞. (3.17)
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Let us denote the real and imaginary parts of the difference ΨD(z, ξ) −
ΨH(z, ξ) by uξ(z) and vξ(z), respectively. The imaginary part vξ(z) is, by
definition, equal to the left-hand side of (3.5). Then (3.17) is equivalent to

lim sup
z→∞

z∈D∩4θ

sup
ξ∈∂H
|zvξ(z)| <∞ and (3.18)

lim sup
z→∞

z∈D∩4θ

sup
ξ∈∂H
|zuξ(z)| <∞. (3.19)

In what follows, we use the notation

uξ(x, y) = uξ(x+ iy) and vξ(x, y) = vξ(x+ iy).

for x, y ∈ R.
Let rout

D := sup{ |z| ; z ∈
⋃N
j=1Cj }. It follows from [44, Eq. (2.12)] that

PH
z (σ⋃N

j=1 Cj
<∞) ≤ PH

z/routD
(σD∩H <∞)

=
4rout

D

π

=z
|z|2

(
1 +O(|z|−1)

)
(z →∞). (3.20)

We can combine (3.20) with (3.5) as in the proof of Proposition 3.1 to obtain
the inequality

|vξ(z)| ≤ cD
=z
|z|2

(
1 +O(|z|−1)

)
(|z| → ∞) (3.21)

for a constant cD depending only on D. In particular, both the constant cD
and term O(|z|−1) are independent of ξ. Hence we get (3.18).

We shall derive (3.19) from (3.18) through the Cauchy–Riemann relation.
To this end, we give proper estimates on the partial derivatives of vξ. For
t, x, y ∈ R with rout

D < t < y, we define

Vξ(x, y; t) :=

∫
R
p(x, y; s, t)vξ(s, t) ds.

Here,

p(x, y; s, t) :=
1

π

y − t
(x− s)2 + (y − t)2

is the Poisson kernel for the half-plane Ht := { z = x + iy ; y > t }. Pois-
son’s integral formula (e.g. Exercise 2 in Chapter 4, Section 6.4 of [2]) gives
Vξ(x, y; t) = vξ(x, y) because vξ is bounded and harmonic on Ht and contin-
uous on Ht. For y > 2rout

D , we have

∂

∂x
vξ(x, y) =

∂

∂x
Vξ

(
x, y;

y

2

)
=

∫
R

∂

∂x
p
(
x, y; s,

y

2

)
vξ

(
s,
y

2

)
ds. (3.22)
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By the relation between arithmetic and geometric means,∣∣∣∣ ∂∂xp(x, y; s, t)

∣∣∣∣ ≤ 2

y − t
p(x, y; s, t). (3.23)

Using (3.22) and (3.23), we get∣∣∣∣ ∂∂xvξ(x, y)

∣∣∣∣ ≤ 8

y2

∫
R
p
(
x, y; s,

y

2

) ∣∣∣y
2
vξ

(
s,
y

2

)∣∣∣ ds ≤ 8M

y2
. (3.24)

Here, the constant

M := sup
y>2routD
s∈R

∣∣∣y
2
vξ

(
s,
y

2

)∣∣∣ = sup
t>routD
s∈R

|tvξ(s, t)|

is finite by (3.21).
Similarly, we have

∂

∂y
vξ(x, y) =

d

dy
Vξ

(
x, y;

y

2

)
=

∫
R

(
d

dy
p
(
x, y; s,

y

2

))
vξ

(
s,
y

2

)
ds (3.25)

+
1

2

∫
R
p
(
x, y; s,

y

2

) ∂

∂t
vξ(s, t)

∣∣∣∣
t= y

2

ds

Since a derivative of vξ is again harmonic, bounded and continuous on Hy/2,
the second integral in the last line of (3.25) equals ∂yvξ(x, y). Hence∣∣∣∣ ∂∂yvξ(x, y)

∣∣∣∣ ≤ 4

y2

∫
R
p
(
x, y; s,

y

2

) ∣∣∣y
2
vξ

(
s,
y

2

)∣∣∣ ds ≤ 4M

y2
. (3.26)

We now derive (3.19) from the above estimates. The Cauchy–Riemann
relation implies

uξ(x, y) = uξ(0, y0)−
∫ y

y0

∂xvξ(0, t) dt+

∫ x

0

∂yvξ(s, y) ds (3.27)

for x ∈ R and y, y0 ∈ (rout
D ,∞). Here,

uξ(0, y0) = <(ΨD(iy0, ξ)−ΨH(iy0, ξ))→ 0 as y0 →∞.

Hence by (3.24), we can let y0 →∞ in (3.27) to get

uξ(x, y) = −
∫ y

∞
∂xvξ(0, t) dt+

∫ x

0

∂yvξ(s, t) ds. (3.28)
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By (3.24) and (3.26), the two integrals in (3.28) enjoy∣∣∣∣∫ y

∞
∂xvξ(0, t) dt

∣∣∣∣ ≤ 8M

y
<

8M

|z| sin θ
and∣∣∣∣∫ x

0

∂yvξ(s, y) ds

∣∣∣∣ ≤ 4M |x|
y2

<
4M

|z| sin θ tan θ

for z = x + iy ∈ 4θ with |z| > 2rout
D / sin θ (i.e., y > 2rout

D ). Hence (3.19)
follows.

3.4 Dependence on slit domains

A set Slit is defined as the totality of vectors

s = (y,x`,xr) ∈ (0,∞)N × RN × RN

= (y1, . . . , yN , x
`
1, . . . , x

`
N , x

r
1, . . . , x

r
N)

such that the following are true:

x`j < xrj for j = 1, . . . N,

xrj < x`k or xrk < x`j if yj = yk for j 6= k.

An element s ∈ Slit represents the endpoints of the slits of a parallel slit
half-plane. More precisely, we put

Cj(s) := { z = x+ iyj ; x`j ≤ x ≤ xrj },

D(s) := H \
N⋃
j=1

Cj(s).

Then D(s) is a parallel slit half-plane of N slits. We also put

z`j := x`j + iyj and zrj := xrj + iyj,

which are the left and right endpoints of the slit Cj(s), respectively. The
space Slit is endowed with the distance

dSlit(s, s̃) := max
1≤j≤N

(
|z`j − z̃`j |+ |zrj − z̃rj |

)
.

Chen, Fukushima and Rohde [17] established the local Lipschitz continu-
ity of the BMD complex Poisson kernel Ψs(z, ξ) := ΨD(s)(z, ξ) as a function
of s. Here, we state part of their result. For a metric space (X, d), we denote
the open and closed balls with center a ∈ X and radius r > 0 by BX(a, r)
and B̄X(a, r), respectively. We drop the subscript X if there is no risk of
misunderstanding.
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Proposition 3.8 (cf. [17, Theorem 9.1]). Given a slit vector s0 ∈ Slit, let
K be a compact subset of D(s0) and J be a bounded interval. There exist
positive constants εs0,K and Ls0,K,J such that the inclusion K ⊂ D(s) and
inequality

|Ψs(z, ξ)−Ψs0(z, ξ)| ≤ Ls0,K,J dSlit(s, s0)

hold for any z ∈ K, ξ ∈ J and s ∈ B(s0, εs0,K). Moreover, εs0,K depends
only on s0 and K, not on J .

In the proof of the next proposition, it is crucial that εs0,K in Proposi-
tion 3.8 is independent of J .

Proposition 3.9. Let s0 ∈ Slit and z0 ∈ D(s0) be fixed. Then

lim
s→s0
z→z0

sup
ξ∈∂H
|Ψs(z, ξ)−Ψs0(z0, ξ)| = 0. (3.29)

Proof. The function

fs,z(ξ) := Ψs(z, ξ), s ∈ Slit, z ∈ D(s)

of ξ can be regarded as an element of C(R ∪ {∞}) by Corollary 3.4. Note
that R∪{∞} is homeomorphic to just the circle, which is compact. We take
a constant r > 0 such that K := B̄C(z0, r) ⊂ D(s0) and set

ε0 :=
1

5
min{r, ηD(s0), εs0,K}

with εs0,K given as in Proposition 3.8. Here, we recall that ηD(s0) = min{=z ;

z ∈
⋃N
j=1Cj(s0) }. In order to prove (3.29), it suffices to show the relative

compactness of

F := { fs,z ; s ∈ BSlit(s0, ε0), z ∈ BC(z0, ε0) }

in C(R∪{∞}) equipped with the supremum norm. Indeed, by using Propo-
sition 3.8, we can easily show the pointwise convergence

lim
s→s0
z→z0

fs,z(ξ) = fs0,z0(ξ).

Thus, the limit of any uniformly convergent subsequence in F as (s, z) →
(s0, z0) is unique.

We check the assumptions of the Arzelà–Ascoli theorem. The uniform
boundedness of F is obvious from Lemma 3.2. The equicontinuity of F at
∞ is also trivial from the same lemma. Thus, the proof is complete once we
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show the equicontinuity at each point ξ0 ∈ R. For ξ ∈ R, we denote by ξ̂ the
vector of R3N whose first N entries are zero and other 2N entries are ξ. For
ξ ∈ J := (ξ0 − ε0, ξ0 + ε0), we have

|fs,z(ξ)− fs,z(ξ0)| = |Ψs(z, ξ)−Ψs(z, ξ0)|
≤ |Ψs−ξ̂+ξ̂0(z − ξ + ξ0, ξ0)−Ψs−ξ̂+ξ̂0(z, ξ0)|

+ |Ψs−ξ̂+ξ̂0(z, ξ0)−Ψs(z, ξ0)|
≤ sup

w∈B̄(z0,2ε0)

|∂wΨs−ξ̂+ξ̂0(w, ξ0)||ξ − ξ0| (3.30)

+ Ls0,K,J dSlit(s, s− ξ̂ + ξ̂0).

Since the family of holomorphic functions

w 7→ Ψs̃(w, ξ0), s̃ ∈ BSlit(s, 2ε0),

is locally bounded on the disk BC(z, 3ε0) by Lemma 3.2, so is ∂wΨs̃(w, ξ0)
by Cauchy’s integral formula. In particular,

M := sup
w∈B̄C(z,2ε0)
s̃∈BSlit(s,2ε0)

|∂wΨs̃(w, ξ)| <∞.

Thus, (3.30) implies that

|fs,z(ξ)− fs,z(ξ0)| ≤ (Ls0,K,J +M)||ξ − ξ0|

for any s ∈ BSlit(s0, ε0) and z ∈ BC(z0, ε0), which leads us to the equiconti-
nuity of F at ξ0.
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Chapter 4

Conformal mappings on slit
domains

4.1 Normalization conditions at infinity

We shall treat univalent functions on parallel slit half-planes which are nor-
malized properly at infinity in the argument starting in Section 4.2. We state
our normalization conditions and their basic consequences.

Let f be a univalent function defined on a domain which contains some
half-plane, i.e., a domain of the form Hη = { z ∈ C ; =z > η }, η ≥ 0. The
function f is said to be hydrodynamically normalized at infinity if

lim
z→∞
z∈Hη

(f(z)− z) = 0 for some η ≥ 0.

Whenever we say that f satisfies this property, we implicitly assume that the
domain of f contains some half-plane. In addition, if there exists c ∈ C such
that

lim
z→∞
z∈4θ

z(f(z)− z) = c for any θ ∈ (0, π/2),

then we call c the angular residue of f at infinity. Here, recall that 4θ =
{ z ∈ H ; θ < arg z < π − θ }.

Propositions 4.1 and 4.2 below ensure that these normalization conditions
are preserved by taking the inverse and composite of functions.

Proposition 4.1. Let f : D → C be a univalent function which is hydrody-
namically normalized at infinity. Then so is the inverse f−1 : f(D)→ D. If,
moreover, f has the finite angular residue c at infinity, then that of f−1 is
−c.
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Proof. We can take positive constants η and L so that

|f(z)− z| < 1, z ∈ Hη \ B̄(0, L).

Since Hη+L ⊂ Hη \ B̄(0, L), it is clear from this inequality that Hη+L+1 ⊂
f(Hη+L). Now, let ε > 0. There exists L′ ≥ 0 such that |f(z)− z| < ε holds
for z ∈ Hη \ B̄(0, L′). We have

|f−1(w)− w| = |f−1(w)− f(f−1(w))| < ε

for w ∈ Hη+L+1 \ B̄(0, L′ + 1) because f−1(w) ∈ Hη+L \ B̄(0, L′) for such w.
Thus, f−1 is hydrodynamically normalized at infinity.

Suppose that f has the finite angular residue c at infinity. Let θ ∈
(0, π/2). For w ∈ 4θ \ B̄(0, (η+L+ 2)/ sin θ), we have =w ≥ 2, |w| ≥ 1 and
|f−1(w)− w| < 1 because w ∈ Hη+L+2. These inequalities yield

|f−1(w)|
=f−1(w)

<
|w|+ 1

=w − 1
<

2|w|
=w/2

<
4

sin θ
.

Hence f−1(4θ\B̄(0, (η+L+2)/ sin θ)) ⊂ 4θ′ holds with θ′ given by 4 sin θ′ =
sin θ. From the identity

w(f−1(w)− w) = −f−1(w)(f(f−1(w))− f−1(w))− (f−1(w)− w)2,

we get
lim
w→∞
w∈4θ

w(f−1(w)− w) = − lim
z→∞
z∈4θ′

z(f(z)− z) = −c.

The proof of the next proposition is quite similar, and we omit it.

Proposition 4.2. Let f : D → C and g : D′ → C be univalent functions
which are hydrodynamically normalized at infinity. Then so is the composite
g|D′∩f(D) ◦ f |f−1(D′). If, moreover, they have the finite angular residues cf
and cg, respectively, then that of g ◦ f is cf + cg.

4.2 Integral representation

In this section, we establish the integral representation (1.8). Although it
is similar to the formula (2.2) coming from the Pick–Nevanlinna represen-
tation (2.1), we can hardly expect any analogous proof on parallel slit half-
planes. For this reason, we adopt a different approach from that of Goryainov
and Ba [34, Lemma 1], using the properties of BMD viewed in Chapter 3.
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We say that a set F ⊂ H is a (possibly unbounded) H-hull if F is relatively
closed in H and if H \ F is a simply connected domain. The term “H-hull”
is used only for bounded ones in some cases, but we here use it even if F
is unbounded. In the following theorem, the assumption on f(D1) expresses
just the condition that “the holes of f(D1) coincide with the slits of D2

exactly.”

Theorem 4.3. Let D1 and D2 be parallel slit half-planes of N slits and
f : D1 → D2 be a univalent function such that D2 \ f(D1) is a possibly
unbounded H-hull. Then f is hydrodynamically normalized and has a finite
angular residue at infinity if and only if there exists a finite Borel measure µ
on R such that

f(z) = z + π

∫
R

ΨD1(z, ξ)µ(dξ), z ∈ D1. (4.1)

In this case, the limit

=f(x) := lim
y↓0
=f(x+ iy)

exists for Lebesgue a.e. x ∈ R, and µ is uniquely given by µ(dξ) =
π−1=f(ξ) dξ. Moreover, the angular residue of f at infinity is −µ(R).

Proof. We begin with the proof of the “if” part. Suppose that (4.1) holds,
and let η be sufficiently large. Lemma 3.2 implies that |ΨD1(z, ξ)| ≤
4(πηD1)

−1 for z ∈ Hη and ξ ∈ ∂H. Here, ηD1 = min{=z ; z ∈ H \ D1 }.
From the bounded convergence theorem we get

lim
z→∞
z∈Hη

(f(z)− z) = lim
z→∞
z∈Hη

∫
R

ΨD1(z, ξ)µ(dξ) = 0. (4.2)

Similarly, by (3.15) and (3.16) we have

lim
z→∞
z∈4θ

z(f(z)− z) = π lim
z→∞
z∈4θ

∫
R
zΨD1(z, ξ)µ(dξ) = −µ(R). (4.3)

We move to the proof of the “only if” part. Suppose that f is hydro-
dynamically normalized and has a finite angular residue at infinity. The
supremum M := supξ∈R=f(ξ + iη0) is finite for some η0 > 0. Since f maps

D1 \ Hη0 into D2 \ HM , we see that =f is bounded by M on D1 \ Hη0 .
Let Z∗ = ((Z∗t )t≥0, (P∗z)z∈D∗1 ) be the BMD on D∗1. Given η ∈ (0, ηD1), the
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BMD-harmonic function =f(x+ iy)−y on D1∩Hη, which is continuous and
vanishing at infinity on ∂Hη, enjoys

=f(x+ iy)− y = E∗x+iy

[
=f(Z∗σ∂Hη )−=Z∗σ∂Hη ; σ∂Hη <∞

]
=

∫
R
K∗D1∩Hη(x+ iy, ξ + iη)(=f(ξ + iη)− η) dξ

for z = x + iy ∈ D1 ∩Hη by (3.3). Here, σ∂Hη is the first hitting time of Z∗

on D∗1. Letting η → 0, we have

=f(x+ iy)− y = lim
η↓0

∫
R
K∗D1∩Hη(x+ iy, ξ + iη)=f(ξ + iη) dξ (4.4)

for any z = x+ iy ∈ D1.
We can change the order of the limit and integral in (4.4) as follows:

Putting D̃1,η := { z ∈ H ; z + iη ∈ D1 ∩Hη }, we get

lim
η↓0

K∗D1∩Hη(x+ iy, ξ + iη) = lim
η↓0

K∗
D̃1,η

(x+ i(y − η), ξ)

= K∗D1
(x+ iy, ξ)

from Proposition 3.9. Thus, by (3.4) we can use Scheffé’s lemma to obtain

lim
η↓0

∫
R

∣∣∣K∗D1∩Hη(x+ iy, ξ + iη)−K∗D1
(x+ iy, ξ)

∣∣∣ dξ = 0. (4.5)

In addition, the bounded harmonic function =f(ξ+ iη) converges as η ↓ 0 for
a.e. ξ ∈ R by Fatou’s theorem (e.g. [32, Corollary 2.5]). Now, we decompose
the integral in (4.4) as∫

R
K∗D1∩Hη(x+ iy, ξ + iη)=f(ξ + iη) dξ

=

∫
R

(
K∗D1∩Hη(x+ iy, ξ + iη)−K∗D1

(x+ iy, ξ)
)
=f(ξ + iη) dξ (4.6)

+

∫
R
K∗D1

(x+ iy, ξ)=f(ξ + iη) dξ.

Since =f(ξ + iη) ≤ M , the former integral in the right-hand side of (4.6)
converges to zero by (4.5). To the latter integral we can apply the dominated
convergence theorem. Thus,

=f(x+ iy)− y =

∫
R
K∗D1

(x+ iy, ξ)=f(ξ) dξ. (4.7)
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Let µ(dξ) := π−1=f(ξ) dξ. We have

µ(R) = π

∫
R

lim
y↗∞

yK∗D1
(iy, ξ)µ(dξ)

≤ lim inf
y↗∞

y · π
∫
R
K∗D1

(iy, ξ)=f(ξ) dξ

= lim
y↗∞

y(=f(iy)− y) (4.8)

using (3.15), Fatou’s lemma and (4.7). The limit in the rightmost side of
(4.8) is finite by the assumption of finite angular residue, which implies that
µ is a finite Borel measure on R. The inequality in (4.8) is, in fact, an equality
by (3.16) and the bounded convergence theorem. Since the real part of f is
uniquely determined by the condition lim(f(z)− z) = 0, we have (4.1).

Finally, the uniqueness of µ follows from Lemma 3.5 (ii).

Remark 4.4 (Limit along BMD paths). (i) In Theorem 4.3, it is as-
sumed that f : D1 → D2 is univalent, which is the case appearing in
this thesis. As is easily seen from the above-mentioned proof, we can
replace this assumption with a slightly weaker one that =f is BMD-
harmonic and is bounded on some strip {z ; 0 < =z < η0 }.

(ii) We give a rough sketch of another possible line of proof based on prob-
abilistic potential theory for Theorem 4.3. Let P∗,ξz be the Doob trans-
form of P∗z by K∗D1

(·, ξ), and suppose that v̂(ξ) := limt↗ζ∗ =f(Z∗t ) exists
P∗,ξz -a.s. for a.e. ξ ∈ ∂H. Then by the martingale convergence theorem,
we have

=f(z) = E∗z
[
=f(Z∗σ∂Hη )

]
= E∗z

[
v̂(Z∗ζ∗−)

]
=

∫
R
K∗D1

(z, ξ)v̂(ξ) dξ.

Here, v̂(ξ) is not the limit along the vertical line in Theorem 4.3 but the
one along BMD paths. For absorbing Brownian motion on H, Doob [27]
deeply studied the relationship between the limit along vertical lines or
within sectors and the one along Brownian paths. In fact, we can also
give an alternative proof of Theorem 4.3, simply using the property
that the part process of Z∗ in D1 is the absorbing Brownian motion on
D1.

We introduce a new notation. A unique measure µ representing f in
(4.1) is designated by µf or µ(f ; ·). We call the total mass µ(f ;R) the BMD
half-plane capacity of the H-hull F = D2 \ f(D1) in D2 and denote it by
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hcapD2(F ). These definitions, which coincide with the classical ones if there
are no slits and if F is bounded, go well even in the present case thanks to
the following uniqueness result:

Corollary 4.5. Let D1 and D2 be parallel slit half-planes of N slits and F
be a possibly unbounded H-hull. A conformal mapping f : D1 → D2 \ F with
the hydrodynamic normalization at infinity is unique if it exists.

Proof. Suppose that two mappings f and g satisfy our assumption. Then
h := g−1 ◦ f is a conformal automorphism on D1 with the hydrodynamic
normalization at infinity by Propositions 4.1 and 4.2. The boundary function
=h(ξ) is zero for all ξ ∈ R by the boundary correspondence. In addition,
we can see in the same way as in the proof of Theorem 4.3 that =(h(z)− z)
is BMD-harmonic and bounded. It follows from the maximum principle
for BMD-harmonic functions that =(h(z) − z) = 0 on D1. Thus, there
exists a real constant α such that h(z) − z = α, but α must be zero by the
hydrodynamic normalization. Hence we have h(z) = z and f = g.

Some phrases in the above statements are too lengthy to use them re-
peatedly. Let us put the following definition for convenience.

Definition 4.6. We say that a univalent function f : D1 → D2 satisfies the
standard assumptions if the following hold:

• D1 and D2 are parallel slit half-planes;

• f is hydrodynamically normalized and has a finite angular residue at
infinity;

• D2 \ f(D1) is a possibly unbounded H-hull.

The next corollary, which follows immediately from Proposition 4.2, shows
the “additivity” of the BMD half-plane capacity:

Corollary 4.7. Let f : D1 → D2 and g : D2 → D3 be univalent functions
which enjoy the standard assumptions. Then so does g ◦ f , and

µ(g ◦ f ;R) = µ(g;R) + µ(f ;R). (4.9)

This identity can be rephrased as

hcapD3(g(F ) ∪G) = hcapD2(F ) + hcapD3(G) (4.10)

in terms of the H-hulls F = D2 \ f(D1) and G = D3 \ g(D2).
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4.3 Enlargement of slit domains and analytic

continuation

4.3.1 Enlarged slit domains

Let E ⊂ C be a simply connected domain, and Cj, j = 1, . . . , N , be disjoint
horizontal slits in E. The left and right endpoints of Cj are denoted by z`j =
x`j + iyj and by zrj = xrj + iyj, respectively. We consider a slit domain D :=

E\
⋃N
j=1 Cj. In this section, we glue N copies of D to the original D along the

perimeters of its slits to make a Riemann surface D\. Conformal mappings
between slit domains are naturally extended to holomorphic mappings on
such surfaces.

We shall regard D\ as a subset of (N + 1) sheets C∪
⋃N
j=1(C×{j}). For

each Cj, we define its

interior C◦j := Cj \ {z`j , zrj},
upper edge C+

j := C◦j ⊂ C,
lower edge C−j := C◦j × {j} ⊂ C× {j} and

outer edge C\
j := C+

j ∪ {z`j , zrj} ∪ C−j ⊂ C ∪ (C× {j}).

The mirror reflection with respect to the line =z = η is designated by Πη.
Namely, Πηz = z + 2iη. The enlarged surface D\ is given by

D\ := D ∪
N⋃
j=1

(
C\
j ∪ (ΠyjD × {j})

)
⊂ C ∪

N⋃
j=1

(C× {j}).

The set { z ∈ D ; =z > yj }, which lies above C+
j , is glued to the set

{ (z, j) ; z ∈ ΠyjD,=z < yj }, which lies below C−j . Similarly, { z ∈ D ;
=z < yj } is glued to { (z, j) ; z ∈ ΠyjD,=z > yj }. More precisely, a

fundamental neighborhoods system V(p) of p ∈ C\
j is given as follows: We

put H−η := { z ∈ C ; =z < η }, η ∈ R, and

lD := 2−1 inf{ dEucl(Cj, ∂H ∪
⋃
k 6=j Ck) ∧ (xrj − x`j) ; j = 1, . . . , N }.

If p = z ∈ C+
j , then V(p) consists of the sets(
B(z, δ) ∩Hyj

)
∪
(

(B(z, δ) ∩H−yj)× {j}
)
, 0 < δ ≤ lD.

If p = (z, j) ∈ C−j , then V(p) consists of the sets(
B(z, δ) ∩H−yj

)
∪
((
B(z, δ) ∩Hyj

)
× {j}

)
, 0 < δ ≤ lD.
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Finally, if p = z`j or zrj , then V(p) consists of the sets

Up(δ) := (B(p, δ) \ C◦j ) ∪ ((B(p, δ) \ Cj)× {j}) , 0 < δ ≤ lD.

The closure of a subset A of D\ with respect to the topology defined in this
way is designated by cl\(A).

The complex structure of D\ is specified by introducing a local coordinate
ψp around p ∈ D\ as follows: Let pr : C ∪

⋃N
j=1(C × {j}) → C be the

projection, i.e., pr(z) = pr((z, j)) = z for z ∈ C and j = 1, . . . , N . A
local coordinate around p /∈

⋃N
j=1{z`j , zrj} is given just by pr restricted on

a neighborhood Up ⊂ D\ \
⋃N
j=1{z`j , zrj} of p such that pr|Up : Up → C is

injective. In particular, we put, for each j,

R+
j := { z = x+ iy ; x`j < x < xrj , yj ≤ y < yj + lD }
∪
(
{ z = x+ iy ; x`j < x < xrj , yj − lD < y < yj } × {j}

)
⊃ C+

j ,

R−j := { z = x+ iy ; x`j < x < xrj , yj − lD < y < yj }
∪
(
{ z = x+ iy ; x`j < x < xrj , yj ≤ y < yj + lD } × {j}

)
⊃ C−j ,

Rj := { z = x+ iy ; x`j < x < xrj , |y − yj| < lD }.

If p ∈ C+
j , we can take ψp as pr|R+ : R+

j → Rj. If p ∈ C−j , then we can

take ψp as the same mapping with + replaced by −. In the case p = z`j ,
we introduce the function ϑ`j : Uz`j (lD) \ {z`j} → [−2π, 2π) that satisfies the

relation exp(iϑ`j(q)) = pr(q)− z`j for all q ∈ Uz`j (lD) \ {z`j} and the additional

conditions

0 < ϑ`j(q) < 2π for q ∈ B(z`j , lD) \ Cj,
ϑ`j(q) = 0 for q ∈ C+

j ,

− 2π < ϑ`j(q) < 0 for q ∈ (B(z`j , lD) \ Cj)× {j} and

ϑ`j(q) = −2π for q ∈ C−j .

Using this function, we define

ψz`j (q) = sq`j(q)

:=


0 if q = z`j

exp

(
log|pr(q)− z`j |+ iϑ`j(q)

2

)
if q ∈ Uz`j (lD) \ {z`j}

Roughly speaking, sq`j(q) is the square root of pr(q) − z`j . Indeed, sq`j is a

homeomorphism from Uz`j (lD) onto B(0,
√
lD), and we can easily see that, for
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any q0 ∈ Uz`j (lD) \ {z`j}, there exists a neighborhood Uq0 of q0 such that

sq`j(q) =
√

pr(q)− z`j , q ∈ Uq0 ,

holds with a single branch of the square root chosen appropriately. For
p = zrj , we define sqrj in a similar way.

4.3.2 Analytic continuation

Let D1 = E1 \
⋃N
j=1C1,j and D2 = E2 \

⋃N
j=1C2,j be slit domains as in

Section 4.3.1 and f : D1 → D2 be a conformal mapping which associates the
slit C1,j with C2,j, j = 1, . . . , N , respectively.

By the Schwarz reflection principle, there exists a unique analytic contin-
uation of the function f on the Riemann surface D\

1, which we denote by the
same symbol f again, with the relation

f(p) = Πy2,jf(Πy1,j pr(p))

for p ∈ ΠyjD × {j}. By a similar reasoning, we can define a conformal

mapping f \ : D\
1 → D\

2 by

f \(z) := f(z) for z ∈ D1,

f \((z, j)) := (f((z, j)), j) for z ∈ Πy1,jD1,

f \(p) := lim
q→p

q∈D\1\{p}

f \(q) for p ∈ C\
1,j.

Here, the last limit is with respect to the topology of D\
2. The relation

pr(f \(p)) = f(p) holds for all p by definition.

Remark 4.8 (Analytic continuation of preceding equalities). Through ana-
lytic continuation, some properties of conformal mappings which we have so
far studied are suitably generalized. For example, let f be a univalent func-
tion on a parallel slit half-plane D1 with the standard assumptions. Then
(4.1) gives

f(p) = pr(p) + π

∫
R

ΨD1(f
\(p), ξ)µ(f ; dξ).

Remark 4.9 (Double of Riemann surfaces). We have introduced the en-
largement operations above in order to treat points on the slits as if they
were interior points. This is helpful to analyze the motion of the slits in
Chapter 5. Here, the reader may have noticed that we can obtain a simi-
lar effect by taking the double of the slit domain. Although doubling is a
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standard method in the study of finite Riemann surfaces, we have chosen
another way of enlargement in order to keep simple relations among f , f \,
and pr such as pr ◦f \ = f . Since we shall write down the Komatu–Loewner
differential equations in terms of the Euclidean coordinate, our choice goes
well with such a coordinate-based way.

For later use, we count the order of zeros of conformal mappings extended
as above.

Lemma 4.10. Let D1, D2 and f be as above. For p2 ∈ D\
2, consider the

preimage p1 := (f \)−1(p2) and a local coordinate1 ψ : D\
1 ⊃ Up1 → Vp1 ⊂ C

around p1. Then the function h := f ◦ ψ−1 : Vp1 → pr(D\
2) satisfies the

following:

(i) If p2 /∈
⋃N
j=1{z`2,j, zr2,j}, then h has a zero of the first order at ψ(p1).

(ii) If p2 ∈
⋃N
j=1{z`2,j, zr2,j}, then h has a zero of the second order at ψ(p1).

Proof. We assume that h has a zero of order m ≥ 1 at ψ(p1). By Theorem 11
in Chapter 3, Section 3.3 of Ahlfors [2], there are a neighborhood Wpr(p2) ⊂
pr(D\

2) of pr(p2) and a neighborhood Ṽp1 ⊂ Vp1 of ψ(p1) such that h(z)−w = 0
has exactly m distinct roots in Ṽp1 for any w ∈ Wpr(p2).

(i) Suppose p2 /∈
⋃N
j=1{z`2,j, zr2,j}. Then h is univalent near ψ(p1) by definition.

Hence m = 1.
(ii) Suppose p2 ∈ {z`2,j, zr2,j} for j = 1, . . . , N . Let w ∈ C◦2,j ∩Wpr(p2). Then
the equation h(z)− w = 0 has exactly two roots z̃+ and z̃− that satisfy

f \(ψ−1(z̃+)) = w ∈ C+
2,j and f \(ψ−1(z̃−)) = (w, j) ∈ C−2,j.

Hence m = 2.

1This local coordinate does not necessarily coincide with those in Section 4.3.1.
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Chapter 5

Loewner chains and evolution
families

Let T ∈ (0,∞). The symbol I stands for the interval [0, T ) or [0, T ] through-
out this section. We use the following notation:

I2
≤ := { (s, t) ∈ I2 ; s ≤ t },
I3
≤ := { (s, t, u) ∈ I3 ; s ≤ t ≤ u },

and the same symbols with ≤ replaced by < in an obvious manner. We also
use symbols similar to those in Section 4.3 concerning the enlargement of slit
domains and the analytic continuation. The meaning of such symbols must
be clear from the context.

5.1 Basic properties of evolution families

Definition 5.1. Let Dt be a parallel slit half-plane for each t ∈ I. We say
that a two-parameter family of univalent functions φt,s : Ds → Dt, (s, t) ∈ I2

≤,
with the standard assumptions (Definition 4.6) is a (chordal) evolution family
over (Dt)t∈I if the following properties hold:

(EF.1) φt,t is the identity mapping for each t ∈ I;

(EF.2) φu,s = φu,t ◦ φt,s holds on Ds for each (s, t, u) ∈ I3
≤;

(EF.3) The function λ(t) := µ(φt,0;R) is continuous on I.

Here, µ(φt,0; ·) is the measure defined in Theorem 4.3 and the paragraph after
Remark 4.4.
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Given an evolution family (φt,s)(s,t)∈I2≤ over (Dt)t∈I , we associate a family

of slit vectors s(t) ∈ Slit, t ∈ I, so that Dt = D(s(t)) and C\
j(s(t)) =

φ\t,s(C
\
j(s(s))) hold for every (s, t) ∈ I2

≤. For a fixed time t0 ∈ I, there
are N ! vectors s such that D(s) = Dt0 . If we choose one of such vectors
as s(t0), then the family (s(t))t∈I is determined uniquely by the boundary
correspondence.

The following two properties will be used repeatedly in the sequel:

Lemma 5.2. Let (φt,s)(s,t)∈I2≤ be an evolution family over (Dt)t∈I and (s, t) ∈
I2
≤.

(i) It follows that µ(φt,s;R) = λ(t)− λ(s). In particular, the function λ is
non-decreasing on I.

(ii) The inequality =φt,s(z) ≥ =z holds for any z ∈ Ds.

Proof. (i) The relation φt,0 = φt,s ◦ φs,0 follows from (EF.2). Hence Corol-
lary 4.7 gives

λ(t) = µ(φt,s;R) + λ(s).

(ii) From the integral representation (4.1), we obtain

=φt,s(z) = =z + π

∫
R
K∗Ds(z, ξ)µ(φt,s; dξ) ≥ =z.

Remark 5.3. As in Remark 4.8, some properties of evolution families are
suitably extended through analytic continuation. Let (s, t, u) ∈ I3

≤. Then

(EF.2) implies that φ\u,s = φ\u,t◦φ
\
t,s holds on D\

s. Similarly, for (s, t) ∈ I2
≤ and

p ∈ cl\(Ds), the inequality =φt,s(p) ≤ = pr(p) follows from Lemma 5.2 (ii).
In particular, we have ηDt ≥ ηDs .

Owing to (EF.3) and Lemma 5.2 (i), there exists a unique non-atomic
Radon measure mλ on I that satisfies

mλ((s, t]) = µ(φt,s;R) = λ(t)− λ(s).

This measure plays an essential role in controlling φt,s with respect to (s, t).
To clarify the roles of λ and mλ, let us introduce a new terminology under
general assumptions. Let F : I → R be a non-decreasing continuous function
and ft be a holomorphic function on a Riemann surface X for each t ∈ I. The
symbol mF denotes a unique non-atomic Radon measure on I that satisfies
mF ((s, t]) = F (t)− F (s). We consider the following property:

47



(Lip)F For any compact subset K of X, there exists a constant LK such that

sup
p∈K
|ft(p)− fs(p)| ≤ LK(F (t)− F (s)) for (s, t) ∈ I2

≤.

Suppose that this condition holds. Then clearly t 7→ ft(p) is of finite variation
on I for each p ∈ X. Hence it induces a complex measure κp on every compact
subinterval of I. By (Lip)F , it is absolutely continuous with respect to mF .
Moreover, the limit

∂̃Ft ft(p) := lim
δ↓0

ft+δ(p)− ft−δ(p)
F (t+ δ)− F (t− δ)

= lim
δ↓0

κp((t− δ, t+ δ))

mF ((t− δ, t+ δ))

exists for mF -a.e. t ∈ I and is a version of the Radon–Nikodym derivative
dκp/dmF by the generalized Lebesgue differentiation theorem (see, e.g., Bo-
gachev [8, Theorem 5.8.8]). We can say more about such a family (ft)t by
using the normality argument and the Cauchy integral formula. The results
so obtained are summarized in Appendix A.

We return to the study of an evolution family (φt,s)(s,t)∈I2≤ .

Lemma 5.4. Let (φt,s)(s,t)∈I2≤ be an evolution family over (Dt)t∈I and t0 ∈
[0, T ) be fixed. For every η ∈ (0, ηDt0 ), p ∈ (Dt0 ∩ Hη)

\ ⊂ D\
t0 and (s, u) ∈

(I ∩ [t0, T ])2
≤, the inequality

|φu,t0(p)− φs,t0(p)| ≤
12

η
(λ(u)− λ(s)) (5.1)

holds. In particular, the one-parameter family (φt,t0)t∈I∩[t0,T ] satisfies Condi-

tion (Lip)λ on D\
t0, and the slit motion s(t) is continuous in t.

Proof. Let (s, u) ∈ (I ∩ [t0, T ])2
≤. By Remarks 4.8 and 5.3, we have

φu,t0(p) = φu,s(φ
\
s,t0(p))

= φs,t0(p) + π

∫
R

ΨDs(φ
\
s,t0(p), ξ)µ(φu,s; dξ).

Applying Lemma 5.2 (i) gives

φu,t0(p)− φs,t0(p) = π(λ(u)− λ(s))

∫
R

ΨDs(φ
\
s,t0(p), ξ)

µ(φu,s; dξ)

µ(φu,s;R)
. (5.2)

We note that, if p ∈ (Dt0 ∩ Hη)
\ ∩ (C × {j}) for some η ≤ ηDt0 and j, then

by the definition of analytic continuation, we have

ΨDs(φ
\
s,t0(p), ξ) = Π=ΨDs (z`j(s),ξ)

ΨDs(Πyj(s)φs,t0(p), ξ)

= ΨDs(φs,t0(Πyj(t0) pr(p)), ξ) + 2i=ΨDs(z
`
j(s), ξ).
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Since Πyj(t0) pr(p) ∈ Dt0 ∩Hη by the definition of (Dt0 ∩Hη)
\, it follows from

Lemmas 3.2 and 5.2 (ii) that

sup
ξ∈R

∣∣∣ΨDs(φ
\
s,t0(p), ξ)

∣∣∣ ≤ 12

πη
. (5.3)

This inequality is trivially true for p ∈ (Dt0 ∩ Hη)
\ ∩ C. Thus, by (5.2) we

have

|φu,t0(p)− φs,t0(p)| ≤ π(λ(u)− λ(s)) sup
ξ∈R

∣∣∣ΨDs(φ
\
s,t0(p), ξ)

∣∣∣
≤ 12

η
(λ(u)− λ(s))

for p ∈ (Dt0 ∩Hη)
\. The remaining assertions are now obvious.

Proposition 5.5. Given t0 ∈ I, let G be a bounded open set with G ⊂ Dt0

and δ be a positive constant such that G ⊂ Dt for all t ∈ B̄I(t0, δ). The
trapezoid { (s, t) ; s ∈ B̄I(t0, δ), t ∈ I ∩ [s, T ] } is denoted by Tt0,δ. Then the
mapping

Tt0,δ 3 (s, t) 7→ φt,s ∈ Hol(G;C)

is continuous. Here, Hol(G;C) is the set of holomorphic functions on G
endowed with the topology of locally uniform convergence.

Proof. Our proof goes in a similar way to Bracci, Contreras and Diaz-
Madrigal [14, Proposition 3.5]. However, because our domains are moving,
we have to modify their proof with the aid of quasi-hyperbolic distances.
Here, without loss of generality, we may and do assume that G is a convex
set (say, a small disk).

Let (sn, tn)n∈N be a sequence in Tt0,δ convergent to (s, t). The goal is to
show

φtn,sn → φt,s locally uniformly on G. (5.4)

We note that, by (5.1),

|φtn,sn(z)− z| = |φtn,sn(z)− φsn,sn(z)| ≤ 12(λ(tn)− λ(sn))

η̃G ∧ ηD0

(5.5)

for all z ∈ G. Here, η̃G := minz∈G=z > 0. Since λ(tn)− λ(sn)→ λ(t)− λ(s)
as n→∞, the sequence (φtn,sn)n∈N is locally bounded on G by (5.5). Thus,
(5.4) follows from Vitali’s theorem1 once we prove the pointwise convergence

φtn,sn(z)→ φt,s(z) for each z ∈ G. (5.6)

1See, e.g., Chapter 7, Section 2 of [56].
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Therefore, we prove (5.6) below. Moreover, we can regard the convergence
in (5.6) as that relative to the hyperbolic distance dHyp

H on H instead of dEucl

because they induce the same topology on H.
Let z ∈ G. In order to show that φtn,sn(z) → φt,s(z), it suffices to prove

that any subsequence (t′n, s
′
n)n∈N of (tn, sn)n∈N has a further subsequence

(t′′n, s
′′
n)n∈N such that φt′′n,s′′n(z) → φt,s(z). Here, we note that the sequence

(t′n, s
′
n)n∈N has a subsequence (t′′n, s

′′
n)n∈N with one of the following properties:

(I) s′′n ≤ t′′n ≤ s for all n;

(II) s ≤ s′′n for all n;

(III) s′′n ≤ s ≤ t′′n for all n.

Thus, we shall prove that φt′′n,s′′n(z)→ φt,s(z) in these three cases.
In what follows, we drop the superscript ′′ for the simplicity of notation

and assume that (sn, tn)n∈N satisfies one of the three properties above.
Firstly, assume that (I) holds. Since t ≥ s ≥ tn → t in this case, we have

s = t. Hence we have

|φtn,sn(z)− φt,s(z)| = |φtn,sn(z)− z| ≤ 12(λ(tn)− λ(sn))

π(η̃G ∧ ηD0)
→ 0

as n→∞ by (5.5).
Secondly, assume that (II) holds. By Proposition B.1,

dHyp
H (φtn,sn(z), φt,s(z))

≤ dHyp
H (φtn,sn(z), φtn,s(z)) + dHyp

H (φtn,s(z), φt,s(z))

≤ dHyp
Dtn

(φtn,sn(z), φtn,sn(φsn,s(z))) + dHyp
H (φtn,s(z), φt,s(z))

≤ dHyp
Dsn

(z, φsn,s(z)) + dHyp
H (φtn,s(z), φt,s(z)). (5.7)

By Proposition B.2 and Lemma B.3, we have

dHyp
Dsn

(z, φsn,s(z)) ≤ dQH
Dsn

(z, φsn,s(z))

≤ 2|z − φsn,s(z)|
dEucl(G, ∂H ∪

⋃N
j=1 Cj,sn)

. (5.8)

Here, φsn,s(z) ∈ G if n is large enough because z ∈ G. By
Lemma 5.4, the rightmost side of (5.8) converges to zero as n → ∞, and
dHyp
H (φtn,s(z), φt,s(z))→ 0. Thus, dHyp

H (φtn,sn(z), φt,s(z))→ 0 by (5.7).
Finally, assume that (III) holds. By a computation similar to that in (II),

dHyp
H (φtn,sn(z), φt,s(z))

≤ dHyp
Ds

(φs,sn(z), z) + dHyp
H (φtn,s(z), φt,s(z)). (5.9)
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We also have

dHyp
Ds

(φs,sn(z), z) ≤ dQH
Ds

(φs,sn(z), z) ≤ 2|φs,sn(z)− z|
dEucl(G, ∂H ∪

⋃N
j=1Cj,s)

≤ 24(λ(tn)− λ(sn))

(η̃G ∧ ηD0)d
Eucl(G, ∂H ∪

⋃N
j=1Cj,s)

→ 0. (5.10)

Thus, (5.9) and (5.10) yield dHyp
H (φtn,sn(z), φt,s(z))→ 0.

5.2 Komatu–Loewner equation for evolution

families

Let (φt,s)(s,t)∈I2≤ be an evolution family over (Dt)t∈I . For each t0 ∈ [0, T ),

define
Nt0 :=

⋃
p∈D\t0

{ t ∈ (t0, T ) ; ∂̃λt φt,t0(p) does not exist }, (5.11)

which is a mλ-null subset of I by Lemma 5.4 and Proposition A.1.

Lemma 5.6. The identity

Nt0 = N0 ∩ (t0, T )

holds for every t0 ∈ (0, T ).

Proof. Let t0 ∈ (0, T ) and t ∈ N0 ∩ (t0, T ). For p ∈ D\
0 such that ∂̃λt φt,0(p)

does not exist, we have φt,0(p) = φt,t0(φ
\
t0,0

(p)) by (EF.2). t ∈ Nt0 is clear
from this equality.

Conversely, assume that t ∈ Nt0 \ N0. This assumption implies that
∂̃λt φt,0(p) exists for every p ∈ D\

0. Then using (EF.2) as above, we see that

∂̃λt φt,t0(p) exists for p ∈ φ\t0,0(D\
0) ⊂ D\

t0 . In fact, this derivative exists for

any p ∈ D\
t0 because we can take any countable subset of φ\t0,0(D\

0) having

an accumulation point in D\
t0 as the set A in Proposition A.1 (ii). However,

this implies t /∈ Nt0 , a contradiction.

Now, we derive the Komatu–Loewner equation for evolution families, a
central result of this paper. We use the following notation: For a topological
space X, the Borel σ-algebra of X is designated by B(X). Its completion
with respect to a Borel measure m is denoted by Bm(X). We denote by
M≤1(R) the set of Borel measures on R with total mass not greater than
one. M≤1(R) is compact with respect to the vague topology.
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Theorem 5.7. Let (φt,s)(s,t)∈I2≤ be an evolution family over (Dt)t∈I .

(i) For any t ∈ (0, T ) \N0, the limit

νt := lim
δ↓0

µ(φt+δ,t−δ; ·)
µ(φt+δ,t−δ;R)

exists in the sense of vague convergence.

(ii) t 7→ νt is a measurable mapping from (I,Bmλ(I)) to
(M≤1(R),B(M≤1(R))). Here, νt is defined suitably (say, as zero) on
N0.

(iii) For each fixed t0 ∈ [0, T ), the Komatu–Loewner equation

∂̃λt φt,t0(p) = π

∫
R

ΨDt(φ
\
t,t0(p), ξ) νt(dξ) (5.12)

holds for any t ∈ (t0, T ) \Nt0 and p ∈ D\
t0.

Proof. We fix t0 ∈ [0, T ) and t ∈ (t0, T ) \ N0 throughout this proof. For
any sequence (δn)n∈N of positive numbers converging to zero, there exists a
subsequence (δ′n)n such that the sequence of probability measures

µ]n :=
µ(φt+δ′n,t−δ′n ; ·)
µ(φt+δ′n,t−δ′n ;R)

converges vaguely to µ]∞ as n→∞. We show that

∂̃λt φt,t0(p) = π

∫
R

ΨDt(φ
\
t,t0(p), ξ)µ

]
∞(dξ). (5.13)

Let z ∈ Dt0 and n be large enough. From (5.2) we get∣∣∣∣ φt+δ′n,t0(z)− φt−δ′n,t0(z)

π(λ(t+ δ′n)− λ(t− δ′n))
−
∫
R

ΨDt(φt,t0(z), ξ)µ]∞(dξ)

∣∣∣∣
=

∣∣∣∣∫
R

ΨDt−δ′n
(φt−δ′n,t0(z), ξ)µ]n(dξ)

−
∫
R

ΨDt(φt,t0(z), ξ)µ]∞(dξ)

∣∣∣∣
≤
∫
R
|ΨDt−δ′n

(φt−δ′n,t0(z), ξ)−ΨDt(φt,t0(z), ξ)|µ]n(dξ) (5.14)

+

∣∣∣∣∫
R

ΨDt(φt,t0(z), ξ)µ]n(dξ)−
∫
R

ΨDt(φt,t0(z), ξ)µ]∞(dξ)

∣∣∣∣ .
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In the rightmost side of (5.14), the former integral vanishes as n → ∞ by
Proposition 3.9 and the continuity of φv,u in v in Lemma 5.4. The remaining
term in the rightmost side of (5.14) also tends to zero by Corollary 3.4 and
the vague convergence of (µ]n)n. Here, we note that C∞(R) is the completion
of Cc(R) with respect to the supremum norm. Thus, (5.13) holds for p = z ∈
Dt0 . The analytic continuation yields the same equation for all p ∈ D\

t0 .
µ]∞ is, in fact, independent of the choice of the above subsequence (δ′n)n.

To prove this, assume that we have another subsequence (δ′′n)n of (δn)n such
that

µ[n :=
µ(φt+δ′′n,t−δ′′n ; ·)
µ(φt+δ′′n,t−δ′′n ;R)

converges vaguely to µ[∞ as n → ∞. Then (5.13) with µ]∞ replaced by µ[∞
holds by the same reasoning. As a result,∫

R
ΨDt(φt,t0(z), ξ)µ]∞(dξ) =

∫
R

ΨDt(φt,t0(z), ξ)µ[∞(dξ), z ∈ Dt0 .

In particular, we have∫
R

ΨDt(z, ξ)µ
]
∞(dξ) =

∫
R

ΨDt(z, ξ)µ
[
∞(dξ)

for all z ∈ φt,t0(Dt0). Lemma 3.5 (ii) now yields µ]∞ = µ[∞, which proves both
(i) and (iii).

As for (ii), the measurability of t 7→ νt follows from Proposition 5.5 and
the relation

νt(B) =
1

π
lim
n→∞

(
1

λ(t+ 1/n)− λ(t− 1/n)

× lim
m→∞

∫
B

=φt+1/n, t

(
ξ +

i

m

)
dξ

)
for all bounded B ∈ B(R).

The essence of our proof of Theorem 5.7 can be summarized in the fol-
lowing manner:

Corollary 5.8. Suppose that (φt,s)(s,t)∈I2≤ is an evolution family. Let t0 ∈
[0, T ) and t ∈ [t0, T ). For a sequence (sn, un)n∈N in [t0, T )2

< with sn ≤ t ≤ un
and sn, un → t, the following are equivalent:

(i)
φun,t0(p)− φsn,t0(p)
λ(un)− λ(sn)

converges as n→∞ for every p ∈ D\
t0;
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(ii)
µ(φun,sn ; ·)
µ(φun,sn ;R)

converges vaguely as n→∞.

If either of the two is true, then (5.12) holds at t with ∂̃λt φt,t0(p) and νt
replaced by these limits.

We have considered only the differentiation with respect to λ(t) up to
this point. It is also reasonable to consider the differentiation with respect
to t. To this end, a natural manner of thinking is to assume the absolute
continuity of λ(t) in t or to perform time-change.

In the former standpoint, we suppose that λ(t) is absolutely continuous in
t ∈ I. Then by (Lip)λ, the function t 7→ φt,t0(p) is also absolutely continuous
and hence differentiable in a.e. t in the usual sense. Thus, (5.12) reduces to

∂φt,t0(p)

∂t
= πλ̇(t)

∫
R

ΨDt(φ
\
t,t0(p), ξ) νt(dξ) (5.15)

for Lebesgue a.e. t ∈ [t0, T ).
In the latter standpoint, we suppose that λ(t) is (strictly) increasing and

that the condition (i) or (ii) in Corollary 5.8 holds for every t ∈ I and every
choice of (sn, un)n∈N. For any increasing continuous function θ on I, we
perform time-change as φ̃t,s := φθ−1(t),θ−1(s), D̃t := Dθ−1(t), λ̃(t) := λ(θ−1(t)),
and ν̃t := νθ−1(t). Then

∂φ̃t,s(p)

∂λ̃(t)
:= lim

h→0

φ̃t+h,s(p)− φ̃t,s(p)
λ̃(t+ h)− λ̃(t)

= π

∫
R

ΨD̃t
(φ̃\t,s(p), ξ) ν̃t(dξ). (5.16)

In particular, choosing θ = λ/2 gives λ̃(t) = 2t and

∂φ̃t,s(p)

∂t
= 2π

∫
R

ΨD̃t
(φ̃\t,s(p), ξ) ν̃t(dξ). (5.17)

In this case, (φ̃t,s) is said to be parametrized by half-plane capacity2 in the
SLE context. (5.17) as well as (5.12) provides a natural way to regard λ(t)
as a canonical parameter.

We now return to the study of evolution families in the general setting.
As our first application of the Komatu–Loewner equation (5.12), we look at
the case in which an evolution family defined on [0, T )2

≤ is extended to one
defined on [0, T ]2≤.

2We have chosen the homeomorphism θ = λ/2 so that λ̃(t) = 2t, not λ̃(t) = t. This
coefficient two is just conventional.
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Proposition 5.9. Let (φt,s)(s,t)∈[0,T )2≤
be an evolution family with λ(t) =

µ(φt,0;R). There exists a unique evolution family (φ̃t,s)(s,t)∈[0,T ]2≤
such that

φ̃t,s = φt,s for all (s, t) ∈ [0, T )2
≤ if and only if sup0≤t<T λ(t) <∞.

Proof. The “only if” part is trivial from sup0≤t<T λ(t) = λ̃(T ). Here, λ̃(t) :=

µ(φ̃t,0;R).
To establish the “if” part, suppose that sup0≤t<T λ(t) < ∞. This is

equivalent to mλ([0, T )) <∞. The proof is divided into three steps.

Step 1. Fix t0 ∈ [0, T ). We write (5.12) in the integral form

φt,t0(z) = z + π

∫
I

∫
R

ΨDs(φs,t0(z), ξ) νs(dξ)1[t0,t)(s)mλ(ds). (5.18)

Since

sup
t0≤s<T

|ΨDs(φs,t0(z), ξ)| ≤ 4

π

1

=z ∧ ηD0

holds for each z ∈ Dt0 by Lemmas 3.2 and 5.2 (ii), the dominated convergence
theorem applies to (5.18). Hence (φt,t0(z))t∈[t0,T ) converges as t ↑ T for each
z ∈ Dt0 .

Step 2. By (4.1) we have

φt,t0(z) = z + π

∫
R

ΨDt0
(z, ξ)µ(φt,t0 ; dξ). (5.19)

Since µ(φt,t0 ;R) ≤ mλ([0, T )), the family (φt,t0)t∈[t0,T ) is locally bounded on

D\
t0 by Remarks 4.8 and 5.3. Hence, Vitali’s theorem converts the pointwise

convergence of (φt,t0)t∈[t0,T ) on Dt0 , which has been shown in Step 1, into the

locally uniform convergence on D\
t0 . In addition, Hurwitz’s theorem guar-

antees that φ̃T,t0 := limt→T φt,t0 is univalent on Dt0 (see, e.g., Theorem A
in Chapter 7, Section 2 of [56]). Moreover, since (µ(φt,t0 ; ·))t∈[t0,T ) is sequen-
tially compact with respect to the vague topology, there is a sequence (tn)∞n=1

converging to T such that the limit µT,t0 := limn→∞ µ(φtn,t0 ; ·) exists. Letting
t→ T in (5.19) yields

φ̃T,t0(z) = z + π

∫
R

ΨDt(z, ξ)µT,t0(dξ), (5.20)

which is exactly (4.1) with f = φ̃T,t0 . Thus, φT,t0 enjoys the standard assup-
tions by Theorem 4.3.
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Step 3. Through Steps 1 and 2, we have seen that φ̃T,t0 = limu→T φu,t0 is a
well-defined univalent function for every t0 ∈ [0, T ). Since this convergence
is uniform on the compact set C\

j(s(t0)), the slit motion s(u) converges in
the closure of Slit in R3N . We put s(T ) := limu→T s(u) and DT := D(s(T )).
In fact, the limit s(T ) belongs to Slit because φ̃T,t0(Dt0) ⊂ DT .

Now, we set φ̃t,s := φt,s for all (s, t) ∈ [0, T )2
≤ and define φ̃T,T as the

identity mapping on DT . The family (φ̃t,s)(s,t)∈[0,T ]2≤
automatically satisfies

(EF.1). For (s, t) ∈ [0, T )2
≤, we have

φ̃T,s(z) = lim
u→T

φu,s(z) = lim
u→T

φu,t(φt,s(z)) = φ̃T,t(φ̃t,s(z)),

which implies (EF.2). Moreover,

lim inf
t↗T

λ(t) ≤ λ̃(T ) := µT,0(R) ≤ sup
0≤t<T

λ(t)

holds, which means λ̃(T ) = limt→T λ(t). Here, the first inequality is shown
in the same way as in the proof of Lemma 5.2 (i), and the second one follows
from the property of vague convergence. Now, (EF.3) for (φ̃t,s) is clear, and
its uniqueness follows trivially from Proposition 5.5.

5.3 Loewner chains

Definition 5.10. Let D and Dt, t ∈ I, be parallel slit half-planes. We say
that a family of univalent functions ft : Dt → D, t ∈ I, with the standard
assumptions is a (chordal) Loewner chain over (Dt)t∈I with codomain D if
the following hold:

(LC.1) fs(Ds) ⊂ ft(Dt) holds for each (s, t) ∈ I2
≤.

(LC.2) The function `(t) := µ(ft;R) is continuous on I.

The relationship between Loewner chains and evolution families is for-
mulated as follows:

Proposition 5.11. (i) Let (ft)t∈I be a Loewner chain over (Dt)t∈I with
any codomain. The two-parameter family

φt,s := f−1
t ◦ fs, (s, t) ∈ I2

≤,

is an evolution family, and λ(t) = µ(φt,0;R) is bounded on I.
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(ii) Let (φt,s)(s,t)∈I be an evolution family over (Dt)t∈I with λ bounded. Its
prolongation to [0, T ]2≤, which is guaranteed by Proposition 5.9, is des-
ignated by the same symbol. Then the family

ft := φT,t, t ∈ [0, T ],

is a Loewner chain over (Dt)t∈I with codomain DT .

Proof. (i) By Proposition 4.1, both f−1
t and fs obey the hydrodynamic nor-

malization and has a finite angular residue at infinity. Hence, φt,s = f−1
t ◦fs is

a univalent function from Ds into Dt that satisfies the standard assumptions
by Proposition 4.2. The properties (EF.1)–(EF.3) are trivial.

Because f0 = ft ◦ φt,0, Corollary 4.7 yields

`(0) = `(t) + λ(t) ≥ λ(t),

which implies that λ is bounded.
(ii) For (s, t) ∈ [0, T ]2≤, we have

fs(z) = φT,s(z) = φT,t(φt,s(z)) = ft(φt,s(z)).

Hence fs(Ds) = ft(φt,s(Ds)) ⊂ ft(Dt), which implies (LC.1). Moreover,
Corollary 4.7 yields

µ(fs;R) = µ(ft;R) + λ(t)− λ(s),

which implies (LC.2).

Remark 5.12 (Terminal condition on Loewner chains). As Proposition 5.11
shows, in our definition, Loewner chains associated with a fixed evolution
family are not unique in general. The uniqueness holds if we add the terminal
condition ⋃

t∈I

ft(Dt) = fT (DT ) = D

on a Loewner chain (ft)t∈I .

Thanks to Proposition 5.11, we can analyze a Loewner chain (ft)t∈I using
the associated evolution family (φt,s)(s,t)∈I2≤ . In particular, we can write down

the Komatu–Loewner equation for Loewner chains as follows:

Corollary 5.13. Let (ft)t∈I be a Loewner chain, and fix t0 ∈ I.

(i) (f−1
t )t∈I∩[t0,T ] satisfies (Lip)` on ft0(Dt0)

\.
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(ii) Let N0 and νt be defined as in Lemma 5.6 and Theorem 5.7 for the
evolution family (φt,s) associated to (ft) by Proposition 5.11. Then for
any t ∈ [t0, T ) \ N and p ∈ ft0(Dt0)

\, the following Komatu–Loewner
equation holds:

∂̃`t (f
−1
t )(p) = −π

∫
R

ΨDt((f
\
t )
−1(p), ξ) νt(dξ). (5.21)

The differential equation for ft(z) can be obtained by differentiating the
identity ft(f

−1
t (z)) = z in t as well. We omit the detail.

5.4 Induced slit motion

The definition of evolution families in this paper involves the evolution of
parallel slit half-planes. We derive the Komatu–Loewner equation for the slits
accompanied by this evolution, following Bauer and Friedrich [7, Section 4.1]
and Chen and Fukushima [16, Section 2].

Let (φt,s)(s,t)∈I2≤ be an evolution family over (Dt)t∈I . By the paragraph

just after Definition 5.1, the vectors s(t) ∈ Slit, t ∈ I, with D(s(t)) = Dt

are determined uniquely, provided that the order of the initial slits Cj(s(0)),
j = 1, . . . , N , is given. The left and right endpoints of Cj(t) := Cj(s(t))
are denoted by z`j(t) = x`j(t) + iyj(t) and by zrj (t) = xrj(t) + iyj(t), re-
spectively. These endpoints are continuous in t by Lemma 5.4. We put
p`j(t) := (φ\t,0)−1(z`j(t)) and prj(t) := (φ\t,0)−1(zrj (t)), both of which are points

on C\
j(0) ⊂ D\

0.

Lemma 5.14. Fix t0 ∈ [0, T ). A local coordinate of p`j(t0) is denoted by
ψ : Up`j(t0) → Vp`j(t0). Then for some neighborhood J of t and constant L > 0,

• p`j(t) ∈ Up`j(t0) for t ∈ J , and

• z̃`j(t) := ψ(p`j(t)) satisfies

|z̃`j(t)− z̃`j(s)| ≤ L(λ(t)− λ(s)), (s, t) ∈ J2
≤. (5.22)

The same statement with the superscript ` replaced by r also holds.

Proof. We put ht := φt,0 ◦ ψ−1 : Vp`j(t0) → pr(D\
t). By Lemma 4.10 (ii), we

have
h′t0(z̃j(t0)) = 0 and h′′t0(z̃j(t0)) 6= 0.
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In addition, (ht)t∈I satisfies (Lip)λ on Vp`j(t0). By Proposition A.6, there

exist some neighborhood J of t0 and neighborhood Ṽ ⊂ Vp`j(t0) of ψ(p`j(t0)),

function ẑ : J → Ṽ and constant L > 0 such that

h′t(ẑ(t)) = 0, h′′t (ẑ(t)) 6= 0 (5.23)

for t ∈ J and
|ẑ(t)− ẑ(s)| ≤ L(λ(t)− λ(s)).

for (s, t) ∈ J2
≤ are satisfied. (5.23) combined with Lemma 4.10 implies that

ht(ẑ(t)) ∈
⋃N
k=1{z`k(t), zrk(t)}. By the continuity with respect to t, we see that

ht(ẑ(t)) must coincide with z`j(t). In other words, ẑ(t) = z̃`j(t). The proof is
now complete.

Theorem 5.15. For each j = 1, . . . , N , the endpoints z`j(t) and zrj (t) of
Cj(t) enjoy the Komatu–Loewner equation for the slits

∂̃λt z
`
j(t) = π

∫
R

Ψs(t)(z
`
j(t), ξ) νt(dξ), (5.24)

∂̃λt z
r
j (t) = π

∫
R

Ψs(t)(z
r
j (t), ξ) νt(dξ) (5.25)

for mλ-a.e. t ∈ I. Here, (νt)t∈I is the process of sub-probability measures
defined in Theorem 5.7.

Proof. We prove only (5.24). (5.25) is then obtained just by replacing the
superscript ` with r in the proof of (5.24). Let N0 ⊂ [0, T ) be the exceptional
set defined by (5.11) with t0 = 0.

We fix an arbitrary t0 ∈ [0, T ) and apply Lemma 5.14 to this t0. We
denote a neighborhood of t0 that satisfies the conclusion of Lemma 5.14 by
J . By (5.22), there is a Lebesgue null set Ñ ⊂ J such that ∂̃λt z̃j(t) exists for
every t ∈ J \ Ñ . For t ∈ J \ (N0 ∪ Ñ), we have

∂̃λt z
`
j(t) = ∂̃λt

(
φt,0(p`j(t))

)
= lim

h→+0

φt+h,0(p`j(t+ h))− φt−h,0(p`j(t− h))

λ(t+ h)− λ(t− h)

= lim
h→+0

φt+h,0(p`j(t+ h))− φt−h,0(p`j(t+ h))

λ(t+ h)− λ(t− h)
(5.26)

+ lim
h→+0

(φt−h,0 ◦ ψ−1)(z̃`j(t+ h))− (φt−h,0 ◦ ψ−1)(z̃`j(t− h))

λ(t+ h)− λ(t− h)
.
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We note that p`j(·) : J → C\
j(0) is continuous. From the locally uniform

convergence in Lemma A.1 (i), we can see that

φt+h,0(p`j(t+ h))− φt−h,0(p`j(t+ h))

λ(t+ h)− λ(t− h)
− (∂̃λt φt,0)(p`j(t))

=

(
φt+h,0(p`j(t+ h))− φt−h,0(p`j(t+ h))

λ(t+ h)− λ(t− h)
− (∂̃λt φt,0)(p`j(t+ h))

)
+
(

(∂̃λt φt,0)(p`j(t+ h))− (∂̃λt φt,0)(p`j(t))
)

→ 0 as h→ +0.

Hence, the first limit in the rightmost side of (5.26) is equal to (∂̃λt φt,0)(p`j(t)).

Also, we see that the second limit is equal to (φt,0 ◦ ψ−1)′(z̃`j(t)) · ∂̃λt z̃`j(t).
However, since φt,0◦ψ−1 has a zero of the second order at z̃`j(t) by Lemma 4.10,
(φt,0 ◦ ψ−1)′(z̃`j(t)) = 0. Thus, by (5.26) and (5.12) we have

∂̃λt z
`
j(t) = (∂̃λt φt,0)(p`j(t)) = π

∫
R

ΨDt(φt,0(p`j(t)), ξ) νt(dξ)

= π

∫
R

ΨDt(z
`
j(t), ξ) νt(dξ).

Remark 5.16 (Komatu–Loewner equation on annuli). As is already men-
tioned in Remark 2.7, the Komatu–Loewner equation for the slits (5.24) and
(5.25) describes the motion of moduli. On the other hand, Contreras, Diaz-
Madrigal and Gumenyuk [22] constructed Loewner theory on annuli. In their
theory, the moduli, i.e., the ratios r(t) of the outer and inner radii of the un-
derlying annuli Ar(t) = { z ; r(t) < |z| < 1 } form a monotone function of t,
which is used as a new time-parameter. Since r(t) itself play the role of time,
Loewner theory on annuli does not need an evolution equation for moduli.
See also Komatu [39], Zhan [61], and Fukushima and Kaneko [31].

5.5 Komatu–Loewner equation around inner

boundaries

As a preparatory observation for Chapter 6, we rewrite the Komatu–Loewner
equation (5.12) by compositing the function φt,s with such a local chart
around the slits as was introduced in Section 4.3.1. For simplicity of no-
tation, we treat only the case λ(t) = 2t. In this case, we have already seen
that (5.12) reduces to (5.15) with λ̇(t) = 2.
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We first consider the equation “above or below the slits”. Let s ∈ [0, T )
and p ∈ R+

j (s). Here, R+
j (s) is defined for the parallel slit half-plane Ds

in the same way as R+
j is defined in Section 4.3.1. We take δ > 0 so that

φ\t,s(p) ∈ R+
j (t) for t ∈ [s, s + δ]. We put z̃(t; s, p) := pr(φ\t,s(p)). By (5.15)

with λ̇(t) = 2, the local coordinate z̃(t; s, p) satisfies

dz̃(t; s, p)

dt
= 2π

∫
R

Ψs(t)((pr|R+
j (t))

−1(z̃(t; s, p)), ξ) νt(dξ) (5.27)

for Lebesgue a.e. t ∈ [s, s + δ]. If p ∈ R−j (s), then the same equation holds
true with + replaced by −.

Next, we consider the equation “near the endpoints of the slits.” Let s ∈
[0, T ) and p ∈ Uz`j(s)(lDs)\{z

`
j(s)}. Here, Uz`j(s) and lDs are defined in the same

way as in Section 4.3.1. We take r, δ > 0 so that φ\t,s(p) ∈ Uz`j(t)(r) \ {z
`
j(t)}

for t ∈ [s, s + δ]. We put z̃(t; s, p) := sq`j,t(φ
\
t,s(p)). Here, we define the local

chart sq`j,t around z`j(t) as in Section 4.3.1, replacing z`j there by z`j(t). The
local coordinate z̃(t; s, p) satisfies

d

dt
z̃(t; s, p) =

1

2z̃(t; s, p)

(
∂φt,s(p)

∂t
−
dz`j(t)

dt

)
=

π

z̃(t; s, p)

∫
R

(
ΨDt((sq

`
j,t)
−1(z̃(t; s, p)), ξ)−ΨDt(z

`
j(t), ξ)

)
νt(dξ). (5.28)

Since the holomorphic function

Ψ`,j
Dt

[νt](z) :=

∫
R

(
ΨDt((sq

`
j,t)
−1(z), ξ)−ΨDt(z

`
j(t), ξ)

)
νt(dξ) (5.29)

has a zero at 0 for each t, there exists a holomorphic function Ht(z) =
H`,j(t, z) such that

Ψ`,j
Dt

[νt](z) = zH`,j(t, z),

and it is given by

H`,j(t, z) =
1

2πi

∫
∂B(0,r)

Ψ`,j
Dt

[νt](ζ)

ζ(ζ − z)
dζ, z ∈ B(0, r). (5.30)

Substituting H`,j(t, z) into the rightmost side of (5.28), we have

d

dt
z̃(t; s, p) = πH`,j(t, z̃(t; s, p)). (5.31)

This equality holds for Lebesgue a.e. t ∈ [s, s + δ]. The same equality holds
true with the superscript ` replaced by r.
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Chapter 6

Solutions to Komatu–Loewner
equation

In this chapter, we investigate solutions to the Komatu–Loewner equation
and families of univalent functions that such solutions form. We treat only
the case λ(t) = 2t for simplifying the argument.

6.1 Local existence of slit motion

We recall a general fact on ordinary differential equations (ODEs for short).
Let v(t, x) be an Rd-valued function on an open set G ⊂ R × Rd. We say
that v(t, x) enjoys the Carathéodory condition if it is Lebesgue measurable in
t for each x and continuous in x for each t, and for any compact set K ⊂ G,
there exists a function VK ∈ L1(IK) with IK := { t ; (t, x) ∈ K for some x }
such that

‖v(t, x)‖ ≤ VK(t), (t, x) ∈ K.

Theorem 6.1 (e.g. Theorem 5.1 in Chapter 1 of Hale [35]). Suppose that
v(t, x) enjoys the Carathéodory condition on an open set G ⊂ R×Rd. Then
given an initial condition in G, the ODE

dx

dt
(t) = v(t, x(t)) (6.1)

has a local solution. More precisely, for any (t0, x0) ∈ G, there exists a
interval J containing t0 and an absolutely continuous function x(t) on J
with x(t0) = x0 such that (6.1) holds for Lebesgue a.e. t ∈ J .

Let us return to the Komatu–Loewner equation for slits (5.24)–(5.25).
Given a driving process (νt)t≥0, i.e., a Lebesgue-measurable mapping t 7→ νt
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from [0,∞) toM≤1(R), we solve the equation to obtain the slit motion s(t).
To this end, we introduce a suitable notation. For s ∈ Slit, ν ∈ M≤1(R),
and k = 1, 2, . . . , 3N , we put

bk(ν, s) :=


2π
∫
R=Ψs(z

`
k, ξ) ν(dξ), 1 ≤ k ≤ N

2π
∫
R<Ψs(z

`
k−N , ξ) ν(dξ), N + 1 ≤ k ≤ 2N

2π
∫
R<Ψs(z

r
k−2N , ξ) ν(dξ), 2N + 1 ≤ k ≤ 3N.

We note that b1(ν, s), . . . , bN(ν, s) are positive because =Ψs(·, ξ) is the (har-
monic extension of) BMD Poisson kernel K∗D(s)(·, ξ). Let b := (bk)

3N
k=1. Then

given a (Lebesgue) measurable process [0,∞) 3 t → νt ∈ M≤1(R), the
equation (5.24)–(5.25) can be written as

ds

dt
(t) = b(νt, s(t)). (6.2)

Using Lemma 3.2, we can easily check that b(νt, s) satisfies the Carathéodory
condition when viewed as a function of variables (t, s). By Theorem 6.1, we
have the following:

Proposition 6.2. Let t0 ∈ [0,∞). For an initial condition s(t0) = s0 ∈ Slit,
the ODE (6.2) has a local solution s(t) within Slit. For any local solution
s(t) to (6.2), the y-coordinates yj(t), j = 1, . . . , N , are non-decreasing in t.

Proposition 6.3. Let t0 ∈ [0,∞). Suppose that, for some neighborhood J
of t0, the set

⋃
t∈J supp νt is bounded. Then a solution s(t) to (6.2) with a

condition s(t0) = s0 ∈ Slit is unique on J .

Proof. The Lipschitz condition of b(νt, ·) follows in the same way as in Chen
and Fukushima [16, Lemma 4.1] if

⋃
t∈J supp νt is bounded. Hence the

uniqueness follows from Theorem 5.3 in Chapter I of Hale [35].

6.2 Solutions around moving boundaries

We fix a constant T > 0, driving process [0, T ) 3 t 7→ νt ∈ M≤1(R), and
solution s(t) to (6.2) on [0, T ). For sufficiently small T , the existence of such
a solution is guaranteed by Proposition 6.2. For the parallel slit half-planes
Dt := D(s(t)), we use the notation about the enlargement and analytic
continuation on Dt in the same way as in Sections 4.3 and 5.5.

We analyze the Komatu–Loewner equation (5.27) “above the slits.” Let
t0 ∈ [0, T ) and p0 ∈ C+

j (t0). By the continuity of s(t), we can take a
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compact neighborhood J of t0 and an open neighborhood Up0 of p0 so that
Vp0 := pr|Up0 (Up0) satisfies

Vp0 ⊂ Rj(t), ∅ 6= Vp0 ∩ Cj(t) ⊂ C◦j (t), and Vp0 ∩
⋃
k 6=j

Ck(t) = ∅

for any t ∈ J .

Lemma 6.4. (i) The ODE

dz̃(t)

dt
= 2π

∫
R

Ψs(t)((pr|R+
j (t))

−1(z̃(t), ξ) νt(dξ) (6.3)

has a unique local solution z̃(t) = z̃(t; t0, p0) with initial value z̃(t0) =
pr(p0).

(ii) z̃(t; t0, p0) ∈ C◦j (t) holds for t near t0.

Proof. (i) We prove the Lipschitz condition of the vector field

H+(t, z) := 2π

∫
R

Ψs(t)((pr|R+
j (t))

−1(z), ξ) νt(dξ),

t ∈ J, z ∈ Vp0 .

More precisely, the condition is that, for every compact set K ⊂ Vp0 ,

sup
t∈J

sup
z,w∈K

|H+(t, z)−H+(t, w)|
|z − w|

<∞.

To this end, it suffices to show that the family of holomorphic functions
z 7→ H(t, z), t ∈ J , is locally bounded on Vp0 . Then the local boundedness of
∂
∂z
H+(t, z) follows from the Cauchy integral formula. However, we can check

the local boundedness easily in the same way as in the proof of (5.3).
(ii) Since a local solution is unique, it suffices to construct a local solution
ẑ(t) = x̂(t) + iŷ(t) to (6.3) that satisfies ẑ(t0) = pr(p0) and ẑ(t) ∈ C◦j (t).

We note that, for each t,

=Ψs(t)(p, ξ) = =Ψs(t)(z
`
j(t), ξ), p ∈ C\

j(t), ξ ∈ ∂H.

Clearly, the ODE

dŷ(t)

dt
= 2π

∫
R
=Ψs(t)(z

`
j(t), ξ) νt(dξ)
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with initial condition ŷ(t0) = = pr(p0) = yj(t0) has a unique solution ŷ(t) =
yj(t). Now, we consider the ODE

dx̂(t)

dt
= <H+(t, x̂(t) + iyj(t)).

This ODE also has a unique local solution x̂(t) with initial condition x̂(t0) =
< pr(p0) by the Lipschitz condition of H+.

ẑ(t) := x̂(t) + iyj(t) is a local solution to (6.3) with initial condition
ẑ(t0) = pr(p0), and ẑ(t) ∈ C◦j (t) on some neighborhood of t0.

Similarly, we consider the Komatu–Loewner equation “below the slits.”
Let p0 ∈ C−j (t0). We take Up0 and Vp0 in the same way as above. Since the
proof of the following lemma is quite similar to that of Lemma 6.4, we omit
it:

Lemma 6.5. (i) The ODE

dz̃(t)

dt
= 2π

∫
R

Ψs(t)((pr|R−j (t))
−1(z̃(t), ξ) νt(dξ) (6.4)

has a unique local solution z̃(t) = z̃(t; t0, p0) with initial value z̃(t0) =
pr(p0).

(ii) z̃(t; t0, p0) ∈ C◦j (t) holds for t near t0.

We move to the analysis of the Komatu–Loewner equation (5.31) “near
the endpoints of the slits.” We use symbols like Uz`j(t)(·), lDt , sq`j,t, Ψ`,j

Dt
[νt],

and H`,j as they are used in the latter half of Section 5.5. Let t0 ∈ [0, T ). By
the continuity of s(t) and the definition of Uz`j(t)(·), we can take a compact

neighborhood J of t0 and constant r > 0 so that 2r < inft∈J lDt .

Lemma 6.6. (i) Let p0 ∈ Uz`j(t0)(r) be fixed. The ODE

dz̃(t)

dt
= πH`,j(t, z̃(t)) (6.5)

has a unique local solution z̃(t) = z̃(t; t0, p0) with initial value
z̃(t0; t0, p0) = sq`j,t0(p0) ∈ B(0, r).

(ii) Let p0 = z`j(t0) in (i). Then =z̃(t; t0, z
`
j(t0)) = 0 for t near t0.

(iii) The same results hold with the superscript ` replaced by r.
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Proof. (i) As in the proof of Lemma 6.4 (i), it suffices to show the local
boundedness of H`,j(t, z) on B(0, r). This is easily shown by (5.29) and
(5.30) with a similar reasoning to the proof of (5.3).
(ii) By the definition of Ψ`,j

Dt
[νt] and sq`j,t, we have

=Ψ`,j
Dt

[νt]((sq
`
j,t)
−1(x)) = 0, x ∈ B(0, r) ∩ ∂H

and thus =H`,j(x, t) = 0 for x ∈ B(0, r) ∩ ∂H. Hence, the solution to
(6.5) belongs to R if the initial value sq`j,t0(p0) is real. In particular, since
sq`j,t0(z

`
j(t0)) = 0, we have =z̃(t; t0, z

`
j(t0)) = 0.

(iii) The proof is the same, and therefore we omit it.

6.3 Solutions inside moving domains

6.3.1 General case

We consider a solution z(t) = z(t; s, z0) to the ODE

dz(t)

dt
= 2π

∫
R

Ψs(t)(z(t), ξ) νt(dξ) (6.6)

with initial value z(s) = z0 ∈ Ds for each s ∈ [0, T ). We can check that (6.6)
satisfies the local Lipschitz condition by showing the local boundedness of the
vector field on the right-hand side of (6.6) as in the proof of Lemmas 6.4, 6.5
and 6.6. Hence a local solution z(t; s, z0) in the (1 + 2)-dimensional domain⋃
t∈[0,T ){t}×Dt exists uniquely on its maximal time interval [s, τs,z0) ⊂ [0, T )

of existence. We note that =z(t; s, z0) is non-decreasing in t because

=Ψs(t)(z(t; s, z0), ξ) = K∗D(s(t))(z(t; s, z0), ξ) ≥ 0.

Proposition 6.7. For any s ∈ [0, T ) and z0 ∈ Ds, it holds that τs,z0 = T .

Proof. We assume τs,z0 < T and derive a contradiction. Since
Ψs(t)(z(t; s, z0), ξ) is bounded by Lemma 3.2, the limit

z̃ := lim
t↗τs,z0

z(t; s, z0)

= z0 + 2π lim
t↗τs,z0

∫ τs,z0

s

∫
R

1[s,t](u)Ψs(u)(z(u; s, z0), ξ) νu(dξ) du

exists by the dominated convergence theorem. z̃ does not belong to Dτs,z0
by

definition, and also it does not lie on ∂H because =z(t; s, z0) is non-decreasing
in t. Thus, z̃ ∈ Cj(τs,z0) for some j.
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Suppose that z̃ = z`j(τs,z0). By the continuity of s(t), we can take con-
stants r > 0 and δ > 0 such that

r < min{ lDt ; τs,z0 − δ ≤ t ≤ τs,z0 } and

z(t; s, z0) ∈ B(z`j(t), r) \ C◦j (t), t ∈ [τs,z0 − δ, τs,z0).

By the same computation as in the latter half of Section 5.5, the func-
tion z̃(t) := sq`j,t(z(t; s, z0)) is a solution to the ODE (6.5) with z̃(τs,z0) =
sq`j,τs,z0 (z`j(τs,z0)) = 0. Hence =z̃(t) = 0 for t near τs,z0 by Lemma 6.6. This

implies z(t; s, t0) ∈ Cj(t) near τs,z0 , a contradiction. Thus, z̃ 6= z`j(τs,z0).
Since z̃ 6= zrj (τs,z0) for the same reason, we have z̃ ∈ C◦j (τs,z0). By the
definition of τs,z0 , there exists δ > 0 such that =z(t; s, z0) − yj(t) takes a
constant sign on [τs,z0 − δ, τs,z0). Suppose that =z(t; s, z0) > yj(t) on this
interval. Then, z(t; s, z0) is a local solution to (6.3) near τs,z0 that satisfies
limt↗τs,z0 z(t; s, z0) = z̃ ∈ C+

j (τs,z0). However, this contradicts Lemma 6.4
because z(t; s, z0) /∈ Cj(t) for t < τs,z0 . Similarly, the case =z(t; s, z0) < yj(t)
does not occur by Lemma 6.5. In conclusion, z̃ /∈ Cj(t) and τs,z0 = T .

For a fixed t0 ∈ (0, T ), we also consider the solution w(t) = w(t; t0, z0) to
the backward equation

dw(t)

dt
= −2π

∫
R

Ψs(t0−t)(w(t), ξ) νt0−t(dξ) (6.7)

with the initial condition w(t0) = z0 ∈ Dt0 . By the same proof to that of
Proposition 6.7, we can show that the explosion time τ̃t0,z0 of the solution
w(t; t0, z0) enjoys limt↗τ̃t0,z0 =w(t; t0, z0) = 0 if τ̃t0,z0 < t0.

Lemma 6.8. There exists a constant δ0 > 0 such that

τ̃t0,z0 ≥ (2δ0) ∧ t0

for any t0 ∈ (0, T ) and z0 ∈ Dt0∩HηD0
/2. Here, ηD0 := min{=z ; z ∈ H\D0 }.

Proof. By Lemma 3.2, supξ∈R=Ψs(t0−t)(w, ξ) is bounded by a constant for
any t ∈ [0, t0] and w ∈ Dt0−t ∩HηD0

/4. Hence the lemma is obvious.

Theorem 6.9. Let z(t) = z(t; s, z) be the solution to (6.6) with initial con-
dition z(s) = z ∈ Ds. The two-parameter family of the mappings

φt,s : Ds → Dt, z 7→ z(t; s, z)

parametrized by (s, t) ∈ [0, T )2
≤ enjoys all the properties of an evolution family

over (Dt)t∈[0,T ) in Definition 5.1 except the existence of angular residue at
infinity.
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Proof. It follows from the general theory on ODEs1 that φt,s is holomorphic.
Since a solution to (6.6) is unique, z 6= w implies φt,s(z) = z(t; s, z) 6=
z(t; s, w) = φt,s(w), which means the univalence of φt,s. The uniqueness of
solution also yields the identity φu,s = φu,t ◦ φt,s for (s, t, u) ∈ [0, T )3

≤.
Let δ0 be the constant in Lemma 6.8. If (s, t) ∈ [0, T )2

≤ satisfies t−s ≤ δ0,
then φt,s(Ds) contains Ds ∩ Hη0/2. Since conformal mappings preserve the
degree of connectivity of domains, this inclusion implies that Dt\φt,s(Ds) is a
possibly unbounded H-hull. In fact, the restriction t− s ≤ δ0 is unnecessary
because, for any (s, t) ∈ [0, T )2

≤, there exists a finite sequence s = t0 ≤ t1 ≤
· · · ≤ tn = t such that tk−tk−1 ≤ δ0 for k = 1, . . . , n. From the decomposition

φt,s = φtn,tn−1 ◦ · · · ◦ φt2,t1 ◦ φt1,t0 ,

we can conclude that Dt \ φt,s(Ds) is a possibly unbounded H-hull in the
general case.

Let (s, t) ∈ [0, T )2
≤ be fixed. By (6.6),

φt,s(z) = z + 2π

∫ t

s

∫
R

Ψs(u)(z(u; s, z), ξ) νu(dξ) du. (6.8)

For any z ∈ Ds∩HηD0
and ξ ∈ R, we have |Ψs(u)(z(u; s, z), ξ)| ≤ 4(πηD0)

−1 by
Lemma 3.2. Thus, the integral on the right-hand side of (6.8) is bounded in
z ∈ Ds ∩HηD0

. Letting z →∞ in (6.8), we see that φt,s(z)→∞ as z →∞.
Then we can use (6.8) again and the dominated convergence theorem to
obtain

lim
z→∞
=z>η0

(φt,s(z)− z)

= 2π

∫ t

s

∫
R

lim
z→∞
=z>ηD0

Ψs(u)(φu,s(z), ξ) νu(dξ) du = 0.

Hence φt,s enjoys the hydrodynamic normalization at infinity.

6.3.2 Bounded-support case

Let us observe that, if the support of νt is bounded in Theorem 6.9, then φt,s
is actually an evolution family. Suppose that there exists a > 0 such that

supp νt ⊂ [−a, a], t ∈ [0, T ). (6.9)

1See, e.g., Exercise 3.3 in Chapter I of Hale [35] or Theorem 8.4 in Chapter 1 of
Coddington and Levinson [19]. Although the vector fields on the right-hand side of ODEs
are assumed to be jointly continuous in these references, proof can be modified easily.
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In this case, the vector field
∫
R Ψs(t)(z, ξ) νt(dξ) is defined on the (1 + 2)-

dimensional domain⋃
t∈[0,T )

({t} × (Dt ∪ (∂H \ [−a, a]) ∪ Π0Dt))

and enjoys the local Lipschitz condition there. Hence (6.6) has a unique local
solution passing through (t0, z0) for any initial data (t0, z0) in this domain.
Since =Ψs(t)(x, ξ) = 0 for x ∈ ∂H \ {ξ}, the following lemma is obvious:

Lemma 6.10. If t0 ∈ [0, T ) and x0 ∈ ∂H \ [−a, a], then =z(t; t0, x0) = 0 for
all t (in its maximal interval of existence).

For t0 ∈ [0, T ) and x0 ∈ ∂H \ [−a, a], we put

σt0,x0 := T ∧ sup{ t ∈ (t0, T ) ; z(t; t0, x0) ∈ ∂H \ [−a, a] }.

Lemma 6.11. There exists a constant δ1 such that

σt0,x0 ≥ (2δ1) ∧ (T − t0)

for any t0 ∈ [0, T ) and x0 ∈ R \ [−2a, 2a].

Proof. By Lemma 3.2, we have

|Ψs(t)(x, ξ)| ≤
4

π(ηD0 ∧ a)
, x ∈ ∂H \ [−2a, 2a], ξ ∈ [−a, a].

Hence the conclusion easily follows from (6.6).

Theorem 6.12. The family (φt,s)(s,t)∈[0,T )2≤
defined in Theorem 6.9 is an evo-

lution family over (Dt)t∈[0,T ) with µ(φt,0;R) = 2t under the assumption (6.9).
(φt,s) is an unique evolution family that satisfies (5.12) with λ(t) = 2t.

Proof. We fix (s, t) ∈ [0, T )2
≤ such that t − s ≤ δ1. Here, δ1 is the constant

in Lemma 6.11. For each u ∈ [s, t], the function φu,s(z) := z(u; s, z) is
defined on Ds ∪ (∂H \ [−2a, 2a]) ∪ Π0Ds and univalent there. We can show
that Du \ φu,s(Ds) is bounded uniformly in u ∈ [s, t] as follows: Let rout

Du
:=

sup{ |z| ; z ∈ H \ Du }. Then maxu∈[s,t] r
out
Du

< ∞ by the continuity of s(u).
We choose a constant r so that

r > η0 + 2a+
8δ1

ηD0 ∧ a
+ max

u∈[s,t]
rout
Du .
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By Lemma 3.2,

|Ψs(u)(w, ξ)| ≤
4

π(ηD0 ∧ a)
(6.10)

for w ∈ B(0, r)c, ξ ∈ [−a, a], u ∈ [s, t].

Hence, by considering the backward equation as in Section 6.3.1, we can
show that φu,s(Ds) contains B(0, 2r)c for every u ∈ [s, t]. In other words,
Du \ φu,s(Ds) ⊂ B(0, 2r). It follows from a similar reasoning that

φu,s(B(0, 2r)c) ⊂ B(0, r)c, u ∈ [s, t]. (6.11)

Thus, (6.8), (6.10) and (6.11) imply

lim
z→∞

φu,s(z) =∞, u ∈ [s, t],

and

lim
z→∞

(φt,s(z)− z)

= 2π

∫ t

s

∫
R

lim
z→∞

Ψs(u)(φu,s(z), ξ) νu(dξ) du = 0 (6.12)

owing to the dominated convergence theorem.
The residue at infinity is obtained as follows: Recall from Proposition 3.6

that the function

w 7→ − 1

w
Ψs(u)

(
− 1

w
, ξ

)
is holomorphic around the origin. By the maximum principle and (6.10), we
have

sup
z∈B(0,r)c

|zΨs(u)(z, ξ)| = sup
w∈B(0,r−1)

∣∣∣∣− 1

w
Ψs(u)

(
− 1

w
, ξ

)∣∣∣∣
≤ 4r

π(ηD0 ∧ a)
, ξ ∈ [−a, a], u ∈ [s, t]. (6.13)

Now, we consider the identity

zΨs(u)(φu,s(z), ξ) = φu,s(z)Ψs(u)(φu,s(z), ξ)

− (φu,s(z)− z)Ψs(u)(φu,s(z), ξ).
(6.14)

The right-hand side of (6.14) is bounded in z ∈ B(0, 2r)c and u ∈ [s, t]
by (6.8), (6.10) and (6.11). Moreover, it converges to −1/π as z → ∞ by
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Proposition 3.6 and (6.12). Thus, the dominated convergence theorem yields

lim
z→∞

z(φt,s(z)− z)

= 2π

∫ t

s

∫
R

lim
z→∞

zΨs(u)(φu,s(z), ξ) νu(dξ) du = −2(t− s).

Finally, given a general pair (s, t) ∈ [0, T )2
≤, we can decompose φt,s along

a finite sequence s = t0 ≤ t1 ≤ · · · ≤ tn = t with tk − tk−1 ≤ δ1 as

φt,s = φtn,tn−1 ◦ · · · ◦ φt2,t1 ◦ φt1,t0 .

It is easy to derive the conclusion from this decomposition. The uniqueness
of an evolution family is just a consequence of the uniqueness of solutions to
(6.2) and (6.6).

Theorem 6.13. Let s0 ∈ Slit and [0,∞) 3 t 7→ νt ∈M≤1(R) be a Lebesgue
measurable process. Suppose that, for any T > 0, there exists a constant
a > 0 such that (6.9) holds. Then there exists an unique evolution family
(φt,s)(s,t)∈[0,∞)2≤

over a family (Dt)t∈[0,∞) of parallel slit half-planes with D0 =

D(s0) such that (5.12), (5.24) and (5.25) hold with λ(t) = 2t.

Proof. We assume that a solution s(t) to (6.2) with initial value s(0) = s0

explodes at T < ∞. This is a unique solution by Proposition 6.3. By
Theorem 6.12, there exists a unique evolution family (φt,s)(s,t)∈[0,T )2≤

driven by

νt and s(t). By Proposition 5.9, this family is extended to that on [0, T ]2≤. In
particular, it follows that limt↗T s(t) ∈ Slit, which contradicts the definition
of T . Hence (6.2) has a unique global solution. By applying Theorem 6.12 to
any bounded interval [0, T ] again, we can get the desired evolution family.
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Chapter 7

Application

We apply the present and previous results of the author to illustrate the way
in which driving processes reflect the geometry and continuity of Loewner
chains.

7.1 Conditions equivalent to local growth

property

Let (Ft)t∈[0,T ] be a family of bounded H-hulls growing in a parallel slit half-

plane D = H \
⋃N
j=1Cj. Note that it is assumed to be strictly increasing;

s < t implies Fs ( Ft. The BMD half-plane capacity hcapD(Ft) is hence
strictly increasing in t. Let gt : D \ Ft → Dt be the mapping-out function of
Ft, that is, a unique conformal mapping onto a parallel slit half-plane Dt with
limz→∞(gt(z) − z) = 0. The family (g−1

t )t∈[0,T ] is a reversed Loewner chain,
i.e., (g−1

T−t)t∈[0,T ] is a Loewner chain. Thus, the general form of Komatu–
Loewner equation (5.21) applies. We consider necessary and sufficient con-
ditions on (Ft)t∈[0,T ] in order that gt(z) obeys a differential equation of a
particular form (2.11).

Definition 7.1. (Ft)t∈[0,T ] is said to have the local growth property if, for
ε > 0, there exists a constant δ ∈ (0, T ) with the following property: For
each t ∈ [0, T − δ], some cross-cut C of D \ Ft with diam(C) < ε separates
the increment Ft+δ \Ft from the point at infinity in D \Ft. Here, by a cross-
cut of D \ Ft, we mean the trace of a simple curve c : [0, 1] → D \ Ft with
c(0), c(1) ∈ ∂(D \ Ft) and c(0, 1) ⊂ D \ Ft.

In Definition 7.1, (Ft)t∈[0,T ] has the “uniform continuity” in terms of the
diameter of cross-cuts. This will be clearer if we rephrase the local growth
property as follows:
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For any ε > 0, there exists δ > 0 such that, if 0 ≤ t− s ≤ δ, then
some cross-cut C of D \ Fs with diam(C) < ε separates Ft \ Fs
from ∞ in D \ Fs.

Here, even if s > T − δ, the difference Ft \ Fs(⊂ FT \ FT−δ) is separated
from ∞ in D \FT−δ by a cross-cut C of D \FT−δ. By definition, C does not
intersect Fs \ FT−δ(⊂ FT \ FT−δ) except at its endpoints. Thus, it is also a
cross-cut of D \ Fs = (D \ FT−δ) \ (Fs \ FT−δ).

Pommerenke [51] proved that the local growth property holds if and only
if the driving process reduces to a continuous function for the radial Loewner
equation (1.1). In the SLE context, Lawler, Schramm and Werner [46] proved
this equivalence for the chordal Loewner equation (2.7), and Zhan [61] men-
tioned the annulus case. Böhm [9] proved this fact for the radial Komatu–
Loewner equation on circularly slit disks. As he pointed out, we can always
assume that the endpoints of the cross-cut C lie on the outer boundary
∂(H \ Ft) of D \ Ft in Definition 7.1.

Proposition 7.2. Suppose that (Ft)t∈[0,T ] is of local growth.

(i) The function t 7→ hcapD(Ft) is continuous.

(ii) There exists a continuous function ξ : [0, T ]→ R such that⋂
δ>0

gt(Ft+δ \ Ft) = {ξ(t)}, t ∈ [0, T ). (7.1)

We prove Proposition 7.2 in Section 7.2 below. The property (7.1) is
important in that ξ(t) is to be the driving function in what follows. As it
is called the right continuity with limit ξ(t) in Lawler’s monograph [44], it
greatly reflects the “right continuity” of (Ft)t∈[0,T ]. In order to describe the
“left continuity”, we recall a classical concept concerning the convergence of
domains from Section 5, Chapter V of Goluzin [33].

Definition 7.3. (i) Let Gn, n ∈ N, be domains in C and a ∈ C. The
kernel kera(Gn)n∈N with respect to a is defined as the component con-
taining a of the set { z ∈ C ; B(z; r) ⊂

⋂
n≥N Gn for some r >

0 and some N ∈ N }.

(ii) Let I be an interval, t0 ∈ I, and a ∈ C. Let Gt, t ∈ I, be domains in
C. We say that Gt converges to Gt0 as t → t0 in the sense of kernel
(or in Carathéodory’s sense) with respect to a if kera(Gsn)n∈N = Gt0

for every sequence (sn)n∈N of I with sn → t0.
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(iii) (Ft)t∈[0,T ] is said to be left continuous at t0 ∈ (0, T ] (in the sense of
kernel convergence or in Carathéodory’s sense) if the domain D \ Ft
converges to D \ Ft0 as t increases to t0 in the sense of kernel with
respect to some (any) a ∈ D \ FT .

Since (Ft)t∈[0,T ] is increasing, it automatically holds thatD\Ft0 ⊂ kera(D\
Fsn)n∈N for any sequence (sn)n∈N with sn ↑ t0. Our left continuity requires
that this inclusion should be equality. We can define the right continuity
of (Ft)t∈[0,T ] in the same manner. In particular, our right continuity follows
from the property (7.1).

Lemma 7.4 (Murayama [49, Lemma 4.4]). If (Ft)t∈[0,T ] is continuous (in
the sense of kernel convergence), then t 7→ hcapD(Ft) is continuous.

The author proved in the previous paper [49] that the property (7.1)
and left continuity hold if and only if the chordal Komatu–Loewner equa-
tion (2.11) holds. We relate these conditions to the local growth property as
follows:

Theorem 7.5. Let `(t) := hcapD(Ft). The following three conditions are
mutually equivalent:

(i) (Ft)t∈[0,T ] has the local growth property;

(ii) The property (7.1) holds for some continuous function ξ(t) on [0, T ],
and (Ft)t∈[0,T ] is left continuous on (0, T ] in the sense of Defini-
tion 7.3 (iii);

(iii) `(t) is continuous, and there exists a continuous function ξ(t) on [0, T ]
such that

∂gt(z)

∂`(t)
:= lim

h→0

gt+h(z)− gt(z)

`(t+ h)− `(t)
= −πΨDt(gt(z), ξ(t)) (7.2)

for every z ∈ D \ Ft and t ∈ [0, T ].

Proof. By Proposition 7.2 (i) and Lemma 7.4, the function `(t) is increasing
and continuous if one of the three conditions holds. In particular, if we
take any increasing and continuous function θ(t) on [0, T ] and perform time-
change as F̃t := Fθ−1(t), g̃t := gθ−1(t), D̃t := Dθ−1(t), and ξ̃(t) := ξ(θ−1(t)),
then the conditions (ii) and (iii) on (Ft)t∈[0,T ] are equivalent to those on

(F̃t)t∈[0,θ(T )], respectively. (See also (5.16).) We can easily prove, using the
uniform continuity of θ on [0, T ], that this is also the case for (i). Therefore,
we may reparametrize (Ft)t∈[0,T ] whenever it is necessary to make our setting
consistent to those of previous studies.
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In addition to the independence from reparametrization, we note that the
conditions (i) and (ii) are independent of whether parallel slits exist or not.
Namely, if (Ft)t∈[0,T ] enjoys (i) or (ii) as a family of H-hulls in D, then so
does it, respectively, as a family of H-hulls in H, and vice versa. This is clear
from definition (see [49, Proposition 4.7] for example).

Lawler, Schramm and Werner [46, Theorem 2.6] showed that (i) is equiv-
alent to (iii) as long as (Ft)t∈[0,T ] is regarded as a family of hulls in H. We
also know from Murayama [49, Theorem 4.6] that (ii) and (iii) are equivalent
both in H and in D, but this result applies to a right-open interval [0, T )
only. If we can extend it to t = T , then proof is complete.

The implication (iii)⇒ (ii) at t = T is trivial, because Lemma 5.4 shows
the continuity of corresponding slit motion s(t). We observe (ii) ⇒ (iii) at
t = T . First, the (left) continuity of `(t) at t = T follows from the left
continuity of (Ft)t∈[0,T ] [49, Lemma 4.4 (i)]. It remains to show

gT (z) = z − π
∫ T

0

ΨDt(gt(z), ξ(t)) dt (7.3)

for every z ∈ D \FT . By the left continuity of (Ft)t∈[0,T ] again and the kernel
theorem [49, Theorem 3.8], s(t) → s(T ) and gt(z) → gT (z), z ∈ D \ FT ,
hold as t ↑ T . Then (7.3) follows from Lebesgue’s dominated convergence
theorem (cf. Step 1 in the proof of Proposition 5.9).

7.2 Direct derivation from local growth prop-

erty

By Theorem 7.5, the local growth property implies that the driving process
reduces to a real-valued continuous function. However, the proof of this
theorem in Section 7.1 has told us little about the mechanism through which
the local growth property determines the support {ξ(t)} of the measure-
valued driving process νt = δξ(t). In order to observe this mechanism, it
is helpful to prove Proposition 7.2 along the same line1 as that of Lawler,
Schramm and Werner [46, Theorem 2.6] and to show the implication (i) ⇒
(iii) in Theorem 7.5. Following the original proof [46, Theorem 2.6] with
suitable modification, we shall below give entire proofs of Proposition 7.2
and the implication (i)⇒ (iii) in Theorem 7.5.

We begin with recalling the definition of extremal length. Let Γ be a path

1See also Pommerenke’s original argument [51].
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family in a planar domain, that is, a set consisting of rectifiable paths2. The
extremal length of Γ is defined by

EL(Γ) := sup
ρ

infγ∈Γ

∫
γ
ρ(z) |dz|∫

U
ρ(z)2 dx dy

, z = x+ iy.

Here, we fix any domain U containing all paths of Γ, and the supremum
is taken over every non-negative Borel measurable function ρ on U with
0 <

∫
U
ρ2 dx dy < ∞. We can deduce that EL(Γ) is independent of the

choice of U and moreover conformally invariant. We refer the reader to
Chapter 4 of Ahlfors [1] or Chapter IV of Garnett and Marshall [32] for the
property of extremal length.

Proof of Proposition 7.2. Let (Ft)t∈[0,T ] be a family of H-hulls with local

growth in a parallel slit half-plane D = H \
⋃N
j=1Cj, and put L := sup{ |z| ;

z ∈ FT ∪
⋃N
j=1 Cj }. We fix ε ∈ (0, 1) such that 2

√
ε < dEucl(FT ,

⋃N
j=1Cj).

Then we can take δ > 0 with the following property: For every (s, t) ∈ [0, T ]2<
with t − s ≤ δ, a cross-cut C with diam(C) < ε separates Ft \ Fs from
∞ in D \ Fs. Using this cross-cut C, we give an upper bound of the ex-
tremal length of the set Γ of rectifiable paths which separate Ft \ Fs from
B(0, L + 2)c in D \ Fs as follows: For a fixed z0 ∈ C, let Γ′ be the set of
rectifiable paths separating the inner and outer boundaries of the annulus
A(z0; ε,

√
ε) := { z ∈ C ; ε < |z − z0| <

√
ε }. Any γ′ ∈ Γ′ contains some

path γ ∈ Γ in the sense that γ ⊂ γ′. It follows from [1, Theorem 4.1] or [32,
Eq. (3.2)] that

EL(Γ) ≤ EL(Γ′) =
4π

log(1/ε)
.

Here, see Section 1, Chapter IV of [32] for computing the value of EL(Γ′).
Moreover, by the conformal invariance of extremal length,

EL(gs(Γ)) = EL(Γ) ≤ 4π

log(1/ε)
. (7.4)

We notice that gs(B(0, L+2)∩(D\Fs)) is bounded. Indeed, a consequence
[49, Lemma 3.9] from the hydrodynamic normalization implies that

diam(gs(B(0, L+ 2) ∩ (D \ Fs))) ≤ 4(L+ 2).

Thus, by (7.4) and the definition of extremal length,

inf
γ∈gs(Γ)

(∫
γ

|dz|
)2

≤ 4π

log(1/ε)

∫
gs(B(0,L+2)∩(D\Fs))

dx dy ≤ 32π2(L+ 2)2

log(1/ε)
.

2In general, the definition of path family allows an element γ ∈ Γ to be a countable
union of curves, but in what follows, we treat only connected paths.
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Since any γ ∈ gs(Γ) is connected and separates gs(Ft \Fs) from∞ in Ds, we
have

diam(gs(Ft \ Fs)) ≤
4
√

2π(L+ 2)√
log(1/ε)

. (7.5)

We write the right-hand side of (7.5) as r(ε).
We now put gt,s = gs ◦ g−1

t . From the same reasoning as above and the
boundary correspondence, it follows that

supp[µ(gt,s; ·)] ⊂ [ξ(t)− r(ε), ξ(t) + r(ε)]. (7.6)

Here, µ(gt,s; ·) is the measure defined in Theorem 4.3 and the paragraph after
Remark 4.4. Since

hcapDs(gs(Ft \ Fs)) = π−1

∫
supp[µ(gt,s;·)]

=gt,s(ξ) dξ,

we have
`(t)− `(s) = hcapDs(gs(Ft \ Fs)) ≤ 2r(ε)2

by (7.5) and (7.6). This inequality proves the uniform continuity of `(t) and
hence (i).

By (7.5), there exists a point ξ(t) ∈ ∂H such that
⋂
δ>0 gt(Ft+δ \ Ft) =

{ξ(t)} for every t ∈ [0, T ). The proof of (ii) is thus complete if we prove the
uniform continuity of ξ(t) on [0, T ). Recall from (4.1) that

gt,s(z) = z + π

∫
supp[µ(gt,s;·)]

ΨDt(z, ξ) · π−1=gt,s(ξ) dξ. (7.7)

Let 0 < r′ < ηDT (= min{=z ; z ∈ H \ DT }). The representation (7.7),
combined with (3.12) and (7.6), implies that, for any z ∈ Dt\B̄(ξ(t), r(ε)+r′),

|gt,s(z)− z| ≤ 4

r′
(`(t)− `(s)).

Then applying an argument using cross-cuts, which is similar to the above
one, to the conformal mapping gt,s, we have

|ξ(s)− ξ(t)| ≤ r(ε) + r′ +
4

r′
(`(t)− `(s)).

Since the right-hand side depends only on δ, not on s, t, it holds that

lim sup
δ↓0

sup
0<t−s≤δ

|ξ(s)− ξ(t)| ≤ r′.

Letting r′ ↓ 0, we obtain the uniform continuity of ξ(t).
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By Proposition 7.2 and its proof, we can show the implication (i)⇒ (iii)
in Theorem 7.5 as follows:

Proof of (i)⇒ (iii) in Theorem 7.5. We put φu,s := gT−s,T−u = gT−u ◦ g−1
T−s

for (s, u) ∈ [0, T ]2≤ and λ(t) := hcapD(FT ) − hcapD(FT−t) for t ∈ [0, T ].
Then (7.6) implies that µ(φu,s; ·)/µ(φu,s;R) converges weakly to δξ(T−t)(·) as
s, u→ t. By Corollary 5.8, we have

∂λt φt,s(z) = π

∫
R

ΨDT−t(φt,s(z), ξ′) δξ(T−t)(dξ
′)

= ΨDT−t(φt,s(z), ξ(T − t)).

Hence, substituting gT−s(z) into the z in this equation and taking time-
reversal, we get the conclusion.

7.3 Case of multiple paths

Let D be a parallel slit half-plane and γk : [0, T ] → D, k = 1, . . . , n, be
n disjoint simple curves with γk(0) ∈ ∂H and γk(0, T ] ⊂ D. We put Ft :=⋃n
k=1 γk(0, t] and consider the mapping-out function gt : D\Ft → Dt. For each

k and t, There exists a unique point ξk(t) ∈ ∂H such that limz→ξk(t) gt(z) =
γk(t) by the boundary correspondence.

Proposition 7.6. (i) `(t) := hcapD(Ft) and ξk(t), k = 1, . . . , n, are con-
tinuous in t.

(ii) There exist an m`-null set N ⊂ [0, T ] and c1(t), . . . , cn(t) ≥ 0 with∑n
k=1 ck(t) = 1 such that

∂̃`tgt(z) = −π
n∑
k=1

ck(t)ΨDt(gt(z), ξk(t)) (7.8)

holds for every t ∈ [0, T ] \N and z ∈ D \ Ft.

Proof. Since this proposition can be proved along the same line as in Sec-
tion 7.2, we omit the detail. We just note two things. Firstly, even
if the support supp[µ(φu,s; ·)] for φu,s = gT−u ◦ gT−s shrinks to the n-
point set {ξ1(T − t), . . . , ξn(T − t)} as s, u → t, the normalized measure
µ(φu,s; ·)/µ(φu,s;R) does not necessarily converge weakly. The mass on a
neighborhood of each ξk(T − t) may oscillate. For this reason, we use The-
orem 5.7 instead of Corollary 5.8 in the present case. Secondly, (i) follows
from Lemmas 2.38 and 2.43 of Böhm [9] as well.
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Remark 7.7 (Branch points). In contrast to (7.2) in Theorem 7.5, one has
not formulated so far any explicit condition on (Ft)t∈[0,T ] that is equivalent to
(7.8). For example, we can replace disjoint paths in Proposition 7.6 by dis-
joint hulls of local growth. See Starnes [59]. However, this replacement does
not give a necessary condition for (7.8). We also have to consider the more
complicated situation in which one path or hull touches other one. In fact,
Böhm and Schleißinger [12] studied the t-differentiability of the mapping-
out function gt(z) for the union of two paths γ1(0, t] and γ2(0, t] such that
γ1(0) = γ2(0). They gave a condition of γ1 and γ2 sufficient for gt(z) to
be (right-)differentiable at t = 0 [12, Theorem 1.5], while constructing an
example of a pair (γ1, γ2) for which t 7→ gt(z) is not differentiable at t = 0.
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Chapter 8

Concluding remarks

We add some remarks related to previous and future works.

8.1 Remaining problems

We recall that a solution to the Komatu–Loewner equation for slits (6.2)
is not shown to be unique. However, from the viewpoint described in Sec-
tion 1.1, the uniqueness of slit motion is plausible. A possible way for proving
the uniqueness is to establish a result on the local Lipschitz continuity of the
function Slit 3 s 7→ Ψs(z, ξ) stronger than Chen, Fukushima and Rohde [17,
Theorem 9.1]. If the Lipschitz constant turns out to be independent of ξ ∈ R,
then we can drop the assumption that

⋃
t∈J supp νt is bounded in Proposi-

tion 6.3. In order to show this independence, we may need to elaborate the
interior variation method developed in Section 12 of Chen, Fukushima and
Rohde [17].

Chapter 6 contains another problem. From the same viewpoint as in
the preceding paragraph, we believe that the univalent function φt,s in The-
orem 6.9 should have a finite angular residue at infinity. An obstacle to a
proof of this property is the dependence on D of the estimate (3.16). If (3.16)
is strengthened so that it is locally uniform with respect to the variation of
D, then we can obtain the existence of finite angular residue. Nevertheless,
it seems that some new ideas are required for the improvement of (3.16) at
the present moment.

Although digressing from our subject, Section 4.2 contains one more re-
maining problem. In Theorem 4.3, we have assumed the univalence of f in
advance to obtain the representation formula (4.1). Conversely, what condi-
tion of the measure µ ensures that the holomorphic function f given by (4.1)
is univalent? The absolute continuity of µ with respect to the Lebesgue
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measure is necessary by Theorem 4.3, but we do not know whether it is also
sufficient. This question will be of independent interest in geometric function
theory.

In addition to the above-mentioned problems appearing in this thesis, it
is a natural problem to construct analogous theories on circularly slit disk
(radial case) and on circularly sit annuli (bilateral case). See Bauer and
Friedrich [5, 6, 7], Fukushima and Kaneko [31], Böhm and Lauf [10], and
Böhm [9] for previous studies on Komatu–Loewner equations in these cases.

8.2 Time-reversal, explosion of slit motion,

and SLE on multiply connected domains

In Chapters 2 and 7, we have considered reversed evolution families and
reversed Loewner chains. As is illustrated in Chapter 7, we can derive a
differential equation for reversed families without any additional effort. This
corresponds to the arrows from Loewner chains and from evolution families
to driving processes in Figure 1.1. However, matters are different for the
opposite arrows. We can see it from the reversed Komatu–Loewner equation
for slits1 ṡ(t) = −b(νt, s(t)). In this case, the y-coordinates yj(t) (1 ≤ j ≤ n)
are decreasing in t whereas they are increasing in Section 6.1. Thus, even if
supp νt ⊂ [−a, a] for some a > 0, the motion s(t) may explode in the sense
that limt↑ζ min1≤j≤n yj(t) = 0 for some ζ ∈ (0,∞). In other words, the slits
of Dt may be absorbed by the outer boundary ∂H at t = ζ. For a reversed
Loewner chain (ft)t∈[0,T ] with f0(D0) = D, such explosion is closely related
to the phenomenon that the hulls Ft = D \ ft(Dt) “swallow” some part of
the slits of D.

The author studied the case ζ < ∞ for (7.2) in the previous work [50].
In that paper, we can obtain a certain result on the motion s(t) around
t = ζ. On the other hand, we can say little about the behavior of Ft around
t = ζ. In particular, it remains to be discussed how the “limit” of Ft as t ↑ ζ is
constructed. It is reasonable to believe the following: We can define the limit
hull Fζ in such a way that limt↑ζ yj(t) = 0 if and only if Cj ∩ Fζ 6= ∅. Here,
note that, even if (gt)t∈[0,ζ) obeys (7.2), the local growth property cannot
be expected at t = ζ anymore. We cannot exclude the possibility that the
driving function ξ(t) diverges as t ↑ ζ. The author hopes that the present
work will help to treat such a subtle situation.

The study on reversed Loewner chains that is discussed in the preceding
two paragraphs plays a role in defining and analyzing extensions of SLEκ to

1Compare to (6.2).
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multiply connected domains. SKLE in Section 2.3.1 is one such extension,
which has the most direct connection with the Komatu–Loewner equation.
As we have mentioned in Remark 2.7, a similar equation also appeared in
Zhan’s study [60] of harmonic random Loewner chains, another extension of
SLE. On the other hand, Lawler [45] and Jahangoshahi and Lawler [37] stud-
ied other ways of extending SLE, respectively, without using the Komatu–
Loewner equation. From this context, the following question arises naturally:
How are these different extensions of SLE related to each other? Answering
this question will make the theory of Komatu–Loewner equation applicable
to problems that have been studied by other methods. Such application in
the study of SLE on multiply connected domains is yet to be investigated.
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Appendix A

One-parameter families of
holomorphic functions

The contents of this appendix is analogous to the classical arguments on a.e.
differentiability in the proof of Pommerenke [52, Theorem 6.2] and Goryainov
and Ba [34, Theorem 3]. Since we need more general results in this thesis, we
provide a self-contained proof of each statement for the sake of completeness.

A.1 Absolute continuity and almost every-

where differentiability

Let I be an interval equipped with a non-atomic Radon measure µ and ft be
a holomorphic function on a Riemann surface X for each t ∈ I. We consider
the following properties:

(AC)µ For any compact subset K of X, there exists a measure νK on I which
is absolutely continuous with respect to µ and satisfies

sup
p∈K
|ft(p)− fs(p)| ≤ νK((s, t]) for (s, t) ∈ I2

≤.

(Lip)µ For any compact subset K of X, there exists a constant LK such that

sup
p∈K
|ft(p)− fs(p)| ≤ LKµ((s, t]) for (s, t) ∈ I2

≤.

Obviously (Lip)µ implies (AC)µ, and if (AC)µ holds, then t 7→ ft is continuous
in Hol(X;C), the space of holomorphic functions on X equipped with the
topology of locally uniform convergence. (AC)µ also implies that, for each
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p ∈ X, the set function κp((s, t]) := ft(p) − fs(p) on the set of left half-
open intervals extends to a complex measure on every compact subinterval
of I which is absolutely continuous with respect to µ. By the generalized
Lebesgue’s differentiation theorem [8, Theorem 5.8.8], the limit

∂̃µt ft(p) := lim
δ↓0

ft+δ(p)− ft−δ(p)
µ((t− δ, t+ δ))

exists for a.a. t ∈ I and is a version of the Radon–Nikodym derivative dκp/dµ.
If µ is associated with a continuous non-decreasing function F on I by the re-
lation µ((s, t]) = F (t)−F (s) (i.e., µ = mF ), then we designate the properties
(AC)µ and (Lip)µ by (AC)F and by (Lip)F , respectively, and the derivative

∂̃µt ft(p) by ∂̃Ft ft(p) as well.
In general, the µ-null set on which ∂̃µt ft(p) does not exist depends on p.

However, (AC)µ enables us to choose this exceptional set N independently
of p, as shown in the following proposition:

Proposition A.1. Suppose that a family (ft)t∈I of holomorphic functions
on a Riemann surface X satisfies (AC)µ.

(i) There exists a µ-null set N ⊂ I such that, for each t ∈ I \ N , the
convergence

ft+δ(p)− ft+δ(p)
µ((t− δ, t+ δ))

→ ∂̃µt ft(p) as δ → +0

occurs locally uniformly in p ∈ X, and hence ∂̃µt ft is a holomorphic
function on X.

(ii) If (ft)t∈I further satisfies (Lip)µ, then we can choose a null-set N in
(i) as follows: For any countable set A ⊂ X having an accumulation
point in X,

N =
⋃
p∈A

{ t ∈ I ; ∂̃µt ft(p) does not exists }

Proof. (i) We take an exhaustion sequence (Xn)n∈N of X; that is, all Xn’s
are relatively compact subdomains of X with

⋃∞
n=1 Xn = X. It suffices to

show that, for each n ∈ N, there exists a µ-null set Nn ⊂ I such that ∂̃µt ft(p)
exists and is holomorphic on Xn for each t ∈ I \Nn. Indeed, we can conclude
from this auxiliary assertion that ∂̃µt ft(p) exists and is holomorphic on X for
each t ∈ I \ N with N :=

⋃
n∈NNn. Therefore, we fix n ∈ N and prove the

proposition on Xn.
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Xn is a compact subset of X, and hence there exists a measure νn � µ
on I such that |ft(p) − fs(p)| ≤ νn((s, t]) for any p ∈ Xn and (s, t) ∈ I2

≤.
Let A ⊂ Xn be a countable set having an accumulation point in Xn. Since
∂̃µt ft(p) exists at µ-a.a. t for each fixed p ∈ A, there exists a null set Nn ⊂ I
such that

∂̃µt ft(p) (p ∈ A) and Dµνn(t) := lim
δ↓0

νn((t− δ, t+ δ))

µ((t− δ, t+ δ))

all exist at every t ∈ I \Nn. We fix such t. By (AC)µ we have

|ft−δ(p)− ft+δ(p)|
µ((t− δ, t+ δ))

≤ νn((t− δ, t+ δ))

µ((t− δ, t+ δ))
. (A.1)

The left-hand side in this inequality is bounded in p ∈ Xn and δ > 0 because
the right-hand side converges to Dµνn(t) as δ ↓ 0. Moreover, (ft−δ(p) −
ft+δ(p))/µ((t− δ, t+ δ)) converges to ∂̃µt ft(p) as δ ↓ 0 for each p ∈ A. Thus,
this divided difference converges as δ ↓ 0 locally uniformly on Xn by Vitali’s
theorem (see, e.g., Chapter 7, Section 2 of [56]), which implies that ∂̃µt ft(p)
exists and is holomorphic on Xn.
(ii) Let A and N be as in the statement of (ii). Then the left-hand side
of (A.1) is bounded by LK on every compact subset K. Hence it is locally
uniformly bounded on X. Vitali’s theorem thus implies that ∂̃µt ft(p) exists
for every t ∈ I\N and p ∈ X. Note that we do not need to take an exhaustion
sequence (Xn)n in this case.

Remark A.2. In the case where µ coincides with the Lebesgue measure
Leb on I, Bracci, Contreras and Diaz-Madrigal [14] and Contreras, Diaz-
Madrigal and Gumenyuk [20] considered a condition broader than (AC)Leb
and (Lip)Leb. Roughly speaking, they say that a family (ft)t∈I is of order
d ∈ [1,∞] if, for every compact subset K, there exists a function kK ∈ Ld(I)
such that

sup
p∈K
|ft(p)− fs(p)| ≤

∫ t

s

kK(u) du, (s, t) ∈ I2
≤.

According to this definition, (ft)t∈I satisfies (AC)Leb if it is of order d for some
d ∈ [1,∞], and in particular, (Lip)Leb holds if and only if d =∞. From this
viewpoint, Lemma 5.4 shows that, given an evolution family (φt,s), we can
always assume d =∞ if we replace Leb by the measure mλ associated with
(φt,s). This fact makes our argument easier, for example, in Lemma 5.6 and
Proposition A.1 (ii).
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A.2 Descent to spatial derivatives and in-

verse functions

In this and next sections, we discuss only the case in which X is a planar
domain D ⊂ C.

Proposition A.3. Let (ft)t∈I be a family of holomorphic functions on a
planar domain D.

(i) If (ft)t∈I is continuous in Hol(D;C), then so is the family (f
(n)
t )t∈I of

the n-th order z-derivatives for any n ∈ N.

(ii) If (ft)t∈I satisfies (Lip)µ, then so is (f
(n)
t )t∈I for any n.

Proof. (i) is just a standard fact in complex analysis. We prove (ii) here.
Assume that (ft)t∈I satisfies (Lip)µ. Without loss of generality, we may

and do assume that D = D. Let r and δ be two arbitrary positive numbers
such that r+δ < 1. We take the constant LK in (Lip)µ withK := ∂B(0, r+δ).
Using Cauchy’s integral formula, we have

sup
|z|≤r
|f (n)
t (z)− f (n)

s (z)| ≤ 1

2π
sup
|z|≤r

∫
|ζ|=r+δ

|ft(ζ)− fs(ζ)|
|ζ − z|n+1

|dζ|

≤ r + δ

δn+1
LKµ((s, t])

for any (s, t) ∈ I2
≤, which yields Property (Lip)µ of (f

(n)
t )t∈I .

If ft’s are univalent and satisfy (Lip)µ, then their inverse functions satisfy
the same property locally in time and space, which is a conclusion from the
following Lagrange inversion formula:

Lemma A.4. Let f be a univalent function on a planar domain D, w be a
point of f(D) and C be a simple closed curve in D surrounding f−1(w) such
that insC ⊂ D. Then the equality

f−1(w) =
1

2πi

∫
C

ζf ′(ζ)

f(ζ)− w
dζ

holds.

Proof. The function zf(z)/(f(z) − w) of z has a pole of the first order at
z = f−1(w), and its residue is

lim
z→f−1(w)

(z − f−1(w))
zf ′(z)

f(z)− w
= f−1(w).

Hence the conclusion follows from the residue theorem.
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Proposition A.5. Suppose that a family (ft)t∈I of univalent functions is
continuous in Hol(D;C). Let t0 ∈ I and U be a bounded domain with
U ⊂ ft0(D). Then there exists a neighborhood J of t0 in I such that
U ⊂

⋂
t∈J ft(D). For any such pair (J, U), the family (f−1

t )t∈J of the in-
verse functions is continuous in Hol(U ;C). If (ft)t∈I further satisfies (Lip)µ
on D, then so is (f−1

t )t∈J on U .

Proof. Owing to the compactness of U , it suffices to prove that for any fixed
w0 ∈ ft0(D), the proposition holds with U replaced by a sufficiently small
disk B(w0, r0). We assume f−1

t0 (w0) = 0 ∈ D for the simplicity of notation.

We choose such a small r0 that f−1
t0 (B(w0, r0)) ⊂ B(0, r) ⊂ B(0, r) ⊂ D

holds for some r > 0. Set ε := dEucl(ft0(∂B(0, r)), ∂B(w0, r0)) > 0. Since
(ft)t∈I is continuous in the topology of locally uniform convergence, there
exists a closed neighborhood J = [α, β] of t0 such that |ft(z)− ft0(z)| < ε/2
holds for z ∈ B(0, r) and t ∈ J . This inequality implies that B(w0, r0) ⊂⋂
t∈J ft(B(0, r)) ⊂

⋂
t∈J ft(D).

Next, we show that (f−1
t )t∈J satisfies (Lip)µ on U , assuming that (ft)t∈I

satisfies (Lip)µ on D. Since the continuity of (f−1
t )t∈J in Hol(U ;C) is proved

in a similar way, we omit it. By Proposition A.3 (ii), we can take two

constants L0 and L1 such that sup|z|≤r|f
(n)
t (z) − f (n)

s (z)| ≤ Lnµ((s, t]), n =
0, 1, holds for any (s, t) ∈ I2

≤. In particular, we have

Mn := max{ |f (n)
t (z)| ; |z| = r, t ∈ J }

≤ max
|z|=r
|f (n)
t0 (z)|+ Lnµ((α, β]) <∞, n = 0, 1.

Now, using Lemma A.4 we have

f−1
t (w)− f−1

s (w)

=
1

2πi

∫
|ζ|=r

(
ζf ′t(ζ)

ft(ζ)− w
− ζf ′s(ζ)

fs(ζ)− w

)
dζ

=
1

2πi

∫
|ζ|=r

ζ{f ′t(ζ)(fs(ζ)− w)− f ′s(ζ)(fs(ζ)− w)}
(ft(ζ)− w)(fs(ζ)− w)

dζ

for w ∈ B(w0, r0) and (s, t) ∈ J2
≤. Hence

|f−1
t (w)− f−1

s (w)|

≤ 2r

πε2

∫
|ζ|=r

(|ft(ζ)− w||f ′t(ζ)− f ′s(ζ)|+ |ft(ζ)− fs(ζ)||f ′s(ζ)|) |dζ|

≤ 4r2((M0 + |w0|+ r0) ∨M1)

ε2
(L0 + L1)µ((s, t]),

which yields Property (Lip)µ of (f−1
t )t∈J on B(w0, r0).
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A.3 Implicit function theorem

Proposition A.6. Let (ft)t∈I be a family of holomorphic functions that sat-
isfies (Lip)µ on a planar domain D. Suppose that a point (t0, z0) ∈ I × D
enjoys the conditions

ft0(z0) = 0 and f ′t0(z0) 6= 0.

Then there exist some neighborhood J of t0 in I, neighborhood U of z0 in D
and function z̃ : J → U such that

• z = ẑ(t) is a unique zero of the holomorphic function ft in U , which is
of the first order, for any t ∈ J ;

• ẑ(t) is Lipschitz continuous with respect to µ in the sense that

|ẑ(t)− ẑ(s)| ≤ L̃µ((s, t]), (s, t) ∈ J2
≤,

holds for some constant L̃. In particular, the complex measure κ̃ in-
duced from z̃(t) on every compact subinterval of I is absolutely contin-
uous with respect to µ.

Proof. As f ′t0(z0) 6= 0, there exists r0 > 0 such that ft0 is univalent on
B(z0, r0). We take r1 ∈ (0, r0) and set mr1 := min|z−z0|=r1|ft0(z)| > 0. Since
ft0(z0) = 0, there exists r ∈ (0, r1) such that supz∈B(z0,r)|ft0(z)| < mr1/4.
Moreover, there exists δr1 > 0 such that

sup
z∈B(z0,r1)

|ft(z)− ft0(z)| < mr1

4

holds if |t − t0| < δr1 . We see that, if |t − t0| < δr1 , then ft(B(z0, r)) ⊂
B(0,mr1/2). Assuming |w| < mr1/2, |z − z0| ≤ r and |t− t0| < δr1 , we have

|(ft(z)− w)− (ft0(z)− w)| < mr1

2
≤ |ft0(z)| − mr1

2
≤ |ft0(z)− w|.

Since ft0 is univalent on B(z0, r0), it takes each value w ∈ B(0,mr1/2) at most
once, counting multiplicities, on B(z0, r1), and so does ft if |t− t0| < δr1 by
Rouché’s theorem. In this way, we see that ft is univalent on B(z0, r) if
|t − t0| < δr1 . It is now clear from Proposition A.5 that a desired triplet
(J, U, ẑ(t)) is given by J = (t0 − δr1 , t0 + δr1) ∩ I, U = B(z0, r) and z̃(t) =
f−1
t (0).

Remark A.7. Let us refer to one of the following two conditions, which one
can prove to be equivalent to each other, as (CD):
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• For each t ∈ I, (ft+h− ft)/h converges in Hol(X;C), and the family of
the limits ḟt, t ∈ I, is also continuous in Hol(X;C).

• For each p ∈ X, the function t 7→ ft(p) is C1, and the family of the
t-derivatives ḟt, t ∈ I, is locally bounded on X.

Then Propositions A.3 and A.5 are valid with (Lip)µ replaced by (CD).
Proposition A.6 also holds with the following replacement: (Lip)µ in the
assumption is replaced by (CD), and the Lipschitz continuity of ẑ(t) is re-
placed by the continuous differentiability of ẑ(t) in t. Although we do not
use these facts in this paper, one can see that such considerations make the
argument in Section 2 of Chen and Fukushima [16] slightly simpler.
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Appendix B

Hyperbolic and
quasi-hyperbolic distances

For the detail of the contents of this appendix, see Sections 5 and 7 in Chap-
ter 1 of Ahlfors [1] for example.

The hyperbolic distance on D is defined by

dHyp
D (z, w) := inf

C

∫
C

2

1− |ζ|2
|dζ|.

Here, the infimum is taken over all piecewise smooth curves C connecting z
and w. We can easily observe from the Schwarz–Pick lemma that, if f : D→
D is holomorphic, then

dHyp
D (f(z), f(w)) ≤ dHyp

D (z, w). (B.1)

Since the universal covering space of any proper subdomain D of C is D,
the covering map p : D→ D induces the hyperbolic distance dHyp

D on D from
dHyp
D . The following contraction principle is a consequence of (B.1):

Proposition B.1. Let f : D → D̃ be a holomorphic function. Then

dHyp

D̃
(f(z), f(w)) ≤ dHyp

D (z, w), z, w ∈ D.

In particular, if D ⊂ D̃, then dHyp

D̃
(z, w) ≤ dHyp

D (z, w) for any z, w ∈ D.

Let δD(z) := dEucl(z, ∂D) for a proper subdomain D of C. We define the
quasi-hyperbolic distance on D by

dQH
D (z, w) := inf

C

∫
C

2

δD(ζ)
|dζ|.

The infimum is taken over all piecewise smooth curves C connecting z and
w.
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Proposition B.2. dHyp
D ≤ dQH

D holds for every proper subdomain D of C.

We give an easy estimate on dQH
D , which is used in the proof of Proposi-

tion 5.5.

Lemma B.3. Let C be a convex subset of D such that dEucl(C, ∂D) > 0.
Then

dQH
D (z, w) ≤ 2|z − w|

dEucl(C, ∂D)
, z, w ∈ C. (B.2)
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