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ABSTRACT 
 

In earthquake engineering, seismic microzonation is important to mitigate a future earthquake disaster. The 

spatial variation of site response is caused primarily due to varying amplification of the seismic wave by 

the ground surface layers. In practice, the spatial variation of site response is projected on maps. However, 

the resolution of these spatial maps is not always reliable at local scales. Conventional mapping techniques 

assume that the data is free of uncertainty and uses only the mean value at a site. The site responses between 

two sites with some difference in their average value are visually considered to be different. However, the 

statistical significance of this difference is directly ungraspable without any information on the data 

uncertainty.The inability of conventional maps to statistically signify the difference in mapped values, 

raises a question on its use for reliable decision-making process. 

Many researchers believe that including uncertainty on maps could lead to better decisions. However, in 

literature, I hardly came across any research addressing this issue of projecting data uncertainty onto the 

map resolutions. This study has three objectives.  The first objective is to propose a methodology that 

projects data uncertainty onto the map resolutions. The proposed mapping mapping methodology is named 

as “Uncertainty Projected Mapping” (UPM). The second objective is to investigate how the UPM map 

resolutions change as the number of observation data increase, and confirm if UPM really projects data 

uncertainty onto map resolutions. The third objective is to use the framework of UPM and update map 

resolutions of a conventional map using data uncertainty from local sources. 

In the first study, a relation between the site-specific uncertainty and spatial uncertainty in the framework 

of a hierarchical Bayesian model is introduced. The idea is to make the spatial resolution low (or smooth) 

at zones of high data uncertainty. The proposed UPM methodology was validated with both numerical 

experiments and real data from a very dense seismic array. The UPM results were found to project the site-

specific uncertainties in the map resolutions. The detailed visual (mapping) on significantly different 

observations expected between the sites with low data uncertainty and rough visual (mapping) on 

insignificant observations between the sites, was enhanced in the UPM maps. The UPM methodology could 

spatially interpolate and estimate values at the missing sites. The mapping results were compared with a 

conventional mapping technique called Kriging. It was observed that unlike the UPM values which are 

sensitive to the variation of data uncertainty, the Kriging values are not affected by the change in data 

uncertainties. Thus, the map resolutions determined by UPM has a certain degree of statistical significance 

and might be considered reliable.   



In the second study, I investigate how the UPM map resolutions change as the number of observation data 

increase and confirm that UPM really projects data uncertainty onto map resolutions. It is observed that as 

more and more information become available, UPM starts approaching the conventional mapping.  This 

characteristic hints at the strength of UPM when less information is available. I investigate this 

characteristic in detail and utilize it to propose a parameter to measure the change in map resolutions with 

increasing information, which was applied for quantification of data saturation in mapping spatial data. The 

results show that the optimum number of data which is deemed enough to extract useful information 

depends on available dataset. This study establishes the fact that when the number of observations is less, 

UPM is a more reliable representation of the data.  

In the third study, I apply UPM to incorporate local soil boring data uncertainty and update the map 

resolutions of J-SHIS map of site amplification factor in Ibaraki-Takatsuki area of Osaka. The J-SHIS map 

of site amplification factor is based on values of average shear velocity in the upper 30 m depth of soil 

(AVs30) broadly assigned to engineering geomorphic units. There is a need to incorporate local (site-

specific) information in order to increase the reliability of map resolutions at local scale. Using seismic 

ground response analysis, I calculate site amplification factor from the available soil boring data in 

individual meshes. Further, using the Bayesian framework of UPM, I updated the existing map resolutions 

of J-SHIS map.  The updated J-SHIS map reflects the data information and highlights significant differences, 

when such a difference exists, and for situations with low data where information cannot be extracted, a 

low spatial resolution (smooth mapping) is introduced adding more reliability (in statistical terms) in 

comparison to original J-SHIS map. 

The results in all the three studies primarily establish that that map resolutions determined by data 

uncertainty has a statistical significance and hence is a more reliable representation of the data at a site, 

unlike conventional mapping techniques which reduce the data to a single value at a site.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background and motivation 

In earthquake engineering, understanding the spatial variation of site response is important. It is caused 

primarily due to varying amplification of the seismic wave by the ground surface layers. Past 

observations show an extreme variability of the ground motion during an earthquake event. One of the 

first instances when such a variation in damage was recorded was during the 1985 Michoacán 

earthquake in Mexico, where very soft sediments caused long-period and long-duration strong ground 

motions and severe damage at a location 400 km away from the epicenter [1,2,3]. Also, during the 1989 

Loma Prieta earthquake in United States, a strong correlation was identified between the damage and 

the local geology of surface sediments [4,5]. In Japan, a narrow damage band, where more than 30% of 

wooden residences collapsed, appeared in Kobe and the surrounding cities, during the 1995 Kobe 

earthquake [6]. However, an earthquake of similar magnitude in Tottori hardly caused any damage [7,8].  

Serious damage was observed to be concentrated in Adapazari town in Turkey during the 1999 Kocaeri 

earthquake in Turkey [9]. The damage observed in Christchurch in New Zealand during the 2010-2011 

Canterbury earthquake series was also related to the variation of local site conditions [10,11]. During 

the 2011 off the Pacific coast of Tohoku Earthquake in Japan, Furukawa district in Osaki city incurred 

serious damage concentrated in a small area of 0.5 ×1.0 km2 [12]. The Kathmandu valley in Nepal 

experienced significant seismic motions during the 2015 Gorkha earthquake [13]. The ground motions 

were exceptionally high due to the amplification caused by soil conditions [14, 15], which lead to 

widespread significant structural and geotechnical damage [13, 16]. The spatial difference in site 

amplification of ground surface caused heavy damage limited to Mashiki town of Kumamoto, during 

the 2016 Kumamoto earthquake [17,18]. 

Seismic hazard maps, based on models and observations, are an appealing tool for evaluation of 

earthquake hazard and risk. One of the earliest reasons to push for the qualitative evaluation of hazard 

was the 1933 Long Beach earthquake in California, USA which served as a wake-up call to engineers 

[19, 20]. A tradition was established in which experience gained in significant earthquakes is 

incorporated into subsequent updates to the building codes. Through the 1940s and 1950s, seismic 

design provisions in building codes tended to be based on qualitative evaluations of hazard. Later, 
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quantitative seismic hazard maps based on probabilistic analysis were introduced. In Canada, for 

example, a major watershed for seismic design philosophy came in 1970 with the inclusion of the first 

national probabilistic seismic hazard map based on the work of Milne and Davenport [21]. Since the 

1970s, seismic hazard maps have been developed for building code applications based on a probabilistic 

approach. Around the same time that Milne and Davenport [21] were developing their seismic hazard 

maps of Canada, Cornell [22] was developing a somewhat different methodology, which was coded 

into a FORTRAN algorithm by McGuire [23]. Today, almost all earthquake prone countries and regions 

of the world have a probabilistic seismic hazard map, although the level of knowledge and details may 

vary considerably based on the available data [24,25, 26, 27, 28, 29].  As national seismic hazard maps 

started to become commonplace, a new attempt started to bring together the knowledge spread over 

different regions into a unified platform. One of the earliest global seismic hazard maps was generated 

by the Global Seismic Hazard Assessment Program (GSHAP) [30]. Another initiative, the global 

earthquake model (GEM) generates the Global Earthquake Risk Map [31,32,33].  

All these hazard maps represent some sort of a spatial distribution of a variable. For example, the Global 

Earthquake Hazard Map in GEM depicts the geographic distribution of the Peak Ground Acceleration 

(PGA) with a 10% probability of being exceeded in 50 years, computed for reference rock conditions 

(shear wave velocity of 760-800 m/s). Similarly, ShakeMap, which is a product of the USGS 

Earthquake Hazards Program in conjunction with the regional seismic networks, provides near-real-

time maps of ground motion and shaking intensity following significant earthquakes [34]. ShakeMaps 

are used by federal, state, and local organizations, both public and private, for post-earthquake response 

and recovery, public and scientific information, as well as for preparedness exercises and disaster 

planning. In Japan, the National Seismic Hazard Maps are prepared by the Headquarters for Earthquake 

Research Promotion (HERP). These maps are basically a spatial distribution of estimated strong 

motions from future earthquakes. The seismic hazard information has been made public on the Japan 

Seismic Hazard Information Station (J-SHIS) portal [26].   

In seismic hazard assessment, the effects of local soil deposits on the seismic hazard are often treated 

with less rigor than this critical aspect deserves [35]. The study of the site response effects can be 

performed with varying levels of sophistication [36]. The most common approach uses soil 

classification [37] which is based either on the shear wave velocity in the uppermost 30 m of soil (Vs30) 

[38] or proxy information, for example, local topography or geo-lithology [39,40]. Seismic 

microzonation is important as it improves the seismic hazard assessment to be usable at local scales and 

with a higher resolution.  

In order to establish the seismic microzonation at local scale, it is also important to pay attention to the 

map resolution to understand if the color difference is plausible or not. There is an issue of reliability 

with the spatial resolutions at local scales. The conventional mapping techniques only consider the fact 

that observations vary in space.  However, the observations vary not only in space but also with each 

event. In one example, Fig. 1.1 shows how the spatial patterns of peak ground acceleration (PGA) of 
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ground motion recorded during two different earthquake events, are not the same [41]. This variation 

among events is also referred to as the uncertainty of the observations at a site. Although there is a 

difference in the definition of uncertainty and data variability [42], for all practical purposes, in this 

study we include both under the heading of data uncertainty. In conventional mapping, the observations 

recorded over events at a site are generally reduced to a single averaged value. The site responses 

between two sites with some difference in their average value are visually considered to be different. 

However, the statistical significance of this difference is directly ungraspable without any information 

on the data uncertainty. 

This issue in reliability at local scale is introduced using the J-SHIS map of site amplification factor, 

which is based primarily on the J-SHIS map of engineering geomorphic classification. The engineering 

geomorphic classification map offers the geomorphic classification with a spatial resolution of 250 m 

in whole of Japan [43]. Using the engineering geomorphic classification map, J-SHIS map of average 

shear velocity in the upper 30 m depth (AVs30) is calculated [44]. Finally, the J-SHIS map of site 

amplification factor is prepared based on the AVs30 values [45]. The amplification factor means 

amplified ratio calculated from the engineering bedrock (Vs=400 m/s) up to the ground surface.  

Fig. 1.2 shows the J-SHIS map of site amplification factor at a local scale [46]. Let us focus at the 

situation at A, where blue and red colored mesh, representing extreme site amplification factors, are 

situated right next to each other.  How reliable is this spatial resolution? Is it possible to explain if this 

spatial resolution belongs to case 1 or case 2?  If it is case 1, where the difference in neighboring values 

is statistically significant (non-overlapping data distributions), the existing spatial resolution at A is 

reliable. However, if it is case 2, where the difference in neighboring values is not statistically 

significant (overlapping data distributions), the color separation at A is not reliable, and a smooth or 

low spatial resolution might better explain the situation. Unfortunately, the conventional maps cannot 

distinguish between the cases 1 and 2, as the information of data uncertainty is not included in the 

mapping process. Situations like this are not uncommon in spatial maps. The inability of conventional 

maps to statistically signify the difference in mapped values, raises a question on its use for reliable 

decision-making process. 
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1.2 Scope of research 

Many researchers believe that displaying uncertainty on maps could lead to better decisions [47]. 

Conventional visualization techniques assume that the data is free of uncertainty and uses only the mean 

value at a site [48]. However, in literature, there is hardly any paper addressing this issue of 

incorporating uncertainty in the map resolutions. Although there are some works on the uncertainty in 

seismicity, but they are quite different from the problem I want to address. Kuehn and Scherbaum [49] 

estimated a partially non-ergodic ground-motion prediction equation using a hierarchical model that 

 
 

Figure 1.1 Uncertainty in spatial distribution of PGA during two earthquake events [41] 

 
 

 
 

Figure 1.2 Limitations of conventional map in validating map resolutions [46] 
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accounts for regional differences. Ordaz and Arroyo [50] discussed the issue of correct estimation of 

uncertainties in probabilistic seismic hazard analysis. They examined to estimate the uncertainty at the 

site but did not discuss their projection onto the map. De Risi et al. [51] stressed on the need for a better 

mapping process to extract more information from limited data.  Rodriguez-Marek et al. [52] proposed 

a methodology to capture epistemic uncertainty in site response using the conventional logic tree 

approach for seismic hazard assessment. There is a scope of research in a methodology that determines 

map resolutions based on data uncertainty.  

 

1.3 Objective of this study 

This study has three objectives which are listed as follows:  

1. The first objective of this study is to propose a methodology that reflects data uncertainty onto 

map resolutions. The proposed methodology uses a hierarchical Bayesian framework [53]. The 

basic concept of the proposed methodology is explained in Fig. 1.3. Both panels (Figs 1.3a and 

b) show the hypothetical spatial data set with the same mean patterns but with different data 

uncertainties. In conventional mapping, the map only follows the averaged value at the sites 

and the spatial resolution is independent of the data uncertainty. I propose a mapping that is 

sensitive to the data uncertainty. In Fig. 1.3(a) where the data uncertainty is low, the proposed 

mapping should follow conventional mapping (high spatial resolution) but as the uncertainty 

increases in Fig. 1.3(b), the proposed mapping should no longer follow the conventional 

mapping but become smooth (low spatial resolution). The map reflects the statistical 

significance based on the data uncertainty and so I named the proposed mapping methodology 

as “Uncertainty Projected Mapping” (UPM).  

2. The second objective of this study is to investigate how the UPM map resolutions change as 

the number of observation data increase, and confirm if UPM really projects data uncertainty 

onto map resolutions. As the number of observation data increase, the data uncertainty 

decreases and the reliability in the estimation of the mean increases. And if UPM projects data 

uncertainty onto map resolutions, this change in data uncertainty with increasing observations 

must be reflected in the spatial resolutions.   

3. The third objective of this study is to use the framework of UPM and update map resolutions 

of a conventional map using data uncertainty from local sources. As an example of conventional 

map, I use the J-SHIS map of site amplification factor, and as local source of data uncertainty, 

I use soil boring data.  
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1.4 Outline of thesis 

This thesis consists of six chapters (see Fig. 1.4). Chapter 2 introduces the mathematical background 

of Bayesian hierarchical modeling. Chapter 3 describes the proposed methodology of UPM in detail. 

Chapter 4 investigates how the UPM map resolutions change with increasing number of observations. 

Chapter 5 explains the use of UPM framework to update map resolutions of a conventional map. 

Chapter 6 summarizes the important points of this study.  

 

 
 

 
 

Figure 1.3 The basic concept of the proposed UPM methodology 
 
 

 
Figure 1.4 Flow diagram of this study 
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CHAPTER 2 

 

BAYESIAN HIERARCHICAL MODELING OF SPATIAL DATA 

 

2.1 Introduction 

In this chapter, the mathematical background of a Bayesian hierarchical modelling of spatial data is 

introduced.  

 

2.2 Bayesian inference 

Bayesian inference is a way of making statistical estimations by assigning subjective probabilities to 

data distributions. These subjective probabilities are also known as the prior probabilities. Observations 

update the prior probabilities based on Bayes’ rule. These updated or revised probabilities form the so-

called posterior probabilities. Bayesian inference, thus, allows estimations to be made on data using 

probability models. The characteristic of Bayesian models is their explicit use of probability to quantify 

uncertainty in inferences based on statistical data analysis. 

The foundation of Bayesian inference lies in Bayes’ rule [1] which is a rule for computing conditional 

probabilities. Let p(A) and p(B) be the probabilities of two events A and B. Also, let p(A| B) denote 

the conditional probability of A given B and p(B| A) be the conditional probability of B given A.  

Bayes’ rule states that 

 

                                                            (2.1)   

 

In Bayesian terminology, p(A) is the prior probability, p(B|A) is called the conditional probability or 

likelihood, p(B) is the marginal probability and p(A|B) is called the posterior probability.  

Gelman et al. [2] idealizes the process of Bayesian data analysis into the following three steps:  

1) The first step is the setting up of a full probability model which is a joint probability distribution 

of all known and unknown parameters in a problem.  

2) The second step is calculating and interpreting the posterior distribution i.e. the conditional 

probability distribution of the unknown parameters of interest given the known parameters.  

3) The third step is understanding the implications of the resulting posterior distribution.  

p(A| B)= p(B| A)p(A)
p(B)
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By modelling both the observed data and any unknowns as random variables, the Bayesian approach to 

statistical analysis provides a coherent framework for combining complex data models and external 

knowledge or expert opinion [3]. Let θ denote unknown parameters of interest and y=!y1,y2,…….,yn" 
denote the observed data. To make probability statements about θ given y, we must begin with a model 

providing a joint probability distribution for θ	and y. The joint probability mass or density function can 

be written as a product of two densities; the prior distribution p(θ) and the data distribution p(y|	θ) as 

 

                                                           (2.2) 

 

Simply conditioning on the known value of the data y, using Bayes’ rule, the posterior density becomes: 

 

                                               (2.3) 

where 

                                          (2.4) 

 

An equivalent form of equation (2.3) yielding the un-normalized posterior density is given by  

 

                                                   (2.5) 

 

Equation (2.2) ~ (2.5) summarizes the fundamental idea of Bayesian inference; the primary task of any 

specific application of Bayesian analysis is to develop a model p(θ,y)  and perform the relevant 

computations to summarize p(θ|	y) in appropriate ways.  

Equation (2.3) says that Bayes’ rule with some probability model implies that the data y affect the 

posterior inference only through the function p(y|	θ). This function when considered as a function of θ 

for a fixed y, is called the likelihood function.  

Equation (2.4) is often termed as the marginal distribution of y, but better known as prior predictive 

distribution in this case: prior because it is not conditional on a previous observation of the process and 

predictive because it is the distribution for a quantity that is observable [2].  

 

 

 

 

p(θ , y) = p(θ )p(y |θ )

p(θ | y) = p(θ , y)
p(y)

= p(θ )p(y |θ )
p(y)

p(y) = p(y,θ )dθ = p(θ )p(y |θ )dθ∫∫

p(θ | y)∝ p(θ )p(y |θ )
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2.3 Single and two-parameter Bayesian models 

2.3.1 Single parameter model 

In section 2.2, the statistical model had only one parameter to be estimated i.e. θ is one-dimensional. 

These models are called single parameter models. An example of a single parameter model can be a 

normal distribution with an unknown mean, μ and known variance, σ2.  The likelihood is given by [4]  

 

          (2.6) 
Using 

                                                                 (2.7)                         

and  

                                                                                                    (2.8) 

 

equation (2.6) can be rewritten as [22] 

 

                              (2.9) 

 

Assuming σ2 to be a constant,  

 

																																					(2.10) 

 

The natural conjugate prior which has the same form as the likelihood can be written as  

 

                                (2.11) 

where N(μ0,σ0
2) is a normal distribution with mean μ0 and variance σ02 .  

 

Using Bayes’ rule, the posterior is given by [4]  

 

p(y |θ ) = p(y | µ,σ 2 ) = p(yi | µ,σ
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                                                 (2.12) 

                      (2.13) 

                                    (2.14) 

 

 As the product of two normal distributions is a normal distribution, equation (2.14) can be rewritten as  

 

                  (2.15) 

 

Let the posterior distribution be a normal distribution with N (μn,σn
2	) with mean μn and variance σn2 .  

So, p('|)) becomes  

                                           (2.16) 

 

Equating equations (2.15) and (2.16), and matching the coefficients of μ2 [4], we have  

 

                                         (2.17) 

 

Equating equations (2.15) and (2.16), and matching the coefficients of μ [4], we have  

 

																																																											(2.18) 

 

Thus, Bayesian inference results in the estimation of the unknown posterior mean μn and variance σn2 

of the normal distribution. The calculation was simple as a conjugate prior was available.    
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2.3.2 Two parameter model 

In this section, we consider a two-dimensional unknown vector θ . An example can be a normal 

distribution with both an unknown mean, μ and an unknown variance, σ2.  The likelihood is given by 

[5]  

 

        (2.19) 
 

Now, in this case as there are two unknown parameters, we apply a hierarchical prior. Hierarchical 

models are explained in detail in section 2.4.  

 

The prior assigned to the mean, is conditional on the variance and is a normal distribution given by 

                               (2.20) 

where μ is assumed to be normally distributed with mean μ0 and variance τ02=
σ2
ν  

 

The prior assigned to the variance is an Inverse-Gamma distribution given by  

 

                                 (2.21) 

where k and 1 σ02
*  are the parameters of the inverse Gamma distribution [5].  

The posterior distribution of the mean conditional on the variance is given by  

                                 (2.22) 

 

where  

                                                                              (2.23) 
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The analytical estimation of the posterior distribution of the mean is a little complicated and has been 

skipped in this section. The reason of showing the process of Bayesian inference for a two-parameter 

model is that as the unknown parameters increase the algebra required for the analytic derivation of 

posterior distributions become more and more complicated. Also, in the above examples, only normal 

distributions are considered for the analysis, however, as the probability distributions deviate from the 

usual ones, the calculations become more complex. Bayesian analysis of realistic probability models 

are too cumbersome for practical applications. 

 

2.4 Hierarchical Bayesian model 

Many statistical problems involve multiple parameters that can be regarded as mutually connected in 

some ways depending on the structure of the problem at hand. These problems can be naturally 

modelled hierarchically, with observable outcomes modeled conditionally on certain parameters, which 

in turn are given a probabilistic distribution in terms of further parameters known as hyper parameters 

[2]. In practice, many times nonhierarchical models are inappropriately used for data which can be 

better modeled using hierarchical models. Using only a few parameters, nonhierarchical models cannot 

fit large datasets accurately whereas the use of too many parameters tend to over fit the dataset leading 

to inferior predictions for the new dataset. In contrast, a hierarchical model can have enough parameters 

to fit the data well using a probabilistic distribution to structure some dependence between some 

parameters and thus, in the process, avoid the problem of overfitting.  

 

 
Figure 2.1 Hierarchical and non-hierarchical approach to data modeling [6] 
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Fig. 2.1 compares a hierarchical model with non-hierarchical models (pooled and independent models) 

where qz is the mean parameter for zone z , µ is the overall mean across all the zones, µ2
[z] is the between 

zone variance and µ2
[e] is the residual variance [6]. In a pooled model, where the parameters are treated 

only at group levels, the individuality of the zones is lost as only the mean value is used. In an 

independent model, the correlations are lost as the zones are considered separate and non-connected. 

However, hierarchical model brings in the best of the pooled and the independent models.     

In hierarchical Bayesian modeling, in addition to specifying the distributional model p(y|	θ) for the 

observed data y=!y1,y2,…….,yn"  given a vector of unknown parameters θ=(θ1,θ2,…..,θn), the prior 

distribution is now p(θ|	λ), where λ is a vector of hyper parameters.  

If λ is known, inference on θ is based on its posterior distribution,  

 

               (2.25) 

 

However, in practice, #  is an unknown and so a hyperprior (a second stage) distribution p(λ)  is 

introduced. Equation (2.25) will be replaced by  

 

												(2.26) 

Implicit in equation (2.26) is a hierarchical structure with three levels of distributional specification 

with primary interest in the θ level.  

In Fig. 2.2, Sheldrake [7] shows an example of a hierarchical Bayesian model for event probabilities 

(θI,j). Here the data is (xI,j,ni) with prior parameters (ϕ,ψ) and hyperprior parameters (μ,τ,K,J). The 

index i relates to each site with a total of V sites in the model and j relates to each mutually exclusive 

event from a total of J possible outcomes.  

 

 

 

 

 

 
 

p(θ | y,λ) = p(y,θ | λ)
p(y,λ)

= p(y,θ | λ)
p(y,θ | λ)dθ∫

= p(y |θ )p(θ | λ)
p(y |θ )p(θ | λ)dθ∫

p(θ | y,λ) = p(y,θ )
p(y)

==
p(y |θ )p(θ | λ)p(λ)dλ∫
p(y |θ )p(θ | λ)p(λ)dθ dλ∫
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Figure 2.2 A directed acyclic graph showing Hierarchical Bayesian model [7] 

 

2.5 Bayesian inference using MCMC 

As discussed in section 2.3, Bayesian estimation for a two-parameter model is not so simple. A 

computational challenge in applying hierarchical Bayesian methods is that for most realistic problems, 

the integrations required to do inference under equation (2.25) - (2.26) are generally not tractable in 

closed form and thus must be approximated numerically. Conjugate priors that enable at least partial 

analytic evaluation as shown in section 2.2 may often be found, but in the presence of nuisance 

parameters (typically unknown variances), some intractable integrations remain. However, thanks to 

the rapidly developing computational power over the last few decades, we have some powerful 

computing tools at our expense, particularly the Markov Chain Monte Carlo (MCMC) integration 

methods, such as the Metropolis-Hastings algorithm [8,9] and the Gibbs Sampler [10,11]. 

MCMC is a general sampling method based on drawing the values of θ from approximate distributions 

and then correcting those draws to better approximate the target posterior distribution, p(θ|y). The 

samples are drawn sequentially, with the distribution of the sampled draws depending on the last value 

drawn and thus, forming a Markov Chain. The highlight of the MCMC sampling method is not the 

Markov property but the point that the approximate distributions are improved at each step in the 

simulation, in the sense of converging to the target distribution.  
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2.6 Spatial structure: CAR model 

Banerjee et al. [3] presents an elegant discussion on the hierarchical modelling of spatial data. However, 

for the point-referenced models i.e. models with spatial data at points, in all the cases, the spatial 

structure has been introduced using semi-variograms [12,13]. In this study, we are interested in 

modeling the distribution of the variation of the mean value around a site. A semi-variogram doesn’t fit 

our requirements. In general, Conditional auto-regression (CAR) [14,15,16] which introduce spatial 

dependence based on a neighborhood matrix, is used only in areal data cases expect a few occasions 

[17]. In this study, we introduce the spatial structure in the hierarchical modeling using a CAR model. 

Its application in Bayesian analysis of hierarchical spatial models has been quite recent and mostly used 

for areal data models. Fig. 2.3 illustrates a CAR model using the same Bayesian hierarchical model 

shown in Fig. 2.2.  

 

 
Figure 2.3 CAR prior in a hierarchical Bayesian model (adapted from [25]) 

 

The CAR model as shown in Fig 2.3 can be written as a conditional probability given by   

 

                                          (2.27) 

which means that the parameter value at xi is conditional on all other values in the neighborhood of xi. 
Conditional autoregressive models thus allow the value at a site to be conditional on the neighboring 

sites.  

 

p(xi | x1, x2,...., xi−1, xi+1, xi+2,...., xn )

CAR 
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2.7 Model evaluation 

Model evaluation is an integral part in the process of model development. It helps us to find the best 

model that represents the data and how well the chosen model will work in the future. Evaluating the 

performance of a model with all the available data for training is not acceptable as it can easily generate 

overoptimistic and over fitted models.  

 

2.7.1 Cross-validation 

Cross-validation is a model evaluation technique which partitions the original data sample into a 

training set to train the model and a testing set used to evaluate the model. Suppose our dataset y consists 

of n values (y1,y2,………,yn). Instead of training a predictor to the full dataset y, we can train it with 

only the first (n-1) values ()!, )", ……… , )#$!), and then use this to form a prediction πn for the last 

value n. 

Since I have the value of yn, the quality of the prediction can be assessed by crosschecking it with some 

estimator variable. As yn was not a part of the training dataset, this assessment should be immune to re-

substitution bias. The core idea of cross-validation [18,19,20] is to repeat the procedure but withholding 

a different value each time.  

In k-fold cross-validation [21,22], the original sample is randomly partitioned into k equal size 

subsamples. Of the k subsamples, a single subsample is retained as the validation data for model testing 

and the remaining k-1 subsamples are used as training data. The cross-validation process is then 

repeated k times (k folds) with each of the k subsamples used exactly once as the testing data. The k 

results from the k folds can then be averaged to produce a single estimation.  

 

2.7.2 WAIC 

k-fold cross-validation is computationally very expensive as the model data needs to be split into many 

parts. To avoid that splitting of the dataset into subsequent parts, an alternative is Watanabe-Akaike 

information criterion (WAIC) [23], which is an information criterion and has the form given by 

equation (2.28) [24] 

 

%&''() "#$% = &''( − 	,-./0                                                 (2.28) 

 

where %&''() "#$%  is the expected log pointwise predictive density, &''( is the log pointwise predictive 

density and ,-./0 is the effective number of parameters given by two definitions of ,-./01 and 

,-./02 as follows: 
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,-./01 = 2∑ (log 78&'()'(9*|;)= − 8&'()(log '(9*|;)))+
*,-                       (2.29) 

 

,-./02 = ∑ >?@&'()(log '(9*|;))+
*,-                                    (2.30)  

 

where '(9|;) is a measure of predictive accuracy or also known as the likelihood, A is the number of 

observations, 8&'()'(9*|;)  is the likelihood for 9*  induced by the posterior distribution '&'()  and 

>?@&'() is the posterior variance. The model with the minimum %&''() "#$%  is considered as the best 

model.  
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CHAPTER 3 

 

UNCERTAINTY PROJECTED MAPPING 

 

3.1 Introduction 

To formulate UPM, I needed a framework that can incorporate the data uncertainty at the sites. I adopted 

a hierarchical Bayesian model [1] of the spatial distribution of site responses. The framework of 

hierarchical Bayesian model incorporates uncertainties and allows modeling the variabilities as 

parameters [2]. In this study, a spatial distribution of the available observations is statistically modeled 

and then the model parameters, which includes the information of the data uncertainty at a site, are 

estimated. The parameter distribution is referred to as the UPM of the data. 

Until at least 20 years ago, hierarchical Bayesian models were limited within a small group of 

theoretical probabilists and statisticians [1]. The computations associated with the hierarchical models 

were far too complex for existing computing technology. However, in the 90’s, Markov Chain Monte 

Carlo (MCMC) methods arrived in the scene and coupled with a revolution in faster computation 

processors started a new era of application of Bayesian methods. Hierarchical models have since been 

used extensively in spatial modelling in ecological studies, social sciences, atmospheric processes, etc. 

[1,2,3,4,5].  For example, Hooten et al. [6] used hierarchical Bayesian model of ground flora on large 

domains. Corander et al. [7] applied Bayesian approach to spatial modelling of genetic modelling 

structure. Thogmartin et al. [8] applied hierarchical model to study of spatial distribution of bird 

populations. Ver Hoef & Frost [9] used hierarchical Bayesian model for monitoring harbor seal changes. 

Hierarchical Bayesian models have also been introduced in several researches in the field of earthquake 

engineering [10,11,12]. 

In this chapter, the theory of UPM is introduced at first. The UPM methodology is then validated with 

certain numerical experiments. The validated UPM is then applied to make a site response map for a 

case-study area in Furukawa, Japan. The results are then discussed in comparison to a conventional 

mapping method.   
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3.2 The proposed UPM methodology 

In this section, the proposed UPM methodology is introduced. The backbone of this methodology is a 

hierarchical Bayesian model of site response observations with spatially correlated random effects 

added to the model using a conditionally autoregressive (CAR) prior [13]. The novelty of the proposed 

methodology lies in the mapping the site response observations considering the data uncertainties at the 

site.  

 

3.2.1 Hierarchical Bayesian model of site response observations 

Let B*. be a random observation at site j during an event i. I define the observation B*. as a site response 

that is the ratio of ground motion index (i.e., PGA, PGV, etc.) at site j to the average of the index 

calculated over all the available sites during an event i.     

The conventional mapping of B*. is a spatial distribution of the average value of  B*.  at site j, which is 

given by ∑ /!"
+

+
*,- , where n is the number of observations. However, there exists a sample variance at 

each site j, which is not at all used in conventional mapping procedures. In this study, I define the 

sample variance as uncertainty of the site response and incorporate that uncertainty in the mapping. I 

adopt a hierarchical Bayesian model, which can estimate parameters on posterior distribution in 

estimating the uncertainty [1,2]. 

 

The hierarchical Bayesian model for Yij is designed as follows:  

 

B*.~DEF. , H.0I                                                                               (3.1) 

 

F. = F̅ + ΔF.                                                                               (3.2) 

 

∆F.~DN
1#$%" 	34#

5"
, ("

&

5"
O                                                                        (3.3) 

 

where N (µ, s2 ) is a normal distribution with mean µ and standard deviation s. Equation (3.1) states 

that the observation Yij at site j during an event i is a normally distributed variable with unknown site-

specific mean, F. 	and unknown site-specific standard deviation, H..  
The site-specific mean, F. 	varies from site to site. The average of F. across all the available sites is 

denoted by F̅. Equation (3.2) states that the site-specific mean at site j differs from F̅ by ΔF., which 

can be termed as the spatial fluctuation of the site-specific mean.  

Equation (3.3) models the spatial fluctuation ΔF. as a normally distributed variable. Δμj is constrained 

to be conditional on the sites inside a neighborhood of j. Based on the CAR model definition by De 

Oliveira [13], we define a neighborhood around site j as Mj and the member number of Mj as Nj. Note 
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that Mj does not contain j itself [13]. The mean of the model distribution is the average of the spatial 

fluctuation measured from j across the neighborhood Mj, and the standard deviation is P.. In this study, 

sj is another uncertainty which we term as the spatial variation. Equation (3.3) introduces the spatial 

correlation in the model.  

CAR models are often used to describe spatial variation of areal observations and analyze data in diverse 

areas such as demography, economy, epidemiology and geography [1,14,15].  

 

3.2.2 The novel constraint c = sσ 

The goal of this study is to estimate an unknown site-specific mean value which is affected by the 

uncertainty at a site (site-specific standard deviation). In this hierarchical model, so far, the P. parameter 

of the CAR model in equation (3.3) controls the estimation of the site-specific mean, F. . From 

equation (3.3), when the spatial fluctuation within the neighborhood is relatively large, P. 	is large and 

hence, the observations at the sites are spatially less correlated and F.  values are relatively rough. 

However, when the spatial fluctuation within the neighborhood is relatively small,	P.  is low which 

introduces high spatial correlation and results in relatively smooth F.  values. The P.  parameter thus 

controls the smoothness in the spatial distribution of F. .	 
In UPM, I want the mapping to be rough, i.e. to follow the observation mean, at low values of site-

specific standard deviation, and I expect the mapping be smooth when the site-specific standard 

deviations are high. So, I introduce an additional constraint c = sσ in the hierarchical model to relate P. 
and H. so that F. will now be affected by both P. and H..  
 

Q = PH												                                                                  (3.4) 

 

This is the novelty of the proposed methodology. Now, the estimated result of F., which is UPM of Yij, 

will now incorporate the information of the data uncertainty. Based on this novel constraint, we can 

now discuss Fig. 1.4. At low values of site-specific standard deviation (H.) in Fig. 1.4(a), P. becomes 

high resulting in less spatial correlation and hence a rough mapping of   F.  similar to conventional 

mapping. However, at high values of site-specific standard deviation (H.) in Fig. 1.4(b), P. becomes 

low resulting in more spatial correlation and hence a smooth mapping of  F. .  
 

Equations (3.1) ~ (3.4) comprises the proposed methodology for uncertainty projected mapping.   
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3.2.3 Estimating the unknown parameters µ, s and s 

In Bayesian analysis, the unknown parameters µ, s and s are assigned a prior distribution and the values 

can be estimated based on a posterior probability distribution which is calculated using the Bayes’ 

theorem. Instead of the theoretical calculation of the posterior probability distribution, MCMC [16] 

algorithms are used to estimate the parameters. In this paper, we use statistical software WinBUGS [17] 

for the execution.  

In my proposed methodology, I provide a uniform distribution as the prior for s (site-specific variation) 

and s (spatial variation). For the site-specific mean (µ), I provide a zero-mean normal distribution with 

a large variance as a prior. All the priors are non-informative so that the estimated posteriors are not 

sensitive to the prior information.  

 

3.2.4 Estimating the model evaluation parameter c  

As many models with different c can be assumed, many different mappings are possible. Hence, model 

evaluation needs to be done to select the best c-value model. I term c as a model evaluation parameter.  

Bayesian models can be evaluated and compared in several ways [18,19,20]. However, in this study, I 

preferred performing model evaluation based on the predictive accuracy [21,22] as I wanted the best c-

value model to reflect the matching with the data. Cross-validation and information criteria are two 

approaches of estimating prediction accuracy from a fitted Bayesian model using the log-likelihood 

evaluated at the posterior simulations of the parameter values [23,24,25]. 

In this study, I used k-fold cross-validation technique for the model evaluation. The core idea of cross-

validation [26,27,28] is to split data, once or several times; part of data (the training set) is used to train 

the model, and the remaining part (the testing set) is used to validate the model. In k-fold cross-

validation [29,30] the dataset is partitioned into k subsets of equal size. The model is built k times, each 

time with one of the k subsets as testing set and the remaining as the training set.  

Each time a model is built with a certain c-value, the likelihood function of the c-value model is 

estimated. The average of all the likelihoods corresponding to the different training sets in k-fold cross-

validation for each c-value model is calculated and used as the model likelihood, L(c). The model with 

the maximum averaged likelihood is preferred as the best model. However, the exact selection of the 

model for the a UPM plot varies case by case and is referred to a plot of variation of the model 

likelihoods, L(c) with the c-values. The μj	from the selected best model are used for UPM of Yij	.	  
The likelihood at site j is given by 

 

R. = REF. , H.0; T-, T0, T6, …… . . T+I = E2VH.0I
'(
& exp	(	 7-

08"
&∑ ET9 − F.I0)+

9,-                      (3.5) 
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where F. and H. are the site-specific mean and site-specific standard deviations obtained from certain 

c-value model. T-, T0, T6, …… . . T+  are observations in the testing set of the k- fold cross-validation 

process, and n is the number of observations.    

 

The likelihood for the c-value model is given by  

 

R(Q) = 	∏ R.:
.,-                                                                               (3.6) 

 

where μj	at [ = 1,2, … . ,\ are treated as independent and identically distributed (i.i.d.). 

 

3.2.5 The missing sites 

In practice, measurement sites are limited, and I need to estimate the values at the missing sites to 

produce a map for an area. Missing sites refer to those sites where there are no recorded observations. 

In UPM, the values at the missing sites are naturally estimated based on the spatial structure introduced 

by the CAR model. This means the UPM works on as a spatial interpolation. 

When available sites are not uniformly distributed and a distribution map needs to be prepared in an 

area, I create a uniformly distributed grid of missing sites. In this case, while defining the neighborhood, 

missing site locations are considered.  

 

3.3 Numerical experiments 

In this section, some numerical experiments designed to validate the proposed UPM methodology are 

discussed. The numerical experiments have been categorized into two groups; (1) In numerical 

experiment A, all the sites are measuring sites, and (2) in numerical experiment B, some missing sites 

have been introduced.   

 

3.3.1 Numerical experiment A 

Fig. 3.1 shows the dataset for numerical experiment A. In this experiment, five random samples are 

artificially generated as the observations at 50 sites in one-dimension. The random samples follow a 

normal distribution. The given mean values of the normal distribution vary in sinusoidal manner along 

the site locations. The given standard deviations(uncertainties) gradually increase from the left to right. 

The standard deviation is the uncertainty we are trying to address in this study.  
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Figure 3.1 Dataset for numerical experiment A  

 

 

Fig. 3.2 shows the conventional mapping for this dataset. The conventional mapping connects the 

observation means at the sites and is not sensitive to the change in uncertainty from the left to right. It 

should be noted that the observation mean values vary from the given mean values of the normal 

distribution. However, it does follow the sinusoidal curve of the given mean values along the sites.    

 

 
Figure 3.2 Conventional mapping for numerical experiment A 
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The proposed UPM methodology as described in section 3.2 was then applied to the dataset of 

numerical experiment A. The spatial models differed based on the chosen c-values for the model. The 

best c-value model is selected based on model evaluation.   

Model evaluation is done using 5-fold cross-validation method. In 5-fold cross-validation method, of 

the total observation data, 80% is used as training set and 20% is used as testing set for the model 

evaluation. Fig. 3.3 shows one of the training results for three models with different c-values during 

model evaluation. It is observed that as the c-values decrease, smoothness in the mapping increases. 

Fig. 3.4 shows the variation of model likelihood (in logarithm) with c-values. The c-values used in Fig. 

3.4 are highlighted using the same colors in Fig. 3.3.  In Fig. 3.4, the multiple plots for a single c-value 

represent the likelihood values for different training sets. We select c =10-4 for the best model and the 

selection is indicated by an arrow in Fig. 3.4.  

 

 

 
Figure 3.3 Mapping results for a training set during the model evaluation 
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Figure 3.4 Variation of model likelihood (in logarithm) with c- values. The multiple plots for a single 

c-value represent the likelihood values for different training sets. The dotted black line is the line of 

averaged likelihood value. The arrow indicates the selection of the best model. 

 

 

I term the mapping of the site-specific mean (μj) using the best model as the UPM of Yij. The red line 

in Fig. 3.5 shows the UPM for the numerical experiment A using the c =10-4 model applied to the whole 

dataset. In Fig. 3.5, the UPM is observed to follow the conventional mapping when the site-specific 

standard deviation is low (on the left) and becomes smooth as the site-specific standard deviation 

increases towards the right. This effect is introduced due to the constraint imposed on the model by c = 

sσ. When H is low and P is high, UPM is relatively rough and follows the observation mean value at the 

sites as the sites are spatially less correlated. As H increases, the P decreases, leading to a high spatial 

correlation in the model, which introduces a smoothing effect in the mapping (Fig. 3.5). This effect 

enhances the detailed visual (mapping) on significantly different observations expected between the 

sites with low standard deviation and rough visual (mapping) on insignificant observations between the 

sites.  
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Figure 3.5 UPM for numerical experiment A 

 

3.3.2 Numerical experiment B 

Numerical experiment B is designed to validate the ability of our proposed UPM methodology in 

estimating the values at missing sites. Two datasets are created by removing certain sites from the 

dataset in numerical experiment A. In the dense dataset, observations from 44% of the original sites are 

randomly removed, whereas in the sparse dataset, observations from 72% of the original sites are 

randomly removed. The dense and sparse datasets for numerical experiment B are shown in Fig. 3.6. 

As discussed in section 3.2, in UPM, the values at the missing sites are naturally estimated based on the 

spatial structure introduced by the CAR model.  

Figs 3.6a and b show the UPM results for the numerical experiment B. In both dense and sparse datasets, 

UPM has captured the effect of the varying site-specific standard deviation. As in the numerical 

experiment A, UPM results are relatively rough and follow the observation mean values in the left 

where the standard deviation is low but smoothens out as the standard deviation increases in the right.  

Also, in Figs. 3.6a and b, UPM results are compared with a conventional mapping method called 

Kriging [31]. Kriging is a spatial interpolation algorithm and primarily used to estimate the missing site 

values by spatial correlations [31,32]. However, kriging strictly follows the observation means at the 

sites irrespective of the variation of the standard deviation (uncertainty). This is clearly seen in Figs 

3.6a and b, where the Kriging results keep the observation means at the sites, unchanged. However, 

this is not the case for the UPM results. At low values of standard deviation, like Kriging results, UPM 

also follows the sample means. However, as the standard deviation increases in the right side, UPM 

results smoothen out unlike the Kriging results which still follow the observation means.  
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                        Figure 3.6 Dataset and results for numerical experiment B 

 

 

Fig. 3.7 discusses the statistical significance of the obtained UPM and Kriging results. It uses the results 

shown in Fig. 3.6(a). Let us draw attention to two pairs of sites. One of the pairs, A1 and A2 is from 

the low uncertainty part whereas the other B1 and B2 is from the high uncertainty part. Between A1 

and A2, the Kriging and the UPM coincides. Whereas between B1 and B2, the Kriging and UPM 

doesn’t agree with each other. In order to explain this situation, let us focus on the histogram of the 

observation data at the two pair of sites. Fig. 3.7(a) shows that the histograms are quite distinct in the 

case of pair A1 and A2. However, for the pair B1 and B2, the histograms are overlapping (Fig. 3.7b). 

Thus, UPM clearly captures the statistical significance of the mean value difference in the mapping 

process.   

In the next section, the proposed UPM methodology is applied to real observations from a dense seismic 

array in a case-study area in Furukawa, Japan.  
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Figure 3.7 Statistical significance of the results for numerical experiment B  

 

3.4 Application: A case study in Furukawa, Japan 

The 2011 off the Pacific coast of Tohoku Earthquake caused heavy damage to life and property due to 

the tsunami and the strong ground motion. Severe damage occurred not only close to the shoreline but 

also in areas further into the mainland. Furukawa district in Osaki City, Miyagi Prefecture of Japan 

recorded severe damage in downtown residential areas. Significant spatial differences caused mainly 

due to site amplification were observed even in sub-kilometer scales [33,34]. On the aftermath of the 

earthquake, a very dense seismic network for strong ground motions is being operated at Osaki city. 

Fig. 3.8 shows the layout of the seismic array in the significantly damaged area in Osaki city. The 

seismic array observation is jointly organized by Kyoto University, Tokyo Institute of Technology, 

Osaki city office and aLab Co. Ltd.  

In this case study, earthquake data from 31 sites in the seismic array is used to generate a site response 

map for the area. Based on the availability of observation data at the sites, 100 earthquake events 

between 29th October,2011 and 23rd August,2015, were used for the analysis.  
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Figure 3.8 The layout of the seismic array at Furukawa district, Osaki city, Japan. 

 

Let Yij be the site response observation at site j during an earthquake event i. In this case study, the site 

response Yij is defined as the logarithmic ratio of ground motion index (i.e., PGA) at site j to the average 

of the index calculated over all the available sites during an event i.     

To generate a UPM map of the site responses, the dataset comprised of 431 sites with 31 measurement 

sites from the seismic network and 400 missing sites, all distributed in a rectangular grid.  

The proposed methodology of UPM was then applied to the case study area. The best Q-value model 

selected based on model evaluation i.e. 5-fold cross-validation method as discussed in section 3.2.4. 

Fig. 3.9 shows the variation of model likelihood (in logarithm) with c-values. Based on the maximum 

likelihood and the maps produced by different c-value models (Fig. 3.10), I select c =1/75 as the best 

model.  
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Figure 3.9 Variation of model likelihood (in logarithm) with c-values for the Furukawa case study. The 

multiple plots for a single c-value represent the likelihood values for different training sets. The dotted 

black line is the line of averaged likelihood value. The arrow show the selection of the best model. 

 

 
Figure 3.10 The site response maps for some c-value near the best model c =1/75.  

The gray colors indicate values outside the range mentioned in the figure. 
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Figure 3.11 The UPM results for the site response mapping in Furukawa district, Japan  

 

Fig. 3.11 shows the UPM site response map for Osaki city in Furukawa. The transition of the site 

response values between neighboring sites are smooth. There is no sudden occurrence of zones of 

extreme values.  Fig. 3.12 compares the UPM (Fig. 3.12a) with Kriging results (Fig. 3.12b) for the site 

response mapping. Let us focus on two pair of sites; Yellow Zone (YZ), C1 and C2 and Green Zone 

(GZ), D1 and D2, in both the maps. In the Kriging map, both the pairs of sites are observed to have 

distinct mean values; namely, YZ, C2 (in blue) and C1 (in red) and GZ, D1 (in blue) and D2 (in red). 

However, in the UPM map, although pair YZ, C1 and C2 can be easily distinguished, pair GZ, D1 and 

D2 does not appear to be very distinct. To better understand this situation, I looked at the distribution 

of the observation data for both the pair of sites. Inset Fig. 3.12(c) and (d) show the associated histogram 

of the site response observations. The histogram shows the distributions of observation data is quite 

distinct for pair YZ, but the data distributions cannot be distinguished clearly for pair GZ. This situation 

is clearly captured by UPM as at higher uncertainties the results are smoothened emphasizing the 

difficulty in distinguishing the sites whereas at lower uncertainties the results are rough enough to 

distinguish the sites clearly. UPM results are statistically significant whereas such an explanation is not 

possible in the case of a map produced by Kriging. In fact, this conclusion can be extended to any other 

mapping technique as data uncertainty is not considered in the conventional mapping processes. 
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The UPM results are observed to be smooth as compared to the conventional mapping (Fig. 3.12). 

Introducing this uncertainty-controlled smoothness in mapping was a primary objective of this research. 

In many conventional maps, one sometimes come across zones of extremes. The extreme values cannot 

be always discussed statistically and that raises a question of whether that extreme value is acceptable 

or not. So, I wanted to include uncertainness of the data and produce a map where the extreme values 

are smoothed based on the uncertainty and could be discussed statistically.   

 

3.5 Conclusion 

In this chapter, the problem of incorporating uncertainties in the site response mapping, has been 

addressed. The uncertainty primarily addressed here is the site-specific uncertainty, s . The objective 

of the study had been to make the site-specific uncertainty reflect on the map resolutions of a site 

response mapping. To meet this objective, a methodology was proposed where the mapping parameter, 

mean is affected by the site-specific uncertainty. The proposed methodology of UPM which is based 

on a hierarchical Bayesian modeling imposed a novel constraint c = sσ on the mapping. The result was 

a mapping which is rough, i.e. follows the observation mean, at low values of site-specific uncertainty, 

and becomes smooth at higher values of site-specific uncertainties.  

To validate the proposed UPM methodology, some numerical experiments were designed in one-

dimension. The mapping results from the proposed UPM methodology were found to reflect the site-

specific uncertainties in the map resolutions. The detailed visual (mapping) on significantly different 

observations expected between the sites with low standard deviation and rough visual (mapping) on 

insignificant observations between the sites, was enhanced in the maps produced by the proposed UPM 

methodology. UPM could also generate satisfactory mapping when not all the sites had recorded 

observation data. The proposed methodology could spatially interpolate and estimate values at the 

missing sites. The values at the missing sites are naturally estimated based on the spatial structure 

introduced by the CAR model. Also, the mapping results were compared with a conventional mapping 

technique called Kriging. It was observed that unlike the UPM values which are sensitive to the 

variation of data uncertainty, the Kriging values are not affected by the change in data uncertainties.  

Once UPM was validated with the numerical experiments, it was then applied to site-response data 

from a case study area in Furukawa district of Japan. On the aftermath of the 2011 off the Pacific coast 

of Tohoku Earthquake in Japan, a very dense seismic network for strong ground motions is being 

operated in Furukawa. Based on the availability of data at the sites, data from 100 earthquake events 

were used to prepare a site-response map of the area. The UPM results are observed to be smooth as 

compared to the conventional mapping and the smoothness can be discussed based on the statistical 

significance of the mean site response variations between the sites. Introducing this uncertainty-

controlled smoothness in mapping was the primary objective of this study.  
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CHAPTER 4 

 

CONVERGENCE IN UPM: APPLICATION TO VISUALIZING DATA 

SATURATION 

 
4.1 Introduction 

In this chapter, I investigate how the UPM map resolutions change as the number of observation data 

increase. As the number of observation data increase, the data uncertainty decreases and the reliability 

in the estimation of the mean increases. And if UPM really projects data uncertainty onto map 

resolutions, this change in data uncertainty with increasing observations must be reflected in the spatial 

resolutions. As we will see in this chapter, UPM map resolutions approaches that of conventional map 

resolutions with increasing number of observations. I utilize this information-dependent characteristic 

of UPM maps to address the issue of data sufficiency in spatial maps.   

In the past few decades, advancement in data collection, e.g. high-resolution remote sensing, monitoring 

sensor networks, etc., considerably increased the availability of spatial data [1]. However, it is usually 

not clear if the amount of available data is sufficient to extract the desired information for the physical 

process. More data collection has been tried to continue if the amount of data is determined to be not 

enough. This concept is based on the idea that the goal of the hazard maps is to plot accurate information 

using the enough data, which can contribute to the disaster reduction. On the other hand, in practice, 

we need to plot the maps based on only the available data. Under the situation, we have two essential 

questions; (1) how we judge whether amount of the available data is sufficient, and (2) how we draw 

the maps consistent with the data accumulation.  

In this chapter, I address these issues by utilizing the information-dependent characteristic of UPM 

maps. I introduce KL divergence increments, based on information theory [2], that measures the 

incremental information gain as an UPM map is updated. Data saturation or sufficiency is reached when 

no more incremental information gain is observed even after adding new data to an UPM map.  

In literature, papers addressing the issue of data saturation in spatial mapping is rare to find. There are 

some papers addressing the issue of optimal sampling, however, the focus is on assessing the grid layout 

rather than the optimal amount of data [3,4,5]. Past research in other fields, has seen some papers 

addressing the issue of data saturation [6,7,8]. However, many of them are qualitative in nature and 
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none of them considers data uncertainty in their formulations and hence the question is reliability is left 

unanswered.  

In this study, I examine a methodology to visualize and quantify the excess or deficiency of data in 

mapping earthquake ground motion amplifications. In the next section, I introduce the incremental KL 

Divergence parameter to quantify data saturation. In section 4.3, I introduce two numerical experiments 

to discuss how the parameter can help in quantifying and visualizing data saturation in spatial maps. In 

section 4.4, I apply our methodology to a real earthquake site amplification dataset from a case study 

area in Japan and discuss how the results can help us decide when to stop collecting more data.    

 

4.2 Methodology 

4.2.1 Update UPM maps at multiple stages of data accumulation 

In chapter 3, model evaluation in UPM was done using a k-fold cross-validation [9]. However, it is 

computationally very expensive as the model data needs to be split into many parts. To avoid that 

splitting of the dataset into subsequent parts, in this study, cross-validation is replaced with 

computationally faster Watanabe-Akaike information criterion (WAIC) [10,11]. The c model with the 

minimum WAIC is considered as the best model. In this paper, all the UPM results come from the 

optimal c model.  

The first step in visualizing data saturation is to create a series of UPM Maps at different stages of data 

accumulation. UPM maps evolve with the increasing data as the estimation of mean (F.) and standard 

deviation EH.I depends on the amount of data. As we will see in the next sections, the UPM maps 

approach conventional mapping as the data increase. Quantifying this convergence process will help us 

find at which stage data saturation occurs.  

 

4.2.2  ∆];<	: Proposed parameter to quantify data saturation 

The estimated mean (F.) and estimated standard deviation EH.I improves as more and more data are 

added to the mapping. In other words, maps evolve with the addition of data in time. In this study, I 

visualize and quantify this property of maps and decide the point of data saturation, which means that 

more increase in data adds no more information to the map.  

As we will see in section 4.3 and section 4.4, UPM approaches conventional mapping (ordinary 

Kriging) as the number of observation data increase. To quantify this convergence in UPM, I use a 

parameter based on Kullback-Leibler (KL) Divergence [2]. KL Divergence measures how different two 

probabilistic distributions are. It is usually defined as  

 

^=>(_||`) = ∫ '(T) log 7&(@)
B(@)

=(TC
7C                                                          (4.1) 

 

where _ and ` are continuous random variables and ' and b are the associated probability densities.  
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In this study, I define a quantity called incremental KL Divergence (∆^=>	) given by  

 

∆^=>[*+∆*] = ∑ ^=>. E_[5],.||_[5G∆5],.I                                                  (4.2) 

 

where  ∆^=>[*+∆*]  is the ^=> between the probability distribution	_[5] at D observation data case and 

the probability distribution  _[5G∆5] at D + ∆D observation data case summed over the [	sites. Such 

convergence measure has been proposed to evaluate the performance of numerical analysis [12].  

The parameter ∆^=> measures the information gain as the maps are updated with more and more data 

in time. Data saturation happens when ∆^=>	approaches zero, which means that no more spatial 

information is added even upon adding more data to the map. The uniqueness of the parameter ∆^=> is 

that unlike conventional measures of data saturation, it also considers the data uncertainty in its 

formulation and hence adds a sense of reliability to the measurement.  

It is difficult to define a ∆^=>  like parameter to measure data saturation in conventional mapping 

(ordinary Kriging). The reason can be explained based on the differences between the mapping 

characteristics of UPM and ordinary Kriging, which can be listed as follows: (1) Unlike UPM, ordinary 

Kriging needs to estimate the distribution of both mean (F.) and standard deviation EH.I, separately. 

(2) Unlike UPM, no statistical dependences between the mean and standard deviation are incorporated 

in ordinary Kriging. (3) Unlike ordinary Kriging, the UPM maps vary with the amount of observation 

data. When observation data is less, UPM maps have a low spatial resolution. The ordinary Kriging 

maps, on the other hand, have a high spatial resolution even when the observation data is less. However, 

as the observation data increase, the UPM maps change and approach the conventional mapping. This 

change in UPM map characteristics with the amount of observation data helps quantify the convergence 

process.  

 

4.3 Numerical experiments 

In this section, two different numerical experiments are introduced where I investigate how the UPM 

map resolutions change as the number of observation data increase. In numerical experiment A, I use 

the same sparse data set layout as used in the previous chapter (numerical experiment B in chapter 3).  

In numerical experiment B, I make a hypothetical model of the wave amplification in and around an 

alluvial valley.  

 

4.3.1 Numerical experiment A 

4.3.1.1 Data 

Fig. 4.1 introduces the data used for this numerical experiment. At first, random samples (shown as 

black dots) following normal distribution are artificially generated as observations at 50 sites in one-
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dimension. The given mean values (µ) of the normal distribution vary in sinusoidal manner along the 

site locations. The given standard deviations (s) increase from the left to right. Then, observations from 

72% of the original sites are randomly removed and sparsely distributed dataset (shown as red triangles) 

is created. 

 

 
Figure 4.1 Dataset for numerical experiment A 

 

4.3.1.2 Results 

Fig. 4.2 shows 9 different datasets with 4, 8, 16, 32, 64, 128, 256, 512 and 1024 random samples per 

site. Conventional mapping is shown by a black line and UPM is shown by a red line.  

When the number of observations (N) is low, the UPM map resolution is high (follows the conventional 

mapping) at the low uncertainty area on the left, and the UPM map resolution is low (becomes smooth) 

at the high uncertainty area on the right. This effect enhances the detailed visual (mapping) on 

significantly different observations expected between the sites with low standard deviation and rough 

visual (mapping) on insignificant observations between the sites. As the number of observations (N) 

increase, UPM is observed to no longer possess the smooth nature at high uncertainty areas and starts 

approaching the conventional mapping. This change in the characteristics of the UPM with the increase 

in number of observations has a significance in understanding the population. 

When the number of observations is low, there is less information for modeling and so, the estimated 

model parameters are quite unstable. The conventional mapping for low observation dataset when 

compared with the known mean values, is erroneous. The error increases as the uncertainty increases 

on the right. In such a situation, the smoothness introduced in the UPM on the higher uncertainty side 

is a better representative of the data than the erroneous conventional mapping. However, when the 

number of observations is high, there is more information for modeling and so, the estimated model 

parameters are stable. The conventional mapping for 1024-observation dataset when compared with the 
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known mean values, is almost the same. Due to increased data, error is also reduced in the high 

uncertainty region. It is very interesting to observe that the UPM now converges with the conventional 

mapping. This finding shows that UPM yields reliable results as compared to conventional mapping 

when less information is available and can be used to hint at data saturation as the number of observation 

increases.  

 
Figure 4.2 Evolution of UPM maps compared with conventional mapping in numerical experiment A 

 

Fig. 4.3 shows the incremental KL divergence (∆^=>) with respect to the number of observations, 

calculated using equation (4.2). Sites located at the edges are not included in the calculation of ∆^=>. 

This is because I would like to discuss the results as interpolation problem. At the edge, the values are 

estimated as extrapolation problem. It is observed that ∆^=>  starts to converge as the number of 

observations increases. This indicates that the mapping on UPM reaches convergence and the data set 

is sufficient to extract the population statistics. Among them, we can set up the observation strategy to 

refer evolution of ∆^=> through the UPM.  

 
Figure 4.3 Plot of ∆^=> vs N for the UPM maps in numerical experiment A  
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4.3.2 Numerical experiment B 

4.3.2.1 Data 

In engineering seismology, it is well known that alluvial deposits can significantly affect the amplitudes 

of the incident seismic waves [13]. It is well established with high level of confidence (low uncertainty) 

that the waves get highly amplified at around the center of an alluvial valley. However, there is a low 

confidence (high uncertainty) concerning the amplification characteristics at the boundary between rock 

site and alluvial valley. This is because the incident angle and frequency contents are well affected.  

For the numerical experiment B, I make a hypothetical model of the wave amplification in and around 

an alluvial valley as a spatial process (Fig. 4.4). 63 sites are considered in one dimension. The sites are 

all equally spaced except at the boundary between rock site and alluvial where the sites are more densely 

spaced. The reason behind this is to properly model the change in uncertainty as one move away from 

high uncertainty at the boundary to the low uncertainty regions.  

Random wave amplification samples (mean values shown as black dots in Fig. 4.4) are artificially 

generated as observations at all these sites. Each observation sample refers to wave amplification 

observed for an incident seismic wave. The random samples at each site follow a lognormal distribution. 

The known arithmetic means (µ) increase as a parabolic curve from the rock site to the center of the 

valley representing high wave amplification. The standard deviation (s ) is treated as the uncertainty, 

which is high at the boundary zone of the rock site and the alluvial valley and low otherwise. The 

extreme amplitude changes at the basin boundary occurs as the incident angle and frequency contents 

are well affected at the basin boundary [13].   

 

 

 
 

Figure 4.4 Dataset for numerical experiment B 
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4.3.2.2 Results 

Fig. 4.5(a) shows eight different cases with 8, 16, 32, 64, 128, 256, 512 and 1024 artificial random 

samples per sites. Each succeeding dataset with higher earthquake events includes the preceding dataset 

with lower earthquake events. In all these cases, the gray circular dots show random samples, the blue 

line shows the Kriging mapping, and the red line shows the UPM. For cases with low number of 

observations (N), the UPM shows a smooth transition at the highly uncertain boundary zone between 

rock site and alluvial valley, unlike the Kriging map which is very rough and fluctuating. The boundary 

zone has a high H.. So, UPM makes the transition smooth by imposing a low sj	in the boundary zone. 

However, in the low uncertainty areas including the center of the valley, UPM behaves like Kriging. 

UPM keeps the Kriging shape in areas of low H. by imposing a high sj around j. As the number of 

observations (N) increase, UPM starts to approach the Kriging map, as also observed in numerical 

experiment A.  

Fig. 4.5(b) shows the incremental KL divergence (∆^=>) with respect to the number of observations. 

It is observed that ∆^=> starts to converge as the number of observations increases. This indicates that 

the mapping on UPM reaches convergence and the data set is sufficient to extract the population 

statistics.  

 
 

 
 

Figure 4.5 (a) Evolution of UPM and Kriging maps for numerical experiment B (b) Plot of 

∆^=> vs N for the UPM maps  
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4.4 Application: A case study in Furukawa, Japan 

4.4.1 Data 

In this case study, earthquake data collected over 7 years from 31 sites in the very dense seismic array 

of Furukawa, Japan [14] is used to generate an amplification map in the area. 176 earthquake events 

recorded between 29th October, 2011 and 19th September, 2018, were used for the analysis. Fig. 4.6 

shows the layout of the seismic array consisting of 31 seismometers in the significantly damaged area 

in Osaki city.  

These earthquake events are mostly aftershocks from the 2011 off the pacific coast of Tohoku 

Earthquake and include all recorded events in the above-mentioned period without any restriction on 

the threshold of amplitude or condition of source location. The average peak ground acceleration (PGA) 

in the recorded events ranges from 6 gal to 119 gal.  

The availability of observation data varies with the site locations. For studying the convergence process, 

6 datasets were created using groups of 8,16,32,64,128 and 176 earthquake events. Each succeeding 

dataset with higher earthquake events includes the preceding dataset with lower earthquake events.  

 

The mapping parameter in this case study is a factor of site amplification observed at site j during an 

earthquake event. It is defined as the logarithmic ratio of observed peak ground acceleration (PGA) and 

peak ground velocity (PGV) at site j to the spatial average calculated over all the available sites during 

a one earthquake event. The PGA and PGV are calculated from the vector sum of EW component and 

NS component of the earthquake record. To generate a UPM map of the site amplification, the dataset 

comprised of 431 sites with 31 measurement sites from the seismic network and 400 missing sites, all 

distributed in a rectangular grid.  

 

 
 

Figure 4.6 Spatial distribution of seismometers (▲) in Furukawa district, Japan 
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4.4.2 Results 

Figs 4.7(a) and (b) show the site amplification maps calculated using PGAs. For all the datasets, UPM 

has been compared with Kriging maps. It is observed that when the number of observations (N) is low, 

the UPM has a smooth character with gradual transitions between the site amplification values as 

compared to the Kriging map. However, as the number of observations increase, the two maps start 

becoming more and more similar. If we focus on how the UPM changes with the increase in the number 

of observations, it is observed that as more and more earthquake data are included, spatial variation 

starts appearing on the map and starts to converge as the number of events increase. To discuss this 

convergence quantitatively, Fig. 4.7(c) shows a plot of ∆^=> with the N, the number of observations. 

The ∆^=> is calculated only for the available sites common to all the events. It is shown that as the 

number of observations increase, the ∆^=> decreases and starts to approach the minimum zero value. 

From the viewpoint of information theory, it can be concluded that the data is approaching saturation.  

Figs 4.8(a) and (b) shows the site amplification maps calculated using PGVs. As before, both the UPM 

and Kriging maps have been prepared for the datasets. The first glance shows the PGV plots to be 

smoother in comparison to the PGA plots. As observed in the case of the PGA plots, in this case also 

the UPM lots start to converge with the increasing number of the observations. Fig. 4.8(c) confirms that 

the data is approaching convergence from the viewpoint of information theory.  

Thus, both the site amplification plots conclude that the mapping in Furukawa is approaching a data 

saturation and based on the viewpoint of information theory, the current operation may be terminated. 

The seismometers may be rearranged to resolve the unclear areas.  

  

4.5 Discussion 

It is evident from the cases discussed in sections 4.3 and 4.4, that the optimum number of data which is 

deemed enough to extract useful information depends on available dataset. In the case of numerical 

experiments, data saturation is attained after 128 observations (numerical experiment A) and 512 

observations (numerical experiment B) have been collected. However, in the case of the seismic array 

in Furukawa, Japan, 176 observations seem to be enough to understand the population statistics.  

The reason for this difference might be explained based on the record to record variability present at 

the sites. For example, in the numerical experiment B, the peak of true record to record variability was 

high (H.=3) at the boundary zone.  Thus, more data is necessary to accurately estimate the mean and the 

record to record variability (standard deviation) at the boundary zone. However, although we will never 

know the true value of the population statistics for the case study area in Furukawa, Japan, the maximum 

estimated record to record variability recorded at any site was much lower and hence, lesser data was 

required to extract the desired information. Thus, the optimum number of data will vary from case to 

case and is most likely to be affected by the presence of high uncertainty zones.  
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Figure 4.7 (a) Evolution of Kriging maps of PGA amplifications in Furukawa district, Japan (b) 

Evolution of UPM maps of PGA amplifications in Furukawa district, Japan (c) Plot of ∆^=>  vs N 

for the UPM maps of PGA amplifications 
 
 
 
 



 

 

51 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 (a) Evolution of Kriging maps of PGV amplifications in Furukawa district, Japan (b) 

Evolution of UPM maps of PGV amplifications in Furukawa district, Japan (c) Plot of ∆^=>  vs N for 

the UPM maps of PGV amplifications 
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For the case study area in Furukawa, Japan, I used 400 missing sites to create the PGA and PGV site 

amplification maps from 31 measurement sites, and the convergence process is quantified based on the 

maps obtained. However, the convergence process won’t change if the grid size was any different. This 

is because the convergence is quantified considering the measurement sites only. Increase or decrease 

of grids using only missing sites will have no effect on the quantification of the convergence process.  

Also, the convergence process between the PGA and PGV site amplification maps are not identical. 

One reason could be that the PGA and PGV process are not the same. The spatial distribution patterns 

in Fig. 4.7 and Fig. 4.8 are clearly different. This means that the spatial datasets of PGA and PGV are 

different. Another reason could be the difference in information gain process for the two. Unless two 

processes have the same incremental information gain and same record to record variabilities at all 

locations, it will be rare for two processes having the same convergence process based on information 

theory.   

 

4.6 Conclusion 

In this chapter, I investigate how the UPM map resolutions change as the number of observation data 

increase and confirm if UPM really projects data uncertainty onto map resolutions. We observe that 

UPM map resolutions approaches that of conventional map resolutions with increasing number of 

observations. I utilize this information-dependent characteristic of UPM maps to address the issue of 

data sufficiency in spatial maps.   

As a measure of data saturation, I define a parameter ∆^=> , based on information theory, which 

quantifies information gain as maps are updated with new data over time. Data saturation happens when 

∆^=> approaches zero, which means the no more spatial information is getting added to the maps and 

we can stop updating the maps. 

The numerical experiment results showed that as we increase the number of observations, UPM starts 

converging with the Kriging map. This is a significant finding as it shows that UPM yields reliable 

results as compared to conventional mapping when less information is available and can be used to hint 

at data saturation as the number of observation increases.  

The concept is then applied to a case study area in Furukawa district of Japan where earthquake data is 

collected over 7 years from 31 seismometers in a dense seismic array. Convergence in site amplification 

maps generated over different observation periods conclude that the mapping in Furukawa district is 

approaching a data saturation and from the viewpoint of information theory, the current operation may 

be terminated, and the seismometers may be rearranged to resolve map in the unclear areas. 
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Data availability  
The seismic array data from Furukawa, Japan used in the application (Section 4.4) can be downloaded 

from: http://sn.catfish.dpri.kyoto-u.ac.jp/event_list/index.html. In total, there are 37 seismometers 

installed in the area. However, in this study, 31 seismometers which are in the significantly damaged 

area are utilized. The seismometers not considered in this study are F15, F21, F30, F32, F36 and F37.  

 

References  

1. Lee, J. G., & Kang, M. (2015). Geospatial big data: challenges and opportunities. Big Data Research, 

2(2), 74-81. 

2. Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The annals of mathematical 

statistics, 22(1), 79-86. 

3. Hughes, J. P., & Lettenmaier, D. P. (1981). Data requirements for kriging: estimation and network 

design. Water Resources Research, 17(6), 1641-1650. 

4. Wang, J. F., Stein, A., Gao, B. B., & Ge, Y. (2012). A review of spatial sampling. Spatial 

Statistics, 2, 1-14. 

5. James, B. R., & Gorelick, S. M. (1994). When enough is enough: The worth of monitoring data in 

aquifer remediation design. Water Resources Research, 30(12), 3499-3513. 

6. Chaudhuri, S., Motwani, R., & Narasayya, V. (1998). Random sampling for histogram 

construction: How much is enough?. ACM SIGMOD Record, 27(2), 436-447. 

7. Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough? An experiment 

with data saturation and variability. Field methods, 18(1), 59-82. 

8. Fusch, P. I., & Ness, L. R. (2015). Are we there yet? Data saturation in qualitative research. The 

qualitative report, 20(9), 1408. 

9. Stone, M. (1974). Cross-validation and multinomial prediction. Biometrika, 61(3), 509-515. 

10. Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable 

information criterion in singular learning theory. J.  Mach. Learn. Res., 11, 3571-3594.  

11. Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for 

Bayesian models. Statistics and computing, 24(6), 997-1016. 

12. Goto, H., & Bielak, J. (2008). Galerkin boundary integral equation method for spontaneous rupture 

propagation problems: SH-case. Geophysical Journal International, 172(3), 1083-1103. 

13. Trifunac, M. D. (1971). Surface motion of a semi-cylindrical alluvial valley for incident plane SH 

waves. Bulletin of the Seismological Society of America, 61(6), 1755-1770. 



 

 

54 

14. Goto, H., Morikawa, H., Inatani, M., Ogura, Y., Tokue, S., Zhang, X.R., Iwasaki, M., Araki, M., 

Sawada, S. & Zerva, A. (2012). Very dense seismic array observations in Furukawa district, 

Japan, Seismol. Res. Lett.,  83(5), 765-774.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

55 

 

 

 

 

 

CHAPTER 5 

 

APPLICATION OF UPM: UPDATING MAP RESOLUTIONS OF A CONVENTIONAL MAP 

 

5.1 Introduction 

In this chapter, I investigate how the framework of UPM can be applied to update the map resolutions 

of a conventional map to incorporate the data uncertainty from local sources. As an example of 

conventional map, I focus on the J-SHIS map of site amplification factor [1].  And as local data, I use 

soil boring data provided by Geo-Research Institute (GRI) in the case study area.  

The site amplification factor map is based primarily on the engineering geomorphic classification map 

which offers the geomorphic classification in a standard area mesh in whole of Japan, approximately 

with a spatial resolution of 250 m [2].  A 250 m-mesh is a square area of 7.5 arc-seconds latitude and 

11.25 arc-seconds longitude (about 250 m × 250 m) [3,4]. Wakamatsu and Matsuoka [4] developed a 

linear regression formula for individual engineering geomorphic units to estimate the associated 

average shear velocity in the upper 30 m depth of soil (AVs30) using elevation, slope and distance from 

mountain as the explanatory variables. Using this linear regression formula, the map of AVs30 is 

prepared at first [5]. The site amplification factor map is then calculated from the map of AVs30 using 

Fujimoto and Midorikawa [6]. The site amplification factor means amplified ratio calculated from the 

engineering bedrock (Vs=400 m/s) up to the ground surface. Figs 5.1, 5.2 and 5.3 show the J-SHIS 

map of engineering geomorphic classification, AVs30 and site amplification factor, respectively. 

However, local soil data is not incorporated in the mapping process.  

In this chapter, the objective is to update the resolutions of the J-SHIS map of site amplification factor 

to incorporate the data uncertainty from local sources. Fig. 5.4 shows the location of Ibaraki - Takatsuki 

area of Osaka, the case study area. Fig. 5.5 shows the J-SHIS map of site amplification factor in the 

case study area. Fig. 5.6 shows the distribution of soil boring locations in the case study area.  

In technical terms, Bayesian update of the J-SHIS map of site amplification factor is summarized by 

equations (5.1) and (5.1). Using the fundamental idea of Bayes’ rule as introduced in chapter 2, we can 

write 

																																																										_(.|^) = _(^|.)_(.)
_(^) 																																																																								(5.1)	 

 

Where A refers to amplification factor at site and D refers to data from boring.  



 

 

56 

 

_(.|^, d) = _(d|.)_(.|^)
_(d) 																																																																(5.2) 

 

Where J refers to the J-SHIS values.  

 

Thus, _(.|^, d) is the updated amplification at site. The existing J-SHIS site amplification factors are 

used as a prior information and the site amplification factor calculated from available boring data is 

used as observation data (or likelihood information). 

 

 

 
Figure 5.1 250 m-mesh J-SHIS map of engineering geomorphic classification [4] 
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Figure 5.2 J-SHIS AVs30 map calculated from the engineering geomorphic classification map [4] 

 

 

 

 
Figure 5.3 J-SHIS map of PGV site amplification factor converted from the AVs30 map [4] 
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Figure 5.4 Location of case study area in the map of Japan 

 

 

 
Figure 5.5 J-SHIS map of site amplification factor in the case study area 
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Figure 5.6 Distribution of soil boring locations in the case study area  

 

I use informative priors for the mean and standard deviation of amplification values at each site. For 

the mean of the prior, I use the existing site amplification factor value at individual meshes. As for the 

standard deviation of the prior, I use the available information in literature related to the uncertainty for 

individual geomorphic units and regression equation of AVs30 and site amplification factor. 

Wakamatsu and Matsuoka [4] obtained standard deviation values for individual geomorphic units by a 

regression analysis. Similarly, Fujimoto and Midorikawa [6] also obtained a standard deviation value 

while establishing a relationship between AVs30 and site amplification factor. I use a vector sum of 

both these standard deviations to create the standard deviation of the prior.  

 

H& = e(H-0 + H00)																																																																												(5.3) 

Where H& refers to the standard deviation of prior, H-	refers to the standard deviation from Wakamatsu 

and Matsuoka [4] and H0 refers to the standard deviation from Fujimoto and Midorikawa [6]. Table 5.6 

shows the calculated H& for the engineering geomorphic units in the case study area.  

In sections 5.2 and 5.3, the seismic ground response analysis and the concept of engineering seismic 

base layer are introduced as they are crucial to the calculation of site amplification factors.  In section 

5.4, the soil structure in the case study area is investigated in detail. In section 5.5, the process of 

calculating site amplification factor is explained. In sections 5.6 and 5.7, the observation data for the 

UPM is introduced and the resulting updated J-SHIS map of site amplification factor is compared with 

its original counterpart. 
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Table 5.1 H& for the engineering geomorphic units in the case study area. 

Engineering Geomorphic Unit H- H0 H& 

Gravelly terrace 0.122 0.166 0.206009709 

Hill 0.175 0.166 0.24120738 

Valley bottom lowland 0.158 0.166 0.229172424 

Alluvial fan 0.116 0.166 0.202514197 

Natural levee 0.124 0.166 0.207200386 

Back marsh 0.116 0.166 0.202514197 

Dry riverbed - 0.166 - 

 

 

5.2 Seismic ground response analysis 

In this study, seismic ground response analysis is employed to calculate the local site amplification 

factors from the soil boring data. As soil shows non-linear behavior at very small strains, a simple model 

such as bilinear model which are applicable to structures, is not applicable to soil. Computer programs 

for seismic ground response analysis needs to consider the stress-strain relationships and soil particle-

pore water mixture [7]. The general concept used for calculating the cyclic shear deformation 

characteristics is the hysteric stress-strain curve expressed by (secant) shear modulus and damping ratio 

as a function of shear strain amplitude [8,9,10]. 

SHAKE was the first computer program that aimed for analyzing the behavior of ground during 

earthquakes[11]. It solved the equation of motion in a frequency domain by employing a Fourier series 

expansion and the concept of complex modulus. The latter is necessary to consider nonlinear behavior 

in a linear system. This technique is popularly known as equivalent linear method. SHAKE became 

popular because of its easy handling characteristics and is still used with minor modifications. However, 

although SHAKE popularized the equivalent linear method, it is still an approximate method. It has a 

few limitations and many attempts were made to overcome it. Improvements were made by considering 

frequency-dependent characteristics in stiffness and/or damping.  

In this study, however, a linear model of soil was used, and seismic ground response analysis is 

performed based on the fundamental multiple reflection theory.   

 

5.3 Engineering seismic base layer  

In Japan, during seismic ground response analysis, input earthquake motions are defined at the 

engineering seismic base layer [7]. Engineering seismic base layer is required to set the boundary 

conditions of the equation of motion, so that the behavior outside the boundary does not affect the result 

of the seismic ground response analysis.  

Previously, seismic bedrock was used as the definition of the engineering seismic base layer [12,13]. 

However, with improvement in research, the depth of the seismic bedrock kept on increasing. In practice, 
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it is nearly impossible to make investigations at such deep depths. Thus, for engineering concerns, the 

definition of seismic bedrock and engineering seismic base layer needs to be separate. Also, there is 

plenty of observed earthquake motion records at the engineering seismic base layer as compared to the 

deep seismic bedrock, making it logical to define the earthquake motion at this depth [14].  

The definition of engineering base layer in the design specifications of Japan is usually defined by the 

S-wave velocity. The engineering seismic base layer defined for port facilities [15] and for road bridge 

[16] correspond to the layers with SPT N-value of 50. In the definition used by buildings [17], layers 

deeper than SPT N=50 layer is used as the engineering seismic base layer as a layer with SPT N=50 

appears when Vs is a little larger than 300 m/s in many cases.  

In this study, I define sand or gravel layers with Vs ≥ 400m/s as the engineering seismic base layer. A 

considerable thickness and presence of local continuity has also been considered.  

 

5.4 Investigation of soil structure in the case study area 

5.4.1 Boring data 

In this section, I investigate the soil structure in and around Ibaraki-Takatsuki area of Osaka. For this 

investigation, I use boring data from 3779 locations. The data was provided by Geo-research institute 

(GRI). The different soil types present in the case study area and the associated color legend used in 

this study are summarized in Fig. 5.7. 

In Fig. 5.8, the case study area is shown by the red rectangle. A and B are two main sections having a 

high density of boring data. At first, the general soil structure in the case study area is discussed using 

these two main sections. Section A, to some extent, follows the decrease in basin elevation from the 

mountain to the river. Fig. 5.9 shows a close up of section A. The cross-section of soil structure along 

section A (Fig. 5.10) shows a gravel layer that continues almost across the whole section. Above the 

gravel layer, there are sediments whose depth increase from the left to the right and reach a maximum 

depth near the riverbed of Yodo river. In the middle of the section, the sediments are clay dominated, 

however, as we move closer to the riverbed the sand percentage increases.  In order to confirm if we 

can use this gravel layer as the engineering seismic base layer, I superimpose the zones with blocks of 

SPT-N ≥ 50 in Fig. 5.11. It is observed that although the gravel layer in the right side (points 4~6) can 

be considered to be the engineering seismic base layer, however, the gravel layer on the left side cannot 

be treated as the engineering seismic base layer as it barely reaches SPT-N ≥ 50. Also, in the middle of 

the section A (near point 4) data is not enough to confirm if it is the same gravel layer that connects 

from left to right. Thus, based on the data along section A, it seems that a unique engineering seismic 

base layer is difficult to assign for the case study area.  
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Figure 5.7 Color legend for different soil types in the boring data 
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Figure 5.8 The two main sections A and B having a high density of boring data 

 

 
Figure 5.9 A close-up of section A 
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Figure 5.10 Soil structure along section A 

 

 
Figure 5.11 Zones of SPT-N ≥ 50 superimposed in the boring data along section A  
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Next, I investigate the soil structure along section B. Fig. 5.12 shows a close up of section B. In section 

B, points 3~4 is along an old river channel, which explains the gravel layer close to the ground (Fig. 

5.13). Superimposing the zones with SPT-N ≥  50, it can be seen that this gravel layer could be 

considered as the engineering seismic base layer (Fig. 5.14).  However, around point 4, the available 

data is not enough to make a decision on the engineering seismic base layer. However, except near the 

Yodo river, it is not possible to assign an engineering seismic base layer. As observed in section A, here 

also the sand dominance increases as the section is closer to the river.  

The two main sections A and B help in making a general image of the soil structure in the case study 

area. However, there are many portions where the data along the section was not adequate. In order to 

try and understand the soil structure more detail, I investigate the area further with multiple cross-

section cuts.  

 

 
Figure 5.12 A close-up of section B 
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Figure 5.13 Soil structure along section B 

 

 

 
Figure 5.14 Zones of SPT-N ≥ 50 superimposed in the boring data along section B  
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Figure 5.15 Sections D1~D5 to investigate the soil structure in more detail 

 

 

 
Figure 5.16 Soil structure along section D1 
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Figure 5.17 Soil structure along section D2 

 

 
Figure 5.18 Soil structure along section D3 
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Figure 5.19 Soil structure along section D4 

 

 

 
Figure 5.20 Soil structure along section D5 
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Fig. 5.15 shows the traces of sections D1~D5 to understand how uniformly the depth of sediment 

changes from the mountains to the riverbed of Yodo river. As can be seen from all the sections D1~D5, 

the maximum depth of sediments is similar near the Yodo riverbed and there is an increase from the 

mountains to the riverbed (Figs 5.16 ~ 5.20). However, as the data is sparse near the riverbed, it is 

difficult to understand the engineering seismic base layer. One more thing to note is the middle section 

in D2~D4 has deep clay deposits and the data is not sufficient in any of the sections to understand the 

engineering seismic base layer. More sections need to be investigated in this area to understand the 

distribution of the gravel layer.  

Fig. 5.21 shows a section along the Yodo river to understand the distribution of maximum sediments 

in the area. It is seen that the maximum depth of sediments near the riverbed is around 20~25 m. 

However, the sediments are more clay dominated along points 2~3, whereas along points 3~5 the 

sediments are more sand dominated. This information is more clearly depicted in the zoning part as 

discussed in the next section.  

Fig. 5.22 shows a section parallel to the river line going through the midway between the mountain and 

the river. The reason of investigating this section is to try and understand the deep clay deposits in that 

zone. However, along points 2~3 the section is not deep enough for the engineering seismic base layer 

to be found. Also, the boring data is pretty sparse along points 3~5 to understand how the engineering 

seismic base layer might be changing.   

 

 
Figure 5.21 Soil structure along Yodo river 
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Figure 5.22 Soil structure along a long line parallel to the river 

 

Figs 5.23~5.25 show multiple sections cut to understand the soil layering in the alluvial fans. However, 

as the data is very sparse it is not possible to conclude anything with high confidence.  

 

Figure 5.23 Soil structure along section-I cutting through the alluvial fans 
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Figure 5.24 Soil structure along section-II cutting through the alluvial fans 

 

 

Figure 5.25 Soil structure along section-III cutting through the alluvial fans 
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Figs 5.26~5.28 show multiple sections to understand the soil layering in an old hill.  In Fig. 5.26, section 

along points 1~2 cuts through a hill which is predominantly sand dominated. It is difficult to establish 

a unique engineering seismic base layer as the local variation is very high. In such cases, the engineering 

seismic base shear layer needs to be considered to be varying from point to point.  

 

Figure 5.26 Soil structure along section-I cutting through an old hill 

 

 

Figure 5.27 Soil structure along section-II cutting through an old hill 
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Figure 5.28 Soil structure along section-III cutting through an old hill 

 

5.4.2 Zoning 

In this section, I summarize our understanding of soil structure in the case study area by defining certain 

zones. The zoning, as shown in Fig. 5.29, is based on the soil type. The yellow zone, red zone and grey 

zone represents the sand dominant, clay dominant and gravel dominant soil. The orange zone represents 

the soil where it is difficult to differentiate between sand and clay dominant. The blue zone represents 

those areas where the sand and clay content and the sediment thickness are highly fluctuating. The blue 

zone is more complicated than the orange zone and hence, is separated. The rest of the zones which 

doesn’t fall into any of the defined zones are termed as complicated zones. In this definition of zoning, 

the varying thickness of sediments has also been highlighted. For very less sediments (<10 m), the 

zones are borderless. For thin sediment depth (10~20 m), the border is a thin line. And for thick sediment 

depth (~20 m) the border is marked by a thick line.  

The zoning shows the presence of a distinct thick sand dominant zone in the riverbed of Yodo river. 

And the soil near the mountain and the alluvial fan area is mostly both sand and clay dominant. And in 

the intermediate zone between the mountain and the river, there exists a thick clay dominant zone. The 

gravel dominant zones are pretty limited and is found near some alluvial fans and close to the mountains.  
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Figure 5.29 Zoning based on soil type 

 

 

As discussed, the zoning is primarily based on the soil type. However, an important information while 

doing seismic ground response analysis is the knowledge of the engineering seismic base layer. Fig. 

5.30 uses the zoning based on soil type to highlight the presence or absence of a unique engineering 

seismic base layer. In areas where a unique engineering seismic base layer can be defined, the depth of 

sediments won’t vary significantly and can be modelled uniformly. However, in areas a unique 

engineering seismic base layer cannot be defined, the depth of the engineering seismic base layer and 

thus, the depth of the sediments will have a high local variation. In this case study area, only a few 

zones are observed to have a unique engineering seismic base layer. Fig. 5.30 shows those areas with a 

white border. C refers to clay dominant, S refers to sand dominant and CS refers to both sand and clay 

dominant. In these zones, it is assumed that the engineering seismic base layer can be represented by a 

unique layer and thus can be modelled with the same representative section.  
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Figure 5.30 Zoning based on availability of a unique engineering seismic base layer 

 

Fig. 5.31 explains the meaning of a representative section using an example. Fig. 5.32 shows the boring 

data at five locations of the representative section C1. At site 13, site 2136 and site 3244, we can safely 

assign the gravel or sand layer below 20 m depth as the engineering seismic base layer. However, at 

site 2527 and site 2542, the gravel or sand layer below 20 m depth is not visible as the boring data is 

not deep enough.  However, if we assign a representative section as shown in Fig. 5.33, we can safely 

assume the entire data at site 2527 and site 2542 as the sediment depth and can use it in the seismic 

ground response analysis instead of not including the site due to lack of sufficient data.  

Thus, in this study, zoning helps in assigning a common engineering seismic base layer for a large area 

which is helpful in quick modelling of the soil in that zone. However, it also helps include some sites 

with insufficient data information if they lie in the same zone. In general, a certain fixed layer is defined 

as the engineering seismic base layer in a case study area, however, that definition may not always 

reflect the local site condition. An important consideration in this research is to investigate the depth of 

engineering seismic base layer at each of the boring site. As seen here, except in a few areas where 

zoning is possible, I investigate and assign an engineering seismic base layer, separately for each site.  
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Figure 5.31 Representative section C1 

 

 
 

Figure 5.32 Soil data at multiple locations of representative section C1 
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Figure 5.33 Representative section C1 explained  

 

5.5 Calculation of site amplification factor 

5.5.1 Soil model 

The goal of studying the soil structure and assigning an engineering seismic base layer at a site is to 

model the soil layers at each site. In this study, an earthquake motion is inputted at the engineering 

seismic base layer and the amplified wave motion at the surface is calculated using seismic ground 

response analysis. In the J-SHIS map of site amplification factor, the mapped variable is PGV site 

amplification factor, where PGV is the peak ground velocity. As the objective is to Bayesian update the 

map resolutions of the J-SHIS map, I also calculate the PGV site amplification factor at every site. I 

define site amplification factor as the ratio of PGV of input motion at the engineering seismic base layer 

to the PGV of output motion at the ground surface. Fig. 5.34 explains the definition of site amplification 

used in this study.  

For the seismic ground response analysis, I employed the multiple reflection theory. The soil material 

at different layers are assigned an elastic material property and a damping ratio of 2%. However, the 

shear-wave velocity and density information for all the layers is necessary. The GRI boring data 

provides only the SPT-N value. Equations (5.3) and (5.4) are employed to calculate the shear-wave 

velocity form the SPT-N value for different soil types [18].  

For clay and silt,  

h( = 100	D
.
/                                                                     (5.3) 
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For sand and gravel,  

h( = 80	D
.
/                                                                   (5.4) 

For sand and gravel if SPT-D	 ≥ 50, I assumed the Vs as 400m/s.  

As for the density, I assign a density of 2 g/cm3 for sand and gravel, and a density of 1.8 g/cm3 for clay 

and silt. If there is a humus material in the soil, I considered a density of 1.6 g/cm3. Fig. 5.35 shows the 

conversion of a SPT-N soil data to a layer-wise Vs and density data.  

 
Figure 5.34 Calculation of site amplification factor using seismic ground response analysis 

 

 
Figure 5.35 Conversion of SPT-N to layer-wise Vs and density data.  

ESBL refers to the engineering seismic base layer.  



 

 

80 

 

In this study, a sand or gravel layer with shear-wave velocity of 400 m/s is considered as a good 

candidate for engineering seismic base layer. Although the preferred thickness is around 5 m, however, 

the actual situation at each site varies based on how the layer continuity is in the neighborhood and how 

much variation exists in the neighborhood, as discussed in the previous sections.  

 

5.5.2 Input ground motion 

Outcrop earthquake motion observed at ground surfaces with an S-wave velocity of 400 m/s, can be 

used as the input earthquake ground motions for our analysis. Amongst the K-NET and KiK-net 

earthquake data of the National Research Institute for Earth Science and Disaster Resilience (NIED), I 

selected stations with an average S-wave velocity up to the depth of 5 m (Vs5) in the range of 400~700 

m/s. Amongst the earthquake records obtained at these stations, we selected those records with an 

measured seismic intensity of 4.5 ~ 5.0. Tables 5.2 and 5.3 lists 21 such earthquake events used in this 

analysis. Tables 5.4 and 5.5 lists the PGV and PGA of the input ground motions used in this study.  

 

Table 5.2 List of selected earthquake events (K-NET) 

 
Assigned 

Site Code 

NIED 

Site Code 

Vs5 

(m/s) 

Event Time Horizontal 

2-component 

PGA (cm/s2) 

Measured 

Seismic 

Intensity (SI) 

Earthquake 

Type 

AKT017 AKT017 474 2008/ 6/14 08:43 241 4.54 内陸地殻内 
FKS015A FKS015 484 2011/ 3/11 14:46 278 4.99 プレート境界 

FKS015B FKS015 484 2011/ 4/11 17:16 179 4.53 内陸地殻内 

FKS031 FKS031 426 2011/ 7/31 03:54 320 4.62 プレート境界 

IWT008 IWT008 620 2011/ 3/11 14:46 385 4.98 プレート境界 

IWT019A IWT019 656 2003/ 5/26 18:24 352 4.78 スラブ内 

IWT019B IWT019 656 2011/ 4/ 7 23:32 174 4.82 スラブ内 

IWT019C IWT019 656 2012/ 3/27 20:00 144 4.73 内陸地殻内？ 

IWT023 IWT023 434 2008/ 7/24 00:26 333 4.70 スラブ内 

NAR007 NAR007 422 2016/11/19 11:48 404 4.52 スラブ内 

SAG001 SAG001 492 2005/ 3/20 10:53 330 4.51 内陸地殻内 

SMN015 SMN015 470 2000/10/ 6 13:30 268 4.86 内陸地殻内 

TCG002 TCG002 408 2011/ 3/11 14:46 154 4.57 プレート境界 

YMG014 YMG014 400 2001/ 3/24 15:28 142 4.72 スラブ内 
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Table 5.3 List of selected earthquake events (KiK-net) 

 
Assigned  

Site Code 

NIED  

Site Code 

Vs5 

(m/s) 

Event Time Horizontal  

2-component 

PGA (cm/s2) 

Measured 

Seismic 

Intensity (SI) 

Earthquake 

Type 

HRSH07 HRSH07 580 2014/ 3/14 02:07 177 4.64 スラブ内 
IWTH09 IWTH09 440 2008/ 7/24 00:26 531 4.94 スラブ内 

IWTH17 IWTH17 484 2008/ 7/24 00:26 402 4.53 スラブ内 

IWTH23A IWTH23 400 2008/ 7/24 00:26 474 4.77 スラブ内 

IWTH23B IWTH23 400 2011/ 4/ 7 23:32 542 4.98 スラブ内 

IWTH25A IWTH25 430 2008/ 6/14 09:20 784 4.94 内陸地殻内 

IWTH25B IWTH25 430 2008/ 6/14 23:42 944 4.86 内陸地殻内 

 

 

Table 5.4 List I of selected input ground motions. NS and EW refers to the horizontal components of 

the K-NET earthquake record. 

 
SL. No. Assigned 

Site Code  
PGA 

(cm/s2) 

PGV 

(cm/s) 
1 AKT017.NS 222.95 12.558 

2 AKT017.EW 136.736 8.97 

3 FKS015A.NS 275.241 14.221 

4 FKS015A.EW 210.558 21.801 

5 FKS015B.NS 172.866 7.181 

6 FKS015B.EW 105.272 10.574 

7 IWT008.NS 241.035 11.453 

8 IWT008.EW 323.654 16.548 

9 IWT019A.NS 256.252 7.172 

10 IWT019A.EW 285.879 13.916 

11 IWT019B.NS 145.053 10.135 

12 IWT019B.EW 145.927 10.579 

13 IWT019C.NS 101.93 6.673 

14 IWT019C.EW 134.652 11.35 

15 FKS031.NS 151.712 5.207 

16 FKS031.EW 312.83 11.265 

17 IWT023.NS 324.649 6.368 

18 IWT023.EW 282.685 13.304 

19 NAR007.NS 236.785 5.22 

20 NAR007.EW 347.023 7.563 
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Table 5.5 List II of selected input ground motions. NS and EW refers to the horizontal components of 

the K-NET earthquake record. NS2 and EW2 refers to the horizontal components of the KiK-net 

earthquake record. 

 
SL. No. Assigned 

Site Code 
PGA 

(cm/s2) 

PGV 

(cm/s) 
21 SAG001.NS 117.668 7.766 

22 SAG001.EW 329.744 10.089 

23 SMN015.NS 151.144 20.458 

24 SMN015.EW 267.493 13.604 

25 TCG002.NS 104.82 7.623 

26 TCG002.EW 150.356 9.958 

27 YMG014.NS 132.496 11.342 

28 YMG014.EW 129.309 13.641 

29 HRSH07.NS2 176.852 8.494 

30 HRSH07.EW2 167.486 6.827 

31 IWTH09.NS2 421.565 9.799 

32 IWTH09.EW2 524.084 13.471 

33 IWTH17.NS2 309.531 9.157 

34 IWTH17.EW2 324.874 10.72 

35 IWTH23A.NS2 399.585 7.737 

36 IWTH23A.EW2 399.121 11.244 

37 IWTH23B.NS2 507.32 10.187 

38 IWTH23B.EW2 483.476 11.419 

39 IWTH25A.NS2 781.934 21.905 

40 IWTH25A.EW2 210.323 5.279 

41 IWTH25B.NS2 344.687 6.097 

 

 

5.5.3 Site-specific variation of amplification factor 

One site doesn’t have a unique PGV site amplification factor. As the input motion changes, the 

amplitude and phase of the wave changes, affecting how it interacts with the soil layers and ultimately 

affecting the amplified output wave.  This change in PGV site amplification factor with change in input 

motion gives rise to a site-specific variation. However, this variation will change from site to site, giving 

rise to a spatial variation of the PGV site amplification factor. In UPM, both these variations of data 

will be incorporated. The conventional maps fail to incorporate such an information of local variation 

in the mapping process. Table 5.6 shows how the PGV site amplification factor varies with the input 

motion characteristics at the example site introduced in Fig 5.35.  
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Table 5.6 Site-specific variation of PGV site amplification factor 

 
5.6 Observed data for UPM 

In this study, I use the PGV site amplification factors calculated for the 41 input earthquake motions at 

each of the 485 boring sites in the case study area as the observation data for UPM.  Figs 5.36 (a) and 

(b) shows the mean and standard deviation of the observation data. The color scale for the mean is 

maintained the same as the J-SHIS map of site amplification factor. However, as the J-SHIS map of 

site amplification factor is based on 250 m×250 m meshes, the 485 boring sites will need to be assigned 

to their appropriate meshes.  Fig. 5.37 shows the assignment of the boring sites to the appropriate 

meshes. Figs 5.38 (a) and (b) show the mesh-mean and mesh-standard deviation of observation data at 

each of the 250 m×250 m mesh in the case study area. 

In chapters 3 and 4, I worked with point data for the UPM mapping. However, in this chapter, I will 

prepare mesh based UPM maps. Fig. 5.39 shows the initial neighborhood definition for the UPM. As 

neighbors, I defined those meshes which share a border with the mesh under consideration.  However, 

the neighborhood changes as the c-value is changed and the best model is selected based on model 

evaluation.  

In the next section, the posterior probabilities (Bayesian updated results) estimated using the 

informative prior (J-SHIS map of site amplification factor) and observation data (PGV site 

amplification factors calculated from the soil boring data) are discussed.  
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Figure 5.36 Distribution of average (MU) and standard deviation (SD) of  

observation data for UPM 

 

 

 

 
Figure 5.37 Assignment of boring sites to the meshes of size 250 m×250 m  
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Figure 5.38 Mesh-wise distribution of average (MU) and standard deviation (SD) of  

observation data for UPM 

 

 

 

 
 

Figure 5.39 Initial neighborhood definition for mesh based UPM 
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5.7 Result: Updated J-SHIS map and comparison with its original counterpart 

 

Figure 5.40 Updated J-SHIS map of site amplification factor  

 

 
Figure 5.41 Comparison of updated and original J-SHIS map of  

site amplification factor  



 

 

87 

Fig. 5.40 shows the Bayesian updated J-SHIS map of site amplification factor. In order to understand 

the significance of the updated map resolutions, I compare it with the original J-SHIS map resolutions 

as shown in Fig. 5.41. When both the maps are compared, the first thing that can be observed is that for 

meshes where local boring data is available, the map resolutions are updated and reflect the local 

information. However, for meshes where local boring data is not available, the original J-SHIS map 

resolutions are maintained because of the strong prior information.  

In order to understand the significance of the updated map resolutions more clearly, I draw attention to 

three zones marked by A, B and C in Fig. 5.41. 

In Zone A, the J-SHIS map shows a high amplification area (in red) and low amplification area (in blue) 

situated right next to each other. However, in the updated J-SHIS map the contrast is significantly 

reduced and a smoother transition of map resolution colors is shown. In Zone B, the J-SHIS map shows 

almost no contrast in the map resolutions. However, the updated J-SHIS map resolutions show the 

presence of a significant low amplification area (in green). In Zone C, both J-SHIS and its updated 

version, show a smooth transition of map resolution colors.  

In order to explain these similarities and dissimilarities discussed above, I investigate the nature of 

boring data in the above-mentioned zones as shown in Fig. 5.42.  

 

 
Figure 5.42 Location of boring data (▲) in zones A, B and C of updated J-SHIS map.  
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Figure 5.43 Detailed boring data of zone A in case study area 

 

 
Figure 5.44 Histogram of site amplification factors for two sites (red and blue) in zone A  
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Figure 5.45 Detailed boring data of zone B in case study area 

 

 

Figure 5.46 Histogram of site amplification factors for two sites (red and blue) in zone B  
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Figure 5.47 Detailed boring data of zone C in case study area 

 

 
Figure 5.48 Histogram of site amplification factors for two sites (red and blue) in zone C 
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I first investigate zone A in Fig 5.43. Four boring data (two in original J-SHIS high amplification area 

and two in original J-SHIS low amplification area) are shown in detail. It is observed that there isn’t a 

significant change in the sediment thickness in the two areas. The histogram of site amplification factors 

for two sites in low and high amplification area in original J-SHIS map shows high overlapping (Fig. 

5.44). Thus, the high spatial resolution in the original J-SHIS map cannot be explained statistically. And 

hence the updated map resolutions with lower contrast is more reliable based on the available data.   

On investigating boring data of zone B in Fig 5.45, two sites with substantially low sediment thickness 

are visible. Also, this is a zone of transition from the sand dominated layer to the clay dominated layer 

as indicated by our zoning (Fig. 5.29). The updated J-SHIS map resolutions, thus, highlights the 

significant difference of these sites with respect to their neighborhood unlike the original J-SHIS map 

resolutions which considered the whole area as uniform. The histogram of site amplification factors for 

the two neighboring sites also show very low overlapping, and hence validates the spatial resolution of 

the updated J-SHIS map on the basis of data uncertainty (Fig. 5.46). 

In Zone C, the spatial resolution of the updated J-SHIS map is low as the number of data points is 

significantly low in the area (Fig. 5.47). The data is not enough to highlight significant differences in 

the area and thus it has a high predictive error. The histogram of site amplification factors for the two 

sites also show very high overlapping (Fig. 5.48).  

Thus, the updated J-SHIS map reflects the data information and highlights significant differences when 

such a difference exists and for cases with low data where information cannot be extracted, a low spatial 

resolution (smooth mapping) is introduced adding more reliability (in statistical terms) in comparison 

to original J-SHIS map. 

 

5.8 Discussion 

The reliability issue with J-SHIS map resolutions at the local scale is widely acknowledged. In this 

study, I addressed this reliability issue by incorporating local soil boring data into the mapping process. 

The map resolutions at the meshes with data were updated. However, more data will be necessary to 

update each and every mesh of the J-SHIS map.  

During the 2018 Northern Osaka earthquake, in Ibaraki city of Osaka, it has been observed that certain 

areas with low J-SHIS site amplification factor suffered more damage whereas certain areas with high 

J-SHIS site amplification factor observed little or no damage at all [19,20]. Damage was observed in 

our case study area too. A comparison of the earthquake damage distribution in the case study area with 

the updated J-SHIS map resolutions was attempted in Fig. 5.49.  

Equation (5.6) defines the damage ratio as follows [20],  

 

!"#"$%	'"()*	(),	%) = 	0ℎ%	,2#3%'	*4	'%5)6%,7%	6"#"$%	7%'()4)7"(%50ℎ%		,2#3%'	*4	32)86),$ × 100																									(5.5) 
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where the residence damage certificate is proof of extent of the damage of residence. In Japan, after a 

disaster, people who have their houses damaged by the earthquake will require several certificates of 

proof in order to be eligible to receive aid.  

 

 

Figure 5.49 (a) Damage distribution during the 2018 Northern Osaka Earthquake [20]  

(b) Updated J-SHIS map 

 

There are many short comings of this comparison. In this study, a linear analysis of seismic ground 

response is performed, and the input earthquake motions are not derived from nearby faults.  Damage 

is not only due to site amplification effect but important factors like source effect, age of buildings, etc. 

significantly contribute to the damage distribution, which are not considered in this study.  Thus, 

although, no significant discussion on the distribution can be done, but because the map resolutions are 

now enriched with local soil information, the updated J-SHIS map might be used as a supporting 

evidence in explaining the damage distribution in the future. An important point to note is that the 

discrepancies between the observed damage distribution and the J-SHIS map resolutions highlight the 

need to include more information in the mapping process and our approach of incorporating local soil 

data could play a significant role in adding more reliability to the spatial resolutions.  
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5.9 Conclusion 

The J-SHIS map of site amplification factor is based on AVs30 values broadly assigned to engineering 

geomorphic units. There is a need to incorporate local (site-specific) information in order to address the 

reliability issues with the resolutions at local scales.  

In this chapter, I apply the framework of UPM to incorporate uncertainties from local data sources and 

update the map resolutions of J-SHIS map. As a case study area, I chose Ibaraki-Takatsuki area of 

Osaka. Using seismic ground response analysis, I calculated the site amplification factor from the 

available boring data in individual meshes. The updated J-SHIS map reflects the data information and 

highlights significant differences, when such a difference exists, and for situations with low data where 

information cannot be extracted, a low spatial resolution (smooth mapping) is introduced adding more 

reliability (in statistical terms) in comparison to original J-SHIS map. 
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CHAPTER 6 

 

CONCLUSION 

 

In this research, I address the important issue of incorporating uncertainty information in the map 

resolutions for better decision-making. In literature, I hardly came across any research addressing this 

issue of incorporating data uncertainty in the map resolutions. The topic is important as the statistical 

significance of this difference in neighboring values is directly ungraspable without any information on 

the data uncertainty. The inability of conventional maps to statistically signify the difference in mapped 

values, raises a question on its use for reliable decision-making process. 

In the first study, a relation between the site-specific uncertainty and spatial uncertainty in the 

framework of a hierarchical Bayesian model is introduced. The idea is to make the map resolutions 

uniform or smooth at zones of high data uncertainty. I named this mapping methodology as Uncertainty 

Projected Mapping (UPM). The proposed UPM methodology was validated with both numerical 

experiments and real data from a very dense seismic array. The UPM results were found to reflect the 

site-specific uncertainties in the map resolutions. The detailed visual (mapping) on significantly 

different observations expected between the sites with low standard deviation and rough visual 

(mapping) on insignificant observations between the sites, was enhanced in the UPM maps. The UPM 

methodology could spatially interpolate and estimate values at the missing sites. The values at the 

missing sites are naturally estimated based on the spatial structure introduced by the CAR model. The 

mapping results were compared with a conventional mapping technique called Kriging. It was observed 

that unlike the UPM values which are sensitive to the variation of data uncertainty, the Kriging values 

are not affected by the change in data uncertainties.  

In the second study, I investigate the information-dependent characteristics of UPM. It is observed that 

as more and more information become available, UPM starts approaching the conventional mapping.  

This characteristic hints at the strength of UPM when less information is available. I investigate this 

characteristic in detail and utilize it to propose a parameter to measure the change in map resolutions 

with increasing information, which was applied for quantification of data saturation in mapping spatial 

data. The results show that the optimum number of data which is deemed enough to extract useful 

information depends on available dataset. This study also establishes the strength of UPM when less 

information is available. 
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In the third study, I use the framework of UPM to incorporate local uncertainty information and update 

the map resolutions of J-SHIS map of site amplification factor in Ibaraki-Takatsuki area of Osaka. The 

J-SHIS map of site amplification factor is based on AVs30 values broadly assigned to engineering 

geomorphic units. There is a need to incorporate local (site-specific) information in order to address the 

reliability issues with the resolutions at local scales. Using seismic ground response analysis, I 

calculated site amplification factor from the available boring data in individual meshes. Further, using 

the Bayesian framework of the UPM, I updated the existing map resolutions of J-SHIS map.  The 

updated J-SHIS map reflects the data information and highlights significant differences, when such a 

difference exists, and for situations with low data where information cannot be extracted, a low spatial 

resolution (smooth mapping) is introduced adding more reliability (in statistical terms) in comparison 

to original J-SHIS map. 

The results in all the three studies primarily establish that that map resolutions determined by data 

uncertainty has a statistical significance and are a better representation of the whole data at a site.  
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