TR it () K4 Ahsan Habib Polash

Active learning efficiently converges on rational limits of toxicity prediction
and identifies patterns for molecule design
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Government organizations utilizes different assays to assess the safety of chemicals. Most of the
established assays have potential drawbacks which includes but are not limited to: lack of cost
effectiveness, long evaluation times, false negative results, so forth. Moreover, animal-based assays
are increasingly becoming discouraged by different animal welfare organizations. As a consequence,
toxicologists are encouraging the development of new types of toxicity detection assays which
would overcome the drawbacks of the current toxicity assays.
A number of recent scientific studies have employed machine learning (ML) to predict binding of
compounds to proteins. Such studies are accelerating computational chemistry, methods in
toxicology, and usage of Attificial Intelligence in drug discovery. In 2017, Reker et al employed a
ML method called Active Learning (AL) to model several kinases and G-protein coupled receptor
proteins with high performances. One advantage of AL is that, instead of learning all of the available
bioactivity data, it iteratively selects a subset of the data and builds a reduced-size model that is as
good as a model constructed from the whole dataset. By doing this AL can reduce computational
resources substantially. In 2019, Polash and co-workers employed AL in predicting highly selective
inhibitors for matrix metalloproteinases, a protein family known to play various roles in cancer cell
proliferation. They also deconvoluted ML model’s decision-making process.
Following the elucidation of a ML model architecture, in this study AL was applied to a dataset of
approximately 9000 compounds which were tested for acute oral toxicity in rats. The data have been
curated by the US government and made publicly available for the evaluation and development of
predictive methodologies. Particularly notable is the fact that compared to biochemical assay data,
sources of in-vivo toxicity are diverse, and thus the predictive challenge is amplified compared to
biochemical assay data. Unlike many previous studies with mathematically complex ML algorithms
and full activity dataset, this study showed that only a strategically subset of data was sufficient to
build a model that could predict toxic compounds with high performance.
Instead of developing a "black box"™ model which lacks insight into model building steps, the authors
tried to deconvolute the decision-making steps. In depth analyses showed that some of the
compounds were predictable from the early stages of model building, whereas some compounds
became predictable gradually. However, some of the compounds never could be correctly predicted;
subsequent analysis revealed that these compounds frequently formed a “toxicity cliff”. A toxicity
cliff can be described as a minor change in structure leading to a large change in toxicity (activity).
Apparently, it was found that some of the toxic compounds in the validation data have nearest
neighbors in training data that are not toxic and as a result the model failed to classify them
accurately; this suggests the rational limits of toxicity prediction. Furthermore, it has been shown that
the removal of the compounds from the data that had toxicity values near the borderline separating
toxic and non-toxic classification yielded even higher performance. Finally, compound structure
analysis revealed that some compound substructures are differentially present or absent across toxic
and nontoxic compounds.
In summary, the study demonstrated efficient selection of compounds toward generating
computational models for toxicity prediction in rats and provided insights about the chemical
substructures and patterns that are crucial for classifying toxic compounds. Computational toxicity
prediction is still a fairly nascent discipline with a variety of challenges. However, insights from this
research will contribute further to develop better toxicity prediction models and the understanding of
chemical fragment-toxicity association will contribute to the flagging of risk-associated structures for
drug discovery to avoid potential toxicity.
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