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Abstract

Many of the tools and ideas of quantum information theory have been em-
ployed to shed light on the holographic principle. The entanglement entropy in the
AdS/CFT correspondence tells us that information of the bulk geometries is encoded
in the boundary correlations. This thesis is aimed to deepen our understanding of
this direction by studying various correlation measures in holography. We first derive
a generalization of the holographic entanglement of purification conjecture for mul-
tipartite states. It turns out that this proposal is consistently supported in arbitrary
n-partite states. We next study the entanglement of purification in quantum many
body systems by numerical methods. That reveals a remarkable non-monotonicity of
the entanglement of purification, attributed to the different sensitivities to quantum
and classical correlations. We finally discuss the holographic duals of two classes of
correlation measures: optimized correlation measures and axiomatic entanglement
measures. The results suggest that classical correlation also plays an important role
in encoding the geometrical information.
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1 Introduction
That black holes have entropy is an important guidepost for capturing a theory of quantum
gravity. A striking feature of this type of entropy is that they are proportional to the area
of codimension-2 surface (e.g. event horizon), not the volume of the system [1, 2]. This
fact makes a sharp distinction between the thermodynamics of black holes and that of
usual matters, providing us with an insight that degrees of freedom in a spacetime region
could be equivalently encodable in a matter theory on one lower dimensional spacetime
without gravity. This concept is generically called “holographic principle” and has been
intensively studied in the context of superstring theory [3, 4].

The most established realization of holographic principle would be the Anti-de-Sitter
(AdS) / Conformal field theory (CFT) correspondence [5]. This duality argues that
quantum gravity on an asymptotically AdS geometry is equivalent to a particular class
of CFTs allocated on the asymptotic boundary. This equivalence provides a promising
method to formulate quantum gravity from matter field theory in a non-perturbative way.

In the AdS/CFT correspondence, the origin of the black hole entropy can be attributed
to a remnant of strong quantum entanglement. This picture is brought by the famous
Ryu-Takayanagi formula or the holographic entanglement entropy formula [6, 7], that
asserts the following equivalence; Suppose a holographic CFT is in a state |Ψ〉. Then the
von Neumann entropy of the reduced density matrix ρA := TrAc [|Ψ〉 〈Ψ|] associated with
a spatial subregion A in CFTs,

S(ρA) := −TrρA log ρA, (1.1)

is equivalent to the minimal area of certain codimension-2 surfaces γA in the dual AdS
geometry,

S(ρA) = min
γA

Area(γA)

4GN

, (1.2)

at the leading order of O(1/GN) expansion, where GN is the (d-dimensional) Newton con-
stant. Here the von Neumann entropy S(ρA) ≡ SA is commonly called the entanglement
entropy, because that represents an amount of quantum entanglement between A and its
complement Ac based on the number of EPR pairs [8]. The codimension-2 surface γmin

A

that achieves the minimum on the right hand side, is called Ryu-Takayanagi surface. In
the AdS black hole, the CFT (denoted by CFTR) corresponding to the thermal state

ρCFT = ρthermal =
∑
n

e−βEn

Z
|En〉 〈En|CFTR

. (1.3)

This state can be purified by a copy of the original CFT (denoted by CFTL), results in a
pure total state called thermofield double (TFD) state

|Ψ〉 =
∑
n

e−βEn/2√
Z
|En〉CFTL

⊗ |En〉CFTR
. (1.4)
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Figure 1.1: The two-sided eternal AdS wormhole geometry (on a constant time slice).
The Ryu-Takayanagi surface γmin

A denoted by the red line is located exactly on the event
horizon of the black hole.

Then the corresponding AdS geometry is given by the eternal wormhole [9]. From the
formula (1.2), the entropy of AdS black hole is now interpreted as the entanglement
entropy between the two CFTs on the asymptotic boundaries (A ≡ CFTR and Ac ≡
CFTL) (Fig. 1.1.). The expression of the TFD state (1.4) clearly illustrates existence
of strong (sometimes we say “maximal”) entanglement between these two CFTs. In this
picture, the degree of of freedom of the black hole entropy is nothing but a remnant of
the strong entanglement.

The Ryu-Takayanagi formula (1.2) itself is much more generic and applicable to vari-
ous situations other than black holes. For example, the spatial region A is not necessarily
a whole space of a boundary CFT, as well as the asymptotic AdS geometry does not nec-
essarily contain a black hole. The formula is also generalized to non-static geometries (the
Hubeny-Rangamani-Takayanagi formula) [10, 11], or to higher derivative gravity [12, 13],
with an appropriate modification. In this sense, the Ryu-Takayanagi formula is an exten-
sive generalization of the Bekenstein-Hawking formula in the AdS/CFT correspondence.

This powerful and universal connection between the entanglement entropy and space-
time geometry implies that the details of bulk spacetime geometry is secretly encoded in
the structure of quantum entanglement on boundary CFTs. This mindset is sometimes
mentioned as the slogan “It From Qbit”, and has opened up a new era of holography coop-
erating with quantum information theory [14, 15, 16, 17]. The various tools and ideas of
quantum information theory, such as information metrics, complexity, quantum telepor-
tation, and quantum error corrections, have been employed to research of the AdS/CFT
correspondence (e.g. [18, 19, 20, 21, 22, 23, 24, 25, 26, 27]). They have brought us pro-
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Figure 1.2: The entanglement wedge of A∪B (the blue colored region) and the entangle-
ment wedge cross section (the red dotted line) in a pure AdS geometry on a constant time
slice. The blue dotted curves of the entanglement wedge is the Ryu-Takayanagi surface
γmin
AB .

found insights on the mechanism of the bulk/boundary duality. Moreover, inspired by
the motivation from holography, new information theoretic quantities have been invented
in recent years [28, 29, 30, 31].

There typically exists an equivalence between an information-theoretic quantity and
a geometrical object. The entanglement entropy and the Ryu-Takayanagi surface is the
first and the most well-studied example of such relations. One of such dual relations
is the so-called holographic entanglement of purification conjecture, that is also deeply
related to the structure of correlation and geometry [32, 33]. This relation argues that
the entanglement of purification EP (ρAB), an information measure of correlation on a
bipartite system HAB := HA ⊗ HB [34], is equivalent to the minimal cross section of
the entanglement wedge (a bulk region surrounded by the Ryu-Takayanagi surface of the
subregion A ∪B),

EP (ρAB) = min
ΣAB

Area(ΣAB)

4GN

. (1.5)

The right hand side is called the entanglement wedge cross section (EWCS), which is
a plausible geometrical measure of correlation between the boundary subsystem A and
B (Fig. 1.2). This relation is a generalization of the holographic entanglement entropy
of the wormhole geometry for arbitrary geometries and for arbitrary partner subsystem
B 6= Ac.

The quantum state on the bipartite system A ∪ B (such as depicted in Fig. 1.2)
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is typically a mixed state because we trace out the remainder ρAB := Tr(AB)c [|Ψ〉 〈Ψ|].
Remark that the von Neumann entropy SA (or SB) is no longer a measure of entanglement
for mixed states; the entanglement entropy properly quantifies quantum entanglement
only for pure states ρAB = |Ψ〉 〈Ψ|AB. When ρAB is a mixed state, the entanglement
entropy is not even a measure of classical correlation, as is obvious from that the totally
decoupled mixed state ρAB = ρA⊗ρB can result in SA > 0. Thus, the relation 1.5 implies
that there still exists a profound connection between the correlations and the spacetime
geometry for mixed states.

This conjecture and the entanglement wedge cross section itself have recently attracted
much attention in the literature (e.g. [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52]). In particular, recent advances have revealed that the entanglement wedge
cross section is a plausible dual candidate for several information measures, the odd en-
tropy [28], the logarithmic negativity [53, 54], and the reflected entropy [55]. Interestingly,
all of them satisfy the fundamental properties of correlation measure, which makes it more
solid that the correlations in boundary is deeply connected with the bulk geometry. This
view has inspired, for instance, the bit-thread formalism that is the construction of the
AdS/CFT correspondence based on a bunch of correlated degree of freedom akin to EPR
pairs [56, 57, 58, 59].

This thesis is aimed to promote this direction and to investigate concrete relations
between boundary correlation and bulk geometry in the AdS/CFT correspondence. That
will develop the further interaction between high energy physics and quantum information
theory. In order to achieve this purpose, we will follow the three multifaceted approaches
below:

First, one of the missing pieces of the above discussion is about multipartite correla-
tions in three or more partite systems A,B,C, . . . . In quantum information theory, it is
well known that multipartite entanglement is more than just a combination of bipartite
entanglement. Such multipartite correlation also plays an important role in extracting a
distinct feature of holographic correlations. We will introduce a totally new information-
theoretic measure of multipartite correlation, and propose a plausible geometrical coun-
terpart of this quantity. That provides a fundamental tool to deal with multipartite
correlations in the AdS/CFT correspondence [60].

Second, the entanglement of purification on the left hand side (1.5) is generically hard
to compute, because that definition involves a highly non-trivial optimization procedure.
Thus the behavior of this quantity in physical many body systems is less known, while the
information-theoretic properties are well studied. As a first step, we perform a computa-
tion of the entanglement of purification in quantum body systems by a numerical method
[61]. That reveals unusual behavior of the entanglement of purification as a measure of
correlation, explained by a difference of quantum and classical correlations 1.

1Refer also to an analytic computation of the entanglement of purification based on the path-integral
optimization, which shows an exact match of the conjecture (1.5) in particular configurations [62].
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Finally, there are various classes of correlation measures in quantum information the-
ory. We comprehensively deal with two classes of such correlation measures [63] to il-
lustrate a unified view on the relation between correlations and geometry. The first one,
called optimized correlation measure, is a generalization of the entanglement of purifica-
tion and their holographic dual will be derived in an integrated manner. That will provide
an interesting example for which these optimization procedures are executable owing to
the power of holography. Then we present a no-go theorem for another class, called the
axiomatic entanglement measures, that they can not be dual to the promising geometrical
measures of correlation. That high-lightens the importance of classical correlation in the
AdS/CFT correspondence.

The remainder of this thesis is organized as follows: In the section 2, we give a brief
review on the holographic entanglement entropy, the entanglement wedge cross section,
and the information-theoretic measure of correlation. That covers the fundamentals of
the latter parts. In the section 3, the definition of the n-partite generalization of the
entanglement of purification is introduced, and the properties of that are studied in de-
tail. The holographic dual then will be derived and the consistency of their properties are
shown. In the section 4, we discuss a numerical computation of the entanglement entropy
in lattice regularized free scalar field theory and spin chain models. Varying the size and
the location of the subsystem A and B will illustrate an outstanding behavior of the en-
tanglement of purification common to both models. In the section 5, the holographic dual
of the optimized correlation measures are discussed in a comprehensive way. That bring
us a new bulk object inside the entanglement wedge, similar to but more complex than
the entanglement wedge cross section. We also state a no-go theorem on the holographic
dual of the axiomatic entanglement measures, that forbids them from being a dual to the
geometrical measures of correlation. To close, we summarize the whole discussion and
develop a future perspective in the section 6.
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2 A review of quantum entanglement in the AdS/CFT
Correspondence

2.1 Ryu-Takayanagi formula

We start by setting our conventions in the AdS/CFT correspondence. The entanglement
entropy is defined on a reduced density matrix ρA, where the subsystem A in quantum
field theories is typically taken as a spatial subregion on a time slice. The total Hilbert
space of the field theory may be factorized into Htot = HA ⊗HAc . The subsystem A can
be a single connected subregion, or a total of multiple disconnected subregions. Then
the entanglement entropy for the subsystem A in a total state ρtot, is defined as the von
Neumann entropy of the reduced density matrix ρA = TrAcρtot,

S(ρA) := −TrρA log ρA. (2.1)

We usually denote S(ρA) by SA for simplicity unless the state ρA under consideration
needs to be explicitly mentioned. This same caution will apply to the other entropic
quantities such as the mutual information.

In the AdS/CFT correspondence, the holographic entanglement entropy formula [6,
64, 10] tells us how to calculate entanglement entropy in the dual gravity side. Consider
a d-dimensional holographic CFT that has a classical d + 1 dimensional gravity dual.
In the present thesis, we will restrict ourselves to static geometries for simplicity. A
covariant generalization is almost straightforward following the same method that extends
the Ryu-Takayanagi formula to the Hubeny-Rangamani-Takayanagi formula 2. On the
dual gravity solution corresponds to ρtot , we consider a constant time slice. To compute
the entanglement entropy for the chosen subsystem A, we have to search the codimension-
2 (i.e. d− 1-dimensional) surfaces γA on the time slice, under the two conditions that (i)
they are anchored on the entangling surface ∂γA = ∂A and (ii) γA is homologous to A.
Then the entanglement entropy is given by the minimal area of such surfaces3 [6],

SA = min
γA

Area(γA)

4GN

. (2.2)

The right hand side is called the holographic entanglement entropy. The simplest example
would be found in the (global) pure AdS, where the Ryu-Takayanagi surface γmin

A is
depicted in (Fig. 2.1).

The minimality of the Ryu-Takayanagi surface allows us to prove the properties of
the holographic entanglement entropy, such as the strong subadditivity, purely by the

2A covariant discussion is not so straightforward for multipartite settings that will be discussed in the
section 3. For instance, refer to [65] for the entropic inequalities for more than 4-partite systems.

3We deal with the leading order of large N limit (small 1/GN limit) through the whole of present
thesis.
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Figure 2.1: The holographic entanglement entropy of a given spatial subregion A on a
constant time slice (the gray shaded region) in the global pure AdS. The dotted green lines
are codimension-2 surfaces γA, and the Ryu-Takayanagi surface γmin

A gives the minimal
area.

geometrical methods [66, 67, 68, 69]. The derivation of (2.2) and of a covariant version
are found in [7, 11].

2.2 The holographic Mutual Information

One of the generalizations of the entanglement entropy is the mutual information. The
mutual information I is defined on quantum states ρAB, acting on a bipartite system
HA∪B(≡ HAB) = HA ⊗HB on two subsystems A and B, by

I(ρAB) := SA + SB − SAB. (2.3)

We denote I(ρAB) by I(A : B) for simplicity. This quantity is a measure of correlation
between A and B, satisfying the monotonicity on strict local operations. In particular,
I(A : B) ≥ 0 and I(A : B) = 0 if and only if ρAB = ρA ⊗ ρB. The mutual information is
usually UV-finite even in quantum field theories.

Because the mutual information is a linear combination of the entanglement entropies,
the holographic dual of the mutual information is immediately induced from the Ryu-
Takayanagi formula. To compute I(A : B), we need to find the Ryu-Takayanagi surface
of the subsystem A ∪ B that is typically a disconnected subregion. That makes the
holographic dual of SAB more complex than that of a single interval. There are two
different phases for γmin

A , depending on the size and location of the subsystems (Fig. 2.2).
When A and B are distant, the disconnected phase (Left) where we have SAB = SA +SB
is chosen. That leads to

I(A : B) = 0. (2.4)

7



Figure 2.2: The Ryu-Takayanagi surface of SAB in the two different configurations (Left
and Right). The configuration that has smaller area of γmin

A will be chosen. The blue
shaded region is the (time slice of) entanglement wedge of A ∪B.

When A and B are close, the connected phase (Right) is preferred, and then we have

I(A : B) > 0. (2.5)

This is called the phase transition of the holographic mutual information. The vanishing
I(A : B) = 0 is a magic of the leading order approximation at O(1/GN); there still
remains O(1) positive value even in the disconnected phase.

2.3 Entanglement Wedge Cross Section

The entanglement wedge of a subsystem X is a bulk subregion MX surrounded by the
Ryu-Takayanagi surface γmin

X [70, 71, 72]. 4 The entanglement wedge of A ∪ B is , for
example, denoted byMAB illustrated in the Fig. 2.2.

Given an entanglement wedge for a bipartite subsystem, the entanglement wedge cross
section is defined as follows [32]. Suppose the boundary ofMAB, consists of A ∪ B and
γmin
AB , is divided into two imaginary subsystems A and B so that

∂MAB = A ∪ B, A = A ∪ A′, B = B ∪B′, (2.6)

where A′∪B′ = γmin
AB . The boundary ∂MAB may include the horizon of black hole. Then

the entanglement wedge cross section EW (A : B) ofMAB is defined by the minimum of
the holographic entanglement entropy SA optimized over all possible such partitions

4Precisely speaking, the entanglement wedge is a codimension-0 subregion in the bulk spacetime, but
we call the time slice of that by the entanglement wedge with an abuse of terminology.
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Figure 2.3: The entanglement wedge cross section (the red dashed lines) in the global
pure AdS (Left) and in the global AdS black hole (Right). (The figure is cited from [63])

EW (A : B) := min
A:∂MAB=A∪B

SA (2.7)

= min
γA

Area(γA)

4GN

, (2.8)

where γA is the Ryu-Takayanagi surface of the subsystem A. Examples in a typical
subsystem A∪B in connected phases are shown in Fig.2.3. For the disconnected phase in
Fig.2.2, the entanglement wedge cross section will automatically vanish EW (A : B) = 0
by definition.

The entanglement wedge cross section is a generalization of the holographic entan-
glement entropy for mixed states, in the sense that γmin

A reduces to the Ryu-Takayanagi
surface γmin

A if ρAB is pure. The entanglement wedge cross section is usually a UV-finite
quantity. The several properties such as the sandwich inequality

1

2
I(A : B) ≤ EW (A : B) ≤ min{SA, SB}, (2.9)

are shown [32, 33]. These support that the entanglement wedge cross section is a plausible
geometrical measure of correlation.

2.4 The Holographic Dual Conjectures

The entanglement wedge cross section is originally conjectured to be dual to the information-
theoretic quantity called the entanglement of purification, based on agreements of their
various information-theoretic properties as well as the compatibility with the tensor net-
work description of the AdS/CFT correspondence [73, 74].
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Surprisingly, several correlation measures other than the entanglement of purification
have been shown to be essentially equal to the entanglement wedge cross section. These
measures include the logarithmic negativity [53, 75, 76, 54], the odd entropy [28], and the
reflected entropy [55]. They are computable in holographic CFTs and the results match
with the form of the entanglement wedge cross section in many cases. Remarkably, the
reflected entropy, a cousin of the entanglement of purification, shows that the entangle-
ment wedge cross section is exactly analogous to the wormhole horizon in a geometry dual
to the canonical purification.

2.4.1 The entanglement of purification

Here we will focus on the entanglement of purification for the latter use. The entanglement
of purification is defined on a bipartite state ρAB as follows [34]. Consider a purification
of ρAB, i.e. a pure state |ψ〉ABE that satisfies

TrE[|ψ〉 〈ψ|ABE] = ρAB, (2.10)

with a decomposition of the ancillary system E into HE ≡ HA′ ⊗ HB′ = HA′B′ . There
are infinite choices of |ψ〉AA′BB′ , and the dimension of the Hilbert space HA′B′ could be
arbitrary large in general. Then the entanglement of purification EP is defined by the
entanglement entropy of the reduced density matrix ρAA′ = Tr[|ψ〉 〈ψ|AA′BB′ ],

EP (ρAB) := min
|ψ〉AA′BB′

SAA′ , (2.11)

where the minimum is taken over all possible purifications. We concisely write EP (ρAB) ≡
EP (A : B) unless a given state need to be specified.

This is an information-theoretic measure of both quantum and classical correlations
between A and B. The EP (A : B) is positive semi-definite and vanishes only for product
states ρAB = ρA ⊗ ρB. This monotonically decreases under local operations, but not for
classical communication. In this sense, the entanglement of purification is very similar to
the mutual information. The regularized version of entanglement of purification

E∞P (ρAB) := lim
n→∞

EP (ρ⊗nAB)

n
, (2.12)

has an operational interpretation based on the number of EPR pairs under the local
operation and asymptotically vanishing communication (LOq).

2.5 The Classes of the Correlation Measures

There are many types of correlation measures in quantum information theory. They have
been invented historically in accordance with various purposes in the information the-
ory. The entanglement measures are characterized by the monotonicity under strict local
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operations (LO) and classical communication (CC), quantifying an amount of entangle-
ment for given mixed states. A subclass of that called axiomatic entanglement measures
satisfy a set of axioms such as the asymptotic continuity. This class includes the entan-
glement of formation [77], the relative entropy of entanglement [78], the entanglement
cost [77, 79], the distillable entanglement [77, 80], the squashed entanglement [81], and so
forth [82]. Most of them are defined using a certain type of minimization. For instance,
the entanglement of formation EF is defined by

EF (ρAB) := min∑
pi|ψi〉〈ψi|AB=ρAB

∑
i

piS(σiA), σiA := TrB[|ψi〉 〈ψi|AB], (2.13)

where the minimization is performed over all possible choices of {pi, |ψi〉AB} subject to
ρAB =

∑
i pi |ψi〉 〈ψi|AB and

∑
pi = 1, pi ≥ 0. This procedure is called convex roof in

general. The entanglement of formation is known to give a universal upper bound on
various entanglement measures

EX(ρAB) ≤ EF (ρAB), (2.14)

where EX is any of the other axiomatic entanglement measures listed above.
The entanglement of purification and the mutual information belong to the class called

the total (quantum and classical) correlation measures. They are monotonically non-
increasing under strict local operations, but may increase by classical communication.
The other examples will be discussed in the section 5.

The entanglement of formation is closely related to the entanglement of purification
by the inequality

EF (ρAB) ≤ EP (ρAB). (2.15)

An interpretation is that an amount of quantum correlation can never exceed the sum of
quantum and classical correlation.
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3 Multipartite entanglement in the AdS/CFT corre-
spondence

The quantum entanglement is typically discussed as a bipartite correlation. In these case,
as we saw in the previous sections, we usually divide the whole quantum system into
two pieces, a subsystem A and its complement Ac, and then the entanglement entropy SA
uniquely represents the amount of quantum entanglement between them for pure states [8].
However, this bipartite model is not the only case we discuss the quantum entanglement
on. It has been known that there are richer correlation structures in quantum systems
consisting of three or more subsystems.

On multipartite quantum systems, there are various types and levels of the multipartite
quantum entanglement. This diversity comes from the fact that the separable states on
multipartite quantum system has different criteria depending on how one require the
states to be un-entangled among the multi-subsystems. This fact results in the variety
– and difficulty – of study of multipartite entanglement compared to the bipartite one
[82]. For example, one needs (infinitely) many kinds of standard states like Bell pairs in
bipartite case in order to characterize operational aspects of an amount of multipartite
entanglement by means of (S)LOCC. Another way to illustrate an aspect of multipartite
entanglement is given by the famous GHZ state in 3-qubits system:

|GHZ〉ABC =
1√
2

(|000〉ABC + |111〉ABC). (3.1)

This type of entanglement is known to play an essential part of the building blocks of
tripartite entanglement. Each of the three qubits is maximally entangled with the other
systems in this state. After one of the subsystems is traced out, however, the remaining
bipartite state becomes separable, and thus no quantum entanglement remains. This
example shows that the structure of multipartite quantum entanglement is much richer
than bipartite ones and is not just a sum of bipartite one.

To quantify an amount of correlations for multipartite states, there have been several
proposals by generalizing the mutual information.

The multipartite entanglement has been studied in the holographic system also. A
pioneer work on this context it the well-known property of holographic mutual information
called “monogamy”. This feature is characterized the following simple inequality on a
tripartite system A,B,C:

I(A : BC) ≥ I(A : B) + I(A : C). (3.2)

This inequality is always true on the geometrical states for any tripartite subsystems
at the leading order O( 1

GN
). The proof relies only on the very basic properties of Ryu-

Takayanagi surface and thus is flexible and robust. In general, this type of inequality (3.2)
is conventionally called monogamy inequality also for the other measures of correlation.
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If a measure of correlation satisfies the inequality (3.2) for a class of states, then this
measure is called monogamous on the state class.

The key argument is that the inequality (3.2) is not always true in general quantum
tripartite systems. For example, one can easily check that a fully mixed multipartite
quantum state ρABC = 1

2
(|000〉 〈000|ABC + |111〉 〈111|ABC) violates the inequality. Thus

the monogamy of mutual information can be regarded as a characterization or a necessary
condition of geometrical states. This is the tripartite subsystem case, but four- or more-
partite case are also known to exhibit the distinctive behavior of correlation in a similar
way [68, 69]. These examples indicate that multipartite entanglement tells us more fine-
grained information about the holographic states and their structure.

This inequality (3.2) can be transformed into a more intuitive form using the tripartite
information,

I3(A,B,C) = I(A : B) + I(A : C)− I(A : BC) = I(A : B)− I(A : B|C), (3.3)

where I(A : B|C) = I(A : BC) − I(A : C) is the conditional mutual information. The
tripartite information is one of the various generalizations of the mutual information.
The monogamy of holographic mutual information can be rephrased as the negativity (or
non-positivity, strictly speaking) of the tripartite information,

I3(A,B,C) ≤ 0. (3.4)

This quantity attracts a lot of attention as a measure of correlation or a diagnostic of
chaos (with a flipped sign, −I3) in the context of holography [67, 83, 84, 85, 86, 87]. In
generic quantum system, the tripartite information can be both positive and negative (as
a consequence of the possible violation of the monogamy of mutual information), and can
be zero even for correlated states e.g. GHZ state. This property complicates the situation
and make it hard to extract the description of structure of multipartite correlation in
geometric states.

Our goal in this section is to introduce a genuine informational measure of multipartite
correlation both in generic quantum states and in holographic states. This procedure is
conducted by generalizing the entanglement of purification to multipartite systems: we
first define a multipartite version of the entanglement of purification, and then propose its
holographic dual following a similar manner to the bipartite case. The properties of the
multipartite entanglement of purification are studied in generic quantum systems, which
assures that this quantity is a genuine measure of multipartite correlation. These feature
include new upper bounds on the existing measures of multipartite correlation – called
the total correlation and the dual total correlation [88, 89]– and on the novel informa-
tion measures defined as generalizations of the tripartite information. The holographic
counterpart typically has a form exemplified in Fig.3.1

13
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Figure 3.1: An typical example of the multipartite generalization of the entanglement
wedge cross section, whose area gives EW (A : B : C) (The figure is cited from [60])

, and the its geometrical properties totally match with these of the multipartite en-
tanglement of purification.

Finally, we remark that the word “monogamy” means that they can never correlated
the other system. This is purely quantum phenomena and can not be seen in classical
system (since one can always add a correlated system C by just classically mixing the
states). A clear and simple argument related to this fact is the following: a pure quantum
state |ψ〉AB can never be correlated with any other system C. In other words, any type of
extension of ρAB = |ψ〉 〈ψ|AB must have a totally decoupled form ρABC = |ψ〉 〈ψ|AB ⊗ ρC .
This can easily seen by I(AB : C) = SAB + SC − SABC = 0 because of SAB = 0 that also
leads to SC ≤ SABC ≤ SC .

Note: This section is mainly based on the results in [60, 63].

3.1 The multipartite entanglement of purification

We first give a brief review of the properties of the bipartite entanglement of purification.
Then we provide a generalization for generic multipartite quantum systems. The various
information-theoretic properties necessary for a multipartite correlation measures will be
shown in detail.

3.1.1 A review of the bipartite entanglement of purification

Recall the definition and basic properties of the entanglement of purification, discussed
in the previous section 2.4. Given a quantum state ρAB on a bipartite quantum system
HAB = HA ⊗HB, the entanglement of purification EP (A : B) is defined by

EP (ρAB) := min
|ψ〉AA′BB′

SAA′ , (3.5)

14



where the minimization is taken over all possible purifications |ψ〉AA′BB′ that satisfies
ρAB = TrA′B′ [|ψ〉 〈ψ|AA′BB′ ]. Using the fact SAA′ = SBB′ for any pure states |ψ〉AA′BB′ ,
this expression can also be written as

EP (ρAB) :=
1

2
min

|ψ〉AA′BB′
(SAA′ + SBB′) =

1

2
min

|ψ〉AA′BB′
I(AA′ : BB′). (3.6)

For the reader’s convenience, we put a short list of the information-theoretic properties
of EP that will be related to the later discussion:

(I) For pure state ρAB = |ψ〉 〈ψ|AB, this quantity reduces to the entanglement entropy:

EP (A : B) = SA = SB on any pure states. (3.7)

This property is desirable for many bipartite correlation measure, especially for the en-
tanglement measures, owing to the uniqueness theorem [8]. Namely, this feature allows
us to regard EP as a generalization of entanglement entropy for mixed state as an amount
of correlations. Refer to the original paper [34] for the operational meaning of the EOP
based on the number of EPR pairs. This property is also usually required for a class of
axiomatic entanglement measures as a normalization condition, which enable us to com-
pare their values meaningfully.

(II) This quantity is always non-negative EP (A : B) ≥ 0, and vanishes if and only if
a given state ρAB is a product state,

EP (A : B) = 0 ⇔ ρAB = ρA ⊗ ρB. (3.8)

This property is usually an essential requirement for a measure of correlation. Note that
many important information-theoretic quantities, e.g. the conditional entropy or the tri-
partite information, can be both positive and negative in quantum systems.

(III) This quantity monotonically decreases by discarding an ancilla subsystem,

EP (A : BC) ≥ EP (A : B). (3.9)

This is also a natural property for a measure of correlation. The same inequality replaced
with the mutual information I(A : BC) ≥ I(A : B) is also true, known as the strong
subadditivity of the entanglement entropy.

(IV) This quantity is bounded from above by the entanglement entropy,

EP (A : B) ≤ min{SA, SB}. (3.10)
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This inequality directly follows from the definition (3.5) by choosing an extremal purifi-
cation |ψ〉AA′BB′ = |ψ′〉AA′B ⊗ |φ〉B′ for SB, and also for SA. It gives an upper bound on
the entanglement of purification.

(Va) This quantity is bounded from below by a half of mutual information,

EP (A : B) ≥ I(A : B)

2
. (3.11)

(Vb) For any tripartite state ρABC , this quantity is bounded from below as

EP (A : BC) ≥ I(A : B) + I(A : C)

2
. (3.12)

These follows from the second expression of the entanglement of purification (3.6), the
monotonicity of mutual information, and the saturation of the monogamy of the mutual
information on arbitrary tripartite pure states.

(VI) For any tripartite pure state |ψ〉ABC , this quantity is polygamous,

EP (A : BC) ≤ EP (A : B) + EP (A : C). (3.13)

This polygamous property is in contrast to the monogamy of the squashed entanglement,
while the latter is a genuine entanglement measure.

(VIIa) For a class of states saturating the subadditivity, this quantity returns to the
entanglement entropy,

EP (A : B) = SA when SAB = SB − SA. (3.14)

(VIIb) For a class of states saturating the strong subadditivity, this quantity returns
to the entanglement entropy,

EP (A : B) = SA when SAB + SAC = SB + SC . (3.15)

These properties are a consequence of the more powerful theorem which completely
determine the structure of quantum states of such classes. We will revisit this point in
the subsection 5.3.5.

The listed properties above are not independent from each other. For instance, (VI)
follows from (I) and (Va). Refer to [34, 90] for the proofs of these properties in general
quantum systems.
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3.1.2 The definition of the multipartite entanglement of purification

The multipartite generalization of the entanglement of purification is defined as follows.
The key observation is the second form of the definition of the bipartite EOP (3.6). This
clearly shows that the entanglement of purification is the minimized mutual information
over the all possible purified systems. Thus we can employ a generalization of mutual
information for multipartite systems in order to extend the EOP for multipartite cases.

The mutual information I(A : B) has various multipartite generalizations. For exam-
ple, we have the tripartite information (3.3) for tripartite systems based on Ven diagram,
as mentioned before. However, we cannot use this quantity in this purpose, because the
tripartite information trivially vanishes for any tripartite pure states.

Another generalization is called the total correlation T (A1 : · · · : An), defined on a
n-partite state ρA1···An upon the n-composite system HA1 ⊗HA2 ⊗ · · · ⊗ HAn , defined by

T (A1 : · · · : An) := S(ρA||ρA1 ⊗ · · · ⊗ ρAn) (3.16)

=
n∑
i=1

SAi − SA1···An . (3.17)

where S(ρ||σ) = Trρ(log ρ− log σ) is the relative entropy. This generalization is motivated
by a particular form of mutual information based on the relative entropy between a given
original state and the local product state I(A : B) = S(ρAB||ρA ⊗ ρB) [88, 89]. This
quantity satisfies basic requirement for a good multipartite correlation measure, e.g. this
is clearly positive semi-definite and is monotonic under strict local operations. Note that
we can rewrite T (A1 : · · · : An) as a suggestive form, which is a summation of the bipartite
mutual information:

T (A1 : · · · : An) = I(A1 : A2) + I(A1A2 : A3) + · · ·+ I(A1 · · ·An−1 : An). (3.18)

.
We then define a generalization of entanglement of purification for a n-partite state

ρA1···An using the total correlation measure.

Definition 1. The multipartite entanglement of purification EP on a n-partite quantum
states ρA1···An is defined by 5

EP (ρA1:···:An) :=
1

2
min

|ψ〉A1A
′
1···AnA

′
n

T (A1A
′
1 : · · · : AnA′n) (3.19)

=
1

2
min

|ψ〉A1A
′
1···AnA

′
n

n∑
i=1

SAiA′i , (3.20)

where the minimization is taken over all possible purifications of ρA1···An .
5The normalization factor is unessential in the following discussion. We omitted the half factor in

the paper [60], in order to keep the inequalities simple. In this thesis we follow the convention in [63].
Remark that a multipartite factor 1/2, but not 1/n, sometimes has an operational background [91].

17



We usually denote EP (ρA1:···:An) by EP (A1 : · · · : An) briefly to keep the expression
concise, unless the state under consideration must be specified. The fact that the entan-
glement entropy always vanishes for pure states was used to derive the second line. This
expression indicate that the multipartite entanglement of purification is the (half of the)
minimum value of the sum of bipartite entanglement between each of n-parties and the
other n−1 parts in the purified systems. We note that the optimal purification that gives
the minimal value in (3.5) can be non-unique in general. This is the same as in the case
of the bipartite entanglement of purification.

In particular, the tripartite case is represented by

EP (A : B : C) =
1

2
min

|ψ〉AA′BB′CC′
[SAA′ + SBB′ + SCC′ ]. (3.21)

The entanglement entropies SAA′ , SBB′ , and SCC′ characterize an amount of quantum
entanglement between AA′ : BB′CC ′, BB′ : AA′CC ′, and CC ′ : AA′BB′, respectively.
This is usually enough to prove a property of the multipartite entanglement of purification
for this tripartite case, because its n-partite generalization follows easily from the 3-partite
case.

3.1.3 The properties of the multipartite entanglement of purification

We explore the information-theoretic properties of EP in generic quantum systems.
First, the following reduction property follows from the definition.

Lemma 2. If one of the n-partite subsystems is totally decoupled ρA1···An = ρA1···An−1⊗ρAn,
then the reduction holds

EP (A1 : · · · : An−1 : An) = EP (A1 : · · · : An−1). (3.22)

Proof. The decoupled part can be separately purified apart from the remaining parts,
like 〈ψ〉A1A′1···AnA′n

= |ψ′〉A1A′1···An−1A′n−1
⊗ |φ〉AnA′n . This type of purifications guarantees

EP (A1 : · · · : An−1 : An) ≤ EP (A1 : · · · : An−1) for this state. The opposite inequality
EP (A1 : · · · : An−1 : An) ≥ EP (A1 : · · · : An−1) is inherited from the same property of the
total correlation T (A1 : · · · : An−1 : An) ≥ T (A1 : · · · : An−1) on any states.

This property means that the correlation measured by EP is never disturbed by any
uncorrelated systems.

Next, since we require EP to be a natural generalization of the bipartite case, the
similar properties suitably adjusted to the multipartite systems must hold. Indeed, one
can prove the following properties which are the counterparts of those of the bipartite
ones mentioned above.
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Proposition 3. If a given n-partite state is pure ρA1···An = |φ〉 〈φ|A1···An, then the mul-
tipartite entanglement of purification is given by just the summation of entanglement
entropy of each single subsystem,

EP (A1 : · · · : An) =
1

2

n∑
i=1

SAi . (3.23)

Proof. Notice that the original state |φ〉A1···An itself is nothing but a purification which
gives (3.23). The fact that any additional ancillary system always increases the sum of
the entanglement entropy follows from that the any other purifications must have a form
|ψ〉A1A′1···AnA′n

= |φ〉A1···An ⊗ |φ
′〉A′1···A′n′ .

This is a generalization of the property (I). Thus calculating EP for pure states is
trivial. Note that the total correlation also reduces to just the sum of entanglement
entropy for pure states:

T (A1 : · · · : An) =
n∑
i=1

SAi − SA1···An =
n∑
i=1

SAi . (3.24)

Thus they essentially coincide with each other EP = 1
2
T on any pure multipartite states.

Proposition 4. EP vanishes if and only if a given n-partite state is a fully product state,

EP (A1 : · · · : An) = 0⇔ ρA1···An = ρA1 ⊗ · · · ⊗ ρAn . (3.25)

Though this proposition can also be directly proven from the definition of EP , we
postpone the proof after the proposition (7). This property indicates that EP can be
positive not only for entangled states but also for non-separable states. This means that
EP is not a genuine measure of quantum entanglement, but a measure of both quantum
and classical correlations. This property is expected as the bipartite case also a measure
of quantum and classical correlation, not only of entanglement.

It is natural to expect EP to always decrease when a part of the subsystems is traced
out. This is actually true as we can see in the following proposition.

Proposition 5. EP monotonically decreases upon discarding ancilla systems,

EP (XA1 : · · · : An) ≥ EP (A1 : · · · : An). (3.26)

Proof. This inequality follows from the simple fact that any purification of the larger
system is also a purification of the smaller system. Namely, suppose that |ψ〉XX′A1A′1···AnA′n
is an optimal purification of ρXA1···An , then this state is also a (presumably non-optimal)
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purification of ρA1···An . Thus the minimization of the smaller system does search strictly
wider region than that of the larger system, and we have

EP (XA1 : · · · : An) =
1

2
(SA1X(A′1X

′) + SA2A′2
+ · · ·+ SAnA′n)

≥ 1

2
min

|ψ〉A1A
′
1···AnA

′
n

(SA1(A′1XX
′) + SA2A′2

+ · · ·+ SAnA′n)

= EP (A1 : · · · : An). (3.27)

This property also guarantees that the EP is monotonically non-increasing under strict
local operations [29].

Now we provide an upper bound on EP in terms of a sum of the entanglement entropy,
as a generalization of the property (IV).

Proposition 6. EP is bounded from above by

EP (A1 : · · · : An) ≤ 1

2
min
i

[SA1 + · · ·+ SA1···Ai−1Ai+1···Ai + · · ·+ SAn ]. (3.28)

Proof. We will prove this bound for tripartite state ρABC for simplicity. The generalization
to n-partite systems is straightforward. Let us consider a standard purification of a given
state ρABC =

∑
pk |φk〉 〈φk|ABC such that

|ψ〉AA′BB′CC′ =

rank[ρABC ]∑
k=1

√
pk |φk〉ABC ⊗ |0〉A′ ⊗ |0〉B′ ⊗ |k〉C′ . (3.29)

On this purification any information of the original system is pushed into the ancilla C ′.
The definition leads to 2EP (A : B : C) ≤ SAA′ + SBB′ + SCC′ on this state. Note that
ρAA′ = ρA ⊗ |0〉 〈0|A′ , as well as the same for B, and SCC′ = SAA′BB′ for this purification
(3.29). Then it can be shown that

SAA′ = SA, SBB′ = SB, SCC′ = SAB, (3.30)

Thus we get
2EP (A : B : C) ≤ SA + SB + SAB. (3.31)

The three upper bounds on EP follows by commuting A,B,C, and thus

EP (A : B : C) ≤ 1

2
min{SA + SB + SAB, SB + SC + SBC , SC + SA + SCA}. (3.32)
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The procedure of the proof and the results implies that the upper bound of EP (A : B :
C) is totally determined by the information included in the reduced density matrix ρAB.
In other words, the multipartite correlation can not be arbitrarily increased by adding
ancillary systems which is compatible with the original system. This upper bounds can
be obviously reached by a pure state |ψ〉ABC , though this is not only the case as we will
see in the corollary 10 and 11.

We now show a lower bound on EP follows from the definition.

Proposition 7. The n-partite entanglement of purification is bounded from below by

EP (A1 : · · · : An) ≥ 1

2
T (A1 : · · · : An). (3.33)

Proof. This is the direct consequence of the monotonicity of the total correlation:

EP (ρA1:···:An) :=
1

2
min

|ψ〉A1A
′
1···AnA

′
n

T (A1A
′
1 : · · · : AnA′n) (3.34)

≥ 1

2
min

|ψ〉A1A
′
1···AnA

′
n

T (A1 : · · · : An) (3.35)

=
1

2
T (A1 : · · · : An). (3.36)

where we used the property of the total correlation on generic states

T (A1X : · · · : An) ≥ T (A1 : · · · : An). (3.37)

This is a generalization of the property (Va). It provides a generic order between two
multipartite measure of correlation. It is worth to point out that EP and T behave very
similarly. The propositions 2, 3, 4, 5, and 6 are also true for the total correlation.

This proposition 7 also gives a easy proof of the proposition 4:

Proof. Suppose that a given n-partite state is totally product ρA1···An = ρA1 ⊗ · · · ⊗ ρAn .
Then the absolute minimum EP = 0 is easily reachable by a purification on which the
each subsystem is purified independently.

On the other hand, EP (A1 : · · · : An) = 0 leads to T (A1 : · · · : An) = S(ρA1···An||ρA1 ⊗
· · · ⊗ ρAn) = 0 from the proposition 7. Then the non-degeneracy of the relative entropy
implies ρA1···An = ρA1 ⊗ · · · ⊗ ρAn .

We also provide another lower bound on EP in terms of the sum of the bipartite
entanglement of purification.
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Proposition 8. EP is bounded from below by

2EP (A1 : · · · : An) ≥
n∑
i=1

EP (Ai : A1 · · ·Ai−1Ai+1 · · ·An). (3.38)

Proof. We prove this inequality in tripartite cases for simplicity. For a given state ρABC ,
we have

2EP (A : B : C) = min
|ψ〉AA′BB′CC′

[SAA′ + SBB′ + SCC′ ]

≥ min
|ψ〉AA′BB′CC′

SAA′ + min
|ψ〉AA′BB′CC′

SBB′ + min
|ψ〉AA′BB′CC′

SCC′

= EP (A : BC) + EP (B : CA) + EP (C : AB), (3.39)

then the bound follows.

There are several properties of EP follow from the above arguments as corollaries.

Corollary 9. For any pure n-partite state, EP is polygamous:

EP (A1 : · · · : An−1 : BC) ≤ EP (A1 : · · · : An−1 : B) + EP (A1 : · · · : An−1 : C). (3.40)

Proof. For a pure state |φ〉A1···AnBC , the proposition 3 leads to

2EP (A1 : · · · : An−1 : BC) =
n−1∑
i=1

SAi + SBC =
n−1∑
i=1

SAi + SA1···An−1

≤ 2
n−1∑
i=1

SAi

=
n−1∑
i=1

SAi + SB − SA1···An−1B +
n−1∑
i=1

SAi + SC − SA1···An−1C

≤ 2EP (A1 : · · · : An−1 : B) + 2EP (A1 : · · · : An : C), (3.41)

where the subadditivity of the von Neumann entropy is recursively used in the first in-
equality, as well as the proposition 7 is in the last inequality.

The following shows that there is a class of quantum states for which one can rigorously
compute EP especially for tripartite systems:

Corollary 10. For a class of tripartite states ρABC that saturate the subadditivity SABC =
SC − SAB, we have

EP (A : B : C) =
1

2
(SA + SB + SAB). (3.42)

.
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Proof. The proposition 6 and 7 indicate a sandwich inequality

SA + SB + SC − SABC ≤ 2EP (A : B : C) ≤ SA + SB + SAB. (3.43)

Then the saturation SC−SABC = SAB immediately leads to 2EP (A : B : C) = SA+SB +
SAB.

Corollary 11. For a class of tripartite states ρABC that saturate both of the two forms
of the strong subadditivity, SA + SC = SAB + SBC and SB + SC = SAB + SAC, we have

EP (A : B : C) =
1

2
(SA + SB + SAB). (3.44)

Proof. The proposition 6 and 7 mean

2(SA + SB + SC)− SAB − SBC − SCA ≤ 2EP (A : B : C) ≤ SA + SB + SAB. (3.45)

Note that the lower side can be deformed as

2(SA + SB + SC)− SAB − SBC − SCA
=SA + SB + SAB + (SA + SC − SAB − SBC) + (SB + SC − SAB − SAC). (3.46)

Thus when the two types of the strong subadditivity are simultaneously saturated, we
have 2EP (A : B : C) = SA + SB + SAB.

Remark that another way of generalization of (Va) was shown in [60] for tripartite
states ρABC . The result has a form

EP (A : B : C) ≥ 1

2
(T (A : B : C) + I3(A : B : C)) (3.47)

=
1

2
(I(A : B) + I(B : C) + I(C : A)). (3.48)

This expression can also be generalized to n-partite system as discussed below.

3.1.4 Upper bounds on the other multipartite correlation measures

There are various measures of correlations that quantify multipartite correlations for
mixed states, reflecting to the diversity of multipartite correlations (see [68] also in this
context in holography). An approach is the total correlation T as we have discussed.
Another generalization of the mutual information is the dual total correlation

D(A1 : · · · : An) := SA1···An −
n∑
i=1

S(Ai|A1

i
ˇ· · ·An) (3.49)

= I(A1 : A2 · · ·An) + I(A2 : A3 · · ·An|A1)

+ · · ·+ I(An−1 : An|A1 · · ·An−2), (3.50)
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where S(A|B) = SAB − SB is the conditional entropy, and
i
ˇ· · · denotes the exclusion of

Ai. The D also possesses a good nature as a correlation measure. Namely, this quantity
monotonically non-increases under strict local operations, vanishes if and only if the state
is totally decoupled, and D =

∑n
i=1 SAi holds for pure states.

We now introduce two non-negative information X, Y for three- or more-partite sys-
tems:

X(A1 : · · · : An) :=
(n− 1)T (A1 : · · · : An)−D(A1 : · · · : An)

n− 2
(n ≥ 3), (3.51)

Y (A1 : · · · : An) :=
(n− 1)D(A1 : · · · : An)− T (A1 : · · · : An)

n− 2
(n ≥ 3). (3.52)

They are positive semi-definite as it is clear from the following expressions,

X(A1 : · · · : An) =
1

n− 2

n∑
i=1

T (A1 :
i
ˇ· · · : An), (3.53)

Y (A1 : · · · : An) =
1

n− 2

n∑
i=1

D(A1 :
i
ˇ· · · : An|Ai), (3.54)

where

D(A1 : · · · : An|E)

=I(A1 : A2 · · ·An|E) + I(A2 : A3 · · ·An|A1E) + · · ·+ I(An−1 : An|A1 · · ·An−2E),
(3.55)

is the conditional dual total correlation. They are normalized so that

X(A1 : · · · : An) = Y (A1 : · · · : An) =
n∑
i=1

SAi , (3.56)

holds on any pure states. The X is a generalization of the right hand side of (3.47).
The X is monotonically non-increasing under strict local operations as is clear from

(3.53), while the Y is not necessarily. Moreover, both X and Y are not faithful: there
exists a correlated state ρA 6= ρA1 ⊗ · · · ⊗ ρAn whose X (or Y ) vanishes. There is a
balancing relation between these information,

T (A1 : · · · : An) +D(A1 : · · · : An) = X(A1 : · · · : An) + Y (A1 : · · · : An) (3.57)

=
n∑
i=1

T (A1 :
i
ˇ· · · : An). (3.58)

The multipartite entanglement of purification gives upper bounds on these informa-
tion, generalizing the proposition 7 and (3.47). The statement can be generically expressed
as follows:
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Proposition 12. Suppose an entropic measure Θ(A1 : · · · : An) defined on n-partite
system satisfies (i) Θ(A1 : · · · : An) =

∑n
i=1 SAi for pure n-partite states, (ii) is non-

increasing under strict local operations. Then

EP (A1 : · · · : An) ≥ 1

2
Θ(A1 : · · · : An). (3.59)

The proof is totally the same as that of the proposition 7, because the monotonicity
and the non-increasing property under strict local operations are equivalent on this class
of measures [29].

The T , D, and X satisfy the both conditions of the proposition, while Y does not
satisfy the condition (ii). Thus, the following three inequalities hold:

EP (A1 : · · · : An) ≥ 1

2
T (A1 : · · · : An). (3.60)

EP (A1 : · · · : An) ≥ 1

2
D(A1 : · · · : An). (3.61)

EP (A1 : · · · : An) ≥ 1

2
X(A1 : · · · : An). (3.62)

The third inequality is nothing but a generalization of (3.47) for n-partite systems.
These three inequalities generically give independent lower bounds on the EP . How-

ever, if the monogamy of mutual information holds for any partition on a state, e.g. in
the case of geometric states, the ordering of them holds

X(A1 : · · · : An) ≤ T (A1 : · · · : An) ≤ D(A1 : · · · : An) ≤ Y (A1 : · · · : An). (3.63)

First, the middle inequality T (A1 : · · · : An) ≤ D(A1 : · · · : An) follows by the assumption
of the monogamy I(A : B|C) ≥ I(A : B),

D(A1 : · · · : An)

= I(A1 : A2 · · ·An) + I(A2 : A3 · · ·An|A1)

+ · · ·+ I(An−1 : An|A1 · · ·An−2)

≥ I(A1 : A2 · · ·An) + I(A2 : A3 · · ·An)

+ · · ·+ I(An−1 : An)

= T (A1 : · · · : An). (3.64)

Given this fact, the remaining inequalities are obvious by

X(A1 : · · · : An) = T (A1 : · · · : An)− D(A1 : · · · : An)− T (A1 : · · · : An)

n− 2
, (3.65)

Y (A1 : · · · : An) = D(A1 : · · · : An) +
D(A1 : · · · : An)− T (A1 : · · · : An)

n− 2
. (3.66)
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3.2 The multipartite entanglement wedge cross section

We now return to the holographic world. Our aim is to find a geometrical object which ap-
propriately captures multipartite correlations flowing in geometric states. Here we define
a multipartite generalization of the entanglement wedge cross-section. The formulation is
inspired by the tensor network description of the AdS/CFT correspondence [73, 74, 62].

3.2.1 The definition of the multipartite entanglement wedge cross section

Let us start to give a formal definition of the multipartite generalization of the entan-
glement wedge cross section. We mostly focus on the tripartite case i.e. there are three
subsystems A, B, C, for simplicity. The generalization to the n-partite cases is straight-
forward.

First, take the subsystems A, B and C on the boundary. The reduced density ma-
trix ρABC is typically mixed. The holographic entanglement entropy SA, SB, SC , and
SABC can be computed following the Ryu-Takayanagi formula. The corresponding Ryu-
Takayanagi surfaces are denoted by γmin

A , γmin
B , γmin

C , γmin
ABC , respectively. The entanglement

wedgeMABC is defined as a inner region of M 6 with the boundary A,B,C, and γmin
ABC :

∂MABC = A ∪B ∪ C ∪ γmin
ABC . (3.67)

Notice thatMABC is possibly disconnected if some of the subsystems A,B,C are totally
decoupled. The boundary ∂MABC may include the bifurcation surfaces, not only the AdS
boundary, in the AdS black hole geometry.

Next, divide the boundary ∂MABC – not the entanglement wedgeMABC itself – into
three pieces Ã, B̃, C̃ so that

Ã ∪ B̃ ∪ C̃ = ∂MABC , (3.68)

and
A ⊂ Ã , B ⊂ B̃ , C ⊂ C̃. (3.69)

The boundary of Ã, B̃, C̃ is denoted by DABC . Now regarding the Ã, B̃, C̃ as the subsys-
tems on the new boundary inside the bulk, the sum of their entanglement entropies

SÃ + SB̃ + SC̃ , (3.70)

are formally defined by using the Ryu-Takayanagi formula. This procedure is performed
by finding a minimal surface Σmin

ABC that consists of three parts ΣA, ΣB, ΣC such that

Σmin
ABC = ΣA ∪ ΣB ∪ ΣC , ∂Σmin

ABC = DABC , (3.71)
6Precisely speaking, we are talking about a constant time slice of the entanglement wedge with an

abuse of terminology. The former is codimension-1, and the latter is codimension-0 object.
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and
ΣA,B,C is homologous to Ã, B̃, C̃ inside MABC . (3.72)

The ∂MABC is codimention-2, and thus the surfaces DABC is codimension-3.
Finally, minimize the area of Σmin

ABC over all possible divisions Ã, B̃, C̃ that satisfy
the requirements (3.68) and (3.69). This minimum value (with a 1/2 prefactor) is the
multipartite entanglement wedge cross section:

EW (ρABC) :=
1

2
min
Ã,B̃,C̃

[
Area(Σmin

ABC)

4GN

]
. (3.73)

Examples in the case of AdS3/CFT2 are found in the Fig 3.2, 3.3.

B

𝐴

𝐶

Σ𝐴𝐵𝐶
𝑚𝑖𝑛

 𝐶

 𝐵
 𝐴

Figure 3.2: The tripartite entanglement wedge cross section. The black bold dashed lines
represents the minimal surface γmin

ABC , providing a part of the boundary of the entanglement
wedgeMABC . The yellow thin dashed lines represents the codimension-2 surface Σmin

ABC ,
whose area (divided by 8GN) is the EW . (The figure is cited from [60])
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 𝐶

 𝐵
 𝐴

Figure 3.3: The tripartite entanglement wedge cross section in the AdS black hole geom-
etry. Following the definition, each codimension-2 surface of Σmin

ABC is doubly degenerated.
(The figure is cited from [60])

The multipartite entanglement wedge cross section for n-partite systems is defined in
the same manner. For the bipartite case n = 2, this definition is nothing but that of the
bipartite entanglement wedge cross section. We usually write EW (ρABC) = EW (A : B : C)
briefly whenever the target state is obvious from the context.

This quantity is expected to capture multipartite correlations in holography, as a gen-
eralization of the bipartite entanglement wedge cross section. We show several properties
of EW which assures this expectation below.

3.2.2 Properties of the multipartite entanglement wedge cross section

In the following, we study the holographic properties of EW . Most of them are inspired
by those of EP . We mostly deal with the tripartite case for simplicity, but the properties
are easily generalized to n-partite cases.

First, if ρABC is a pure state, Σmin
ABC coincides with γmin

A ∪ γmin
B ∪ γmin

C by definition
(3.71). Therefore EW equals to the sum of the entanglement entropy of A, B and C in
this case:

EW (A : B : C) =
1

2
(SA + SB + SC). (3.74)

For a partly decoupled entanglement wedge e.g. MABC = MAB

⊔
MC (where

⊔
denote a sum of the totally separated geometries), the EW (A : B : C) reduces to the
bipartite entanglement wedge cross section EW (A : B). This leads the fact that EW = 0
if and only if the entire entanglement wedge is totally decoupled MA1···An =

⊔n
i=1MAn
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for multipartite setups.

The EW decreases when we reduce the size of one of the sub-regions:

EW (A ∪X : B : C) ≥ EW (A : B : C). (3.75)

This property follows from the famous entanglement wedge nesting,

MX ⊂MXY , (3.76)

for any boundary sub-regions X, Y [71, 70, 72].

An upper bound of EW follows by a graph proof (Fig.3.4) (or obviously from the fact
that the entanglement entropies are UV divergent while EW is usually finite):

EW (A : B : C) ≤ 1

2
(SA + SB + SAB), (3.77)

Commuting A,B,C, we get

EW (A : B : C) ≤ 1

2
min[SA + SB + SAB, SB + SC + SBC , SA + SC + SAC ]. (3.78)

B

𝐴

𝐶

Figure 3.4: The proof of an upper bound of EW by the entanglement entropies. The sum
of blue lines is SA + SB + SAB, and the sum of dashed yellow lines are 2EW (A : B : C).
Clearly 2EW (ρABC) ≤ SA +SB +SAB holds even if EW has a UV divergence when two of
the subsystems are adjacent, as shown the graph and the minimal property of the each
surface. (The figure is cited from [60])
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Furthermore, the lower bounds of EP also can be shown for EW by the graph proofs.
For example, the bound by T (A : B : C) and X(A : B : C)

2EW (A : B : C) ≥ T (A : B : C) = SA + SB + SC − SABC , (3.79)

2EW (A : B : C) ≥ X(A : B : C) = 2(SA + SB + SC)− SAB − SBC − SAC , (3.80)

are shown in Fig.3.5 and Fig.3.6. In holography, we always have T (A : B : C) ≥ X(A :
B : C) as mentioned before, thus the former is always tighter. Similarly, the bound by D
and the n-partite generalization can also be shown by drawing a graph.

B

𝐴

𝐶

Figure 3.5: The proof of the lower bound of EW by T . The sum of the dashed yellow
lines is 2EW (A : B : C) + SABC , and the sum of the real blue lines are SA + SB + SC .
The inequality 2EW (ρABC) + SABC ≥ SA + SB + SC follows due to the minimality of the
surfaces. (The figure is cited from [60])
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B

𝐴

𝐶

Figure 3.6: The proof of the lower bound of EW by X. The sum of the dashed yellow
lines is 2EW (A : B : C) + SAB + SBC + SCA, and the sum of the real doubled blue lines
is 2(SA + SB + SC). The inequality 2EW + SAB + SBC + SCA ≥ 2(SA + SB + SC) follows
due to the minimality of the surfaces. (The figure is cited from [60])

Note that the corollaries in the previous section follows also for EW automatically,
while they can also be shown by drawing a graph. The proposition 8 for EW can also be
easily shown graphically.

Conjecture

The above properties are the multipartite generalization of the properties of the bipartite
entanglement wedge cross section. The coincidence of the properties of EW and EP
tempt us to propose a conjecture: the multipartite entanglement wedge cross section EW
is holographically dual to the multipartite entanglement of purification EP at the leading
order O(N2):

EW = EP . (3.81)

3.2.3 Computations of the multipartite entanglement wedge cross section

In the pure AdS3

Unlike the entanglement of purification, the EW is computable as a purely geometrical
objects. We compute EW in the AdS3/CFT2 setup. We work in the Poincaré patch with
the ground state of a CFT2 on an infinite line, which is described by the bulk metric

ds2 =
dx2 + dz2

z2
, x ∈ (−∞,+∞), z ∈ [0,+∞). (3.82)
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We choose the three subsystems A,B,C as the intervals A = [−b,−a−r], B = [−a+r, a−
r], C = [a+ r, b] where b > a > 0. Here r is relatively small compared to the a and b. We
assume that the entanglement wedge of ABC is connected as shown in Fig.3.7. Following
the definition of EW , we need to find a triangle-like connected geodesics with the minimal
length. The ending points of the geodesics (the corner of the triangle) must be located
on the semi-circles in Fig.3.7. The reasonable minimal configuration should also keep the
reflection symmetry of the original system x → −x. This reduces the program to find
a special angle θ∗ whose the sum of length of the geodesics is minimal. Formally, the
entanglement wedge cross section is given by

EW (A : B : C) =
1

2
min
θ

[
L(θ)

4GN

]
. (3.83)

Because a compact formula of the length L as a function of a, b, r and θ is rather
complicated, we instead show numerical θ dependence of L as plotted in Fig.3.8, and
evaluate the special values of both θ and L satisfying the minimal length condition for a
given a, b, r. Note that the properties of EW studied before can be easily checked in this
particular setup.

𝐴 𝐵

𝒃

𝑧

𝑥

𝐶
−𝒃

−𝒂
𝜃

𝒓

Figure 3.7: The computation of EW in a setup in the pure AdS3. (The figure is cited
from [60])
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50
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L

Figure 3.8: L − θ plot in the computation of EW with differ-
ent parameters. From top to bottom, the parameters of (a, b, r) are
(10, 100, 0.05), (10, 100, 0.1), (10, 100, 0.5), (10, 100, 0.75). EW ∗ 8GN and the the op-
timal value of θ are (27.2046, θ → 1.56818) (24.432, θ → 1.5657), (17.9942, θ →
1.54531), (16.3723, θ → 1.53255), respectively.

In the BTZ black hole

Now we discuss the BTZ black hole. A planar BTZ black hole describes a 2d CFT on an
infinite line at finite temperature. The metric of a fixed time slice of the BTZ black hole
is given by

ds2 =
1

z2

(
dz2

f(z)
+ dx2

)
, f(z) = 1− z2

z2
H

, (3.84)

where the inverse temperature is related to the horizon by β = 2πzH .
We choose the three subsystems A, B, C as the intervals [−`, 0], [0, `], and the re-

maining of the infinite line, respectively.
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𝑥

𝐶

−𝒍

𝐶 𝐴 𝐵

+𝒍

𝑧

Figure 3.9: The computation of EW in a setup in the BTZ black hole. (The figure is
cited from [60])

As studied in [32], the geodesic length between the boundary and the horizon is given
by

L1 = log
β

πε
, (3.85)

where ε is the UV cutoff. The geodesic length between two points (−`, 0) and (0, 0) is

L2 = 2 log
β sinh(π`/β)

πε
, (3.86)

and the geodesic length between two points (−`, 0) and (`, 0) is

L3 = 2 log
β sinh(2π`/β)

πε
. (3.87)

At high temperature, Σmin
ABC consists of six short lines of length L1. In this configuration,

the tripartite entanglement wedge cross section is given by

2EW = 6L1 = 6 log
β

πε
≡ A(1). (3.88)

At low temperature, Σmin
ABC consists of three geodesic lines connecting (−`, 0), (0, 0) and

(`, 0), and so the EW is given by

2EW = 2L2 + L3 = 4 log
β sinh(π`/β)

πε
+ 2 log

β sinh(2π`/β)

πε
≡ A(2). (3.89)
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The tripartite entanglement wedge cross section EW is thus given by the minimum of
them

EW (A : B : C) =
1

8GN

min{A(1), A(2)}. (3.90)

Comparing A(1) and A(2), the critical temperature is given by

βc =
log
√
y+

π`
, (3.91)

where y+ is the positive root of

(y + y−1 − 2)(y − y−1) = 8. (3.92)

A(1) is favored for the high temperature β < βc, and A(2) is for the low temperature
β > βc.

3.3 The multipartite squashed entanglement in holography

There are a lot of measure of genuine quantum entanglement. Here we would like to
mention one of them, the squashed entanglement [92, 81], whose definition is based on
the same spirit as that of the (multipartite) entanglement of purification. They belong to
the class called optimized correlation measure, which will be discussed in the section 5 in
detail.

3.3.1 The multipartite squashed entanglement

The squashed entanglement is a promising measure of quantum entanglement for mixed
states. This quantity satisfies all the known desirable properties e.g. the additivity or the
monogamy for generic states. The squashed entanglement is defined by

Esq(ρAB) :=
1

2
min
ρABE

I(A : B|E), (3.93)

where I(A : B|E) = I(A : BE)− I(A : E) = SAE + SBE − SABE − SE is the conditional
mutual information, and the minimization is taken over all possible extensions ρAB =
TrE[ρABE]. Taking E as a trivial extension immediately leads to the inequality:

Esq(A : B) ≤ 1

2
I(A : B). (3.94)

The two types of multipartite generalization of Esq were also introduced in [88, 89].
One of them is defined based on the conditional multipartite mutual information,

T (A1 : · · · : An|E) = I(A1 : A2|E)+I(A1A2 : A3|E)+ · · ·+I(A1 · · ·An−1 : An|E). (3.95)
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Namely, the (q-)multipartite squashed entanglement for n-partite state ρA1···An is given
by

Esq(A1 : · · · : An) :=
1

2
min

ρA1···AnE
T (A1 : · · · : An|E), (3.96)

where the minimization is taken over all possible extensions of ρA1···An .
Again the trivial extension ρA1···AnE = ρA1···An ⊗ |0〉 〈0|E gives an upper bound

Esq(A1 : · · · : An) ≤ 1

2
T (A1 : · · · : An), (3.97)

where T (A1 : · · · : An|E) = T (A1 : · · · : An) was used on the state.
The proposition 7 and this inequality indicates the generic order of the three types of

multipartite correlation measure.

Corollary 13. For any n-partite quantum states, we have

Esq(A1 : · · · : An) ≤ 1

2
T (A1 : · · · : An) ≤ EP (A1 : · · · : An). (3.98)

Note that these bounds are saturated for any n-partite pure state. EP ≥ Esq is an
expected property because EP is a measure of both quantum and classical correlations
while Esq is only of quantum one.

3.3.2 Holographic dual of the multipartite squashed entanglement

The definition of the squashed entanglement (3.93) is very similar to that of the entan-
glement of purification (3.5). Both of them use a certain type of extension (purifications
are, indeed, a special subset of extensions). This observation motivates us to seek for the
holographic counterpart of Esq in the same manner of EP .

Let us regard a time slice of the AdS spacetime as a tensor network, which describes
the quantum state of the boundary CFT. The tensor network description of the back-
ground enable us to define a quantum state for any codimension-2 convex surface. This
argument is called the surface/state correspondence [74, 93, 94]. Then we consider a class
of extensions from ρAB to ρABE which have classical gravity duals, called geometrical
extensions, described by tensor networks. These extensions are not necessarily defined
on the original AdS boundary, but each extended geometry should at least contain the
entanglement wedge MAB. We also require its boundary to be convex in order to the
entanglement entropy of any part of the boundary is well-defined [74].

Then all the nontrivial extensions result in (at the leading order O(1/GN))

I(A : B|E) ≥ I(A : B). (3.99)

Indeed, this is equivalent to the well known non-positivity of the holographic tripartite
information I3(A,B,E) ≤ 0. This property was originally proven for the subsystems on
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the AdS boundary, but the proof does not rely on any peculiarity of asymptotic AdS
boundary 7. In particular, that does not concern whether the boundary is located on the
asymptotic infinity or not. This situation can be graphically illustrated for example in
Fig.3.10. This indicates that one can never reduce the correlation between A and B by
knowing the extension E in geometrical states.

B	𝐴	

𝐸	 𝐸	

𝐸	 𝐸	

Figure 3.10: The proof of I(A : B|E) ≥ I(A : B) for an extension ρABE, where
the extended subsystem E is on the Ryu-Takayanagi surface of SAB. The difference
I(A : B|E)−I(A : B) is given by the area of the orange codimension-2 surfaces subtracted
by that of the blue ones. We illustrate the case that E is relatively small, but the same
result is true for much large E.

Assuming that there exists an optimal extension for (3.93) in the geometrical class
leads to the equivalence

Esq(A : B) =
1

2
I(A : B). (3.100)

This implies that the inequality Esq(A : B) ≤ I(A : B)/2 is saturated in holography, as
observed in a tensor network model [95].

We can test this equivalence by checking their properties, especially one which is spe-
cial for holography. The mutual information is not always monogamous on generic states,
while the squashed entanglement must satisfy it for any tripartite states [96]. The holo-
graphic mutual information, however, becomes monogamous – that provides a non-trivial

7About the monogamy property, the area functional can be replaced with any geometrical functional
as long as that is extensive. In particular, higher curvature corrections does not affect and this property
would be common in all large-N field theories [67].
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check of (3.100).

We can generalize the discussion of the bipartite case to the multipartite squashed
entanglement as follows. The multipartite squashed entanglement can be rewritten as

Esq(A1 : · · · : An) =
1

2
T (A1 : · · · : An) +

1

2
min

ρA1···AnE
Qn(A : E), (3.101)

where

Qn(A;E) := I(A1 · · ·An : E)−
n∑
i=1

I(Ai : E). (3.102)

This quantity can be both positive and negative in generic quantum system. However,
the monogamy of mutual information guarantees

Qn(A : E) ≥ 0. (3.103)

In particular, this is nothing but the non-positivity of tripartite information Q2(AB;E) =
I(AB : E) − I(A : E) − I(B : E) = −I3(A,B,E) ≥ 0 for n = 2. Following the same
logic and assumption leads to that holographic multipartite squashed entanglement is
equivalent to half of the total correlation,

Esq(A1 : · · · : An) =
1

2
Tn(A1 : · · · : An). (3.104)

One of a non-trivial tests for n-partite case is given by the strong superadditivity of
the multipartite squashed entanglement [88]:

Esq(A1B1 : · · · : AnBn) ≥ Esq(A1 : · · · : An) + Esq(B1 : · · · : Bn). (3.105)

This is true in any 2n-partite state ρA1B1···AnBn . Note that the total correlation does not
satisfy this property in general. An example which violates this inequality for T is

ρA1B1A2B2A3B3 =
1√
2

(|000000〉 〈000000|A1B1A2B2A3B3
+ |111111〉 〈1111111|A1B1A2B2A3B3

),

(3.106)
Then we have T (A1B1 : A2B2 : A3B3) = T (A1 : A2 : A3) = T (B1 : B2 : B3) and the
inequality is violated.

However, in holographic CFTs, the total correlation indeed satisfies the strong super-
additivity. This can be shown as follows:

T (A1B1 : · · · : AnBn) = T (A1B1 : A2B2) + T (A1B1A2B2 : A3B3) + · · ·
· · ·+ T (A1B1A2B2 · · ·An−1Bn−1 : AnBn)

≥ I(A1 : A2) + I(A1A2 : A3) + · · ·+ I(A1A2 · · ·An−1 : An)

+ I(B1 : B2) + I(B1B2 : B3) + · · ·+ I(B1B2 · · ·Bn−1 : Bn)

= I(A1 : · · · : An) + I(B1 : · · · : Bn), (3.107)
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where the monogamy of holographic mutual information was used recursively. To our
best knowledge, there is no counter example for such saturation conjecture.
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4 The Numerical computation of the entanglement of
purification in lattice models

There are various types of quantum entanglement for mixed states. This fact results in
existence of the various quantum entanglement measures for mixed states, as described
in the section 2.5. Many of them have a concrete operational meaning based on the
number of the EPR pairs. They are, however, in general difficult to compute since their
definition commonly includes a sort of minimization over some infinitely many operations
or quantum states. Such minimizations are challenging in quantum field theories or even
in spin chain systems.

The entanglement of purification is a cousin of these entanglement measures, as the
definition (2.11) includes a minimization of correlation over all possible purifications.
The entanglement of purification is not a genuine measure of quantum entanglement,
but of both quantum and classical correlation. Nevertheless, the regularization of the
entanglement of purification has an operational meaning based on the number of EPR
pairs required to produce the given state under LOq [34]. The minimization involved
in the entanglement of purification is comparatively simple, because that consists of a
minimization of the single von Neumann entropy.

The conjectured formula of the entanglement of purification in the AdS/CFT corre-
spondence could provide an alternative method to compute the entanglement of purifica-
tion. In particular, [62] proves the holographic formula for specific examples. That also
motivates us to study the field theoretical properties of the entanglement of purification.

In this section, we present numerical calculations of the entanglement of purification in
a free scalar field theory and a spin chain system. In a free scalar field theory, we employ
the Gaussian wave functional ansatz for a wider range of subsystem sizes than the earlier
preliminary analysis [97]. In a spin chain, we perform the numerical optimization without
assuming any ansatz for the minimal subsystems. The results in both models exhibit a
common counter-intuitive behavior: The entanglement of purification EP (A : B) is not
monotonically decreasing as a function of the physical distance d between A and B. This
phenomena is also validated in an analytic method in a spin chain. We will discuss an
interpretation of this property based on the difference between quantum and classical
correlation. Moreover, there is a spontaneous breaking of the Z2 reflection symmetry that
exchanges A′ and B′, even for a system symmetric under the A,B reflection.

Note: This section is mainly based on the results in [61].
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Figure 4.1: The setup for the lattice model for N = 20 and |A| = |B| = 4. The distance
d between A and B is given by d = 1. The original subsystems obviously have the Z2

reflection symmetry. (The figure is cited from [61])

4.1 The Gaussian entanglement of purification in free scalar field
theories

First we consider a free massive scalar field theory in 1 + 1 dimensions. The Hamiltonian
is given by

H0 =
1

2

∫ ∞
−∞

dx[π2 + (∂xφ)2 +m2φ2]. (4.1)

Then the ground state wave functional of this lattice scalar theory is given by the Gaussian
function [98, 99, 97]

Ψ0[φ] = N0 exp

(
−1

2

N∑
n,n′=1

φ′nWnn′φ
′
n′

)
=: N0 exp

(
−1

2
φTWφ

)
. (4.2)

Here W is symmetric and real-valued matrix defined by

Wnn′ =
1

N

N∑
k=1

√
m2a2 + 4 sin2

(
πk

N

)
e

2πik(n−n′)
N , (4.3)

where N is the number of total lattice sites and the parameter a is the lattice spacing. We
set a as unit by rescaling the mass m. The masses are taken to be small from m = 10−4

to m = 10−1 near the conformal (massless) limit.
By choosing the sites A and B, we divide the total system into three parts Htot =

HA ⊗HB ⊗HE. The number of lattice sites in A,B, · · · is denoted by |A|, |B|, · · · , and
the distance between A and B is by d. A sketch of the setup is illustrated in Fig. 4.1.

We rewrite (4.2) as

Ψ0[φ] = N0 exp

[
−1

2

(
φAB
φE

)T(
P Q
QT R

)(
φAB
φE

)]
, (4.4)

41



with the matrices P,Q,R induced from the relative position of the subsystems A and B.
From the wave functional (4.4), we can derive the reduced wave functional ΨAB by the

partial trace out of the environmental system E (see also [97]). Namely, the functional of
ρAB = TrE [|Ψ〉 〈Ψ| |ABE] is given by

ρAB[φAB, φ
′
AB] =

∫
DφEΨ∗0[φAB, φE]Ψ0[φ′AB, φE]

∝ exp

(
−1

2
φABMφTAB −

1

2
φ′ABM(φ′AB)T − 1

4
(φAB − φ′AB)N(φAB − φ′AB)T

)
,

(4.5)

where M and N are symmetric real matrices defined by

M = P −QR−1QT , N = QR−1QT . (4.6)

The normalization is determined by the trace condition TrρAB = 1.

4.1.1 The mutual information and the logarithmic negativity

From the expression of the density matrix (4.5), we can compute the mutual information
I(A : B) = SA +SB −SAB and the logarithmic negativity EN(ρAB). The latter is a useful
probe of quantum entanglement between A and B defined as [100]

EN(ρAB) = log ||ρΓB
AB||1, (4.7)

where ρΓB
AB is the partial transposition with respect to B and || · ||1 is the trace norm.

Their results are shown in Fig. 4.2. Refer to the appendix 7.1 for the details of computing
EN(ρAB). The E(ρAB) exhibits an exponential decay with increasing the distance d. On
the other hand, the mutual information slowly decreases as function of d, following a
power-law.

4.1.2 The Gaussian entanglement of purification

Now we compute the entanglement of purification EP (A : B) in this system by employing
the gaussian purifications 8. The generic form of the Gaussian purifications have the form

ΨAA′BB′ [φ] = NAA′BB′ exp

(
−1

2
φTV φ

)
= NAA′BB′ exp

[
−1

2

(
φAB
φA′B′

)T(
J K
KT L

)(
φAB
φA′B′

)]
, (4.8)

8Refer to [101] for the study of the gaussian entanglement of formation.
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Figure 4.2: The half of mutual information 1
2
I(A : B) (left) and the logarithmic negativity

E(ρAB) (right) as a function of the distance d. The subsystems are taken as |A| = |B| = 4
and N = 60, the four colors corresponds to the mass m = 10−1, 10−2, 10−3, 10−4 (bottom
to top). (The figure is cited from [61])

where V is the Gaussian coupling matrix, and J,K, L are the decomposed matrices.
Assuming the widths of subsystems are the same w = |A| = |B|, L becomes a w × w
square matrix. The trace condition

TrA′B′ [|Ψ〉 〈Ψ|AA′BB′ ] = ρAB, (4.9)

requires
J = P, (4.10)

and L must be related to K by

L−1 = (K−1Q)R−1(K−1Q)T. (4.11)

The symmetry transformation [97] which does not affect the value of SAA′ allows us to
simplify the K to the form,

K =

(
1w KA,B′

KB,A′ 1w

)
. (4.12)

Thus, all the free parameters we need to tune for the optimization are contained in the
w × w matrices KA,B′ and KB,A′ . This procedure determines the matrix V ≡ VAA′,BB′ ,
from which we can compute the entanglement entropy SAÃ by

SAÃ =
∑
k

[
log

√
λk
2

+
√

1 + λk log

(
1√
λk

+

√
1 +

1

λk

)]
, (4.13)

where {λk} is the eigenvalue spectrum of the matrix Λ := −V −1
AA′,BB′VBB′,AA′ [98].
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Figure 4.3: The Gaussian entanglement of purification EP (A : B) at N = 60 for w =
|A| = |B| = 1, 2, 3, 4 (bottom to top). The left plot is for the massive limit m = 10−1,
and the right one is for the massless limit m = 10−4. (The figure is cited from [61])

The Gaussian entanglement of purification is the minimum of SAÃ over all possible
purifications ΨAA′BB′ [φ] of the form (4.8), i.e. over varying the components of KA,B′ and
KB,A′ ,

EP (A : B) := min
KA,B′ ,KB,A′

SAA′(V (KA,B′ , KB,A′)). (4.14)

For the class of purifications which have the Z2 symmetry reflecting AA′ and BB′, the
K should satisfy

KA,B′ = KR
B,A′ , (4.15)

where MR is the matrix M of the inverse ordering of all rows and columns,

(MR)j,k := Mw+1−j,w+1−k. (4.16)

Note that the optimal purification is not necessarily in this symmetric class, as we will see
in the following. Then the we may evaluate the degree of the breaking of the Z2 symmetry
by

A(K) := ||KA,B′ −KR
B,A′ ||2, (4.17)

where ||M ||2 is the 2-norm over all entries of M .
We calculated the Gaussian entanglement of purification (4.14) for the subsystem

sizes w = 1, 2, 3, 4, changing the distance d. The results were computed using a numerical
L-BFGS optimization implemented with the C++ package dlib.

4.1.3 The properties in the free scalar field theory

The results are shown in Fig. 4.3 for N = 60. There is a plateau-like behavior of EP in
the close configuration (from d = 0 to d = 1) at large w. The width of plateau seems
independent of w, which suggests a finite-size effect.
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Figure 4.4: The asymmetry parameter A at masses m = 10−1 and m = 10−4 with the
width w = 4 and total size N = 60. The positive value A > 0 Z2 indicates the breaking
of the Z2 symmetry. (The figure is cited from [61])

The Z2 reflection symmetry is a property of the original system A and B, and leaves
the entanglement of purification invariant i.e.

EP (A : B) = EP (B : A). (4.18)

Then it would be natural to expect that the optimal purification is also Z2-symmetric
i.e. A(K) = 0. Surprisingly, the optimal purification indeed violates the Z2 symmetry
for some states and A(K) > 0 is observed. The Z2 symmetry breaking clearly appears at
d = 1, as shown in Fig. 4.4. Within numerical accuracy, the Z2 symmetry is kept for any
d 6= 1. Note that the symmetry breaking at d = 1 gets enhanced by increasing w.

The results for the smaller total system N is more intriguing: The entanglement of
purification, at small N , does not need to monotonically decrease and can even increase
with d, as shown in Fig. 4.5. As we increase N , this non-monotonicity is gradually
relaxed. One may consider that this strange behavior as a correlation measure could be
just a magic of the Gaussian purifications, we will conclusively show that the EP is indeed
not a monotonic function in the next section.

4.2 The entanglement of purification in spin chain models

We then compute the entanglement of purification in spin chain systems. Let us denote
the dimension of a Hilbert space of a subsystem X by

DX = dimHX . (4.19)

In order to purify a given mixed state ρAB, the dimension of the auxiliary Hilbert space
HA′B′ should be at least as large as the rank of ρAB,

DA′B′ = DA′DB′ ≥ rankρAB. (4.20)
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Figure 4.5: The entanglement of purification for the various system sizes N at mass
m = 10−4. The width is w = 2 for the left, and w = 4 for the right. (The figure is cited
from [61])

The dimension DA′B′ can be arbitrarily large in principle. However, it was shown that
the minimum of SAA′ is reachable within

DA′ ≤ rankρAB, DB′ ≤ rankρAB (4.21)

in a finite-dimensional Hilbert space [102]. This fact enables us to compute the entan-
glement of purification in practice. For the latter convenience, we call the purification
minimal when

DA′DB′ = rankρAB, (4.22)

and maximal when
DA′ = DB′ = rankρAB. (4.23)

A typical example of purification of a mixed state

ρAB =
∑
i

pi |i〉 〈i|AB ,
∑
i

pi = 1, pi ≥ 0, (4.24)

is so called the canonical purification

|ψc〉AA′BB′ =
∑
i

√
pi |i〉AB |i〉A′B′ , (4.25)

where the ancilla state ρA′B′ is identical to the original state ρAB.
All purifications (of the fixed dimension DA′B′) can be obtained by acting with the

unitary operators on the auxiliary systems

|ψ(U)〉AA′BB′ = IAB ⊗ UA′B′ |ψ0〉AA′BB′ , (4.26)

where |ψ0〉AA′BB′ is an arbitrary initial state. For example, all possible purifications of
DA′B′ = rankρAB are obtained by setting ψ0 = ψc and using the unitary operators UA′B′
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on HA′B′ . We also need to enlarge the dimension of the auxiliary systems DA′ and DB′

up to the limit (4.21). In many cases, we will find that the minimal purification is enough
to reach the minimum of SAA′ .

Our numerical minimization relies on a variation of the steepest descent method. We
start from several random initial purifications and then ensure that the same minimum
is reached after the convergence. The possible existence of narrow local optimal valleys
cannot be excluded due to the nature of the technique, in which case the results provide
an upper bound to the true entanglement of purification.

4.2.1 In the transverse-field Ising model

We consider the 1d transverse-field Ising model

HIsing = −
∑
〈i,j〉

σzi ⊗ σzj − h
N∑
i=1

σxi , (4.27)

where 〈i, j〉 denotes the summation over the nearest neighbors with periodic boundary
condition. We first focus on the ground state of the critical Ising model (h = 1). The
entanglement of purification for the subsystems |A| = |B| = 1 as a function of the distance
d is plotted Fig. 4.6 (N = 10 and N = 4). It turns out that the optimal purification
corresponds to the minimal purification for these cases.

We see the non-monotonic behavior as function of d for N = 4, like in the free scalar
cases. Remarkably, the non-monotonicity for N = 4 can be rigorously proven. The point
is that EP (A : B) should equal to SA at d = 1 for N = 4, because the density matrix ρAB
has support only on a symmetric subspace [103]. On the other hand, EP (A : B) < SA at
d = 0 is obvious from the numerical results. Then we have

EP (d = 0) < EP (d = 1). (4.28)

This provides an analytic example in which the entanglement of purification behaves
non-monotonically with the physical distance d.

In fact, the non-monotonicity of the entanglement of purification for N = 4 (Fig.
4.6) is common in any homogeneous spin chain. Note that that the symmetric and anti-
symmetric projectors Psym, Pasym on A and B at d = 1 commute with any of the term∑

<ij> σ
l
i ⊗ σlj,

∑
i σ

l
i (l = x, y, z). Then they are symmetries of the system, i.e. they

commute with the Hamiltonian [H,Psym] = [H,Pasym] = 0, regardless of the coupling
parameters. Because of the orthogonality PsymPasym = PasymPsym = 0, the unique vac-
uum (and any other non-degenerate excited state) should belong to either symmetric or
anti-symmetric subspace of HAB. For instance, we have ρAB = 1

3
Psym in the vacuum of

the anti-ferromagnetic isotropic Heisenberg model. Therefore, following the statement in
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Figure 4.6: The entanglement of purification in the critical Ising model of width |A| =
|B| = 1. The system size is N = 10 (left) and N = 4 (right). (The figure is cited from
[61])

Figure 4.7: Smax = max{SA′ , SB′} and Smin = min{SA′ , SB′} under the optimal purifi-
cations (|A| = |B| = 1). The plot with distance d shows the Z2 symmetry breaking at
d = 1 (left). The reflection symmetry at d = 1 is getting recovered in the large N limit
(right). (The figure is cited from [61])

[103], we must have EP (d = 1) = SA(= SB) for such states. Thus any ansatz that shows
EP (d = 0) < SA implies the non-monotonicity of the entanglement of purification.

The Z2 reflection symmetry of exchanging AA′ and BB′ is explicitly broken at d = 1,
as shown in the Fig. 4.7. The property SA 6= SA′ indicates that the optimal purification
is non-trivially different from the canonical purification. Note that the Z2 symmetry is
gradually recovered as N gets larger for |A| = |B| = 1.

We also compute the entanglement of purification with larger subsystem size |A| =
|B| = 2. In this case, the optimization was done within minimal purifications to expedite
the computation. Interestingly, we again observe a non-monotonic behavior with d, which
weakens as N increases (Fig. 4.8). Note that the Z2 symmetry breaking is also found at
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Figure 4.8: The entanglement of purification for the larger subsystem |A| = |B| = 2 and
N = 10 (left). The non-monotonic behavior at d = 0 to d = 1 gets weaker as N increases
(right). All results for |A| = |B| = 2 are optimized within minimal purifications. (The
figure is cited from [61])

d = 1, which remains even in the large N limit.
Both a plateau-like behavior and the Z2 symmetry breaking occur also for a class of

two-qubit states called Werner states, the ground state of the Heisenberg spin chain (For
details, refer to the appendix C).

Next, we compute the entanglement of purification as a function of the magnetic field
h in the thermodynamic limit N →∞. The subsystems are taken as the nearest-neighbor
minimum subsystems (|A| = |B| = 1 and d = 0). We consider the thermal ground state,
in which the analytic expression of the reduced density matrices ρAB is obtained [104, 105].
The result is shown in Fig. 4.9. There is an inflection point at h = 1, which indicates that
the entanglement of purification correctly captures the phase transition. The Z2 reflection
symmetry gets broken only, remarkably, in the ferromagnetic phase h < 1.

4.2.2 In the Heisenberg model and a Chaotic Spin Chain

We also consider the anti-ferromagnetic isotropic Heisenberg model,

HHeisenberg =
∑
〈i,j〉

(σxi ⊗ σxj + σyi ⊗ σ
y
j + σzi ⊗ σzj ). (4.29)

For even N , the reduced density matrix ρAB of size |A| = |B| = 1 in the ground state is
equivalent to the Werner state [106], which is discussed in the appendix 7.3. The result is
shown in Fig. 4.10. Interestingly, the entanglement of purification exhibits a small peak at
the farthest distance d = 5 for N = 12, while the other measures monotonically decrease.
This is also an example of the non-monotonicity of the entanglement of purification.
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Figure 4.9: The entanglement of purification as a function of the magnetic field h in
N → ∞ limit. We took the nearest neighbor d = 0 with |A| = |B| = 1 (left). The Z2

symmetry is broken in the ferromagnetic phase h < 1, and recovered in the paramagnetic
phase h > 1 (right). (The figure is cited from [61])

Figure 4.10: The entanglement of purification for the anti-ferromagnetic isotropic Heisen-
berg model (left) and for a chaotic spin chain (right). (The figure is cited from [61])

Finally, we consider a non-integrable model by adding a parallel magnetic field to the
Ising model,

HChaos = −
∑
〈i,j〉

σzi ⊗ σzj − h
N∑
i=1

σxi − g
N∑
i=1

σzi . (4.30)

The parameters are set h = 1.05 and g = −0.5, following the work [107]. The long range
correlations are almost vanishing in the vacuum, while the entanglement of purification
is still relatively enhanced at d = 1 (Fig. 4.10).

4.3 Interpretation: Quantum and Classical correlations in a toy
model

The plateau-like behavior, or the non-monotonicity, of the entanglement of purification
are common both in the free scalar theory and in the critical Ising model. This behavior
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is very special to the entanglement of purification EP as that cannot be found in the
mutual information I(A : B) or the logarithmic negativity E(A : B). In particular, both
EP and I have almost equivalent information-theoretic properties as measure of quantum
and classical correlation. Thus this outstanding difference between EP and I is intriguing.

In order to interpret the difference, we focus on the following facts: for purely quan-
tum correlations, i.e. any pure states, they should coincide with each other (with the
appropriate factor 1

2
),

EP (A : B) =
1

2
I(A : B), (4.31)

while for purely classical correlations, i.e. any separable states, the entanglement of
purification is actually enhanced at least twofold [34]

EP ≥ 2 · 1

2
I(A : B). (4.32)

This observation tempt us to assume that the half of the mutual information evaluates the
quantum and classical correlation equivalently, while that the entanglement of purification
enhances classical correlations.

Based on this picture, we can explain the non-monotonic behavior of the EOP as
follows: Because the quantum entanglement falls off quickly as the physical distance d,
the correlations at d = 0 mainly come from quantum entanglement and those at d ≥ 1 arise
from classical correlations. This structure enhance the entanglement of purification at d ≥
1, while does not at d = 0. That results in a plateau-like or the non-monotonic behavior
of the entanglement of purification at d = 0 to d = 1. Indeed, for d� 1, the entanglement
of purification is at least twice as large as the half of the mutual information. Moreover,
both the mutual information and the entanglement of purification monotonically decrease
following a similar power law. These facts imply that the correlation d ≥ 1 consists of
mostly classical correlation.

We illustrate a toy model of a purified system with only bipartite nearest-neighbor
entanglement, depicted in Fig. 4.11. This picture also explains the Z2 symmetry breaking
at d = 1 as follows: First, remark that there is only quantum entanglement between AA′
and BB′ after purification. Thus the minimization procedure can be viewed as a trans-
formation of the classical correlation into the smallest possible quantum entanglement.
Then, at d = 0, the two boundary sites of A and B are strongly entangled, and this entan-
glement remains dominant after the purification. At d = 1, where A and B are separated
by one extra site C, tracing it out will lead to a highly mixed and classically correlated
state C is strongly entangled with both A and B. On the other hand, the direct quantum
entanglement between A and B is very small. Therefore, the optimal purification requires
strong entanglement injected into A ↔ A′, B ↔ B′, A′ ↔ B′, A′ ↔ B, and A ↔ B′ for
the transformation of classical correlation, while the entanglement A ↔ B is negligible.
This complicated competition results in a Z2 reflection symmetry breaking, where only
either A′ ↔ B or A ↔ B′ exhibits strong entanglement (Fig. 4.11, center). For d ≥ 2,
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Figure 4.11: A simplified toy model of the entanglement of purification with only short-
range quantum entanglement (zigzag lines). The original system |Ψ〉ABC is shown above,
and the purification |Ψ〉AÃBB̃ below. (The figure is cited from [61])

however, A and B are separated by multiple sites and there is no longer a strong classi-
cal correlation nor quantum entanglement between A and B. Then the entanglement of
purification decreases along with the small remaining classical correlations as d increases.
This picture is indeed confirmed both for the free scalar field theory and the Ising model.
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5 Holographic Dual of the Optimized Correlation Mea-
sures

The entanglement of purification and the squashed entanglement belong to a class of
correlation measures, so called the optimized correlation measures. The measures in this
class are defined by a type of optimization (minimization) of a linear combination of
von Neumann entropy over all possible purifications or extensions. This optimization
procedure is highly compatible with the AdS/CFT correspondence through geometric
states that can be regarded as extended geometry of the entanglement wedge.

In this section, we comprehensively introduce the holographic duals of the optimized
correlation measures. Besides the entanglement of purification and the squashed entan-
glement, there are three other measures of correlation: the conditional entanglement of
mutual information (CEMI), the Q-correlation, and the R-correlation [91, 29]. The first
one is a genuine entanglement measure, and the latter two are measures of both quantum
and classical correlation. It turns out that, when the optimization is taken over all possible
geometrical extensions, the CEMI and the R-correlation return to the known geometrical
objects in the bulk. On the other hand, the holographic dual of the Q-correlation provides
a totally new geometrical object inside the entanglement wedge: we call this geometrical
object by the entanglement wedge mutual information (EWMI). The detailed property
of the entanglement wedge mutual information will be studied in the following discus-
sion. These dual relations again exhibit the consistency of all the properties of correlation
measures. These results support a common framework of these quantity: the geometrical
optimization works in holography.

As an application of these dual relations, we point out an implication to the struc-
ture of correlation in geometric states. Note that the monogamy of holographic mutual
information tempts us to consider that correlations in the geometric states are dominated
by quantum entanglement. However, we will show that both the entanglement wedge
cross section and the entanglement wedge mutual information can be strictly larger than
various types of the axiomatic entanglement measures and the quantum discord at the
leading order O(N2). This means that they can not be a dual of the quantum correlation
measures. It implies that these quantities captures more than quantum entanglement in
the entanglement wedge, and it must be sensitive to classical correlations as well.

Note: This section is mainly based on the results in [63].
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5.1 Holographic Dual of the Optimized Entanglement Measures

5.1.1 The squashed entanglement

We have already discussed the holographic dual of the squashed entanglement Esq [81] in
the section 3. Recall that the squashed entanglement is given by

Esq(A : B) :=
1

2
min
ρABE

I(A : B|E) (5.1)

=
1

2
I(A : B)− 1

2
max
ρABE

I3(A,B,E), (5.2)

where ρABE is extension of ρAB i.e. TrEρABE = ρAB, and I3(A,B,C) = SA + SB + SC −
SAB − SBC − SCA + SABC is the tripartite information. Then the assumption that the
minimization over all possible geometrical extensions is enough to reach the minimum
leads to

Esq(A : B) =
1

2
I(A : B). (5.3)

This relation, if it is true, requires that the mutual information in holography must satisfy
the all properties of the squashed entanglement at O(N2). In particular, the squashed
entanglement is known to satisfy the monogamy relation Esq(A : BC) ≥ Esq(A : B) +
Esq(A : C), which is usually considered as a characteristic of quantum entanglement and
the mutual information does not satisfy in general. The holographic mutual information
indeed satisfies this property.

This equality is the saturation of the generic inequality (3.97). The saturation occurs
when ρAB is, for instance, a pure state. Moreover, the class of states saturating the
Araki-Lieb inequality also saturates that, in which the correlation between A and B is
essentially pure. Then a question is whether such pure correlation is the only possibility
of the saturation or not. The answer is no: the so-called flower state ρA1A2B1B2 defined
by tracing out C from

|ψ〉A1A2B1B2C
=

1√
2d

d∑
i=0

∑
j=0,1

|i〉A1
|j〉A2

|i〉B1
|j〉B2

Uj |i〉C , (5.4)

where U0 = I and U1 is a quantum Fourier transform,

Uk : |n〉 → |ψn〉 :=
1√
N

N−1∑
k=0

e
2πik
N
·n |k〉 , (5.5)

is known to satisfy Esq(A : B) = I(A : B)/2 (6= SA) [103]. One might then naively expect
that the structure of holographic states has a similar form to the flower state. For the
flower state, however, the equality

EP (A : B) = SA = SB, (5.6)

54



must hold, which is not what we expect on the holographic states. Giving a character-
ization on the states saturating (3.97) will be an interesting problem in the context of
holography.

5.1.2 The conditional entanglement of mutual information

Another entanglement measure in the class of the optimized correlation measures is the
conditional entanglement of mutual information EI [91]9. That is given by

EI(A : B)

:=
1

2
min

ρABA′B′
(I(AA′ : BB′)− I(A′ : B′)) (5.7)

=
1

2
I(A : B)

+
1

2
min

ρABA′B′
(I(AA′ : BB′)− I(A : B)− I(A′ : B′)), (5.8)

where ρABA′B′ is extension of ρAB. The monogamy of mutual information for geometric
extensions ρAA′BB′ leads to

I(AA′ : BB′)− I(A : B)− I(A′ : B′) ≥ I(A : B′) + I(B : A′) ≥ 0, (5.9)

which again leads to

EI(A : B) =
1

2
I(A : B). (5.10)

Interestingly, both results imply that the half of the mutual information in holography
seems to capture only quantum entanglement. This fact might tempt us to assume that the
holographic correlation is made of mostly quantum correlation. The entanglement wedge
cross section, however, still indicates the existence of classical correlations in holography,
as we will discuss later. This difference of the two geometrical quantities remind us the
result in the previous section: the entanglement of purification is more sensitive to classical
correlations than the mutual information. To our best knowledge, there is no obstruction
to speculate that the other axiomatic entanglement measures (such as EC and EF ) also
coincide with the half of mutual information in holography. We leave investigating this
possibility as a future work.

9The optimal correlation measures are originally defined by extensions of single ancillary system, that
do not include the conditional entanglement of mutual information [29]. We include EI here generalizing
their definition to discuss EI holographically.
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5.2 Holographic Duals of the Optimized Total Correlation Mea-
sures

5.2.1 The Q-correlation and R-correlation

There are two other optimized correlation measures, theQ-correlation and theR-correlation,
introduced in [29]

EQ(A : B) :=
1

2
min
ρABE

(SA + SB + SAE − SBE) (5.11)

≡ min
ρABE

fQ(A,B,E). (5.12)

ER(A : B) :=
1

2
min
ρABE

(SAB + 2SAE − SABE − SE) (5.13)

≡ min
ρABE

fR(A,B,E). (5.14)

They are symmetric between A and B, which is obvious in the equivalent expression
(E ≡ A′),

EQ(A : B)

=
1

2
min

|ψ〉AA′BB′
(SA + SB +

SAA′ + SBB′ − SBA′ − SAB′
2

) (5.15)

≡ min
|ψ〉AA′BB′

fQ(A,A′, B,B′). (5.16)

ER(A : B)

=
1

2
min

|ψ〉AA′BB′
(SAB + SAA′ + SBB′ − SA′ − SB′) (5.17)

≡ min
|ψ〉AA′BB′

fR(A,A′, B,B′). (5.18)

The Q-correlation and the R-correlation are non-increasing under strict local operations,
but not necessarily under LOCC. Thus they are not genuine entanglement measures.

There is inequalities

1

2
I(A : B) ≤ EQ(A : B), ER(A : B) ≤ EP (A : B). (5.19)

The R-correlation is a kind of reminiscent to the CEMI. That is clear from the following

ER(A : B) =
1

2
min

|ψ〉AA′BB′
(I(AA′ : BB′)− I(A′ : B′)). (5.20)

This is almost equivalent to the definition of the CEMI (5.7), though the minimization is
taken over all possible extensions but not purifications.
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Figure 5.1: The definition of the entanglement wedge mutual information. In the above
picture, EM is given by the area of red codimension-2 surfaces subtracted by the area of
blue codimension-2 surface (divided by 2·4GN). Notably, this quantity may be understood
as the mutual information between A and M : EM = 1

2
I(A : M). The symmetry EM(A :

B) = EM(B : A) comes from the fact that the RT-surface of SBA′ and SAB′ share the same
configurations. The optimal partition of the entanglement wedge mutual information is
not necessarily equivalent to that of the entanglement wedge cross section. (The figure is
cited from [63])

5.2.2 The entanglement wedge mutual information

We first investigate the holographic dual of the Q-correlation. The definition of the
holographic dual of EQ is given as follows (let us focus on the static case):

Given an entanglement wedge MAB, divide the boundary into two pieces ∂MAB =
A ∪ B such that A = A ∪ A′ and B = B ∪ B′. Then find the configuration of A′ and B′
that minimizes the holographic entanglement entropy fQ(A,A′, B,B′) over all possible
partitions. The minimum value (divided by 8GN), called the entanglement wedge mutual
information (entanglement wedge mutual information), is denoted by EM ,

EM(A : B) := min
A′∪B′

fQ(A,A′, B,B′). (5.21)

The entanglement wedge mutual information is the possible counterpart of EQ. An ex-
ample is depicted in the Fig.5.1.

There are many configurations of A′ and B′ appear in the minimization of fQ, which
makes the geometrical computation of EM highly complicated in general. We found,
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however, that this quantity can be represented by a simple formula based on the mutual
information in all the cases we deal with here.

Expressions based on the mutual information

In fact, for two disjoint intervals in AdS3/CFT2, the symmetry of the setup leads to an
expression

EM(A : B) =
1

2
min
M

(max{I(A : M), I(B : M)}), (5.22)

whereM corresponds to the cross section of the partition A′∪B′. This is also valid e.g. in
the Araki-Lieb transition configuration discussed below. This formula indicates a useful
property

I(A : M∗) = I(B : M∗), (5.23)

on (at least) one of the optimal cross section. We emphasize that the optimal purification
M∗ is not necessarily unique, nor does necessarily agree with that of EW (Fig.5.1). Both
examples will be described in the next subsection.

The formula (5.22) is not always true and must be generalized in more complicated
configurations. For example, if we set |B1| > |B2| in the Araki-Lieb saturating configura-
tion, an optimal configuration is neither of I(A : M∗) nor I(B : M∗), but of a combination
I(A : M∗

A) + I(B : M∗
B) where M∗

A ∪M∗
B = M . This example indicates a formula

EM(A : B) =
1

2
min

MA∪MB=M
(max{I(A : MA) + I(B : MB)}). (5.24)

To our best knowledge, there is no counter example of this expression. These suggestive
expressions clearly shows that the Q-correlation is a measure of correlation, which is dif-
ficult to read from the original definition. Proving or disproving this formula in generic
configurations is an interesting future work.

Another suggestive form of EM is

EM(A : B)

=
1

2

[
1

2
I(A : B) + min

A′∪B′

(
SAA′ +

I(A : B′) + I(B : A′)

2

)]
, (5.25)

where we have used SAB = SA′B′ = SA′ + SB′ for A′ and B′ on the RT-surface. The
optimization term is obviously larger than the entanglement wedge cross section.

In particular, the balancing condition (5.23) for the simple setups leads to I(A : B∗) =
I(B : A∗). Note that at least one of I(A : B′) or I(B : A′) must vanish for these setups,
because SAB′ < SA + SB′ read to SBA′ = SB + SA′ and vice versa. Therefore both of
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I(A : B′) and I(B : A′) should vanish for the balanced optimal partition, and then we
have

EM(A : B) =
1

2

[
1

2
I(A : B) + SAA∗b

]
, (5.26)

where A∗b denotes the balanced optimal partition that is minimal and reaches I(A : B∗) =
I(B : A∗). This is nothing but an average of 1

2
I and the cross-section SAA∗b . When the

balanced optimal partition of EM is equivalent to that of EW , we will have

EM(A : B) =
1

2

[
1

2
I(A : B) + EW

]
. (5.27)

Roughly speaking, the EM is an average of 1
2
I and EW with a deviation due to the term

SBA′ in general. Then let us define the deviation by

Db(A : B) := SAA∗b − EW (A : B) ≥ 0, (5.28)

and
EM(A : B) =

1

2

[
1

2
I(A : B) + EW +Db(A : B)

]
. (5.29)

The validity of these formula will be checked by direct computation in the following
discussion.

5.2.3 The property of the entanglement wedge mutual information

Now we investigate the detailed properties of the entanglement wedge mutual information.
First, this quantity can not be greater than the EW ,

EM ≤ EW . (5.30)

This inequality is expected from EW = EP and (5.19). Though this can be proven
by drawing a picture, a simpler way is by the property of the von Neumann entropy
(representing the area of the corresponding codimension-2 surfaces). Given the optimal
partition of EW by A∗W and B∗W , we have

EW (A : B) = SAA∗W ≥
1

2
(SA + SB + SAA∗W − SBA∗W ) ≥ EM(A : B), (5.31)

where the strong subadditivity and the definition (5.21) were used.
Next, EM is bounded from below by the half of the mutual information,

1

2
I(A : B) ≤ EM(A : B). (5.32)
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Figure 5.2: The extensivity EM(A1 : B) ≥ EM(A2 : B) for A1 ⊃ A2 is depicted
in the figure. The B′ labels are omitted for simplicity. The optimal partition A∗1 for
A1 naturally induces a partition A′2 on ∂MA2B so that A∗1 ∩ γA2B = A′2 ∩ γA2B. Then
EM(A1 : B) ≥ fQ(A2, B,A

′
2) follows because of the minimality of RT-surface. Finally,

fQ(A2, B,A
′
2) ≥ EM(A2 : B) is trivial by definition. (The figure is cited from [63])

This is clear from the definition for any optimal partition M∗,

EM(A : B)

=
1

2
(SA + SB + SAA∗M − SBA∗M ) (5.33)

=
1

2
I(A : B) +

1

2
(SAB + SAA∗M − SBA∗M ) (5.34)

≥ 1

2
I(A : B) +

1

2
(SB + SA∗M − SBA∗M )

≥ 1

2
I(A : B),

where the strong additivity and the subadditivity were used.
These sandwich inequalities show that EM(A : B) = SA = SB for pure states, and

that EM vanishes if and only if the state is totally decoupled.
The extensivity EM(A1 : B) ≥ EM(A2 : B) for A1 ⊃ A2 can also be followed from

the entanglement wedge nesting, see Fig.5.2 . The additivity EM(ρA1B1 ⊗ σA2B2) =
EM(ρA1B1) + EM(σA2B2) is obvious.

Conjecture All of these properties are consistent with these of EQ. tempt us to propose
the relation (at the leading order O(N2))
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Figure 5.3: The proof of the strong superadditivity of the entanglement wedge mutual
information. The areas with plus sign for red and minus sign for blue leads to (Left) ≥
(Middle) ≥ (Right). (The figure is cited from [63])

EQ = EM . (5.35)

Remark that the entanglement wedge mutual information satisfies the strong super-
additivity

EM(ρA1A2B1B2) ≥ EM(ρA1B1) + EM(ρA2B2). (5.36)

This is the same property of EW [32]. The geometrical proof is given in Fig.5.3 . This
inequality (5.36) is not a property of EQ, hence that will be a characteristic of holographic
correlations as with the holographic entropy cone [68].

5.2.4 Examples in the AdS3/CFT2

In the pure AdS3, the entanglement wedge mutual information for two disjoint intervals
is given by Fig.5.4.

The optimal partition is obvious from the conformal symmetry, which coincides with
that of EW . The expression is (5.26),

EM(A : B) =
1

2

[
1

2
I(A : B) + EW (A : B)

]
. (5.37)

All the properties of EM mentioned above can be directly confirmed also by this form.
In generic setups, such as three or more multipartite intervals, or in the black hole

geometry, the expression gets more complicated as we will see later.

5.2.5 The dual of R-correlation

The holographic dual of the R-correlation is introduced in the same manner replacing fQ
with fR. It turns out, however, that this procedure gives nothing but the entanglement
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Figure 5.4: The EM in the pure global AdS3 (Left) and in the global BTZ (Right). The
subsystems are taken as two disjoint intervals. (The figure is cited from [63])

wedge cross section again. A simple way to see this conclusion is to notice that one only
need for the minimization to consider the ancillary systems A′ and B′ located on the RT-
surface of SAB. This has been used implicitly in the above discussion and can be proven
geometrically.

In these configuration, we always have

I(A′ : B′) = SA′ + SB′ − SA′B′ (5.38)
= SA′ + SB′ − SAB (5.39)
= 0, (5.40)

since A′ and B′ should cover the all part of the Ryu-Takayanagi surface. Then it is obvious
that

ER = EP , (5.41)

from a form (5.20).
We also state it as a holographic proposal:

ER = EW . (5.42)

Note that the additivity of the entanglement wedge cross section is consistent with that
of the R-correlation, while the entanglement of purification is believed to be non-additive
from numerical results [108].

5.3 A no-go theorem for the holographic entanglement measures

We have discussed the promising holographic duals of the information-theoretic quantities
so far. The other view point would be that whether the geometrical objects, in particular
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the entanglement wedge cross section and the entanglement wedge mutual information,
can be dual of some information measures. Indeed, the mutual information seems to
be degenerated to both the squashed entanglement and the CEMI under the geometrical
extensions. That also strongly implies that quantum entanglement dominates holographic
correlations. This observation tempts us to speculate that some of axiomatic entanglement
measures could be equivalent to the entanglement wedge cross section or the entanglement
wedge mutual information in holographic CFTs.

There is, however, a no-go theorem in this direction: the entanglement wedge cross
section and the entanglement wedge mutual information can not be dual to the various
quantum correlation measures. This is shown by noting that these geometrical quantities
must be strictly larger than the information measures (at O(N2)) in a configuration near
to the holographic saturation of the Araki-Lieb inequality [109, 110]. These information
measures include most of the axiomatic entanglement measures [82] as well as the quantum
discord [111, 112]. This implies that the entanglement wedge itself captures more than
quantum entanglement, encoding classical correlations as well geometrically.

5.3.1 The phase transition of the mutual information

First of all, we note the upper bounds on the entanglement measures,

ED(A : B) ≤ I(A : B), (5.43)
ERE(A : B) ≤ I(A : B), (5.44)
Esq(A : B) ≤ I(A : B), (5.45)
EI(A : B) ≤ I(A : B), (5.46)

where ED is the distillable entanglement, ERE is the relative entropy of entanglement.
There is also an upper bound on the quantum discord

Dq(A : B) ≤ I(A : B). (5.47)

This type of upper bound is already enough to exclude the possibility that the quantum
correlation measures are dual to the entanglement wedge cross section or the entanglement
wedge mutual information. That can be seen in a configuration of

EW (A : B) > I(A : B), (5.48)
EM(A : B) > I(A : B), (5.49)

at the leading order O(N2) near to the phase transition of the mutual information [32].
This contradicts the generic upper bounds by the mutual information for the correlation
measures. In fact, the same discussion holds any type of bipartite information measure
EX that satisfies

EX(A : B) ≤ αI(A : B), (5.50)
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Figure 5.5: The boundary subsystems and the Ryu-Takayanagi surfaces in AdS4/CFT3,
in which the Araki-Lieb inequality is saturated SA + SAB = SB. (The figure is cited from
[63])

where α is arbitrary constant.
Note that the EC and EF can possibly exceed I(A : B), so they are not excluded by

this method. In fact, they can be greater than 1
2
I(A : B) [113].

5.3.2 The phase transition of the Araki-Lieb inequality

The Araki-Lieb inequality
SA + SAB ≥ SB, (5.51)

can be saturated in certain configurations in holographic CFTs at the leading order O(N2)
[109, 110]. A typical case is taking the subsystem A totally surrounded by the sufficiently
large B (Fig.5.5)

. Suppose one shrinks the size of the subsystem B gradually, then the phase transition
of the Ryu-Takayanagi surface of SB occurs at some point. Then the saturation will turn
into the strict inequality SA + SAB > SB. We call this type of phase transition by the
Araki-Lieb phase transition.

Let us focus on a configuration in the Poincaré AdS3 for simplicity. The metric is
given by

ds2 =
dz2 − dt2 + dx2

z2
. (5.52)

The subsystems A and B are taken to be symmetric, given by A = [−a, a], B = [−b,−a]∪
[a, b] ≡ B1 ∪B2 for 0 < a < b (see Fig.5.6). The relative size of subsystems is denoted by

p :=
a

b
, (0 < p < 1) (5.53)
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The two types of the mutual information

I(A : B1B2) = SA + SB1B2 − SAB1B2 , (5.54)
I(B1 : B2) = SB1 + SB2 − SB1B2 , (5.55)

exhibit the phase transition due to the term SB1B2 . If p is sufficiently small, the connected
phase I(B1 : B2) > 0 is preferred. If p is large, the disconnected phase I(B1 : B2) = 0
is. The terms SA and SAB1B2 have the single configurations, and thus there is no phase
transition for them. Then I(A : B1B2) can be computed as

I(A : B1B2) = min{2c

3
log

2a

ε
,
2c

3
log

√
a/b(b− a)

ε
},

where c is the central charge of holographic 2d CFTs, and ε is the UV cutoff. The mutual
information is divergent, while that is usually a finite quantity in field theories, because
we are dealing with the adjacent limit of A and B.

The phase transition point of I(A : B1B2) (i.e. of SB1B2) is given by

p∗MI ≡
a∗MI(b)

b
= 3− 2

√
2. (5.56)

Then we have the Araki-Lieb transition with respect to p by

SB1B2 = SA + SAB1B2 , (0 < p < p∗MI), (5.57)
SB1B2 < SA + SAB1B2 , (p∗MI < p < 1). (5.58)

In other words, there is a phase transition of the half of the mutual information I(A :
B1B2) as

1

2
I(A : B1B2) = SA, (0 < p < p∗MI), (5.59)

1

2
I(A : B1B2) < SA, (p∗MI < p < 1). (5.60)

5.3.3 The phase transition of the entanglement wedge cross section

Next, in the same setup, the EW (A : B) also enjoys a phase transition as depicted in
Fig.5.6. In the left phase, the EW (A : B) just returns to SA. In the right phase, the
EW (A : B) consists of two disconnected surfaces that is equivalent to EW (AB1 : B2).
Then the value is given by

EW (A : B1B2) = min{SA, 2EW (AB1 : B2)}

= min{ c
3

log
2a

ε
,
c

3
log[

b2 − a2

bε
]}. (5.61)
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Figure 5.6: The two phases of the EW (A : B1B2) depicted by the orange dashed line.
The left (right) configuration is preferred if p < p∗EW (p > p∗EW). The symbols with
a prime ′ denote the partition of the Ryu-Takayanagi surface so that A = A ∪ A′ and
B = B1 ∪B2 ∪B′1 ∪B′2. (The figure is cited from [63])
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Figure 5.7: The half of the mutual information 1
2
I(A : B1B2) and the entanglement

wedge cross section EW (A : B1B2) in the Araki-Lieb transition. The UV divergent parts
are normalized by subtracting SAB. (The figure is cited from [63])

The phase transition of the entanglement wedge cross section therefore occurs at the
critical point

p∗EW ≡
a∗EW(b)

b
=
√

2− 1. (5.62)

We again have the two phases of the entanglement wedge cross section

EW (A : B1B2) = SA, (0 < p < p∗EW), (5.63)
EW (A : B1B2) < SA, (p∗EW < p < 1). (5.64)

The key observation is that the phase transition point of the Araki-Lieb transition
does not match with that of the entanglement wedge cross section. The results above
indicate p∗MI < p∗EW. The dependence on p of these quantity is plotted in Fig.5.7.

In particular, for or p ∈ (p∗MI, p
∗
EW), the entanglement wedge cross section saturates

the upper bound EW (A : B) = SA while the Araki-Lieb inequality is not saturated:

EW (A : B) = SA and SA + SAB > SB for p∗MI ≤ p ≤ p∗EW. (5.65)

This provides the crucial argument for any correlation measure E(A : B): if E(A : B) =
SA inevitably leads to the saturation of the Araki-Lieb inequality SA + SAB = SB on
generic states, then E can never be dual to the entanglement wedge cross section. This
property is indeed a common feature for various type of quantum correlation measures.

Note that the Araki-Lieb transition also happens in the global BTZ black hole

ds2 =
f−1(z)dz2 − f(z)dt2 + dx2

z2
, (5.66)

f(z) = 1− z2

z2
H

, (5.67)
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with the inverse temperature β = 2πzH . We impose the periodic boundary condition
x ' x + 2π. The subsystems are chosen by A = [−l/2, l/2] for l ∈ (0, π) and B is the
reminder. This system exhibits the Araki-Lieb saturation with respect to the size of A
[109].

The phase transition points of the Araki-Lieb inequality and the entanglement wedge
cross section can be computed in a similar way. We found

l∗MI(zH) = π − zH log cosh(
π

zH
), (5.68)

l∗EW(zH) = 2zH log(1 +
√

2). (5.69)

This again indicates l∗MI(zH) ≤ l∗EW(zH) for any zH > 0, and

EW (A : B) = SA and SA + SAB > SB for l∗MI ≤ l ≤ l∗EW. (5.70)

This is another example that confirms the above argument about the necessary condition
for a correlation measure E.

5.3.4 The phase transition of the entanglement wedge mutual information

Finally, we study the phase transition of EM(A : B1B2) in the setups above. That will
be a demonstration of the geometrical computation of the entanglement wedge mutual
information.

Remark that EM(A : B1B2) = SA should hold for p < p∗MI. That follows from the
generic inequality

1

2
I(A : B1B2) ≤ EM(A : B1B2) ≤ EW (A : B1B2), (5.71)

and the previous result 1
2
I(A : B1B2) = EW (A : B1B2) = SA.

For p > p∗MI, the computation of the entanglement wedge mutual information is more
complicated than the entanglement wedge cross section. There are now the four configu-
rations of SAA′ − SBA′ due to the symmetry of the system. Here we fix the size b to unit,
dealing with the relative size p as the parameter for simplicity.

The two phases of SAA′ and the two phases of SBA′ , are depicted in Fig.5.8. The
ancillary subsystem A′ is parameterized by q ∈ (0, 1). Given the size p, our task is to seek
the optimal configuration among them and the critical value q∗(p) that gives the minimal
value.

After some computations, the phase transition point q∗ of SAA′ , or SBA′ , is given by

q∗AA′(p) =
(1− p)2

4p
, (5.72)

q∗BA′(p) = −1− 6p+ p2

(1 + p)2
, (5.73)
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Figure 5.8: The two phases of SAA′ (above panels) and the two phases of SBA′ (below
panels). The Ryu-Takayanagi surfaces are denoted by the red dashed lines. (The figure
is cited from [63])
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respectively. They are plotted in Fig. 5.9. The region q < q∗AA′ corresponds to the phase
(A1), and q∗AA′ < p does to the (A2) for SAA′ . Similarly, the region q < q∗BA′ corresponds
to the phase (B1), and q∗BA′ < q does to the (B2) for SBA′ . The crossing point of q∗AA′(p)
and q∗BA′(p) is denoted by p∗EM,

p∗EM = −1 + 2
√

2− 2

√
2−
√

2 ' 0.30. (5.74)

In order to find the minimal configuration, recall that the assumption p > p∗MI leads
to I(B1 : B2) = SB1 +SB2−SB1B2 = 0. Then, in the small A′ limit (q → 0), one can show
that the phase (A1) is preferred for SAA′ , and that the phase (B1) is for SBA′ . Similarly,
in the large A′ limit (q → 1), the phase (A2) is preferred for SAA′ , and the phase (B2) is
for SBA′ . This indicates that the phase transition happens as q is increased from 0 to 1
following either path

(I) (A1,B1)→ (A1,B2)→ (A2,B2), (5.75)

or

(II) (A1,B1)→ (A2,B1)→ (A2,B2). (5.76)

The path is determined by the value of p. The dependence of the critical points on p in
Fig. 5.9 shows that the path (I) is chosen for the p < p∗EM and the path (II) is for p > p∗EM

.
Note that the target SAA′ − SBA′ can decrease as increasing q only in the phase (A2,

B1). In the phase (A1, B1), the size of A′ does not affect at all. In the phase (A1, B2)
and (A2, B2), the SAA′ − SBA′ increases as the size of A′ get increased. Then the path
(II) is the only possibility that a nontrivial (q 6= 0) optimal partition for EM can exist.

Therefore, for the p < p∗EM, the minimal configuration of the entanglement wedge
mutual information is given by the trivial one q = 0 (or any size q ≤ q∗BA′), which leads to
EM(A : B1B2) = SA. On the other hand, for the p > p∗EM, the non-trivial configuration
(A2, B1) provides smaller value. The minimum is obtained at the q where the phase
transition (A2, B1) to (A2, B2) occurs i.e. at q∗BA′(p). In this case, we can compute EM
for the optimal partition A∗ as

EM(A : B) =
1

2
(SA + SB + SAA∗ − SBA∗)

=
1

2
(SA − SA∗ + SAA∗)

=
1

2
(
1

2
(SA + SB − SAB) + SAA∗), (5.77)

where the properties
SBA∗ = SB + SA∗ , (5.78)
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Figure 5.10: The phase transition of the EM(A : B1B2). The all quantities in the plot
are normalized by subtracting SAB. (The figure is cited from [63])

as in the (A2) phase, and

SA∗ =
1

2
(SA + SAB − SB), (5.79)

followed by the equality condition (B1)=(B2) were used.
Then the EM is given by

EM(A : B1B2)

=

{
SA (p < p∗EM)
1
2

[
1
2
I(A : B1B2) + SAA∗(p, q

∗
BA′(p))

]
(p > p∗EM)

, (5.80)

where SAA∗(p, q∗BA′(p)) represents the contribution from the geodesics connecting ∂A and
∂A∗, given by

SAA∗(p, q
∗
BA′(p)) =

c

3
log

(
(1− p)(1 + 6p+ p2)

4
√
pε

)
. (5.81)

The plot of EM is given in Fig.5.10. This result (5.80) confirms the short-cut formula
(5.26). In the above discussion, the condition (B1)=(B2) corresponds to the balancing
condition I(A : M∗) = I(B : M∗). Note that the balanced optimal partition for p ∈
(p∗MI, p

∗
EM) is the A′ of the size q = q∗BA′(p), not q = 0. Both of them give the optimal

value EM(A : B1B2) = SA. This is an example of non-uniqueness of the optimal partition
of the entanglement wedge mutual information.

The deviation (5.28) in this case is given by

Db(p) = SAA∗(p, q
∗
BA′

)− EW (p) =
c

3
log

1 + 6p+ p2

4
√
p(1 + p)

(p > p∗EW). (5.82)

The plot of Db is given in Fig.5.11. The positive deviation Db(p) > 0 implies that the
optimal partition of the entanglement wedge cross section and that of the entanglement
wedge mutual information is different. The difference will disappear as p→ 1.
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Figure 5.11: The deviation Db of the phase transition of the entanglement wedge mutual
information. The yellow solid line denotes the configuration p∗EW ≤ p, and the blue dashed
line does p∗EM ≤ p ≤ p∗EW. (The figure is cited from [63])

We rephrase the important results

EM(A : B1B2) = SA, (0 < p < p∗EM), (5.83)
EM(A : B1B2) < SA, (p∗EM < p < 1). (5.84)

This leads to the same conclusion again for a correlation measure E(A : B): if E(A :
B) = SA inevitably leads to the saturation of the Araki-Lieb inequality SA + SAB = SB
on generic states, then E can never be dual to the entanglement wedge mutual information.

Remark that the EM exhibits the same type of phase transition in the global BTZ
black hole, which results in the same argument.

5.3.5 The Axiomatic Entanglement Measures and the Araki-Lieb Saturation

We now state a no-go theorem applicable to wide class of correlation measures. The
following is a purely information theoretical statement.

Proposition 14. Suppose that a quantum correlation measure E(A : B) on HAB =
HA ⊗HB satisfies the following properties:

(i) The monotonicity E(A : B1B2) ≥ E(A : B1),
(ii) E(A : B) = SA = SB for pure states,
(iii) E(A : B) ≤ EF (A : B) (≤ min{SA, SB}) for generic states.
Then the saturation E(A : B) = SA is equivalent to the Araki-Lieb saturation SA +

SAB = SB on generic states.

Proof. First, the saturation E(A : B) = SA leads to EF (A : B) = SA by the upper bound
on EF (iii). That is equivalent to the Araki-Lieb saturation [114]. Next, the opposite is
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shown by the uniquely determined structure (up to isometries) of states saturating the
Araki-Lieb inequality [115]

ρAB = |ψ〉 〈ψ|ABL ⊗ ρBR , (5.85)

where the Hilbert space HB is decomposed into HB = HBL ⊗HBR . Then we have

SA ≥ E(A : BLBR) ≥ E(A : BL) = SA, (5.86)

from the properties of (i) and (ii).

Then the observation of the Araki-Lieb transitions in holography leads to the theorem.

Theorem 15. Suppose that a quantum correlation measure E(A : B) on HAB = HA ⊗
HB satisfies the properties in the above proposition. Then E can never be dual to the
entanglement wedge cross section nor the entanglement wedge mutual information.

This class of correlation measures includes the ERE, ED, Esq, EI , as well as the entan-
glement cost EC , and the entanglement of formation EF itself. Thus these information
measures can not be a dual candidate of the entanglement wedge cross section or the
entanglement wedge mutual information.

Note that this class of entanglement measures must be strictly less than EW (or EM)
for the states of p ∈ (p∗MI, p

∗
EW) (or p ∈ (p∗MI, p

∗
EM)). That is because in these region we

have

E(A : B) < SA = EW (A : B) (p∗MI < p < p∗EW), (5.87)
E(A : B) < SA = EM(A : B) (p∗MI < p < p∗EM). (5.88)

Then the entanglement wedge cross section and the entanglement wedge mutual informa-
tion are generically larger than these entanglement measures in holographic CFTs, unless
these 1-parametrized states are singular among the holographic states.

5.3.6 Interpretation from the Holographic Entanglement of Purification

In contrast to the entanglement measures, the entanglement of purification, theQ-correlation,
and the R-correlation evade the above no-go theorem. That is because the criteria (iii) is
not true for them, and they can be still a possible dual of the entanglement wedge cross
section or the entanglement wedge mutual information. Notably, the flower state satisfies
EP (A : B) = SA without the Araki-Lieb saturation. Similarly, the logarithmic negativity,
the odd entropy, and the reflected entropy do not satisfy (iii).

Furthermore, there is interpretation of the behavior of the entanglement wedge cross
section in the phase transition. There is a remarkable geometrical equality after the phase
transition p > p∗EW,

EW (A : B1B2) = EW (AB1 : B2) + EW (AB2 : B1). (5.89)
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In fact, for p > p∗EW, we have I(B1 : B2) = 0 where B1 = B1∪B′1 and B2 = B2∪B′2. That
implies the decoupled form

ρB1B2 = ρB1 ⊗ ρB2 . (5.90)

From the information-threoretical point of view, any purification of this state must have
the unique form [116]

|ψ〉AB1B2 = |φ1〉AB1 ⊗ |φ
2〉AB2 , (5.91)

up to the isometries onHA that are irrelevant to the correlation between A and B. In other
words, all possible purification of ρB1B2 can be transformed to the decoupled purification
by an appropriate decomposition of A. This type of the purifications is clearly compatible
with the equality (5.89).

On the other hand, for p < p∗EW, the remaining correlation I(B1 : B2) > 0 may
drastically change the structure of purifications, results in the optimal purification by just
setting A′ empty. In this sense, the phase transition point p∗EW is the point at which the
optimal purification switches from the standard purification to the decoupled purification
(5.91). This type of switching was indeed observed in the numerical study in the section
4.
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6 Conclusion
We finally summarize the previous discussions and make some comments on the future
directions.

First, in the section 3, we introduced a multipartite correlation measure both in quan-
tum information theory and in the AdS geometries. That is a generalization of the
entanglement of purification, or the entanglement wedge cross section, for multipartite
states. We proved the various properties of them, that are consistent with the proposal
for arbitrary n-partite cases. These multipartite setups are also shown to be compatible
with the picture of bit-threads formalism [59]. It would be interesting to prove these prop-
erties on time-dependent backgrounds. The multipartite entropic inequalities in covariant
cases were discussed in [65], where it was pointed out that some new techniques (apart
from the maximin surfaces [70]) is needed for n ≥ 5. Looking for new properties satisfied
by the multipartite entanglement wedge cross section but not always by the multipartite
entanglement of purification, will provide new constraints on holographic states. We also
expect that there is an operational interpretation for the multipartite entanglement of
purification based on (S)LOCC.

Next, in the section 4, we presented numerical computations of the entanglement of
purification in free scalar field theories and in the spin chain models. There is a common
feature that the entanglement of purification can be enhanced with the physical distance
d, which is highly comparative with all the other correlation measures. We gave an ex-
planation of this behavior based on the different sensitivities to quantum and classical
correlation. There the entanglement of purification is expected to be more sensitive to
classical correlations than the mutual information is. We also found the Z2 reflection
symmetry breaking in the optimal purifications. In the transverse-field Ising model, es-
pecially, the Z2-broken region coincides with the ferromagnetic phase. Further studies on
this direction are given in [117], there much larger subsystem size are taken into account.
These numerical methods are also applicable to the other optimized correlation measures
such as the squashed entanglement.

Finally, in the section 5, we comprehensively discussed the holographic duals to the
optimized correlation measures. That derives a new geometrical quantity, the entan-
glement wedge mutual information, as a dual of Q-correlation. The crucial assumption
of the equivalence is that the geometrical extensions are enough to achieve their mini-
mum in holographic CFTs. Their properties are completely consistent with the original
information-theoretic measures. We also showed that the two plausible geometrical mea-
sures of correlation, the entanglement wedge cross section and the entanglement wedge
mutual information, are strictly larger than all of the axiomatic entanglement measures
in the Araki-Lieb transition. In addition, they do not satisfy the monogamy but do the
strong superadditivity, where the latter is the weaker property of quantum entanglement
than the former. These observations tempt us to assume that these measures are sensitive
to classical correlations even in holographic CFTs; the same conclusion obtained in the
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field-theoretic studies for the entanglement of purification. Then it will be an interesting
future work to investigate a role of classical correlation (e.g. separable states) in holo-
graphic CFTs. The multipartite generalization of these measures would also provide a
new tool to probe a specific aspect of the holographic correlations, which was done for
n = 3 case [30].

We remark that all of our discussions are restricted to the leading order O(N2). In
particular, the discussion about the Araki-Lieb phase transition relies on the saturation of
the holographic entanglement entropy at this order. Including quantum corrections from
the bulk entanglement entropy will violate the exact saturation at O(N0) [118, 119], and
the structure of state (5.85) is not robust against small corrections [120].
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7 Appendix

7.1 Appendix A: The logarithmic negativity in Free Scalar Field
Theory

One simple characterization of quantum entanglement between subsystems A and B for
a mixed state ρAB is the logarithmic negativity [100]. A criteria of existence of quantum
entanglement is given by the partial transposition ΓB, which is the transposition acting
only for the subsystem B. For separable states, the partially transposed density matrix
ρΓB
AB must be non-negative, while for non separable states this property is not preserved in

general. Thus if ρΓB
AB is negative, the subsystem A and B must be entangled. We can not,

however, say there is no entanglement even if ρΓB
AB is non-negative. This kind of criteria

are called entanglement witness.
The logarithmic negativity is a famous example of entanglement witness, defined by

EN(ρAB) = log ||ρΓB
AB||1, (7.1)

where we introduced the trace norm

||ρΓB
AB||1 = Tr

√
(ρΓB
AB)†ρΓB

AB, (7.2)

Given the eigenvalues of ρΓB
AB as λi, we can write

EN(ρAB) = log

(∑
i

|λ|

)
. (7.3)

It is clear from this expression that the logarithmic negativity is vanishing if and only
if all the eigenvalues λi are non-negative. Note that the normalization

∑
i λ = 1 means∑

i |λ| ≥ 1, which leads to EN ≥ 0. This quantity is known to be monotonic under LOCC.
When the total state ρAB is pure, EN(ρAB) is not equal to the entanglement entropy SA,
but is equal to the n = 1/2 Rényi entropy defined by

S
(1/2)
A = 2 log Tr(ρA)1/2. (7.4)

.
Now we compute the logarithmic negativity for the ground state Ψ0 for the free scalar

lattice model. We divide the total lattice system into subregions A,B and E such that
Htot = HA ⊗ HB ⊗ HE. In this setup, we wish to compute the logarithmic negativity
EN(A : B) which measures the quantum entanglement between A and B. First remember
that the reduced density matrix ρAB is given by (4.5). For later purpose, it is useful to
decompose M and N , which are (|A|+ |B|)× (|A|+ |B|) matrices, into |A|× |A|,|A|× |B|
and |B| × |B| matrices as follows:

M =

(
M1 M2

MT
2 M3

)
, N =

(
N1 N2

NT
2 N3

)
. (7.5)
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Given this density matrix we now proceed to compute EN(A : B). We have to first
perform the partial transpose ΓB, which is equivalent to interchanging φB and φ′B. After
we rearrange this as a matrix whose arguments are of the form φAB = (φA, φB), φ′AB =
(φ′A, φ

′
B), we obtain:

ρΓB
AB[φAB, φ

′
AB] ∝ exp

(
−1

2
φABMφTAB −

1

2
φ′ABM(φ′AB)T − 1

4
(φAB − φ′AB)Ñ(φAB − φ′AB)T

)
,

(7.6)

where
Ñ =

(
N1 −N2 − 2M2

−NT
2 − 2MT

2 N3

)
. (7.7)

Now we can perform a field redefinition,

φ̂AB := M
1
2
DV φAB, (7.8)

where V is a orthogonal matrix and MD is a diagonal matrix so that we have

M = V TMDV. (7.9)

We apply the same transformation on φ′AB. Then we find

ρΓB
AB[φ̂AB, φ̂

′
AB] ∝ exp

(
−1

2
φ̂ABφ̂

T
AB −

1

2
φ̂′AB(φ̂′AB)T − 1

4
(φ̂AB − φ̂′AB)Ñ ′(φ̂AB − φ̂′AB)T

)
,

(7.10)

where
N ′ = M

− 1
2

D V ÑV TM
− 1

2
D (7.11)

In order to diagonalize N ′ we perform another transformation,

φ̃AB = Sφ̂AB, (7.12)

where S is another orthogonal matrix. Finally, up to a normalization factor, we have

ρΓB
AB[φ̃AB, φ̃

′
AB] ∝ exp

(
−1

2
φ̃AB(φ̃AB)T − 1

2
φ̃′AB(φ̃′AB)T − 1

4
(φ̃AB − φ̃′AB)N̂(φ̃AB − φ̃′ABw)T

)
,

(7.13)

where

N̂ =

µ1

. . .
µ|A|+|B|

 . (7.14)
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Here µi are the eigenvalues of the matrix Ñ ′, equivalently the eigenvalues of the matrix
M−1Ñ . This is because we can write Ñ ′ as Ñ ′ = (

√
MDV )M−1Ñ(

√
MDV )−1.

Once we obtain these eigenvalues µi, we can calculate the logarithmic negativity in a
similar way to the entanglement entropy in [98, 99]. As a simple toy model, consider a
scalar φ (i.e. N = 1 as quantum mechanics) with the density matrix

ρ[φ, φ′] ∝ exp

(
−1

2
(φ2 + φ′2)− µ

4
(φ− φ′)2

)
. (7.15)

We can diagonalize this matrix and find the eigenvalues

(1− λ)λm, (m = 0, 1, . . . ), (7.16)

where λ is defined by

λ = 1 +
2(1−

√
1 + µ)

µ
. (7.17)

Thus we obtain

log ||ρ||1 = log

[
(1− λ)

∞∑
k=0

|λ|k
]

= log
1− λ

1− |λ|
. (7.18)

Now notice that ρΓB
AB given by (7.13) can be regarded as |A| + |B| copies of this kind

of quantum mechanics. Thus, finally, we can evaluate the logarithmic negativity by

EN(A : B) =

|A|+|B|∑
i=1

log
1− λi

1− |λi|
, (7.19)

where
λi = 1 +

2(1−
√

1 + µi)

µi
. (7.20)

7.2 Appendix B: The Scaling Properties in Free Scalar Field The-
ory

The scale invariance
EP (w, d,m) = EP (nw, nd,m), (n ∈ N) (7.21)

holds for small masses m and block widths 1 � w � N , as that should correspond to
the conformal limit. We find a power low EP (d, w,m � 1) = a(m) (d/w)−p(m) in the
continuous limit, with positive scaling coefficients a(m) and p(m) in Fig. 7.1. The a(m)
diverges logarithmically as m→ 0, while p(m) converges sublinearly to zero.

In the conformal limit m� 1 and at distances d� 0 larger than the lattice spacing,
we observe a power law scaling of the entanglement of purification EP :
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Figure 7.1: The EP (A : B) for w = 1, 2, 3, 4 (blue, yellow, green, red) for a mass m =
10−1, 10−2, 10−3, 10−4 (bottom to top) at N = 60. That is a function of d/w (left), and
the same plot is also shown in log-log scaling (right). (The figure is cited from [61])
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Figure 7.2: The coefficients a(m) (left) and p(m) (right) of a power law regression (7.22)
for the entanglement of purification EP (A : B) (blue) and mutual information I(A : B)
(yellow) at w = 3, 1 ≤ d ≤ 10. (The figure is cited from [61])

EP (d, w,m) = a(m)

(
d

w

)−p(m)

, (7.22)

For a(m) and p(m) refer to Fig. 7.2. The mutual information also exhibits similar power
law behavior in the same limits. The corresponding a(m) and p(m) are shown along with
their EOP counterparts in Fig. 7.2. We observe that the entanglement of purification
decays slower than the mutual information in this range.

7.3 Appendix C: Computing the EOP in Spin Chain

Given a bipartite state ρAB in a finite dimensional system, all possible purification of ρAB
can be obtained by acting with local unitary operators on an arbitrary initial purification
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|ψ0〉,
|ψ(UA′B′)〉AA′BB′ = IAB ⊗ UA′B′ |ψ0〉AA′BB′ . (7.23)

One may use the standard purification

|ψstd〉AA′BB′ =
∑
i

√
pi |i〉AB |i〉A′ |0〉B′ , (7.24)

or the canonical purification (4.24) as an initial purification. Note that we can embed a
purification into a higher-dimensional Hilbert space. Therefore, the minimization of the
entanglement of purification can be equivalently expressed in terms of unitary operators
on the maximal purification DA′ = DB′ = rankρAB,

EP (A : B) = min
{UA′B′ ,A′∪B′}

S(ρAA′), (7.25)

ρAA′ = TrBB′
[
UA′B′ |ψ0〉 〈ψ0|U †A′B′

]
, (7.26)

where where the minimization is also taken over all possible divisions of the ancilla Hilbert
space into HA′ and HB′ . The purifications have a trivial redundancy induced from a local
unitary UA′B′ = UA′ ⊗ UB′ , which does not affect SAA′ at all. On the other hand, the
optimal purification is (at least doubly) degenerated if one finds SA′ 6= SB′ .

7.3.1 Werner state

As an example, we deal with the Werner state on 2 qubits system following [34, 108]

ρAB(p) =
p

3
Psym + (1− p)Pasym (7.27)

=
p

3
I4 + (1− 4p

3
) |Bell〉 〈Bell| , (7.28)

where p ∈ [0, 1] is a parameter of states, Psym and Pasym are the projection operators onto
the symmetric/anti-symmetric subspace in HAB

Psym =


1

1
2

1
2

1
2

1
2

1

 , Pasym =


0

1
2
−1

2

−1
2

1
2

0

 , (7.29)

in the {|00〉 , |01〉 , |10〉 , |11〉} basis. I4 is the 4× 4 identity matrix and

|Bell〉 :=
1√
2

(|01〉 − |10〉). (7.30)
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Figure 7.3: The EP for the Werner state. There are shown the entanglement of forma-
tion EF (from [121]), the logarithmic negativity EN , the mutual information 1

2
I, and the

entanglement of purification under the minimal purifications EP,min. (The figure is cited
from [61])

The Werner state can also be expressed in an isotropic form,

ρAB(p) =
I

4
+

1

4
(
4p

3
− 1)

∑
i=x,y,z

σiA ⊗ σiB, (7.31)

and appears as the ground state of the anti-ferromagnetic Heisenberg model.
In order to find the entanglement of purification, we need to search at least DA′DB′ =

rankρAB = 4 and at most DA′ = DB′ = 4 for p 6= 0, 1. The result is shown in Fig. 7.3. It
turns out that there are four different phases classified by the configuration of the optimal
purifications:

(a) Non-minimal purification phase 0 ≤ p > 0.319, which requires DA′ = 2, DB′ = 3
(or DA′ = DB′ = 3),

(b) Minimal purification phase 0.319 > p > 0.401, which requires DA′ = DB′ = 2,
(c) Canonical purification phase 0.401 > p > 0.995, where the optimal purification is

given by the canonical purification,
(d) Non-minimal purification phase 0.995 > p > 1, which requires DA′ = 2, DB′ = 4.
These phase transitions are depicted in Fig. 7.4. In the phase (a), there are two

non-equivalent optimal purifications, DA′ = 2, DB′ = 3 and DA′ = DB′ = 3, up to certain
the numerical accuracy. In fact, they give the same value of SAA′ up to 10 digits! In the
phase (d), the EOP is strictly smaller than SA (except p = 1), which is a more fine-grained
structure than that found in the previous works [34, 108].

About the Z2 symmetry breaking, the SA′ , SB′ and 1
2
I(A′ : B′) around the transition

points p1 ' 0.319 and p2 ' 0.401 are shown in Fig. 7.5. It is clear from SA′ 6= SB′ that the
optimal purification breaks the Z2 reflection symmetry in the phase (a). This phenomena
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Figure 7.4: The detailed structure of the entanglement of purification for the Werner
states of 0.2 ≤ p ≤ 0.45 (left) and 0.99 ≤ p ≤ 1 (right). There is a very tiny gap
SA > EP (A : B) in the phase (d) (except p = 1), though it is hard to observe them in the
plot. (The figure is cited from [61])

is analogous to the free scalar field theory and the critical Ising spin chain. The symmetry
is recovered and SA′ = SB′ holds for phase (b) and (c). The Z2 reflection symmetry is
also broken in the phase (d).
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Figure 7.5: The Z2 symmetry breaking, indicated by SA′ , SB′ (left), and I(A′ : B′)
(right). There are two phase transition points at p1 ' 0.319 and p2 ' 0.401, which
separate the phases (a) from (b), and (b) from (c), respectively. (The figure is cited from
[61])
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