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Abstract

Single-cell expression analysis is an effective tool for studying the dynamics of cell
population profiles. However, the majority of statistical methods are applied to
individual profiles and the methods for comparing multiple profiles simultaneously are
limited. In this study, we propose a nonparametric statistical method, called
Decomposition into Extended Exponential Family (DEEF), that embeds a set of
single-cell expression profiles of several markers into a low-dimensional space and
identifies the principal distributions that describe their heterogeneity. We demonstrate
that DEEF can appropriately decompose and embed sets of theoretical probability
distributions. We then apply DEEF to a cytometry dataset to examine the effects of
epidermal growth factor stimulation on human breast epithelial cell line. It is shown
that DEEF can describe the complex dynamics of cell population profiles using two
parameters and visualize them as a trajectory. The two parameters identified the
principal patterns of the cell population profile without prior biological assumptions.
As a further application, we perform a dimensionality reduction and a time series
reconstruction. DEEF can reconstruct the distributions based on the top coordinates,
which enables the creation of an artificial dataset based on an actual single-cell
expression dataset. Using the coordinate system assigned by DEEF, it is possible to
analyze the relationship between the attributes of the distribution sample and the
features or shape of the distribution using conventional data mining methods.

Introduction 1

Single-cell expression analysis is an effective tool for studying the dynamics of cell 2

population profiles [1–3]. Cytometry data, a type of single-cell expression data, 3

quantify the amount of protein marker expression in each of a large number of 4

randomly selected cells. Single-cell RNA sequencing (scRNA-seq) data, another type 5

of single-cell expression data, has recently become popular. This type of data allows 6

comprehensive quantification of the amount of mRNA expression for genome-wide 7

genes in single cells. Such single-cell expression data can be used to quantify or 8

identify specific cell subsets based on the biomarkers. For example, specific 9

lymphocyte subset (e.g. T cell and B cell subset) have been defined by the expression 10

patterns of several cell surface protein markers [4, 5]. When many cells are sampled 11

from a donor and their expression profiles are obtained, the expression data can be 12
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regarded as an observation of an unknown probability distribution of the cells. The 13

expression profile of each cell can be viewed as a sample from a multidimensional 14

distribution, where the number of dimensions is the number of markers. 15

Several computational methods developed for single-cell data analysis, such as 16

spanning-tree progression analysis for density-normalized events (SPADE), monocle, 17

and Wanderlust, have been used to investigate various phenomena [6–9]. Most of these 18

methods focus on the diversity of multiple cells or the mutual phylogenic relationship 19

among them within a set of cells sampled to identify subtypes of cells or to visualize 20

their heterogeneity. Expression profile analyses such as cytometry and scRNA-seq are 21

applied to many samples, each of which consists of many cells from individual donors. 22

In recent years, demand for a computational method for heterogeneous multiple 23

samples in the form of distribution has been increasing, and actually a method that 24

integrates multiple expression profiles together and to identify subpopulation in 25

data-driven manner was proposed [10]. These expression profiles take the form of 26

multidimensional distributions, which have to be statistically investigated using 27

methods such as clustering, case-control comparison, and chronological pattern 28

analysis. Multiomics studies analyze phenotypes, transcriptomes, and cytometry data 29

from hundreds or thousands of individuals [11–13]. In these studies, the distributions 30

of cytometry profiles should be statistically analyzed with other datasets from 31

different platforms. However, conventional statistical methods do not take 32

distributions as inputs and thus cell population profiles in the form of distributions 33

have to be modified into a suitable form, such as cell subtype fractions, via gating 34

procedures. This modification of flow cytometry distribution data into 35

multi-categorical fractions loses information. Therefore, the method used to convert 36

the density information of a cell population into a form that can be handled by regular 37

statistical procedures is very important. 38

Computational methods for extracting feature statistics from data in 39

multidimensional distribution form can be classified into two types, namely parametric 40

and nonparametric. A representative parametric method is the Gaussian mixture 41

model [14]. This method is mainly used for the automation of the manual gating of 42

cytometric data, which is of interest in computational cytometry. However, it is know 43

that in many cases, the Gaussian mixture model, along with other parametric 44

approaches such as t-mixture models [14], is too simple to represent the complexity of 45

the distributions of a cell population profile. 46

Some nonparametric methods for embedding single-cell expression data or other 47

kinds of distribution-type data into a low-dimensional space have been 48

proposed [15–17]. Most of these methods are based on multidimensional scaling 49

(MDS) [18]. MDS-based methods first estimate a population distribution based on 50

samples using a nonparametric probability density estimation method such as the 51

kernel density estimation method or the k-nearest neighbor (kNN) method [19,20]. 52

Then, the symmetric distance is defined between two distributions based on 53

information theory. Finally, MDS-based methods generate a distance matrix for a set 54

of distributions and embed the individual distributions in a low-dimensional Euclidean 55

coordinate space that maintains these distance relationships as much as possible. 56

Although this approach is simple and powerful for the visualization of samples from 57

different donors, the embedding into Euclidean coordinate space is essentially 58

non-precise and imperfect because the definition of distance based on information 59

theory is non-Euclidean [21]. 60

Information geometry is a field of statistics that deals with the geometry of 61

probability distributions [21]. In this research, based on the idea of information 62

geometry, we propose a method, called Decomposition into Extended Exponential 63

Family (DEEF), for embedding sample distributions into a low-dimensional coordinate 64
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space. The DEEF method finds an exponential-family-like formula for an arbitrary set 65

of distributions and component distributions to describe the set of distributions and 66

gives the coordinates and potential function value for each distribution. The only 67

difference between an extended exponential family (EEF) and the exponential family 68

itself is that the potential function of a regular exponential family is convex whereas 69

that of an EEF is not. DEEF estimates the inner products of distribution pairs and 70

assigns coordinates θ to each distribution based on the eigenvalue decomposition of a 71

matrix related to the inner products. The coordinate system contains imaginary 72

coordinates, as in Minkowski space [22]. The coordinates θ can always recover the 73

distributions without loss of information and in many cases, θ from only a limited 74

number of principal axes can recover the original distributions with negligible 75

residuals. This overcomes the drawbacks of the conventional MDS-based method. 76

In this paper, we define an EEF and discuss the theoretical aspects of the log-linear 77

decomposition of the probability matrix P into exponential-like representations. We 78

apply the DEEF method to a set of theoretical probability distributions and show that 79

it can be used for data-driven extraction and the visualization of potential parameter 80

structures of the dataset. We then apply DEEF to a cytometry dataset to examine the 81

effects of epidermal growth factor (EGF) stimulation on human breast epithelial cell 82

line. It is shown that DEEF can extract parameters that identify the principal patterns 83

of the cell population profile and describe the complex dynamics of cell population 84

profiles as a trajectory. In addition, DEEF can be used to perform a dimensionality 85

reduction for this dataset and a time-series reconstruction, which enables the creation 86

of an artificial cytometry dataset based on the properties of the actual data. 87

Results 88

Method outline 89

We propose a statistical method called DEEF (Fig 1). An exponential family is a set 90

of probability distributions whose probability density/mass functions are expressed in 91

the form 92

logP (x, θ) = C(x) +
∑
k=1

Fk(x)θk − ψ(θ) (1)

where C(x), Fk(x), and ψ(θ) are known functions (ψ(θ) should be convex), and θ is 93

the parameters that specify distribution instances. Many parametric probability 94

distributions, such as the normal distribution and the binomial distribution, are 95

included in the exponential family. Some probability distributions are not included in 96

the exponential family, such as the mixture normal distribution. The details are given 97

in S1 Text. 98

The distributions, one dimensional or multidimensional, in life sciences and other 99

field, including expression profiles, are sometimes too complex to fit to simple 100

parametric distribution. Some of them can be adequately described as a mixture of 101

multiple parametric distributions. Actually, mixture of multiple distributions such as a 102

mixture normal distribution or a mixture t distribution is commonly used in the 103

parametric model for cytometry data [11]. And further complicated distributions can 104

be fitted to only non-parametric distribution. Choosing the appropriate parametric 105

model is difficult because it depends on the situation. While the exponential family 106

can represent many simple probability distributions, it cannot represent most mixture 107

distributions or more complex distributions often used in single-cell expression 108

analysis. 109
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We define an EEF as: 110

logP (x, θ) = C(x) +
∑
k=1

Fk(x)θk − ψ′(θ) (2)

ψ′(θ) =
∑
k=1

hkθ
2
k where hk = −1 or 1 (3)

An EEF is almost identical to Eq 1, but with the potential function ψ(θ) modified 111

as shown in Eq 3. We loosened the restriction that ψ(θ) should be convex so that a set 112

of arbitrary distributions can fit the formula. We also modified ψ(θ) as shown in Eq 3. 113

θ represents the coordinates of each distribution, where the inner product of the θ 114

coordinates between two distributions is defined as half the logarithm of the inner 115

product of density/mass functions. Using this definition of θ, C(x) and Fk(x) are 116

solvable when a set of distributions P(x, θ) is given. 117

We obtain a set of multidimensional probability distributions from the 118

experimental results. We divide the space into grid cells and estimate the probability 119

mass functions P for the grid cells, which makes the dimensions of Eq 2 and Eq 3 120

finite and makes the estimation of EEF forms a linear algebraic calculation. 121

A matrix-operation-based simple algorithm can be constructed for log-linear 122

decomposing probability matrix P into C+ΘF−Ψ, where C, ΘF, and Ψ are the 123

discretized representations of EEF forms for multiple distributions (details given in 124

Method section). Then, we can obtain the EEF representation of any distribution set. 125

The input is only the probability matrix P, whose rows represent the probability mass 126

function. DEEF can be applied to distribution sets to embed each distribution in the 127

defined EEF space by considering Θ as the feature statistics of the distributions. 128

Because the θ coordinate is calculated from eigenvalue decomposition, a few 129

coordinates with the top eigenvalues contain a lot of the information of the probability 130

distribution set. In addition, the F matrix provides principal compositional 131

distributions in the original space. DEEF extracts the compositional distribution Fi to 132

a data driven manner. The θi coordinate indicates how much each sample has Fi. 133

This is an interpretation of θ coordinate space, where hold difference between samples. 134

A detailed description of the theory are given in the Appendix in S1 Text. 135

Simulation data analysis 136

First, we applied DEEF to a normal distribution set that consisted of 900 instances of 137

a normal distribution, with the mean ranging from −1 to 1 and the standard deviation 138

(sd) ranging from 2 to 4 at a fixed interval of 0.069 for each (Fig 2(a)). We called 139

these parameters defined in the specific parametric models as original parameters. 140

And, a space using these original parameters as coordinate axes is called an original 141

parameter space. We compared the DEEF method and a conventional MDS-based 142

method [15] using this normal distribution set. 143

We compared the θ coordinate spaces with the top three absolute eigenvalues 144

(θlast, θ1, θ2) (Fig 2(b)) and the top three MDS coordinate spaces (MDS1, MDS2, 145

MDS3) (Fig 2(c)). The θ coordinate is denoted θi in decreasing order of eigenvalues. 146

θlast is the coordinate corresponding to the lowest eigenvalue, whose absolute value is 147

largest in this case. Although both methods displayed a two-dimensional manifold in 148

three-dimensional space, the two-dimensional manifold for DEEF was much simpler 149

than that for MDS. The colors in Fig 2 indicate the Kullback-Leibler (KL) divergence 150

from the distribution in the center of the mean-sd parametric grid (indicated by a 151

black dot). Because the two-dimensional manifolds of DEEF and MDS were curved 152

surfaces, it was not appropriate to use the Euclidean distance between points as a 153

measure of divergence between two distributions. However, the simpler manifold for 154
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DEEF seems to be intuitively better for visualizing divergence. The number of total 155

extracted coordinates for the MDS-based method was 445 because the decomposed 156

matrix was not positive definite and some information was missing; the number of 157

total extracted coordinates for DEEF was 900. 158

The normal distribution can usually be characterized by two parameters, mean and 159

sd, on the original parameter space. However, they are also allowed to be expressed in 160

different two parameters. While parameterization by mean and sd is only possible 161

under the assumption that it is a normal distribution, the θ coordinates calculated by 162

DEEF can be assigned to the distribution without any assumptions. In both original 163

parameters and θ coordinates, information about the difference between distributions 164

is represented by the same number of parameters. In fact, when the distributions are 165

generated sufficiently densely, it is visualized in Fig 2 that the topological relation 166

among the distributions is maintained. 167

We apply DEEF to multiple normal distribution sets with different parameter 168

structures, namely a mixture normal distribution set and an exponential distribution 169

set, in S1 Text. Here, we apply the DEEF method to a set of theoretical probability 170

distributions and show that it can be used for data-driven extraction and the 171

visualization of the potential parameter structures of the dataset. DEEF successfully 172

embedded these distributions in the θ coordinate space. The distributions could be 173

recovered without loss of information and in many cases θ from only a limited number 174

of principal axes could recover the original distributions with negligible residuals. 175

EGF stimulation cytometry data analysis 176

Cytometry data can be considered as an unknown multidimensional probability 177

distribution of cells, where the number of dimensions is the number of markers. We 178

applied DEEF to a cytometry dataset. 179

We used mass cytometry data from a study on the effect of EGF stimulation on an 180

human breast epithelial cell line [23]. In the experiment, measurements were made at 181

10 time points (0, 0.5, 1, 3, 6, 10, 15, 30, 60, and 120 minutes) in two replicates, one 182

each after EGF stimulation and under control conditions. We picked four marker 183

proteins, namely pAKT, pERK, pPLCγ2, and pS6, which were shown to respond to 184

EGF stimulation in the original study. The pre-processed marker expression data for 185

each time point after EGF stimulation for Replicate1 and Replicate2 are shown in Fig 186

3. We applied the DEEF method to the four marker single-cell expression datasets. 187

Unlike for the simulation data, the population distribution was unknown and thus a 188

sample set was obtained. Then, we estimated the probability matrix P of the 189

single-cell expression dataset before we applied DEEF, as described below. Each 190

single-cell expression dataset was a sample set from an unknown population 191

distribution in the number-of-markers-dimensional space (four-dimensional space in 192

this case). First, we decided the range of each marker. For each sample, we calculated 193

the α percentile and the 1 - α percentile for each marker expression. We used the 194

range of each marker between the minimum α percentile value and the maximum 1 - α 195

percentile value among all samples so that all samples contained the expression range 196

between the α and 1 - α percentiles for cells. In this case, we used α = 0.05. Next, we 197

separated this range into equally spaced m points (m=20), where m is a defined 198

parameter. The number of grids was m4. For the determined grids, we estimated the 199

probability density using the kNN method (k=800). The row vector P, representing 200

the kNN-based densities of m4 grids, was standardized so that its total value was 1. 201

We applied the DEEF method to P built using the above procedure and calculated the 202

corresponding θ coordinates. θlast corresponded to a negative eigenvalue, and θ1, θ2, 203

and θ3 corresponded to positive eigenvalues (S1 Fig). The boxplot of error shows that 204

the performance of the distribution reproduction increases with increasing number of θ 205
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coordinates but at a slower rate than that for the simulation distribution set (S1 Fig). 206

We embedded all cell population profiles into a low-dimensional coordinate space 207

and visualized them using the DEEF method. θ1, θ2, and θ3 accounted for 69.6%, 208

13.9%, and 8.9% of the sum of positive eigenvalues, respectively. Fig 4(a) shows scatter 209

plots of the top positive θ coordinates derived from the DEEF method. θ1 and θ2 give 210

common trajectories during EGF stimulation between Replicate1 and Replicate2 but 211

θ3 gives a different trajectory. After EGF stimulation, the cell population profile 212

moved on the θ1 and θ2 coordinate space and then returned to the region near the 213

baseline. We then used θ1 and θ2 to parameterize the cell population dynamics after 214

EGF stimulation which is common between Replicates1 and Replicate2. 215

F1 and F2, which correspond to θ1 and θ2, respectively, show the type of cell 216

population profile change represented by the trajectory. Fig 4(b) shows F1 and F2 for 217

pAKT and pS6. F1 explains the number of cells with high pAKT expression and high 218

pS6 expression and F2 explains the number of cells with low pAKT and high pS6 219

expression. An increase in θ1 and a decrease in θ2 correspond to the initial response. 220

This change can be well expressed as a synthesis of the patterns of the three 221

underlying cell population profiles. The increase in θ2 that occurs in the second half 222

corresponds to the increase in pS6, which arose later than that of pAKT. The density 223

plots of F1 and F2 for all four markers are shown in S2 Fig. 224

S3 Fig shows a scatter plot of all samples for MDS1 and MDS2 derived by applying 225

the MDS-based method to this dataset. The dynamics after EGF stimulation have a 226

trajectory pattern similar to that obtained with DEEF. However, we cannot get 227

further information from this analysis. 228

To visualize F(x) as a four-dimensional function all at once, we performed SPADE 229

analysis and described F1 and F2 on the SPADE tree. SPADE is a computational 230

cytometry method that automatically clusters cells for multiple cytometry datasets 231

and creates one consensus tree of the cell clusters. We applied SPADE to all 40 232

samples to create a SPADE tree that consisted of ten cell clusters (Fig 5(a)). Each 233

SPADE cluster can be characterized by the four-marker expression pattern (Fig 5(b)). 234

Fig 5(c) shows SPADE trees with F1 and F2 values. Each cluster was assigned F1 and 235

F2 values of the grid to which the representative location of the cluster belongs. In F1 236

on the SPADE tree, Cluster 9 has the highest positive F1 values. This result is 237

reasonable because Cluster 9 showed high expression for all four markers. This result 238

corresponds to the fact that all marker expressions increase after EGF stimulation. 239

Cluster 8 has the highest negative F1 value, which is reasonable because this cluster 240

showed low expression for all four markers. F2, which corresponds to a different 241

trajectory pattern from that for F1, shows a different pattern on the SPADE tree. 242

Cluster 3, which has the highest positive F2 values, showed high expression for pS6 243

and pPLCγ2. These two markers are expressed later than pAKT and pERK. 244

Interestingly, Cluster 2, which showed low expression for pERK and pS6, has the 245

highest negative F2 value. Using the table of the representative values for each cluster 246

(S1 Table), this subset can be confirmed on the density plot of samples obtained 6 247

minutes after stimulation (Fig 5(d)). The DEEF method can provide insight into 248

patterns that are difficult to detect using conventional methods. 249

Dimension reduction and time-course reconstruction using EGF 250

stimulation dataset 251

In the previous section, we showed that DEEF works well with a real cytometry 252

dataset. In this section, as further applications of DEEF for biological research, we 253

describe dimensionality reduction and time-course reconstruction. 254

DEEF can reconstruct a distribution using only the coordinates with the top 255
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absolute eigenvalues. To reduce the dimensionality of a cell population profile, we 256

expressed the cell population profile using only the synthetic sum of the main patterns; 257

other differences were considered to be noise. A dimension reduction of the EGF 258

stimulation dataset using the top θ coordinates was conducted. The panels in the first 259

column of Fig 6(a) shows the change in the median marker intensity in the raw data 260

along the time course for the four markers. The expression levels of pAKT and pERK 261

increased first, followed by those of pS6 and pPLCγ2. This is consistent with the 262

results in the original study. The panels in the second column of Fig 6 show the change 263

in the median of marker intensity calculated from the reconstructed distribution using 264

θ1, θ2, and θlast, corresponding to top three highest absolute eigenvalues (K=3). 265

These results suggest that the cell population profile reconstructed using only the 266

main patterns well captures the characteristics of the dynamics of the original data. 267

Here, the patterns that have a small contribution to the difference among the sample 268

set were eliminated. If DEEF can decompose the information into meaningful data 269

and noise, reproduction using only principal functions would denoise the data. 270

Next, using this scheme, we conducted a time-course reconstruction of Replicate1’s 271

EGF stimulation dataset whose original time course contained 10 time points. The 272

value of the θ coordinate at each time point was estimated by linearly interpolating 273

and dividing the value of the θ coordinate between each time point into 10 equal 274

parts, and reconstructing the θ coordinate at a total of 91 images. Fig 6(b) shows the 275

25th and 65th images of the 91 images as examples of the estimated cell population 276

profiles between the measurements. Based on the estimated value, the distribution 277

was reproduced at K=3. An animation of the cell population dynamics including the 278

unmeasured time points is available (S1 Movie). 279

Discussion 280

In this study, we proposed a class of probability distributions called EEFs and a 281

nonparametric decomposition method for probability distribution sets called DEEF 282

(Fig 1). The DEEF method provides geometric coordinates for each distribution and 283

obtains feature statistics for a sample set by estimating an exponential family-like 284

representation for a multidimensional probability distribution set. DEEF can identify 285

the parameters that well discriminate the difference among a distribution set as θ. In 286

addition, the coordinates identified by DEEF have a biological meaning, as shown by 287

Fi(x). The log-linear decomposition did not lose the information in the original 288

datasets and the original distributions could be reproduced. The DEEF method 289

extracted the feature statistics of distributions as θ coordinates without loss of 290

information, unlike similar methods such as the MDS-based method (Fig 2, S1 Text). 291

When the DEEF method was applied to a cytometry dataset obtained after EGF 292

stimulation, as shown in Fig 3, it extracted the main underlying patterns from the 293

probability distribution set, embedded them into the coordinate system, and indicated 294

the quantitative differences among samples (Fig 4). We parameterized the dynamics 295

after the EGF stimulation with two parameters and expressed them as trajectories. 296

We could then visualize the F (x) function on the SPADE tree (Fig 5). By using 297

SPADE, information on the combination of multidimensional markers can be 298

simultaneously visualized; this is not possible with a two-marker density plot. The 299

characteristics of the response to EGF are useful for characterizing a subset of human 300

mammary cells and are essential information for understanding the properties of 301

epithelial cancers [23]. DEEF may provide new insights into such characteristics with 302

consideration of not only the change of a single marker but also a combination of 303

multiple markers. 304

As a further application of DEEF, we performed a dimension reduction and a 305
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reconstruction of cell population profiles using highly contributing coordinates (Fig 6, 306

S1 Movie). This method is considered to be effective for complementing cytometry 307

data acquired along the time course. When cytometry data have an ordered structure 308

such as a time series, complementary estimation of the state between measurements 309

can be performed. In addition, DEEF can easily create an artificial dataset with a 310

large sample size that conforms to the properties of the real data. This is useful in 311

computational biology research. 312

In this study, cell population profiles were embedded into a low-dimensional space 313

by applying the DEEF method to flow cytometry data. By treating the values of θ 314

coordinates as a trait and performing an association analysis with genotype and 315

transcriptome data, DEEF can identify genes and pathways related to the entire cell 316

population profile and their dynamics. Multiomics analysis, which combines various 317

types of large-scale omics data such as genomes, transcriptomes, and metabolomes, is 318

widely used in various fields to study complex life systems [24–26]. Our research will 319

make it easier to add single-cell data to multiomics analysis. In many biological fields, 320

such as immunology and stem cell biology, the behavior of a whole cell population 321

profile is very important for elucidating life phenomena. This behavior can be very 322

complicated. A combination of the proposed method and omics analysis is expected to 323

advance the understanding of these complex biological phenomena. 324

In recent years, high-dimensional single cell expression data such as scRNA-seq or 325

CyTOF has become popular. Computational methods for such high-dimensional single 326

cell expression data are also being actively developed [27]. On the other hand, DEEF 327

is not suitable for handling genome-wide gene expression because the number of grids 328

grows exponentially with the dimensionality and kNN estimation and the linear 329

algebraic algorithm can’t work well. However, by the novel theory and algorithm, 330

DEEF provides high-resolution analysis for sample heterogeneity where the calculated 331

coordinates and the original marker expression pattern are completely associated by 332

F(x) function. In many case, cellular subsets, such as lymphocyte subset, have been 333

defined by the expression patterns of several markers. From this perspective, DEEF 334

are expected to provide a novel insight on the analysis of cell population profiles. 335

Then, it is necessary to select only a few important markers for high-dimensional 336

CyTOF and scRNA-seq data. Although choosing irrelevant markers would 337

theoretically not have much effect on the results because DEEF treats each grid as 338

independent, it would waste computational resources. One potential solution might be 339

the combination of DEEF with dimension reduction method, such as t-SNE and 340

Uniform Manifold Approximation and Projection (UMAP) [28], although it seems 341

necessary to study the effect of the non-linear embedding on the DEEF ’s 342

decomposition logic. Further investigations would be beneficial to overcome this 343

drawback. 344

Several other improvements can be considered for the DEEF method. In its present 345

form, DEEF handles grids independently; it does not consider the positional 346

relationships among neighboring grid cells. Taking these relationships into account 347

would make the functions C and F smoother, which may remove random errors and 348

improve machine learning accuracy and the interpretability of results. Another 349

possible improvement is the use of the kernel method to estimate P from raw data. In 350

the present procedure, DEEF calculates the inner products between distributions 351

discretely using kNN density estimation. This step could be improved by embedding 352

the dataset into a reproducing kernel Hilbert space with infinite dimensions directly 353

using the kernel method [29]. The introduction of the kernel method into DEEF might 354

improve performance. 355
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Conclusion 356

In this study, we developed a method called DEEF to analyze differences between cell 357

population profiles using single-cell expression data. DEEF performs a log-linear 358

decomposition of the probability matrix P to embed the distributions into a 359

low-dimensional space. The DEEF method can extract the potential parameters of the 360

probability distribution set and describe the meaning of the estimated parameters. 361

Because single-cell expression data can be regarded as samples from an unknown 362

population distribution, we can investigate the difference among cell population profile 363

sets. DEEF can be used to examine and visualize the difference among single-cell 364

expression datasets. DEEF can reconstruct the distributions from the top coordinates, 365

which enables the creation of artificial datasets based on an actual single-cell 366

expression dataset. Using the coordinate system assigned by DEEF, it is possible to 367

analyze the relationship between the attributes of the distribution samples and the 368

features or shape of the distribution using conventional data mining methods. 369

Method 370

1. DEEF method 371

First, we describe the theoretical basis of DEEF. An exponential family is a set of 372

probability distributions whose probability density/mass functions are expressed in 373

the form: 374

logP (x, θ) = C(x) +
∑
k=1

Fk(x)θk − ψ(θ) (4)

where C(x), Fk(x), and ψ(θ) are known functions (ψ(θ) should be convex) and θ is the 375

parameters that specify distribution instances. Many parametric probability 376

distributions, such as the normal distribution and the binomial distribution, are 377

included in the exponential family. Some probability distributions are not included in 378

the exponential family, such as the mixture normal distribution. We define an EEF as: 379

logP (x, θ) = C(x) +
∑
k=1

Fk(x)θk − ψ′(θ) (5)

ψ′(θ) =
∑
k=1

hkθ
2
k where hk = −1 or 1 (6)

where an EEF is almost identical to Eq 4, but with the potential function ψ(θ) 380

modified as shown in Eq 5. We loosened the restriction that ψ(θ) should be convex so 381

that a set of arbitrary distributions can fit the formula. We also modified ψ(θ) as 382

shown in Eq 6. ψ′(θ) does not become a convex function unless hk is all 1. Therefore, 383

an EEF can be defined as a probability distribution family that conditionally excludes 384

rules on the convexity of the potential function from the definition of an exponential 385

family. 386

Regardless of whether the potential function is convex or not, the functional inner 387

product between exponentially expressed functions P (x) and Q(x) can be expressed as 388

follows using only θ coordinates and the potential function (proof is shown in S1 Text, 389

Appendix Theorem 1). 390

< P (x,θP ), Q(x,θQ) >=
eψ(θ

P+θQ)

eψ(θ
P )eψ(θ

Q)
(7)
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If P (x) and Q(x) are both EEFs, the following simple relationship between P (x) 391

and Q(x) is satisfied for their functional inner product and θ coordinates (proof is 392

shown in S1 Text, Appendix Theorem 2). 393

1

2
log< P (x,θP ), Q(x,θQ) > =

∑
k=1

hkθ
P
k θ

Q
k (8)

Consider an n× n matrix M, whose (i, j)-th element mi,j is identified as 1
2 log qi,j

where qi,j is the functional inner product between i-th and j-th distributions. Let the
i-th eigenvalue of M be λi. Then, M can be represented by eigenvalue decomposition
as follows:

M = VTΛV (9)

where the i-th column of V represents the i-th eigenvectors of M and Λ is a diagonal 394

matrix whose i-th diagonal elements are λi. Note that the eigenvalues of M contain 395

negative values. Then, M = VTΛ′SV = (V
√
Λ′)TS(V

√
Λ′), where S, Λ′ and

√
Λ′

396

are n× n diagonal matrices whose i-th diagonal elements are sign(λi), |λi|, and
√

|λi|, 397

respectively. Therefore, when we take the θ coordinate matrix Θ and hi as follows, Eq 398

4 is completely satisfied. 399

Θ = V
√
Λ′ (10)

hi = sign(λi) (11)

where Θ is the θ coordinate matrix whose (i,j)-th element represents the j-th 400

coordinate value of the i-th distribution in the EEF expression. Because M = ΘTSΘ, 401

Eq 4 is completely satisfied. 402

The next step is the calculation of C(x) and Fi(x). To treat this calculation
discretely using a computer, the above expression must be expressed in matrix form as:

Plog = C+ΘF−Ψ (12)

where Plog is an n×m matrix that represents a log-discretized probability mass
function of m grids of n samples, C is an n×m matrix that corresponds to C(x) and
all of whose rows have the vector c, Θ is the n× n matrix obtained previously, F is an
n × m matrix whose row vector corresponds to discretized Fi(x), and Ψ is an n×m
matrix whose column vector is the previously obtained

∑
k=1 hkθ

2
k1. Then, this

equation is rewritten as:

P′ = Θ′F′ (13)

where P′ = Plog +Ψ, F′ is [FT , c]T , and Θ′ is [Θ,1]. Therefore, F′ can be obtained
using the Moore-Penrose pseudo-inverse matrix Ginv(Θ′) as follows:

F′ = Ginv(Θ′)P′ (14)

Because F′ is defined as [FT , c]T , all items necessary for the EEF expression of the 403

distribution set can be obtained. 404

Based on the above theory, it is possible to construct a simple 405

matrix-operation-based algorithm for decomposing probability matrix P to obtain the 406

EEF representation of any distribution set. The input is probability matrix P, whose 407

rows represent the probability mass function. The first step is calculating matrix M 408

from P. The second step is the eigenvalue decomposition of M. hi are obtained to 409

determine ψ′(θ) and an n sample × n coordinate matrix Θ is obtained to embed all 410
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samples. The third step is calculating c and F to determine all components of the 411

EEF expression. The simulation data analysis method is described in S1 Text. 412

This method can be applied to distribution sets to embed each distribution in the 413

defined EEF space by considering Θ as the feature statistics of the distributions. 414

Because the θ coordinate is calculated from eigenvalue decomposition, a few 415

coordinates with the top eigenvalues have a lot of the information of the probability 416

distribution set. In addition, the F matrix provides principal compositional 417

distributions in the original space. The R package ”deef” is available on GitHub 418

(https://github.com/DaigoOkada/deef). 419

2. Distribution reproduction and performance evaluation 420

In DEEF, the distribution can be reproduced using any number of coordinates when 421

C, Fi, θi, and hi are obtained. We reproduced the distribution by reconstructing the 422

probability mass function calculated by normalizing exp(C(x) +
∑K
i=1 Fi(x)θi − ψ(θ), 423

where the coordinates with the top K absolute eigenvalues were selected. In this 424

study, performance was evaluated by Performance Index (PI) defined by the sum of 425

the squared error between the true probability mass function and the reconstructed 426

probability mass function. This value was calculated for each distribution included in 427

the distribution set. A smaller squared error indicates better reproduction. In 428

particular, if this value is zero, the original distribution and the reconstructed 429

distribution are exactly the same. 430

3. Conventional MDS-based method 431

We embedded the distribution set using an MDS-based method using the following 432

procedure. First, we calculated the distance matrix among samples. The distance 433

between two distributions pi and pj is defined as 1
2 (KL(pi||pj) +KL(pj ||pi)), and the 434

coordinate values of each sample are calculated by applying MDS to the generated 435

distance matrix. MDS was applied to this distance matrix to calculate the MDS 436

coordinates of each sample. The coordinates are denoted MDS1, MDS2 and MDS3 in 437

descending order of their eigenvalues. 438

4. Application of DEEF method to normal distribution set 439

We applied DEEF to a normal distribution set that consisted of 900 instances of a 440

normal distribution, with the mean ranging from −1 to 1 and sd ranging from 2 to 4 441

at a fixed interval of 0.069 for each. The θ coordinate values and MDS were calculated 442

using the theoretical value of the functional inner product or KL divergence defined by 443

the mean and sd. 444

As the notation to distinguish the original parameter and θ coordinates, we named 445

the original parameters using the alphabetic name used in the original parametric 446

model. For example, in the case of normal distribution set, the original parameter is 447

named as“mean”and“ sd”. On the other hand, θ coordinates are always named as 448

θi using the Greek letter θ and the suffix number i. 449

5. Construction of probability matrix P from single-cell 450

expression dataset 451

Unlike for the simulation data, the population distribution was unknown and thus a 452

sample set was obtained. We estimated the probability matrix P of the single-cell 453

expression dataset before we applied DEEF, as described below. Each single-cell 454

expression dataset was a sample set from an unknown population distribution in 455
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d-dimensional space, where d is the number of markers of the samples. First, we 456

decided the range of each marker. For each sample, we calculated the α percentile and 457

1 - α percentile of each marker expression. We used the range of each marker between 458

the minimum α percentile value and maximum 1 - α percentile value among all 459

samples so that all samples contained the expression range between the α and 1 - α 460

percentiles for cells. Next, we separated this range into equally spaced m points, where 461

m is a defined parameter. The number of grids is md. For the determined grids, we 462

estimated the probability density using the kNN method. The row vector P, 463

representing the kNN-based densities of md grids, was standardized so that the sum of 464

the vector was 1. 465

6. Application of DEEF method to EGF stimulation data 466

We used mass cytometry data from research on the effect of EGF stimulation on 467

human breast epithelial cell line [23]. The data were obtained from the Flow 468

Repository (ID: FR-FCM-ZYBC). In the experiments, measurements were made at 10 469

time points (0, 0.5, 1, 3, 6, 10, 15, 30, 60, and 120 minutes) in two replicates after 470

EGF stimulation and control conditions, respectively. We picked four marker proteins, 471

namely pAKT, pERK, pS6, and pPLCγ2, which were shown to respond to EGF 472

stimulation in the original study. As preprocessing, the marker expression levels were 473

converted using asinh (intensity/5), as done in the original study. The number of cells 474

in this dataset was between 8,089 and 22,221. We constructed probability matrix P 475

from the cytometry data. Each cell could be taken as a sample from the population 476

distribution. The hyperparameters for constructing P were m = 20, α = 0.05, and k = 477

800. Next, the DEEF method was applied to estimate P. The coordinates are denoted 478

θ1, θ2 · · · θlast in descending order of their eigenvalues. 479

7. Visualization of F function with density plot and SPADE 480

We expressed Fi as a compositional distribution by standardizing exp(Fi) so that its 481

total value was 1. Then, from this distribution, we sampled 10,000 data points and 482

drew the density plot using the matplotlib Python library. 483

To visualize the multimarker information simultaneously, we applied the SPADE 484

algorithm to the EGF stimulation data [6]. The number of clusters was 10 and other 485

hyperparameters were the same as those in the original article. In Creating minimum 486

spanning tree step, we used the mst function of R package ”ape”. We used the 487

complete linkage method in the clustering step. The representative marker expression 488

was the median values of the cells belonging to each cluster on the consensus tree. 489

8. Dimension reduction and time-course reconstruction of EGF 490

stimulation data 491

DEEF can reconstruct a distribution using only the top coordinates. To reduce the 492

dimensionality of a cell population profile, we expressed the cell population profile 493

using only the synthetic sum of the main patterns; other differences were considered to 494

be noise. The reconstructed distributions (K=3) were obtained using the procedure 495

described in Method section 2. For each of the four markers (pAKT, pERK, pS6, and 496

pPLCγ2), we visualized the median expression value change for the original marker 497

expression and the reconstructed marker expression. For the original marker 498

expression, for each sample, we calculated the median value of each marker from the 499

expression value of cells. For the reconstructed marker expression, we integrated the 500

reconstructed distribution and eliminated all markers (three) except the one that we 501
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focused on. Then, the 50th percentile value of the one marker expression was 502

estimated as the median by linearly interpolating the values between the grids. 503

Next, we conducted the time-course reconstruction of Replicate1’s EGF 504

stimulation dataset whose original time course contained 10 time points. The value of 505

the θ coordinate at each time point was estimated by linearly interpolating and 506

dividing the value of the θ coordinate between each time point into 10 equal parts, 507

and reconstructing the θ coordinate at a total of 91 time points. Based on the 508

estimated value, the distribution was reproduced at K = 3. 509
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Supporting information

S1 Text Theory of DEEF and simulation data analysis.

S1 Fig Performance of DEEF for EGF stimulation data. (a) Eigenvalue
plots for an EGF stimulation dataset. Left panel shows the absolute eigenvalues
standardized so that its total value was 1, where black bars are positive eigenvalues
and white bars are negative eigenvalues. Right panel shows the cumulative sum of
absolute eigenvalues. (b) Performance boxplot of distributions reconstructed using
only the top K coordinates with high absolute eigenvalues for the EGF stimulation
dataset. The performance was evaluated by the Performance Index (PI) defined by the
sum of the squared error between the true probability mass function and the
reconstructed probability mass function. The overall performance increases with
increasing value of K.

S2 Fig 4-by-4 density plot of F1 and F2 for EGF stimulation data.

S3 Fig Comparison of DEEF and MDS-based method with EGF
stimulation data.(a) θ coordinate plot for coordinates θ1 and θ2 and (b) MDS
coordinate plot for two coordinates MDS1 and MDS2 with the top eigenvalues.

S1 Table Representative marker expression values of ten clusters on the
SPADE tree.

S1 Movie Animation of cell population dynamics for 91 time points after
EGF stimulation for Replicate1. The reconstruction was done with θ1, θ2, and
θlast (K=3).
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Fig1. The outline of DEEF for embedding data from multiple distributions in the θ 

coordinate space with its compositional distribution F. 

  



 

 

Fig 2. Comparison of (a) original parameter space, (b) θ coordinate space, and (c) 

MDS coordinate space in normal distribution set with the two parameters. The 

theoretical KL-divergence-based distance from one member distribution (black 

point) is visualized by the color scale. The Euclidean distance in the original 

parameter space does not match the KL-divergence-based distance. The Euclidean 

distance in the MDS space approximates the KL-divergence-based distance, but the 

parameter structure is broken, unlike the case when embedding in the θ 

coordinate space. 

  



 

 

Fig 3. Scatter plot of pAKT and pS6 at 10 time points after EGF stimulation. For 

each replicate and condition, 2,000 randomly selected cells are plotted. The black 

dotted line represents the grids. The cell population profile changes dynamically 

after EGF stimulation but it is difficult to capture and evaluate this quantitatively 

using the raw data. 

  



 

 
 

Fig 4. Application of DEEF to EGF stimulation data. The dynamics of the whole cell 

population profile are visualized and the dominant patterns that explain differences 

are extracted. (a) θ coordinate plot for coordinates θ1, θ2 and θ3 (i.e., those with 

the top positive eigenvalues). (b) F1 and F2 in DEEF for pAKT and pS6. The density 

plot was generated from 10,000 randomly sampled data points from the standardized 

exp(Fi). 

  



 

Fig 5. F1 and F2 of EGF stimulation data on SPADE tree. (a) Created SPADE tree 

with cluster number labels. (b) SPADE trees with four marker expression. The color 

represents each marker expression value. The colors are assigned according to the 

order of the values among the ten SPADE subsets. (c) SPADE trees with F1 and F2 

values. Each cluster was assigned F1 and F2 values of the grid to which the 

representative location of the cluster belongs. The colors are assigned according to 

the order of the values among the ten SPADE subsets. (d) Region of Cluster 2 of 

SPADE tree of EGF stimulation data. The corresponding regions of SPADE Cluster 2 

are shown by a red circles in the density plots of the four markers obtained 6 

minutes after EGF stimulation for Replicate1. 

  



 

 

 

Fig 6. Results of dimension reduction of cell population profiles using the DEEF method. The 

reduction preserves the change in the marker expression along the time course for each 

marker (pAKT, pERK, pPLCγ2, and pS6). (a) Left panels are the median values for each 

marker expression, which match those in the original study. Right panels are the median 

values for the distribution reproduced using the top three θ coordinates, namely θlast with 

the highest negative eigenvalue and θ1 and θ2 with the highest positive eigenvalues (K = 3). 

(b) 25th and 65th images of 91 images as examples of the reproduced distribution (K = 3) 

between the measurements of Replicate1 after EGF stimulation. The corresponding points in 

the θ coordinate space are indicated by red dots. 

  



 

S1 Fig. Performance of DEEF for EGF stimulation data. (a) Eigenvalue plots for an 

EGF stimulation dataset. The panel shows the absolute eigenvalues standardized so 

that its total value was 1, where black bars are positive eigenvalues and white bars 

are negative eigenvalues. (b) The panel shows the cumulative sum of absolute 

eigenvalues. (c) Performance boxplot of distributions reconstructed using only the 

top K coordinates with high absolute eigenvalues for the EGF stimulation dataset. 

The performance was evaluated by the Performance Index (PI) defined by the sum 

of the squared error between the true probability mass function and the 

reconstructed probability mass function. The overall performance increases with 

increasing value of K. 

 

  



 

 

S2 Fig. 4-by-4 density plot of F1 and F2 for EGF stimulation data. 

  



 

S3 Fig. Comparison of DEEF and MDS-based method with EGF stimulation data. (a) θ 

coordinate plot for coordinates θ1 and θ2 and (b) MDS coordinate plot for two coordinates 

MDS1 and MDS2 with the top eigenvalues. 

 



S1 Table Representative marker expression values of ten clusters on the SPADE tree. 

 

The CSV file can be downloaded from the following URL. 

https://doi.org/10.1371/journal.pone.0231250.s005 

 

 

S1 Movie. Animation of cell population dynamics for 91 time points after EGF stimulation for 

Replicate1. The reconstruction was done with θ1, θ2, and θlast (K = 3). 

 

The GIF file can be downloaded from the following URL. 

https://doi.org/10.1371/journal.pone.0231250.s006 
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1 Introduction to information geometry and ex-
ponential families

Research on information geometry has focused on exponential families and the
coordinate space of probability distributions. An exponential family is a prob-
ability distribution that can be expressed in the following form:

logP (x|θ) = C(x) +
∑
i=1

Fi(x)θi − ψ(θ)

where P (x|θ) is the probability density function, C(x) is a function of x only,
θ is the scalar value vector given for each distribution, θi is the i-th element
of θ, Fi(x) is the coefficient function of θi, and ψ(θ) is a potential function
such that P (x|θ) satisfies the definition of a probability density distribution.
Many probability distributions, including the standard normal distribution, can
be expressed in this form and are included in the exponential family. If a
distribution can be expressed as an exponential family, θ coordinates can be
applied to it and it can be embedded in a low-dimensional space, which is a
statistical manifold [1]. This space has two flat coordinate systems on which
KL divergence can be calculated using each coordinate value [2]. In addition,
the relation between the probability density/mass functions of θ coordinates
is defined by Fi(x). The mathematical nature of this space is well known in
information geometry. However, some distributions are not included in the
exponential family, such as the mixture normal distribution, which is commonly
used in biology.
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2 Simulation analysis implementation

2.1 Embedding into θ coordinate space

First, we applied DEEF to a set of instances of the distribution in the exponen-
tial family and to a set of instances that are a parametric mixture of distributions
in the exponential family to validate our theory. We generated four sets of sim-
ulation instances of a distribution using the monovariate normal distribution.
The four sets are denoted 2D, Random, 1D, and Mixture. 2D consisted of 900
instances of a normal distribution, with the mean ranging from −1 to 1 and the
sd ranging from 2 to 4 at a fixed interval of 0.069 for each. Random consisted
of 50 instances randomly sampled from 2D. 1D was a normal distribution set
that made a one-dimensional manifold in the same space as that of 2D. Mixture
consisted of 900 instances that were a mixture of two normal distributions; one
normal distribution was N(-1,1) and the other distribution had mean and sd
ranging from 4 to 5 and 2 to 4 at fixed intervals of 0.034 and 0.069, respectively.
The mixture ratio of the two distributions was 0.5 for all instances (Fig A).
The number of grids was 10,000. The range for discretization was determined
so that the section between the 0.5th percentile and the 99.5th percentile of all
distributions was included.DEEF successfully extracted the parameter structure
and reconstructed the distributions. The θ coordinate were calculated using the
theoretical value of the functional inner product defined by the mean and sd.

The results of the application of our method to these four sets are shown in
Fig A. The eigenvalues corresponding to each θ coordinate are shown in Fig B.
For all distribution sets, the maximum eigenvalue is negative. The θ coordinate
is denoted θi in decreasing order of eigenvalues.

θlast is the coordinate corresponding to the lowest eigenvalue whose absolute
value is largest. The eigenvalues calculated using this method always contain
negative values (details given in the Appendix). Only the top two or three pos-
itive eigenvalues have meaningful contributions; the other positive eigenvalues
have essentially no contribution. The number of parameters used to describe
the heterogeneity of instances, or DoFs, for 2D is 2 (mean and sd). The DoFs
for Random, 1D, and Mixture are 2, 1, and 2, respectively. These numbers cor-
respond to the numbers of positive eigenvalues with meaningful absolute values.

We embedded all instance distributions into a three-dimensional space with
the top three absolute eigenvalues (third column in Fig A). In the θ coordi-
nate space, the original parameter structure, indicated by the color pattern,
was maintained for all four sets. It can also be seen that the distributions
were embedded on the manifold with the dimension of the original parameter
structure.

Next, we investigated the C(x) and F (x) of the top coordinates of each dis-
tribution set. Fig C shows the calculated C(x), Flast(x), F1(x), and F2(x) for
2D, Random, 1D, and Mixture. For distribution set 2D, C(x) has information
about the average feature of the whole distribution set, as shown by the black
curve (Fig C(a)). This function is convex, with a peak at the center of the x
coordinate, which is the average pattern in distribution set 2D. θ1 and θ2 are
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Fig A. Original parameter structure (first column), distribution (sec-
ond column), θ coordinate mapping (third column), and boxplots of
performance (fourth column) for four types of distribution set (2D,
Random, 1D, Mixture). Each dot in the first and third column panels and
each line in the second column panels together represent a distribution. Embed-
ding in the θ coordinate space reproduces the original parameter structure with
distortion. The fourth column panels show boxplots of the Performance Index
(PI) defined by the sum of the squared error of distributions reconstructed using
only the top K coordinates with high absolute eigenvalues for each distribution
set. As K increases, the reconstructed distribution set approaches the original
distribution set. When all θ coordinates are used, all distributions belonging to
the reconstructed distribution set are identical to the original distributions.
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Fig B Eigenvalue plots for each distribution set. The left panel shows the
absolute eigenvalues standardized so that its total value was 1, where the black
bars are positive eigenvalues and the white bars are negative eigenvalues. For all
distribution sets, the maximum eigenvalue was negative. The right panel shows
the cumulative sum of eigenvalues. In distribution set 2D, the contribution
increases by θ1 and θ2 are almost equal. This corresponds to a degree of freedom
(DoF) of 2 for the parameter structure. This tendency also appears for Random
and Mixture, although θ1 has greater explanatory power. For distribution set
1D, the contribution of θ2 is greatly reduced compared to that of θ1.

the coordinates corresponding to the positive eigenvalues. F1(x) indicates that
a larger value of θ1 leads to a larger probability mass at both ends (Fig C(a),
blue line). This is consistent with the fact that the distributions Normal(-1, 4)
and Normal(1, 4) were embedded into the region with the largest θ1 coordinate
value in Fig A. F2(x) indicates that a larger value of θ2 leads to a larger proba-
bility mass at the right end and a smaller probability mass at the left end (Fig
C(a), purple line). The distribution with the maximum θ2 value is Normal(1,
2), which is the member distribution with the highest mean and the lowest sd
value in distribution set 2D in Fig A. These results suggest that Fi(x), which
corresponds to the positive eigenvalues, has information about what part of the
difference each θ coordinate explains in the original distribution. Flast(x) sug-
gests that θlast, the coordinate with the largest negative eigenvalue, is almost
parallel to the x-axis and has little information about the distribution feature
(Fig C(a), red line). This axis distorts the inner products and distances be-
tween the points on the manifold. For distribution set Random, a similar result
was obtained but with slight distortion (Fig C(b)). Interestingly, the F1(x) and
F2(x) for distribution set 1D are similar to F2(x) and inverted F1(x), respec-
tively (Fig C(c)). For distribution set Mixture, extremely large values tended to
be estimated in the edge region (Fig C (d)). Mixture(sub) is the magnified view
of the central part of Mixture and shows that C(x) captures the bimodality of
the mixture normal distribution. Each Fi(x) has a unique complex pattern in
the distribution set, as is the case for the normal distribution set.

Finally, we reconstructed the distribution set using the top θ coordinates and
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Fig C. Calculated C(x), Flast(x), F1(x), and F2(x) for distribution sets
2D, Random, 1D, and Mixture. For Mixture, extreme values tend to be
estimated in the edge region. The range of discretization is scaled from 0 to
1. Part of the plot between 0.1 and 0.9 of the entire region (indicated by gray
rectangle) was extracted from the left panel (Mixture(sub)). C(x) represents
the average pattern of the distribution set. Fi(x) is a function that associates
the corresponding θi with the original distribution.
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evaluated performance. The reconstruction performance is defined as the differ-
ence between the original distribution and the reconstructed distribution (details
are given in the main manuscript). With an increasing number of coordinates,
the reconstructed distribution tends to approach the original distribution as a
whole (fourth column in Fig A). Using all coordinates, the original distribution
can be exactly reproduced. An example of the reconstruction of one distribution
is shown in Fig D(a). Fig E shows the relationship between the position on the
original parameter coordinates and performance. The performance improved as
the number of coordinates increased to three. Instances located at the periph-
ery of the distribution set tended to have worse reconstruction performance and
required more θ coordinates to achieve performance similar to that of instances
in the central area. The features shared by many instances were explained by a
limited number of coordinates with relatively large eigenvalues, whereas those
of instances at the periphery required more coordinates with relatively small
eigenvalues. For example, Normal(-1, 4) is not sufficiently reproduced at the
edge for K=3 or 4; K=5 is required (Fig D(b)). These performance features
apply to all four distribution sets. These evaluations indicate that our method
can identify the EEF expression of a set of distributions in the exponential
family and can be applied to a set of mixture distributions that are not in the
exponential family.

As another case of applying DEEF to simulation data, Fig F shows the case
of an exponential distribution set. An exponential distribution was parame-
terized by one parameter and a distribution with non-symmetric shape that
was unlike a normal distribution. We generated an exponential distribution set
as another example of the application of DEEF. This set consisted of 900 in-
stances whose lambda ranged from 1 to 5 at an interval of 0.0044. The number
of grids was 10,000. The range for discretization was determined so that the
section between the 0.5th percentile and the 99.5th percentile of all distribu-
tions was included. DEEF successfully extracted the parameter structure and
reconstructed the distributions. Before applying DEEF, the first grid was re-
moved for the calculation. Interestingly, the maximum eigenvalue was a positive
eigenvalue, unlike the case for the normal distribution set. However, at least θ1
and θlast (K=2) are needed to obtain good performance in reconstruction.

2.2 Relationship between complexity and number of eigen-
values

The eigenvalue plots of distribution sets 2D, Random, 1D, and Mixture imply
that the number of significant positive eigenvalues is the DoF of the set of dis-
tributions. As mentioned, the DoFs of the original parameter structures of 2D,
Random, 1D, and Mixture were 2, 2, 1, and 2, respectively, which correspond to
the numbers of significant positive eigenvalues. We thus quantitatively investi-
gated whether the potential DoF of the distribution can be estimated using the
DEEF method for other mixture normal distribution sets. The number of mix-
ture components was changed from 2 to 10. All component normal distributions
had the same sd (=1). The mean values of the component normal distributions
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Fig D. Change in reconstructed distribution with K value (1, 2, 3,
4, 5, and all 900). (a) Normal(0.517, 2.97). The average and dispersion are
roughly reproduced at K=3. The distribution reproduced with K=5 is almost
equal to the original distribution (K=900). (b) Normal(-1, 4). The difference
between this distribution and other distributions can be explained by θ3 or θ4,
but not θ1 or θ2.
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Fig E. Heat map of the performance of distributions reconstructed us-
ing only the top K coordinates for distribution sets 2D, 1D, Random,
and Mixture. The performance, indicated by color, was evaluated in terms
of the squared error between the true probability mass function and the proba-
bility mass function reconstructed using the top K θ coordinates. These panels
show the relation between the location on the original parameter structure and
the reconstruction performance.
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Fig F. Application of DEEF to an exponential distribution set. The
meanings of the panels are the same as those for the normal distribution set.
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Fig G. Plot of potential degrees of freedom (DoFs) versus the number
of non-negligible positive eigenvalues. The number of mixture components
was varied from 2 to 10. The potential DoF can be defined as the number of
mixture components - 1. The number of non-negligible positive eigenvalues is
equal to the potential DoF of the distribution set; however, the relationship
is not satisfied for large DoFs due to the limited resolution of the proposed
method.

were evenly spaced between −10 and 10. The number of non-negligible posi-
tive eigenvalues was defined as the minimum number of eigenvalues whose sum
exceeds 90% of the sum of all positive eigenvalues. A distribution set was com-
posed of 100 distributions, among which only the mixture ratio was different.
For this case, the potential DoF for the distribution set was defined as the
number of components - 1 because only the mixture ratio varied.

Fig G shows a plot of the potential DoF and the number of non-negligible
positive eigenvalues. This plot suggests that the potential DoF corresponds to
the number of non-negligible positive eigenvalues when the number of compo-
nents is small (red line). When the potential DoF was larger, the number of
required eigenvalues decreased, which seemed to be due to the insufficient res-
olution of the decomposition by the proposed method because of the relatively
small sample size compared to the complexity of the datasets. This result sug-
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gests that our method can theoretically identify the potential DoF of datasets
based on the quantity of meaningful information in the datasets.

2.3 Discussion in terms of information geometry

In information geometry, the geometric properties of the probability distribu-
tion space have been extensively researched. In particular, it is known that
exponential families can be embedded into special manifolds equipped with two
flat coordinate systems. The geometrical properties of these coordinate systems
have been well investigated. The θ coordinate system of the DEEF method is
quite similar to such systems. However, the potential function of an EEF is not
convex and has imaginary axis (particularly when the inner product matrix is
calculated from the probability mass function, a negative eigenvalue must be ap-
pear. (proof is shown in Appendix Theorem 3)). That makes the interpretation
of the EEF space more complicated than that of a regular information geome-
try space. One specific feature of the EEF space is that it has subspaces where
no distributions are assigned. One example of a space with an indeterminate
inner product is the Minkowski space, which has a deep relationship with spe-
cial relativity [1]. The properties of manifolds defined by these features should
be further studied in the future. The investigation of these features in terms
of theoretical geometry would further advance the understanding of statistical
manifolds and probability distribution theory.
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Appendix

Theorem 1 If P (x,θP ) and Q(x,θQ) are the members of an exponential family
represented by Eq 1, then:

< P (x,θP ), Q(x,θQ) >=
eψ(θ

P+θQ)

eψ(θ
P )eψ(θ

Q)

Proof: The definition of an exponential family can be written as:

logP (x,θP ) =
∑
i=0

Fi(x)θ
P
i − ψ(θP )

logQ(x,θQ) =
∑
i=0

Fi(x)θ
Q
i − ψ(θQ)

F0(x) = C(x), θ0 = Const

Then, the inner product of the exponential distribution family is defined by
the following procedure:

< P (x,θP ), P (x,θQ) > =

∫
P (x,θP )P (x,θQ)dx

=

∫
e
∑

i=0 Fi(x)θ
P
i −ψ(θP )e

∑
i=0 Fi(x)θ

Q
i −ψ(θQ)dx

=

∫
e
∑

i=0 Fi(x)(θ
P
i +θQi )−(ψ(θP )+ψ(θQ))dx

=
1

eψ(θ
P )eψ(θ

Q)

∫
e
∑

i=0 Fi(x)(θ
P
i +θQi )dx

Let θP+Q be θP + θQ. The above equation can then be rewritten as:

< P (x,θP ), P (x,θQ) >=
1

eψ(θ
P )eψ(θ

Q)

∫
e
∑

i=0 Fi(x)θ
P+Q

dx

The following equation holds because:
∫
P (x,θP+Q)dx =

∫
e
∑

i=0 Fi(x)θ
P+Q
i −ψ(θP+Q)dx =

1 ∫
e
∑

i=0 Fi(x)θ
P+Q
i dx = eψ(θ

P+Q)

Then, the inner product between members of an exponential family is ex-
pressed as:
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< P (x,θP ), P (x,θQ) > =
1

eψ(θ
P )eψ(θ

Q)

∫
e
∑

i=0 Fi(x)θ
P+Q

dx

=
1

eψ(θ
P )eψ(θ

Q)

∫
e
∑

i=0 Fi(x)θ
P+Q
i −ψ(θP+Q)eψ(θ

P+Q)dx

=
eψ(θ

P+Q)

eψ(θ
P )eψ(θ

Q)

∫
e
∑

i=0 Fi(x)θ
P+Q
i −ψ(θP+Q)dx

=
eψ(θ

P+Q)

eψ(θ
P )eψ(θ

Q)

=
eψ(θ

P+θQ)

eψ(θ
P )eψ(θ

Q)

Theorem 2 If P (x,θP ) and Q(x,θQ) are EEFs as defined in Eq 2, then:

1

2
log< P (x,θP ), Q(x,θQ) > =

∑
k=1

hkθ
P
k θ

Q
k

Proof: If P and Q are not members of the exponential family but are EEFs,
the potential function ψ(θ) can be expressed as ψ′(θ) =

∑
k=1 hkθ

2
k. Theorem

1 is also satisfied if P and Q are EEFs. Then:

1

2
log< P (x,θP ), Q(x,θQ) > =

1

2
(ψ(θP+Q)− ψ(θP )− ψ(θQ))

=
1

2
(
∑
k=1

hk(θ
P
k + θQk )

2 −
∑
k=1

hk(θ
P
k )

2 −
∑
k=1

hk(θ
Q
k )

2)

=
∑
k=1

hkθ
P
k θ

Q
k

Theorem 3 Matrix M must have at least one negative eigenvalue.

Proof: Probability matrix P can be expressed as:

P = NA

where A has the same size as that of P, ai,j , the (i,j)-th element of A, is
non-negative, and N is a diagonal matrix used for the normalization of row
sums whose i-th diagonal element is Ni =

∑m
k=1 ai,k. Therefore, Q = PPT =

NA(NA)T = NAATN. Then, denote qi,i as the i-th diagonal element of Q.

qi,i =
∑m

k=1 a
2
i,k

(
∑m

k=1 ai,k)
2 because ai,j > 0 and qi,i < 1. trace(M) =

∑n
i=1mi,i =∑n

i=1 log qi,i, which must be negative. Because M is a symmetric matrix, it has
n real eigenvalues. The trace and the sum of the eigenvalues must match. From
the above, M has at least one negative eigenvalue.
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