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Abstract

Strong electronic correlation in many-body systems often results in a wide variety

of ground states, leading to phenomena such as heavy Fermi liquids, unconventional

superconductivity, and strongly correlated insulators. Understanding those exotic elec-

tronic phases and excitations (i.e., emergent quasiparticles) from these ground states

is the most fundamental and important research problem in condensed matter physics.

A Kondo insulator (KI) is a typical example of such strongly correlated insulators,

where hybridization between conduction c-electrons and localized f -electrons opens up

a charge gap across the Fermi level. KIs have recently attracted much interest because

of the following important theoretical predictions and experimental findings:

(a) Strong electronic correlation can drive certain KIs into topological insulators.

(b) The KIs exhibit quantum oscillations in high magnetic fields.

(c) The KIs show gapless fermionic excitations.

In this thesis, we study exotic electronic properties found in YbB12, which is a topo-

logical Kondo insulator candidate. In correspondence with the aforementioned findings,

our results reveal that YbB12 shows (b) quantum oscillations and (c) gapless fermionic

excitations. We stress that the observations of both (b) and (c), in general, indicate

the presence of a Fermi surface, which has been considered a defining characteristic of

metals. Our findings, therefore, demonstrate novel electronic properties in YbB12: it

exhibits “metallic” behavior, although it is electrically insulating.

This thesis is structured as follows. In chapter 1, we introduce the physics of KIs.

Subsequently, we review the electronic properties of the candidate materials SmB6 and

YbB12, including recent progress in the search for topological surface states. In chapter

2, we examine previous reports and theoretical proposals on the observations of quan-

tum oscillations in SmB6. We discuss the observation of quantum oscillations in YbB12
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in chapter 3. After briefly introducing the purpose of this study in chapter 4, we present

the results of thermal transport measurements in YbB12, which is the main finding of

this thesis, in chapter 5. The abstract of chapter 5 is as follows.

• Charge-neutral fermions in YbB12 (Chapter 5)

The presence of a Fermi surface is manifested in the linear temperature (T )-dependent

terms in specific heat and thermal conductivity. We present low-temperature heat-

transport measurements to discuss low-energy excitations in the ground state of YbB12.

At zero field, sizable linear T -dependent terms are clearly observed in the specific heat

and thermal conductivity, indicating the presence of gapless fermionic excitations with

an itinerant character. Remarkably, the observed linear T -dependent thermal conduc-

tivity leads to a spectacular violation of the Wiedemann–Franz law: the Lorenz ratio is

104–105 times larger than that expected in conventional metals, indicating that YbB12

is electrically insulating but thermally metallic. Interestingly, the neutral fermions

become more mobile when the sample becomes more insulating, ruling out the possi-

bility that minor metallic impurities contribute to the heat transport. Moreover, these

fermions couple to magnetic fields, despite their charge neutrality. Our findings expose

novel quasiparticles in this unconventional quantum state, which are potentially iden-

tical to what contributes to the quantum oscillations in the insulating phase.

Finally, we summarize and conclude the thesis in chapter 6.
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1 Introduction

Contrary to free electron gases, strong electronic correlation in many-body systems

often results in a wide variety of electronic ground states, leading to phenomena such

as heavy Fermi liquids, unconventional superconductivity, magnetism, hidden order,

strongly correlated insulators. Understanding those exotic electronic phases and exci-

tations (i.e., emergent quasiparticles) from those ground states is the most fundamental

and important research problem in condensed matter physics. Among those strongly

correlated electronic systems, the physical properties of rare-earth compounds have been

intensively studied. The key ingredient is the inner 4f electrons of rare-earth elements;

these electrons are mostly localized in their atomic environment, and their moments

play a role in magnetism. However, once the localized moments are immersed in a sea

of mobile conduction electrons, they interact strongly on decreasing the temperature.

Consequently, the localized moments can occasionally become itinerant through the

interaction with the conduction electrons. In this chapter, we introduce the physics of

these rare-earth compounds, including the Kondo effect, and examine how these many-

body systems can be modeled and can produce a rich variety of electronic properties.

A Kondo insulator (KI), which is the main focus of this thesis, can also be introduced

within this framework. We also introduce the topological nature of KIs, which is a new

perspective that emerged with recent progress in the field of condensed matter physics.

Finally, we examine the electronic structure of prototypical candidates of KIs, SmB6

and YbB12.

1.1 Kondo effect

The problem of the interaction between localized moments and conduction elec-

trons can be traced to the well-known Kondo problem, which concerns the resistivity

minimum found in metals with dilute magnetic impurities. Hereafter, we refer to the

problem as the dilute Kondo effect to distinguish it from the problem in a lattice sys-

tem, which will be introduced in the next subsection 1.2. The theoretical explanation
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for this phenomenon was first reported by Kondo in 1964 [1]. Kondo showed that the

coupling J between conduction electrons and a magnetic moment yields singularity in

the second perturbation scattering term, leading to a logarithmic increase in the re-

sistivity through the factor -log T with decreasing temperature T . Corresponding to

this singularity, the Kondo interaction involves the logarithmic growth of the effective

interaction J :

J → J(T ) = J + 2J2N(0)

(
ln
D

T

)
, (1.1)

where N(0) is the density of states (DOS) at the Fermi level and D is the width of the

conduction band. It is worth noting that this term originates from both the noncommu-

tative relation of the local moment spin operators, [S+, S−] ̸= 0, and the Fermi-Dirac

distribution function; therefore, it has roots in the quantum many-body effect. This

formulation is quite novel in that the interaction becomes larger as the energy scale

becomes smaller. The logic later sparked a novel concept called asymptotic freedom in

particle physics. The logarithmic growth, however, implies that some physical proper-

ties cannot avoid divergence as T → 0. This failure of the theory at low temperature

is clear because the correction term becomes comparable to the non-perturbation term

below the characteristic Kondo temperature TK defined by

TK ∼ D exp

[
− 1

2JN(0)

]
. (1.2)

Therefore, the low-temperature physics below TK remained a puzzle until the 1970s,

stimulating further theoretical investigations. Wilson later developed the renormaliza-

tion group theory and solved this problem [2]. Now, the Kondo physics is strictly solved

throughout the temperature range [3]. The same expression of TK can be also obtained

from the scaling theory developed by Anderson [4]. In the strong coupling regime at low

temperature, the spin of localized moments and the sea of conduction electrons form a

Kondo singlet, where the moment is screened by the sea of conduction electrons, and

the magnetic degree of freedom of the moment disappears.
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1.2 Kondo lattice

As rare-earth compounds contain the “magnetic impurity” of 4f electrons at each

lattice site, one can expand the above dilute Kondo problem by including lattice peri-

odicity in the moments. The underlying physics of the system can be described by the

Kondo lattice Hamiltonian:

H = −t
∑
(i,j)σ

(c†iσcjσ + h.c.) + J
∑
j,αβ

S⃗j · c†jασ⃗αβcjβ, (1.3)

where t is a hopping integral, c†iσ is an electron creation operator at site i with spin

σ, and S⃗j is a spin operator of localized moments at site j. In the lattice system, the

Kondo effect coherently occurs over the whole lattice, leading to the ground state of the

non-magnetic Kondo singlet. This is because elastic scatterings at the local moment

conserves momentum owing to translational symmetry [5]. Consequently, the system

develops Fermi liquid (FL) behavior with the renormalized effective mass m∗, reflecting

the strong electronic correlation. In Kondo lattice systems, m∗ typically becomes 100-

1000 times larger than that of a bare electron; hence, the quasiparticle is called a heavy

fermion. Although all the physical properties show universal behavior with respect to

T/TK in the dilute Kondo system, this is not the case for a lattice system, which has

another energy scale related to the Kondo coherence: kBT
∗. Here, T ∗ is called the

coherent temperature below which the sea of conduction electrons requires coherence,

leading to the formation of FL. T ∗ is always lower than TK, below which the Kondo

singlet locally begins to occur. The relation between T ∗ and TK is a subtle problem,

and it has been pointed out that T ∗ strongly depends on the density of conduction

electrons [6].

There also exists another type of interaction between conduction and local electrons,

known as the Rudermann Kittel Kasuya Yoshida (RKKY) interaction. Immediately

after a conduction electron interacts with a local moment, the spin of the conduction

electron has polarization for a moment. As other local moments can experience this

polarization through the conduction electron, one can regard this effect as an effective
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exchange interaction between two local moments. The RKKY interaction is given by

HRKKY = −9π
J2

ϵF

(
Ne

N

)2

f(2kFR)S1 · S2, (1.4)

where R is the distance between given two local moments and f(x) = (−x cosx +

sinx)/x4 is the function that describes the spatial modulation of the interaction. Be-

cause f(x) oscillates by changing its sign as a function of R, the effective interaction

becomes either ferromagnetic or antiferromagnetic. Now, the RKKY interaction is es-

tablished as a major mechanism causing the emergence of magnetism in heavy fermion

systems.

The competition between the Kondo effect and RKKY interaction was pointed out by

Doniach [7]. In the Doniach phase diagram shown in Fig. 1.1, the Kondo temperature

TK (the red curve) and Néel temperature TN (the blue curve), which corresponds to

the strength of the RKKY interaction, are plotted as a function of the coupling con-

stant J . In the weak coupling regime of TN > TK, the ground state with magnetism

becomes stable. In the strong coupling regime of TK > TN, on the other hand, the

Kondo interaction overcomes the RKKY interaction, and Kondo screening leads to the

coherent heavy fermion quasiparticles below T ∗. In other words, the coupling strength

J determines whether the f -electrons become localized or itinerant.

Around the point where TN ∼ TK, the system undergoes a phase transition between

these states; remarkably, the phase transition can occur even at T = 0. Most of the

phase transitions occurring at finite temperature are driven by thermal fluctuation. On

the other hand, the phase transition at absolute zero temperature is called a quantum

phase transition, which is driven by the uncertainty principle of quantum mechanics. In

the vicinity of the critical constant Jc, which is called the quantum critical point (QCP),

novel quantum phenomena, such as unconventional superconductivity and non-FL be-

havior are occasionally realized. Several types of QCPs including heavy fermion systems

have been reported thus far, and they have provided interesting platforms to study a

series of exotic electronic states in strongly correlated systems [8].
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TK ~ Dexp[-1/JN(0)]
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QCP
T*

Figure 1.1: Schematic of the Doniach phase diagram. Magnetic order and a Kondo
screened state are realized according to the coupling strength J . f -electrons become
itinerant on approaching the right side of the graph.

1.3 Kondo insulator

In the Kondo screening regime with a high coupling strength J , the renormalized

coherent band dispersion of a heavy FL is well defined. However, the question of whether

the system becomes metallic or insulating below the coherent temperature T ≪ T ∗ is

not trivial. Several types of models have been proposed to study Kondo physics. To

examine the insulating ground state, let us first express Eq. 1.3 in the limit of t/J → 0

as

H = J
∑
j,αβ

S⃗j · σ⃗j +O(t), (1.5)

where σ⃗j ≡ c†jασ⃗αβcjβ. The Hamiltonian simply describes the onsite antiferromagnetic

(J > 0) interaction, leading to a non-magnetic ground state, where the Kondo singlet

is formed at each site as

|KI⟩ =
∏
j

1√
2
(⇑j↓j − ⇓j↑j) . (1.6)
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Here, the double and single arrows denote the spin of local and conduction electrons,

respectively. It is apparent that this ground state has a spin gap of 2J as a triplet

excitation and a charge gap of 3J , which separates the hole and electron quasiparticle

dispersion bands [5]. Therefore, the Kondo singlet state in the limit of t/J → 0 is

insulating. The Kondo screened system, in which the Fermi energy lies in the charge

gap, is called a Kondo insulator (KI). In addition to Mott insulators, KIs are known to

be a typical example of correlated insulators, which acquire the insulating ground state

owing to strong electron correlation.

To examine how the Kondo lattice becomes either a KI or a heavy FL, it is instructive

to introduce the band structure of the system. The nature of the insulating ground state

can be understood by introducing the band hybridization, and this view is preferable

especially when we discuss the topological order of a certain insulator in subsection 1.5.

The model we employ here is the periodic Anderson model:

H =
∑
kα

ϵckαn
c
kα + ϵf

∑
iα

nf
iα +

∑
kα

(
Vkf

†
αckα + h.c.

)
+ U

∑
α ̸=α′

nf
iαn

f
iα′ (1.7)

Here, ϵpkα and np
kα are the energy band and number operator, where the corresponding

superscript p = c or f denotes conduction or f -electrons, respectively. Vk and U denote

the strength of the hybridization and onsite Coulomb repulsion interaction, respectively.

The band structure for V = |Vk| = 0 is depicted in Fig. 1.2(a). Based on its localized

character of the f -moments, ϵf can be regarded as nearly flat. Furthermore, the system

is metallic at a sufficiently high temperature relative to TK because the Fermi energy

lies within the conduction band. With decreasing temperature, the Kondo interaction

becomes increasingly pronounced, as expressed in Eq. 1.1, and the hybridization term

V becomes dominant. When V becomes dominant, these two bands begin to hybridize,

leading to the reconstructed band structure shown in Fig. 1.2(b). Here, the dispersion

has the direct gap V and indirect gap ∆ ∼ 2V 2/D, where D is the half band width

[9]. It has been shown that ∆ is robustly finite against U [10]. On approaching to

the limit of U → ∞ adiabatically, the model is reduced to Eq. 1.5, leading to an

insulating ground state with the finite charge gap ∆ ∼ kBTK. When the system is
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not at half filling or the Fermi level is shifted upwards (downwards) by introducing

a moderate amount of electrons (holes), a finite DOS can be induced at the Fermi

level. In this case, the quasiparticle band has a much lower curvature than the original

conduction band because the conduction electrons acquire an f -like character owing to

the hybridization. A lower curvature of a band dispersion leads to the heavier effective

mass of quasiparticles. On the other hand, when the system is at half filling, the c-f

hybridized band dispersion with a finite ∆ leads to an insulating ground state; hence,

the Kondo lattice becomes a KI.

Owing to the band inversion, the flat f -band adiabatically splits into several patches,

some of which are partially occupied in the hybridized valence band. This partial

occupation of the f -orbit results in the intermediate valence (or mixed valence) state

widely found in Kondo screened materials including KIs. Taking an example of Yb

compounds, in the intermediate valence state, the atomic configuration of magnetic

(Yb3+) and non-magnetic (Yb2+) states are coherently superpositioned spatially and

temporally. Therefore, the mean valence for the Yb ion becomes a non-integer ranging

from 2 to 3. The intermediate valence state is also one of the topics of research interest

in Kondo lattice systems.

N(E)

 ~ TK

EF

EE(k)

k

(a) (b)

/2 ~V 2/D

V

E(k)

k

𝜖c
k

D

𝜖f

(c)

Figure 1.2: (a) Schematic of a conductive and flat band without hybridization, realized
in typical Kondo lattice compounds at a temperature above TK. As the Fermi energy
crosses the conduction band, the system becomes metallic. (b) The hybridized band
structure at a temperature below TK. (c) Energy dependence of the DOS for the
hybridized band structure with half filling.
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1.4 Electronic properties of Kondo lattice systems

1.4.1 Thermodynamic and transport properties

Figs. 1.3(a)-(c) show the temperature evolution of the magnetic susceptibility χ,

resistivity ρ, and electronic specific heat Ce of a KI and heavy FL by red and blue curves,

respectively. In the high-temperature regime T ≫ TK, these quantities show similar

temperature dependences because both systems can be treated as conduction electrons

strongly scattering with lattice local moments. χ shows Curie-Weiss behavior owing

to unscreened local moments. The resistivity shows metallic behavior at a sufficiently

high temperature, and it exhibits a logarithmic upturn below TK. On decreasing the

temperature further, the Kondo lattice acquires coherence below T ∗, and the system

becomes either a heavy FL or a KI according to the band structure and chemical

potential.

First, we examine the electronic properties of a heavy FL. As the entropy S of the

local moments R ln 2 (here, R is the universal gas constant) vanishes below T ∗ owing to

the Kondo screening, the Ce/T of the conduction electron is also influenced according

to

S(T ) =

∫ T

0

Ce(T
′)

T ′ dT ′. (1.8)

Therefore, on decreasing the temperature, Ce/T increases, as if the conduction electrons

absorb the magnetic entropy of the local moments. To understand the physical picture

behind this enhanced Ce, it is instructive to express the Sommerfeld coefficient γ =

C/T (T → 0) of the 3D electron gas model as

γ =
π2k2B
3

N(0)

=
k2BkF
3ℏ2

m∗, (1.9)

where kB is the Boltzmann constant and kF is the Fermi wave vector. As γ ∝ N(0) ∝

m∗, the enhancement in γ implies that the effective mass of the quasiparticle is larger

than that of a bare electron. This is why the quasiparticles in Kondo lattices are called
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heavy fermions. According to Eq. 1.8, γ should be of the order of ∼ (R ln 2)/TK at

sufficiently low temperatures. When the Fermi energy crosses the heavy fermion band,

the system becomes metallic, and its physical quantities can be well described in the

framework of FL theory. As we will see in subsections 1.4.2 and 1.4.3, χ shows a

temperature-independent Pauli paramagnetic response, while ρ decreases in proportion

to A2T
2 (the blue curves in Figs. 1.3(a)-(c)). These are the basic properties of a FL.

On the other hand, when the Fermi level is within the Kondo gap, Kondo lattice be-

comes a KI. It shows a weak magnetic response and activation behavior (∝ exp[∆/kBT ])

in resistivity, as indicated by the red curves in Figs. 1.3(a)-(b). One of the main prob-

lems addressed in this thesis is the behavior of Ce/T in KIs at low temperature. From

a conventional view of insulators, N(0) becomes zero for T → 0. In this case, fermionic

excitations must derive from the thermally activated quasiparticles across the gap ∆,

leading to Ce/T ∼ exp (−∆/kBT ). However, if Ce/T behaves as same as in a heavy FL

at high temperature, as indicated by the black curve in Fig. 1.3(c), this conventional

gapped behavior violates Eq. 1.8. Therefore, there may be an additional steep peak

in Ce/T below T ∗. Experimentally, however, reliably estimating Ce/T from the total

specific heat is difficult, because other contributions, such as the contribution from

phonons, become dominant at T > TK (here, TK ≈ 100 K in typical KIs). In fact, the

thermodynamics of KIs is poorly understood, and as we will discuss in chapter 5, every

model KI discovered so far, to our knowledge, exhibits finite γ. This is quite surprising

given that they show thermally activated behavior in ρ, i.e., they are charge insulators

with zero DOS at the Fermi level.

1.4.2 Kadowaki-Woods ratio

The applicability of the FL theory to heavy fermions implies that the quasiparticles

in Kondo lattice systems behave as non-interacting free particles but with a heavier

effective mass owing to the renormalization of the Kondo interaction. This picture leads

to the universal properties of FLs for various families of materials. The temperature

13



(a) (b)

T



Non-Mag.

Pauli
para.
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Activation
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(c)

T
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

0

Gapped
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?

Figure 1.3: Schematics of electronic properties expected in Kondo-screened materials,
namely, the Kondo insulator (the red curves) and heavy FL (the blue curves). (a)
Magnetic susceptibility, (b) resistivity, and (c) electronic specific heat are shown as a
function of temperature.

dependence of resistivity, for example, is given by

ρ = ρ0 + A2T
2, (1.10)

where ρ0 is the impurity scattering term and the T 2 dependence derives from electron-

electron interaction with the parameter A2, which determines the probability of the

scattering. Kadowaki and Woods [11] first pointed out the universal relationship be-

tween γ and A2:
A2

γ2
= RKW ≡ 1× 10−5µΩcm(Kmol/mJ)2. (1.11)

Here, RKW is known as the Kadowaki-Wood (KW) ratio. Although each physical

quantity varies by several orders of magnitude among various classes of materials, this

relation holds in a rich variety of systems, such as normal metals, f - and d-electron-

based intermetallic compounds, and oxides. The relation can be understood if one

considers the simplest expressions for A2: A2 ∝ m∗2. Because γ ∝ m∗ from Eq. 1.9,

the ratio RKW does not depend on the renormalization parameter m∗, leading to the

universal ratio. Although it is also known that the ratio A2/γ
2 in a certain category of

materials becomes 0.04 times smaller than RKW, the deviation can be generalized by

considering the degeneracy of quasiparticles [12].
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1.4.3 Wilson ratio

One can also find a universal relationship between γ and the magnetic susceptibility

χ for FLs. In the FL theory, the main contribution to magnetism is from the Zeeman

splitting of the spin-up and spin-down bands, which leads to unbalanced spin population

phenomena known as Pauli paramagnetism. This susceptibility is given by

χPauli =
(gµB)

2

4
N(0), (1.12)

which is temperature independent, in contrast to the Curie-Weiss behavior. Here, g

is the g-factor, and µB is the Bohr magneton. Pauli paramagnetism is known as a

basic property that metals exhibit at sufficiently low temperatures below the Fermi

temperature. According to Eq. 1.9, γ ∝ N(0) leads to the universal ratio between

χPauli and γ:

RW =
3

4

(
µBg

2πkB

)2
χPauli

γ
, (1.13)

which is known as the Wilson ratio [2]. It has been shown that RW is close to unity for

many FL materials. It is quite surprising that, despite the rich diversity of ground states

in correlated metals, the low-temperature physical properties are solely determined by

the degree of the renormalization parameter N(0) ∝ m∗. Therefore, the universal

relationships we have discovered thus so far, the KW ratio and Wilson ratio, have been

considered direct and fundamental evidence for the validity of the FL theory for various

correlated metals.

1.4.4 Wiedemann-Franz law

In a FL, quasiparticles carry not only charge but also heat. Therefore, one can expect

a quantitative relation between charge transport and thermal transport. To find such

a relation, we first express the electric conductivity σxx in a 3D electron gas model is
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based on the Drude model as

σxx =
ne2ℓ

m∗vF
(1.14)

=
e2

3π2ℏ
ℓk2F, (1.15)

where n = k3F/3π
2 is the carrier density, e is the elementary charge, ℓ is the mean

free path, and vF = ℏkF/m∗ is the Fermi velocity. The thermal conductivity κ of the

quasiparticle is also expressed as

κxx =
1

3
γvFℓT. (1.16)

By substituting Eq. 1.9, one can obtain

κxx
T

=
k2B
9ℏ
ℓk2F. (1.17)

Combining Eqs. 1.15 and 1.17 yields

κxx/T

σxx
=
π2

3

(
kB
e

)2

≡ L0 ≃ 2.44× 10−8WΩ/K2. (1.18)

The universal constant L0 is known as Lorentz number, and the relation given by Eq.

1.18 is the well-known Wiedemann-Franz (WF) law [13]. This is valid for not only the

longitudinal transport component but also the transverse response, i.e., κxy/σxyT = L0.

As this law holds for most conventional metals, it is regarded as supporting evidence

for the validity of the FL theory. However, it is worth noting that the charge-neutral

excitations can contribute to the thermal transport, while they cannot contribute to

the electrical conductivity. Indeed, the phonon, which is an emergent excitation mode

of lattice vibration, is a typical neutral quasiparticle that can carry heat. Therefore, if

the observed ratio κ/σ is larger than the Lorentz number, it can be interpreted that

other neutral quasiparticles contribute to the heat transport. In fact, there are several

examples that violate the WF law in strongly correlated electron systems such as quan-

tum spin liquid candidates [14,15] and high-Tc cuprates [16]. In addition, the violation
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of the WF law has also been reported in the heavy fermion YbRh2Si2, solely near the

magnetic QCP [17,18], where the κ/σ becomes smaller than L0. As neutral excitation

descriptions are not valid in this case, the anomalous electric transport property is con-

sidered to be linked to the non-FL behavior, the mechanism behind which is a central

issue in the field of correlated materials [19, 20]

1.5 Topological Kondo insulator

The application of the concept of topology to the field of condensed matter physics

led to a paradigm shift in research to a new class of materials [21, 22]. A key idea

arises from the question of whether it is always possible to adiabatically deform the

given wave function of an insulator to another. The answer is no: in the presence of

both time-reversal symmetry (TRS) and inversion symmetry (IS), all band insulators

can be classified into two with the Z2 invariant ν = 0, 1, and these electronic structures

are topologically distinct. The criteria for this classification are given by the Fu-Kane

formula [23]:

(−1)ν =
∏
i

ζ(Λi) =

+1 trivial (conventional insulator),

−1 non-trivial (topological insulator),

(1.19)

where ζ(Λi) is the parity eigenvalue of the occupied Bloch states at the time-reversal

invariant momentum (TRIM) Λi. As the wave functions of TIs show twisting, these two

classes of insulators cannot be connected without breaking some symmetries or closing

the band gap. As one can regard vacuum as a conventional insulator, this classification

forces the band gap to close at the boundary between TIs and vacuum (i.e., sample edge

or surface). This is called bulk-edge correspondence. Hence, the existence of topological

order is manifested by the metallic surface state (SS) surrounding the insulating bulk.

Because this SS is protected by the symmetry of the underlying crystal, it is robust to

perturbations that do not violate the crystalline symmetries. The remarkable feature of

this SS is that its dispersion is described as a linear Dirac cone of mass-less fermions. In
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addition, TRS and IS guarantee band crossing with opposite spin directions at TRIM.

This constraint leads to spin-momentum locking, where the spin direction is determined

by the momentum of the electron. Furthermore, the backscattering in this surface

channel is prohibited owing to the topological protection. Because of the robustness,

spin-momentum locking, and topological nature of SS, TIs recently attracted much

interest for possible future applications such as efficient spintronics devices, quantum

computation, and memory storage with low energy consumption [24].

The integer quantum Hall insulator is a prototypical example of this topological

phase of matter, and Z2 TIs were later discovered mostly in materials with strong

spin-orbit interaction. In the early stage, the study of TIs focused on materials with

weak correlation, most likely because their theoretical treatment to calculate band

structures is relatively easy. In 2010, Dzero et al. [25] pointed out that a certain type of

KI can be topologically non-trivial because they inherently experience band inversions

owing to the hybridization of bands with opposite parity. Owing to this new scheme,

KIs have been intensively re-investigated as a new family of TIs, where the strong

electron correlation drives topological order. These systems are called topological KIs

(TKIs) [10].

Because the topological order in KIs is driven by Kondo effect, its topological order also

evolves with temperature. Fig. 1.4(a) schematically shows a simplified band structure

of KIs at high temperature (T > T ∗). As the conduction d-band crosses the Fermi level

EF, the system becomes metallic with a flat f -band. As the temperature decreases to

T < T ∗, the d-orbital begins to create a coherent heavy quasiparticle band through the

hybridization with the flat f -band, as shown in Fig. 1.4(b). Because the conduction

d-band and localized f -band are even and odd in the parity operation, respectively, this

hybridization leads to band inversions with different parities, possibly at several TRIMs.

According to Eq. 1.19, therefore, if the band inversions occur an odd number of times

over the whole Brillouin zone, KIs can be topologically non-trivial. Consequently, the

KI can host a metallic SS on its surface, which is protected by TRS and IS, as shown

in Fig. 1.4(b). In sections 1.6 and 1.7, we review the electronic properties of candidate

TKI materials, SmB6 and YbB12, and discuss experimental evidence for the existence
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of the topological SS.

Figure 1.4: Schematics of the band structure of KIs at a (a) high T and (b) low T . The
dotted lines indicate surface states with Dirac dispersion, where the spins of electrons
are locked to their momentum.
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1.6 SmB6

1.6.1 Electronic structure

The first KI, SmB6, was discovered in 1969 [26], and its electrical properties have been

intensively studied as a model KI materials and, later, as a correlation-driven TI [27]. It

forms a body-centered cubic structure consisting of Sm and B6 octahedra with a lattice

constant a ≈ 4.133 Å, belonging to the Pm3m space group, as shown in Fig. 1.5(a).

The corresponding Brillouin zone (BZ) is also shown in Fig. 1.5(b). First-principles

calculations using local density approximation (LDA) with the Gutzwiller method re-

vealed that band inversions between the d-band and f -band are expected to occur at

three X̄ points [28, 29]. Therefore, according to the Eq. 1.19, these band inversions

force SmB6 to be a Z2 non-trivial insulator. The resulting band dispersion of the SS

is shown by the red curves in Fig. 1.5(c), and the inset depicts corresponding Fermi

surfaces on the (001) surface. Given that most TIs with strong spin-orbit coupling have

a single Dirac cone near the Fermi level [21], it is notable that multiple Fermi surfaces

appear in SmB6 at the Γ̄ point and two X̄ points. Furthermore, the SS is within the

gap and is well separated with the bulk bands, which is favorable to study the intrinsic

transport properties of a topological SS.

(a) (c)

Sm
B

(b)

Figure 1.5: (a) Crystal structure of KI SmB6. (b) The bulk and (001) surface Brillouin
zone of SmB6. (c) Calculation of the surface and bulk band structures indicated by
the red and dark purple curves, respectively. The inset shows Fermi surfaces of the
topological SS on the (001) surface. (b), (c) are taken from [28].
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The formation of the hybridization gap in SmB6 has been confirmed using various

methods. For example, the insulating thermal activation behavior in resistivity has

been confirmed [26, 30, 31], and it yields a gap amplitude ≈ 4 meV [31]. Fig. 1.6(a)

shows the Arrhenius plot of ln ρ vs. 1/T [30]. At high temperatures in the range of 100-

300 K, SmB6 shows bad metallic behavior because the conduction electrons strongly

scatter with the local moments owing to the absence of the coherent hybridization. As

the temperature decreases, the resistivity gradually shows insulating behavior down

to ≈ 4 K. It is well known that the resistivity shows saturation at low temperature,

which is now discussed in terms of topological SSs. The details of the SS detected

by transport measurements will be discussed in subsection 1.6.2. The formation of

the hybridization gap can be also observed from the suppression in DOS across the

Fermi level by spectroscopy measurements such as scanning tunneling spectroscopy

(STM) [32,33], point-contact spectroscopy [34], and angle-resolved photoemission spec-

troscopy (ARPES) [35–37]. The tunneling conductance dI/dV , which reflects the local

DOS, measured at various temperatures is shown in the upper panel of Fig. 1.6(b).

The broad dip structure around V = 0 develops with decreasing temperature. This

gap formation occurs at T ≈ 100 K as shown by the lower panel, which displays the

gap depth determined by tunneling conductance measurements. Momentum-integrated

ARPES data are also displayed in Fig. 1.6(c). The peak structure resulting from the

hybridization, which evolves with decreasing temperature, is clearly resolved. Recent

ARPES measurements also revealed an in-gap state within the gap, the origin of which

is still controversial [38].

SmB6 also shows behavior characteristic of KI in its magnetic properties. Fig.1.7(a)

shows the reciprocal magnetic susceptibility 1/χ as a function of temperature [33]. At

high temperature, the susceptibility shows paramagnetic Curie-Weiss behavior with a

paramagnetic Curie temperature ≈ 50 K, which is derived from the local moments

of f -electrons. 1/χ gradually deviates from the T -linear behavior below ≈ 120 K,

where the hybridization gap is formed. This Kondo screening prevents magnetic or-

dering, and χ shows less T -dependent non-magnetic behavior. χ also exhibits a low-

temperature anomaly, which is likely to be associated with the in-gap state. Nuclear
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(a) (c)(b)

Figure 1.6: Formation of the hybridization gap in SmB6. (a) Arrhenius plot of ln ρ vs.
1/T [30]. (b) Tunneling conductance at various temperatures (upper panel) and the
temperature dependence of the gap depth (lower panel) [32]. (c) Momentum-integrated
ARPES spectral intensity at the X̄ band [35].

magnetic resonance (NMR) measurement also reveals the macroscopic magnetic prop-

erties of materials. The Knight shift K is related to the local static susceptibility χ0

by K ≈ A/γeγnℏ ·χ0, where γe and γn are the electron and nuclear gyromagnetic ratio,

respectively. The reported 11B NMR Knight shift K also shows a similar temperature

dependence as the bulk susceptibility χ [39]. NMR measurements are also used to

obtain information on DOS N(0) from spin-lattice relaxation rates 1/T1 by

1

T1
∝ N(0)2kBT. (1.20)

1/T1 in Fig. 1.7(b) shows suppression below ≈ 100 K, which is consistent with the gap

opening. 1/T1 becomes T -independent at low temperatures, whereas it remains sensitive

to the magnetic field. This anomaly at low temperature also implies a field-dependent

in-gap state. Neutron scattering measurements were also conducted to detect magnetic

excitations in SmB6. Only residual Bragg scattering and weak phonon scattering were

observed, and no magnetic ordering or excitations were resolved down to 200 mK,

as shown in Fig. 1.7(c) [40]. These experiments reveal temperature-driven Kondo

screening below T ≈ 100 K and the non-magnetic ground state in SmB6.
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(a) (b) (c)

Figure 1.7: (a) Temperature dependence of the reciprocal magnetic susceptibility 1/χ
[33]. (b) Temperature dependence of spin-relaxation rates 1/T1 in various fields [39].
(c) Neutron scattering intensity mapped with ℏω vs. the reciprocal vector H [40].

1.6.2 Topological surface state

The electronic structure of SmB6 is well described in a Kondo screening model and

has been regarded as a model KI material, with the exception of the low-temperature

anomaly of the in-gap state. We will discuss the topological SS as a possible source of

this contribution.

Numerous transport studies on SmB6 were reported in an effort to detect the topo-

logical SS from different perspectives, such as the doping effect [41], geometrical ef-

fect [31, 42, 43], weak anti-localization (WAL) effect on magnetoresistance (MR) [44],

spin-polarization [45], and micro cracks [46]. First, it was proved that the resistance

plateau is sensitive to magnetic impurities [41]. As the SS is protected by TRS, it

is expected to be destroyed by a magnetic impurity that violates TRS. As shown in

Fig. 1.8(a), the resistance plateau shows different behaviors depending on whether the

impurity is magnetic. The introduction of 3 % Gd is sufficient to destroy the SS, and

the resistivity shows diverging behavior towards T → 0. In contrast, Y-doping does

not affect the transport properties.

It has also been shown that the low-temperature transport properties are sensitive

to the geometry of samples and contacts. The upper panel of Fig. 1.8(b) displays the

resistivity data with various values of the sample thickness t [42]. The residual resistiv-

ity ρ(T → 0) shows a decreasing tendency with decreasing sample thickness. The lower
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panel shows the relationship between the residual resistance and sample thickness. To

explain this behavior, one can regard the TI as a parallel circuit of a 3D bulk and 2D

surface (inset of 1.8(b)) as follows:

1

ρ
=

ℓ

wt

(
1

R3D

+
1

R2D

)
=

1

ρ3D
+

1

ρ2D
· 1
t
. (1.21)

As 1/ρ3D → 0 for T → 0, the saturation amplitude corresponds to the second term.

Therefore, the linear relationship between the residual resistivity and t provides evi-

dence for a 2D conduction channel in this compound. The separation of the surface

and bulk conductance can also be achieved by employing specific configurations of the

contacts [43], such as a double-sided Corbino disk [31]. Fig. 1.8(c) shows some such

configurations, where the contacts are made from both sides of the crystal. Trans-

port measurements agree with simulation for this configuration, revealing the surface

conduction in SmB6. These techniques can also be employed as a powerful tool for

detecting bulk conductance even in the surface-dominant regime.
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(c)(b)(a)

Figure 1.8: Topological SS detected using several types of transport techniques. (a)
Temperature dependence of resistivity of Gd-doped (upper panel) and Y-doped (lower
panel) SmB6 crystals [41]. (b) Temperature dependence of normalized resistivity with
various thickness (upper panel). The lower panel displays the residual resistivity against
thicknesses [42]. (c) Examples of special configurations of contacts on the crystal [31,43].
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Now, the question is whether the 2D conduction originates from the topological

nature. One defining character of the topological SS is that the surface electrons have

spin texture, where the spin is locked to its momentum. The detection of this spin

polarity using a transport method is important as a possible future device application.

The coupling between the spin and its momentum can be manifested in the WAL effect,

which is a negative quantum correction to the conductivity. Applying magnetic fields

destroys this coherence and leads to a cusp-like feature on MR. Fig. 1.9(a) shows the

low-field MR of SmB6 with a magnetic field parallel and perpendicular to the conduc-

tion surface [44]. The cusp-like feature is more pronounced when the field is applied

perpendicular to the surface plane, which is consistent with the framework of the WAL

effect. This result, therefore, implies that the spin of SS is locked to its momentum.

One can probe the spin polarization of the conduction electron more intuitively

through spin potentiometric measurements [45]. In such measurements, the contact

to the sample is made in a conventional Hall bar geometry, but one of the contacts is

replaced by a ferromagnetic metal. As illustrated in Fig. 1.9(b), a current is induced

between the gold electrodes on both sides of the crystal, and the transverse voltage

is measured between the gold and permalloy magnetic contact (the green region Py).

By changing the direction of magnetization of the Py contact, one can also change the

potential in different spin directions. The spin-voltage graph shows a finite hysteresis

loop in the transverse voltage Vxy and the field Hy along the y-direction. This result

(c)(b)(a)

Figure 1.9: Evidence for the spin-momentum locking in the SS of SmB6. (a) Magne-
toresistance under a magnetic field applied perpendicular (the red points) and parallel
(the blue points) to the major surface plane [47]. (b) Schematic of the setup for the
spin potentiometric measurement and (c) the resulting spin voltage [45].
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provides evidence that the spin polarization is perpendicular to the current (momen-

tum), which is again consistent with the spin texture we can expect in the topological

SS.

More direct evidence for the spin texture in the topological SS band in SmB6 was

provided by spin ARPES measurement [47]. A schematic of the Fermi surfaces on the

(001) surface and their spin texture is illustrated in Fig. 1.10(a). The spin of the β

bands located on X̄ rotates counterclockwise. The β bands are clearly resolved by the

ARPES measurement, as shown in Fig. 1.10(b), and the measurement shows good

agreement with theoretical calculations. The α band is also resolved at the center of

the Γ̄ point, but the intensity is smaller than that of the β bands. Fig. 1.10(c) displays

the ARPES intensities along the C1 cut indicated by the red line in Fig. 1.10(b) for

each spin direction. The up and down spins along the x direction show a significant

difference, and the spin polarization is consistent with the theoretically predicted spin

texture. This result provides direct evidence that the SS originates from the non-trivial

topology in the bulk electronic state.

(a) (c)(b)

Figure 1.10: Spin texture of the topological SS in SmB6 [47]. (a) Schematics of the SS
on the (001) surface. (b) Observed Fermi surfaces of the SS. The red line C1 in the
middle is the cut along which the spin polarity is measured. (c) Spin-resolved intensity
and spin polarization along the C1 cut.
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1.7 YbB12

1.7.1 Electronic structure

YbB12 is another prototypical KI. The study on poly-crystalline powders started in

the 1970s [48, 49], and the first composition of large single crystals was achieved using

the floating zone method in 1998 [50]. The crystalline structure of YbB12 is shown in

Fig. 1.11(a). It has a face-centered cubic structure consisting of Yb and B12 cubo-

octahedra with the lattice constant a ≈ 5.28 Å, belonging to the Fm3̄m space group.

The Brillouin zones of the bulk and the (001) surface are shown in Fig. 1.11(b). The

topological invariant for this material has also been calculated, but it was shown that

the Z2 invariant in YbB12 is trivial (ν = 0) because the band inversion occurs twice

at three X points [51]. However, one can still expect a topological SS protected by a

crystalline symmetry such as mirror symmetry. A topological non-trivial phase pro-

tected by a mirror symmetry is called a topological crystalline insulator (TCI) [52],

which was first proposed in the strong spin-orbit coupling system Bi1−xSbx. As the

mirror operation classifies the wave function into two subgroups according to its eigen-

value η = ±i, one can calculate the Chern number N±i for each subgroup. This is

analogous to the fact that the TRS yields two subgroups according to the spin, ±1/2.

TCI is a topological phase having a non-zero mirror Chern number, which is defined as

NM = N+i−N−i, but zero total Chern number N = N+i+N−i. In YbB12, it was shown

that NM = 2 (non-trivial) owing to the presence of the (010) mirror plane [51]. There-

fore, it is expected that YbB12 also hosts a topological SS. The result of first-principles

calculations for the (001) surface band is displayed in Fig. 1.11(c). As the mirror plane

passes through M̄ -Γ̄ direction, the degeneracy of the two substates are guaranteed on

this plane. Therefore, the Dirac point indicated by the black circle in Fig. 1.11(c) is

topologically protected by the mirror symmetry. The surface Dirac cone protected by

the finite mirror Chern number also hosts a spin texture as well as an ordinal TI [53]

As a KI, the physical properties of YbB12 are quite similar to those of SmB6. The

Arrhenius plot of its resistivity is displayed in Fig. 1.12(a). YbB12 develops multiple
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(a) (c)(b)

Figure 1.11: (a) Crystal structure of KI YbB12. (b) Bulk and (001) surface Brillouin
zones of YbB12 and the calculation of the (001) surface band [51]. The black circle in
(c) marks the Dirac point protected by mirror symmetry.

energy gaps: ∆E1 ∼ 15 meV below T ≈ 40 K and ∆E2 ∼ 4 meV below T ≈ 15 K [50].

The low temperature plateau is also observed in YbB12, and it can be interpreted as

a conduction channel of the topological SS. The formation of the second gap is unique

in YbB12, and its origin is still under the debate. The magnetic susceptibility χ also

shows the typical Kondo screening behavior [54]. The Curie-Weiss behavior is observed

at high temperatures, and χ shows a peak, which is suppressed below T ∗ ≈ 80 K owing

to the Kondo screening and finally becomes less T -dependent on decreasing the tem-

perature further. The substitution of Yb by Lu moves the system towards a normal

metal because Lu does not contain 4f electrons. The substitution strongly suppresses

the Curie-Weiss behavior, and the system gradually shows Pauli paramagnetic behavior

towards the Lu end. This result clearly demonstrates that the 4f electrons in Yb ions

play an important role in its electronic properties and the observed behavior is entirely

consistent with the Kondo physics. This behavior is also supported by the NMR Knight

shift [55,56], as shown in Fig. 1.12(c).

The formation of the hybridization gap was also observed through optical conduc-

tivity [57] and photo-emission spectroscopy (PES) measurements [58, 59]. Fig. 1.13(a)

displays the optical reflectivity R(ω) and conductivity σ(ω) [57]. At high temperatures,

R(ω) shows the rather metallic behavior of plasma reflection as R(ω = 0) → 1. How-

ever, at low temperatures, R(ω) shows a peak feature at ω ∼ 15 meV. σ(ω) is also

gradually suppressed with decreasing temperature, and at 8 K, σ(ω) becomes almost
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(a) (c)(b)

Figure 1.12: (a) Arrhenius plot of the resistivity ρ and Hall coefficient RH in a single
crystal of YbB12 [50]. (b) Temperature dependence of the susceptibility of Yb1−xLuxB12

[54]. (c) Temperature dependence of the 11B NMR Knight shift [55].

(a) (c)(b)

Figure 1.13: Formation of hybridization gap in YbB12. (a) Optical reflectivity R(ω) and
conductivity σ(ω) [57]. The red arrow indicates the direct gap amplitude. (b) DOS vs.
binding energy determined by laser PES measurements [59] at various temperatures.
(c) Temperature dependence of the spectrum intensity obtained from cuts at various
binding energies in the data in (b).
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zero below ω ∼ 15 meV, as indicated by the red arrow in Fig. 1.13(a). These re-

sults clearly indicate an optical gap developing below ≈ 80 K, and the gap amplitude

is consistent with other experiments. Another shoulder-like structure around 40 meV

corresponds to the indirect gap excitation. Laser PES measurements also provide in-

formation on the DOS around EF [59]. Fig. 1.13(b) clearly shows the development

of the multi-gap feature with temperature. Fig. 1.13(c) also shows the temperature

dependence of the spectral intensity with different binding energies obtained from the

DOS data. The intensity at the inner-gap edge of 15 meV begins to develop below

the coherent temperature of 110 K, and the DOS at EF decreases owing to the gap

formation. Although the coherent temperature is slightly higher than that determined

from other experiments, the result strongly supports the opening of the hybridization

gap at low temperature.

1.7.2 Field-induced insulator-metal transition

The hybridization gap can be suppressed by applying magnetic fields such that

the Zeeman energy is sufficient to break the Kondo singlet: gµBB ∼ ∆. The high

magnetic field can completely destroy the gap so that the system turns metallic. Pulsed

high-field measurements reveal this insulator-metal (I-M) transition with the critical

field HI-M ranging from µ0HI−M ≃ 45-47 T (H||[100]) to 55-59 T (H||[110]) [60–63].

Fig. 1.14(a)-(c) shows the field dependence of resistivity [63], specific heat [62], and

magnetization [61]. Reflecting the gap suppression, a negative MR is observed up to

HI-M. In the higher-field regime above HI-M, ∆ completely vanishes, and the system

shows a negligibly small MR, indicating a field-induced metallic phase. Although not

mentioned in this early paper [63], the oscillating behavior observed in an x = 0 sample

around 40-55 T may be the signature of quantum oscillations, which will be discussed

in more detail in chapter 3. Corresponding to the phase transition, the specific heat C

is also dramatically and discontinuously enhanced at the critical field. The finite large

Sommerfeld coefficient γ at the high-field regime clearly indicates that the DOS at EF

is induced in the metallic phase. The field induced metallic phase with the large γ is

termed the Kondo metal phase because the Kondo correlation does not break down
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at HI-M and robustly remains even in the metallic phase. The magnetization M also

shows a kink anomaly at the critical field, and M shows a strong upturn in the Kondo

metal regime. In the powder sample, a second transition at approximately 100 T is also

observed. Little is known about this phase because the excessively strong field limits

the types of measurements we can conduct.

(a) (c)(b)

Figure 1.14: High-field properties of YbB12. (a) Field dependence of the series of
single crystals Yb1−xLuxB12 with different field directions [63]. (b) B-T mapping of
specific heat (upper panel). The lower panel displays C/T vs. T 2. The intercept at
T 2 → 0 corresponds to the quasiparticle contribution in C [62]. (c) Field dependence
of magnetization and its derivative with respect to the field [61].

1.7.3 Topological surface state

While SmB6 has been intensively studied as the first candidate TKI, research on

YbB12 is rather scarce. A recent ARPES measurement on a clean (001) surface revealed

surface band dispersion, which is consistent with a topological SS [64]. As shown in

Fig. 1.15(a), the ARPES intensity at a biding energy of 200 meV shows distinct square

constant-energy contours at 20 K. As indicated by the red dotted line, the photon

energy does not affect the in-plane momentum of this band dispersion. This result
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indicates that the band does not host dispersion along kz, demonstrating a 2D surface

metallic state. Furthermore, this surface band shows hybridization with the flat f -band

below T ∗, as shown in Fig. 1.15(b). The reconstructed band dispersion along the [100]

direction taken with a photon energy of 16.5 eV is shown in Fig. 1.15(c). The surface

band clearly crosses the Fermi level at k||[100] ∼ 0.18 (Å−1). This dispersion appears to

connect to the f -band at the Γ̄ point at the binding energy ∼ 35 meV, leading to the

degeneracy at TRIM, which is consistent with a topological SS. Although the surface

band dispersion shows good agreement with that of a topological SS, the spin texture

in the SS of YbB12 has been scarcely studied thus far, especially from the perspective

of transport properties.

(a) (c)(b)

Figure 1.15: ARPES data acquired from a clean (001) surface of YbB12 [64]. (a)
ARPES intensity map a the binding energy of 200 meV. (b) Band dispersion at different
temperatures ranging from room temperature to 15 K. (c) ARPES data taken with a
photon energy of 16.5 eV. The bottom panel shows the momentum distribution curve
near EF = ±10 meV.
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2 Unconventional quantum oscilla-

tions in SmB6

2.1 Introduction

A Fermi surface sets the boundary of occupied and unoccupied electron states in

momentum space at zero temperature. It is well established that the presence of a Fermi

surface is the definitive character of metals; hence, insulators (as well as semiconductors)

do not have a Fermi surface. Most of the physical properties of a certain material are

determined by its electrical ground state and how its electrons excite from that state.

As electrons (fermions) follow the Pauli exclusion principle, only the electrons near

the Fermi surface can participate in the excitations. This is why most of the physical

properties of metals are determined by the geometry of the Fermi surface. Therefore,

studying the geometry of the Fermi surface, which is also called Fermiology, is the one

of the most promising ways to understand a metal from a physical perspective.

Quantum oscillation (QO) is a phenomenon in which certain physical quantities, such

as magnetization and resistivity, show periodic oscillations with respect to the reciprocal

of external fields. QO is driven by the Landau quantization of conduction electrons in

strong fields, and reflects much information about the Fermi surface. Intuitively, this is

because one can scan and map the electron states in momentum space by modulating

the Landau level. Therefore, QOs have been employed as pivotal experimental tools

in Fermiology. Recently, it has been reported that some TKIs such as SmB6 and

YbB12 show QOs, although they are insulators. These observations have attracted

great interest in the condensed matter physics community because these KIs are the

first experimental counterexamples for insulators that may host Fermi surfaces. In this

chapter, we review the recent observations of unconventional QOs in TKIs and the

theories proposed to explain how they arise in insulators.

34



2.2 Quantum oscillations

In classical mechanics, the motion of electrons under magnetic fields can be described

as a cyclotron motion owing to the Lorentz force. This closed orbit is manifested in

the Landau quantization of energy levels (Landau levels) in the framework of quantum

mechanics. The Schrödinger equation for a stationary charged particle in a 3D system

is given by
1

2m
(−iℏ∇+ eA)2ψ = Eψ. (2.1)

When a magnetic field is applied parallel to the z-axis, the vector potential can be

expressed as A = (0, Bx, 0). The Schrödinger equation can then be transformed into

∂2ψ̃

∂x2
+

[
2mE

ℏ2
− k2z −

(
eBx

ℏ
− ky

)2
]
ψ̃ = 0, (2.2)

where ψ̃ = ψ exp[i(kyy + kzz)]. By substituting ξn = E − ℏ2k2z/2m, x′ = x − ℏky/eB,

and ωc = eB/m, we obtain the equation of motion for the harmonic oscillator:

∂2ψ̃

∂x2
+

2m

ℏ2

[
ξn −

1

2
mω2

cx
′2
]
ψ̃ = 0. (2.3)

The energy eigenvalue is then simply given by

E = ξn + E(kz) =

(
n+

1

2

)
ℏωc +

ℏ2k2z
2m

. (2.4)

Therefore, the energy levels for the motion within the xy-plane split into subbands with

the energy difference ∆E = ℏωc. Fig.2.1 shows schematics of the electron states of a

3D electron gas (a) without and (b) with an applied external field. Because the motion

along the z-axis is not quantized, the energy levels form coaxial cylinders of Landau

tubes along the z-axis.

The correspondence principle gives the orbit-area quantization condition [65], leading
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
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(a) (b) (c)

Figure 2.1: Schematic of the spherical Fermi surface of a 3D free electron gas (a) without
external fields and (b) under a magnetic field along the z-direction. (c) Extreme cross-
section S(θ) of the Fermi surface perpendicular to the magnetic field tilted by θ from
the z-axis.

to the following relation between the cross-section of the n-th cylinder An and n:

An = (n+ γ)
2πeB

ℏ
. (2.5)

As the field increases and energy splitting broadens, the outermost cylinders below

the Fermi level are pushed out into the unoccupied states. This depopulation of the

electrons near the Fermi level occurs periodically with respect to the change in the

magnetic field, and its frequency F is given by

F =
A(θ)

2πeℏ
, (2.6)

where A(θ) is the extreme cross-section of the Fermi surface perpendicular to the field

direction, as shown in Fig. 2.1(c). Eq. 2.6 is also known as Onsager’s rule, according

to which the frequency of the quantization is proportional to the cross-section of the

Fermi surface. Consequently, the thermodynamic potential shows sets of oscillations as

a function of the reciprocal of the field; consequently, some physical properties such as

the thermodynamic and transport quantities of metals also show oscillations. The QOs

in magnetization are called the de Haas-van Alphen (dHvA) effect, while the QOs in

resistivity are referred to as the Shubnikov-de Haas (SdH) effect.

It is worth noting that Eq. 2.6 holds even if An is B-dependent. For the B-dependent
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cross-section A(Bn), Eq. 2.5 can be expressed as

A(Bn) = (n+ γ)
2πeBn

ℏ
. (2.7)

A set of equations for n and n+1 can be combined to produce

A(Bn+1)

Bn+1

− A(Bn)

Bn

=
2πe

ℏ
. (2.8)

Moreover, F is field-dependent, the quantization condition should be satisfied when the

field is equal to F (Bn), i.e., F (Bn)/Bn = n+ γ, which yields

F (Bn+1)

Bn+1

− F (Bn)

Bn

= 1. (2.9)

Therefore, Eqs. 2.8 and 2.9 demonstrate that Onsager’s rule still holds:

F (B) =
ℏ
2πe

A(B). (2.10)

The QOs are formulated as the well-known Lifshitz-Kosevich (LK) formula [66, 67],

and the oscillatory part of magnetization is given by

Mosc = −
∞∑
r=1

1

r3/2
Mr sin

[
2πr

(
F

B
− 1

2
± π

4

)]
, (2.11)

where the + and − signs in the phase shift of ±π/4 correspond to the minimum and

maximum cross-section area, respectively. The amplitudes of the oscillations Mr are

given by

Mr =
( e

2πℏ

)3/2 A(θ)B1/2

π2m∗|A′′|1/2extr

RT (r)RD(r)RS(r), (2.12)

where m∗ is the cyclotron effective mass and |A′′|extr = (∂2S/∂p2B)extr is the curvature of

the Fermi surface around the cross-section along the B direction. Eq. 2.12 also contains

three types of damping factors, namely, temperature, Dingle, and spin damping, which

are denoted as RT (r), RD(r), and RS(r), respectively. These three factors arise from

the broadening of the Landau levels driven by the finite thermal energy in the Fermi-
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Dirac distribution function, impurity scattering, and Zeeman splitting of opposite spin

bands, respectively. RT (r) can be expressed as,

RT (r) =
2π2rkBT/(ℏωc)

sinh[2π2rkBT/(ℏωc)]
=

KrµT/B

sinh(KrµT/B)
, (2.13)

where µ = m∗/m0 and K ≡ 2π2kBm0/(ℏe) ∼ 14.7 T/K. Therefore, by utilizing µ as a

fitting parameter, one can estimate the effective mass of electrons from the temperature

dependence of the oscillatory amplitudes. The Dingle-damping factor is given by

RD(r) = exp

(
− πr

ωcτ

)
= exp(−Bc/B) = exp(−KrµTD/B), (2.14)

where TD = ℏ/(2πkBτ) is the Dingle factor related to the impurity scattering energy.

The characteristic field found in the numerator of the exponent Bc = KrµTD is the

field above which QOs are visible. The field Bc can also be expressed as the reciprocal

of the mobility eτ/m∗. By utilizing TD as a fitting parameter again, one can estimate

the scattering time τ from the field dependence of the oscillatory amplitudes. Finally,

the spin-damping factor is written as

RS(r) = cos
(π
2
rgµ
)
, (2.15)

which contains the g-factor. As shown above, the measurements of QOs provide rich

information on the geometry of the Fermi surface, effective mass, scattering time, and

g-factor of metals. According to Eqs. 2.13 and 2.14, the oscillation amplitude becomes

visible when ℏωc > kBT and ℏωc > ℏ/τ . The first condition is rewritten as B/T >

kBm
∗/ℏe, suggesting that sufficiently large magnetic fields and low temperatures are

required to experimentally resolve QOs. Moreover, when the cyclotron mass m∗ is low,

QOs are relatively easy to detect. The second condition from the Dingle factor leads

τ > 1/ωc, implying that an electron must form a closed cyclotron orbit before it is

scattered. This condition necessitates a clean crystal with a long scattering time.
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2.3 Quantum oscillations in SmB6

2.3.1 Results reported by the Michigan group

The first observations of QOs in the KI SmB6 was reported by Li et al. [68] from

the University of Michigan. They synthesized single crystals of SmB6 by using the

aluminum flux method and measured the magnetic torque τ by using the capacitance

cantilever method. The field dependence of τ and a schematic of the experimental setup

are shown in the main panel and inset of Fig.2.2(a), respectively. As τ = M × H ,

the oscillations in τ are a direct consequence of the dHvA effect. As shown clearly in

Fig. 2.2(a), the magnetization shows clear oscillations at high fields. By performing a

fast Fourier transformation (FFT), one can separate multiple components of oscillations

with different frequencies F . In Fig. 2.2(b), one of the characteristic frequencies, F β,

is plotted as a function of the field angle ϕ. First, F β(T ) shows four-fold rotational

symmetry, which is expected from the cubic crystalline structure of SmB6. Most im-

portantly, as shown by the black curves in Fig. 2.2(b), all the data can be perfectly

fitted by

F =
F0

cos(ϕ− π/4− nπ/2)
, (2.16)

which is the angular dependence of the cross-section expected from the cylindrical Fermi

surface of 2D electrons. This field dependence strongly suggests that the dHvA effect

originates from the 2D electronic state, which is most likely to have originated from the

topological SS. The amplitude of the oscillations are shown as a function of temperature

in Fig. 2.2(c). As the oscillations contain three different frequencies and, thereby,

different Fermi pockets α, β, and γ, one must separate each oscillatory component by

performing FFT. As shown by the solid curves in Fig. 2.2(c), the normalized amplitudes

follow the LK formula given by Eq. 2.13, which extracts the effective mass m∗ = 0.12-

0.19m0. The observed LK behavior indicates that the quasiparticles participating in

the dHvA effect follow the Fermi-Dirac statistics, and hence, they are fermions. The

low effective mass of roughly 0.1 times that of a free electron is rather surprising, as

the strong correlations in KI tend to yield heavy fermions with a large m∗.
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(a) (b) (c)

SmB6

T = 0.3 K

Figure 2.2: The dHvA effect observed in a flux-grown SmB6 crystal [68]. (a) Field
dependence of the magnetic torque. (b) Angular dependence of the FFT frequency. (c)
Temperature dependence of the normalized FFT amplitudes for three different Fermi
pockets. The solid curves represent the LK fitting given by Eq. 2.13.

2.3.2 Results reported by the Cambridge group

Soon after the first report by the Michigan group, Tan et al. [69] from Cambridge

University also reported the dHvA effect in SmB6. Although they found the same

phenomenon in the same compounds, they presented some surprising results, which were

not observed in the first report. While they employed the same types of experimental

techniques, the single crystals of SmB6 used in their study were prepared using the

floating zone method. The left panel of Fig. 2.3(a) shows the angular mapping of

the FFT frequency extracted by the dHvA effects of SmB6. In addition to the low-

frequency oscillations around F ∼ 102-103 T, which were also observed by the Michigan

group, they found other oscillations with higher frequencies F ∼ 103-104 T. The dHvA

frequencies of the isostructual metallic compound LaB6 are shown in the right panel

of Fig. 2.3(a). It was pointed out that the observed higher frequency in SmB6 and its

angular dependence is akin to that of LaB6, which implies that these two materials have

similar Fermi surfaces. As one can regard LaB6 as SmB6 without hybridization owing

to the absence of f -electrons, its Fermi surfaces are nearly spherical, large pockets of

conduction bands located on the X points, as illustrated in Fig. 2.3(b). This similarity

of the Fermi surfaces is quite surprising because such a large 3D Fermi surface rules
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out the possibility that the dHvA effect with the higher frequency originates from the

SS. Therefore, the Cambridge group’s results suggest that SmB6 somehow possesses an

unconventional 3D bulk Fermi surface, although it is a charge insulator. As this was the

first experimentally observed insulator that shows QOs, the oscillations are occasionally

referred to as unconventional QOs.

Another surprising feature of this unconventional dHvA effect is its non-LK behavior

in the temperature damping factor. The temperature dependence of the amplitude of

the oscillations is shown in Fig. 2.3(c), and the red curve in the inset shows the LK

fit. A good agreement with the LK curve can be found around 1-15 K, yielding the

light effective mass of m∗ ≈ 0.18m0. This m∗ is rather close to that observed by the

Michigan group. However, the amplitude strongly deviates from the LK fit below ∼

1 K, showing a non-monotonic, sharp upturn towards low temperatures. This unusual

temperature dependence of amplitude may indicate that the quasiparticles do not follow

the Fermi-Dirac distribution, or that multiple types of quasiparticles with different m∗

are involved in the dHvA signals. The theoretical approach for this non-LK behavior

will be discussed in subsection 2.4.

(a) (c)

(b)

Figure 2.3: Unconventional dHvA effect observed in SmB6 crystals grown using the
floating-zone method [69]. (a) Angular dependence of the dHvA frequency for SmB6

(left panel) and LaB6 (right panel). (b) An illustration of the Fermi surface of LaB6.
(c) Temperature dependence of the oscillation amplitude. The red curve in the inset
represents the LK fitting of Eq. 2.13.
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2.3.3 Problems related to the QOs in SmB6

Although the observations of the dHvA effect provide convincing evidence for the

Fermi surfaces of SmB6, which may originate from the topological SS or exotic 3D insu-

lating phase, several problems remain. The first problem is why the QOs in resistivity

(SdH effects) have never observed so far. The MR of the flux-grown sample was also

reported by the Michigan group [68] (Fig. 2.4(a)). Although the dHvA effects are

clearly resolved below T ∼ 25 K and above B ∼ 5 T, no evidence of SdH oscillations

was detected, even at the lowest temperature of T ∼ 350 mK and fields of up to ∼ 45

T. Given the low m∗ and high mobility of the quasiparticles estimated from the dHvA

signals, the absence of the SdH signal in such conditions is puzzling. A possible expla-

nation for this issue is that the scattering probability is not significantly affected by the

Landau quantization, leading to less pronounced SdH signals, while the dHvA effect

is a direct consequence of the oscillations in the thermodynamic potential. However,

this idea has not been quantitatively justified, and the lack of the SdH signal has been

under debate.

The second issue is whether the dHvA effects are intrinsic properties of SmB6. As the

difference between the results of the Michigan group and Cambridge group lies in the

method of crystal growth, it has been suggested that the qualitative difference might

have originated from the sample quality or an extrinsic effect induced by the impurity

of the aluminum flux. From this perspective, torque measurements on SmB6 were re-

examined by Thomas et al. [70] from Los Alamos National Laboratory. To verify the

effect of the aluminum flux more clearly, they prepared crystals with an intentionally

large amount of aluminum flux, as shown in Fig. 2.4(b). The torque signal with respect

to the field is shown by the blue curve in Fig. 2.4(c). The crystal shows a clear dHvA

effect, and the angular dependence of this frequency and the temperature dependence of

the amplitude are quite similar to those reported by the Michigan group. Furthermore,

on polishing the as-grown crystal to remove the flux, the oscillations in torque decrease

and finally vanish within the experimental resolution. The results suggest that the 2D

features of the dHvA effect originate from the extrinsic metallic aluminum phase and
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are not intrinsic to SmB6.

On the other hand, the Cambridge group recently reported another experiment [71],

where they argue that the dHvA effect is an intrinsic property of the insulating bulk

of SmB6, as reported earlier. They prepared an extremely clean single crystal of SmB6

by using the floating-zone method. The crystals show a lower concentration of impu-

rities, better thermal conductivity, and an inverse residual resistivity ratio higher than

those of previously investigated samples by over an order of magnitude, demonstrating

that the new sample is of much higher quality. In the newly prepared crystals, they

reproduced dHvA signals similar to those in the previous report [69]. The oscillation

amplitudes are comparable to that of the paramagnetic response, indicating that the

dHvA effects originate from a major portion of the sample, i.e., the bulk. Moreover,

they also show the dHvA signals of a single crystal of elemental aluminum, pointing

out that their frequencies are essentially different from that observed in SmB6.

As seen thus far, there is still no consensus on whether the QOs have a surface or

bulk origin; it is also unclear whether the dHvA effect is intrinsic to SmB6. It is, thus,

essential to address these issues for understanding the nature of unconventional QOs in

KIs, and further investigation on other materials is necessary.

SmB6

(a) (c)(b)

Figure 2.4: (a) Magnetoresistance of SmB6 [68]. (b) SmB6 crystal with intentionally
embedded aluminum impurities. The sample was polished into small pieces with a low
concentration of aluminum. (c) dHvA data observed in the samples shown in (b) [70].
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2.4 Theories for the unconventional quantum oscil-

lations

After the discovery of the dHvA effects in SmB6, a substantial number of theories

have been proposed to explain this phenomenon. In this section, we review some of the

theories to examine how QOs can arise from the insulating bulk and how these theories

can be verified experimentally. Some are based on the intrinsic properties of narrow-gap

insulators, while some assume certain types of charge-neutral quasiparticles.

2.4.1 QOs without a bulk Fermi surface

It was pointed out that the gap amplitude of KIs shows oscillatory narrowing under

external fields owing to the inverted band structure resulting from the c-f hybridiza-

tion [72]. In a simple metal with a parabolic conduction band, the Landau tubes

periodically swell out and pass through the chemical potential µ as the field increases,

leading to the periodic modulation of the low-energy density of states (LEDOS), as

shown in Fig. 2.5(a). In KIs, on the other hand, the Landau tubes first approach µ

but are reflected at the band edge; consequently, they move away from µ (Fig. 2.5(b)).

In accordance with this gap narrowing, the LEDOS also oscillates. In a narrow-gap

insulator, thermally activated quasiparticles show periodic oscillations in the thermo-

dynamic potential, leading to the magnetic QOs. A key ingredient for this theory is

that only the inverted band structure is preferred in KIs; therefore, any narrow-gap

insulators with band inversion would show QOs irrespective of their topological nature.

It is worth noting that this thermal activation leads to a exponential decrease in the

oscillatory amplitude at the absolute zero temperature.

There are also several theories based on the topological SS as a source of the QOs [73].

In this scheme, the non-LK behavior observed in SmB6 can be explained by the Kondo

breakdown of the SS. The band structures of SmB6 are calculated by changing the

parameter ⟨bs⟩2/⟨b⟩2, which indicates the amount of hybridization between the local

moments on the surface and the topological SS. Fig. 2.5(c) and (d) show the resulting
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(a) (b) (c) (d)

Figure 2.5: Schematic of the band structure and the corresponding LEDOS in (a)
metals and (b) KIs [72]. The blue arrow indicates the direction to which the Landau
level moves as the field increases. (c), (d) Calculated surface (red lines) and bulk (black
lines) band structures of KI with different hybridization strengths on the SS [73].

band structure of the bulk and the SS with black and red curves, respectively, and

their insets depict the Fermi surface of the SS. For ⟨bs⟩2/⟨b⟩2 = 1, the SS is completely

hybridized to the local moments on the surface, leading to surface electrons with a large

m∗ forming a small Fermi pocket. With decreasing temperature, ⟨bs⟩2/⟨b⟩2 decreases

and the surface electrons decouple to the local moment, resulting in the small m∗ and

large Fermi surface. This Kondo breakdown on the surface possibly explains the non-

LK behavior through the dramatic change in m∗.

An alternative approach is based on non-Hermitian Landau level problem of impurity-

induced in-gap states of narrow insulators [74,75]. The electron scattering between dif-

ferent Landau levels can be described by the non-Hermitian quasiparticle Hamiltonian.

This scattering process is important to realize the in-gap state, which is responsible for

the QOs. Contrary to the gap-narrowing scenario, the amplitude of QOs remains finite

even at the absolute zero temperature in this theory.

The importance of the strong correlation effect to the SS has also been studied [76].

The interplay between correlations and topology successfully explains both the dHvA

and SdH effect, the amplitudes of which are enhanced on increasing the correlation

strength.
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2.4.2 Neutral quasiparticles as a source of QOs

The theories we have discussed so far do not require any actual bulk Fermi surfaces

but demonstrate that some insulators still can exhibit QOs. A more straightforward

idea, in some ways, is that a certain type of quasiparticles form bulk Fermi surfaces

and can experience the Landau quantization in magnetic fields, resulting in the uncon-

ventional QOs. However, such quasiparticles cannot be conventional electrons because

they are not directly responsible for the charge transport, given the activation behavior

in the resistivity of KIs. In other words, they must be charge-neutral quasiparticles.

Some theories are, in fact, based in this idea, and several types of charge-neutral quasi-

particles have been proposed.

Knolle and Cooper [77] proposed that excitons, which are bound states of an electron

and an hole, can be realized in SmB6 and may be the source of the QOs. In this sce-

nario, they showed that KIs are susceptible to the formation of excitons owing to the

ring-shaped dispersion of the hybridized bands. In a certain range of parameters, the

dispersion of the excitons can be considered gapless, which results in the QOs. Despite

the charge neutrality of excitons, they are responsible for the thermal excitations, lead-

ing to the finite specific heat and thermal conductivity. Because of their bosonic nature,

the calculated temperature dependence of specific heat and thermal conductivity show

non-monotonic behavior, as shown in Fig. 2.6(a)-(b). While this theory can explain the

dHvA effect and its non-LK temperature damping, it is not unclear how SdH effects

can be described within this theoretical framework.

Chowdhury et al. [78] also developed a theory based on excitons. First, following the

slave-boson representation f = bχs, the f -holes f are fractionalized into spinless bosons

b (holons) with charge −e and neutral fermions χs (spinons) with spin s (Fig. 2.7(a)-

(b)). The conduction d-electrons d then form binding states with holons b in the form

Ψ = bd owing to the strong attractive interaction. Here, Ψ represents the composite

fermionic excitons that follow Fermi-Dirac statistics. As these composite excitons and

spinons form neutral Fermi surfaces of hybridized bands, as shown in Fig. 2.7(c), the

low-energy excitations become similar to that of ordinal metals, yielding T -linear terms
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in the specific heat C ∼ γT , thermal conductivity κ ∼ κ0T , and NMR spin-lattice

relaxation rate, 1/T1 ∼ T . This theoretical view is similar to the spinon Fermi surface

proposed in quantum spin liquids [79], although QOs have not been experimentally re-

alized in this class of materials. QOs can also occur when these neutral fermions couple

to external fields through the internal gauge degree of freedom in holons. This coupling

is also expected to be manifested as a sizable finite thermal Hall conductivity κxy, as

the neutral fermions experience the Lorentz force in fields.

Majorana fermions have also been proposed [80–82] as a source of the unconventional

QOs. Historically, they were first introduced in the context of particle physics, and re-

cently, they have been intensely debated as possible emergent quasiparticles in certain

quantum materials such as the Kitaev model [83, 84]. It is interesting to note that the

introduction of the Majorana operator in KI was first prompted by Coleman et al. [85]

in 1993 before the discovery of TIs and the unconventional QOs in KIs. Majorana

fermions are particles whose anti-particles are themselves (γ = γ†), and therefore, they

are charge neutral. They can be described as fractionalized electrons and may form

a neutral Fermi surface, as shown in Fig. 2.7(d). The QOs can be realized through

the Landau quantization of original electrons. However, no experiments have provided

direct evidence of Majorana fermions in KIs.

We have seen that several types of neutral quasiparticles have been proposed as pos-

sible candidates for the origin of the QOs. One way to test the presence of such neutral

particles is to detect the neutral Fermi surface by measuring other physical quantities

such as thermal conductivity. The response with respect to an applied magnetic field

may also provide pivotal information that allows us to identify the microscopic origin

of the excitations.
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(a) (b)

Figure 2.6: Calculated temperature dependence of the (a) specific heat and (b) thermal
conductivity based on the exciton model [77].

(a) (d)

(b)

(c)

Figure 2.7: Proposed Fermi surfaces of neutral fermions of composite excitons [78]. (a)
Schematic of the fractionalization of the f -hole. (b) Formation of the composite exciton
between a conduction electron and holon. (c) Hybridized band of the neutral fermion
of an exciton and a spinon.
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3 Quantum oscillations in YbB12

3.1 Introduction

The observation of unconventional QOs in SmB6 stimulated substantial efforts to un-

derstand its nature, both theoretically and experimentally. The fundamental question

is whether they are intrinsic properties commonly observable among (topological) KIs

or a specific feature inherent in SmB6. A comparison to other similar materials, thus,

may provide important information to solve this problem. For the other TKI YbB12,

we investigated high-field electric properties such as the transport, magnetic torque,

and penetration depth to discover possible QOs in both insulating and field-induced

metallic phases by employing a series of experimental techniques [86, 87].

3.2 Sample characterization

High-quality single crystals of YbB12 were grown and provided by Prof. Fumitoshi Iga

at Ibaraki Univeristy, Japan. The crystals were synthesized using the traveling-solvent

floating-zone method [50]. We conducted a series of measurements for three different

samples, which are labeled #1, #2, and #3. #1 and #2 were cut off from the same

growth batch, while #3 was taken from another batch. To estimate the sample qual-

ity, we performed synchrotron X-ray powder diffraction measurements at the BL02B2

beamline at the SPring-8 facility, Japan. Figs. 3.1(a)-(b) display the diffraction pat-

tern. Fine peaks attributed to the crystalline structure of YbB12 were clearly observed.

As impurities, tiny amounts of Al2O3 and YbB6 were found. Al2O3 contamination pos-

sibly occurred during the grinding process for making the powder from the bulk crystal,

while YbB6, which is a correlated insulator, is the only impurity phase we found in our

sample. Peaks corresponding to other metallic YbBx compounds such as YbB2 and

YbB4 could not be resolved with our experimental resolution, and the maximum vol-

ume can be estimated to be less than 10 ppm. These diffraction results indicate that the
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samples contain an extremely low concentration of metallic impurities. The magnetic

susceptibilities of crystal #2 and #3 were measured using MPMS Quantum Design,

and the resulting temperature dependence is shown in Fig. 3.1(c). We found excellent

agreement with previously reported data [54]: χ shows a Curie-Weiss-like response at

high temperature as well as a broad peak around 70 K, and it finally shows saturation

at low temperature. However, there is a minor difference in that the absolute value be-

low 10 K is slightly smaller than that in the previous report. This suggests the Kondo

screening is a little stronger in the present sample, which may indicate a better sample

quality.

(a) (b) (c)

Figure 3.1: Sample characterizations. (a), (b) Synchrotron X-ray powder diffraction
pattern of the YbB12 samples. The bottom tick marks in (a) represent the peak positions
of YbB12, while the circles and triangles in (b) indicate the peaks of YbB6 and Al2O3,
respectively. (c) Temperature dependence of the susceptibility χ in #2 and #3. The
inset shows an expanded view of the region below 30 K.

The higher sample quality also results in a slight variation in the gap amplitude ∆

among the different growth batches. Fig. 3.2(a) displays the temperature evolution of

the resistivity ρ of all the three samples. At 0.1 K, ρ is 4-5 orders of magnitude larger

than that at room temperature. Although ρ is not sample dependent around room tem-

perature, it shows significant variation with decreasing. The resistivity plateau, which

we also discussed in chapter 1, appears to be due to surface conduction as the residual

resistivity is roughly proportional to the sample thickness. To evaluate ∆, we make an

Arrhenius plot, ln ρ vs. 1/T , for all crystals. We found a two-gap behavior, which is
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consistent with a previous transport measurement [50]. The small gap developing below

≈ 20 K shows a slight sample dependence, and the linear fittings over the temperature

range of 6 K < T < 12.5 K yields a gap of 4.7 meV for #1 and #2 and of 4.0 meV

for #3. The present results suggest that the sample quality of the first batch (#1 and

#2) is slightly higher than that of the second one (#3), as the large activation energy,

in general, implies a low impurity concentration and high homogeneity. The larger gap

developing in the temperature range of 20 K < T < 300 K is approximately 11 meV,

and this gap does not show significant sample dependence. We note that the larger gap

is almost twice larger than that reported in another paper [88].

It is also worth noting that our transport data do not reveal any metallic behavior

below the I-M transition critical field µ0HI-M ∼ 46 T. Fig. 3.2(c) shows the temperature

dependence of the resistivity with different magnetic fields of up to 45 T. Even at 45 T,

ρ shows an increasing trend with decreasing temperature, indicating that the activation

behavior survives and the samples are purely insulating.
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Figure 3.2: (a) Temperature dependence of resistivity in three samples. (b) Arrhenius
plot above 5 K. The solid lines indicate the fitting results, and the activation energy
∆ is extracted from their slopes. (c) Temperature dependence of resistivity in various
fields taken using pulsed fields. The open and solid circles represent the data taken in
a 3He cryostat at ϕ = 7.4◦ and in a dilution fridge at ϕ = 8.5◦, respectively. The solid
lines are guides to the eye.
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3.3 Results and discussion

3.3.1 QOs in the insulating phase of YbB12

Fig. 3.3(a) shows the field dependence of the magnetic torque τ in #1 with different

ϕ of up to 45 T. Here, ϕ denotes the angle of the magnetic-field direction from the

[100] crystal axis. τ shows a step-like anomaly around 20 T, which is attributed to the

meta-magnetic transition. More importantly, τ shows distinct oscillations around ∼

38-45 T. It is remarkable that the dHvA effect occurs in the insulating phase of YbB12,

similar to SmB6. The inset shows the FFT frequency of the dHvA oscillations in the

field range of 38.5-45 T. The major peak of F = 720 T and its higher harmonics are

clearly resolved by the calculation.

Next, high-field MR data in the three samples are given in Fig. 3.3(b). Remarkably,

the samples show clear oscillations well below the critical field HI-M, revealing that the

SdH effect can be observed in the insulating phase of YbB12, unlike SmB6. The negative

slope of the background MR, which is the hallmark of field-induced gap suppression,

can be subtracted by polynomial fitting to produce the oscillatory component of the

MR ∆ρ, as shown in Fig. 3.3(c). Distinct oscillations were resolved especially in #1

and #2, but #3 does not show significant periodic modulations. The fact that #1

and #2 show peaks at the same intervals with respect to 1/H strongly indicates that

the oscillation is indeed the SdH effect. Moreover, the SdH oscillations in #1 and #2

become visible under almost the same field, implying that the scattering rates in these

two samples are almost identical. On the other hand, because #3 has a smaller ∆ than

#1 and #2, the scattering rate in #3 should be lower. The absence of the SdH effect in

#3 is consistent with this view, but it also indicates that crystals with stronger insulat-

ing characters show more pronounced QOs, which is inconsistent with the conventional

theory of QOs. The current observations imply that the QOs in the insulating phase

are an inherent feature of YbB12, as metallic impurities, if they existed, would have

behaved in a manner opposite to the observations.

As discussed in section 2.4, it is important to check whether the quasiparticles forming
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Figure 3.3: Quantum oscillations observed in the insulating phase of YbB12. (a) dHvA
effect proved by the magnetic torque. The inset shows the oscillation frequency cal-
culated via FFT. (b) High-field magnetoresistance of three samples. #1 and #2 show
distinct SdH oscillations around 36-44 T. (c) Oscillatory component of the magnetore-
sistance as plotted against 1/µ0H for all samples, obtained from the data in (b).

the Fermi surface follow the Fermi-Dirac distribution law. The temperature dependence

of the normalized oscillation amplitude for both the dHvA and SdH effects is displayed

in Figs. 3.4(a)-(c). The solid curves are the fitting results obtained using the LK-

formula (Eq. 2.13). We found excellent agreement with the LK curves for the data of

both oscillations over the different ranges of fields and angles, implying that the quasi-

particles are fermions. The fittings yield an effective mass ratio of m∗/m0 ∼ 6.7 from

the dHvA effect and ∼ 15 from the SdH effect. The different effective masses obtained

from the dHvA and SdH effects may imply that they originate from different bands,

although there remains the question why the band with the smaller mass detected from

the dHvA effect does not contribute to the SdH signal. The observed effective mass

is larger than that of a bare electron, which is contrary to the case of the small mass

observed from the dHvA effect in SmB6. This larger mass of the quasiparticles indicates

that they result from the strong correlation in the Kondo lattice. The successful FFT

calculation of the oscillations and the good agreement with the LK description confirm

that the observed high-field features are QOs, rather than a series of field-induced Lif-

shitz transitions.
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(a) (b) (c)

Figure 3.4: Temperature dependence of the normalized amplitude of (a) the dHvA
effect and (b), (c) the SdH effect in the insulating phase of YbB12. The solid curves in
each panel and the dotted curve in (a) are LK fits. The corresponding effective mass is
also given in each panel as a fitting parameter.

The angular dependence of F , which is calculated using FFT and Landau level fitting

for each type of QOs, is displayed in Fig. 3.5(a). The open circles represent the data

obtained from the dHvA effect, whereas the open triangles represent data extracted

from the SdH oscillations. The angular dependences of F obtained from the dHvA

and SdH effects are quite different, indicating that they originate from different bands.

The frequency of dHvA oscillations has a 2D-like nature: F can be well fitted by the

cylindrical Fermi surface model expressed as Eq. 2.16. However, the dHvA signal dis-

appears when the field is applied at an angle above ϕ ∼ 20◦. The relatively weak angle

dependence within the small angle range of |ϕ| < 20◦ cannot rule out the possibility

that the Fermi surface has a more prominent 3D nature. The frequency obtained using

the SdH signal, on the other hand, shows a non-monotonic angle dependence. In the

small angle range of |ϕ| < 20◦, the SdH frequency shows a stronger angle dependence

than that expected from the 2D model. Furthermore, above ∼ 20◦, F decreases with

increasing ϕ. The overall angular dependence can be explained by the 3D Fermi surface

illustrated in Fig. 3.5(b) but not the 2D cylindrical model. The steep change in the

small angle range can be traced by assuming a hyperboloid model, which is expressed

as

F (ϕ) ∝ (cos2 ϕ− r sin2 ϕ)−1/2 (3.1)
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with the shape scaling parameter r = a2/c2 in the hyperboloid equation (x2 + y2)/a2 −

z2/c2 = 1. The black dashed curve in Fig. 3.5(a) shows the fitting result with the

parameter r = 7.42. This hyperbolic Fermi surface is typically found in the “neck”

regime connecting large Fermi surfaces, as shown in Fig. 3.5(b). The frequency drop

above ϕ ∼ 20◦ can also be explained within this model by assuming large oblate 3D

spheroids. The magenta dash-dot curve in Fig. 3.5(a) is a rough description of the

high-angle data with the aspect parameter b/a = 0.101. The corresponding minimum

and maximum cross-section areas perpendicular to the [100] crystalline axis for the neck

and oblate spheroid are A = 7.62 and 37.5 nm−2, respectively. These 3D features of

the Fermi surface revealed by the SdH effect strongly suggest that the SdH signal arises

from the insulating bulk, rather than the (topological) 2D surface state.

(a) (b)

Neck regime

Oblate
spheroid

Figure 3.5: (a) Angular mapping of the QO frequency obtained from the dHvA effect
(open circles) and SdH effect (open triangles). The points were obtained using either
FFT or Landau level fitting. The green solid curve is a fit obtained using a 2D Fermi
surface model (Eq. 2.16) with F0 = 700 T. The black dashed curve represents the
simulation of for the neck-shaped Fermi surface model, while the magenta dash-dot
curve shows the calculation with the oblate spheroid model. (b) Schematic of the 3D
Fermi surface, which is consistent with our observations.
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3.3.2 High-field exotic metal of YbB12

The observations of QOs in YbB12 imply the existence of a Fermi surface with charge-

neutral fermions. To understand the nature of the QOs, it is informative to study how

the electronic structure evolves and enters the field-induced Kondo metal (KM) phase as

the energy gap closes. Moreover, the electronic properties realized in the field-induced

metallic state are not fully understood, because the experimental techniques we can

utilize are limited owing to the large critical field. In this section, we present transport

measurements by using the PDO technique in the KM phase to observe the SdH effect

and discuss how the possible Fermi surface of the neutral fermions are affected by

interactions with conventional charged fermions.

We employed the contactless proximity-detector-oscillator (PDO) technique, which

allows one to measure the conductivity of a metallic sample through the skin depth in

a pulsed magnetic field environment [89, 90]. The shift in the resonant frequency f of

the PDO circuit is given by

∆f = −a∆L− b∆R, (3.2)

where L and R are the inductance and resistance of a sample coil and a and b are

constants. The change in L in the coil filled with the metallic sample is related to the

change in the skin depth λ by ∆L ∝ (r−λ)∆λ, where r is the sample radius. The skin

depth is also expressed by a combination of the resistivity ρ, angular frequency of the

circuit ω, and permeability of the sample µ as

λ =

√
2ρ

ωµ
. (3.3)

Therefore, the frequency shift ∆f is a measure of the MR of the sample. When the

sample is insulating, the skin depth becomes as large as the sample radius, leading to

the complete penetration of the field through the sample. In this case, the change in λ

in the sample cannot be detected through ∆f . This implies that the PDO technique

is applicable only to metallic samples. Therefore, in the KI state of YbB12, ∆f is

determined by the MR of the copper wire of the coil.
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The field dependence of the PDO frequency f is shown in Fig. 3.6(a) for various

field directions θ, which is the angle from [100] towards [110]. The I-M transition

is manifested as the dip feature in f , as the sample skin depth shows a dramatic

change across the critical field. On top of the positive MR on the KM phase, SdH

oscillations are clearly detected, especially for small angles near θ ∼ 0◦. Fig. 3.6(b)

shows the oscillatory component of f , which was obtained by polynomial background

subtraction, as a function of 1/H. The steep change in the oscillation pattern above

θ ∼ 20◦ is reminiscent of the previous observations of a dramatic change in the QOs in

the KI phase at this angle (the dHvA effect disappears, and the SdH frequency starts to

show a negative angular dependence). This similarity across the I-M transition implies

that the QOs in both the insulating and metallic phase are determined by the same

band. We discuss this point in more detail later.

The frequency pattern observed in the KM phase shows unusual behavior. Fig. 3.6(c)

shows the Landau level plots for the SdH oscillations in both the KM and KI states.

The symbols in the KM phase are determined by the peaks and valleys, as labeled

in Fig. 3.6(b). Here, the + and − signs represent the spin-split Landau sublevels.

Thus, the average of these characteristic fields corresponds to the oscillations from

the spin-degenerate Fermi surface. The Landau index N in the KI phase shows the

usual behavior of varying in proportion to 1/H, and the slope corresponds to the field-

independent quantum oscillatory frequency. On the other hand, it is remarkable that

the Landau index in the KM phase does not show such behavior, implying that the

SdH oscillations in KM are not periodic in 1/H. This non-periodicity indeed leads to

the failure of the FFT calculation for ∆f : the summation of the calculated frequency

components cannot reproduce the features in the raw data.

Nevertheless, despite the unusual periodicity, the temperature dependence of the

SdH amplitude in the KM state can be well captured by the LK formulation (Eq. 2.13)

as shown by the solid curves in Fig. 3.6(d). The inset shows the field dependence of

the cyclotron energy Ec = eB/m∗ obtained with each LK fit in the main panel. The

H-dependence of Ec and the non-periodic SdH oscillations imply that the topology of

the Fermi surface in the KM phase is H-dependent.
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(a) (b)

(c) (d)

Figure 3.6: (a) PDO frequency as a function of the field with various field directions.
The inset shows an image of a sample wrapped by a PDO coil and defines the con-
figuration of the angle θ. (b) Oscillatory component of the SdH signals in (a). The
integers are the Landau indices. The solid and dashed curves in (a) and (b) represent
the data acquired from upsweeps and downsweeps, respectively. (c) Landau level plots
for the KM and KI phases. The inset displays the SdH effect in the KI state. The
data marked by the dashed orange circle is obtained using a 75 T Duplex magnet. (d)
Temperature dependence of the SdH amplitude for various fields. The inset shows the
field dependence of the cyclotron energy determined from the fitting results in the main
panel.
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To analyze the non-periodic SdH oscillations in the KM state, we introduce an

empirical relationship between the Landau index N and the characteristic magnetic

field HN at which the peaks or valleys are observed:

N + λ =
F0

µ0(HN −H∗)
, (3.4)

where µ0H
∗ is an offset field and λ is a phase factor. Setting µ0H

∗ = 41.6 T, Eq. 3.4

successfully explains the relation between the characteristic HN and Landau index N

in the whole angle range below θ ∼ 20◦, as shown in Fig. 3.7(a). Owing to the offset

term, Eq. 3.4 implies that the QO frequency is field dependent. By setting B ≈ µ0H

and B∗ ≈ µ0H
∗, we introduce the B-dependent frequency as follows:

FKM =
F0

B −B∗B. (3.5)

As discussed in subsection 2.2, Onsager’s rule still holds even if the cross-section area

of the Fermi surface is B-dependent, i. e., F (B) = A(B)ℏ/(2πe). Therefore, one can

interpret the B-dependent frequency as a cross-section area that progressively depopu-

lates as A(B) = A0B/(B −B∗)B, where A0 = 2πeF0/ℏ.

From the above perspective, our results indicate that the Fermi pockets in the KI

and KM states, which are attributed to the QOs in those states, are identical or at

least closely related. The field dependence of the frequency FKM in the KM state for

H || [100] is shown in Fig. 3.7(b). A cursory inspection reveals that FKM is quite close

to the B-independent frequency in the KI state when FKM is extrapolated back to HI-M.

This coincidence of the frequency around the critical field B = µ0HKM(θ) holds for all

θ at which the SdH effect was observed. The magenta points in the inset of Fig. 3.7(b)

shows the field dependence of the frequency, which is extrapolated from the KM state

to the critical field. FKM(µ0H I-M) closely traces that in the KI state, albeit with an

offset of ∼ 100 T. This offset might originate from the discontinuous jump of the cross-

section area at the phase boundary or from the potential uncertainty of the critical

field associated with a valence change [91]. Indeed, a slight offset to the critical field
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µ0H I-M − 0.8 T is sufficient for the extrapolated frequency to trace well the angular

dependence in the KI state (the red points in the inset of Fid.3.7(b)).

QOs also provide information on the cyclotron mass m∗ of the quasiparticles. The

comparison of m∗ between the KI and KM states gives further supporting evidence that

the Fermi surface attributed to the QOs are closely related in both phases. Fig. 3.7(c)

shows the field dependence of the cyclotron mass ratio in both the KI and KM states.

Around the critical field, the m∗ values for both phases coincide at ∼ 7, which implies

that the identical Fermi pocket is the source of the QOs in both states. As discussed

previously, m∗ increases with increasing H in the KM state. This mass enhancement

is also captured by the spin-splitting parameter S induced by the Zeeman splitting of

the Fermi surface. According to [92], the split spin-down (-up) Landau level reaches

the Fermi level under the following condition:

F

B±
N

= N + λ± 1

2
S. (3.6)

Here, S is determined from the g-factor and cyclotron mass as

S =
1

2

m∗

m
g. (3.7)

Thus, by tracing the additional phase factor in QOs owing to the Zeeman splitting, one

can estimate S from the nonlinear (Fig. 3.6(c)) and linear (Fig. 3.7(a)) Landau level

plots as S = Fm(1/B
+
N −1/B−

N) and S = F0(1/(B
+
N −B∗)−1/(B−

N −B∗)), respectively.

Fig. 3.7(d) depicts the field dependence of S calculated using both the formulas. S and

m∗ are related to Eq. 3.7 and follow the same field dependence on substituting g =

0.084 (the red points in Fig. 3.7(d)). The coincidence of the field dependence not only

validates the Zeeman splitting analysis, but also reveals the exotic property of the KM

state, which hosts an unusually small g-factor compared to a non-interacting electron

system (g = 2).
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(a) (b)
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Figure 3.7: (a) Landau level plots as a function of 1/µ0(H−H∗). The offset field µ0H
∗ =

41.6 T is determined so that the plot becomes linear. The slope for each line represents
F0 in Eq. 3.5. (b) Field dependence of the QO frequency F . F is constant in the KI
state but becomes B-dependent in the KM state, as described by Eq. 3.5. The solid
and dashed lines represent the field range where the SdH oscillations are present and
absent, respectively. The colored regime along each curve represents the width of the
FFT peak. The black line around the phase boundary denotes the maximum allowed
mismatch between FKI and FKM of ∼ 180 T. The inset shows the field dependence of
F . (c) Field dependence of the cyclotron mass ratio m∗/m. (d) Field dependence of
the spin-splitting parameter S. The red points are estimated from the cyclotron mass
in the KM state with g = 0.084.
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The exotic properties of KM are also revealed by magnetotransport experiments.

To measure the resistivity in the KM state reliably, the pulsed-current technique was

employed. As the excitation current produces Joule heating in the KI state, in which

the resistivity is relatively large, the current was applied only in the KM state. The

time profiles of the current and magnetic fields are shown in the inset of Fig. 3.8(a).

A current pulse was applied so that one can measure transport only when H > HI−M.

Figs. 3.8(a)-(b) show the temperature dependence of the observed resistivity ρ(T )

at 55 T, which is obtained by performing the pulsed-current measurement at various

temperatures. Although the hybridization gap is completely suppressed in the KM

state, the ρ(T ) curve shows typical behavior for Kondo lattice systems: ρ(T ) shows a

peak at a coherent temperature T ∗ = 14 K and decreases as T decreases, reflecting the

formation of coherent heavy quasiparticle band. A remarkable feature found in the KM

state is that it shows a temperature-linear resistivity, i.e., ρ ∝ T , below T ∗, which is the

hallmark of non-FL behavior [8]. This anomalous behavior, however, only holds within

the temperature range of TFL < T < 9 K, where TFL = 2.2 K is the temperature below

which FL behavior is observed (ρ ∝ T 2). Fig. 3.8(b) shows the T 2 dependence of ρ

below T 2 = 10 K. We found good agreement between the data and Eq. 1.10, and ρ0

= 0.34 mΩcm and A2 = 58 µΩcm were obtained by fitting, as indicated by the dotted

line in Fig. 3.8(b). As the residual resistivity ρ0, in general, originates from impurity

scattering, this relatively large ρ0 indicates that the KM state may be classified as a

“bad metal.”

The Fermi surface attributed to the QOs does not contribute to the charge transport

in KM for the following reason. Our observations of the B-dependent QO frequency

and cyclotron mass imply that the geometry of the Fermi surface in the KM state

significantly changes and most likely shrinks by ≃ 45 % from 50 T to 60 T, according

to Eq. 3.5 and B-dependent Onsager’s rule. Assuming a spherical Fermi surface, this

shrinkage corresponds to a ≃ 60 % reduction in the quasiparticle density n, whereas

the observed cyclotron mass increases by ≃ 60 %. Consequently, the Drude expression

ρ = m∗/neτ predicts that the resistivity would increase by a factor of 4 from 50 T to

60 T. In contrast, the observed MR in the KM state is negligibly small, indicating that
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the Fermi surface revealed by the SdH effect is charge-neutral even in the KM state. To

account for the charge-transport properties in the KM state, one might have to assume

another Fermi pocket with conventional charged fermions. This hidden Fermi pocket is

also necessary to explain the large Sommerfeld coefficient observed in the pulsed-field

specific heat measurement [62], which yields γ ∼ 63 mJ/molK2 on interpolating the

value at 55 T. First, we estimate the contribution to γ from the Fermi surface detected

by the SdH effect in the KM state as follows. Assuming the simplest case of a single

3D band of the isotropic FL, the Sommerfeld coefficient is given by

γ =
π2k2B
3

m∗kF
π2ℏ2

, (3.8)

where kF is the Fermi vector. Inserting m∗ and kF, which are estimated from the SdH

analysis, we find that γ from this Fermi pocket makes a contribution of only 4.4% of

the measured γ. This rough estimation indicates that the γ is determined not only by

the Fermi pocket we resolved from the SdH effect, but also by the other Fermi surface

of conventional charged fermions that we miss in the QOs.

The implication of the hidden Fermi surface in the KM state can be also captured by

the unusually large Kadowaki-Woods (KW) ratio. By combining γ ∼ 63 mJ/molK2

from the pulsed-field specific heat measurement [62] and A2 = 58 µΩcm from the

previous linear fitting of ρ(T ) below TFL (Fig. 3.8(b)), we estimate the KW ratio

in the KM state of YbB12 at 55 T as 1.46×10−2µΩcm(Kmol/mJ)2, which is 3-4 orders

of magnitude larger than the universal value given in Eq. 1.11. In Fig. 3.8(c), we

represent the relation between A2 and γ
2 in the KM state of YbB12 along with those of

other classes of materials including transition metals, Ce- and U-based heavy fermions,

Yb-compounds, and d-electron oxides. This strong deviation in the KM state verifies

the exotic properties of KM, and one can estimate information on the hidden Fermi

surface (kF and m∗) by combining the unusually large A2 and γ. Employing the same

calculations as in [93], A2 can be written as

A2 =
81π3k2B
4e2ℏ3

m∗2

k5F
. (3.9)
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Combining Eqs. 3.8 and 3.9, one can estimate kF = 2.15 nm−1 and m∗ = 90.0m0.

Although such a large effective mass is unusual in Yb-based compounds, it can explain

why the charged fermions cannot contribute to the QOs in the current environment of

the pulsed-field measurements.

Our results imply the coexistence of two fluids in KM state: (i) charge-neutral

fermions (CNFs) and (ii) the more conventional but still exotic charged fermions. The

CNFs contribute to the QOs in both the KI and KM states, but are not responsible

for charge transport. The existence of the CNFs even in the KM state is supported by

the similarity of the Fermi surface at H I-M and little contribution to MR, although the

geometry of the Fermi pocket shows significant shrinkage and mass enhancement with

increasing field. The emergence of the charged fermions above H I-M is supported by

the unusually large γ observed in the specific heat measurement and the FL behavior

with the large coefficient A2, which strongly violates the KW ratio. Based on the two-

fluid picture, the I-M transition produces a sudden increase of the density in (ii), which

becomes a dense liquid of heavy fermions in the KM state from a thermally excited

low-density gas in the KI state. On further increasing B in the KM state, (i) becomes

less energetically favorable, and the Fermi surface of CNFs shrinks, as described by Eq.

3.5. The hidden Fermi surface of (ii) acts as a “reservoir” into which CNFs can scatter

or transfer. The analogous situation of the two-fluid picture has also been reported in

other materials [94, 95].

The exotic metallic state found in the high-field regime involves the survival of the

CNFs above the gap closure and their coexistence with the charged FL. This pecu-

liar two-fluid picture may explain the observed non-FL behavior. In this situation,

Luttinger’s theorem may be violated, leading to possible continuous variation of FL

properties [96]. In addition, the T -linear resistivity may be attributed to the interac-

tion between CNFs and charged fermions [97]. The exotic properties of the KM state

we found, therefore, are a prerequisite for future theoretical works.
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(a) (b)

(c)

Figure 3.8: (a) Temperature dependence of resistivity of the KM state of YbB12 at 55
T. The dashed line is the fitting for the T -linear resistivity regime. The inset shows
the time profile of the pulsed magnetic field and current pulse. (b) Resistivity plotted
against T 2. The dashed line is the fitting below TFL, and the parameters are also
shown. (c) Kadowaki-Woods plot for a wide variety of materials, including transition
metals (indigo circles), Ce- and U-based heavy fermions (magenta squares), Yb-based
compounds (orange diamonds), and d-electron oxides (black triangles). The KM state
of YbB12 is plotted as a red diamond.

65



3.4 Conclusion

We investigated the high-field electronic properties of high-quality single crystals

of the KI YbB12 and successfully observed QOs both in the KI state and KM state.

Remarkably, YbB12 exhibits both the dHvA effect and SdH effect in the insulating phase

well below the I-M transition field, suggesting that the QOs are an intrinsic property

of the insulating ground state. Indeed, the amplitude of the SdH signals increases as

the activation gap increases, ruling out the possibility that a metallic impurity phase

contributes to the QOs. Furthermore, the temperature damping factor shows good

agreement with the LK formula for a relatively large effective mass m∗ ∼ 6-15m0,

demonstrating that the quasiparticles contributing to the QOs follow the Fermi-Dirac

distribution law. The large observed m∗ also indicates that the electron correlation

plays an important role in realizing the quasiparticles. Although the angular mapping

of the frequency obtained from the dHvA effect cannot rule out the possibility of a 2D

SS, the angle-resolved SdH signals strongly suggest that the Fermi surface has a 3D-

like nature. Our observations provide intriguing evidence that the KI YbB12 hosts a

Fermi surface, which is a defining characteristic of metals. This apparent contradiction

leads to the exotic Fermi surface of neutral fermions, which is also supported by the

thermal transport experiment that we discuss in chapter 5. The observation of QOs in

the insulating phase of YbB12 makes a distant allusion to the fact that the QOs may

be a common feature among KIs, but further investigations on SmB6 and exploration

on other types of KIs are required to confirm the universality.

We also resolved SdH signals above the critical field by employing the PDO technique

and captured the exotic properties of the field-induced metallic state. Although the

SdH effect in the KM state shows a non-linear Landau level plot, our analysis reveals

a similarity between the Fermi surfaces in the KI state and KM state. We concluded

that the Fermi pocket contributing to the QOs in the KM state is identical to that

in the KI state. Our observation can be, therefore, interpreted in terms of a two-fluid

picture: the coexistence of (i) CNFs, which contribute to the QOs in both the KI and

KM states, and (ii) the more conventional but still exotic heavy FL. Although the CNFs
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are not strongly affected at the I-M transition, they become energetically unfavorable

and convert into (ii) as the field increases. The field evolution of the Fermi surface of

(i) is indeed captured by the unusual field suppression of FKM and enhancement of m∗.

Although the Fermi surface of (i) can be resolved by the current environment of pulsed-

field measurements, it is not the case for (ii) owing to the surprisingly large m∗ ≈ 90m0.

Despite the absence of QOs from (ii), this hidden Fermi surface contributes to the large γ

and extremely massive A2, which strongly violates the universal Kadowaki-Woods ratio.

In addition, analysis on the spin-splitting QOs enabled us to evaluate the extremely

small g ∼ 0.084 of the neutral fermions. The coexistence of the two fluids and their

interaction may explain the non-FL behavior found in the KM state. Our observations

provide strong constraints for future theoretical investigations to explain the origin of

CNFs and exotic metallic properties.
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4 Purpose of this study

KIs have attracted renewed interest owing to the introduction of the concept of

topology. Moreover, a series of recent detailed experiments have revealed another aspect

of exotic properties in this strongly correlated insulator: unconventional QOs. The QOs

observed in SmB6 and YbB12 sparked an intensive debate, but their origin remains

unclear. If they host a Fermi surface with CNFs, as some theories proposed, their

zero-energy excitations might contribute to the heat transport, resulting in a linear

temperature dependence of the specific heat and thermal conductivity. Furthermore, if

these neutral fermions are responsible for the QOs at higher fields, the possible Landau

quantization of neutral fermions might contribute to the finite thermal Hall signal in

analogy with conventional electrons. Motivated by these speculations, we studied the

low-energy excitations in the KI YbB12. In the next chapter, we will present the results

of specific heat and thermal-transport measurements down to the dilution temperature

at various fields to discover gapless fermionic excitations.
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5 Charge-neutral fermions in YbB12

5.1 Introduction

We have discussed the unconventional QOs in TKIs, the origin of which remains

puzzling. As these observations generally indicate the presence of a Fermi surface, it is

interesting to see if another experimental technique can resolve it. In FLs, the presence

of a Fermi surface leads to gapless fermionic excitations, which are also manifested by

the linear temperature dependence of the specific heat C and thermal conductivity κxx.

While the finite γ = C/T (T → 0) results from both localized and itinerant excitations,

a finite residual thermal conductivity κ0xx/T = κxx/T (T → 0) is exclusively derived

from itinerant excitations [98]. As thermal conductivity is free from local excitations

such as the Schottky anomaly, it can provide the most direct and compelling evidence

to determine whether the fermionic excitations have an itinerant character.

It has been reported that SmB6 shows a finite γ [71, 99–101]. Fig. 5.1(a) shows

the temperature dependence of C/T for a series of single crystals of SmB6 [71]. C/T

shows a strong sample dependence, and the magnetic doping dramatically enhances

the low-T upturn. Although it was reported that the latest and cleanest sample grown

using the floating-zone method shows a finite γ ≈ 4 mJ/molK2, there is ongoing debate

on whether finite γ is intrinsic to the insulating bulk, intrinsic to the in-gap state, or an

extrinsic impurity contribution. The thermal conductivity of SmB6 was also reported

by several groups [101–103], and these results are shown in Figs. 5.1(b)-(d). Although

κ0xx/T was reported to be close to zero in these references, they show discrepancies in the

κxx in magnetic fields shows. While reference [102] reports a field-independent thermal

conductivity, a significant magneto-thermal conductivity is reported in reference [103],

which is interpreted in terms of conventional phonon scattering contributions. We also

measured the low-temperature thermal conductivity of SmB6 synthesized using the

floating-zone method, as shown in Fig. 5.1(e). Our data at 0 T and 12 T do not show a

significant field dependence, and in both sets of data, κxx/T becomes vanishingly small
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on approaching zero temperature. These results indicate the absence of itinerant neutral

fermionic excitations in SmB6. Although inelastic neutron scattering experiments reveal

distinct excitation modes within the hybridization gap [104], it is not evident whether

the excitations are charge-neutral. Thus, the presence of intrinsic non-trivial itinerant

quasiparticles within the gap in SmB6 remains a controversial issue.

In the remainder of this chapter, we present measurements of the thermal transport

properties of another candidate TKI, YbB12, to investigate the low-energy excitations

[105]. Although SmB6 and YbB12 show quite similar electronic properties, including

the unconventional QOs, there seem to be several salient differences, such as in the

presence of the SdH effect and the effective massm∗ determined by the QOs. Therefore,

systematic studies covering a wide range of materials may be key to understanding the

nature of the exotic physics found in TKIs.
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Figure 5.1: (a) Low-temperature specific heat in a series of single crystals of SmB6 [71].
(b)-(d) Temperature dependence of thermal conductivity in SmB6 with various fields.
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of SmB6 obtained in this work.
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5.2 Experimental

5.2.1 Specific heat

Specific heat is one of the most fundamental physical properties of matter, as it is

a bulk thermodynamic quantity related to the free energy of a given system. As the

measurement of specific heat provides pivotal information on the electronic structure of

a many-body system, it has been employed as a powerful tool for studying magnetism,

superconductors, correlated insulators, and so on. The specific heat C is defined as the

ratio of the change in the heat absorbed by the system δQ to the change in temperature

δT

C = T

(
∂S

∂T

)
p

= lim
δT→0

δQ

δT
. (5.1)

A variety of experimental techniques have been developed to measure specific heat,

such as adiabatic calorimetry, the continuous heating method, and AC calorimetry. In

this study, we developed a setup based on the long-relaxation method, which has an

overwhelming advantage in the measurement of tiny single crystals of mass is the order

of a few micrograms [106,107].

The principle of the long-relaxation method is as follows. A schematic of the mea-

surement is shown in Fig. 5.2(a). The sample is mounted on a bare thermometer,

which can also be used as a heater by applying excitation currents, producing Joule

heat with power P (T ). The thermometer is weakly connected to a heat bath through a

connection with a small thermal conductivity of κ(T ). In the long-relaxation method,

a relatively large amount of heat is injected into the sample, and the time evolution of

the sample temperature is recorded. Because of the large heat injection, the change in

C and κ with respect to T cannot be negligible. Taking the derivative of Eq. 5.1 with

respect to time, we obtain
dQ

dt
= C(T )

dT

dt
, (5.2)
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which can be expressed in the thermal equilibrium equation as

P (T )−
∫ T

T0

κ(T ′)dT ′ = C(T )
dT

dt
. (5.3)

In this method, we control P (T ) in the manner shown in Fig. 5.1(b): a higher power

PHigh(t) and a lower power PLow(t) are fed into the sample within a constant time interval

∆t. The temperature evolution with respect to time with the injection of a higher and

lower power are then expressed as THigh(t) and TLow(t), respectively. According to Eq.

5.3, these two relaxation processes can be written as

C(T )
dTHigh

dt
= PHigh(T )−

∫ T

T0

κ(T ′)dT ′ (5.4)

C(T )
dTLow
dt

= PLow(T )−
∫ T

T0

κ(T ′)dT ′. (5.5)

This pair of equations can then be combined to obtain

C(T ) =
PHigh(T )− PLow(T )

[dTHigh/dt− dTLow/dt]T
. (5.6)

Thus, by monitoring the time evolution of the relaxation curves with two different

powers, the specific heat can be calculated using the above formula. The advantage of

this technique is that we need not know κ(T ) accurately, because it will be canceled out

as long as the base temperature T0 is not influenced by the heat power. Another merit

is that we can collect a set of data on C(T ) during just a pair of relaxation curves in a

temperature range of T0 < T < Tmax.

In DC measurements, the voltage induced by the thermoelectric effect cannot be

negligible. This voltage can be canceled out by repeating the set of relaxations with

positive and negative currents. One sequence for the measurement, therefore, consists

of four sets of currents, +IHigh, +ILow, −IHigh, and −ILow, and the reading of the

corresponding voltages, V+High, V+Low, V−High, and V−Low. The thermoelectric voltage

can then be canceled as

VHigh =
V+High + V−High

2
(5.7)
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Figure 5.2: (a) Schematic of the setup for specific heat measurement using the long-
relaxation method. (b) Time evolution of the temperature response to applied power.
(c) Illustrations of the procedure of data analysis.

VLow =
V+Low + V−Low

2
. (5.8)

The corresponding resistances of the sample thermometer for both relaxation curves

RHigh(t) = VHigh/IHigh and RLow(t) = VLow/ILow are converted to temperature using the

calibration T -R table, which is already determined. Fig. 5.2(c) schematically shows

the procedure of data analysis. First, the relaxation curves are measured repeatedly

(typically 5-100 times according to the signal-to-noise ratio (S/N) under the given

conditions), following which they are averaged. Next, we take the derivative of T with

respect to t. While T is recorded within the same time interval ∆t, the resulting

dT/dt(T ) is not obtained at regular intervals with respect to T . Therefore, one must

perform linear interpolation to obtain a pair of dTHigh/dt and dTLow/dt at the same

T . The temperature dependence of P (T ) is also taken into account because it changes

according to P (T ) = I2 · R(T ), where the resistance of the heater R(T ) is identical to

that of the thermometer. Finally, we obtain a set of points C(T )/T by using Eq. 5.6.

Figs. 5.3(a)-(c) show images and a schematic of the experimental setup. A Cernox

1030 BR chip was used as a thermometer, sample stage, and heater (all of these terms

refer to the chip). In an actual measurements, the addenda contribution, which is the

background specific heat observed even without the sample, should be minimized to

achieve a good S/N. For this purpose, the bare thermometer chip was employed in

the simplest possible form. A gold surface, which was coated on the Cernox chip, was
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removed by polishing with sandpaper, leading to decreased addenda and better thermal

connection to samples. To suspend the thermometer in vacuum with a weak thermal

connection to the heat bath, we used a pair of glass fibers of ϕ = 30 µm, which were

coated by gold to form electrical contacts. The resistance of the glass fiber was ∼ 80 Ω.

The contact to the thermometer and heat bath was made by silver paint. Fig. 5.3(b)

shows an image taken after mounting a sample. The sample was fixed on the stage

by applying a tiny amount of high-vacuum grease. The copper base was thermally

connected to the 3He pot of an Oxford Heliox. The circuit used in the long-relaxation

method is illustrated in Fig. 5.3(c). The resistance of the sample thermometer was

measured using the conventional 4-terminal configuration. The excitation was applied

using a Keithley 6221 current source, producing simultaneous heat pulses to the sample.

The voltage was then monitored using Keysight 3458A volt meter in the fast reading

mode. Furthermore, resistors RI = 200 kΩ and RV ∼ 0-30 kΩ were used to remove

the noise and optimize S/N according to each experimental condition. The filter boxes

consist of low-pass filters with capacities of 22000 pF and 100 pF at room temperature

and cryostat temperatures, respectively.

In Fig. 5.4(a), we show the temperature dependence of the specific heat of addenda

CAdd and total specific heat CTot including that of the YbB12 sample, as shown by the

red and black curves, respectively. For comparison, CAdd obtained using the quasi-

adiabatic method, which has been employed as a conventional technique in the lab, is

shown by the blue curve. CAdd measured using the quasi-adiabatic method is almost

twice as large as CTot. On the other hand, CAdd obtained using the newly developed

long-relaxation method is much smaller, and it becomes ∼ 1/10 times smaller near

the lowest temperature of 0.5 K. It is also important to consider the field dependence

of CAdd as it cannot be negligible when the sample signal is comparable to that of

addenda. In fact, a significant field dependence is observed, as displayed in Fig. 5.4(b).

Therefore, each time we changes the sample, CAdd was re-calibrated because even a

minute amount of glue can significantly affect the results.
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5.2.2 Thermal transport

In addition to the electrical transport, thermal conductivity measurements provide

pivotal information on both charged and neutral quasiparticle excitations of the under-

lying system. We will describe the principles and experimental details below. Passing

a heat current through materials induces a thermal gradient. In the steady state, this

response can be written as

qi = −κij∂jT, (5.9)

where qi (i = x, y, z) is the thermal current density along the i-direction, κij is the

thermal conductivity tensor, and ∂jT is the thermal gradient along the j-direction.

Assuming that the heat flows only in the xy-plane for simplicity, this relation can be

expressed as  qx

qy

 =

 κxx κxy

−κxy κxx

 ∂xT

∂yT

 . (5.10)

A plate-like sample is desirable to well define a uniform thermal current and thermal

gradient. In a typical experimental setup, one side of the sample is attached to the

heat bath, while the other side is connected to the heater, as shown in Fig. 5.5(a). In

this setup, qx = Q/wt, qy = 0, −∂xT = ∆Tx/ℓ, and −∂yT = ∆Ty/w
′. Here, Q is the

power released from the heater, and ∆Tx and ∆Ty are the longitudinal and transverse

thermal difference given by ∆Tx = TH − TL and ∆Ty = TL − TL′ , respectively. ℓ, t, and

w are dimensional factors: length, thickness, and width, respectively. It is worth noting

that there are two different definitions for width: w is measured from one sample edge

to the other, while w′ is defined as the distance between two thermal contacts from L

to L’. Ignoring O(∆Ty)
2, each component of the thermal conductivity tensor is finally
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given by

κxx =
Q

∆Tx

ℓ

wt
,

κxy =

(
∆Ty
Q

)(
∆Tx
Q

)2
ℓ2

ww′t

=

(
∆Ty
Q

)
wt

w′ κ
2
xx. (5.11)
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Figure 5.5: (a) Schematic of thermal conductivity measurement using the steady-state
method. (b) Image of the actual setup. The YbB12 sample (the black rectangle in the
middle) is placed on the LiF heat bath (the transparent object). A heat current is
passed through the silver plate (the silver rectangle on the left), which is connected to
the heater.

In practice, the thermal contacts are inevitably misaligned. Therefore, the transverse

response can be contaminated by the longitudinal signal, and vice versa. One can cancel

this effect by inverting the sign of the field direction, as the longitudinal and transverse

responses are symmetric and anti-symmetric, respectively, with respect to the external

magnetic field:

∆Tx(H) = ∆Tx(−H), (5.12)

∆Ty(H) = −∆Ty(−H). (5.13)
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Therefore, the misalignment effect can be canceled out as

∆Tx(|H|) = ∆Tx(H) + ∆Tx(−H)

2
(5.14)

∆Ty(|H|) = ∆Ty(H)−∆Ty(−H)

2
. (5.15)

Although this cancellation works in principle, it is still important to reduce the misalign-

ment to improve S/N, especially when the κxy of the sample is small. The misalignment

angle can be estimated as ∆Ty(0)/∆Tx(0). In the following thermal Hall conductivity

experiments on YbB12, we achieved a misalignment of less than 1 %.

The sequence of the measurements is as follows. We stabilize the base temperature

TB and record the resistance of the thermometers RS without applying power. These

sets of data were used for the T -R calibration table of each thermometer. We then

applied a heat current to the sample and recorded the thermal gradient to calculate

κij using Eq. 5.11. If we apply too much power to the sample, the linear response of

the thermal gradient (∆T ∝ Q) cannot be reliably evaluated. Therefore, we applied

a moderate power so that ∆Tx/TB ∼ 0.5-2 % and ensured that the thermal gradient

response is always Q-linear.

Fig. 5.5(b) shows an image of the actual experimental setup. To apply a thermal

current along the x-direction uniformly, we used a thin silver plate as a thermal contact

to the heater. In addition, if the κxy of the sample is too small, there may be a possible

major contamination of ∆Ty induced by the κxy of the copper heat bath. Thus, we

utilize lithium fluoride (LiF) as an electrically insulating heat bath. In fact, LiF has a

large activation gap ∼ of 15 eV [108] and exhibits a vanishingly small ∆Ty, which can

be negligibly small in the same setup [109]. The sample, LiF (the transparent mate-

rial shown in Fig. 5.5(b)), and copper base were connected with high-vacuum grease,

whereas the thermal contacts to the sample were made using silver paint.

We schematically show our sample cell in Fig. 5.6(a). To measure the sample temper-

ature precisely, we employed a RuO2 chip resistor as a sample thermometer. As one has

to place the sample and thermometer in a practical vacuum environment, it is desirable
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to minimize possible thermal connections to the bath (i.e., thermal ground). For this

purpose, less conductive wires of twisted manganin with ϕ = 30µm and Rmang ∼ 200 Ω

were used to make electrical contacts to the thermometers, which are rolled into coils

to increase the resistance in the limited space of our sample cell. The thermometers are

placed on a piece of polyimide tubes (DuPont, kapton tubes), which are attached to a

fiber-reinforced-plastics (FRP) frame. To arrange the three RuO2 chips and one heater

independently, the sample cell consists of four sets of the same structure, including a

manganin coil, thermometer/heater, and prop kapton tube. For visibility, we only show

one of the above structures clearly in Fig. 5.6(a); the others are transparent.

In an ideal setup, one can simply assume that the heat current released from the heater

passes solely through the sample and heat ground. However, in practice, heat leakage is

inevitable through the components of the sample cell, such as the manganin wires and

frame. First, if the resistance of the heater is comparable to that of the manganin wire,

the Joule heating in the wire cannot be negligible. To avoid this, we used RQ = 10 kΩ,

which is more than 100 times larger than Rmang. In addition, as shown in Fig. 5.6(b),

there are several possible heat-leak paths through the thermal conductance Gm. If this

heat leak is comparable to that from the sample thermal conductance Gs, one cannot

evaluate the heat current qs through the sample reliably. According to reference [110],

the κxx of manganin is approximately 0.05 and 1 mW/cmK at 0.1 K and 1 K, respec-

tively. This leads to Gm(0.1K) ∼ 7× 10−11 W/K and Gm(1K) ∼ 1.4× 10−9 W/K for

our coils. On the other hand, the Gs of a typical YbB12 crystal we measured can be

estimated as Gs(0.1K) ∼ 5× 10−8 W/K and Gs(1K) ∼ 1× 10−5 W/K. Here, we used

a dimensional factor of wt/ℓ ∼ 50µm for the calculation (wt/ℓ ∼ 37µm and ∼ 63µm

in sample #1 and #3, respectively). The above estimations imply that Gs/Gm > 103

throughout our measurement temperature range, indicating that the heat leak through

the sample thermometer and manganin is negligibly small. Therefore, even with an ad-

ditional 1 % of Joule heating within the manganin wire of the heater, most (∼ 99.9%)

of the power would contribute to the net thermal current qnet towards the sample. Al-

though an accurate estimation of the heat leak through other components such as the

frame is difficult, we ensured that without the sample, none of the thermometers re-
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sponded to the typical power we used for the measurements.

Fig. 5.7 schematically shows the circuit for the thermal transport measurements.

To simultaneously monitor the temperature of three different points, High, Low, and

Low’, we prepared three sets of AVS 47-B resistance bridges. The measured resistance

is converted through the DC output line to a Keithley 2000 multimeter. Regarding

the magnitude of heat current, an excitation current of IQ was applied from the Keith-

ley 2400 current source. As the T - and H-dependence of the resistance in the heater

RQ must be considered, the voltage VQ was also recorded using another Keithley 2000

multimeter. The heat power is given from the observed VQ as Q = IQ · VQ. Low-

pass (LP) filter boxes were used to cut external noise as well as for the specific heat

measurements. We also used a 12-14 T solenoidal superconducting magnet (Oxford

Instruments) to apply magnetic fields and a gas handing system with a 3He-4He dilu-

tion refrigerator (Cryoconcept, DR-JT-S-200-10), the lowest temperature of the mixing

chamber of which is ∼ 40 mK.
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Cell component Gm GmGm

Sample

qs qnet

qH qQqL

(b)
Manganin

coils
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Heat bath

Figure 5.6: (a) Schematic of the sample cell for thermal conductivity measurement. The
sample is attached to the bottom surface of the copper heat bath. A sample and the
contacts between thermometers are excluded in the depiction for visibility. (b) Thermal
circuit for our setup describing possible heat leaks through the manganin coils and cell
components such as the FRP frame.
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5.3 Results and discussion

5.3.1 Specific heat

Fig. 5.8(a) shows the temperature dependence of the specific heat divided by the

temperature (C/T ) of #2 and #3 (the same single crystals as in chapter 3) in zero

field as blue filled and open circles, respectively. The overall temperature dependence

has several characteristic structures: a slight upturn below ∼ 1 K, a broad hump-like

anomaly around 6 K, and a steep growth above ∼ 10 K. It is notable that despite

the upturn at low temperature, C/T does not seem to approach zero as T → 0: the

extrapolation from above 1 K clearly has a finite intercept. This indicates that the

specific heat of YbB12 has a linear temperature dependence, which can be expressed as

Cqp = γT , suggesting that the ground state has gapless fermionic excitations similar

to those of ordinal metals. To quantitatively evaluate the T -linear term, we estimated

other contributions as follows. First, the slight upturn below 1 K is attributed to a

Schottky contribution, CSc/T . The low-temperature enhancement of C/T is well fitted

by a three-level Schottky model, as shown by the green solid and dotted curves in Fig.

5.8(a). Second, the hump anomaly and steep growth above ∼ 10 K can be described by

low-energy Einstein optical phonon modes. These anomalies have also been reported

in the isostructual metallic compounds LuB12 and YB12 [111]. The MB12 (M is a

rare-earth element) structure can be regarded as free oscillators of rare-earth atoms in

rigid cavities of B24 cuboctahedrons, as shown in Fig. 5.9(a). Fig. 5.9(b) shows the

specific heat of the isostructual LuB12 and YB12. Similar to our data for YbB12, both

compounds show a steep upturn in C above ∼ 10 K. In addition, inelastic neutron

scattering experiments of YbB12 reveal 3D phonon dispersions [112]. Therefore, we

attribute both the acoustic phonon (∝ T 3) and two optical phonon modes to Cph,

which is described by the solid and dotted black lines in Fig. 5.8(a). Owing to the

high Debye temperature, the acoustic phonon contribution to the total heat capacity

is very small. On the other hand, the optical phonon contributions are slightly sample

dependent, but the other components are almost the same in #2 and #3.
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The low-temperature specific heat of YbB12, therefore, can be written as a sum of

the phonon, quasiparticle, and Schottky contributions as

C = Cqp + Cph + CSc, (5.16)

where

Cqp = γT, (5.17)

Cph = βT 3 +
A

T

(
ΘE

T

)2
exp(ΘE/T )

[exp(ΘE/T )− 1]2
, (5.18)

CSc =
B

T 2

∑n−1
i=0 ϵ

2
i exp(−ϵi/kBT )∑n−1

i=0 exp(−ϵi/kBT )
−

(∑n−1
i=0 ϵi exp(−ϵi/kBT )∑n−1
i=0 exp(−ϵi/kBT )

)2
 . (5.19)

Here, ΘE is the Einstein phonon temperature, and ϵi (i = 1, 2, 3) is the energy levels

yielding the Schottky contribution. As shown in Fig. 5.8(b), Cqp/T obtained by sub-

tracting Cph and CSc from the total C is consistent between #2 and #3. The calculated

γ is ≈ 3.8 mJ/molK2 in zero field, which is comparable to the values in isostructual

metallic LuB12 (γ ≈ 4.2 mJ/molK2 [111]) and other conventional metals. We stress

that the volume fraction of the impurity phases of our single crystals is estimated to be

much less than 1% from high-resolution synchrotron X-ray diffraction measurements,

as we discussed in subsection 3.2. Therefore, we can rule out the possibility that the

finite γ arises from impurity phases.

Next, we discuss the field dependence of the specific heat. Figs. 5.10(a)-(i) show

the temperature dependence of C/T below 5 K in various magnetic fields up to 12 T.

The anomalies mentioned above, i.e., the low-temperature upturn and hump behavior,

appear to be field dependent. At 4 T, for example, C/T decreases as T decreases with

a downward curvature below 2 K. At 8 and 12 T, on the other hand, C/T decreases

almost linearly against T with a steeper slope than that of the zero-field data. This

low-temperature behavior may be attributed to the coupling between the magnetic field

and the optical phonon modes. The field dependence of C/T at the lowest temperature

T = 1 K is displayed in Fig. 5.11(a). The low-field anomaly around 2 T is mainly at-

tributed to the significant change in the Schottky contribution. We also performed the
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Figure 5.9: (a) Crystalline structure of MB12 [111]. The cluster of boron forms Fedorov’s
cubooctahedra. (b) Specific heat of the isostructual compounds LuB12 and YB12 [111].
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fitting of C/T in fields by using the same model, Eq. 5.16, and the resulting parame-

ters are displayed in Figs .5.11(b)-(d). Here, ∆i is the energy splitting in the three-level

model. As the field increases, γ is slightly reduced, while the Schottky contributions

are substantially affected. Although the exact estimation of γ is difficult because of the

underlying large Schottky and phonon contributions, the present results imply that the

gapless fermionic excitations are affected by external fields.
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Figure 5.10: (a)-(i) Temperature dependence of C/T in #2 and #3 in various fields up
to 12 T.
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5.3.2 Thermal conductivity

We now turn to the thermal conductivity, which shows the itinerant aspect of the

neutral excitations. The red and blue circles in Fig. 5.12(a) represent the T 2 dependence

of κxx/T in zero field for #1 and #3, respectively. As the thermal conductivity does

not contain the localized Schottky contribution, κxx can be described as a sum of the

itinerant quasiparticle and phonon contributions: κxx = κqpxx + κphxx. To use κxx as a

probe of itinerant quasiparticles, κphxx must be extracted reliably. The solid lines in Fig.

5.12(a) are obtained by fitting low-temperature data as follows:

κxx/T = κ0xx/T + AT 2. (5.20)

The AT 2 term here is attributable to phonons for the following reasons. The opti-

cal phonon modes are negligible at temperatures well below the Einstein temperature

(which is 16–24 K in our samples) because of the small population of optical phonons

and the low phonon group velocity. Consequently, acoustic phonons are the only carriers

of heat at low temperature, and the phonon thermal conductivity is given by

κphxx =
1

3
βT 3vphℓph, (5.21)

where vph and ℓph are the sound velocity and mean free path of acoustic phonons,

respectively. We compare ℓph and the effective diameter of the sample deff = 2
√
wt/π

(w and t are the width and thickness of the crystal, respectively); deff = 0.58 mm and

0.37 mm for #1 and #3, respectively. Using β = 0.026 and 0.017 mJ/molK4 for #1 and

#3, respectively, from the specific heat measurements shown in Fig. 5.8(a), as well as

vph= 9.6 × 103 m/s for LuB12 [113], we find that ℓ ≈ deff at ∼ 0.5 K for #1 and ∼ 0.6 K

for #3. These are close to the temperatures below which κxx/T shows T 2 dependence,

as shown in Fig. 5.12(a), supporting the above estimation. These results suggest that

at sufficiently low temperatures, ℓph is limited by the crystal size; that is, the samples

are in the boundary scattering regime where κphxx/T ∝ T 2. The fact that the systems

are in this regime is also supported by the A values of #1 and #3. In the boundary
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scattering regime, A is proportional to βdeff . The ratio of the A values between #1 and

#3, as determined from the T dependence of κxx/T , is ∼ 2.6. This value is close to the

ratio (∼ 2.5) of βdeff of the two crystals, indicating the proportionality of A and βdeff .

Fig. 5.12(b) shows the low-temperature thermal conductivity data, where the phonons

are in the boundary scattering regime. κxx/T extrapolated to zero temperature yields

definite non-zero intercepts in both crystals: κ0xx/T ̸= 0. Thus, our results provide

evidence of a finite residual linear term in κqpxx (that is, the presence of itinerant gapless

fermionic excitations). We stress that the finite κ0xx/T is not caused by phonons as

discussed above. It is known that localized vibrational modes, such as tunnelling states

in amorphous solids, can contribute to a finite γ [114]. However, such excitations

are localized and do not carry heat, resulting in the absence of κ0xx/T . Moreover,

these vibrational modes may act as scattering centers for phonons. This yields a T−1

dependence of ℓph, leading to κxx ∝ T 2, in contrast to the observed non-zero κ0xx/T . It

should also be stressed that the observed finite κ0xx/T does not originate from charged

quasiparticles, in contrast to the situation in conventional metals. Evidence for this is

given by the spectacular violation of the Wiedemann–Franz (WF) law, which connects

the electronic thermal conductivity to the electrical resistivity (see section 1.4.4 for

details). In moderately pure metals at low temperatures, L = κqpxxρxx/T ≤ L0 is

generally satisfied, where L0 = π2k2B/3e
2 is the Lorenz number. The values of κ0xxρ

0
xx/T

for #1 and #3 are found to be ∼ 6× 104L0 and ∼ 5× 103L0, respectively. It is highly

unlikely that the surface metallic region significantly violates the WF law. In fact, it is

well established that the WF law holds in 2D metals, even in the quantum Hall regime.

The WF expectation of κ0xx/T from the metallic surface is less than 10−4 W/K2m,

which is by far smaller than the experimental resolution. These results lead us to

conclude that the neutral fermions in the insulating bulk of the samples are responsible

for the finite κ0xx/T . In other words, as the bulk resistivity diverges as T → 0, the

Lorenz number for the heat-carrying quasiparticles also diverges. Thus, the thermal

conductivity and specific heat data very strongly suggest the presence of highly mobile

and gapless neutral fermionic excitations. The results for YbB12 are in contrast to those

for SmB6, where a T -linear term is present in C [71, 99–101] but absent in κxx at zero
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Figure 5.12: (a) Thermal conductivity in #1 and #3 divided by temperature as a func-
tion of T 2. The solid lines represent the linear fitting performed in the low-temperature
regime. (b) Expanded view of (a) below T 2 = 0.1 K.

Now, we discuss the field dependence of thermal conductivity in YbB12. Figs. 5.13(a)-

(b) plot κxx/T as a function of T 2 in various magnetic fields for #1 and #3. κxx/T

is slightly enhanced on applying a magnetic field. We fit the data using Eq. 5.21 to

extract the phonon and quasiparticle contributions. The fact that all the data can be

linearly fitted clearly indicates that the phonons remain in the boundary scattering

regime even in the magnetic fields. The finite κ0xx/T is resolved in the whole field range

up to 12 T for both samples. We also plotted κxx/T as a function of T in Fig. 5.13(c).

Although the extrapolation of κxx/T to T → 0 in this plot estimates the lower limit of

κ0xx/T , finite intercepts are resolved in all the data, implying that the neutral fermions

exist regardless of the α value (the exponent of the phonon power). Interestingly, κ0xx/T

estimated by the linear fitting shows non-monotonic growth on applying fields, as shown

in Fig. 5.13(d). The present results imply that the neutral fermions couple to magnetic

fields. Another prominent feature is that the κ0xx/T of #1 is much more enhanced by

the magnetic fields than that of #3: the κ0xx/T of #1 shows a steep increase at low fields
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and becomes nearly twice that at 0 T, while the κ0xx/T of #3 is only slightly enhanced.

Given that #1 shows a larger activation energy than #3, this result indicates that

higher-quality crystals with lower impurity scattering rates exhibit a larger magneto-

thermal conductivity. As larger κ0xx/T values arise from longer mean free paths, this

result suggests (as might be expected) that the more mobile neutral fermions are more

strongly influenced by a magnetic field.
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5.3.3 Mean free path of the neutral fermions

The observed κ0xx/T for #1 is nearly twice that for #3, while γ for #2, the quality of

which is very close to that of #1, coincides with that for #3. This quantitative difference

derives from the mean free path of neutral fermions in the two types of crystals. The

quasiparticle thermal conductivity is related to the specific heat by

κqpxx
T

=
1

3
γvF ℓqp (5.22)

where vF is the Fermi velocity and ℓqp is the mean free path of the neutral fermions.

Therefore, the ℓqp of #1 and #2 is twice that of #3. Interestingly, this indicates that

more strongly insulating crystals with larger activation energies have higher-mobility

neutral quasiparticles. A fascinating question is whether the CNFs are responsible for

the QOs. To examine this, we estimate ℓqp from Eq. 5.22 by assuming that vF is given

by the Fermi velocity obtained from the SdH oscillations in the insulating state, which

we discussed in section 3.3.1. By assuming a simple spherical Fermi surface, we obtain

vF = ℏkF/m∗ ≈ 1.3 × 104 m/s from the SdH oscillations, where kF ≈ 1.7 nm−1 is the

Fermi wave number and m∗ ≈ 15me is the effective mass. We estimate ℓqp ≈ 54 and 25

nm, which is nearly 70 and 30 times larger than the lattice constant a ≈ 5.28, for #1

and #3, respectively. Although the mean free path is large, the heavy effective mass

leads to rather small mobilities µ:

µ =
eℓqp
m∗vF

(5.23)

is approximately 480 cm2/Vs (0.048 T−1) for #1 and 230 cm2/Vs (0.023 T−1) for #3.

According to Eq. 2.14, the reciprocal of the mobility corresponds to the characteristic

magnetic fields Bc, above which QOs begin to develop. The above estimation corre-

sponds to Bc ∼ 21 T and 43 T for #1 and #3, respectively. This simplified model

explains why magnetic fields of 30–40 T are needed to resolve the SdH oscillations

in #1 and why the oscillatory amplitudes in #3 are much smaller than those in #1.

Therefore, this rather crude estimation suggests that the enhanced thermal conductiv-
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ity in zero field and the visible SdH effect at high fields in the sample with large ℓqp are

intimately connected. The present observations for several crystals are consistent with

this scenario, where CNFs are responsible for the QOs.

Finite values of both γ and κ0xx/T in the insulating state have been reported in a

quantum-spin-liquid candidate, the organic compound EtMe3Sb[Pd(dmit)2]2 (DMIT)

having a 2D triangular lattice [14, 115]. In DMIT, finite γ and κ0xx/T have been dis-

cussed in terms of electrically neutral spinons forming the Fermi surface. In addition, in

DMIT, a T -independent Pauli-paramagnetic-like magnetic susceptibility χ is observed,

and the Wilson ratio RW is close to unity, which is a basic property of metals [116] (see

subsection 1.4.3 for details). As shown in Fig. 3.1(c), a temperature-independent χ is

also observed in YbB12, and it may be ascribed to the van Vleck contribution within the

J =7/2 multiplet, although this contribution has not been quantitatively estimated. An

alternative explanation is that the neutral fermions give rise to a Pauli-paramagnetic-

like χ. A simple estimation of RW using the measured χ ≈ 3 × 10−3 emu/mol and

γ ≈ 4 mJ/molK2 yields RW ≈ 100, which is comparable to that reported in some spin-

liquid systems [79]. In DMIT, the quantum oscillations have not been observed up to

32 T, although its possible observation was suggested theoretically [117]. Thus, more

experiments are needed for quantitative comparisons between these two extraordinary

systems.

5.3.4 Thermal Hall angle

As discussed in section 2.4.2, an observable thermal Hall signal has been proposed

within a theoretical framework, where neutral fermions are responsible for the QOs in

KIs [78, 117]. The neutral fermions are expected to experience the Lorentz force as

the conduction electrons in metals do, forming Landau quantization in a magnetic field

and giving rise to the QOs. In an attempt to observe such an effect, we measured the

thermal Hall conductivity κxy. The tangent of the thermal Hall angle

tan θH =
κxy
κxx

= ωcτ (5.24)
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The inset of (a) shows the setup for the thermal Hall conductivity measurements. The
dotted line in (b) shows the B-linear Hall response expected in a conventional metal,
in which QOs appear at approximately 40 T.

provides similar information as the electrical Hall angle in conventional metals. Here,

ωc = (eb)eff/m
∗ corresponds to the cyclotron frequency of the neutral fermion, where b

is the effective magnetic field experienced by neutral fermions, and τ is the scattering

time. Fig. 5.14(a) shows the field dependence of ω0
cτ ≡ (κxy/T )/(κ

0
xx/T ) at 0.2 and 0.5

K. As κxx > κ0xx, ω
0
cτ yields the upper limit for ωcτ . As can be observed in the data,

no discernible thermal Hall effect is observed at both temperatures; ω0
cτ , and hence,

ωcτ are less than 0.005, which is less than our experimental resolution. In conventional

metals with a single carrier type, ωcτ = eBτ/m∗ is of the order of unity at the magnetic

field where the QOs appear. As the SdH oscillations are observed around 40 T, the

thermal Hall angle at 10 T could be expected to be of the order of 0.2, which is much

larger than the observed thermal Hall angle. This rough estimation is also shown by

the dotted line in Fig. 5.14(b). As expected by the insulating behavior in resistivity,

the electrical Hall angle is also vanishingly small compared to the above expectation

(Fig. 5.14(b)), clearly implying that the conventional electrons cannot be the source of

the QOs. These vanishingly small Hall angles may suggest that (eb)eff is significantly

different from eB [109, 118]. However, it is premature to conclude that the neutral
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fermions are not responsible for the SdH oscillations, because the small thermal Hall

angle may be explained by a nonlinear B dependence of b or the presence of electron-

and hole-like pockets of neutral fermions. In the latter scenario, compensation effects

may reduce the thermal Hall signal considerably. The presence of a Fermi surface of

neutral fermions and the coupling to an external magnetic field with a negligible thermal

Hall angle call for further studies.

5.4 Conclusion

In this chapter, we presented the results of the specific heat and thermal conduc-

tivity measurements of YbB12 single crystals, in which we found the QOs discussed in

chapter 3, down to the dilution temperature with various magnetic fields of up to 12 T.

Remarkably, terms with linear temperature dependence in both the specific heat and

thermal conductivity, which are comparable to those in ordinal metals, were clearly

resolved. Nevertheless, the resistivity shows clear activation-type behavior. Thus, the

sizable fermionic contributions in thermal conductivity lead to the strong violation of

the Wiedemann-Franz law, which reveals exotic bulk properties in YbB12: it is elec-

trically insulating but thermally metallic. Our observations, therefore, impose novel

gapless excitations of CNFs. Furthermore, they are significantly affected by external

fields. Although it is tempting to conclude that the observed neutral fermions are the

source of the QOs at high fields, direct evidence was not provided by the thermal Hall

angle measurements. Nevertheless, the scenario cannot be completely ruled out: the

rough estimations of the mean free path and mobility of the neutral fermions as well

as their sample dependence are consistent with an emergent Fermi surface of neutral

fermions. Our findings therefore calls for further theoretical and experimental investi-

gations on KIs to explain the origin of the CNFs in YbB12 and their relation to the

unconventional QOs observed in the insulating phase of KIs.
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6 Conclusion

The textbook definition of metals is that they are materials which possessing a Fermi

surface in momentum space. The presence of a Fermi surface is manifested by ob-

servations of QOs in magnetic fields and T -linear terms in specific heat and thermal

conductivity. We have presented a series of experiments on the KI YbB12 and found

exotic electronic properties.

We found that YbB12 shows QOs not only in magnetization, but also in resistiv-

ity (SdH effect), although it is electrically insulating. The SdH oscillations still occur

above the insulator-metal transition critical field, and the oscillatory amplitude shows

Lifshitz-Kosevich behavior in both states, indicating that fermions contribute to Landau

quantization. Angle-resolved experiments captured the 3D geometry of the frequency,

suggesting that the insulating bulk possesses an unconventional Fermi surface of CNFs.

Interestingly, our results indicate that the Fermi surface of CNFs still contributes to

the SdH effect, although it progressively depopulates with increasing field. CNFs also

exhibit intriguing properties such as an extremely small g-factor and the field enhance-

ment of the cyclotron mass m∗. Moreover, the large Sommerfeld coefficient γ and FL

transport coefficient A2 in the field-induced metallic state show strong deviation from

the universal Kadowaki-Woods ratio. The present results indicate the coexistence of

two fluids in the metallic state, CNFs and the conventional charged heavy fermions.

They strongly scatter each other and may give rise to the non-FL transport. Our

pulsed-field experiments revealed highly exotic electronic properties of KIs.

We also conducted low-temperature specific heat and thermal conductivity measure-

ments with various fields to study low-energy excitations in YbB12. Surprisingly, we

observed finite T -linear terms in both specific heat and thermal conductivity, which

are comparable to those of ordinal metals. The sizable fermionic thermal conductiv-

ity leads to a remarkable violation of the WF law, indicating that YbB12 is electri-

cally insulating but thermally metallic. The present results suggest that charge-neutral

gapless fermionic excitations occur in the ground state of YbB12 and are highly mo-
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bile. Moreover, despite the charge neutrality, they are influenced by applied magnetic

fields. Although it is tempting to link the observed fermionic thermal transport to the

charge-neutral Fermi surface detected in the pulsed-field experiments, our thermal Hall

conductivity measurements did not provide direct evidence to link these observations.

Thus, we leave the problem of the relationship between the mobile neutral fermions and

the QOs for future work.

Thus far, we have discussed a series of results providing evidence for “metallic”

behaviors in the KI YbB12, although it is a charge insulator. Our studies revealed ex-

otic electronic properties and non-trivial emergent quasiparticles in this unconventional

quantum state, which are expected to motivate further investigations in the future.
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Levchenko, N. Shitsevalova, and K. Flachbart, 96, 115101 (2017).

[101] M. Hartstein, W. H. Toews, Y. T. Hsu, B. Zeng, X. Chen, M. Ciomaga Hatnean,

Q. R. Zhang, S. Nakamura, A. S. Padgett, G. Rodway-Gant, J. Berk, M. K.

Kingston, G. H. Zhang, M. K. Chan, S. Yamashita, T. Sakakibara, Y. Takano,

J. H. Park, L. Balicas, N. Harrison, N. Shitsevalova, G. Balakrishnan, G. G.

Lonzarich, R. W. Hill, M. Sutherland, and S. E. Sebastian, Nat. Phys. 14, 166

(2018).

[102] Y. Xu, S. Cui, J. K. Dong, D. Zhao, T. Wu, X. H. Chen, K. Sun, H. Yao, and S.

Y. Li, Phys. Rev. Lett. 116, 246403 (2016).
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