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A B S T R A C T

Legal frameworks to restrict in-vivo animal testing for compound toxicity are now enforced, and regulatory
agencies are actively seeking ideas and methods for toxicity prediction. Recent computational drug discovery
modeling methods have shown that equivalently performant models can be built from strategically selected
subsets of activity data, thus posing the question of method transferability to toxicity prediction. Here, active
learning was used to assess predictive convergence using an open toxicity prediction challenge dataset, revealing
that a subset of systematically selected data was sufficient for early convergence which approximates predictive
performance using all possible data. Exploration of training and external validation data systematically identi-
fied varying degrees of “toxicity cliffs” in molecular frameworks and specific compound pairs with structure–-
activity discontinuity. Domain of applicability analysis revealed compounds emergently predictable and those
which could never be predicted. The removal of compounds positioned on classification borderlines improved
the ability to identify very toxic compounds. Fingerprints differentially present in toxic compounds were
identified. The combined analyses give clear insights for expectations on predictability and regulatory policy.

1. Introduction

Determining the acute oral systemic toxicity of chemicals is multi-
resolution and multi-factorial, and thus challenging as it is caused by
multiple mechanisms, including both damage on the epithelial cells of
gastrointestinal tracts which leads to systemic symptoms, as well as the
toxic effects of blood-circulating chemicals on various tissues.
Compared with oral systemic toxicity where mechanisms precluding
genotoxicity are much simpler, the vast majority of genotoxic com-
pounds react directly with genomic DNA in cells. Nonetheless, there is
no reliable bioassay using human cells; governments in developed
countries have widely employed the Ames test [4] which is a bacteria-
based bioassay, though it remains unclear whether data from such a test
can be extrapolated to human genotoxicity (e.g., the absence of a
double strand break repair mechanism in bacteria), and demonstration
of oral systemic toxicity requires animal experiments. Still, due to its
relatively low cost and ease of implementation, the test remains as a
standard in many places, such as its use as part of the Japanese “ka-
shinho” regulatory legislation (meti.go.jp).

Animal-based models are expensive, time-consuming, can yield false

positives, and have come under ethical scrutiny [5,13,14,34]. A bit over
a decade ago, the EU REACH legislation for registration and mini-
mization of animal testing by read-across data sharing was brought into
effect, though it has been reported that animal testing continues to be
prevalent [35]. Following in the footsteps of an EU directive that pro-
hibits commercial sale of cosmetics that have undergone any form of
animal testing, the US has also announced its strategic road map for
establishing new approaches to evaluate the safety of chemicals and
pharmaceutical products [15]. Under such a backdrop, research into
computational models to predict toxicity is being sponsored at federal
levels, with the most common strategy being the creation of quantita-
tive structure–activity/property relationships (QSAR/QSPR), though as
Taylor recently reviewed, in vitro and (Q)SAR approaches as standa-
lone replacements still remain low [35].

Interest in prediction of toxicity has garnered increased attention in
recent years with the creation of collaborative prediction challenges,
such as the Tox21 Data Challenges [37], where participating groups
construct estimators (models) of compound toxicity based on chemical
structure and biological activity information. Each participating group
was free to choose a combination of chemical representation and
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estimator construction algorithm. In the 2016 prediction event, an
approach by Mayr et al. to employ a hierarchy of chemical features
which were then fed to a deeply-layered neural network produced the
highest performance score [20]. Other methods not based on deep
learning performed similarly, such as a combination of 10 different
chemical descriptors with an Associative Neural Network architecture
[2], or a selection of 4071 descriptors which provided good perfor-
mance [38] when coupled with the Random Forest [7] algorithm. The
latter contest organizers concluded that a consensus of model ap-
proaches would contribute to optimal performance [12]. Multiple in-
dependent reports have commonly reported success from combining
multiple representations of chemical data [21,41]. More computational
approaches are summarized in a recent review by Tcheremenskaia and
colleagues [36].

In a more recent development, the US National Institute for
Environmental and Health Sciences has curated a collection of in vivo
rat oral acute toxicity data and held a similar community prediction
event over the Internet [15,18]. In a preliminary analysis of the data,
we identified that individual physicochemical properties, such as lipo-
philicity and polarizable surface area, trended toward to but were not
individually sufficiently predictive of toxicity, nor were combinations
of pairs of such properties [25]. An expansion to chemical substructure
fingerprints and a repositioning of the predictive question to binary
toxicity classification resulted in more satisfactory results, where cross-
validated prediction performance was consistent across multiple types
of estimator algorithms. One question remaining from that study was
the transferability of computational methodology for novel toxicity
indications or outcomes, as models were built using many thousands of
compounds, which may not be logistically feasible or acceptable in
future situations (e.g., the spirit of the REACH legislation). While cross-
validation approaches provide insight as to the normality of data, they
do not directly indicate if more data leads to better extrapolation on
external datasets many times larger than that available for hyperpara-
meter search and estimator construction.

Thus, where our previous analysis had an unmet need which is also
important to regulatory agencies in practice – the need to reliably
quantify a minimal amount of toxicity data needed for establishing an
estimator with defined predictive performance goals and to evaluate
such an estimator with best practices in metric interpretation, leading
toward method and decision intelligence for regulatory practices.

Toward this end, adaptive (or active) machine learning and its appli-
cation to chemical property prediction has witnessed a revival in the
past few years after a preliminary proposal of the concept in 2003 [39].
In short, active learning starts with a minimal set of examples for
computing an estimator, makes predictions on a set of examples, and
applies a selection function to pick new examples for adding to the
training data and re-computation of the estimator. The goal is to find as
few examples as possible that provide the same performance as having
built an estimator using all possible data. By design, the process is
highly dynamic and can be coupled with experimental environments
for adaptive exploration of QSPRs. Multiple groups have independently
reported the ability of active learning to effectively navigate ligand-
receptor interaction data and display early convergence on perfor-
mance equivalent to models computed from full bioactivity datasets,
where the key difference is that models built using active learning only
use 5–50% of the data available [16,22,26,30]. Active learning dis-
tinctly satisfies the recommendations provided by Rusyn and Daston,
which is that models should be capable of being computed fast and
cheap (with respect to data volume) [31].

Whereas active learning in life sciences has been investigated pri-
marily in the context of drug discovery, here we study the question of
how effectively active learning can be applied to building extrapolative
estimators of rat acute oral toxicity with a minimum of data. In addition
to examining performance per data volume, we also employ a state of
the art visualization technique known as Active Projection [8] for en-
hanced interpretation of active learning dynamics, and consider the
predictability of individual compounds as well as compounds grouped
by scaffold frameworks. Results demonstrate effective convergence on
limits of predictability regardless of estimator algorithm, quantitative
reasoning for such limits, and the revealing of “toxicity cliff” chemical
scaffolds, all of which can contribute to future toxicity study size con-
siderations, regulatory agency method advancements, and pharma-
ceutical or other molecule design. As the number of aspects investigated
in this report is considerable, we encourage the reader to refer to
Table 1 for a complete list of all hypotheses tested and where to find the
corresponding results.

2. Materials

Modeling experiments were based on the 2018 Rat Oral Acute

Table 1
Aspects of investigating active learning (AL) for toxicity prediction.

Aspect Group Description Location

1 Datasets Statistics on rat oral acute toxicity datasets used Table 2
2 Dataset BM frameworks with mean toxicities in the VT/NT LD50 ranges Fig. 1
3 Full listing of all BM frameworks in datasets used Supplementary Fig. 1
4 AL performance, descriptors, generalization, and cross-

model comparison
Data volume-based prediction performance analysis (MCC, VT/NT) and Active
Projection (F1/BA, VT); MACCS keys

Fig. 2

5 Data volume-based prediction performance analysis by F1/BA/TPR/TNR Supplementary Fig. 2
6 Descriptor comparison:

CATS2D/physChem/OE-ECFP/Joint Descriptor
Supplementary Fig. 3

7 Descriptor comparison:
OE-ECFP and DRAGON7-ECFP

Supplementary Fig. 4

8 Effect of regularization (by minimum samples per leaf requirement) Supplementary Fig. 5
9 Active Projection analysis using MCC (VT/NT) Supplementary Fig. 6
10 Comparison to neural network (ANN) prediction performance Supplementary Table 1
11 Influence of individual ANN hyperparameters Supplementary Fig. 7
12 Domain of Applicability AL-type Domain of Applicability (DoA) analysis, based on external dataset Fig. 3
13 DoA analysis, based on training data Supplementary Fig. 8
14 External dataset compounds predictable by only a single descriptor type Supplementary Fig. 9
15 Structure-activity discontinuities and model impact Frequency of compound pairwise discontinuities in datasets Table 3
16 Examples of compound pairs forming discontinuities Supplementary Fig. 10
17 Consequence of removing borderline non-toxic compounds; discontinuities and

exceptional cases
Fig. 4

18 Substructure analyses Differential fingerprint analysis and example compounds Fig. 5
19 Bit frequency comparison in training/external datasets Supplementary Fig. 11
20 Impact of non-BM chemicals as substructures in BM-inclusive compounds Supplementary Fig. 12
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Toxicity community prediction event [15]. Organizers of the prediction
challenge provided approximately 9000 compounds available for
training data and approximately 50,000 compounds as an external
challenge. Later, a subset of approximately 3000 of the external pre-
diction compounds were released for method development and vali-
dation purposes, and used here. The data contains both continuously-
valued LD50 values as well as explicit binary classification of “Very
Toxic” (VT) and “Non-Toxic” (NT) for each compound (respective
conditions of LD50 ≤ 50 mg/kg and ≥ 2000 mg/kg). Compounds in the
intermediate range were thus both “not very toxic” and “not non-toxic”.
The validation dataset was designed by the organizers to have the same
binary classification data ratios as the training data.

Compounds and activities were provided in tabular format, where
SMILES representations of compounds were included. For each com-
pound, its formulation inclusive of salt or solvent and corresponding
toxicity value was given. If a compound was tested with different for-
mulations, each compound-formulation-response trio was provided as a
separate entity in the table. Rather commonly in chemoinformatics,
salts or solvents are stripped from computer representation of com-
pounds, in an aim to reduce the occurrence of spurious structure–-
activity correlations. Here as well, we stripped the salt or solvent for-
mulations from entries in the raw data. In the case that this led to a
contradiction (i.e., a pair of identical primary structures but with LD50
values on both sides of a toxicity threshold), the data was removed. An
example of this is the pair of compounds (CASRN ID) 2610-86-8
(VT = false, K+) and 81–81-2 (VT = true, salt-solvent unlisted) The
size of the post-cleaned dataset is as given in Table 2. With respect to
molecular size, distributions of the number of atoms per compound
were strongly overlapped between the training and validation data
(data not shown).

3. Methods

3.1. Compound structure processing

Compound structures were washed to remove salts and metal atoms
(OEChem, OpenEye Scientific Software). Contradiction removal was
done as described above. Bemis-Murcko fragmentation of compounds
was also executed (OEMedChem module).

3.2. Compound representation

A collection of 97 physicochemical properties of compounds, in-
cluding but not limited to topological polarizable surface area,
Moriguchi octanol–water partition coefficient, and the packing density
index, were computed (DRAGON 7, Talete S.R.L., descriptor blocks 1/

2/20 corresponding to descriptors 1–79 and 4839–4855). Three toxicity
predictors (BLTF96, BLTD48, BLTA96) included in the descriptor blocks
were removed; analysis demonstrated that they did not show a corre-
lation with the LD50 values in the dataset (data not shown). Separately,
the structural MACCS keys and the extended circular fingerprint re-
presentations (ECFP) were also computed (independent ECFP im-
plementations in OEChem and DRAGON7). ECFP representations were
tested using atom radii 0-2 and 512/1024/4096 bits. DRAGON ECFPs
were also tested for the use of 1 or 2 bits per pattern. Finally, the CATS-
2D pharmacophoric representation of compounds [32] was computed
as well (DRAGON7).

3.3. Estimator construction and active learning

Active learning was implemented and executed as reported in pre-
vious literature [30,28]. Iterative random selection of compounds to
update toxicity models and their predictive performance was used as a
control experiment, after which selection by uncertainty/explorative
and greedy/exploitative picking methods were evaluated. The un-
certainty picking method is also referred to as the curiosity-based
picking method [30,29], as compounds with the maximum disagree-
ment (ensemble estimator, including decision trees) or uncertainty in a
model can be interpreted as curious examples to learn from. Greedy
picking selects compounds with the highest probability or number of
votes. In each dataset and picking strategy setting, an active learning
modeling experiment is repeated 10 times, where each execution uses a
different random seed to start the process with one positive and one
negative compound (e.g., one VT = true and one VT = false). The
underlying classification estimator used was the Random Forest algo-
rithm. Experiments were performed to observe the effect of regular-
ization via a minimum number of samples per decision leaf . Both
retrospective active learning of the available training data and eva-
luation of predictive ability on the external validation data were per-
formed. In the retrospective context, one would expect perfect predic-
tion performance at the final iteration for a random forest with
minimum of one sample per decision leaf, where all training data is
used for estimator computation and subsequent recall prediction eva-
luation.

In follow-up experiments to check the impact of different under-
lying estimators on predictive ability, neural networks were constructed
by computing models using the scikit-learn [23] and TensorFlow [1]
packages independently. A grid of regularization parameters, network
topologies, learning rates, epochs, and learning batch sizes were sys-
tematically tested.

For the scikit-learn implementation, the “relu” activation function
and “adam” solver were applied to a grid search using L2 regularization
values of 0.001, 0.01, 0.1, 0.5, 1 and 5. In using a joint descriptor re-
presentation of compounds, models were computed using the following
topologies: 1 × 200, 500–200, 500–500–200, 3 × 100, 4 × 50, and
5 × 50 (where YxZ means Y layers fully forward connected, Z units per
layer). For ANN models using MACCS keys, the topologies were:
6 × 50, 6 × 100, 8 × 50, 8 × 100, 10 × 50, 10 × 100. The models
were built using the full training dataset available, where here a pro-
tocol decision was made to discard the final 5% of compounds picked
by an execution of active learning, so as to investigate any variance in
ANN predictions resulting from minor changes in the dataset. As above
with active learning, 10 executions of modeling and prediction were
executed.

For the TensorFlow neural networks, layer depth, units per layer,
number of epochs, batch size, and learning rate were all varied and
assessed for impact on performance. ECFP descriptors were used.
Parameter ranges include: layer count = 2/3/4/5/10; units per
layer = 10/25/50/100/200/300; number of epochs = 10/40/80/100/
120; batch size = 10/20/40/80/200/500; learning rate = 0.001/
0.005/0.01/0.1. A direct combinatorial grid search was substituted
with the systematic investigation of the impact of each parameter when

Table 2
Rat oral acute toxicity datasets used in this study. While the focus of this work
was on binary prediction, we include counts of compounds where LD50 is also
available.

Training data statistics

Endpoint Very Toxic Non-Toxic

Compounds LD50 Given Compounds LD50 Given

TRUE 741 (8%) 721 3787 (43%) 2137
FALSE 8133 (92%) 6013 5076 (57%) 4597

Validation data statistics

Endpoint Very Toxic Non-Toxic

Compounds LD50 Given Compounds LD50 Given

TRUE 243 (8%) 235 1235 (43%) 687
FALSE 2651 (92%) 1939 1655 (57%) 1487
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holding other parameters constant, after which a candidate set of
parameters was obtained and further optimization in the ranges above
was attempted.

Further, models using the mathematically optimal SVM algorithm
[33], as implemented in scikit-learn, were computed. The same pro-
tocol as the scikit-learn ANN model computations (using 95% of
training data per experiment) was repeated. A grid search using the
following parameters was tested: tolerance/loss/C = 0.001/0.01/0.1/
1/10/100; kernels = linear/RBF; RBF kernel parameter
gamma = 0.001/0.01/0.1/1.

3.4. Evaluation metrics

Per recommendation from previous studies [9,26] active learning
was principally evaluated using a three-metric approach. First, the
Positive Predictive Value (PPV) was used to assess the correct predic-
tion rate when an estimator predicted a compound to have a “positive
label”. Especially for the Very Toxic dataset, this directly addresses key
regulatory policy decision making when computational models predict
compounds to be very toxic.

Also important is to quantify when an estimator fails to detect a
positive label (Type-II error, False Negative). While measures such as
the Power Metric [17] or G-Mean (as used for toxicity classification
evaluation by Moorthy et al. [21]) can address this, application of the
Metric Surface method [9] shows that these metrics have the potential
for over-estimation of performance, and we instead use the more strict
F1 criteria which, similar to the Power Metric and G-mean values, in-
corporates the True Positive Rate (TPR) value, but with more penalty
for poor negative class prediction performance.

Finally, we employ Matthews’ Correlation Coefficient [19] which
incorporates all four results of the confusion matrix with multiplicative
penalty for misclassification.

In a comparison of the DRAGON and OEChem implementations of
ECFPs, we also adapt the Enrichment Factor (EF) metric used in drug
discovery. In short, this metric quantifies how many positives (e.g., very
toxic compounds) one can detect against the background of the number
of negatives in the dataset. If a dataset is highly imbalanced towards
negatives, a common scenario, then a predictor with high EF values
signals the ability to correctly recognize positives despite the im-
balance.

We also considered the Balanced Accuracy metric. This is a data
ratio-invariant metric, and was used as a way to assess models in the
2018 AcuteTox prediction event.

The formulas used to compute the metrics are as follows.

= +

= +
= +

=
+ + + +

= + + + +

= +
= +

PPV TP TP FP

F PPV TPR PPV TPR
where TPR TP TP FN

MCC TP TN FP FN
TP FP TP FN TN FP TN FN

EF PPV TP FN TP TN FP FN

BA TPR TNR
where TNR TN TN FP

/ ( )

1 (2 ) / ( ),
/( )

( ) ( )
( ) ( ) ( ) ( )

/ [( )/( )]

( )/2,
/( )

3.5. Active projection

Any binary classification metric used can be visually assessed under
the context of positive–negative data ratio for the relationship between
all true possible positive rates, all possible True Negative Rates (TNR),
and the resulting metric value, a technique called the Metric Surface
method [9]. As an extension of this, Brown proposed to project the
results of active learning onto metric surfaces [8], which provides a
dynamic visual delineation of an estimator’s ability to distinguish

between the two classes as the volume of training data grows. The
active projection used here is an in-house implementation.

3.6. Pareto front calculation

Models are selected for analysis at intermediate stages of active
learning by applying Pareto Front analysis [10]. In pareto analysis, the
set of conditions by which optimal tradeoff amongst multiple objectives
is selected. Here, we employ the technique to identify the amount of
(non-)toxicity data required to yield maximum performance with an
optimal balance between TPR and TNR in an active learning modeling
experiment (in-house implementation).

4. Results and discussion

We again refer the reader to Table 1 to follow the questions ad-
dressed below with convenient reference to the relevant figure or table
demonstrating results.

4.1. Molecular scaffolds and forecasts of predictability

Compounds were organized according to their Bemis-Murcko (BM)
frameworks, where a framework is the collection of ring systems and
the minimum number of linker atoms required to connect the ring
systems. The spread of toxicity values per framework was evaluated for
frameworks with multiple compounds, as shown in Fig. 1. This resulted
in subdividing frameworks into groups that were very toxic, non-toxic
on average yet containing modifications that could result in a very toxic
compound and therefore leading to the group label of “volatile”, non-
toxic on average but still with cautionary levels of toxicity, and finally
non-toxic frameworks with all non-toxic members (deemed “safe”). We
provide examples of each type of framework classification group in
Fig. 1.

In particular, the volatile group indicates the presence of “toxicity
cliffs”, which are analogous to the concepts of activity cliffs for med-
icinal chemistry [40]. Since the framework of two compounds in a
volatile group is identical and would lead to identical descriptor re-
presentation for at least the common framework, we forecasted that
these types of compounds would present a challenge for estimator
calculation and external prediction. Since we principally employed the
random forest algorithm as the estimator method, we expect that a pair
of compounds in a toxicity cliff group would result in a pair of decision
leaves that are within a proximal distance to each other. In
Supplementary Fig. 1, we have provided an expanded version of Fig. 1
which demonstrates per-scaffold average toxicity for all 271 scaffolds in
the training dataset.

4.2. Data volume, external predictability, and picking strategy evaluation

Control experiments using retrospective active learning (MACCS
key representation) demonstrated that random selection of compounds
required nearly the full dataset in order to achieve high predictive MCC
(Fig. 2, top). This was true for either the very toxic or non-toxic data-
sets. In contrast, selection by either the curiosity or greedy strategies
was substantially more effective at picking compounds in the very toxic
dataset, achieving MCC values of more than 0.8 within 30% of the
available data (Fig. 2, top-left). The curiosity picker is also the most
effective in the non-toxic dataset, achieving an MCC of 0.8 within 40%
of the available data (Fig. 2, top-right). Analysis of the same time-series
performances using each of the BA, F1, TPR, and TNR metrics is shown
in Supplementary Fig. 2.

Evaluation on the external dataset, which is never made available to
active learning for picking and inclusion in training, demonstrates
limits of predictive ability in the range of 20–40% of the available
training data. No amount of additional data beyond such yields an
improvement in external classification (Fig. 2, top). For the imbalanced
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very toxic dataset, either selection function demonstrably outperforms
the control experiment using random picking. This was consistent
across all of the descriptors tested (Supplementary Fig. 3); similar to
Fig. 1 for the NT classification problem, picking via the greedy strategy
was less performant than random picking in early stages but was on par
or superior in middle to late stages of active learning when testing
different descriptors.

Another observation from the descriptor comparison experiments
was that the structural fingerprint descriptions of compounds (ECFP
and MACCS) yielded higher performance on the external data than the
physicochemical or pharmacophore representations (Supplementary

Fig. 3). However, it was interesting to note that a combined descriptor
of all four individual types was more predictive on the external dataset
than any individual descriptor. As the combined descriptor represents
both continuously-valued properties of compounds as well as both ex-
perience- and data-based substructure fingerprints, the extra resolution
provided alternative decision tree boundary formulation, and the im-
proved external performance signals that the higher-resolution rulesets
transferred better to the external dataset.

We queried if different implementations in the ECFP algorithm
would yield different results. A head-to-head comparison of the ECFP
implementations in the DRAGON and OEChem packages, using an

Fig. 1. Chemical frameworks and their toxicity classes. BM frameworks may be very toxic altogether, non-toxic on average but containing “toxicity cliffs”, non-toxic
but requiring caution, or generally safe. For illustration purposes, a framework was placed in the very toxic class if its mean LD50 was less than 100 mg/kg.
Differences in structure pairs are highlighted using the color of the toxicity class.
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identical setting of atom radius 2 with 4096 hash bits, showed no dif-
ference in external prediction performance for either the VT or NT
prediction problems (Supplementary Fig. 4, top). As above with MACCS
keys, performance on the external set was convergent at 20–40% of
data strategically picked. We executed further experiments to check the
impact of atom radius and numbers of bits, finding little difference in
external prediction results (Supplementary Fig. 4, middle). The only
noticeable difference resulting from ECFP parameter settings was a
minor drop in enrichment factor on the external set, where smaller radii
(of 0 or 1) showed a reduction in EF from 10 to 9 (max EF approxi-
mately 12 for the VT problem; see Supplementary Fig. 4, bottom). Be-
yond the 10–15% training data range, the EF value continuously de-
clined, albeit the absolute decline was quite small.

We also tested if constraining decision trees to contain multiple
samples in decision leaves, a form of regularization, would lead to
simpler models that could still be predictive. Using the MACCS keys, we
found that we could reduce over-fitting by forcing a minimum of 2
samples (compounds) per decision leaf with the resulting model
achieving MCC of approximately 0.5 on the VT external data
(Supplementary Fig. 5). Further compression by increasing the samples
per leaf led to small reductions in MCC for external predictions, though
compressing trees by forcing at least 5 compounds per leaf still yielded
MCCs of 0.4 and 0.5 on the external VT and NT datasets, respectively.
For the VT dataset, external predictive convergence was achieved at

20% of the training data.
Another interesting observation from this experiment is the inter-

pretation of random forest model behavior as a consequence of data
volume and samples-per-leaf requirements. We can see in the retro-
spective experiments that the maximum MCC achieved for multiple
samples per leaf is at approximately 30% of the training data. Yet, the
performance for a single compound per leaf continues to grow until a
perfect predictor is achieved (Supplementary Fig. 5). We can deduce
that the remaining 70% of this dataset (~6000 compounds) results in
specialty singleton decision nodes which can be recalled but cannot be
grouped with the initial 30%. When we checked the fraction of very
toxic compounds picked at that stage (3000 compounds picked), we
found it consistently to be 16% (1/6) for 2~3 samples per leaf (curi-
osity picker). The fraction reproducibly decreased to 15% for 4~5
samples per leaf, indicating that the non-VT compounds were increas-
ingly picked as a consequence of divided prediction results from the
individual decision trees when such trees were constrained by high
amounts of regularization (samples per leaf).

4.3. Tracking of model dynamics

In order to trace more specifically how active learning improved
through strategic selection of compounds, we computed Active
Projections for the experiments performed. While it was the case that

Fig. 2. Prediction performance by adaptive learning and model computation. Active learning iteratively picks examples to add to training data to find a minimal set
of compounds which maximally predict (non-)toxicity. [Top] Retrospective (“Ret”) experiments query the predictive ability on the full dataset available for selection
and inclusion. In both VT and NT classification problems, maximum prediction performance on the external validation (“Ext”) data is achieved with less than half of
the available training data. [Bottom] Active projections deconstruct metric performances temporally and against the context of data ratio, enriching interpretation of
individual performance metrics. Model performances are projected when there is significant difference in TPR/TNR over a previous point (here, equivalent of more
than 10% shift in TPR/TNR metrics). Point size is scaled by the relative amount of data required before the next point projection. Using either F1 or balanced
accuracy as the primary metric, active projection clarifies that the external dataset performances reported in the top left panel correspond to early decision rules
classifying everything as non-VT after which predictive ability on very toxic compounds is gradually achieved.
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performance converged on the value of MCC = 0.5 when predicting
external compounds for either the very toxic or non-toxic prediction
datasets, how those values were converged upon was considerably
different, as shown by the curiosity picking-based active projections at
the bottom of Fig. 2.

For the VT problem, the first few instances chosen by active learning
contain patterns that allow it to identify the toxic compounds but fail to
detect non-very toxic compounds. The rules of the decision trees formed
at this stage can be expected to be simple, such as “all compounds with
halogen atoms are very toxic”. After several more picks, the rules of the
random forest are updated and can successfully predict non-toxic
compounds, but have lost their ability to identify the very toxic com-
pounds (low TPR, Fig. 2 bottom). After more iterations of active
learning, the decision trees comprising the model incorporate more
decision rules leading to very toxic classifications, and these rules
successfully identify very toxic compounds in the external set. In con-
trast to brief decision stubs of toxicity early on, identification of toxic
compounds here can be expected to use multiple branches (decisions
from features) to handle a variety of chemical substructures. Active
projection compactly describes the temporal TPR-TNR dynamics, and it
further demonstrates that there is a limit to the amount of training data
that improves external prediction performance. Even further, we see
only a modest TPR improvement between models built from 6% of the
training data and those built from 45% (Fig. 2), where the limit of
external prediction performance is encountered. At both data volumes,
the PPV is consistently 0.85. The similarity of the PPV values at these
two points indicates that while fewer compounds were being missed as
very toxic (increasing TPR), false positive predictions (non-VT com-
pounds predicted as toxic) were growing at the same rate as true po-
sitive predictions. The BA metric value also has only a marginal gain
between these two data volumes (in both cases close to 0.70), as seen by
the ratio-aware active projection in Fig. 2 or the simple BA time-series
plot in Supplementary Fig. 2.

Tracking the non-toxic prediction problem dynamics by active
projection tells a different story (Supplementary Fig. 6). Here, the
model is initially performant for “not non-toxic” molecules, and then
examples are picked which lead to performance for non-toxic molecules
but poor predictive ability for the opposite class. However, in this
prediction problem scenario, active projection shows that a more ba-
lanced model is achieved at the 2.4% data volume (PPV = 0.66,
F1 = 0.55, MCC = 0.32), and subsequent picks of data lead the model
on continuous balanced prediction improvements, where the pareto
optimal models are achieved at 36% and 57% of data, with minimal
difference in their TPR and TNR rates at the two stages, and these two
optimal models are relatively close in performance to a smaller model
with only 14% of data.

4.4. Influence of estimator methodology

Artificial neural networks have enjoyed a substantial renewed in-
terest in recent years, with deeply-layered neural networks (DNNs)
receiving large amounts of attention. Individual nodes of ANNs re-
present individual decision functions, typically linear discriminants or
sigmoidal functions, and thus bear similarity to decision branches in
decision trees. A cascade of discriminant units constitutes a neural
network’s structure, much like a decision tree employs many decision
branches. The difference between the two methodologies is in the
mathematical structure of the discriminants and cascades. Thus, we
wished to know if ANNs, with more variation in discriminant for-
mulations and cascade structures, would lend it to enhanced ability for
VT and NT classification, and executed an evaluation experiment.

We enumerated feedforward topologies using between one and ten
hidden layers, executed individual hyperparameter optimization, and
employed the full or near-full training dataset, yet we found that op-
timal prediction performance on the external data as measured by MCC
value was identical to the maximum obtained by RF-based active

learning (Supplementary Table 1). There was no correlation between
the number of layers and the resulting MCC, suggesting that topologies
beyond a single hidden layer with 166 hidden decision nodes (the same
number of MACCS keys) did not substantially contribute to the decision
hypersurface such that better separation of compounds by toxicity class
occurred. Switching between 10 and 200 nodes per layer with a con-
stant five layers also showed no change in predictive ability
(Supplementary Fig. 7). The only parameter where large changes in
predictive performance was observed was the learning rate of the net-
work, which tunes the speed of backpropagation and empirical con-
vergence on each hidden node’s underlying activation function para-
meters; if this parameter was too large, predictions were very poor
(Supplementary Fig. 7).

Considering the toxicity cliffs shown in Fig. 1, it is rational to be-
lieve that the ANN models encountered the same issue which led to
active learning’s asymptotic performance – that the similarity principle
(similar compounds have similar properties) does not hold for many
compound pairs, and therefore that the ANN and RF models produce
similar performance because such performance is the maximum that an
estimator can logically achieve under the premise of the similarity
principle.

Further experiments with SVMs were undertaken, in this case using
the joint descriptor representation of the compounds. Results yielded
MCC values nearly identical to those obtained by RF models (data not
shown). Thus, it was not the case of how the estimators were for-
mulated and tuned, but rather how the discontinuity in the datasets
impacted the prediction performances.

4.5. Domain of applicability assessments

Models developed based on full datasets may often also derive a
domain of applicability (DoA). In previous toxicity prediction efforts,
multiple groups defined DoAs by restricting predictions to those com-
pounds such that their descriptor representations and endpoints were
respectively neighboring and consistent [3,6,11]. This ensures a smooth
representation-endpoint manifold, and these groups achieved high PPV
values by such DoA filters.

Active learning brings a different approach to modeling by using
only a subset of data in a dynamic, adaptive fashion, and thus it re-
quires an alternative strategy to identify a DoA for an actively learned
model. Here, we considered that the DoA could be defined by identi-
fying those compounds which could (or more importantly, could not)
be predicted at some point during the iterative compound selection and
modeling processes. In Fig. 3, we consider the predictability of in-
dividual compounds in the external dataset, where all compounds are
from the very toxic class. As can be seen, those VT compounds which
are predictable are predominantly predicted as such within the first
15% of data strategically selected (curiosity picking). A few compounds
can also be seen to eventually be predictable at 30–45% of training data
picked, but beyond this, there are no major changes in the predictability
of compounds. Consistent with Fig. 2 and Supplementary Fig. 2, we see
that approximately 45% of the external VT compounds were success-
fully predicted. The remaining 55% comprise the compounds which fall
outside of the DoA. When a new structure is to be predicted for toxicity,
we could consider the most similar compounds in the external dataset
and whether or not they were adaptively predictable or not. In regards
to minimizing the amount of animal testing performed, those com-
pounds with maximum disagreement from multiple model votes could
then be construed as the ones with the most uncertainty, and advanced
to animal testing.

Alternatively, we can consider the result of applying the same
methodology to the available training data. As shown in Supplementary
Fig. 8, most of the compounds in the training data are emergently
predictable, and again predictability is largely unchanged after se-
lecting and learning half of the training data. For those compounds
which become predictable after the halfway mark, we can consider the
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regularization analysis (samples per decision leaf) earlier as a plausible
explanation for the mechanics of how these compounds eventually were
correctly classified.

Using the different descriptor representations of the compounds, we
repeated the DoA analysis for very toxic compounds in the external
dataset. We found that most compounds that were predictable by
MACCS keys were predictable with at least one other representation,
but we also could identify specific compounds that were only pre-
dictable by a single particular representation. Some examples of these
compounds are shown in Supplementary Fig. 9.

4.6. Compound representation and challenges from discontinuities

Despite our pre-processing to remove contradictions in data (iden-
tical chemical compound with conflicting classification labels) and thus
reduce the degree to which the modelable compounds contained “dis-
continuities”, a number of compound structures in the external dataset
were highly difficult to predict, due to their structures resembling
others of opposite class. We performed further analyses to quantify how
many discontinuities were present between the external compound
dataset and the reference training library. Compound pairs with
MACCS-Tanimoto values of 0.8 or higher were considered similar.

As shown in Table 3, for the VT dataset, there were a total of 1257
discontinuities between the external and training data, in which 691
(55%) pairs were of external compounds that were very toxic but in
which a similar compound in the training data had a non-VT label. For
instance, 2-methyl-4,6-dinitrophenol (534-52-1) has a reported LD50

value of 7.0 mg/kg; trinitrophenol (88-89-1) has an LD50 of 200.0 mg/
kg, yet the MACCS-Tanimoto similarity of the two is 0.972. 2-methyl-
4,6-dinitrophenol forms 25 such discontinuities with the training data;
we should not be expectant of the machine to predict compounds such
as this correctly. Further examples of discontinuous compound pairs are
provided in Supplementary Fig. 10, including seven small fragment
compound pairs with opposite labels despite identical MACCS finger-
prints. Comparing the 158 compounds that form external-training dis-
continuities to the size of the external prediction data, it should come as
no surprise that the upper limit of very toxic compound classification
(true positive rate) on the external dataset is just under 50%. Analogous
discontinuity analyses were performed for the external-training dataset

of the NT classification problem and the intra-training datasets, with
statistics provided in Table 3.

In previous work on active learning, Brown and colleagues enforced
the use of a gap between the definition of active and inactive com-
pounds [24,27,30]. While the pre-assigned binary label classification
system was primarily used for results reported, we hypothesized that
borderline non-VT compounds had the potential to cause interference
in building clear rules separating very toxic compounds from others. To
test this hypothesis, we removed training set compounds with LD50

values in the non-inclusive range of 50–250 mg/kg, and re-evaluated
the actively learned model on the external dataset. As shown in Fig. 4,
the TPR, BA, and F1 metrics were all improved when predicting the
external very toxic compounds. Curiously the PPV was decreased. The
interpretation of this potentially confusing outcome can be resolved by
considering the relationship between TPR, PPV, and F1: while the rate
of false negatives declined (increase in TPR/BA), the rate of false po-
sitives was increased compared to inclusion of the borderline com-
pounds (decrease in PPV), but the gain in TPR was larger than the loss
in PPV, and hence the F1 metric was improved. The MCC was not
substantially affected (data not shown). Thus, the consideration of pre-
filtering borderline non-VT compounds in an effort to generate models
with better defined boundaries and improve the toxic compound
identification prediction rate is a viable strategy in future regulatory
policy.

Fig. 3. Domain of Applicability (DoA) assessment for toxic compound prediction via active learning. In 10 replicate experiments using different starting compounds,
models adaptively learn the rules to separate very toxic from non-VT compounds in the training data; at each stage of model update, models also predict a VT label for
external compounds. The percentage of model votes (color) per unit data volume (vertical axis) demonstrates compounds which are clearly within the DoA,
compounds clearly outside the DoA (dominantly purple columns; false negatives), compounds which are initially outside the domain but eventually are within
(purple to yellow transition), and compounds which are borderline (white). Beyond 50% of the training data, no changes in the DoA are present. Results using
MACCS fingerprints.

Table 3
Frequency of discontinuities in datasets. Discontinuities are defined as pairs of
compounds with MACCS-Tanimoto similarity of at least 0.8 but with opposite
classification labels.

Dataset discontinuity frequency

External-training Training intra-dataset

Discontinuity
pairs

Number of
compounds

Discontinuity
pairs

Number of
compounds

VT = True 691 158 1121 471
VT = False 566 257 1121 750
NT = True 1487 519 2478 1656
NT = False 1512 521 2478 1638
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4.7. Substructure-endpoint differential fingerprint analysis

As different estimator algorithms were equally capable of identi-
fying compounds in the external dataset which were very toxic (Section
4.4), it suggested that there must be the presence of fingerprints which

were more represented in very toxic compounds in the training data,
that these underpinned the successful predictions on the external data,
and that these could potentially be interesting as structural alerts. By
considering the normalized frequency of bits in very toxic compounds
versus those that are not-VT, we can identify such differential

Fig. 4. Consequence of removing borderline non-toxic compounds prior to external prediction. Training data compounds in the LD50 range (50,250) were excluded
from training data, and active learning was performed. [Left] The TPR and BA metrics for the external dataset were higher after this filter was applied, whereas the
PPV was decreased; the final overall F1 was still improved, while the MCC was not significantly changed (data not shown). [Right] External VT=true compounds
were re-assessed for the DoA, considering the number of similar compounds. The compounds that were unpredictable (FNs, purple) were dominantly those with no
similar compounds in the training data.
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substructures. Using the MACCS keys, examples of the patterns identi-
fied from the training set are given in Fig. 5.

We then queried if the very toxic compounds in the external dataset
contained similar ratios of these substructures. As shown in
Supplementary Fig. 11, the frequencies of bits were highly concordant.
This included a check of the normalized frequencies of the MACCS bits
across the very toxic and non-VT classes. This scatterplot combined
with the fact that some compounds contained the most differential
MACCS bits but were still false negatives hints that the relative ratio of
data classes and absolute counts of bits interfered with the ability to
build a more performant model. Also, we can observe from
Supplementary Fig. S11 that, unlike very toxic compounds, there are
few MACCS bits that have substantially large relative frequency for
non-VT compounds (e.g., > 0.3 as can be found for some very toxic
compound compound bits). Still, manual inspection of specific SMARTS
on the extremes of the heatmap in Fig. 5 led to the impression that
highly aliphatic compounds tended to non-toxic labels while tertiary
heavy atoms or non-carbon heavy atoms within 1–2 bonds tended to
very toxic labels.

4.8. Toxic singletons embedded in larger compounds

We considered that some small, non-framework compounds might
be present as substructures in larger compounds, and that the re-
lationship between sub-structure and super-structure might provide
ideas for molecular design and modification. For each compound in the
training data which did not contain a Bemis-Murcko scaffold, we con-
sidered its toxicity and the toxicities of all superstructure compounds
which contain the non-scaffold compound as a substructure. The fre-
quency of such relationships is represented by the heatmap presented in
Supplementary Fig. 12.

In the figure, specific examples of the substructure-superstructure
relationship and subsequent differences in LD50 value are also given.
For example, the 2-atom cyano moiety can be found in the compounds
belonging to the very toxic, volatile, and cautionary scaffold groups.
The substructure is also present in a scaffold which does not belong to
any of our four groupings, and further inspection clarifies that LD50

does not simply follow a monotonic trend based on superstructure size.
Other fragment-scaffold relationships shown also demonstrate that
small fragments with high individual toxicity could still be potentially
used (i.e., to increase van der walls contacts or electrostatic interaction)
in molecular design. Clearly, structural, electrostatic, and spatial

Fig. 5. Differential bit analysis of very toxic compounds. The normalized frequency in the training data of each MACCS key was computed for each of the VT=true
and VT=false groups. Differential comparison identified patterns more- and less-frequent in the groups. Examples of true positive (yellow) and false negative
(purple) compounds containing these patterns are shown.
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considerations strongly influence whether a compound is toxic or not,
and in particular when considering the physiological context which
often includes target receptor engagement.

5. Conclusions

As the search continues for new methodologies to minimize the
extent of animal testing, we have demonstrated the benefit of con-
sidering asymptotic limits in modeling methods. Active learning
achieved the same predictive performance as an optimized neural
network, but required only 30–40% of the available data to do so. We
also employed quantitative approaches to query how well-posed (or
challenging) the prediction problem setting was. Thus, the technique
represents a way for regulators to make projections about the cost-
benefit tradeoff associated with expanded toxicity evaluation for com-
putational model developments, and what to rationally expect from
prediction models. Scaffold analysis uncovered structures which can be
systematically flagged for caution in the virtual screening of large
catalogs and databases, and substructure-superstructure analysis clar-
ified the importance of context when analyzing small toxic fragments.

Taken together, this work provides insights which can help che-
mical designers, environmental analysts, regulatory agencies, and tox-
icology research groups. While we could not find such data in the public
domain, a clear way to improve the analysis would be to link chemi-
cally-driven rat oral acute toxicity with receptor protein interaction on
a proteome-wide scale. Still further, if such data were available, then
distinct modes of toxicity could be computed from pathway scoring
analyses. Hence, there is much to be explored and established in che-
mical-phenotype predictive toxicology.
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