

Reinforcement Learning for Optimal

Design of Skeletal Structures

Kazuki Hayashi

2021

Contents

List of Abbreviations 7

Nomenclature 9

1 Introduction 15
1.1 Background of overall study . 15

1.1.1 Structural optimization 15
1.1.2 Machine learning for structural engineering 16
1.1.3 Optimization of trusses 20
1.1.4 Cross-section optimization of steel frames 22

1.2 Objective . 23
1.3 Advantages of the proposed method 24
1.4 Thesis structure . 24

2 Basics of reinforcement learning 25
2.1 Characteristic of reinforcement learning 25
2.2 Markov decision process . 27
2.3 Reinforcement learning . 29

2.3.1 Value function . 29
2.3.2 Policy . 31
2.3.3 Bellman equation . 32
2.3.4 Dynamic programming and Monte Carlo methods 33
2.3.5 Temporal difference learning 34

2.4 Surrogate modelling . 36
2.4.1 Curse of dimensionality 36
2.4.2 Neural network . 36
2.4.3 Deep Q-network . 39

2.5 Conclusion . 40

3 Hybrid method of graph embedding and reinforcement learning
for training an optimal design agent of skeletal structures 43
3.1 Conversion of an optimization problem into a reinforcement learn-

ing task . 43
3.2 Edge features estimated by graph embedding 45
3.3 Q-learning using the embedded features 50
3.4 Training workflow . 52
3.5 Conclusion . 53

3

4 Case study 1: Topology optimization of trusses 55
4.1 Topology optimization problem of planar

trusses considering stress constraint 55
4.2 Conversion to a reinforcement learning task 56
4.3 Training setting . 57
4.4 Training result . 58

4.4.1 Training history and performance for 4× 4-grid truss . . 58
4.4.2 Investigation of generalization performance 1: 3×2-grid

truss . 70
4.4.3 Investigation of generalization performance 2: 6×6-grid

truss . 80
4.4.4 Comparison of efficiency and accuracy with genetic algo-

rithm . 89
4.5 Generation of initial solutions by a trained agent for simultane-

ous optimization of geometry and topology of trusses using force
density method . 92
4.5.1 Force density method for obtaining nodal locations 92
4.5.2 Optimization problem . 95
4.5.3 Sensitivity analysis . 97
4.5.4 Workflow . 98
4.5.5 Numerical examples . 98

4.6 Conclusion . 100

5 Case study 2: Cross-section optimization of steel frames 103
5.1 Discrete cross-section optimization problem of planar steel frames

under constraints on stress, displacement and column over-strength
factor . 103
5.1.1 Allowable stress and displacement design 103
5.1.2 “Strong column-weak beam” design 106
5.1.3 Optimization problem . 107

5.2 Conversion to a reinforcement learning task 109
5.3 Training setting . 111
5.4 Training result . 112

5.4.1 Training history and performance for 3× 5-grid frame . . 112
5.4.2 Investigation of generalization performance 1: 5×3-grid

frame . 123
5.4.3 Investigation of generalization performance 2: 4×6-grid

frame . 125
5.4.4 Comparison of efficiency and accuracy with particle swarm

optimization . 128
5.5 Conclusion . 130

6 Conclusion 133
6.1 Summary . 133
6.2 Future outlook . 135

A GPU implementation for accelerating the training 137

Bibliography 139

4

List of presentations related to this study 151

List of other presentations 153

Acknowledgement 155

5

6

List of Abbreviations

AEC Architecture, Engineering and Construction
AI Artificial Intelligence
API Application Programming Interface
BIM Building Information Modeling
CAD Computer-Aided Design
CNN Convolutional Neural Network
COF Column Overstrength Factor
CPU Central Processing Unit
DOF Degrees Of Freedom
DP Dynamic Programming
DQN Deep-Q Network
FDM Force Density Method
GA Genetic Algorithm
GE Graph Embedding
GPGPU General-Purpose computing on GPU
GPU Graphics Processing Unit
GS Ground Structure
GUI Graphical User Interface
IGPU Integrated GPU
LP Linear Programming
MC Monte Carlo
MDP Markov Decision Process
ML Machine Learning
NLP Non-Linear Programming
NN Neural Network
PSO Particle Swarm Optimization
RAM Random Access Memory
ReLU Rectified Linear Unit
RL Reinforcement Learning
RL+GE Proposed hybrid method of RL and GE
RMSProp Root Mean Square Propagation
SA Simulated Annealing
SGD Stochastic Gradient Descent
SQP Sequential Quadratic Programming
SVM Support Vector Machine
TD Temporal Difference

7

8

Nomenclature

a Action

at Action taken at step t

a(i) Action indexed as i

Ā Cross-sectional area assigned to existing truss members

Ai Cross-sectional area of member i

As
i Distribution of the seismic shear force coefficient along with the build height

A Cross-sectional area vector

b
(i)
k Bias of k-th unit in layer i of the NN

bi Penalty coefficient for the violation of i-th constraint in metaheuristic algorithms

c Smaller positive number for function smoothing in the FDM

CB Base shear coefficient

Ci Penalty function with respect to the i-th constraint

Cij (i, j) element of the connectivity matrix

Cs
i Shear force coefficient of story i

C Connectivity matrix for a directed graph

CA Non-oriented connectivity matrix

C1 Matrix to identify the nodes that each member leaves

C2 Matrix to identify the nodes that each member enters

di,j Elongation of member i in load case j

E Elastic modulus of the structural material

E Force density matrix

Ẽ Matrix assembling the force density matrices in x-, y- and z-directions

Ẽfix Sub-matrix of Ẽ concerning indices of fixed coordinates

Ẽfree Sub-matrix of Ẽ concerning indices of free coordinates

Ẽlink Sub-matrix of Ẽ concerning the other indices

fb Allowable bending stress

fc Allowable compressive stress

ft Allowable tensile stress

Fd Design strength of the material

Fyb Design strength of the beam element material

Fyc Design strength of the column element material

G1 Clipping and scaling function of reward setting 1 in frame optimization

G+
2 Clipping and scaling function of reward setting 2 for increasing cross-sections

h1 Aggregated data of a member with respect to member inputs

9

h2 Aggregated data of a member with respect to node inputs

h
(tu)
3 Weighted self-member feature of a member at step tu

h
(tu)
4 Aggregated data of a member with respect to member features at step tu

ĥ1 Aggregated data of all members with respect to member inputs

ĥ2 Aggregated data of all members with respect to node inputs

ĥ
(tu)
3 Weighted self-member feature of all members at step tu

ĥ
(tu)
4 Aggregated data of all members with respect to member features at step tu

H Height of the structure

Ii Moment of inertia of member i

Iyi Moment of inertia of member i along the weak axis

Izi Moment of inertia of member i along the strong axis

Ji Cross-section index chosen from a list of standard cross-sections

J Set of cross-section indices chosen from a list of standard cross-sections

K Global stiffness matrix of the structure

Ki Local stiffness matrix with respect to member i

L Loss function to be minimized for training parameters

Li Length of member i

Le Length of the eliminated member

Mpb Full plastic moment of beams

Mpc Full plastic moment of columns

Mi,j Bending moment at the j-th tip of member i

na Number of actions

nd Number of DOFs of the structure

ne Number of members whose cross-sections have been changed by the action

nep Number of training episodes

nf Number of the size of each member feature

nfm Number of the size of each member input

nfn Number of the size of each node input

nl Number of layers in the NN

nL Number of loading conditions in the structural analysis

nm Number of members

nn Number of nodes

no Number of outputs of the NN

np Number of particles/solutions generated at each step of metaheuristic algorithms

ns Number of states

nsf Number of stories of the building frame

nsy Synchronization frequency of updating the trainable parameters

nt Stopping criterion of metaheuristic algorithms

nu,i Number of units in layer i of the NN

Ni Axial force of member i

ok Linear combination of inputs of the k-th unit in the NN

p Nodal load vector in the stiffness method

p̄i Load vector assigned to member i

pj Load vector with respect to load case j

10

P̄i Load value to be specified in the FDM

P a
ss′ Probability of transitioning from state s to s′ by taking action a

P Nodal load vector in the FDM

Pfix Nodal load vector corresponding to fixed nodal coordinates Xfix

Pfree Nodal load vector corresponding to free nodal coordinates Xfree

Px x-directional nodal load vector

Py y-directional nodal load vector

Pz z-directional nodal load vector

qi Force density of member i

qi,x x-directional component of the force density of member i

qi,y y-directional component of the force density of member i

qi,z z-directional component of the force density of member i

q Force density vector

Q Action value

Qπ Action value based on policy π

Q∗ Optimal action value

Qi Shear force of i-th story

r Reward

rt Reward obtained at step t

rass′ Reward obtained when transitioning from state s to s′ by action a

Ri i-th reaction force in a structural system

Rt Return at step t

Rs Vibration characteristics of the building

R Reaction force vector

s State

st State at step t

s′ Next state

s(i) State indexed as i

t Step in the episode

tc Elapsed CPU time

tu Step number of updating the member feature

T Terminal step of the episode

Tf Primary natural period

Tu Terminal step number of updating the member feature

ū Upper bound displacement

ui,j Nodal displacement of DOF i for load case j

u Nodal displacement vector

uj Nodal displacement vector with respect to load case j

ūi Nodal displacement vector of member i

vk Input from node k in the graph

vi,j Input from the j-th end of member i

v̂ Set of node inputs in the current state of the graph

v̂′ Set of node inputs in the next state of the graph

V State value

11

Vinit Initial structural volume

Vs Structural volume

V π State value based on policy π

V ∗ Optimal state value

V̄ Structural volume after applying a trained RL for the FDM optimization

w
(i)
k,j j-th weight of k-th unit in layer i of the NN

wi Input from member i in the graph

ŵ Set of member inputs in the current state of the graph

ŵ′ Set of member inputs in the next state of the graph

Wi Weight of story i

WT Total structural weight

x Nodal x coordinates

xfix Nodal x coordinates fixed to move

xfree Nodal x coordinates free to move

Xfix Nodal coordinates fixed to move

Xfree Nodal coordinates free to move

Xk Nodal coordinate vector of node k

y
(i)
k Output of the k-th unit in layer i of the NN

y Nodal y coordinates

yfix Nodal y coordinates fixed to move

yfree Nodal y coordinates free to move

zk Final output of the k-th unit of the NN

z̄k Target value of k-th unit’s output of the NN

z Nodal z coordinates

zfix Nodal z coordinates fixed to move

zfree Nodal z coordinates free to move

Z Coefficient to scale the shear force coefficient Cs
i

Zi Section modulus of member i

Zy
i Section modulus of member i along the weak axis

Zz
i Section modulus of member i along the strong axis

Zpb Plastic section modulus of beams

Zpc Plastic section modulus of columns

Zp,i Plastic section modulus of member i

α Learning rate

β COF at a node

βk COF at node k

γ Discount rate

∆i,x x-directional component of the unitary directional vector of member i

∆i,y y-directional component of the unitary directional vector of member i

∆i,z z-directional component of the unitary directional vector of member i

ϵ Small number ∈ [0, 1] used for ϵ-greedy policy

η Factor ∈ (0, 1) to adjust the inheritance of past updates in RMSProp

ηc Axial force ratio

θ Trainable parameters of the NN

12

θ̃ Previous trainable parameters of the NN

θ∗ Ideal trainable parameters of the NN

θ
(i)
k Trainable parameters of k-th unit in layer i of the NN

∆θ
(i)
k Momentum of updating trainable parameters θ

(i)
k

θ Trainable parameters used in the proposed GE method

θ1 Trainable parameters to weight member inputs

θ2 Trainable parameters to weight node inputs

θ3 Trainable parameters to weight node inputs

θ4 Trainable parameters to weight self-member features

θ5 Trainable parameters to weight features of neighbor members

θ6 Trainable parameters to weight features of neighbor members

θ7 Trainable parameters to compute action values from member features

θ8 Trainable parameters to compute action values from member features

θ9 Trainable parameters to compute action values from member features

Θ Set of trainable parameters {θ1, · · · ,θ9}
Θ̃ Set of previous trainable parameters

λ Effective slenderness ratio

Λ Critical slenderness ratio

µi Member feature of member i in the graph

µ
(tu)
i Member feature of member i at steptu

µ̂ Set of member features in the graph

µ̂(tu) Set of member features at step tu

µ̂
(Tu)
Σ Matrix containing the sum of the member features

ν Coefficient of momentum ∈ (0, 1) for updating the NN parameters

π Policy

πp Probability of transition based on policy π

σ̄ Upper bound stress

σi,j Axial stress of truss member i for load case j

σa
i Axial stress of beam member i

σb
i,j Bending stress of at the j-th tip of beam member i

τ Factor in computing full plastic moments

φ(i) Activation function assigned to layer i of the NN

Φi,j Set of indices of members connecting to the j-th end of member i

ψi Ratio of the weight of story i to the total structural weight

ω
(i)
k Running average of the magnitudes of recent gradients for θ

(i)
k

Ωa Set of indices of available actions

Ωb Set of indices of beam members

Ωc Set of indices of column members

Ωd Set of indices of DOFs of existing nodes

Ωm Set of indices of existing members

ΩR Set of indices of reactions to be specified in the FDM

Ωβ Set of indices of middle-layer nodes

13

14

Chapter 1

Introduction

1.1 Background of overall study

1.1.1 Structural optimization

Structural design of buildings requires complex decision making that considers
costs and human activities and is not limited to simple strength and displace-
ment calculations. Furthermore, there are a wide variety of contents to be
integrated for structural design, such as materials, member cross-sections and
their layout, and the overall shape. For these difficult requirements, major de-
cisions have usually been made by architects without the strong involvement
of engineers during the initial conceptual design phase, which significantly in-
fluences the cost of the project [1]. Structural engineers and other consultants
conventionally work to realize the conceptual design, in which there are few
opportunities for them to greatly improve the initial design [2]. In addition, the
structural design is conventionally determined by the experience and intuition
of structural engineers at first, and then its performance is evaluated through
numerical analysis with a computer. However, this conventional process is inef-
ficient due to a great deal of iterative work to change and evaluate the structural
design, and it becomes difficult to design structures with complex shapes and
mechanical properties.

Structural optimization is a technology that applies the optimization theory
to the design of building structures, and mechanically and mathematically de-
termines a rational structure by making full use of computational power. To
implement an optimization approach, it is necessary to determine which vari-
ables to change during the optimization and formulate a numerical index called
objective function that the structure should maximize (or minimize) and con-
straints that the structure must satisfy. After formulating the optimization
problem consisting of the above elements, the solution can be searched using
an optimization algorithm. By applying structural optimization to the architec-
tural design process, not only can designers and computers collaborate efficiently
to reach the desired structure, but also can design complex architectural shapes
that are difficult to reach only with the intuition of architects and structural
engineers. Cui and Sasaki [3] proposed a plan for the competition of a new sta-
tion in Florence, Italy, which has a structure with an organic shape obtained by
structural optimization removing unnecessary materials that do not bear stress.

15

Kimura et al. [4] optimized the structure of a funeral hall with an organic roof
shape with the thickness and shape of the roof as design variables, and suc-
cessfully reduced the total structural weight. Zegard et al. [5] implemented
density-based topology optimization to a 3D-printed housing project to obtain
a material distribution that achieves both light-weight and strong structure.

Mathematical programming and metaheuristics have mainly been used as
optimization algorithms to solve structural optimization problems. Mathemat-
ical programming guarantees the local optimality of the solution based on the
gradient of the objective and constraint functions and is frequently used for con-
tinuous optimization problems, where design variables take continuous values.
Simplex method [9] and interior point method [10] are representative mathe-
matical programming methods for linear optimization problems. For non-linear
optimization problems, gradient descent method [11] and sequential program-
ming method [12] are widely acknowledged as available algorithms. Although
a metaheuristic is categorized as a stochastic optimization method that does
not guarantee to satisfy any optimality criterion; however, it is applicable to
a variety of optimization problems including discrete optimization problems,
where design variables take integer values. There are a number of metaheuristic
methods, such as genetic algorithm (GA) [13], simulated annealing (SA) [14]
and particle swarm optimization (PSO) [15].

1.1.2 Machine learning for structural engineering

Apart from the above methods, there is an increasing number of studies that
attempt structural optimization based on the knowledge acquired by machine
learning (ML). ML is a method of analyzing patterns from many samples. One
field of ML is supervised learning, in which sets of input-output pairs are given as
training data so that the output can be predicted from the input. ML methods
capable of approximating a highly nonlinear function with a support vector
machine (SVM) or a neural network (NN) have become available as open-source
libraries for Python [16, 17] and a toolbox for MATLAB [18], and attempts have
been made to predict the complex response and performance of structures using
supervised learning. Examples of the prediction target are diverse including the
shear strength of reinforced concrete beams [19], the compression strength of a
concrete material [20], and the ground vibration induced by blasting [21].

The trained ML model may be used to reduce the computational cost during
optimization. Tamura et al. [22] used an SVM and a decision tree to classify
desirable and non-desirable brace placements of steel frames and the trained
model boosted the efficiency of optimization with SA. Papadrakakis et al. [23]
used a multilayer perceptron, which is a simple class of NNs, to predict the
objective function value for shape optimization of continuous materials and
size optimization of frames. Note that these researches are also categorized as
supervised learning.

Reinforcement learning (RL) is also an area of ML, in which rewards for giv-
ing feedback to an action taker called agent are defined, and the agent is trained
to learn which action to take so as to maximize the cumulative reward. Unlike
supervised learning, the training does not require input-output data sets, and
the training is performed in an environment where a next state and a reward
are sequentially observed by inputting the current state and an action. Assum-
ing that the next state and the reward observed there do not depend on the

16

(a)

(b)

(c)

Figure 1.1: Examples of architectural works that are designed with the aid of
structural optimization. (a) Proposal for the competition of a new station in
Florence, Italy [6]. (b) Crematorium in Kawaguchi, Japan [7]. (c) 3D-printed
house, the United States [8] (left and middle photos: Carlos Jones; right photo:
Jason Richards)

17

history of past states or actions, but only on the current state-action pair, and
such a sequential decision-making process is called a Markov decision process
(MDP) [24]. The agent selects an action based on value, which is associated
with the expected future rewards related to each state and action. By repeat-
edly performing simulations in the environment set up as described above, the
agent learns to calculate more precise values in accordance with actual rewards
based on the experience, and accordingly, becomes able to take appropriate
actions that lead to obtaining more rewards. Previous researches showed that
the trained agents overwhelmed the top players in Go [25], and obtained higher
scores than skilled human players in arcade games [26]. There are also a few ex-
amples of using RL in the field of structural engineering. Nakamura and Suzuki
[27] trained an RL agent to choose initial or tangential stiffness for each step of
iterative calculation of nonlinear structural analysis for the purpose of acceler-
ating convergence. Chiba et al. [28] learned the control method of an actuator
attached to the steel frame by RL and confirmed response reduction against the
earthquake. However, there are few pieces of research that tried to utilize RL
for the optimal design of building structures.

RL and structural optimization are similar in that a certain objective func-
tion is defined and the solution with the best objective function is searched
within the constraints. If the process of solving a structural optimization prob-
lem can be transformed into an MDP in the same way that a structural designer
makes design changes at each step, a task synonymous with the problem solved
by structural optimization becomes trainable by RL. Even when a professional
engineer designs a building structure, if only the structural performance is fo-
cused on, the design can be changed by using only the current design contents as
a judgment material without tracing the history of past design changes. There-
fore, it is possible to formulate the design process of building structures as an
MDP. Furthermore, the trained RL agents can be used to save the computa-
tional cost in the process of structural design, and they are also expected to
become a powerful tool to support the decision making of structural designers.
In addition, when the global optimality of the solution cannot be proved in
the structural optimization problem, it is difficult to prepare sufficient desired
outputs to implement supervised learning; on the other hand, RL does not re-
quire explicit input and output data as training material and thus it is easier to
implement the training.

The remarkable results of ML in recent years largely depend on the im-
provement of ML algorithms. In particular, a convolutional neural network
(CNN) [29] that adds arithmetic processing called convolution to a NN has
made prominent achievements in the field of ML since the 2010s. For simplicity,
the explanation is focused on the case where raster images consisting of a set of
pixels are used as the input in the following. Convolution is a process in which
a small matrix called a filter is overlaid on a part of the image and the linear
summation of the filter value and the pixel value of the image is computed while
sliding the filter over the entire area of the image. In the convolution process,
the feature including the position information between pixels can be extracted,
and patterns composed of a group of pixels can be recognized by repeating the
convolution. Due to this property, CNNs have demonstrated high performance
as ML algorithms for a wide range of tasks such as image classification [30, 31],
image generation [32], object recognition [33, 34], audio classification [35], and
natural language processing [36].

18

continuum structure

truss frame

skeletal structures

Figure 1.2: Types of structure that CNN can conveniently process and structures
that CNN cannot.

Figure 1.2 shows types of structures that CNNs can conveniently handle and
structures that CNNs cannot. Here, the skeletal structure is a type of structure
consisting of a series of linear members such as trusses and frames. Due to
its calculation procedure, the convolution operation is particularly suitable for
extracting the feature of continuum structure models with a regular shape rather
than skeletal structures, because a well-shaped continuum model can be easily
converted into data expressed as a rectangular array. In fact, when glancing
over previous studies using a CNN-based ML method for structural optimization
problems, most of them are for continuum structures. For example, there are
a number of CNN-based topology optimization methods proposed to predict
an optimal material density distribution from a continuum structural model
with specified boundary conditions [37, 38, 39, 40, 41, 42]. In other studies,
the true stress distributions of continuum structures are predicted with a good
accuracy using a CNN [43, 44]. Note that CNNs might be applicable to skeletal
structures; in Ref. [45], a truss is replaced with a raster image composed of a set
of pixels so as to process through a CNN for supervised learning; they intended
to predict whether the optimal solution using the selected members as design
variables is expected to be a good solution for structural weight minimization of
the truss with pure compression. However, if a skeletal structure is pixelated for
the CNN, the original data structure in which the member connectivity between
nodes is explicitly given is destroyed, and it becomes difficult to consider the
connectivity relationship of the skeletal structure.

Feature extraction methods for graphs called graph embedding (GE) have
recently been proposed to deal with data structures that are difficult to handle
in CNNs [46]. Here, a graph is a general term for data consisting of nodes and
edges connecting them, and GE can be defined as an operation that calculates
a vector representing some features of the input graph. GE enables to extract
features of data with irregular connectivity, preserving the topological structure
of the graph. GE-based methods have shown remarkable results for prediction
of chemical properties of organic compounds [47, 48] and classification of users
with multiple labels in social networking services (SNS) [49].

Attempts have been made to solve optimization problems for graphs by com-
bining RL and GE. Bello et al. [50] applied RL to traveling salesman problems
(TSPs) and achieved near-optimal results on two-dimensional Euclidian graphs
with up to 100 nodes; however, the method is specially designed for TSP and is
difficult to apply to other graph problems conveniently. Dai et al. [51] extracted
the feature of each node using GE and formulated an RL method that calculates
the value of selecting the node from the extracted feature. They tried to solve
typical NP-hard combinatorial optimization problems such as minimum vertex
cover, maximum cut, and TSP, and succeeded in obtaining a good solution with

19

node
feature

feature of the
whole graph

edge
feature

: feature vector

Figure 1.3: Three types of GE: whole graph embedding (left), node embedding
(middle), and edge embedding (right).

a small computational load for a large-scale graph with 1000-1200 nodes after
training with small graphs with 50-100 nodes.

However, this method is limited to the problem of choosing nodes, and can-
not be applied to the problem of choosing edges. There are other methods that
combine RL and GE [52, 53, 54]; however, they are also limited to the problem
that selects nodes, and very few studies have focused on the problem that aims
to extract edge features and select edges. Although Grover and Leskovec [55]
and Zhao et al. [56] dealt with the problem of detecting the existence of an edge
between two nodes through supervised learning, they predicted the existence of
the edge from the node features at both ends of the assumed edge instead of
embedding the feature of the assumed edge.

In fact, GE is roughly divided into three types depending on which property
of the graph is embedded, as shown in Fig. 1.3. In whole graph embedding,
the whole graph is represented with a single vector. In node embedding and
edge embedding, each node and edge are encoded with their own vector repre-
sentation, respectively. Wang et al. [57] pointed out that existing GE methods
are node-based and the edge feature cannot be expressed as a low-dimensional
vector directly.

When dealing with skeletal structures as a graph, it is common to represent
the joints of members with nodes and the members with edges. For example,
Furuta et al. [58] replaced the truss structure with a graph as described above
and considers the stability conditions. In the initial phase of the design of build-
ing structures, the placement and cross-sections of the members are important
rather than the design of the joints, to ensure that the joints hold sufficient
strength over the members. In other words with the graph theory, it is im-
portant to extract the characteristics of edges instead of nodes as features and
change the property of the edges when considering initial structural design prob-
lems. It might be a peculiarity of the design of building structures that edges
are more important than nodes in the problem setting. Hence, for the problem
of designing building members, it is desirable to combine methods of GE and
RL focusing on how to embed the features of edges instead of nodes. For this
reason, among the three major types of GE in Fig. 1.3, edge embedding should
be the focus of this research.

1.1.3 Optimization of trusses

There are three major categories in the field of truss optimization, as shown
in Fig. 1.4. The first one is size optimization, where the cross-sectional ar-

20

Figure 1.4: Three types of structural optimization for trusses. Size optimization
(left). Topology optimization (middle). Geometry optimization (right).

eas of members vary as design variables. Since the 1960s, size optimization is
extensively studied for the optimal design under stress constraints. An approx-
imate optimal design can be obtained by the fully stressed design [59], where
the stress of any member is equal to its upper or lower bound for at least one
of the assumed loading conditions.

The method to obtain optimal connectivity of members is called topology
optimization, which is a well-established field of research [60, 61]. In particular,
the ground structure (GS) method is widely used for the basis of topology
optimization, in which a densely connected structure called GS and unnecessary
members are eliminated [62]. In topology optimization, the nodal locations do
not move during the optimization. The complexity of the GS ranges from Level-
1, where all neighboring nodes are connected, to full level, where each node is
connected to all the other nodes. Although the full level GS is required in order
to obtain the global optimal solution for the given nodes and the loading and
support conditions, the combination of node pairs explodes to nn(nn − 1)/2 as
the number of nodes nn increases. For this reason, a truss with a limited number
of members connecting to only adjacent nodes is frequently used as an initial
GS, and the GS grids with Level-1 connectivity are used in this study.

However, it becomes difficult to obtain the global optimal topology even for
the sparser initial GS stated above when stress constraints of the members are
added to the optimization problem under multiple loading conditions, because
the stress constraints can be neglected for members whose cross-sectional area
is reduced to zero during the optimization process [60, 63, 64, 65]. To overcome
this discontinuity, branch-and-bound type techniques are proposed. Sheu and
Schmit [66] formulated a two-level optimization problem where the existence
of members and nodes varies in the upper-level linear optimization problem
and they are fixed in the lower-level nonlinear programming (NLP) problem.
Ringertz [67] improved the above method so as to consider the displacement
constraints in the lower-level problem; however, only small-scale trusses with 10
to 29 members are studied. Ohsaki and Katoh [68] also adopted a branch-and-
bound approach to optimize trusses with constraints on stresses, nodal insta-
bility and the intersection of members; however, the number of LP steps and
the computational cost increase drastically as the size of the problem increases.
Besides branch-and-bound type techniques for trusses with integer design vari-
ables, metaheuristic techniques such as GA [69] and SA [70] have been presented.
A method heuristically adding nodes and members from a relatively sparse GS

21

is also proposed [71].
Geometry optimization, or shape optimization, is a method to obtain the op-

timal shape of the truss geometry by controlling nodal locations. The most basic
approach is to directly handle nodal coordinates as design variables; however,
extremely short members, called melting or coalescent nodes, may appear if the
domain in which the node can move is too large to overlap other domains. The
occurrence of melting nodes causes two numerical difficulties; first, the stiffness
equation cannot be solved due to the divergence of the member’s axial stiffness;
second, the speed of convergence becomes slower due to the divergence of the
gradient of the member’s axial stiffness with respect to the nodal coordinates.

A generalized GS method with variable nodal locations can also be used
for optimizing the geometry of a truss. The authors proposed a force den-
sity method (FDM) for simultaneous optimization of topology and geometry of
trusses [72, 73]. By using the force densities as design variables, the numerical
difficulties caused by melting nodes were successfully avoided.

There are few research cases applying ML to truss structures. Hajela and
Berke [74] utilized a multi-layer perceptron, a class of NNs that does not em-
ploy convolutional layers, for predicting the sensitivity of the design variables
for optimization of frames and trusses. Lee et al. [75] also utilized a multi-layer
perceptron for predicting nodal displacements and member stresses of 10-bar
trusses. Swift and Batill [76] applied the trained multi-layer perceptron to
structural optimization problems of trusses. Szewczyk and Hajela [77] adopted
a counterpropagation network [78], which is a variant of the multi-layer percep-
tron, to predict the axial stresses from a set of cross-sectional areas, and utilized
the trained network to save the computational cost during the optimization with
SA for weight minimization with constraints on the axial stresses. However, in
the above cases, the trained model cannot be applied to different trusses without
modifying the structure of the NN and their methods are not versatile.

1.1.4 Cross-section optimization of steel frames

The frame is a type of structure consisting of linear members such as columns
and beams. In some cases, truss structures in which the joints of the mem-
bers are pin-jointed without restraining rotation may be included as a part
of the frame structures, but here the frame structures are limited to those in
which joints are rigidly connected to distinguish themselves from the truss struc-
ture. In the design of standard building frames, the frame shape is often de-
termined mainly from the building plan. Therefore, determining the member
cross-sections after fixing the shape occupies a large weight in the structural
design. Although the fixing condition of the supports is also an important fac-
tor to design steel frames, the supports are not the target of the design changes
and assumed to be fixed in both translation and rotation for simplicity in this
study.

The truss is designed so that the load is transmitted only by the axial
force; on the other hand, axial forces, shearing forces, and bending moments
are considered as the internal forces in the frame structure. Assuming elastic
deformation, the axial stiffness and the shear stiffness are proportional to the
cross-sectional area of the member, while the bending stiffness is proportional
to the second moment of area of the member. Assuming elastic deformation
and the internal forces do not change, the axial and shear stresses are inversely

22

proportional to the cross-sectional area, and the bending stress is inversely pro-
portional to the section modulus of the member. Therefore, it can be said
that the correlation between the member cross-sections and the stresses/dis-
placements in frames is more complicated than that in trusses. For the above
reasons, the cross-section optimization problem of frames in which the cross-
section of the members are handled as design variables is one of the problems
of great practical interest.

If the member cross-sections are treated as continuous variables, the opti-
mization problem can be formulated as an NLP based on the sensitivity anal-
ysis, and mathematical programming methods such as the extended Lagrange
multiplier method [79] and the sequential quadratic programming method [12]
can be used. Kimura et al. [80] used the plate thickness of square steel pipes
and the flange-web thickness of I-beams as continuous design variables to for-
mulate an optimization problem that minimizes the horizontal displacement at
the top of the frame. However, most of the steel materials used for general
buildings are standard products manufactured at a factory. The dimensions of
the cross-section of available structural steel members are also standardized for
each manufacturing plant, and the cross-sectional dimensions take discrete val-
ues. In order to deal with this situation, it is preferable that the design problem
is described as a discrete or combinatorial optimization problem in which each
member cross-section of the frame is selected from finite standard sizes [81]. In
this case, metaheuristics such as GA [13] and SA [14] are often used to solve the
optimization problems. In addition, a number of methods have been proposed
to obtain the optimal discrete cross-sections by solving a relaxation problem
with continuous variables [82, 83].

Tamura et al. [22] is an example of the application of ML in the optimal brace
placement design of steel frames, where an area surrounded by the columns and
the beams is regarded as one pixel, and convolution and pooling are imple-
mented, which are arithmetic processes used in CNNs to extract features con-
sidering the arrangement of adjacent braces. Using the features, they trained a
binary decision tree and an SVM whether the brace arrangement is preferable
or not. The trained model greatly enhanced the efficiency of the solution search
with SA.

However, the above method is designed for the area surrounded by columns
and beams, and cannot be applied to design changes of columns and beams
themselves. In the case of optimizing the cross-sections of a frame, it is possible
to handle the properties of columns and beams more directly by inputting the
frame configuration as a graph and applying GE to extract the member features.

1.2 Objective

The objective of this study is to demonstrate simplified structural design pro-
cesses of skeletal structures through RL-based intelligent structural optimization
in which the variables are changed based on the knowledge acquired by the al-
gorithm instead of relying on mere repetitive calculations. To achieve this goal,
skeletal structures are regarded as graphs consisting of nodes and edges, and
GE is applied to extract the member features that capture the structural prop-
erty from the inputs of nearby nodes and members. Furthermore, in order to
implement RL, the feature vector of each member is mapped to a scalar value

23

indicating the action value of a pre-specified design change associated with the
member so that the agent can quantitatively evaluate the design changes.

1.3 Advantages of the proposed method

When using the proposed GE method, the feature quantity can be extracted
while explicitly maintaining the connectivity relations of skeletal structures un-
like CNNs, and it can be expected to grasp the properties of skeletal structures
more accurately.

Considering that conventional GE methods are mostly about extracting node
features [57] and the method by Wang et al. [57], which is one of the few meth-
ods that can directly extract edge features, can handle node inputs only, the
proposed GE method in this study is more suitable for the optimal design of
the members of skeletal structures because both node and edge inputs can be
handled simultaneously to express the member features. The attributes for
nodes and members are both important inputs that characterize the structure.
By using the proposed GE method, member features can be extracted without
missing information on both nodes and members.

The computational cost to use the trained agent is very low. Although it
requires an enormous number of simulations in the training phase to learn the
causal relationship between the design change to the members and the change
in the structural properties, the agents can efficiently find solutions without the
need for repetitive calculations once trained.

Furthermore, the trained agent is versatile, because it can be applied to
skeletal structures with different connectivity and the number of nodes and
members while maintaining the size of training parameters. In other words,
the trained model is re-usable to different structures without re-training if it
properly learns the knowledge to change the structural design.

1.4 Thesis structure

The following chapters are organized as follows. Chapter 2 explains the theo-
retical background of RL, which forms the basis of the proposed method. In
Chapter 3, the proposed method combining GE and RL is formulated in detail.
RL tasks are problem-specific and must be defined for each problem. In Chap-
ters 4 and 5, two optimization problems are demonstrated as the case studies
and converted them into the tasks that can be handled by RL, and then the
proposed method is applied to the training of the RL tasks. In Chapter 4,
as the first case study, the agents learn the topology optimization problem of
trusses through the proposed method. Furthermore, as an application example,
the trained RL agents are utilized to generate initial solutions for simultaneous
optimization of topology and geometry of trusses by the FDM. In Chapter 5,
as the second case study, the proposed method is demonstrated through a dis-
crete cross-section optimization problem for steel frame structures. Chapter 6
is a concluding remark that summarizes the above chapters and findings of the
proposed method obtained through the case studies.

24

Chapter 2

Basics of reinforcement
learning

2.1 Characteristic of reinforcement learning

Machine learning (ML) is a term first used by Arthur Samuel [84], and can
be defined as the study of computer algorithms to learn tasks without explicit
programming by humans. Because of this automatic self-improvement prop-
erty, ML is regarded as a subset of artificial intelligence (AI). Depending on
the approach of the algorithm, ML is roughly divided into three types: super-
vised learning, unsupervised learning, and reinforcement learning, as shown in
Figs. 2.1 and 2.2.

Supervised learning requires a set of data that contains inputs and desired
outputs, known as training data. Using them, a mathematical model is trained
so that it approximates the output from the input only [85]. For example,
Togootogtokh and Amartuvshin [86] tried to fine-tune one of the state-of-the-
art pre-trained image classifier known as VGG19 [87] to recognize Chihuahua
and muffin with 1000 pre-labeled images of them.

By contrast, unsupervised learning solely requires inputs and infers the struc-
ture in the inputs. One of the most common applications of unsupervised learn-
ing is clustering, which aims at finding hidden grouping in the data. van der
Maaten and Hinton [88] proposed an unsupervised learning method called t-
SNE, a visualization method for high-dimensional data like images by embed-
ding them into a two or three-dimensional space.

Reinforcement learning (RL) seeks to take actions in an environment so as
to maximize the cumulative reward. Similarly to unsupervised learning, RL
does not require desired outputs as training data; instead, it requires a reward
function that evaluates the current state. For instance, Gu et al. [89] utilized
RL to train robots to learn a door opening task, in which the robot successfully
learned the accurate sequence of the manipulation, which is very difficult to
provide explicitly.

The name reinforcement learning derives from operant conditioning, a method
of learning that improves behaviors through rewards and punishments, as ob-
served in the experiment called Skinner box using rats [91, 92]. Figure 2.3 shows
what the Skinner box looks like; electrical charges can be given to a rat, and the

25

Figure 2.1: Three areas of ML: supervised learning (left), unsupervised learning
(middle), and reinforcement learning (right) [90]

Unsupervised learning
clustering
dimensionality reduction

Supervised learning
classification
regression

Reinforcement learning
skill-acquisition
decision making

Figure 2.2: Application examples of supervised learning (left) [86], unsupervised
learning (middle) [88], and reinforcement learning (right) [89]

26

lights

mouse

electric grid

pellet dispenser

lever

Figure 2.3: Conceptual diagram of a Skinner box [91, 92]

electric shock is turned off and pellets are dispensed when the lever is pressed
down. At first, the rat accidentally presses down the lever to stop the electric
shock and obtain the food, without noticing the relationship between press-
ing down the lever and the outcomes. However, the rat gradually learns the
relationship while repeating the experience that the electrification can be inter-
rupted and the pellet comes out when the lever is pressed down. Consequently,
the behavior of pressing down the lever is reinforced. The observed result sup-
ports Thorndike’s law of effect, which suggests that behaviors that produce a
satisfying outcome become more likely to occur and behaviors that produce an
unpleasant outcome become less likely to occur Thorndike [93].

The concept of RL takes the same approach to the training of numerical
models as this behavioral learning mechanism, characterized in the following
two points:

· Selective : trying out different alternatives, comparing and choosing
· Associative : associating the alternatives and situations

Metaheuristics such as GA and SA are selective in the sense that variables
are changed to obtain solutions and a good solution is selected among them;
however, they are not associative because it merely searches the neighborhood
of a good solution stochastically. On the other hand, supervised learning is
associative because it gives sets of input and output as the learning material
and learns the relationship between them, but not selective because the model
does not learn the input-output relationship by changing variables [94].

The mathematical formulation of RL is based on the optimal control theory.
In particular, as researches related to RL, Bellman [95, 96] defined the method
of solving the Bellman equations for optimal control problems as dynamic pro-
gramming. He also introduced a discrete stochastic control problem to solve
with dynamic programming known as an Markov decision process (MDP) [97],
which is explained in Sec. 2.2. Later, a notable variant of dynamic program-
ming called policy iteration was developed [98]. These methods are still the
foundational elements of the RL methods even today.

2.2 Markov decision process

RL mainly deals with tasks within the framework of MDP. As a prerequisite,
the following elements are necessary to set up an MDP environment:

27

x

θ

Figure 2.4: Pole balancing problem [99, 100]

· state s : input for the agent to make the decision
· action a : operation that changes the state s to the

next state s′

· reward r(s, s′) : reward immediately provided after
transitioning from s to s′

· transition model {s, a} → s′ : model that inputs s and a and outputs s′

An example of the above elements are explained through a pole balancing
problem [99, 100], which is a typical MDP. As shown in Fig. 2.4, a rigid pole is
hinged to a motor-driven cart in a two-dimensional space. The remote controller
applies an impact force of fixed magnitude in right or left direction to the cart
at discrete time intervals. The cart-pole system is simulated with a detailed
physical model considering various parameters such as the coefficient of friction,
the length of the pole, the mass of the pole and of the cart. The goal of this
problem is to operate the controller so as not to fall the pole and not to move the
cart beyond the threshold from the original position without prior knowledge
about the system.

The pole balancing problem contains four state variables:

· x : cart position
· θ : pole angle from the vertical axis
· ẋ : cart velocity

· θ̇ : angle velocity of the pole

From the problem definition, two types of actions can be easily determined:
applying an impulsive force to the right and to the left. One of the easiest
reward settings is to provide a reward of +1 at every time-step if the pole
remains upright [101].

The way an agent behaves is called a policy, which is described in the form
of π|s → a with a probability of selecting an action a in a certain state s. In
RL, the goal is to acquire the agent’s policy that maximizes the cumulative
reward finally obtained. In other words, the rewards must be appropriately set
so that the agent achieves the goal by maximizing the rewards. Suppose we

28

try to acquire a strategy for winning Othello through RL. If more reward is
given when taking a corner position, the agent may learn how to occupy the
corners without the consideration of winning the game. Although taking corner
positions is often advantageous in winning the game, a better reward setting is
to give a reward only when winning the game.

A discrete time-step decision-making process is assumed hereafter. When
considering how the environment changes at step t + 1 with respect to the
action taken at step t, it is generally necessary to trace all the state, action, and
reward histories from step 0 to t; that is described as

Pr{st+1 = s′, rt+1 = r|st, at, rt, st−1, · · · , r1, s0, a0} (2.1)

The Markov property is one of the characteristics of specific stochastic pro-
cesses, in which the probabilistic transition from the current state to the next
and the expected future rewards does not depend on any past state, action, and
reward, but only on the present state and the action selected [24].

Pr{st+1 = s′, rt+1 = r|st, at} (2.2)

A task that satisfies the Markov property is called an MDP, and an MDP
with finite state and action spaces is especially called a finite MDP. Examples of
a finite MDP is the task of considering the next move of Othello and chess. In
Othello and chess, it is not important to know the past situations and players’
moves reaching the current board, and it is enough to know the situation on
the current board to decide the next move. In the following, the discussion will
proceed on the assumption that all the targeted RL tasks are finite MDPs. In
addition, the MDPs in this study are assumed to be episodic having terminal
states or the maximum steps, and the sequence of MDP from the initial step
t = 0 to the terminal step t = T is defined as an episode hereafter.

2.3 Reinforcement learning

2.3.1 Value function

The agent observes the next state and the reward from the environment when
the action in a certain state is selected based on the policy. At this time, the
policy is updated based on a value function: the notion of expected future
rewards to be accumulated from the state. If the policy is updated solely using
the reward instead of the value function, the agent will acquire a short-sighted
policy that only considers immediate rewards. By using the value to update the
policy, it is possible to acquire a better policy that considers not only immediate
rewards but also expected future rewards.

In considering the value function, it is important to first define the notion
of future rewards, known as a return. The simplest way to estimate a return Rt

at step t is to compute the sum of discounted rewards while following the policy
[102] as

Rt =

T∑
i=t

γi−tri (2.3)

29

s

V(s) Q(s,a2)

Q(s,a1)
a1

a2

Figure 2.5: State value and action values in the situation of playing three lines

where γ ∈ [0, 1] is a discount factor to adjust the importance of long-term re-
wards; the immediate reward is only considered and the following future rewards
are disregarded when γ = 0 and the rewards at any future step are treated with
the same importance as the immediate reward when γ = 1. The discount factor
with a value less than 1 is particularly convenient when there are a large number
of total steps in one episode, because it prevents the return from becoming an
enormous value, and when training the agent to obtain relatively short-term
rewards.

There are mainly the following two types of value functions: state value V (s)
and action value Q(s, a).

· V π(s) : expected return by successively following policy π from state s
· Qπ(s, a) : expected return by taking action a at state s and then successively

following policy π

Let Eπ{Rt} denote the expected return at step t by following policy π. Using
Eπ{Rt}, the two values are specifically computed as

V π(s) = Eπ{Rt|st = s}

= Eπ{
∞∑
k=0

γkrt+k+1|st = s}
(2.4a)

Qπ(s, a) = Eπ{Rt|st = s, at = a}

= Eπ{
∞∑
k=0

γkrt+k+1|st = s, at = a}
(2.4b)

These values can be intuitively understood supposing playing with three
lines, as illustrated in Fig. 2.5. It is possible to judge if a current situation
is advantageous or disadvantageous by looking at the board. At this time,
the player estimates the state value V (s) of the current state of the board.
Simultaneously, the player’s next move will change the situation of the board,
and will be an important factor for winning or losing. When considering the
next move from the current board, the player considers its action value Q(s, a).

30

2.3.2 Policy

Let P a
ss′ and r

a
ss′ denote the probability and the reward when transitioning from

state s to state s′ by taking action a, respectively. In order to determine the
action that is expected to maximize the return from the current state value
V π(s), all possible actions in that state should be listed, and the action that
maximizes the state value of the next state should be selected as

π(s) = argmax
a

P a
ss′ (r

a
ss′ + γV (s′)) (2.5)

Similarly, once the action values are estimated, the agent’s policy that is ex-
pected to maximize the return can be determined as

π(s) = argmax
a

Q(s, a) (2.6)

This policy is called greedy policy. Equations (2.5) and (2.6) imply the im-
portance of estimating correct state and action values, as a reasonable policy
cannot be obtained without an accurate estimation of the values. However,
deterministic policies such as the greedy policy are inefficient in exploring bet-
ter solutions, because such policies persist in exploiting current state-value and
action-value estimates and does not attempt other actions that are currently
estimated to yield low returns, even though there may be other more profitable
actions among them. During the training phase, the ϵ-greedy policy instead of
the greedy policy is often used to enhance exploration in the state space, which
is given as

π(s) =


argmax

a∈{1,··· ,na}
Q(s, a) (if random [0, 1] > ϵ)

unirand
a∈{1,··· ,na}

a (else)
(2.7)

where unirand is an operation to choose a value from a set of values with a uni-
form probability. The difference of the ϵ-greedy policy from the standard greedy
policy is that it chooses an action randomly with a low probability ϵ and this
randomness improves exploration. Although both of exploring a space that the
RL agent has less experienced and exploiting the agent’s current knowledge are
very important, they are fundamentally conflicting concepts and thus incompat-
ible at the same time. This is well known as an exploration-exploitation dilemma
[103, 104] and also discussed in the area of RL [105, 106]. In order to balance
the exploration-exploitation trade-off, ϵ is typically set around 0.1. There are
also studies on adaptive ϵ-greedy methods, where the value of ϵ changes during
the training [107, 108]. Still, ϵ = 0.1 is adopted for the ϵ-greedy policy in this
study to focus on the formulation of the RL method.

RL methods can be classified into two types depending on how the policy
is used and updated during the training. One is off-policy methods, which
separates the policy to be improved and the policy used for simulation. The
other is on-policy methods, which assume the future actions in the simulation
are determined based on the policy to be improved; in other words, an on-policy
method uses the same policy for improvement and for simulation.

The difference between off-policy and on-policy methods are illustrated in
Fig. 2.6. In Fig. 2.6, the agent is trained to find the movement to obtain the
reward of +1 at the goal, while avoiding bottom squares with the reward of

31

V(s)
-10 -10 -10

Start -10 -10 -10
optimal path

safer path

The agent can move
to the next square

Goal
+1

Start

Goal
+1

Goal
+1

-10 -10 -10Start

high

low

off-policy

policy to be used in simulations:
ε-greedy policy

on-policy

policy to be improved:
greedy policy

policy to be improved
and used in simulations:
ε-greedy policy

Figure 2.6: Difference of off-policy and on-policy methods. ϵ is fixed at a small
positive value.

−10. If an off-policy method is adopted, the state values are updated without
considering the randomness caused by the ϵ-greedy policy. In contrast, if an on-
policy method is adopted, the state values are updated on the premise that the
best action is not always taken; the lower state values are estimated for squares
close to the bottom squares with the reward of −10. In order to converge to the
optimal policy using the on-policy method, it is necessary to gradually reduce
ϵ to 0 during the training process.

In this study, an RL method is formulated based on an off-policy method.
Simulations are performed using the ϵ-greedy policy with ϵ = 0.1 during the
training, and the deterministic greedy policy is used when designing the struc-
ture using the trained RL agent. Therefore, it is expected that the design using
the trained RL agent will not be a redundant design with a margin of structural
constraints, but a challenging design in which the amount of materials used is
reduced as much as possible within the structural constraints.

2.3.3 Bellman equation

Let πp(s, a) denote the probability to choose an action a at a state s by the
current policy. The Bellman equation is a consistency condition for any arbitrary
policy π and state s that holds between the value of state s and the value of the
possible successor states.

V π(s) = Eπ{
∞∑
k=0

γkrt+k+1|st = s}

= Eπ{rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s}

=
∑
a

πp(s, a)
∑
s′

P a
ss′

(
rass′ + γEπ{

∞∑
k=0

γkrt+k+2|st+1 = s′}

)
=
∑
a

πp(s, a)
∑
s′

P a
ss′ (r

a
ss′ + γV π(s′))

(2.8a)

32

Qπ(s, a) = Eπ{
∞∑
k=0

γkrt+k+1|st = s, at = a}

= Eπ{rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s, at = a}

=
∑
s′

P a
ss′

(
rass′ + γEπ{

∞∑
k=0

γkrt+k+2|st+1 = s′}

)

=
∑
s′

P a
ss′

(
rass′ + γ

∑
a′

Eπ{
∞∑
k=0

γkrt+k+2|st+1 = s′, at+1 = a′}

)

=
∑
s′

P a
ss′

(
rass′ + γ

∑
a′

πp(s
′, a′)Qπ(s′, a′)

)
(2.8b)

where a′ is the action taken at the next state s′. Note that the state and action
values with respect to the next state s′ are discounted by γ both in Eqs. (2.8a)
and (2.8b). In order to maximize the return, the policy ∗ satisfying the following
equations must be searched.

V ∗(s) = max
π

V π(s) (2.9a)

Q∗(s, a) = max
π

Qπ(s, a)

= E∗{rt+1 + γV ∗(st+1)|st = s, at = a}
(2.9b)

The policy ∗ satisfying Eqs. (2.9a) and (2.9b) is called the optimal policy, and
V ∗(s) and Q∗(s, a) are called the optimal state value and the optimal action
value, respectively. For the optimal policy ∗, the Bellman equations (2.8a) and
(2.8b) are rewritten as

V ∗(s) = max
a

E∗{rt+1 + γV ∗(st+1)|st = s}

= max
a

∑
s′

P a
ss′ (r

a
ss′ + γV ∗(s′))

(2.10a)

Q∗(s, a) = E∗{rt+1 + γmax
a′

Q∗(st+1, a
′)|st = s, at = a}

=
∑
s′

P a
ss′

(
rass′ + γmax

a′
Q∗(s′, a′)

) (2.10b)

Equation (2.10a) expresses that the state value under the optimal policy is
equal to the expected return by taking the best actions from state s. Similarly,
Eq. (2.10b) expresses that the action value under the optimal policy is equal to
the expected return by taking the best actions after taking action a at state s.

2.3.4 Dynamic programming and Monte Carlo methods

A dynamic programming (DP) method [109, 98] and a Monte Carlo (MC)
method [110, 94], which are the theoretical foundations of RL methods, are
briefly explained.

33

DP is a method to compute state values using the Bellman equation and
improve the policy based on the computed state values. Given that the number
of states and actions are ns and na, respectively. Although the number of
possible deterministic policies is nns

a , it is theoretically guaranteed to reach the
optimal policy in polynomial time when using DP. Therefore, the convergence of
dynamic programming is much faster than other methods based on enumeration.

However, when evaluating the policy, the value of all states must be calcu-
lated at each step, in which the computational cost is too high. In addition,
since the current value of all states must be stored for updating the policy, a
memory corresponding to the number of states is required. To make matters
worse, DP can only be applied when the probability of state transitions P a

ss′ is
known for all the possible combinations of s, s′ and a. In general tasks, P a

ss′ is
often unknown, and thus the applicability of DP is limited.

By contrast, MC does not require the probability of state transitions. MC is
an algorithm that relies on the repetition of sampling the observation of states,
actions, and rewards through the simulation of the RL task. Typically, the state
value of st is updated using the following equation:

V (st)← V (st) + α (Rt − V (st)) (2.11)

where α ∈ (0, 1] is the learning rate to determine to what extent the observation
overrides old action values; the convergence of the learning is slow but stable
when α is closer to 0, and fast but might be unstable due to divergence or
oscillation of the estimated action values when α is closer to 1. As seen in
Eq. (2.11), the estimation of state values is updated so as to minimize the error
to Rt, the return to be obtained from step t. Since only the actually obtained
rewards through the simulations are used to update the state values without
estimating subsequent state values, MC is a stable method so that the correct
state values can be estimated. Meanwhile, Eq. (2.11) means that the state value
is updated once all the rewards from the current state to the terminal state are
observed. In other words, the policy cannot be updated until the final outcome
of the episode is known, which is disadvantageous in terms of learning efficiency
for tasks with a large number of steps per episode.

2.3.5 Temporal difference learning

Temporal difference(TD) learning [111] is a class of RL methods that has the
advantages of DP and MC. In TD learning, a typical update scheme for the
state values is described as

V (st)← V (st) + α (rt+1 + γV (st+1)− V (st)) (2.12)

In Eq. (2.12), the estimation of V (st) is updated so as to minimize the error
to rt+1 + γV (st+1). By using the actually observed immediate reward rt+1 and
the estimated value of the next state V (st+1), the value and the policy can be
updated every step like DP. Moreover, Eq. (2.12) does not require a probabilistic
model of state transitions P a

ss′ like MC.
For example, consider that the state values are estimated for the following

6 episodes:

34

s(1)
r=0→ s(2)

r=0→ s(3) (2.13a)

s(2)
r=0→ s(3) (2.13b)

s(2)
r=1→ s(3) (2.13c)

s(2)
r=1→ s(3) (2.13d)

s(2)
r=1→ s(3) (2.13e)

s(2)
r=1→ s(3) (2.13f)

In this example, V ∗(s(2)), the optimum state value for s(2), is naturally expected
to be 2/3. Then how about V ∗(s(1))? If MC method is used, V ∗(s(1)) is
estimated to be 0 as the return after observing state s(1) is 0, whereas, V ∗(s(1))
is estimated to be γV ∗(s(2)) = γ2/3 in TD learning as the transition probability
from state s(1) to state s(2) is 100%. The difference between these two estimates
is a good indication of the difference between MC and TD learning methods. In
TD learning, not only the episode in which the state s(1) is observed but also
the other episodes are associated to update the estimation of V ∗(s(1)), while
MC methods merely focus on the episode in which s(1) is observed. This way,
TD learning has the advantage of fast convergence through the learning based
on a certainty-equivalence estimate, which assumes that the observed value of
the transition ratio from the state s(i) to the state s(j) is the true transition
probability, and the average of the rewards observed for a certain transition is
assumed to be the true expected reward for the transition.

A SARSA algorithm [112] is an RL method that applies the concept of TD
learning. The difference from TD learning is that it is formulated to learn action
value estimates instead of state value. Before the learning begins, each action
value is initialized with arbitrary values. In SARSA, the action value Q(s, a) is
updated as

Q(s, a)← Q(s, a) + α (r + γQ(s′, a′)−Q(s, a)) (2.14)

As seen in Eq. (2.14), SARSA depends on current state s, current action a,
reward observed r, next state s′ and next action a′, which is the origin of the
name SARSA. SARSA minimizes the error between Q(s, a) and r + γQ(s′, a′),
which is the sum of the observed reward r and the discounted action value of
s′ and a′ determined by the current policy. SARSA is categorized as on-policy
method because the tuple (s, a, r, s′, a′) are obtained from the current policy to
be improved.

Q-Learning [102] is a well established off-policy RL method. When reward
r and next state s′ are observed from state s by taking action a, estimation of
action value Q(s, a) is updated by the following equation:

Q(s, a)← Q(s, a) + α
(
r + γmax

a
Q(s′, a)−Q(s, a)

)
(2.15)

In Eq. (2.15), Q(s, a) is updated so as to reduce the error from r+γmaxaQ(s′, a),
which is the sum of observed reward r and the estimated optimal future state
value at s′ weighted by γ. Here, the greedy policy is used to estimate the opti-
mal future state instead of the current policy; this is the reason why Q-Learning
is an off-policy method.

35

Q-Learning is guaranteed to converge to the optimal action value Q∗(s, a) for
arbitrary state-action pairs under the following conditions: states and actions
take discrete values, the action value is associated with each unique state-action
pair without the use of function approximation, and all the state-action pairs
are repeatedly observed [113, 114].

Note that the choice of γ will greatly affect the meaning of action values. If
γ = 0, the error to reduce is r − Q(s, a), which implies that the action value
merely estimates an immediate reward obtained by taking action a at state s.
If γ = 1, the error to reduce is r +maxaQ(s′, a) − Q(s, a), which implies that
future and immediate rewards are regarded as equivalently important.

2.4 Surrogate modelling

2.4.1 Curse of dimensionality

In order to store all the possible state-action pairs, a tabular representation is
utilized, as shown in Table 2.1. The value in each cell represents the action
value corresponding to taking action a(j) at state s(i). When a state-action
pair is observed in the simulation, the corresponding cell value is updated using
Eq. (2.15). This storing scheme is available when the number of possible state-
action pairs ns·na is small enough to store all the pairs in a computer’s memory
device.

Table 2.1: Tabular representation of action values

a(1) · · · a(j) · · · a(na)

s(1) Q(s(1), a(1)) · · · Q(s(1), a(j)) · · · Q(s(1), a(na))
...

...
. . .

...
. . .

...
s(i) Q(s(i), a

(1)) · · · Q(s(i), a(j)) · · · Q(s(i), a(na))
...

...
. . .

...
. . .

...
s(ns) Q(s(ns), a(1)) · · · Q(s(ns), a(j)) · · · Q(s(ns), a(na))

However, a problem arises due to the curse of dimensionality [115]; when the
state and action spaces are too large, it is unrealistic to estimate, update and
store the exact action values for all the state-action pairs. For example, Othello’s
state space size is approximately 1028 [116] and that of Chess is roughly 1043

[117]. For such a case, it is necessary to approximate action values using a
surrogate model such as a NN which is explained in the next section. Deep-Q
network [26], a novel method for learning to approximate action values using
NN, is further described in Sec. 2.4.3.

2.4.2 Neural network

A NN is a technique to approximate an input-output relationship. The con-
cept of NN derives from how neurons in a brain are thought to work. Note
that convolution, a pervasive technique for NNs to reduce the dimensionality of
rectangular arrays while preserving spatial information between pixels, is not
explained here because they are not used in this study.

36

y1 wk,1

bk

k
wk,2

y

1

y2

･･･

･･･
･･･

0
o

φ(i)(o)

activation
function

layer i-1 layer i

θk
: trainable parameters

nu,i-1

(i)

(i)

(i-1)

(i-1)

yk
(i)

(i-1) (i)

(i)

Figure 2.7: Illustration on mathematical operation in each neuron

The NN architecture is defined by the number of layers nl, the number of
units in each layer nu,i (i = 1, · · · , nl), and the choice of activation functions for

each layer. Let w
(i)
k,j denote j-th weight and b

(i)
k the bias of k-th unit in layer i,

respectively. The unit contains weights w
(i)
k,i, · · · , w

(i)
k,nu,i−1

and a bias b
(i)
k , which

are the trainable parameters that vary during the training; they are written as

θ
(i)
k for brevity.

y
(i)
k , k-th unit’s output in layer i, is expressed as

y
(i)
k = φ(i)

nu,i−1∑
j=1

w
(i)
k,jy

(i−1)
j

+ b
(i)
k

 (2.16)

Figure 2.7 illustrates how inputs are transmitted through the k-th neuron in
layer i. Like a neuron passing electric signals, the unit takes values from units
in the previous layer i − 1 as inputs, computes a weighted linear sum of them
with a bias term, and passes the value through an activation function φ(i).

Six representative activation functions are shown in Fig. 2.8. An activation
function φ needs to be nonlinear in order to approximate a nonlinear function
and differentiable to apply a gradient-based optimization algorithm. ReLU is
widely used as an activation function of NNs despite the non-differentiability
at x = 0, because its computational cost is very low and the gradient does not
vanish even when the input is a large positive value.

Let no denote the number of outputs from the NN. If the target NN output
z̄k (k = 1, · · · , no) is known, the loss function L can be determined as the mean
squared error between z̄k and zk, the k-th output from the NN, as

L =

no∑
k=1

(zk − z̄k)2 (2.17)

The NN is trained to minimize the loss by modifying the trainable parameters
of the units. The simplest way is a gradient descent method where the trainable

parameters θ
(i)
k are iteratively modified based on the gradient of the loss function

as

37

x

φ(x)

0

1
φ(x) = 1 (x ≥ 0)

φ(x) = -1 (x < 0)
-1

(a) Binary step

x

φ(x)

0

1

φ(x) = e-x2

(b) Gaussian

x

φ(x)

0

1
φ(x) = ln(1+ex)

(c) SoftPlus

x

φ(x)

0

1

φ(x) = tanh(x)

-1

(d) tanh

x

tanh(x/2)+1
 = tanh(x/2)+1

2φ(x) x

φ(x)

0

1

-1

(e) Sigmoid

φ(x) = x

φ(x) = 0

x

φ(x)

0x

(f) ReLU

Figure 2.8: Examples of activation functions

θ
(i)
k ← θ

(i)
k − α

∂L

∂θ
(i)
k

(2.18)

where α is the learning rate as introduced in Eq. (2.15). This method is well

known as stochastic gradient descent (SGD) [118]. In application, ∂L/∂θ
(i)
k is

often obtained by randomly sampling a set of losses called a mini-batch and
computing the average of them to stabilize the training, referred as the batch
gradient descent method [119].

To prevent oscillation during iterative updates with an SGD method, a mo-
mentum term can be added to Eq. (2.18) as

θ
(i)
k ← θ

(i)
k + ν∆θ

(i)
k − α

∂L

∂θ
(i)
k

(2.19a)

∆θ
(i)
k ← ν∆θ

(i)
k − α

∂L

∂θ
(i)
k

(2.19b)

where ν ∈ (0, 1) is a coefficient of momentum that determines how much the
algorithm inherits the previous updates.

Root mean square propagation (RMSProp) [120] is one of the most prevalent
variants of SGD, in which the learning rate varies for each of the trainable
parameters. The updating scheme of RMSProp is given as

θ
(i)
k ← θ

(i)
k −

α√
ω
(i)
k

∂L

∂θ
(i)
k

(2.20a)

ω
(i)
k ← ηω

(i)
k + (1− η)

(
∂L

∂θ
(i)
k

)2

(2.20b)

where η ∈ (0, 1) is the factor to adjust how much the past update amount is

inherited and ω
(i)
k is a running average of the magnitudes of recent gradients for

the trainable parameters. The running average is utilized to divide the learning
rate α for the trainable parameters in Eq. (2.20a).

38

To implement one of the update algorithms above, it is necessary to calculate

the partial derivatives ∂L/∂θ
(i)
k . For simplicity, only the k-th NN output zk is

focused and the parameters in the k-th unit in the output (i.e. nl-th) layer θ
(nl)
k

is derived. The derivatives can be decomposed using the chain rule as

∂L

∂θ
(nl)
k

=
∂L

∂zk

∂zk
∂ok

∂ok

∂θ
(nl)
k

(2.21)

where ok is the k-th unit’s linear combination of inputs from the previous layer.
The first factor of the right-hand side is easily obtained from Eq. (2.17) as

∂L

∂zk
=
∂ (zk − z̄k)2

∂zk
= 2 (zk − z̄k) (2.22)

The second factor is obtained by partial differentiation of the activation function
φ : o→ z as the following equation holds:

∂zk
∂ok

=
∂φ(ok)

∂ok
(2.23)

From Eq. (2.23), the activation function needs to be differentiable. The last
factor is calculated depending on whether the trainable parameter is a weight
or a bias; which is given as

∂ok

∂w
(nl)
k,j

=
∂
(∑nu,nl−1

j=1

(
w

(nl)
k,j y

(nl−1)
j

)
+ b

(nl)
k

)
∂w

(nl)
k,j

= y
(nl−1)
j (2.24a)

∂ok

∂b
(nl)
k

=
∂
(∑nu,nl−1

j=1

(
w

(nl)
k,j y

(nl−1)
j

)
+ b

(nl)
k

)
∂b

(nl)
k

= 1 (2.24b)

This way, the derivatives with respect to the parameters can be obtained
analytically. The derivatives of the trainable parameters in the previous layers
are also obtained in a similar way using the chain rule, which implies that they
depend on the derivatives in the subsequent layers. Hence, as opposed to the
forwarding process from inputs to outputs, the computation of the gradients
is implemented from the output layer to the input layer. For this reason, the
gradient descent methods for NNs mentioned above are called back-propagation
method as a generic term; see more details on [121].

2.4.3 Deep Q-network

A deep Q-network (DQN) [26] is a method combining conventional Q-Learning
and deep learning: a method to estimate the relation between inputs and out-
puts using a deep NN architecture. In a DQN, the agent learns by tuning the
NN parameters θ to find the ideal values θ∗ so that it can approximate proper
action values Q(s, a; θ) from the input states as

Q(s, a; θ∗) ≈ Q∗(s, a) (2.25)

where Q∗(s, a) is an optimal action value equal to the highest expected dis-
counted rewards obtained by an optimal sequence of taking actions. Equa-
tion (2.15) intended to minimize the difference between the current estimation

39

of the action value Q(s, a) and the sum of the observed reward and the dis-
counted Q-value thereafter r+ γmaxaQ(s′, a). Similarly, the NN parameters θ
are optimized to minimize the squared error L defined as

L(θ) =
(
r(s′) + γmax

a
Q(s′, a; θ)−Q(s, a; θ)

)2
(2.26)

The optimal target values r(s′)+γmaxaQ(s′, a; θ) are substituted by r(s′)+
γmaxãQ(s′, ã; θ̃), using θ̃ from previous θ to stabilize the algorithm, where ã is
distinguished from a because it is derived from different Q-values [26]. There-
fore, the NN parameters are tuned so as to minimize the following equation:

minimize L̃(θ) =
(
r(s′) + γmax

ã
Q(s′, ã; θ̃)−Q(s, a; θ)

)2
(2.27)

Since the loss function is defined this way, the tuning problem (2.27) can be
solved with any arbitrary back-propagation method, which is already explained
in Sec. 2.4.

Another contribution of the DQN is the use of experience replay [122] for
mini-batch updates instead of single updates on the last experience [114]. Expe-
rience replay is a technique to store the tuples of agent’s experience at each step
(st, at, rt, st+1) into a memory. In the process of tuning the NN parameters, a
set of random tuples from the memory to create a mini-batch data and compute
the averaged loss computed using Eq. (2.27) for each tuple. In order to utilize
experience replay, the RL method needs to be off-policy because the parameters
of the NN when each sample is stored in the memory and those of the current
NN are different. This is the reason why the DQN is based on Q-Learning,
which is an off-policy method, rather than on-policy methods like SARSA.

2.5 Conclusion

In this chapter, several conventional RL methods have been briefly summarized,
which are the basis of the proposed method to be introduced in Chapter 3. The
relationship of this chapter and Chapter 3 is illustrated in Fig. 2.9. RL is
characterized as a method for simulating the behavioral learning mechanism
for the training process, in which rewards are given according to the selected
action and the observed state. The methods explained here aim at estimating
the optimal value functions that consider not only immediate rewards but also
future rewards. Since the number of action values is equal to the product of
the numbers of states and actions, it is necessary to approximate the value
functions with a small number of parameters when dealing with a problem with
a huge number of states. NNs are a typical example of function approximation
methods, and the DQN algorithm is regarded as an important approach that
combines NNs and RL. The original DQN utilizes a specific type of NN called the
CNN, which specializes in extracting features from rectangular arrays and is not
suitable for data with irregular connections. The proposed method explained in
the next chapter adopts a GE-based approach instead of NNs for approximating
the action values. By introducing GE, the features of data expressed as a graph
with irregular connectivity of nodes can be easily extracted.

40

Dynamic programming (DP)
Temporal difference (TD) learning

SARSA

Q-learning

Q-learningDeep Q-Network (DQN) Neural network (NN)

Graph embedding (GE)Proposed method (RL+GE) Q-learning

Monte Carlo (MC) Method

merge (Sec. 2.3.5)

(Sec. 2.4.2)(Sec. 2.4.3)

(Sec. 2.3.4)

surrogate modelling

specialize in graphs such as skeletal structures

(on-policy)

(off-policy)

+=

= +

(Sec. 3.2)

(Chapter 3)

(Chapter 2)

(Sec. 3.3)

Figure 2.9: The relationship of the contents explained in Chapter 2 and those
to be explained in Chapter 3.

41

42

Chapter 3

Hybrid method of graph
embedding and
reinforcement learning for
training an optimal design
agent of skeletal structures

3.1 Conversion of an optimization problem into
a reinforcement learning task

In this section, the common procedure to convert an optimization problem into
an RL task is described. As explained in Sec. 2.2, the RL task needs to be
defined as a finite MDP. Therefore, state s, action a and reward r, which are
the elements of the finite MDP, must be defined. Note that the transition of
states by taking an action is deterministic in this study, because the environment
for training agents assumes the structural design of skeletal structures, and
it is not necessary to consider randomness when changing the design of the
structure. Although RL tasks require problem-specific settings and cannot be
fully generalized, here the common points are explained regardless of the types
of structural optimization problems to be converted into the RL task. More
concrete settings are explained in each individual problem in Chapters 4 and 5.

(1) state s

Consider a skeletal structure with nn nodes and nm members. In addition, given
that each node input, member input, and member feature to be extracted have
dimensions nfn, nfm, and nf , respectively. Let θ denote the trainable parameters
that vary during the training. The roll of θ is same as θ in NNs explained
in Chapter 2; weighting the inputs for approximating desirable outputs. In
the proposed method, a state s is represented as a set of member features
µ̂ = [µ1, · · · ,µnm] ∈ Rnf×nm embedded from numerical data at nodes v̂ =

43

[v1, . . . ,vnn
] ∈ Rnfn×nn , those at members ŵ = [w1, . . . ,wnm

] ∈ Rnfm×nm , and
trainable parameters θ, which is expressed as

s ≈ µ̂(v̂, ŵ,θ) (3.1)

It is desirable for a state to include numerical information of the skele-
tal structure as much as possible, such as the geometry of the structure, the
property of the nodes and members, and the loading and support conditions,
which can be the elements of inputs v̂ and ŵ. The dimension of node inputs
vk (k ∈ {1, · · · , nn}) can take an arbitrary positive integer depending on the
problem definition, and the same is true for the dimension of member inputs
wi (i ∈ {1, · · · , nm}). Note that the values of v̂ and ŵ should be within the
range of [−1, 1] in order to enhance the RL agent’s performance. This is because
the larger values will have a higher contribution to the output error, and the
error reduction algorithm for the RL agent will neglect the information from
the small-valued variables [123]. Therefore, the best situation is when all in-
puts are in the same order of magnitude [124]. Several studies also discussed
achieving scale-invariance of the inputs [125, 126, 127]. Note that the connec-
tivity of nodes and members is not considered here as it can be expressed by
GE described in Sec. 3.2.

For the process in which the total structural volume is gradually increased by
the design change, the terminal state is defined as when the structural design
reaches a feasible design from an initial infeasible design. Similarly, for the
process in which the total structural volume is gradually reduced by the design
change, the terminal state is defined as when reaches infeasible design from an
initial redundant design. Otherwise, one can define the maximum step instead
of the terminal state.

(2) action a

An action in this study is defined as the smallest unit of design changes applied
to a member of the structure. One action is assigned to each member, and there
are at most nm types of actions that an agent can take in each step. In practice,
in order to reduce the action space to be explored, the action is selected from
Ωa which represents a set of possible actions that excludes clearly inappropriate
actions from nm actions. Here, the excluded actions are those in which the next
state associated with the action does not exist obviously, such as an action of
removing a member that no longer exists and increasing/reducing a member
size exceeding the upper/lower bounds.

(3) reward r

The basic idea of reward settings is to provide larger rewards for good design
changes and smaller or negative rewards (i.e. penalties) for bad design changes
based on the objective and constraints of the original structural optimization
problem. In the same manner as node and member inputs v̂ and ŵ, respectively,
the rewards should be scaled within the range of [−1, 1] so that the same hyper-
parameters of the RL agent can be used across various environments [26, 128].

44

3.2 Edge features estimated by graph embed-
ding

In this section, skeletal structures are regarded as graphs and the feature of
each member is represented as a vector by aggregating numerical data about
neighbor nodes and members. Let nf denote the size of the feature vector of
each member, which is to be determined through a careful adjustment with
trial-and-error for better performance, because a size that is too small leads
to inaccuracy in expressing the features, and a size that is too large requires
redundant computation time in training and application of the agent after the
training. The trainable parameters θ1 ∈ Rnf×nfm , θ2 ∈ Rnf×nf , θ3 ∈ Rnf×nfn ,
θ4 ∈ Rnf×nf , θ5 ∈ Rnf×nf , and θ6 ∈ Rnf×nf are introduced to weight the inputs
to extract features that integratively consider the structural property. Using
θ1-θ6, the feature vector of each member µi ∈ Rnf (i = 1, · · · , nm) is updated
as follows:

µ
(0)
i = 0 (3.2a)

µ
(tu+1)
i = ReLU

(
h1 + h2 + h

(tu)
3 + h

(tu)
4

)
(3.2b)

h1 = θ1wi (3.2c)

h2 = θ2

2∑
j=1

ReLU (θ3vi,j) (3.2d)

h
(tu)
3 = θ4µ

(tu)
i (3.2e)

h
(tu)
4 = θ5

2∑
j=1

ReLU

θ6
∑

k∈Φi,j

µ
(tu)
k

 (3.2f)

where h1,h2, h
(tu)
3 and h

(tu)
4 are the elements that make up the feature, tu

is the step number of updating the features, vi,j is the nodal inputs of the
j-th (j ∈ {1, 2}) end of member i, and Φi,j is the set of indices of members
connecting to the j-th end of member i. Note that Φi,j does not include the
index of member i itself. ReLU is one of activation functions as explained in
Fig. 2.8, which is defined as

ReLU(x) =

{
x (if x > 0)

0 (else)
(3.3)

To simplify the expression, the ReLU function is applied in Eq. (3.2) to a vector
to output a vector with the same size.

The operation in Eq. (3.2) is illustrated in Fig. 3.1. The numerical data
of two nodes and members connecting to them are aggregated into the feature
vector of a member through a single operation. The aggregated numerical data
include member input data h1 in Eq. (3.2c), connecting nodes’ input data h2

in Eq. (3.2d), embedded feature of the member itself h
(tu)
3 in Eq. (3.2e), and

embedded features of neighboring members h
(tu)
4 in Eq. (3.2f). Accordingly,

µ̂(tu) = {µ(tu)
1 , · · · ,µ(tu)

nm } is the set of feature vectors incorporating connectivity

of the truss after µ
(tu)
i for all the members is computed from Eq. (3.2).

45

μi
μi

(tu)μk
(tu)

μk
(tu)

μk
(tu)

μk
(tu)

(tu+1)wi

vi, j vi, j

Figure 3.1: The concept of Eq. (3.2). It aggregates numerical data of neighbor
nodes and members.

However, the operation of Eq. (3.2) should be iterated more than once in
order to capture the features of distant members that are not directly connected.
The number of iterations Tu should be carefully selected because it determines
the training difficulty and how far distant nodes and members are considered. If
Tu is set closer to 1, the computational cost is cheaper and the risk of divergence
of trainable parameters θ1, · · · ,θ6 during the training with a backpropagation
method is lower; however, the extracted features cannot capture the property of
distant nodes and members. In contrast, if a large positive integer is assigned to
Tu, the extracted features are capable of considering distant nodes and members
but the computational cost becomes higher and the risk of divergence of the
trainable parameters also becomes higher. In accordance with the previous
research of Dai et al. [51], the number of iterations Tu is set to be 4. It should

be noted that the embedded feature vector µ
(Tu)
i has the same size nf regardless

of the connectivity. Owing to this property, all the members can be evaluated
based on the same measure.

In the following, the operation of Eq. (3.2) is re-formulated utilizing matrix
operations to reduce the computational cost. At first, the connectivity (or
incidence) matrix C ∈ Rnm×nn for a directed graph is defined, such that each
element Cij is provided as follows:

Cij =


−1 if member i leaves node j

1 if member i enters node j

0 else

(3.4)

this matrix contains information about the connectivity between nodes and the
orientation of the edges. The non-oriented connectivity matrix CA ∈ Rnm×nn is
obtained by taking an absolute value for each element of C. We further obtain
C1 and C2 ∈ Rnm×nn to identify the nodes that each member leaves and those
that each member enters as

C1 =
1

2
(CA −C) (3.5a)

C2 =
1

2
(CA +C) (3.5b)

Using these matrices, the operation of Equation (3.2) for all the members
can be integrated as

µ̂(0) = 0 (3.6a)

46

i=1

k=1 k=2

k=3 k=4

i=2

i=3

i=4 i=5

(a)

0.6 0.7

0.8 0.9

(b)

-1.0
0.1

-1.0
0.2

0.0
0.3

1.0
0.5

1.0
0.4

(c)

Figure 3.2: An example truss to extract member features. (a) Node and member
index. (b) vk (k = 1, · · · , 4). (c) wi (i = 1, · · · , 5).

µ̂(tu+1) = ReLU
(
ĥ1 + ĥ2 + ĥ

(tu)
3 + ĥ

(tu)
4

)
(3.6b)

ĥ1 = θ1ŵ (3.6c)

ĥ2 = θ2 (ReLU (θ3v̂))C
⊤
A (3.6d)

ĥ
(tu)
3 = θ4µ̂

(tu) (3.6e)

ĥ
(tu)
4 = θ5

(
ReLU

(
θ6

(
C1C

⊤
A µ̂(tu)⊤ − µ̂(tu)⊤

)⊤)

+ReLU

(
θ6

(
C2C

⊤
A µ̂(tu)⊤ − µ̂(tu)⊤

)⊤)) (3.6f)

Although the operation of Eq. (3.6) yields the same result as repeating Eq. (3.2)
for all the members, the former is more computationally efficient than the latter,
owing to efficient matrix multiplication algorithms [129, 130, 131, 132].

Example: extraction of member features of a truss

In this example, the above method is demonstrated through a truss with four
nodes and five members, as shown in Fig. 3.2(a). Given that the dimension
of node and member inputs are nfn = 1 and nfm = 2, and that the node and
member inputs are assigned as shown in Figs. 3.2(b) and 3.2(c), respectively.
Note that the values here are arbitrarily provided without any structural mean-
ing to focus on demonstrating the mathematical operations of the proposed GE
method. The dimension of member features to be extracted is assumed to be
nf = 3.

Firstly, v̂ ∈ R1×4 and ŵ ∈ R2×5 are expressed as

v̂ =
(
0.6 0.7 0.8 0.9

)
(3.7a)

ŵ =

(
−1.0 −1.0 0.0 1.0 1.0
0.1 0.2 0.3 0.4 0.5

)
(3.7b)

The connectivity matrix of the truss C ∈ R5×4 is obtained as

47

C =


−1 0 1 0
0 −1 0 1
0 0 −1 1
−1 0 0 1
0 −1 1 0

 (3.8)

Member 5 is directed from node 2 to node 3; accordingly, -1 is assigned to (5, 2)
element, 1 is assigned to (5, 3) element of the matrix, and the other elements
in the fifth row are all 0. The non-oriented connectivity matrix CA ∈ R5×4 is
obtained by simply computing an absolute value of the connectivity matrix for
each element as

CA =


1 0 1 0
0 1 0 1
0 0 1 1
1 0 0 1
0 1 1 0

 (3.9)

Using C and CA, C1 and C2 ∈ Rnm×nn are also obtained as

C1 =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0
0 1 0 0

 (3.10a)

C2 =


0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 1 0

 (3.10b)

The values of trainable parameters θ1 ∈ R3×2, θ2 ∈ R3×3, θ3 ∈ R3×1,
θ4 ∈ R3×3, θ5 ∈ R3×3, and θ6 ∈ R3×3 are assumed as follows.

θ1 =

0.11 0.12
0.13 0.14
0.15 0.16

 (3.11a)

θ2 =

0.21 0.22 0.23
0.24 0.25 0.26
0.27 0.28 0.29

 (3.11b)

θ3 =

0.31
0.32
0.33

 (3.11c)

θ4 =

−0.041 −0.042 −0.043
0.044 0.045 0.046
−0.047 −0.048 −0.049

 (3.11d)

θ5 =

 0.051 0.052 0.053
−0.054 −0.055 −0.056
0.057 0.058 0.059

 (3.11e)

48

2.490
1.618

2.144

0.932
0.746

0.915
1.221
0.925

1.150

2.002
1.396

1.806

2.555
1.657

2.198

Figure 3.3: Extracted features µ̂(4) of the example truss

θ6 =

−0.061 −0.062 −0.063
0.064 0.065 0.067
−0.067 −0.068 −0.069

 (3.11f)

Using the above values and Eq. (3.6), µ̂(1) ∈ R3×5 is computed as

µ̂(1) =

0.198 0.252 0.395 0.475 0.487
0.220 0.282 0.450 0.546 0.560
0.243 0.312 0.505 0.618 0.634

 (3.12)

Similarly, µ̂(2), µ̂(3) and µ̂(4) ∈ R3×5 are sequentially computed as

µ̂(2) =

0.388 0.490 0.759 0.902 0.925
0.449 0.580 0.935 1.145 1.174
0.476 0.608 0.974 1.179 1.210

 (3.13)

µ̂(3) =

0.571 0.715 1.093 1.282 1.314
0.686 0.893 1.452 1.793 1.840
0.700 0.887 1.407 1.687 1.730

 (3.14)

µ̂(4) =

0.746 0.925 1.396 1.618 1.657
0.932 1.221 2.002 2.490 2.555
0.915 1.150 1.806 2.144 2.198

 (3.15)

Figure 3.3 describes extracted features µ̂(4) of the truss. Each column of µ̂(4)

corresponds to the feature of each member. It should be noted again that
the member features can be represented by vectors of the same size nf = 3
regardless of the connection relationship of the members. If µ̂(10) and µ̂(100)

are to be computed, the results are as follows:

µ̂(10) =

1.624 1.899 2.630 2.767 2.826
2.595 3.503 5.936 7.601 7.806
1.997 2.387 3.512 3.884 3.975

 (3.16)

µ̂(100) =

37.432 30.744 2.962 2.853 2.910
20.668 36.539 212.93 578.993 598.968
40.205 33.136 4.184 4.205 4.295

 (3.17)

49

μi
(Tu) Q(,i)μ(Tu)

Figure 3.4: The concept of Eq. (3.18). It converts the extracted member features
into the action value.

3.3 Q-learning using the embedded features

Using µ̂(Tu) =
[
µ

(Tu)
1 , · · · ,µ(Tu)

nm

]
∈ Rnf×nm , the action value to eliminate mem-

ber i in the current state is approximated using trainable parameters θ7 ∈ R2nf ,
θ8 ∈ Rnf×nf , and θ9 ∈ Rnf×nf as follows:

Q(µ̂(Tu), i) = θ⊤
7

(
ReLU

[
θ8

nm∑
i=1

µ
(Tu)
i ;θ9µ

(Tu)
i

])
(3.18)

where [·; ·] is a concatenation operator of two vectors or matrices in the column
direction. The operation in Eq. (3.18) is illustrated in Fig. 3.4. With Eq. (3.18),
the vector that represents the member feature is converted to a scalar that rep-

resents the action value to choose the member. The feature θ9µ
(Tu)
i is the local

information about member i, although the peripheral nodes and members are

taken into consideration. Therefore, the term θ8
∑nm

i=1 µ
(Tu)
i is further arranged

to capture the global information about the structure by aggregating local in-

formation about each member. The term θ8
∑nm

i=1 µ
(Tu)
i also plays an important

role in estimating appropriate action values for structures of various scales.
As well as µ̂(Tu), Eq. (3.18) is reformulated so that Q̂(µ̂(Tu)) =

[
Q(µ̂(Tu), 1),

· · · , Q(µ̂(Tu), nm)
]
∈ R1×nm is obtained at once, which is given as

Q̂(µ̂(Tu)) = θ⊤
7

(
ReLU

[
θ8µ̂

(Tu)
Σ ;θ9µ̂

(Tu)
])

(3.19)

where µ̂
(Tu)
Σ ∈ Rnf×nm is the matrix in which a column vector

∑nm

i=1 µ
(Tu)
i is

repeated in the row direction for nm times.
Since µ̂ is computed using {θ1, · · · ,θ6}, the set of action values Q̂(µ̂) is

dependent on Θ = {θ1, · · · ,θ9}. In the following, the training method for
tuning the parameters Θ is described. The parameters Θ are tuned using a
method based on 1-step Q-learning, which is frequently used as an RL method.
Here the same equation as Eq. (2.15) is shown below again. When a function
approximator is not utilized, the action value is updated using state s, chosen
action a, observed next state s′ and reward r as

Q(s, a) = Q(s, a) + α
(
r(s′) + γmax

a
Q(s′, a)−Q(s, a)

)
(3.20)

In Eq. (3.20), the action value is updated so as to minimize the difference be-
tween the sum of the observed reward and estimated action value at the next

50

state r(s′) + γmaxaQ(s′, a) and the estimated action value at the previous
state Q(s, a). Following this scheme, the parameters are trained by solving the
following optimization problem [26]:

minimize L̃(Θ) =

(
r(s′) + γ max

ã∈Ωa(s′)
Q(s′, ã; Θ̃)−Q(s, a;Θ)

)2

(3.21)

where Ωa(s
′) is a set of actions available at state s′. In Eq. (3.21), the training

can be stabilized by using previous parameters Θ̃ obtained during the training
for an estimation of action values at the next state s′ [26]. Θ̃ synchronizes
with Θ once every nsy episodes, where nsy is an arbitrary positive integer. In
the same manner as NNs, the inputs are repeatedly weighted by the train-
able parameters and processed through activation functions. Therefore, a back-
propagation method can be used for solving Eq. (3.21). Among a number of
back-propagation methods proposed so far, RMSProp [120] which is already
explained in Eq. (2.20) is adopted as an optimization method in this study.

Example: computation of action values of a truss

In the following, the same truss as Fig. 3.2 is discussed. We suppose θ7 ∈ R6,
θ8 ∈ R3×3 and θ9 ∈ R3×3 as

θ7 =
(
0.71 0.72 0.73 −0.74 −0.75 −0.76

)
(3.22a)

θ8 =

0.081 0.082 0.083
0.084 0.085 0.086
0.087 0.088 0.089

 (3.22b)

θ9 =

0.091 0.092 0.093
0.094 0.095 0.096
0.097 0.098 0.099

 (3.22c)

µ̂
(4)
Σ is given from µ̂(4), which is already obtained in Eq. (3.15), as follows:

µ̂
(4)
Σ =

6.342 6.342 6.342 6.342 6.342
9.200 9.200 9.200 9.200 9.200
8.211 8.211 8.211 8.211 8.211

 (3.23)

Using the above values and Eq. (3.19), Q̂(µ̂(4)) ∈ R5 is computed as

Q̂(µ̂(4)) =
(
3.812 3.661 3.253 3.029 2.995

)
(3.24)

Each element of Q̂(µ̂(4)) corresponds to the action value to choose the member,
as illustrated in Fig. 3.5. In this example, choosing the first member is ex-
pected to obtain the largest cumulative reward, and choosing the fifth member
is expected to obtain the least cumulative reward.

51

3.029 2.995

3.812

3.253

3.661

Figure 3.5: Action values Q̂(µ̂(4)) of the example truss

3.4 Training workflow

The whole training workflow is described in Fig. 3.6. At first, parameters Θ
and Θ̃ are randomly initialized with a normal distribution with 0 for the mean
and 0.05 for the standard deviation, which is very important to avoid symmetry
within each parameter [133]; if the parameters are initialized with the same
value and a deterministic learning algorithm is adopted, the gradients of the
loss function with respect to the parameters may become the same value, and
the parameters with the same gradients will be updated in the same way. The
synchronization frequency nsy is fixed as 100 in this study.

An episode is defined as a sequence of design changes to the members from
the initial state to the terminal state or step. At the beginning of each episode,
structural conditions are randomly provided so that the agent can demonstrate
good performance for various conditions. At each step, the agent selects an
action to apply the design change to the member of the structure, using an ϵ-
greedy policy. Although ϵ may vary depending on the RL task to obtain better
results, ϵ is fixed as 0.1 in this study. After taking an action, the agent observes
the reward r, the next state s′ represented by v̂′ and ŵ′, and a set of possible
actions at the next state Ωa(s

′). To reduce a required capacity of a storage
device, 1000 sets of observed transitions (v̂, ŵ, a, v̂′, ŵ′, r,Ωa(s

′)) are stored at
the maximum. When the number of transition steps reaches 1000, the latest
transition overrides the oldest one.

Between the steps, the set of trainable parameters Θ is optimized using
RMSProp as follows; 32 datasets out of the stored transitions are randomly
chosen to create a minibatch and Θ is updated based on the mean squared
error of the loss function of each dataset computed by the right-hand side of
Eq. (3.21). The size of edge feature nf , the number of training episodes nep, the
learning rate α, and the discount rate γ are set depending on the RL task, which
are mentioned in the case studies in Chapters 4 and 5. Not only nf as explained
in Sec. 3.2, nep and α are also very important hyper-parameters determined
through trial-and-error. When a smaller value is assigned to α, a larger value
for nep is required for the RL agent to perform well; on the other hand, if α is
too large, not only will the learning become unstable, but trainable parameters
Θ may diverge.

Once in 10 episodes of the training, the performance of Θ is tested for a
prescribed condition. The cumulative reward until the terminal state is recorded
using the greedy policy without randomness (i.e. the ϵ-greedy policy with ϵ = 0)
during the test. If the cumulative reward is larger than the previous best score,
Θ at that step is saved. The most recently savedΘ after the training is regarded

52

Start

Stop

episode ← episode + 1

episode ← 0

episode%10==0

episode%nsy==0

TEST

TRAIN

Input structure, environment
and initial parameters Θ

output the best parameters Θ

Θ ← Θ

true

true

false

episode == nep

false
false

true

TRAIN

Stop

Estimate Q for remaining members

Update Θ using RMSProp

Apply design change to member a
chosen by ε-greedy policy

Terminal state

Randomly Initialize the structure

false

true

Observe r, Ωa(s’ , v’ and w’) ^ ^

store v, w, a, v’ , w’ , r and Ωa
^ ^ ^ ^

(v, w) ← (v’ , w’)^ ^ ^ ^

Compute v and w^ ^

Stop

Estimate Q for remaining members

Apply design change to a member
chosen by greedy policy

Terminal state or step

Best total reward

TEST

false

false

true
true

Initialize the structure with
the prescribed condition

Compute v and w^ ^

Observe r, Ωa(s’ , v’ and w’) ^ ^

(v, w) ← (v’ , w’)^ ^ ^ ^

Save current Θ

~

Figure 3.6: Training workflow utilizing RL and GE

as the best parameters.

3.5 Conclusion

In this chapter, the hybrid method of GE and RL has been proposed. The
state of the skeletal structure is expressed by member features, which are com-
puted through GE from node and member inputs. The trainable parameters
that change during the training play a role in weighting the inputs. By adjust-
ing these parameters, the agent becomes capable of obtaining member features
grasping the overall structural properties from the local inputs of nodes and
members of the structure. Each member feature is expressed as a vector of the
same size for all the members.

Considering that there are few research examples of edge embedding com-
pared to whole graph embedding and node embedding, and that only node
inputs can be handled even in the recent edge embedding method [57], it is a
major highlight of the proposed edge embedding method that the inputs of both
nodes and members can be handled at the same time.

The feature vector is finally converted to a scalar value that represents an
action value of applying a pre-specified design change to the member. Since the
feature and action value of the members can be calculated using the common
trainable parameters regardless of the member connectivity, the trained agent
can be applied without re-training to other skeletal structures with different
connectivity and numbers of nodes and members.

53

54

Chapter 4

Case study 1: Topology
optimization of trusses

4.1 Topology optimization problem of planar
trusses considering stress constraint

In this section, the topology optimization problem of planar trusses is formu-
lated for minimizing the total structural volume under stress and displacement
constraints. The optimization problem becomes the RL task to be handled in
Secs. 4.2 - 4.4. Note that the proposed method belongs to a binary type ap-
proach where the cross-sectional area of each member either keeps its initial
value, or takes a very small value.

Displacements of nodes and axial stresses of members are computed for nL
static loading conditions using a standard stiffness method. Consider a planar
truss with the total number of degrees of freedom (DOFs) nd, the number
of members nm and the constant elastic modulus E. Let Ai and Li denote
the cross-sectional area and the length of member i. If only axial stiffness is
considered for the member stiffness, the member stiffness matrix with respect to
the local coordinates of member i is a matrix Ki ∈ R4×4 where (1, 1) and (3, 3)
elements are EAi/Li, (1, 3) and (3, 1) elements are −EAi/Li and the others are
0. Member stiffness matrices of all the members are transformed into the global
coordinate system to be assembled to the global stiffness matrix K ∈ Rnd×nd .
Using K, the nodal displacements are obtained by solving the following stiffness
equation [134]:

Kuj = pj (4.1)

where uj ∈ Rnd and pj ∈ Rnd are the nodal displacement and nodal load vectors
corresponding to load case j ∈ {1, · · · , nL}. Let σi,j denote the axial stress of
member i for load case j, which is expressed as

σi,j =
Edi,j
Li

(4.2)

where di,j is the elongation of member i for load case j, which is simply calcu-
lated after obtaining the nodal displacements.

55

Let A = {A1, · · · , Anm
} denote the vector of cross-sectional areas. This

research aims to obtain the optimal topology of a truss that minimizes the to-
tal structural volume Vs(A) under stress constraints. However, some solutions
to this problem are trivial; for example, if all the members connecting to sup-
porting nodes are eliminated, the structure cannot resist external loads at all
while the stress constraints for existing members are satisfied. For this rea-
son, displacement constraints are further added to avoid apparently infeasible
trusses that deform excessively. By assigning the upper-bound stress σ̄ and the
upper-bound displacement ū, the optimization problem is formulated as follows:

minimize Vs(A) (4.3a)

subject to max
i∈Ωm, j∈{1,··· ,nL}

(
|σi,j(A)|

σ̄

)
≤ 1 (4.3b)

max
i∈Ωd, j∈{1,··· ,nL}

(
|ui,j(A)|

ū

)
≤ 1 (4.3c)

Ai ∈ {Ā× 10−6, Ā} (i = 1, · · · , nm) (4.3d)

where Ωm and Ωd are the sets of indices of existing members and DOFs of ex-
isting nodes including loaded nodes and ui,j is the i-th displacement component
for load case j. Hereafter, the ratio |σi,j |/σ̄ is called stress safety ratio, which
indicates a safe state if it is small. The cross-sectional areas are chosen from Ā
for existing members and a small value Ā × 10−6 instead of 0 for non-existing
members to prevent singularity of the stiffness matrix K in Eq. (4.1).

4.2 Conversion to a reinforcement learning task

The optimization problem Eq. (4.3) is converted to a RL task in this sec-
tion. First, a state is represented by a set of numerical data at nodes v =
{v1, . . . ,vnn} and that at members w = {w1, . . . ,wnm}, as described in Ta-
bles 4.1 and 4.2 based on the loading and support conditions, the geometry of
the truss, and the stress safety ratios. In Table 4.1, the load intensity is defined
as the magnitude of the external load applied at the node, which is decomposed
into x and y directions; the magnitude in z direction is omitted because only
planar trusses are focused in this example. In Table 4.2, the orientation of mem-
bers is expressed by trigonometric quantities instead of the angle itself so as to
avoid discontinuity when the angles are 0 and 2π.

In this case study, the action is defined as eliminating a member from exist-
ing ones. By repeating the actions, a sparse topology is obtained from a densely
connected initial GS. Note again that the members regarded as removed vir-
tually have a very small cross-sectional area as seen in Eq. (4.3d) to avoid
instability in computing nodal displacements. Any state-action pair determin-
istically leads to a unique next state without random transitions to the other
states. The reward is evaluated after each removal of a member. When the
truss violates the stress or displacement constraints, a reward of −1 is provided
and the removal process is terminated. Otherwise, the reward computed by the
following equation is provided:

56

Table 4.1: Detail of node input vk

index input
1 1 if pin-supported, 0 otherwise
2 load intensity [kN] at the node in x direction (load case 1)
3 load intensity [kN] at the node in y direction (load case 1)
...

...
2nL load intensity [kN] at the node in x direction (load case nL)
2nL + 1 load intensity [kN] at the node in y direction (load case nL)

Table 4.2: Detail of member input wi

index description
1 the cosine of the angle formed by the member with respect to

the positive x-direction
2 the sine of the angle formed by the member with respect to

the positive x-direction
3 member length [m]
4 1 if remained, 0 if removed
5 stress safety ratio (load case 1)
...

...
nL + 4 stress safety ratio (load case nL)

r = Le

(
1− max

i∈Ωm, j∈{1,··· ,nL}

|σi,j |
σ̄

)
(4.4)

where Le is the length of the eliminated member. Equation (4.4) is derived
considering the total structural volume to be minimized and the stress safety
ratio to be constrained; accordingly, the reward is large when the eliminated
member is long and the maximum stress safety ratio of the resulting topology
is small.

4.3 Training setting

The detail of the training implementation is explained in this section. The agent
is trained using a 72-member truss as shown in Fig. 4.1. The truss has 4 × 4
grids, and each grid is a 1m square. The bracing members are not connected
at the intersection. The upper-bound stress σ̄ is 200 N/mm2 for both tension
and compression. The elastic modulus E is 200 kN/mm2 and the initial cross-
section Ai is 1000mm2. At the beginning of each episode, two pin-supports are
randomly chosen; one from nodes 1 and 2, and the other from nodes 4 and 5.
The number of load cases nL is 2. A horizontal or vertical load with a fixed
magnitude of 1.0 kN is applied at a node randomly chosen from right tip nodes
for each loading condition.

Note that the loading conditions may be identical, loaded nodes may be
the same but the load directions are different, or the load directions may be

57

the same but loaded nodes are different between the two load cases. Thus, the
training concerns a total of 2 × 2 × 20 × 20 = 1600 combinations of support
and loading conditions, and these combinations are almost equally simulated as
long as the number of training episodes is sufficient. The topology that does
not satisfy stress or/and displacement constraints is regarded as the terminal
state. The episode ends when the terminal state is reached, and then a new
episode starts with all the members of the initial GS reset as existing and the
support/load conditions re-randomized. The number of training episodes nep
is set to be 5000. In this example, the training is implemented with different
learning rates α, discount rates γ and the sizes of the member feature nf in
order to investigate the effect of these values on the training results.

1 m 1 m 1 m 1 m

1 m

1 m

1 m

1 m

X

Y

[2] [7] [12] [17]
[22]

[3] [8] [13] [18]
[23]

[4] [9] [14] [19]
[24]

[5] [10] [15] [20]
[25]

[1] [6] [11] [16]
[21]

Figure 4.1: 4× 4-grid truss used for training (Vs = 0.0853 [m3])

During the test, nodes 1 and 5 are pin-supported, and loads are applied at
node 23 in positive x and negative y directions separately as different loading
conditions, which is denoted as loading condition L1.

4.4 Training result

4.4.1 Training history and performance for 4×4-grid truss

Figure 4.2 plots the histories of the obtained cumulative rewards in the test
simulations recorded at every 10 episodes for the trainings with three different
learning rates: α = 1.0×10−5, α = 5.0×10−5 and α = 1.0×10−3 while fixing γ
as 0.99 and nf as 100. When α = 1.0× 10−5, the cumulative reward earned by
the agent have steadily increased as the number of training episodes increases,
but the rate of increase was slow. In contrast, the history of obtained cumulative
reward fluctuates when α = 1.0× 10−3. In this example, α = 5.0× 10−5 is the

58

best setting because the performance improvement is stable and fast. The score
improved significantly in the first 1000 episodes and has remained stable mostly
above 35.0 since then. Therefore, α is fixed at 5.0× 10−5 in the following. For
α = 5.0× 10−5, it took about 8.6 hours for the training through 232810 linear
structural analyses with Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz. The
maximum test score of 42.9 is obtained at the 1400th episode.

0 1000 2000 3000 4000 5000
trained episodes

10

20

30

40

cu
m

ul
at

iv
e

re
w

ar
ds

= 1.0 × 10 3

= 5.0 × 10 5

= 1.0 × 10 5

Figure 4.2: Histories of the cumulative reward of each test measured every 10
episodes (γ = 0.99, nf = 100)

Next, the difference in training results was investigated by varying the size
of the extracted feature: nf = 3, nf = 10, nf = 100 and nf = 200, while fixing γ
as 0.99 and α as 5.0×10−5. The training histories are shown in Fig. 4.3. nf = 3
is clearly an appropriate setting for this problem; the cumulative reward earned
have peaked around 15. Although the training takes a relatively shorter time
for nf = 10, the learning is unstable because the cumulative reward obtained for
each test varied widely and it required more episodes to obtain the cumulative
reward comparable to the other results. The learning histories are very similar
between the two cases nf = 100 and nf = 200, but when the feature size is
nf = 200, the required training time is more than three times longer than when
the feature size is nf = 100. Note that the total size of trainable parameters in
Θ is 90 for nf = 3, 720 for nf = 10, 61200 for nf = 100 and 242000 for nf = 200.
From Fig. 4.3, nf = 100 is adopted as the best hyper-parameter in the following.

The removal sequence of the members when the maximum score is recorded
is illustrated in Fig. 4.4. Trivial members close to the pin-supports or placed
upper-right or bottom-right that do not bear stress are first removed, and im-
portant members along the load paths are removed afterward. This is evidence
that the agent is capable of detecting the load paths among the members, and
this capability is owing to the proposed GE method that is capable of extracting
member features considering the truss connectivity.

The final truss in the removal process of members presented in Fig. 4.4(b)
is the terminal state, where the nodal displacements are excessive due to the
unstable connectivity. Therefore, the topology just before the terminal state sur-
rounded by a red square in Fig. 4.4(b) shall be a sub-optimal topology, which
is a truss with 12 members and Vs = 0.0145. Since the removal of any remain-
ing member will cause a violation of the displacement constraints, there is no
unnecessary member in the sub-optimal topology. It forms a very simple truss
composed of six pairs of members connecting linearly. Note that the connection

59

0 1000 2000 3000 4000 5000
trained episodes

0

10

20

30

40
cu

m
ul

at
iv

e
re

w
ar

ds

nf = 200 time=26.5[h]
nf = 100 time=8.6[h]
nf = 10 time=3.5[h]
nf = 3 time=1.2[h]

Figure 4.3: Histories of the cumulative reward of each test measured every 10
episodes (γ = 0.99, α = 5.0× 10−5)

between the members in each pair is an unstable node, and must be fixed to
generate a single long member.

In utilizing the trained agent, nload! different removal sequences can be ob-
tained for a different order of the same set of load cases in node input data vk;
for example, exchanging the values at indices 2 and 4 and those at indices 3 and
5 in vk maintains the original loading condition but may lead to different ac-
tions to be taken during the member removal process because the trained agent
estimates different action values due to the exchange. As shown in Fig. 4.5, a
different removal sequence of the members is observed with the reverse order of
the load cases.

We further investigated the performance of RL agents trained with another
discount rate: γ = 0.9. After training with the same settings except for the
discount rate, the RL agent showed other removal sequence of members as
shown in Figs. 4.6 and 4.7. From these results, the RL agent trained with
γ = 0.9 acquired a short-sighted policy compared with the agent trained with
γ = 0.99, because the agent apparently first removes the diagonal members and
then removes the horizontal and vertical members. In this case, where rewards
are given according to the length of the member, removing the diagonal member
in the initial steps will certainly give a lot of rewards first, but the cumulative
reward will not necessarily increase.

60

load case 1

load case 2

(a)

(b)

Figure 4.4: Best scored removal process of members for loading condition L1 of
4× 4-grid truss (γ = 0.99). (a) Initial GS. (b) Removal sequence of members.

61

load case 2

load case 1

(a)

(b)

Figure 4.5: Loading condition L1 of 4× 4-grid truss (reversed the order of load
cases, γ = 0.99). (a) Initial GS. (b) Removal sequence of members.

62

load case 1

load case 2

(a)

(b)

Figure 4.6: Loading condition L1 of 4 × 4-grid truss (γ = 0.9). (a) Initial GS.
(b) Removal sequence of members.

63

load case 2

load case 1

(a)

(b)

Figure 4.7: Loading condition L1 of 4× 4-grid truss (reversed the order of load
cases, γ = 0.9). (a) Initial GS. (b) Removal sequence of members.

64

To investigate the performance of the RL agents in another loading condition,
the structure with the loads as shown in Fig. 4.8(a), denoted as loading condition
L2, is also optimized using the same RL agents trained with γ = 0.99 and
γ = 0.9. Nodes 1 and 5 are pin-supported and nodes 22 and 24 are subjected
to an 1 kN load in the positive x direction separately as two load cases. The
removal sequences of members are illustrated in Figs. 4.8 - 4.11. Similarly to
loading condition L1 in Fig. 4.4, the sub-optimal topology is a well-converged
solution that does not contain unnecessary members. From these results, the
agent is confirmed to behave well for a different loading condition.

Furthermore, the robustness of the proposed method is also investigated by
implementing 2000-episode training with γ = 0.99 using different random seeds
20 times. The statistical data with respect to the maximum test scores for each
training are as follows; the maximum is 43.41, the median is 43.19, the minimum
is 42.77, the average is 43.19, the standard deviation is 0.15, and the coefficient
of variation is only 3.55 × 10−3. Moreover, all the trained RL agents with the
best parameters led to 12-member sub-optimal solutions similar to Figs. 4.4 -
4.7 for loading condition L1. These results imply that the proposed method is
robust against the randomness of boundary conditions and actions during the
training.

65

load case 2

load case 1

(a)

(b)

Figure 4.8: Loading condition L2 of 4× 4-grid truss (γ = 0.99). (a) Initial GS.
(b) Removal sequence of members.

66

load case 1

load case 2

(a)

(b)

Figure 4.9: Loading condition L2 of 4× 4-grid truss (reversed the order of load
cases, γ = 0.99). (a) Initial GS. (b) Removal sequence of members.

67

load case 2

load case 1

(a)

(b)

Figure 4.10: Loading condition L2 of 4× 4-grid truss (γ = 0.9). (a) Initial GS.
(b) Removal sequence of members.

68

load case 1

load case 2

(a)

(b)

Figure 4.11: Loading condition L2 of 4×4-grid truss (reversed the order of load
cases, γ = 0.9). (a) Initial GS. (b) Removal sequence of members.

69

4.4.2 Investigation of generalization performance 1: 3×2-
grid truss

The trained agent with the proposed method is reusable to other trusses with
different numbers of nodes and members. In this subsection, the agents trained
in Sec. 4.4.1 with γ = 0.99 and γ = 0.9 are reused for a smaller 3×2-grid
truss without re-training in order to verify the generalization performance of the
agents towards a smaller truss. Fig. 4.12 shows the initial GS. As in Example
1, each grid is a square with a side length of 1 m. The topology is optimized for
two boundary conditions.

In the first boundary condition B1, as shown in Fig. 4.13(a), left tip nodes
1 and 3 are pin-supported and bottom-right nodes 7 and 10 are subjected to a
downward unit load of 1 kN separately as different loading cases. As shown in
Fig. 4.13(b), the RL agent trained with γ = 0.99 utilizes a reasonable policy to
eliminate apparently non-load-bearing members in order. From this result, it is
confirmed that the agent is capable of eliminating unnecessary members prop-
erly for a smaller-scale truss. The topology just before the terminal state is a
sub-optimal truss with Vs = 0.0121[m3] that efficiently transmits the downward
loads to the pin-supports. In Fig. 4.14, another removal sequence of members
is observed by exchanging the order of load cases. The sub-optimal truss with
Vs = 0.0175[m3] contains successive V-shaped braces but node 10 is unstable
against a horizontal load.

Similarly, the removal sequences of members by the RL agent trained with
γ = 0.9 are shown in Figs. 4.15 and 4.16. The sub-optimal topology in Fig. 4.15
is the same as Fig. 4.13; on the other hand, the sub-optimal topology in Fig. 4.16
is inferior to the other solutions in the total structural volume. In particular,
the 14th member connecting nodes 2 and 3 hangs from the supported node
2 without being connected to other nodes during steps 9-14. According to
Table 4.7, the action value to remove the redundant 14th member at the 10th
step (Q = 1.1) is almost equal to the action value to remove the critical 21st
member connecting nodes 5 and 7. This implies that the agent mistakenly
understands the importance of the members in this case. In order to quickly
remove locally unstable members, one can penalize them in the reward setting
to estimate the action value more correctly.

In the second boundary condition B2, the bottom center nodes 4 and 7
are pin-supported and the upper tip nodes 3 and 12 are subjected to outward
unit loads along x axis as shown in Fig. 4.17(a). Similarly to the boundary
condition B1, the agent eliminates members that do not bear forces as shown
in Figs. 4.17 - 4.20. In each result, a tower-like symmetric topology is created
with extending members from upper tips to loaded nodes around the 18th step.

Table 4.3: Connectivity of member i (i = 1, · · · , 29) of 3× 2-grid truss

.

PPPPPnode
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

start 1 4 7 2 5 8 3 6 9 1 4 7 10 2 5

end 4 7 10 5 8 11 6 9 12 2 5 8 11 3 6

PPPPPnode
i

16 17 18 19 20 21 22 23 24 25 26 27 28 29

start 8 11 1 2 4 5 7 8 2 3 5 6 8 9

end 9 12 5 4 8 7 11 10 6 5 9 8 12 11

70

After the 18th step, the topology became asymmetric in Figs. 4.17 and 4.20
despite the symmetry of the problem definition; however, asymmetric solutions
should be accepted because Guo et al. [135] explained that solving a quasi-
convex symmetric optimization problem may yield a highly asymmetric solution.

The action values estimated by the RL agents are described in Tables 4.4
- 4.11. It is possible to quantitatively understand which member the agent
considers important through the action values; If the action value is small, the
agent considers the member corresponding to the action value to be a more
necessary member. In particular, if the action value is negative, the member
is considered indispensable. As a whole, the action values of removing the
remaining members decrease as the number of steps increases. In addition, the
members that have not been removed in the sub-optimal topology have smaller
action values compared with the members that have been removed. From these
results, it was confirmed that the agents were able to estimate the action value
based on not only the local information about the member to be removed but
also the connection relationship of the entire structure. The agent trained with
a learning rate of 0.99 tends to estimate action values larger than the agent
trained with a learning rate of 0.9. This is because the former includes the
rewards expected to be obtained in further steps in the action value.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

1 m 1 m 1 m

1 m

1 m

X

Y

Figure 4.12: 3× 2-grid truss (Vs = 0.0340 [m3])

71

load
case 1

load
case 2

(a)

(b)

Figure 4.13: Boundary condition B1 of 3 × 2-grid truss (γ = 0.99). (a) Initial
GS. (b) Removal sequence of members.

Table 4.4: Action values Q(s, i) (i = 1, · · · , 29) at each step of Fig. 4.13(b)

.

@
@t
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 -2.5 3.8 4.6 5.0 4.8 5.0 0.0 3.9 5.1 4.9 4.7 4.5 4.4 5.1 4.7 4.7 5.0 3.9 5.3 4.8 4.9 5.0 4.9 5.1 4.0 5.0 4.8 5.0 5.2
1 -2.5 3.2 4.3 4.7 4.5 4.7 -0.1 3.7 4.8 4.7 4.3 4.2 4.1 4.8 4.3 4.5 4.7 2.9 — 4.4 4.5 4.7 4.6 4.8 3.6 4.6 4.6 4.8 5.0
2 -2.8 2.5 3.9 4.3 4.1 4.1 -0.3 3.6 4.0 4.3 4.0 3.8 3.7 4.4 4.0 4.0 4.0 2.8 — 4.0 4.1 4.3 4.1 4.4 3.2 4.2 4.1 4.2 —
3 -2.7 2.4 3.7 4.0 3.8 3.9 -0.2 3.0 3.8 4.1 3.7 3.5 3.4 4.1 3.5 3.7 3.8 2.3 — 3.8 3.9 4.0 3.9 — 2.2 3.9 3.8 3.9 —
4 -2.8 2.3 3.5 3.8 3.7 3.8 -0.4 2.9 3.7 4.0 3.6 3.4 3.3 — 3.4 3.6 3.7 2.2 — 3.6 3.8 3.9 3.7 — 2.0 3.7 3.7 3.8 —
5 -2.9 2.1 3.4 3.6 3.5 3.6 -0.5 2.7 3.5 — 3.5 3.2 3.1 — 3.2 3.4 3.5 2.1 — 3.4 3.7 3.7 3.6 — 1.8 3.6 3.5 3.6 —
6 -3.0 1.9 2.5 3.3 3.2 3.3 -0.7 2.3 3.0 — 3.1 2.5 3.2 — 2.8 3.2 2.8 1.8 — 3.1 3.2 — 2.9 — 1.5 3.2 3.2 3.1 —
7 -3.2 1.6 2.1 2.9 2.8 — -1.0 2.0 2.6 — 2.8 2.1 2.8 — 2.5 2.9 2.3 1.6 — 2.6 2.8 — 2.5 — 1.2 2.9 2.8 2.6 —
8 -3.3 1.4 1.9 — 2.4 — -1.2 1.7 2.4 — 2.4 1.8 2.5 — 2.1 2.6 2.0 1.2 — 2.3 2.4 — 2.2 — 0.7 2.4 2.5 2.3 —
9 -3.6 1.1 1.6 — 2.0 — -0.9 1.9 1.9 — 2.1 1.4 2.1 — 1.5 — 1.4 1.1 — 1.6 2.1 — 1.8 — 0.1 2.5 1.4 1.6 —
10 -3.6 0.9 1.3 — 1.7 — -1.0 1.7 1.5 — 1.9 1.2 1.9 — 1.2 — 1.2 0.8 — 1.4 1.9 — 1.6 — -0.2 — 1.2 1.4 —
11 -3.7 -0.3 -0.5 — 1.3 — -0.5 1.7 1.9 — 1.4 1.2 — — 0.5 — 1.9 0.7 — 1.4 1.3 — -0.2 — -0.8 — -0.0 1.9 —
12 -3.8 -0.4 -0.6 — 1.2 — -0.6 1.6 — — 1.4 1.2 — — 0.4 — 1.7 0.6 — 1.3 1.2 — -0.3 — -0.9 — -0.1 1.8 —
13 -3.8 -0.5 -0.7 — 1.1 — -0.8 1.4 — — 1.2 1.1 — — 0.3 — 1.6 0.4 — 1.1 1.1 — -0.5 — -1.1 — -0.3 — —
14 -3.8 -0.6 -0.8 — 1.0 — -0.9 1.3 — — 1.1 1.0 — — 0.2 — — 0.4 — 1.1 1.0 — -0.6 — -1.1 — -0.4 — —
15 -3.9 -0.7 -0.9 — 0.9 — -0.9 — — — 1.0 0.9 — — 0.1 — — 0.3 — 1.0 0.9 — -0.7 — -1.3 — -0.5 — —
16 -3.4 -1.1 -0.9 — 0.6 — -1.2 — — — — 1.0 — — -0.1 — — -0.0 — 1.2 0.3 — -0.9 — -1.0 — -0.9 — —
17 -3.5 -1.2 -1.1 — 0.5 — -1.3 — — — — 0.9 — — -0.3 — — -0.1 — — 0.1 — -1.1 — -1.2 — -1.1 — —
18 -2.7 -1.5 -1.1 — 0.4 — -1.3 — — — — — — — -0.6 — — -0.3 — — -1.7 — -1.3 — -2.5 — -1.2 — —
19 -2.8 -1.6 -1.2 — — — -1.4 — — — — — — — -0.7 — — -0.4 — — -1.9 — -1.4 — -2.5 — -1.3 — —
20 -4.4 -2.1 -1.1 — — — -1.0 — — — — — — — -0.3 — — — — — -1.9 — -1.4 — -2.8 — -0.9 — —

72

load
case 2

load
case 1

(a)

(b)

Figure 4.14: Boundary condition B1 of 3 × 2-grid truss (reversed the order of
load cases, γ = 0.99). (a) Initial GS. (b) Removal sequence of members.

Table 4.5: Action values Q(s, i) (i = 1, · · · , 29) at each step of Fig. 4.14(b)

@
@t
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 -0.4 4.0 4.7 5.0 5.1 5.1 0.5 4.1 5.1 5.0 4.7 4.3 4.0 5.0 4.6 4.7 5.0 4.0 5.3 4.8 5.0 4.9 5.2 5.1 4.1 5.0 4.9 5.1 5.2
1 -0.4 3.5 4.4 4.6 4.7 4.7 0.3 3.8 4.7 4.6 4.2 4.0 3.7 4.7 4.2 4.4 4.6 3.2 — 4.3 4.6 4.6 4.8 4.8 3.5 4.6 4.6 4.8 4.8
2 -0.6 3.1 4.0 4.1 4.0 4.1 -0.1 2.9 4.1 4.1 3.7 3.5 1.0 4.2 3.8 3.7 4.1 2.8 — 3.6 4.0 3.7 — 4.3 3.1 4.1 4.0 4.1 4.1
3 -0.5 3.0 3.8 3.9 3.8 3.9 0.0 2.4 3.9 4.0 3.5 3.3 0.8 4.0 3.5 3.5 3.9 2.3 — 3.5 3.9 3.5 — — 2.3 3.8 3.8 3.9 3.9
4 -0.6 2.9 3.7 3.7 3.6 3.7 -0.2 2.2 3.8 — 3.3 3.2 0.6 3.8 3.3 3.4 3.7 2.3 — 3.3 3.7 3.4 — — 2.1 3.6 3.6 3.8 3.8
5 -0.7 2.7 3.5 3.4 3.4 3.6 -0.4 2.0 3.6 — 3.2 3.0 0.5 — 3.2 3.2 3.6 2.2 — 3.1 3.5 3.2 — — 1.8 3.4 3.4 3.6 3.6
6 -1.0 2.3 3.2 3.1 3.1 3.1 -0.6 1.7 3.4 — 2.9 2.8 0.0 — 2.8 2.8 3.3 1.9 — 2.7 3.2 2.7 — — 1.5 3.0 3.1 — 2.3
7 -1.1 2.2 3.0 2.9 2.9 2.9 -0.8 1.4 — — 2.7 2.6 -0.2 — 2.6 2.6 3.1 1.7 — 2.6 3.0 2.5 — — 1.3 2.8 2.9 — 1.9
8 -1.2 2.0 2.9 2.8 2.8 2.7 -0.9 1.2 — — 2.6 2.5 -0.7 — 2.5 2.5 — 1.6 — 2.4 2.9 2.3 — — 1.2 2.6 2.8 — 1.5
9 -0.6 1.4 2.0 2.2 2.1 2.1 -1.7 0.7 — — 1.4 0.7 -1.4 — 1.6 1.9 — 0.6 — 1.3 — 1.4 — — 0.8 1.8 1.8 — 1.1
10 -0.7 1.2 1.7 — 1.9 1.9 -1.9 0.4 — — 1.2 0.4 -1.6 — 1.3 1.7 — 0.2 — 1.0 — 1.2 — — 0.5 1.5 1.5 — 0.9
11 -0.6 0.9 1.4 — — 1.5 -2.3 0.1 — — 0.9 0.1 -2.0 — 1.0 1.3 — -0.3 — 0.7 — 0.9 — — 0.3 1.3 0.8 — 0.3
12 -0.8 0.7 1.1 — — — -2.5 -0.1 — — 0.7 -0.3 -2.3 — 0.7 1.0 — -0.5 — 0.5 — 0.7 — — 0.1 1.1 0.4 — -0.2
13 -0.9 0.4 — — — — -2.7 -0.3 — — 0.5 -0.6 -2.6 — 0.6 0.9 — -0.6 — 0.4 — 0.4 — — -0.1 0.9 0.2 — -0.4
14 -1.5 0.1 — — — — -2.2 0.4 — — 0.0 -0.8 -2.7 — 0.2 0.5 — -0.4 — -0.1 — 0.3 — — -0.9 — -0.6 — -0.6
15 -1.5 -0.0 — — — — -2.7 0.2 — — 0.1 -1.0 -2.8 — 0.0 — — -0.6 — -0.1 — 0.0 — — -0.8 — -0.9 — -0.1

73

load
case 1

load
case 2

(a)

(b)

Figure 4.15: Boundary condition B1 of 3 × 2-grid truss (γ = 0.9). (a) Initial
GS. (b) Removal sequence of members.

Table 4.6: Action values Q(s, i) (i = 1, · · · , 29) at each step of Fig. 4.15(b)

.

@
@t
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 -0.6 1.2 1.9 1.9 1.9 2.1 -3.8 1.6 2.0 2.0 1.9 1.8 0.6 1.8 1.8 2.1 2.1 1.7 2.1 2.0 1.9 2.0 2.0 2.0 1.5 2.0 2.0 2.3 2.2
1 -0.5 0.8 1.8 1.8 1.8 1.9 -3.9 1.5 2.0 1.9 1.8 1.8 0.6 1.7 1.7 2.0 2.1 1.6 2.0 1.9 1.8 1.9 1.9 2.0 1.4 1.9 1.9 — 1.9
2 -0.6 0.7 1.8 1.8 1.7 1.9 -4.0 1.4 2.0 1.9 1.8 1.7 -0.2 1.7 1.6 2.0 — 1.6 2.0 1.9 1.8 1.9 1.8 1.9 1.4 1.9 1.8 — 1.8
3 -0.3 0.6 1.9 1.9 1.8 2.0 -3.7 1.5 2.0 1.9 1.8 1.8 -0.1 1.8 1.7 2.0 — 1.5 — 1.9 1.8 2.0 1.9 2.0 1.5 2.0 1.9 — 1.9
4 -0.3 0.5 1.8 1.8 1.8 2.0 -3.8 1.4 — 1.9 1.8 1.8 -0.3 1.8 1.7 2.0 — 1.5 — 1.9 1.8 1.9 1.8 2.0 1.4 1.9 1.9 — 1.9
5 -0.2 0.6 1.8 1.8 1.7 1.9 -3.5 1.4 — 1.9 1.7 1.7 -0.5 1.8 1.5 1.9 — 1.4 — 1.9 1.8 1.9 1.8 — 1.4 1.8 1.9 — 1.8
6 -0.2 0.3 1.6 1.6 1.6 1.7 -3.8 0.6 — 1.7 1.6 1.6 -1.0 1.6 1.4 — — 1.3 — 1.7 1.6 1.7 1.6 — 1.2 1.7 1.7 — 1.8
7 -0.0 -0.5 0.8 1.2 1.2 1.2 -2.0 1.3 — 1.2 1.1 0.9 0.1 1.2 0.7 — — 1.0 — 1.3 1.2 1.0 0.5 — 0.4 1.3 0.6 — —
8 0.0 -0.6 0.6 1.1 1.2 1.1 -1.8 1.2 — 1.2 1.0 0.9 -0.0 1.1 0.7 — — 0.9 — 1.2 1.1 0.9 0.4 — 0.4 — 0.5 — —
9 -0.0 -0.7 0.5 1.1 1.1 1.1 -2.0 — — 1.1 1.0 0.8 -0.1 1.1 0.7 — — 0.8 — 1.1 1.1 0.8 0.3 — 0.3 — 0.2 — —
10 0.0 -0.8 0.3 1.1 0.9 1.0 -1.9 — — 1.1 1.0 0.8 -0.5 1.0 0.6 — — 0.7 — — 0.8 0.5 -0.7 — 0.4 — -0.3 — —
11 -0.1 -0.9 0.2 1.0 0.9 1.0 -1.9 — — — 1.0 0.8 -0.6 1.0 0.6 — — 0.7 — — 0.8 0.5 -0.8 — 0.4 — -0.4 — —
12 -0.2 -1.0 0.1 — 0.8 0.9 -1.9 — — — 0.8 0.7 -0.7 0.9 0.4 — — 0.6 — — 0.6 0.3 -1.2 — 0.1 — -0.6 — —
13 -0.1 -1.1 -0.1 — 0.7 0.7 -1.7 — — — 0.7 0.6 -0.8 — 0.4 — — 0.5 — — 0.5 0.2 -1.4 — 0.0 — -0.6 — —
14 -0.3 -0.8 -2.1 — 0.4 — -1.6 — — — 0.5 0.4 0.5 — 0.1 — — 0.3 — — 0.3 0.5 -2.9 — -0.1 — -0.2 — —
15 -0.4 -0.6 -2.1 — 0.3 — -1.6 — — — 0.4 0.3 0.3 — 0.0 — — 0.2 — — 0.2 — -2.2 — -0.2 — -0.3 — —
16 -0.5 -0.7 -2.1 — 0.1 — -1.6 — — — — 0.1 0.2 — -0.1 — — 0.0 — — 0.0 — -1.9 — -0.4 — -0.4 — —
17 -0.5 -0.7 -1.9 — 0.0 — -1.6 — — — — 0.1 — — -0.2 — — -0.0 — — -0.0 — -1.4 — -0.4 — -0.4 — —
18 -0.7 -0.8 -1.7 — -0.3 — -1.9 — — — — — — — -0.5 — — -0.3 — — -0.9 — -0.9 — -0.9 — -0.6 — —
19 -0.7 -0.8 -1.5 — — — -1.6 — — — — — — — -0.6 — — -0.4 — — -0.9 — -0.9 — -0.9 — -0.7 — —
20 -0.9 -0.8 -1.4 — — — -1.7 — — — — — — — -0.5 — — — — — -0.9 — -1.0 — -1.0 — -0.7 — —

74

load
case 2

load
case 1

(a)

(b)

Figure 4.16: Boundary condition B1 of 3 × 2-grid truss (reversed the order of
load cases, γ = 0.9). (a) Initial GS. (b) Removal sequence of members.

Table 4.7: Action values Q(s, i) (i = 1, · · · , 29) at each step of Fig. 4.16(b)

.

@
@t
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 -0.9 1.8 1.9 2.1 2.0 2.2 -3.2 1.7 2.2 2.1 2.1 1.9 1.8 1.9 1.8 2.2 2.2 1.8 2.3 2.1 2.0 2.1 2.2 2.1 1.7 2.1 2.1 2.4 2.3
1 -0.9 1.8 1.9 2.1 2.0 2.1 -3.2 1.7 2.2 2.1 2.1 1.8 1.9 1.9 1.8 2.2 2.2 1.8 2.3 2.1 2.0 2.0 2.1 2.1 1.7 2.1 2.1 — 2.2
2 -0.5 1.7 2.0 2.1 2.1 2.2 -2.9 1.8 2.3 2.2 2.1 1.9 1.9 2.0 1.8 2.2 2.3 1.7 — 2.2 2.1 2.1 2.2 2.2 1.7 2.2 2.1 — 2.3
3 -0.5 1.0 1.4 1.7 1.6 1.6 -3.1 1.6 1.9 1.8 1.7 1.3 1.6 1.6 1.4 1.6 1.8 1.4 — 1.7 1.7 1.6 1.4 1.8 1.2 1.7 1.4 — —
4 -0.6 1.0 1.4 1.7 1.5 1.6 -3.2 1.5 — 1.7 1.7 1.3 1.6 1.6 1.3 1.5 1.7 1.3 — 1.7 1.6 1.6 1.4 1.7 1.2 1.7 1.4 — —
5 -0.7 0.8 1.3 1.6 1.4 1.5 -3.3 1.4 — 1.6 1.6 1.2 1.5 1.5 1.3 1.4 — 1.3 — 1.7 1.6 1.5 1.3 1.7 1.1 1.6 1.3 — —
6 -0.6 0.7 1.2 1.4 1.3 1.4 -2.3 1.2 — 1.5 1.4 1.0 1.3 1.3 1.0 1.2 — 1.0 — 1.5 1.4 1.3 1.1 — 0.8 1.4 1.1 — —
7 -0.5 -0.1 1.1 1.4 1.3 1.3 -2.5 1.2 — 1.4 1.4 1.0 1.3 1.3 1.0 1.2 — 1.0 — — 1.3 1.3 1.0 — 0.8 1.3 1.1 — —
8 -0.5 -0.2 1.1 1.3 1.2 1.3 -2.5 1.2 — — 1.3 1.0 1.2 1.3 1.0 1.1 — 0.9 — — 1.2 1.3 0.9 — 0.8 1.3 1.0 — —
9 -0.4 -0.5 1.0 — 1.1 1.2 -2.7 1.0 — — 1.2 0.9 1.1 1.2 0.9 1.0 — 0.9 — — 1.2 1.2 0.8 — 0.6 1.2 0.9 — —
10 -0.5 -1.1 0.9 — 1.0 1.1 -2.8 0.9 — — — 0.8 1.1 1.1 0.8 0.9 — 0.6 — — 1.1 1.1 0.6 — 0.5 1.1 0.8 — —
11 -0.9 -1.1 0.0 — 0.3 0.4 -2.0 -0.1 — — — -0.1 0.4 0.3 0.0 0.1 — -0.6 — — — 0.3 0.2 — 0.1 0.1 0.0 — —
12 -0.9 -0.6 -1.8 — 0.1 0.3 -2.1 -0.2 — — — -0.3 — 0.2 -0.1 -0.0 — -0.8 — — — 0.3 -1.1 — -0.1 -0.0 -0.1 — —
13 -0.9 -0.7 -1.6 — -0.0 0.1 -2.2 -0.3 — — — -0.5 — 0.1 -0.2 -0.2 — -0.9 — — — — -0.9 — -0.2 -0.2 -0.2 — —
14 -1.0 -0.7 -1.5 — -0.1 — -2.1 -0.4 — — — -0.6 — 0.0 -0.3 -0.2 — -1.0 — — — — -1.0 — -0.3 -0.2 -0.3 — —
15 -1.0 -0.8 -1.5 — -0.2 — -1.9 -0.4 — — — -0.6 — — -0.4 -0.3 — -1.1 — — — — -1.1 — -0.4 -0.3 -0.3 — —
16 -1.2 -1.1 -1.3 — — — -1.5 -1.3 — — — -1.0 — — -1.3 -1.3 — -1.6 — — — — -1.4 — -0.9 -1.2 -1.2 — —
17 -1.6 -0.8 -1.4 — — — -1.3 -0.9 — — — -0.8 — — -0.7 -1.0 — -1.1 — — — — -1.3 — — -1.0 -0.6 — —

75

load case 2load case 1

(a)

(b)

Figure 4.17: Boundary condition B2 of 3 × 2-grid truss (γ = 0.99). (a) Initial
GS. (b) Removal sequence of members.

Table 4.8: Action values Q(s, i) (i = 1, · · · , 29) at each step of Fig. 4.17(b)

.

@
@t
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 2.6 2.4 2.6 2.8 3.0 2.7 0.2 2.7 1.3 2.8 0.7 -0.2 2.9 2.7 2.5 2.6 2.8 2.9 2.5 1.0 0.6 2.5 3.2 3.0 3.0 2.5 2.8 2.7 3.2
1 2.5 2.3 2.5 2.6 2.9 2.5 0.1 2.5 1.2 2.6 0.6 -0.3 2.7 2.6 2.4 2.4 2.6 2.8 2.4 0.9 0.6 2.3 3.1 2.9 2.9 2.4 2.7 2.5 —
2 2.4 2.2 2.4 2.5 2.7 2.4 -0.0 2.4 1.0 2.6 0.5 -0.7 2.6 2.5 2.3 2.2 2.5 2.7 2.3 0.8 0.5 2.3 — 2.8 2.8 2.3 2.5 2.4 —
3 2.2 2.0 2.2 2.4 2.5 2.2 0.1 2.1 1.0 2.3 0.4 -0.8 2.5 2.3 2.1 2.1 2.3 2.5 2.1 0.7 0.6 2.1 — — 2.5 2.2 2.3 2.2 —
4 2.0 1.8 2.0 2.1 2.3 2.1 -0.0 1.9 0.9 2.2 0.3 -0.9 2.3 2.1 1.8 1.9 2.1 — 1.9 0.5 0.3 1.9 — — 2.2 2.0 2.1 2.1 —
5 1.9 1.8 2.0 2.1 2.2 2.0 -0.1 1.9 0.8 2.1 0.2 -1.0 — 2.0 1.8 1.9 2.1 — 1.9 0.4 0.2 1.8 — — 2.2 2.0 2.1 2.0 —
6 1.6 1.4 1.7 1.7 — 1.6 -0.3 1.6 0.6 1.8 0.0 -1.3 — 1.8 1.4 1.6 1.8 — 1.6 0.2 -0.1 1.6 — — 1.8 1.6 1.7 1.7 —
7 1.3 1.2 1.4 1.4 — 1.4 0.1 1.0 -0.6 1.5 -0.4 -2.6 — 1.4 1.0 1.1 — — 1.4 0.4 -0.2 1.7 — — 1.5 1.3 0.7 1.5 —
8 1.2 1.0 1.3 1.3 — 1.3 0.1 0.9 -0.6 1.4 -0.5 -2.7 — 1.4 0.9 1.0 — — 1.3 0.3 -0.4 — — — 1.4 1.2 0.6 1.4 —
9 1.1 0.9 1.2 1.2 — 1.2 0.0 0.8 -0.6 — -0.5 -2.7 — 1.3 0.8 0.9 — — 1.1 0.3 -0.5 — — — 1.3 1.1 0.5 1.3 —
10 1.0 0.8 1.1 1.1 — 1.0 -0.1 0.7 -0.7 — -0.6 -2.7 — 1.2 0.7 0.8 — — 1.0 0.1 -0.6 — — — 1.2 1.0 0.4 — —
11 0.8 0.5 0.8 1.0 — 0.8 -1.9 0.6 -0.5 — -1.1 -3.6 — 1.1 0.5 0.3 — — 1.1 -0.1 -0.1 — — — — 0.4 0.1 — —
12 0.6 0.4 0.7 0.9 — 0.7 -1.9 0.5 -0.6 — -1.1 -3.7 — 1.0 0.4 0.2 — — — -0.2 -0.2 — — — — 0.3 0.0 — —
13 0.5 0.3 0.7 0.7 — 0.7 -1.9 0.3 -0.6 — -1.2 -3.7 — — 0.3 0.2 — — — -0.3 -0.3 — — — — 0.2 -0.1 — —
14 0.4 0.1 0.5 — — 0.6 -2.0 0.2 -0.7 — -1.2 -3.9 — — 0.2 0.1 — — — -0.4 -0.4 — — — — 0.1 -0.2 — —
15 0.2 -0.0 0.4 — — — -2.1 0.0 -0.8 — -1.3 -3.9 — — 0.1 -0.1 — — — -0.5 -0.5 — — — — 0.0 -0.3 — —
16 0.2 -0.1 — — — — -2.2 -0.0 -0.9 — -1.3 -3.9 — — -0.0 -0.1 — — — -0.6 -0.6 — — — — -0.1 -0.3 — —
17 — -0.1 — — — — -2.2 -0.1 -0.9 — -1.3 -4.0 — — -0.1 -0.2 — — — -0.6 -0.7 — — — — -0.1 -0.4 — —
18 — -0.4 — — — — -1.6 — -1.1 — -1.2 -2.9 — — -0.9 -0.9 — — — -1.4 -1.6 — — — — -0.8 -1.4 — —
19 — — — — — — -1.6 — -1.1 — -1.2 -2.8 — — -0.9 -1.0 — — — -1.4 -1.6 — — — — -0.9 -1.4 — —
20 — — — — — — -2.5 — -1.1 — -0.9 -5.3 — — -0.9 -0.1 — — — -1.4 -0.3 — — — — — -1.7 — —

76

load case 1load case 2

(a)

(b)

Figure 4.18: Boundary condition B2 of 3 × 2-grid truss (reversed the order of
load cases, γ = 0.99). (a) Initial GS. (b) Removal sequence of members.

Table 4.9: Action values Q(s, i) (i = 1, · · · , 29) at each step of Fig. 4.18(b)

.

@
@t
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 2.7 2.6 2.8 2.7 3.1 2.8 0.8 2.7 0.4 2.9 -0.1 0.7 2.9 2.6 2.6 2.6 2.8 3.0 2.6 0.5 1.2 2.5 3.3 3.1 2.9 2.6 2.9 3.0 3.2
1 2.5 2.4 2.6 2.6 2.9 2.6 0.6 2.5 0.2 2.7 -0.2 0.5 2.8 2.5 2.5 2.4 2.6 2.8 2.5 0.2 1.1 2.3 — 3.0 2.7 2.4 2.7 2.8 3.1
2 2.4 2.3 2.4 2.4 2.7 2.6 0.5 2.2 0.2 2.6 -0.4 0.4 2.6 2.3 2.3 2.2 2.4 2.7 2.3 0.2 0.9 2.2 — 2.8 2.6 2.3 2.6 2.6 —
3 2.2 2.1 2.2 2.2 2.5 2.3 0.4 2.0 0.1 2.3 -0.6 0.3 2.4 2.0 2.0 2.0 2.2 2.5 2.0 0.2 0.8 2.0 — — 2.3 2.0 2.3 2.4 —
4 1.8 1.7 1.8 1.8 — 1.8 0.1 1.5 -0.3 2.0 -1.0 -0.1 1.9 1.7 1.5 1.4 1.8 2.1 1.7 -0.2 0.4 1.6 — — 1.8 1.5 1.8 1.9 —
5 1.6 1.5 1.6 1.6 — 1.6 -0.1 1.2 -0.4 1.8 -1.3 -0.2 1.8 1.5 1.2 1.2 1.6 — 1.5 -0.5 0.1 1.4 — — 1.5 1.3 1.6 1.7 —
6 1.6 1.4 1.6 1.5 — 1.5 -0.2 1.2 -0.5 — -1.3 -0.3 1.7 1.5 1.2 1.2 1.5 — 1.4 -0.5 0.1 1.4 — — 1.4 1.2 1.6 1.6 —
7 1.5 1.3 1.5 1.4 — 1.4 -0.2 1.1 -0.5 — -1.4 -0.3 — 1.4 1.1 1.1 1.5 — 1.4 -0.6 0.0 1.3 — — 1.4 1.2 1.5 1.5 —
8 1.2 1.0 1.2 1.1 — 1.2 -0.1 0.4 -2.1 — -2.3 -0.7 — 1.1 0.5 0.8 1.3 — 1.0 0.3 -0.1 1.2 — — 1.0 0.8 0.8 — —
9 1.2 0.9 1.1 1.0 — 1.1 -0.1 0.3 -2.0 — -2.4 -0.8 — 1.0 0.4 0.7 — — 0.9 0.2 -0.2 1.1 — — 0.9 0.7 0.8 — —
10 — 0.8 1.0 0.9 — 1.0 -0.2 0.2 -2.0 — -2.4 -0.9 — 0.9 0.4 0.7 — — 0.7 0.1 -0.3 1.0 — — 0.8 0.6 0.7 — —
11 — 0.6 0.9 0.9 — 0.9 -0.3 0.1 -2.1 — -2.4 -0.9 — 0.8 0.3 0.6 — — 0.6 0.0 -0.4 — — — 0.8 0.6 0.6 — —
12 — 0.5 0.7 0.8 — — -0.4 -0.0 -2.2 — -2.6 -1.0 — 0.7 0.2 0.5 — — 0.5 -0.1 -0.5 — — — 0.7 0.4 0.5 — —
13 — 0.2 0.4 — — — -1.1 0.0 -2.0 — -3.8 -1.3 — 0.7 0.0 0.2 — — 0.8 -0.3 -0.2 — — — 0.8 -0.3 0.3 — —
14 — 0.1 0.4 — — — -1.2 -0.1 -2.0 — -3.9 -1.3 — 0.6 -0.0 0.1 — — — -0.4 -0.2 — — — 0.7 -0.3 0.2 — —
15 — 0.0 0.3 — — — -1.3 -0.2 -2.1 — -3.9 -1.4 — 0.5 -0.1 -0.0 — — — -0.5 -0.3 — — — — -0.4 0.1 — —
16 — -0.0 0.2 — — — -1.3 -0.3 -2.2 — -3.9 -1.5 — — -0.2 -0.1 — — — -0.6 -0.4 — — — — -0.4 0.0 — —
17 — -0.1 — — — — -1.4 -0.4 -2.2 — -3.9 -1.4 — — -0.2 -0.1 — — — -0.7 -0.4 — — — — -0.4 -0.1 — —
18 — — — — — — -1.4 -0.4 -2.3 — -3.8 -1.4 — — -0.3 -0.2 — — — -0.7 -0.4 — — — — -0.5 -0.1 — —
19 — — — — — — -1.5 -1.1 -1.8 — -5.2 -1.0 — — -0.1 -1.0 — — — -0.1 -1.4 — — — — -1.8 — — —
20 — — — — — — -1.5 -1.2 -1.8 — -5.2 -1.1 — — -0.2 -1.0 — — — — -1.4 — — — — -1.9 — — —
21 — — — — — — -1.6 -1.3 -1.9 — -5.2 -1.1 — — — -1.1 — — — — -1.5 — — — — -1.9 — — —
22 — — — — — — -1.8 -1.2 -3.3 — -5.7 -0.9 — — — — — — — — -1.8 — — — — -1.1 — — —

77

load case 2load case 1

(a)

(b)

Figure 4.19: Boundary condition B2 of 3 × 2-grid truss (γ = 0.9). (a) Initial
GS. (b) Removal sequence of members.

Table 4.10: Action values Q(s, i) (i = 1, · · · , 29) at each step of Fig. 4.19(b)

.

@
@t
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 2.5 2.3 2.7 2.5 2.5 2.5 0.5 2.5 0.3 2.8 0.3 -0.5 2.9 2.7 2.6 2.6 2.3 2.8 2.6 -0.3 1.3 2.7 3.0 3.0 2.6 2.7 2.7 2.8 3.2
1 2.5 2.4 2.7 2.5 2.5 2.7 0.6 2.5 0.9 2.9 0.5 -0.4 2.9 2.7 2.6 2.6 2.1 2.9 2.6 0.0 1.4 2.8 3.0 3.1 2.6 2.7 2.7 2.7 —
2 2.5 2.4 2.7 2.6 2.5 2.6 1.0 2.5 1.0 2.8 0.4 -0.4 2.9 2.7 2.5 2.6 1.9 2.8 2.6 -0.0 1.5 2.8 3.0 — 2.6 2.6 2.7 2.7 —
3 2.4 2.2 2.6 2.4 2.4 2.5 0.8 2.4 0.7 2.7 0.2 -0.5 2.8 2.5 2.4 2.4 1.6 2.7 2.5 -0.5 1.3 2.6 — — 2.4 2.5 2.6 2.5 —
4 2.3 2.2 2.5 2.4 2.3 2.5 0.7 2.3 0.7 2.6 0.2 -0.6 — 2.5 2.3 2.4 1.4 2.7 2.4 -0.6 1.2 2.6 — — 2.4 2.4 2.5 2.5 —
5 2.2 2.0 2.4 2.2 2.1 2.3 0.6 2.1 0.6 2.4 0.1 -0.5 — 2.3 2.1 2.2 1.2 — 2.3 -0.9 1.2 2.4 — — 2.2 2.2 2.3 2.3 —
6 2.1 1.9 2.3 2.2 2.1 2.2 0.5 2.0 0.5 — 0.0 -0.5 — 2.2 2.0 2.1 1.2 — 2.2 -1.0 1.1 2.3 — — 2.1 2.1 2.3 2.2 —
7 1.7 1.6 1.9 1.7 1.7 2.0 0.4 0.8 -0.4 — 0.2 0.2 — 1.7 1.5 1.7 1.9 — 1.8 0.9 1.1 — — — 1.7 1.5 1.8 2.0 —
8 1.5 1.4 1.7 1.5 1.5 — 0.3 0.6 -0.5 — 0.1 0.1 — 1.5 1.3 1.5 1.7 — 1.6 0.5 0.9 — — — 1.6 1.3 1.6 1.8 —
9 1.3 1.1 1.4 1.3 1.2 — 0.3 0.4 -0.4 — 0.0 0.2 — 1.2 1.0 1.2 1.4 — 1.3 0.3 0.7 — — — 1.3 1.0 1.3 — —
10 1.2 1.1 — 1.2 1.1 — 0.3 0.4 -0.3 — 0.1 0.3 — 1.2 0.9 1.2 1.3 — 1.2 0.3 0.6 — — — 1.2 0.9 1.2 — —
11 1.1 1.0 — 1.1 1.0 — 0.3 0.3 0.2 — 0.0 0.3 — 1.1 0.8 1.0 — — 1.1 0.2 0.5 — — — 1.1 0.8 1.1 — —
12 0.4 0.3 — 0.4 0.2 — -0.0 0.1 -0.1 — -0.5 -0.4 — 0.5 -0.0 0.2 — — — -0.1 0.2 — — — 0.5 -0.0 0.1 — —
13 0.2 0.1 — 0.3 0.0 — -0.1 -0.1 -0.2 — -0.6 -0.5 — 0.3 -0.2 0.0 — — — -0.3 -0.0 — — — — -0.3 -0.1 — —
14 0.2 0.1 — 0.2 -0.0 — -0.2 -0.1 -0.3 — -0.6 -0.6 — — -0.3 -0.0 — — — -0.4 -0.1 — — — — -0.3 -0.2 — —
15 0.1 0.0 — — -0.0 — -0.1 -0.2 -0.3 — -0.6 -0.6 — — -0.3 -0.1 — — — -0.4 -0.1 — — — — -0.3 -0.2 — —
16 — -0.1 — — -0.1 — -0.2 -0.3 -0.4 — -0.7 -0.7 — — -0.4 -0.2 — — — -0.5 -0.2 — — — — -0.5 -0.4 — —
17 — — — — -0.2 — -0.3 -0.4 -0.4 — -0.9 -0.8 — — -0.5 -0.3 — — — -0.7 -0.3 — — — — -0.6 -0.5 — —
18 — — — — — — -0.2 -0.4 -0.4 — -0.8 -0.8 — — -0.6 -0.3 — — — -0.7 -0.3 — — — — -0.6 -0.4 — —
19 — — — — — — — -0.3 -0.3 — -0.7 -0.7 — — -0.6 -0.2 — — — -0.6 -0.4 — — — — -0.5 -0.3 — —

78

load case 1load case 2

(a)

(b)

Figure 4.20: Boundary condition B2 of 3 × 2-grid truss (reversed the order of
load cases, γ = 0.9). (a) Initial GS. (b) Removal sequence of members.

Table 4.11: Action values Q(s, i) (i = 1, · · · , 29) at each step of Fig. 4.20(b)

.

@
@t
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 2.7 2.3 2.5 2.6 2.5 2.5 -0.8 2.3 -0.7 3.0 0.3 0.4 2.9 2.2 2.6 2.7 2.4 3.0 2.8 1.1 0.3 2.7 2.9 3.2 2.8 2.6 2.7 2.5 3.2
1 2.7 2.3 2.5 2.6 2.5 2.5 -0.8 2.3 -0.6 3.0 0.2 0.5 2.9 1.5 2.6 2.7 2.4 3.0 2.7 1.1 0.5 2.7 2.9 — 2.7 2.6 2.7 2.5 3.2
2 2.7 2.3 2.5 2.6 2.5 2.5 -0.9 2.3 -0.5 2.9 0.2 0.6 2.9 1.4 2.5 2.6 1.8 2.9 2.7 1.4 0.6 2.6 2.9 — 2.7 2.6 2.6 2.4 —
3 2.6 2.2 2.4 2.5 2.4 2.5 -1.1 2.2 -0.6 — 0.1 0.6 2.8 1.4 2.4 2.5 1.8 2.9 2.6 1.2 0.4 2.6 2.8 — 2.6 2.5 2.5 2.4 —
4 2.5 2.1 2.3 2.4 2.3 2.3 -1.3 1.9 -0.7 — -0.2 0.4 2.7 1.1 2.3 2.4 1.6 — 2.5 1.0 -0.1 2.4 2.7 — 2.4 2.4 2.4 2.2 —
5 2.3 1.9 2.1 2.2 2.1 2.2 -1.4 1.6 -1.0 — -0.4 0.0 2.5 1.0 2.1 2.2 0.8 — 2.3 0.8 -0.4 2.3 — — 2.2 2.2 2.2 2.1 —
6 2.3 1.9 2.1 2.1 2.1 2.1 -1.5 1.5 -1.0 — -0.4 -0.0 — 0.9 2.1 2.1 0.3 — 2.3 0.7 -0.4 2.2 — — 2.2 2.1 2.2 2.0 —
7 1.7 1.5 1.5 1.8 1.5 1.5 -1.7 0.4 -0.6 — 0.1 -0.0 — 1.6 1.6 1.4 -0.7 — — 1.0 0.9 1.6 — — 1.8 1.6 1.4 1.4 —
8 1.5 1.2 1.3 1.5 1.3 1.2 -1.8 0.3 -0.8 — 0.2 -0.3 — 1.3 1.3 1.1 -1.0 — — 0.7 0.6 1.4 — — — 1.3 1.1 1.1 —
9 1.3 1.0 1.1 — 1.0 1.1 -1.8 0.1 -0.7 — 0.1 -0.4 — 1.1 1.1 0.9 -1.1 — — 0.5 0.4 1.2 — — — 1.1 0.9 0.9 —
10 — 0.9 1.0 — 0.9 1.0 -1.7 0.1 -0.7 — 0.2 -0.4 — 1.0 1.0 0.8 -1.2 — — 0.5 0.2 1.1 — — — 1.0 0.8 0.9 —
11 — -0.0 0.1 — -0.0 0.2 -1.5 -0.2 -0.8 — -0.7 -1.1 — 0.0 -0.0 -0.2 0.0 — — -0.0 -0.5 — — — — -0.1 -0.3 0.1 —
12 — -0.2 -0.1 — -0.1 — -1.5 -0.3 -0.8 — -0.8 -0.9 — -0.1 -0.2 -0.3 -0.2 — — -0.2 -0.6 — — — — -0.3 -0.4 -0.0 —
13 — -0.3 -0.2 — -0.3 — -1.4 -0.4 -0.8 — -0.9 -1.0 — -0.2 -0.3 -0.5 -0.3 — — -0.3 -0.7 — — — — -0.4 -0.7 — —
14 — -0.4 — — -0.4 — -1.4 -0.5 -0.9 — -1.0 -1.1 — -0.3 -0.4 -0.6 -0.4 — — -0.4 -0.9 — — — — -0.5 -0.8 — —
15 — -0.5 — — -0.5 — -1.3 -0.6 -0.9 — -1.1 -1.1 — — -0.5 -0.6 -0.5 — — -0.5 -1.0 — — — — -0.6 -0.9 — —
16 — -0.3 — — — — -1.1 -0.5 -0.7 — -0.9 -0.9 — — -0.4 -0.5 -0.3 — — -0.4 -0.9 — — — — -0.5 -0.7 — —
17 — -0.4 — — — — -1.1 -0.5 -0.7 — -1.0 -1.0 — — -0.4 -0.6 — — — -0.4 -0.9 — — — — -0.5 -0.7 — —
18 — — — — — — -1.2 -0.6 -0.7 — -1.1 -1.2 — — -0.5 -0.7 — — — -0.5 -1.0 — — — — -0.6 -0.9 — —
19 — — — — — — -1.1 -1.0 -1.4 — -1.7 -1.5 — — -0.7 -1.3 — — — — -1.5 — — — — -1.5 -0.6 — —
20 — — — — — — -1.0 -1.0 -1.5 — -1.6 -1.4 — — -0.7 -1.2 — — — — -1.4 — — — — -1.5 — — —
21 — — — — — — -1.0 -0.9 -1.4 — -1.6 -1.3 — — — -1.1 — — — — -1.3 — — — — -1.4 — — —
22 — — — — — — -0.7 — -0.9 — -1.3 -1.1 — — — -0.8 — — — — -1.0 — — — — -1.0 — — —

79

4.4.3 Investigation of generalization performance 2: 6×6-
grid truss

To verify the generalization performance of the trained agents to various trusses,
it is necessary to demonstrate their performance through not only smaller trusses
but also larger trusses. Next, the agents trained with γ = 0.99 and γ = 0.9 are
applied without re-training. to a larger-scale truss, as shown in Fig. 4.21. The
initial GS consists of 6×6 grids and the number of members is more than double
the 4× 4-grid truss. The truss is optimized for two loading conditions.

In the loading condition L1, the left two corners 1 and 7 are pin-supported,
and rightward and downward unit loads are separately applied at the bottom-
right corner 43, as shown in Fig. 4.22(a). Topology at each step of the removal
sequence is illustrated in Figs. 4.22 - 4.25. Although the agent is applied to a
larger-scale truss, a sparse optimal solution is successfully obtained.

In the loading condition L2, the left two corners are again pin-supported,
and the outward unit load is separately applied at nodes 4 and 46, as shown
in Fig. 4.26(a). One of the loads applied at node 4 is an irregular case where
pin-supports and the loaded node aligns on the same straight line. Even in
this irregular case, the agent successfully obtained the sparse optimal solution,
as shown in Figs. 4.26 - 4.28. During their removal process, there are few
isolated members apart from load-bearing ones and existing members efficiently
transmit forces to the supports. On the other hand, the topology one step before
the terminal state in Fig. 4.29 obviously contains several unnecessary members,
and there is still room for reducing the total volume of the members. In order
to avoid such a result, it is necessary to improve the reward function Eq. (4.4)
so as not to leave unnecessary members as much as possible.

1 m 1 m1 m 1 m 1 m 1 m

1 m

1 m

1 m

1 m

1 m

1 m

X
Y

[2] [9] [16] [23] [44]

[43]

[3] [10] [17] [24] [45]

[4] [11] [18] [25] [46]

[5] [12] [19] [26]

[6] [13] [20] [27]

[7] [14] [21] [28]

[47]

[48]

[49]

[1] [8] [15] [22]

[30]

[31]

[32]

[33]

[34]

[35]

[29]

[37]

[38]

[39]

[40]

[41]

[42]

[36]

Figure 4.21: 6× 6-grid truss (Vs = 0.1858 [m3])

80

load case 1

load case 2

(a)

(b)

Figure 4.22: Loading condition L1 of 6× 6-grid truss (γ = 0.99). (a) Initial GS.
(b) Removal sequence of members.

81

load case 2

load case 1

(a)

(b)

Figure 4.23: Loading condition L1 of 6×6-grid truss (reversed the order of load
cases, γ = 0.99). (a) Initial GS. (b) Removal sequence of members.

82

load case 1

load case 2

(a)

(b)

Figure 4.24: Loading condition L1 of 6× 6-grid truss (γ = 0.9). (a) Initial GS.
(b) Removal sequence of members.

83

load case 2

load case 1

(a)

(b)

Figure 4.25: Loading condition L1 of 6×6-grid truss (reversed the order of load
cases, γ = 0.9). (a) Initial GS. (b) Removal sequence of members.

84

load case 2load case 1

(a)

(b)

Figure 4.26: Loading condition L2 of 6× 6-grid truss (γ = 0.99). (a) Initial GS.
(b) Removal sequence of members.

85

load case 2load case 1

(a)

(b)

Figure 4.27: Loading condition L2 of 6×6-grid truss (reversed the order of load
cases, γ = 0.99). (a) Initial GS. (b) Removal sequence of members.

86

load case 2load case 1

(a)

(b)

Figure 4.28: Loading condition L2 of 6× 6-grid truss (γ = 0.9). (a) Initial GS.
(b) Removal sequence of members.

87

load case 2load case 1

(a)

(b)

Figure 4.29: Loading condition L2 of 6×6-grid truss (reversed the order of load
cases, γ = 0.9). (a) Initial GS. (b) Removal sequence of members.

88

4.4.4 Comparison of efficiency and accuracy with genetic
algorithm

Among the trained RL agents in the previous examples, the agent trained with
α = 5.0 × 10−5 and γ = 0.99 is further investigated in terms of efficiency and
accuracy through comparison with a GA. GAs are one of the most prevalent
metaheuristic approaches for binary optimization problems, which are inspired
by the process of natural selection [13]. In GAs, a set of solutions are repeatedly
modified using the operations such as selection, where superior solutions at the
current generation are selected for the next generation, crossover, where the
selected solutions are combined to breed child solutions sharing the same char-
acteristics as the parents, and mutation, where the selected solutions randomly
change their values with a low probability. A simple GA method used in this
section is explained in Table 4.12. This algorithm is terminated if the best cost
function value fb is not updated for nt = 10 consecutive generations.

Because the optimization problem Eq. (4.3) contains constraint functions,
the cost function F used in the GA is defined using the penalty term as

F (A) = Vs(A) + b1C1(A) + b2C2(A) (4.5a)

C1(A) = max

{(
max

i∈Ωm, j∈{1,··· ,nL}

(
|σi,j(A)|

σ̄

)
− 1

)
, 0

}
(4.5b)

C2(A) = max

{(
max

i∈Ωd, j∈{1,··· ,nL}

(
|ui,j(A)|

ū

)
− 1

)
, 0

}
(4.5c)

where b1 and b2 are penalty coefficients for stress and displacement constraints;
both are set to be 1000 in this study. If the stress and displacement constraints
are satisfied, the penalty terms become zero and the cost function becomes
equivalent to the total structural volume Vs(A). The same material property
and constraints as the examples of RL are applied to the following problems. The
GA algorithm is run 10 times with different initial solutions that are generated
randomly, and only the best result that yields a solution with the least total
structural volume is provided in the GA column in Table 4.13.

The benchmark solutions for the 3× 2-grid truss provided in Table 4.13 are
global optimal solutions; this global optimality is verified through enumeration
which took 44.1 hours for each boundary condition. The other solutions are
assumed to be global optima which have not been verified through enumeration
due to extremely high computational costs.

Although nload! = 2 different removal sequences can be obtained by re-
ordering the load cases, only the better result with less total structural volume
is provided in the RL+GE column in Table 4.13. Note that the total CPU time
tc[s] for obtaining this removal sequence of members includes initialization of
the truss structure, importing the trained RL agent, and computing the removal
sequence.

According to Table 4.13, the proposed RL+GE method is much more ef-
ficient than the GA; the CPU time exponentially increases as the number of
variable increases in the GA; on the other hand, the CPU time increases al-
most linearly in RL+GE. The proposed method is also comparable to the GA
with np = 200 in terms of proximity to the global optimum; RL+GE generally

89

Table 4.12: GA method used in this study

input: F : cost function, np(= 200): number of solutions, nm: number
of variables, nt(= 10): stopping criterion for change of fb,
X = {x1, · · · ,xnp

}: initial solutions, F (x): cost function,
re(= 0.2): elite rate, rm(= 0.1): mutation probability

output: xb: best feasible solution
I ←− 0
ne ←− round(renp)
fb ←−∞
while I ≤ nt do

I ← I + 1
for i ← 1 to np do

fi ←− F (xi)

for i ← 1 to np do
if fi < fb and xi satisfy constraints then

xb ←− xi

fb ←− fi
I ← 0

Xe ←− ne elite solutions from X
X←− Xe

for i ← ne + 1 to np do
if a sample from uniform distribution [0, 1] > rm then

xj1 ,xj2 ←− two randomly chosen solutions from Xe

k ←− randomly chosen integer from {1, · · · , nm − 1}
xi ←− {xj1,1, · · · , xj1,k, xj2,k+1, · · · , xj2,nm

}
else

xi ←− randomly chosen solution from Xe

k ←− randomly chosen integer from {1, · · · , nm}
if xi,k = Ā then

xi,k ←− Ā× 10−6

else
xi,k ←− Ā

append xi into X

return xb

90

reached the feasible solutions with less total structural volume compared with
the solutions obtained by the GA. In addition, the accuracy of the trained agent
is less dependent on the problem size; the trained agent reached the presumable
global optimum for the 10 × 10-grid truss with L2 loading condition, although
the agent was caught at the bad solution Vs = 0.0608 for the 8 × 8-grid truss
with L1 loading condition.

Table 4.13: Comparison between the proposed method (RL+GE) and the GA
in view of the total structural volume Vs[m

3] and CPU time for one optimization
tc[s] using benchmark solutions

problem grids nm RL+GE GA benchmark

3× 2 (B1) 29
{ tc = 0.2 tc = 1.6

Vs = 0.0107
Vs= 0.0121 Vs= 0.0107

3× 2 (B2) 29
{ tc = 0.2 tc = 1.5

Vs = 0.0088
Vs= 0.0088 Vs= 0.0088

4× 4 72
{ tc = 0.5 tc = 3.7

Vs = 0.0097
Vs= 0.0097 Vs= 0.0097

6× 6 (L1) 156
{ tc = 1.2 tc = 12.2

Vs = 0.0145
Vs= 0.0145 Vs= 0.0145

8× 8 272
{ tc = 2.3 tc = 54.8

Vs = 0.0193
Vs= 0.0608 Vs= 0.0284

10× 10 420
{ tc = 6.2 tc = 140.3

Vs = 0.0241
Vs= 0.0281 Vs= 0.0658

4× 4 72
{ tc = 0.5 tc = 3.7

Vs = 0.0097
Vs= 0.0097 Vs= 0.0097

6× 6 (L2) 156
{ tc = 1.2 tc = 11.9

Vs = 0.0145
Vs= 0.0145 Vs= 0.0145

8× 8 272
{ tc = 2.6 tc = 41.8

Vs = 0.0193
Vs= 0.0233 Vs= 0.0473

10× 10 420
{ tc = 5.6 tc = 137.7

Vs = 0.0241
Vs= 0.0241 Vs= 0.0380

91

4.5 Generation of initial solutions by a trained
agent for simultaneous optimization of ge-
ometry and topology of trusses using force
density method

In this section, the sparse topology obtained through the proposed method is
utilized as an initial solution for solving the simultaneous optimization problem
of geometry and topology of trusses using a force density method (FDM). FDMs
have originally been used for finding the self-equilibrium shape of tension struc-
tures such as cable nets and tensegrity structures [136, 137]. The force density
of a bar member is defined as the ratio of the axial force to the length, and
the equilibrium nodal locations are obtained by solving a set of linear equa-
tions using a force density matrix, which is defined by the force densities of all
members.

In Refs. [72, 73], the author used a force density method for simultaneous
optimization of geometry and topology of trusses. The optimization problem
to minimize the compliance under a constraint on the total structural volume
can be formulated as functions of force densities only. The computational cost
can be saved compared with the standard methods where the nodal coordinates
and the cross-sectional areas are assigned as design variables. The numerical
difficulty caused by coalescent (melting) nodes can be easily avoided by setting
upper bounds for the design variables. Therefore, it is no more necessary to set
constraints on nodal locations and thus various optimal solutions of topology
and geometry can be generated from a relatively sparse initial GS.

The computational cost of the above optimization is highly dependent on the
number of members because the number of variables is equal to that of members
in the optimization problem. In the following, a sparse refined initial solution is
generated from a densely connected regular GS using the trained agent in order
to reduce the computational cost for the optimization with FDM.

4.5.1 Force density method for obtaining nodal locations

The force density of member i is defined with respect to the axial force Ni and
the length Li as

qi =
Ni

Li
(4.6)

Using a force density vector q = [q1, · · · , qnm
]
⊤
and a connectivity matrix of

the truss C, the force density matrix E ∈ Rnn×nn is defined as

E = CTdiag(q)C (4.7)

The diagonal element Ejj of the symmetric matrix E is equal to the total amount
of force densities of members connecting to node j, and off-diagonal element
Ejk (j ̸= k) is equal to −qi, if node k is connected to node j by member i. Let
[∆i,x,∆i,y,∆i,z] the unitary directional vector of the member i. Then qi,x, qi,y
and qi,z, x-, y- and z-directional components of the force density qi, respectively,
are expressed as

92

qi,x =
Ni|∆i,x|
Li|∆i,x|

=
Ni

Li
= qi (4.8a)

qi,y =
Ni|∆i,y|
Li|∆i,y|

=
Ni

Li
= qi (4.8b)

qi,z =
Ni|∆i,z|
Li|∆i,z|

=
Ni

Li
= qi (4.8c)

Equation (4.8) implies that the same matrix E can be used for obtaining the
nodal coordinates x, y and z ∈ Rnn as

Ex = Px (4.9a)

Ey = Py (4.9b)

Ez = Pz (4.9c)

wherePx, Py, andPz ∈ Rnn are the nodal load vectors including the reactions in
x-, y-, and z-directions, respectively. Equations (4.9a) - (4.9c) are sets of simul-
taneous linear equations with respect to the nodal coordinates. Therefore, the
nodal locations are directly obtained by solving these equations, which is more
efficient compared with solving stiffness equations in which nodal displacements
are obtained, and then nodal coordinates are obtained from the displacements.
The details can be found in [136, 138, 139].

In the conventional FDMs, the definition of free and fixed coordinates de-
pends on the support condition only; the nodal coordinates whose displacement
is constrained by a pin support or roller support are regarded as fixed. Instead,
fixed coordinates are those that do not change locations during the optimization
in the following formulation. Therefore, fixed nodes include all pin supports,
roller supports, and loaded nodes hereafter. This implies that the numbers of
free and fixed coordinates, respectively, in x- y- and z-directions are all the
same.

The nodes are re-ordered such that nodal coordinates free to move during
the optimization precede those fixed as

x =

(
xfree

xfix

)
, y =

(
yfree

yfix

)
, z =

(
zfree
zfix

)
(4.10)

The force density matrices in three directions are combined to Ẽ ∈ R3nn×3nn as

93

Ẽ =

nfree︷ ︸︸ ︷ nfix︷ ︸︸ ︷

Ex
free 0 0

0 Ey
free 0

0 0 Ez
free

Ex
link 0 0

0 Ey
link 0

0 0 Ez
link

Ex⊤
link 0 0

0 Ey⊤
link 0

0 0 Ez⊤
link

Ex
fix 0 0

0 Ey
fix 0

0 0 Ez
fix



nfree

nfix

(4.11)

where nfree and nfix are the numbers of free and fixed coordinates satisfying

nfree + nfix = 3nn (4.12)

Matrices (Ex
free,E

y
free,E

z
free), (E

x
link,E

y
link,E

z
link), and (Ex

fix,E
y
fix,E

z
fix) are assem-

bled into Ẽfree ∈ Rnfree×nfree , Ẽfree ∈ Rnfree×nfree , and Ẽlink ∈ Rnfree×nfix , and
Ẽfix ∈ Rnfix×nfix , respectively. Then, Ẽ in Eq. (4.11) is rewritten as

Ẽ =

(
Ẽfree Ẽlink

Ẽ⊤
link Ẽfix

)
(4.13)

Let Pfree ∈ Rnfree and Pfix ∈ Rnfix denote the nodal load vector corresponding to

Xfree=
(
x⊤
free,y

⊤
free, z

⊤
free

)⊤
and Xfix=

(
x⊤
fix,y

⊤
fix, z

⊤
fix

)⊤
. The set of equilibrium

equations in Eqs. (4.9a) - (4.9c) is rewritten as(
Ẽfree Ẽlink

Ẽ⊤
link Ẽfix

)(
Xfree

Xfix

)
=

(
Pfree

Pfix

)
(4.14)

From Eq. (4.14), the locations of free nodes Xfree are obtained as

ẼfreeXfree = Pfree − ẼlinkXfix (4.15)

Since the loaded nodes are regarded as fixed, Pfree is a zero vector for any
arbitrary truss. Thus, the term Pfree in Eq. (4.15) can be omitted as

ẼfreeXfree = −ẼlinkXfix (4.16)

If the locations of fixed nodes are known and the force densities of all members
are assigned, Xfix, Ẽfree and Ẽlink can be computed from them. Therefore, Xfree

is considered as a function of force densities.
Similarly, Pfix is computed from Eq. (4.14) as

Pfix = Ẽ⊤
linkXfree + ẼfixXfix (4.17)

Pfix can be regarded as the vector of reaction forces R ={R1, · · · , Rnfix
} ∈ Rnfix

corresponding to Xfix. Since the loaded nodes are regarded as fixed, the reaction
forces at loaded nodes must be specified by adding the following constraint:∑

i∈ΩR

(
Ri − P̄i

)2
= 0 (4.18)

94

where ΩR is the set of indices corresponding to the loaded nodes and P̄i is the
specified load value.

The square of the length of member i connecting nodes j and k is computed
as

L2
i = (Xk −Xj)

⊤
(Xk −Xj) (4.19)

where Xj ∈ R3 and Xk ∈ R3 are the nodal coordinate vectors containing the
x−, y− and z− coordinates of nodes j and k, respectively. Since each nodal
location is a function of force densities, the member length is also a function of
force densities q.

4.5.2 Optimization problem

Consider a problem for minimizing the compliance under a constraint on the
total structural volume. The solution to this problem is a statically determinate
truss with the same absolute value of axial stress for all members [140, 141]. Let
σ̄ denote the absolute value of stress for existing members of the optimal solu-
tion. From member length Li, the cross-section of i-th member Ai is expressed
as

Ai =
|Ni|
σ̄

=
|qi|Li

σ̄

(4.20)

The total structural volume Vs is computed as

V =

nm∑
i=1

AiLi

=

nm∑
i=1

|qi|L2
i

σ̄

(4.21)

The compliance is obtained as twice the sum of strain energies of each member
as

F = 2

nm∑
i=1

AiLi

2E
σ̄2

= 2

nm∑
i=1

σ̄|qi|L2
i

2E

=

nm∑
i=1

σ̄|qi|L2
i

E

(4.22)

From Eq. (4.20), σ̄ is regarded as a scaling parameter for Ai of a statically
determinate truss, for which Ni is independent of Ai. The product of the total
structural volume and the compliance is computed as

95

V F =

nm∑
i=1

q2iL
4
i

E

= 2

nm∑
i=1

N2
i L

2
i

E

(4.23)

As seen in Eq. (4.23), V F is independent of σ̄, which implies that the total
structural volume can be calculated after the optimization is implemented by
minimizing the compliance with an arbitrary positive value of σ̄. The tradeoff
between the total structural volume and the compliace is illustrated in Fig. 4.30;
Vs and F are inversely proportional under the condition that σ̄ is a constant.

Vs Vs=0.1[m3], F=0.5[N･m] =0.5[m3], F=0.1[N･m]

Figure 4.30: The relationship of the total structural volume Vs and the compli-
ance F under the condition of a constant absolute value of stresses σ̄

Let c denote a very small positive value. We further introduce smoothing in
computing the compliance as

F̃ =

nm∑
i=1

σ̄L2
i

√
q2i + c

E
(4.24)

where the absolute value of each force density |qi| is replaced by
√
q2i + c for the

purpose of smoothing the compliance. Figure 4.31 illustrates the difference of
two functions: the dotted line does not apply the smoothing and the single line
does. The discontinuity of the gradient at qi = 0, which may cause difficulty of
convergence, can be avoided by introducing the smoothing. The effect on the
compliance can be neglected if the parameter c is sufficiently small. c is set to
be 1.0× 10−6 in this study.

Finally, the optimization problem is formulated as

Minimize
q

F̃ =

nm∑
i=1

σ̄L2
i

√
q2i + c

E
(4.25a)

Subject to
∑
i∈ΩR

(
Ri − P̄i

)2
= 0 (4.25b)

qLi < qi < qUi (4.25c)

where qLi and qUi are the lower and upper bounds of the force density of member
i, respectively.

96

with smoothing

without smoothing

0 qi

Fi (qi)
Fi (qi)= E

σLi qi+c22

Fi (qi)= E
σLi qi

2

～

Figure 4.31: Compliance of member i with and without smoothing

4.5.3 Sensitivity analysis

The gradient of the objective and constraint functions are analytically obtained
in order to reduce the computational cost of the gradient-based optimization
method. For simplicity, only the sensitivity with respect to the force density of
member i is to be focused. The objective function Eq. (4.24) is differentiated
with respect to qi as

∂F̃

∂qi
=

σ̄qiL
2
i

E
√
q2i + c

+

nm∑
i=1

(
σ̄
√
q2i + c

E
· ∂L

2
i

∂qi

)
(4.26)

From Eq. (4.19), the sensitivity coefficient of L2
i with respect to qi is obtained

as

∂L2
i

∂qi
= 2 (Xk −Xj)

⊤ ∂ (Xk −Xj)

∂qi
(4.27)

The constraint function in Eq. (4.18) is differentiated with respect to qi as∑
i∈ΩR

2
(
Ri − P̄i

) ∂Ri

∂qi
= 0 (4.28)

The sensitivity coefficients of the reaction forces are obtained from Eq. (4.17)
as

∂R

∂qi
=
∂Ẽ⊤

link

∂qi
Xfree + Ẽ⊤

link

∂Xfree

∂qi
+
∂Ẽfix

∂qi
Xfix (4.29)

Differentiation of Eq. (4.16) with respect to qi leads to

Ẽfree
∂Xfree

∂qi
+
∂Ẽfree

∂qi
Xfree = −

∂Ẽlink

∂qi
Xfix (4.30)

Equations (4.26) - (4.29) implies that the sensitivity coefficients of objective and
constraint functions can be obtained after obtaining ∂Xfree/∂qi by solving a set
of linear equations (4.30).

97

4.5.4 Workflow

The workflow of the overall optimization process is described in Fig. 4.32. The
topology of an initial GS consisting of regular grids is optimized using the agent
trained with the proposed method RL+GE with γ = 0.99. As in the previous
sections, the same elastic modulus E = 200 [kN/mm2] and the same initial
cross-sectional area Ai = 1000 [mm2] (i = 1, · · · , nm) are used. Then, isolated
nodes with no member connected and unstable nodes with two members linearly
connected are removed.

The simplified topology after this process becomes an initial solution for
the optimization with the FDM. SNOPT Ver. 7.2 [142], a package for solving
optimization problems based on the sequential quadratic programming (SQP)
[143, 144], is used as an optimization tool. The initial variables are assigned by
solving the stiffness equation (4.1) and computing the force densities from the
obtained displacements. The lower and upper bounds for the variables in the
optimization problem (4.25) are qLi = −1000 and qUi = 1000 (i = 1, · · · , nm),
respectively. Since only a single loading condition can be handled with the op-
timization with the FDM, the following examples assume that loads are applied
to the structure simultaneously as one loading condition when optimizing with
the FDM. The total structural volume after the optimization with the FDM is
scaled to V̄ that is equal to the total structural volume of the structure after
the topology optimization by RL+GE, in order to compare the results between
the FDM only and combination of a RL+GE and the FDM.

Initial GS Sub-optimal topology Initial solution for FDM Optimal topology,
size and geometry

Vinit = 0.0446[m3] V = 0.0131[m3] V = 0.0131[m3] V = 0.0131[m3]

RL+GE Cull unnecessary nodes FDM

Figure 4.32: The optimization workflow combining RL+GE and the FDM

4.5.5 Numerical examples

3× 2-grid truss

The trained agent is first applied to a 3×2-grid truss as shown in Fig. 4.33. The
left corner nodes are pin-supported, and a downward load of 1 kN is applied
at the lowest end and the node left to the lowest end. The upper sequence

98

is the optimization result with the FDM only and the bottom sequence is the
optimization result with RL+GE and the FDM. The total structural volume
Vinit = 0.0340 [m3] of the initial GS is reduced to V̄ = 0.0121 [m3] by the
RL agent. The size of the members of the optimal solution after the FDM is
rescaled to V̄ . The compliance at each phase is also shown in Fig. 4.33; the
compliance of the optimal solution F = 0.0190 [kN ·m] obtained by the FDM
only is slightly smaller than F = 0.0192 [kN ·m] that obtained by RL+GE and
the FDM. However, the configuration of the latter solution is much simpler than
the former. Considering that a good solution comparable to the optimal solution
by the FDM only is obtained with a much smaller number of nodes and members,
it can be said that the solution obtained by the proposed optimization workflow
RL+GE and the FDM is more preferable from the viewpoint of constructability.

The elapsed CPU time tc is the average of 10 simulations. Since no random
process such as the ϵ-greedy policy and the randomization of the initial variables
are included, all the 10 simulations converge to the same solution. Compared
with the optimization with the FDM only, the combination of RL+GE and the
FDM is much more computationally efficient; the total elapsed CPU time is
reduced by approximately 40% by introducing the RL agent. The computa-
tion time to remove unnecessary nodes is small enough to be neglected in this
example.

tc = 0.19
RL+GE

tc = 0.10
FDM

tc < 0.01
Cull

V = 0.0121
F = 0.0240

V = 0.0121
F = 0.0240

Vinit = 0.0340
F = 0.0104

V = 0.0121
F = 0.0190

V = 0.0121
F = 0.0192

tc = 0.48
FDM

1kN1kN

Figure 4.33: The transition of the total structural volume Vs [m3] and the
compliance F [kN ·m] of the 3× 2-grid truss with the elapsed CPU time tc [s].
The upper row is the optimization result with the FDM only. The bottom row
is the optimization result with RL+GE and the FDM.

4× 4-grid truss

The performance of the proposed optimization workflow is also demonstrated
through a 4× 4-grid truss as shown in Fig. 4.34. The left corner nodes are pin-
supported, and the lowest end and the node left to the lowest end are subject to a
downward load of 1 kN. Similarly to Fig. 4.33, the upper row is the optimization
result with the FDM only and the bottom row is the optimization result with

99

RL+GE and the FDM. The total structural volume Vinit = 0.0853 [m3] of the
initial GS is reduced to V̄ = 0.0281 [m3] by the RL agent. The number of
nodes is reduced from 25 to 12 after removing the unnecessary nodes. Two
nodes are further merged to other nodes after the optimization with the FDM
to create a simple configuration with 10 nodes and F = 0.0132 [kN ·m], while
the solution obtained by the FDM only is a very complex configuration with
F = 0.0125 [kN ·m]. Given that the number of nodes is also an important factor
to reduce the construction cost, the solution obtained by the proposed workflow
RL+GE and the FDM may be a more realistic option for construction.

As seen from tc that is sampled from 10 repetitive simulations, the effect of
reducing the computational cost by the proposed method is more remarkable
for a truss with a more complicated initial GS. The total elapsed CPU time is
reduced to 1/3 by introducing the RL agent. The computational cost to cull
unnecessary nodes is small enough to be neglected in this example, too.

tc = 0.40
RL+GE

tc = 0.25
FDM

tc < 0.01
Cull

Vinit = 0.0853
F = 0.0075

tc = 2.03
FDM

V = 0.0281
F = 0.0125

V = 0.0281
F = 0.0132

V = 0.0281
F = 0.0188

V = 0.0281
F = 0.0188

1kN1kN

Figure 4.34: The transition of the total structural volume Vs [m3] and the
compliance F [kN ·m] of the 4× 4-grid truss with the elapsed CPU time tc [s].
The upper row is the optimization result with the FDM only. The bottom row
is the optimization result with RL+GE and the FDM.

4.6 Conclusion

In this chapter, the RL method proposed in Chapter 3 has been demonstrated
through the binary topology optimization of trusses to minimize the total struc-
tural volume under stress constraints. By varying the loading and support con-
ditions during the training using the 4 × 4-grid truss, the agent can learn the
process of member removal for various force flows.

100

The training is implemented with different learning rates α, sizes of the
edge feature nf and discount rates γ to investigate the difference of the learning
results. The RL agents that recorded good learning results are capable of re-
moving unnecessary members from a densely connected initial GS while keeping
the maximum stress that the existing members bear as small as possible. The
trained RL agents are applied to 3×2- and 6×6-grid trusses without re-training
and are found to perform well. The accuracy and computational efficiency of
using the trained RL agent is compared with a GA and it is confirmed that a
solution comparable to the GA can be obtained using the RL agent at a much
lower computational cost than the GA.

As an application example, initial solutions for simultaneous optimization of
geometry and topology of trusses using the FDM are generated using the trained
RL agent. The optimization problem aims at minimizing the compliance under
a constraint on the total structural volume, and has been formulated as func-
tions of the force density only. The numerical difficulty caused by the melting
nodes can be easily avoided by expressing the nodal location as a function of
force density. Compared with previous approaches in which nodal locations
are directly handled as design variables, the FDM-based approach does not re-
quire regions where nodes can move during optimization and can yield various
optimization results in geometry and topology.

Since the number of design variables of the optimization problem by the
FDM is equal to the number of the members, the computational cost can be
greatly reduced by starting the optimization from an initial solution in which
unnecessary members are removed in advance. In addition, more feasible opti-
mal trusses with sparser connectivity can be obtained than simply optimizing a
densely connected initial GS using the FDM only.

101

102

Chapter 5

Case study 2: Cross-section
optimization of steel frames

5.1 Discrete cross-section optimization problem
of planar steel frames under constraints on
stress, displacement and column over-strength
factor

In this section, a discrete cross-section optimization problem of planar steel
frames is formulated to minimize the total structural volume under constraints
on stress, displacement, and column over-strength factor (COF), which becomes
the RL task to be handled in Secs. 5.2 - 5.4.

5.1.1 Allowable stress and displacement design

The design strength Fd is a reference value for determining allowable stresses
of the material against tension, compression, bending, and shear forces. For
steel materials, the yield stress is generally equal to its design strength under
short-term loads. In this example, the values of Fd for columns and beams are
235 N/mm2 and 325 N/mm2, respectively.

Based on the design strength Fd, the allowable stresses of the steel against
tension, compression and bending forces, denoted as ft, fc and fb, respectively,
are given as Table 5.1, where λ is the effective slenderness ratio and Λ is the
critical slenderness ratio. Table 5.1 is a simplified form of the Japanese building
standards [145]. In general, the long-term allowable stress design considers the
self-weight of the structure and the live load, and the short-term allowable stress
design considers the seismic and wind loads in addition to the above loads. The
frame structure is designed against both long-term and short-term static loads
in this chapter. More specifically, there are three load cases to be considered,
as shown in Fig. 5.1; one is a long-term load case, and the others are short term
load cases in which the horizontal seismic loads are applied in the right and left
directions, respectively.

To calculate the stresses and the displacements of the members, the static
nodal loads are computed in the following way. The long-term loads include

103

Table 5.1: Allowable stresses of steel material

long-term allowable stress short-term allowable stress

tension ft Fd/1.5 Fd

compression fc
λ ≤ Λ 1−0.4(λ/Λ)2

3/2+(2/3)(λ/Λ)2
Fd

1−0.4(λ/Λ)2

3/2+(2/3)(λ/Λ)2
1.5Fd

λ > Λ 18
65(λ/Λ)2

Fd
18

65(λ/Λ)2
1.5Fd

bending fb Fd/1.5 Fd

long-term load case short-term load cases

Figure 5.1: Three load cases to be considered for the frame design in this chapter

the self-weight of the structure that can be calculated by the product of the
steel density 77 kN/m3 and the total volume of the members, the finishes of the
frame calculated as 1.0 kN/m2 per unit floor area, and live loads calculated as
2.4 kN/m2 per unit floor area. In addition to the long-term loads, the short-
term loads shall receive seismic loads estimated from the As

i distribution for the
self-weight, the fixed loads of the finishes, and live loads of 1.3 kN/m2 per unit
floor area. The load condition is given by converting them into the nodal loads
weighted for each span length, as shown in Fig. 5.2.

Q2

self weight

dead load

live load

seismic load

1/4 1/41/4 1/41/2 1/2

Q1

W1

W2

Figure 5.2: Process of converting distributed loads to nodal loads

The calculation procedure of the seismic loads of a frame with nsf stories is
explained in detail below. Let Wi and ψi denote the weight of the i-th story
and the ratio of Wi to WT =

∑nsf

i=1Wi, respectively. In the current Japanese
seismic design code [145], the design shear force of the i-th story Qi is expressed
as

Qi = Cs
iWTψi (5.1)

where Cs
i is the shear force coefficient that determines the intensity and the

vertical variation of the seismic loads and is calculated by the following equation:

Cs
i = ZRsAs

iCB (5.2)

104

Z is set within the range of 1.0 to 0.7 depending on the degree of seismic damage
based on the records of past earthquakes in the region, the status of the current
seismic activities, and the nature of the earthquakes. Rs represents the vibration
characteristics of a building and is calculated with a value of 1 or less according
to the natural period in the elastic region of the building and the ground type.
For simplicity, Z and Rs are set to 1.0. CB is the base shear coefficient, which
is set to 0.2 in this study. As

i represents the distribution of the seismic shear
force coefficient in the height direction of the building according to the vibration
characteristics of the building, and can be roughly calculated by the following
equation:

As
i = 1 +

(
1√
ψi
− ψi

)
2Tf

1 + 3Tf
(5.3)

where Tf is the primary natural period for the building design, which is roughly
obtained for a steel structure with a height of H as

Tf = 0.03H (5.4)

The seismic load in the top story is equal to the shear force in the top story, and
the seismic load in the i-th story is computed from Qi − Qi+1 as a difference
between the shear forces of the i-th and (i+ 1)-th stories.

The frame is assumed to be linear elastic with Young’s modulus E and the
shear modulus G. The standard 6-degree-of-freedom 2D beam element is used.
Let p̄i denote the member force vector. The local stiffness equation about
member i is described with the local stiffness matrix Ki, the local displacement
vector ūi and the local load vector applied to each DOF in the member p̄i as

Kiūi = p̄i (5.5)

Using a transformation matrix, elements of Ki are converted to those in the
global coordinate system to be assembled into the global stiffness matrix K.
Let u and p denote the displacement and load vectors about all DOFs in the
global coordinate system. Then the stiffness equation after assigning boundary
conditions is constructed as

Ku = p (5.6)

Since p is already specified, Eq. (5.6) is a set of simultaneous linear equations
with respect to u. When solving the stiff equation to calculate the displacement
of the frame nodes, the axial stiffness of the beams is set to a value 10 times larger
than the original value in order to simulate the rigid floor assumption. From
the displacements u, the inter-story drift with respect to the member length of
the column d̃ci and the deflection at the intermediate node with respect to the
member length of the beam d̃bi can be calculated. According to [146], in order
to ensure safety and serviceability of the building, the upper-bounds for d̃ci and
d̃bi are 1/200 and 1/300, respectively.

After solving Eq. (5.6), the axial force Ni and the bending momentsMi,1 and
Mi,2 at the two ends of each member are also computed from p̄i (i = 1, · · · , nm).
Using the cross-sectional area Ai and the section modulus Zi of the i-th member,
the axial stress σa

i and the bending stresses σb
i,1 and σb

i,2 at the two ends are
computed as

105

σa
i =

Ni

Ai
(5.7a)

σb
i,1 =

Mi,1

Zi
(5.7b)

σb
i,2 =

Mi,2

Zi
(5.7c)

Note that σa
i is negative for compression and is positive for tension. Then, the

stress ratio σ̃i is computed as the total of compression, tension, and bending
stress ratios to the allowable stresses as

σ̃i =

−
σa
i

fc
+

max{|σb
i,1|,|σ

b
i,2|}

fb
(if σa

i < 0)
σa
i

ft
+

max{|σb
i,1|,|σ

b
i,2|}

fb
(if σa

i ≥ 0)
(5.8)

σ̃i must be less than or equal to 1.0 to ensure the safety.

5.1.2 “Strong column-weak beam” design

To avoid the local story collapse without enough energy dissipation and ensure
the ductility of the frame, it is important to design the frame in accordance with
a “strong column-weak beam” principle. Figure 5.3 shows two typical collapse
modes. If a frame is designed so that plastic hinges are formed at the beam
ends rather than at the column ends, the structure is expected to form the
whole collapse mode where hinges at the beams are dominant as shown in the
left figure of Fig. 5.3. On the other hand, if the plastic moment capacity of the
columns is smaller than that of the beams, there is a possibility of the story
collapse as shown in the right figure of Fig. 5.3.

(a) (b)

Figure 5.3: (a) Desirable collapse mechanism. (b) Undesirable collapse mecha-
nism.

The column-to-beam strength ratio, or column overstrength factor (COF),
is a strong column-weak beam criterion about a joint and calculated as

β =

∑
Mpc∑
Mpb

(5.9)

where
∑
Mpc and

∑
Mpb are the sums of the full plastic moments of the columns

and beams connecting to the joint, respectively.

106

Nakashima and Sawaizumi [147] investigated the magnitude of the COF
required for ensuring the occurrence of plastic hinges only at the ends of beams
and the first-story column bases. It was found that the required COFs increase
steadily with the increase of the ground motion velocity, and reach about 1.5
for the ground motion amplitude of 0.5 m/s, which is considered as the strong
earthquake in the Japanese seismic design code [145]. Therefore, frames are
designed to satisfy β ≥ 1.5 in this study.

According to the Japanese building standards law, Mpb in Eq. (5.9) is given
as

Mpb = FybZpb (5.10)

where Fyb is the design strength and Zpb is the plastic section modulus of a
beam element. Although Mpc for a column is given in a similar way using the
design strength Fyc and the plastic section modulus Zpc, the value is discounted
using the axial force ratio ηc, the ratio of the column’s compressive axial stress
to the yield stress, as

Mpc = τFycZpc (5.11a)

τ =

{
1− 4η2

c

3 (ηc ≤ 0.5)
4(1−ηc)

3 (ηc > 0.5)
(5.11b)

Note that hinges are allowed to exist at the upper ends of the top story
columns because it is too difficult for only one column to outperform the sum
of the full plastic moments of two beams. Similarly, hinges are allowed to
exist at the bottom ends of the first-story columns, because the bottom nodes
are considered to be fixed in both translation and rotation, and the beams
connecting them are not considered.

5.1.3 Optimization problem

Consider a discrete cross-section optimization problem to minimize the total
structural volume under constraints on stress, displacement, and COF. A set
of the cross-sections J = {J1 · · · Jnm

} is to be selected from Table 5.2 for the
columns and from Table 5.3 for the beams. Then, the optimization problem is
formulated as

minimize Vs(J) (5.12a)

subject to


σ̃i ≤ 1 (i ∈ {1, · · · , nm})
d̃bi ≤ 1/300 (i ∈ Ωb)

d̃ci ≤ 1/200 (i ∈ Ωc)

βk ≤ 1.5 (k ∈ Ωβ)

(5.12b)

where Ωb, Ωc and Ωβ are the sets of indices of beam members, column members,
and middle-layer nodes that does not include bottom and top ones, respectively.

107

Table 5.2: Dimension list of column sections

Ji
Dimension [mm]

Ai [cm2] Ii [cm4] Zi [cm3] Zp,i [cm3]
H ×B × t

200 200× 200× 12 85.3 4860 486 588

250 250× 250× 12 109.3 10100 805 959

300 300× 300× 16 173.0 22600 1510 1810

350 350× 350× 19 239.2 42400 2420 2910

400 400× 400× 22 307.7 69500 3480 4220

450 450× 450× 22 351.7 103000 4560 5490

500 500× 500× 25 442.8 159000 6360 7660

550 550× 550× 25 492.8 217000 7900 9460

600 600× 600× 25 542.8 288000 9620 11400

650 650× 650× 28 656.3 407000 12500 14900

700 700× 700× 28 712.3 518000 14800 17600

750 750× 750× 32 866.3 717000 19100 22800

800 800× 800× 32 930.3 884000 22100 26200

850 850× 850× 32 994.3 1070000 25300 29900

900 900× 900× 36 1177.0 1420000 31500 37300

950 950× 950× 36 1249.0 1680000 35500 42000

1000 1000× 1000× 36 1321.0 1990000 39700 46900

Table 5.3: Dimension list of beam sections

Ji
Dimension [mm]

Ai [cm2] Izi [cm4] Iyi [cm4] Zz
i [cm3] Zy

i [cm3] Zp,i [cm3]
H ×B × t1 × t2

200 194× 150× 6× 9 38.11 2630 507 271 67.6 301

250 244× 175× 7× 11 55.49 6040 984 495 112 550

300 294× 200× 8× 12 71.05 11100 1600 756 160 842

350 340× 250× 9× 14 99.53 21200 3650 1250 292 1380

400 400× 200× 9× 19 110.0 31600 2540 1580 254 1770

450 450× 200× 9× 22 126.0 45900 2940 2040 294 2750

500 500× 250× 9× 22 152.5 70700 5730 2830 459 3130

550 550× 250× 9× 22 157.0 87300 5730 3180 459 3520

600 600× 250× 12× 25 192.5 121000 6520 4040 522 4540

650 650× 250× 12× 25 198.5 145000 6520 4460 522 5030

700 700× 250× 12× 25 205.8 173000 6520 4940 522 5580

750 750× 300× 14× 28 267.9 261000 12600 6970 841 7850

800 800× 300× 14× 28 274.9 302000 12600 7560 841 8520

850 850× 300× 16× 28 297.8 355000 12600 8350 842 9540

900 900× 300× 16× 28 305.8 404000 12600 8990 842 10300

950 950× 300× 16× 28 313.8 458000 12600 9640 842 11100

1000 1000× 300× 16× 28 321.8 515000 12600 10300 842 11900

108

5.2 Conversion to a reinforcement learning task

In this section, the optimization problem (5.12) is transformed into a RL task
that enables learning by the proposed method.

The input of each node vk ∈ R4 is shown in the Table 5.4. In order to
consider the support positions of the frame, an input that is 1 at the support
and 0 otherwise is defined in the first component. In addition, the second and
third components are defined for identifying the nodes at the top where the
COF constraints are not necessary, and the nodes at the side ends where the
COF values differ greatly due to the difference in the number of beams to be
connected, respectively. The COF is considered in the fourth component of
the node input, and the value is clipped not to exceed 1.0 by multiplying the
reciprocal of the COF value by its lower bound 1.5.

Similarly, the input of each member wi ∈ R6 is shown in Table 5.5. Inputs
that take a binary value of 1 or 0 depending on the member type (column or
beam) are defined separately for indices 1 and 2. According to Silver et al. [25],
when inputting the board of Go to a CNN, instead of expressing the position
of black stones as +1 and the position of white stones as -1 with the same
input, the positions of black and white stones are expressed separately; one
input expresses the position of black stones as +1 and the others to be 0; the
other input expresses the position of white stones as +1 and the others to be
0. If the positions of black and white stones are expressed with the same input,
this input is weighted with the same parameters in the NN. On the other hand,
if the inputs of black and white stones are independently defined, the NN can
separately consider the positions of black and white stones and weight them with
different parameters, which is a more rational input setting. This is the reason
why separate inputs are defined for columns and beams. The member input is
constituted of member type, the member length, and the numbers representing
the size of the cross-section, stress factor, and displacement factor. Note that
the inputs are scaled and clipped so as to values within the range [0, 1].

Table 5.4: Detail of node input vk

index input
1 1 if fixed, 0 otherwise
2 1 if at the top, 0 otherwise
3 1 if at the side ends, 0 otherwise
4 min {1.5/βk, 1.0}

Table 5.5: Detail of member input wi

index input
1 1 if column, 0 otherwise
2 1 if beam, 0 otherwise
3 Li/12.0
4 Ji/1000
5 min {σ̃i, 1.0}
6 min {d̃i, 1.0}

109

Here, different agents are trained for increasing and reducing the member
cross-sections, respectively. That is, the first agent changes the cross-section
of a member one step larger by the action, and the second agent changes the
cross-section of a member one step smaller by the action. In the same manner as
Chapter 4, any arbitrary state-action pair deterministically leads to the unique
next state. That is, when the action of increasing or reducing the cross-section
of member i is selected, the cross-section of the members other than the member
i never changes. If the lower columns on the same axis become thinner than the
upper column as a result of the action, the cross-section of the lower columns is
corrected so that it becomes equal to the upper column.

The reward is obtained after each design change of the member cross-sections.
In this study, two types of reward definition are considered based on the follow-
ing concept from the viewpoint of structural engineers. Regardless of whether
the member cross-sections are reduced or increased, it is necessary to consider
the stress and displacement of each member and the COFs at both ends, and
keep them within the constraint. Assuming that the information of all the other
members is not visible and the constraint function values about only one member
are given, it is possible to consider to some extent whether the cross-section of
the member can be reduced or increased. This is a judgment based on the local
information of each member. On the other hand, it is also necessary to compare
all the members and consider how much better it is to reduce or increase the
cross-section of a member compared to the others. This is a judgment based on
the global information about the entire structure. This way, it is necessary to
design rewards that take into account both local and global information.

When reducing the member cross-sections, the process starts with a redun-
dant design that satisfies all the constraints, and a negative reward or penalty
is assigned for the termination state in which the structural design exceeds the
constraints. If a sufficiently large cross-section is reduced, the reward closer to
+1.0 is assigned; if the cross-section that is likely to exceed the constraint is
reduced, the reward closer to 0 is assigned.

If a positive reward is given to increase the member cross-sections, the agent
may learn a detour strategy in an attempt to make the steps as long as possible.
Since it is preferable to reach a feasible cross-section design that satisfies the
constraint in fewer steps, a negative reward is given to the cross-section that
does not satisfy the constraint, and a positive reward is assigned only to the
terminal state that satisfies the constraint. A negative reward closer to 0 is given
when the bad cross-section that deviates from the constraint most is increased
through comparison among all the members, and a negative reward closer to -1
is given when a cross-section large enough to meet the local constraints at the
member is increased.

Reward setting 1

In this setting, the common reward function is defined for both tasks of increas-
ing and reducing the member cross-sections.

110

r1 =
1

3

(
G1

(
maxi σ̃

′

i

maxi σ̃i

)
+G1

(
mini βi
mini β

′
i

)
+G1

(
maxi d̃

′

i

maxi d̃i

))
(5.13a)

G1(x) =


min {x, 1.0} (if feasible)

0 (else if x satisfies its constraint)
ne√
nsf

max {− 1
x ,−1.0} (else)

(5.13b)

where ne is the number of members whose cross-section has been changed
by the action at the step and nsf is the number of stories of the frame. G1(x)
is the clipping and scaling function to adjust the magnitude of reward values.
Here, the term feasible means that the solution satisfies all the constraints of
the optimization problem.

Reward setting 2

In this setting, different reward functions are defined for the tasks of increasing
and reducing the member cross-sections. For the task of increasing the cross-
sections, the reward function is defined as

r+2 =

1.0 (if feasible)

ne

3
√
nsf

(
G+

2

(
−maxi σ̃i

maxi σ̃
′
i

)
+G+

2

(
−mini β

′
i

mini βi

)
+G+

2

(
−maxi d̃i

maxi d̃
′
i

))
(else)

(5.14a)

G+
2 (x) = max {x,−1.0} (5.14b)

The reward function for reducing the cross-section of member a is defined as

r−2 =

{
(1.0− σ̃a) +

(
1.0− 1.5

minj∈{1,2} βa,j

)
+
(
1.0− d̃a

)
(if feasible)

−1.0 (else)
(5.15)

where βa,j is the COF of the j-th tip node of the selected member a.

5.3 Training setting

The detail of the training implementation is explained in this section. The
agents are trained using a 5-layer, 3-span planar frame structure as shown in
Fig. 5.4. The elastic modulus of the members is set to be 2.05×105 N/mm2. The
I-beams are arranged so that the strong axis becomes on the same plane of the
planar frame. The bottom nodes are rigidly supported against both translation
and rotation.

At the beginning of each episode, the frame geometry is randomized while
fixing its connectivity. Each span is randomly initialized in the range of 5-12
m. The floor heights of the 2nd to 5th floors should be equal, and they are
randomly initialized in the range of 3.5 to 4.5m. The floor height of the first
floor is set 0.5 m higher than the other floor heights.

111

The initial cross-sections depend on the task to be trained. All the initial
cross-sections are set to the maximum of Ji = 1000 (i = 1, · · · , nm) for the
task of reducing the member cross-sections and the minimum of Ji = 200 (i =
1, · · · , nm) for the task of increasing the member cross-sections.

Once the shape and cross-sections are determined, the loads are calculated
according to the procedure explained in Sec. 5.1.1. Since the live loads and the
seismic loads are given in proportion to the floor area, it is necessary to set the
out-of-plane span in a pseudo manner. Here, 0.75 times the sum of the in-plane
spans is assumed to be the out-of-plane span for which the planar frame bears
the load. At this phase, the seismic load with the same magnitude is applied
leftward and rightward, acting as two separate load cases.

In the task of increasing the member cross-sections, the terminal state is a
cross-section design that satisfies all the constraints, and in the task of reduc-
ing the member cross-sections, the terminal state is a cross-section design that
exceeds any of the constraints. The cross-section is changed and the long-term
and short-term loads are also updated at each step until the terminal state.
The training episode is stopped when the terminal state is reached, and a new
episode starts with the frame whose geometry is re-randomized.

In the same manner as Chapter 4, the number of episodes nep is set to be
5000. The size of member feature is set as nf = 100. The training is implemented
with different combinations of learning rate α and discount rate γ. In addition to
Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz, a graphics processing unit (GPU)
GeForce(R) GTX 1080 Ti is further introduced to accelerate the training. See
Appendix A for more details about speeding up the training with GPUs.

3.5~5m

3~4.5m

3~4.5m

3~4.5m

3~4.5m

5~12m 5~12m 5~12m

Figure 5.4: Steel frame used for training

5.4 Training result

5.4.1 Training history and performance for 3×5-grid frame

Reward setting 1

First, the result trained for reducing the size of the members is explained. Fig-
ure 5.6 shows the histories of obtained cumulative reward in the test simulations
recorded at every 10 episodes for reward setting 1. The training is implemented
for different learning rates α = 5.0× 10−5 and α = 1.0× 10−5. For the task of

112

4m

4m

4m

4m

4m

12m 8m 8m

Figure 5.5: Steel frame used for test

reducing the cross-sections with reward setting 1, α = 5.0× 10−5 is clearly not
a good hyperparameter, because the training history greatly fluctuates.

The cumulative reward obtained by the agent for α = 1.0 × 10−5 have
increased as the number of training episodes increases. It took about 20.7 hours
for the training through approximately 1.40 million linear structural analyses
with Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz and updates of trainable
parameters with GeForce(R) GTX 1080 Ti. Meanwhile, it took 47.1 hours to
implement the training by the CPU only. It turned out that the computational
cost required for updating the trainable parameters occupies a large proportion
of the total training process, and that the effect of reducing the computation
time by the GPU is very large.

The sequence of design changes of the cross-sections in the test simula-
tion when the maximum cumulative reward is obtained for α = 1.0 × 10−5

is illustrated in Fig. 5.7. The cross-sections of all members are changed in a
well-balanced manner without concentrating on the cross-section of a specific
member. The stress ratio of the beam whose cross-section was reduced in the
final step exceeded 1.0, as illustrated in Fig. 5.9. Therefore, the 293rd step
which is just before the terminal state is regarded as the sub-optimal solution,
as illustrated in Fig. 5.8.

0 1000 2000 3000 4000 5000
trained episodes

50

100

150

200

250

300

cu
m

ul
at

iv
e

re
w

ar
ds

= 5.0 × 10 5

= 1.0 × 10 5

Figure 5.6: Histories of the cumulative reward of each test measured every 10
episodes (reducing cross-sections, reward setting 1)

113

t = 0 t = 50 t = 100 t = 150

t = 294 (infeasible)t = 200 t = 250 t = 293 (sub-optimal)

Figure 5.7: Decremental sequence of cross-sections (reward setting 1)

600 750 750 500

550 700 650 500

500 700 650 500

450 650 650 450

450 500 400 350

650 500 450

700 550 550

700 600 550

700 550 500

750 450 500

(a)

(b)

0.002 0.002 0.002 0.002

0.005 0.005 0.005 0.005

0.005 0.005 0.005 0.005

0.005 0.004 0.004 0.004

0.003 0.003 0.004 0.004

0.001 0.001 0.001

0.001 0.001 0.001

0.001 0.000 0.001

0.001 0.001 0.001

0.001 0.001 0.001

(c)

Figure 5.8: The result at step 293 (reducing cross-sections, reward setting 1,
feasible solution). (a) Cross-section index Ji (Vs = 6.778[m3]). (b) The maxi-
mum stress ratio in the member and the COF at the node. (c) The inter-story
drift ratio of the column and the deformation at the mid-point of the beam over
its length.

114

600 750 750 500

550 700 650 500

500 700 650 500

450 650 650 450

450 500 400 350

650 500 450

700 550 550

700 600 550

700 550 500

700 450 500

(a)

(b)

0.002 0.002 0.002 0.002

0.005 0.005 0.005 0.005

0.005 0.005 0.005 0.005

0.005 0.004 0.004 0.004

0.004 0.004 0.004 0.004

0.001 0.001 0.001

0.001 0.001 0.001

0.001 0.000 0.001

0.001 0.001 0.001

0.001 0.001 0.001

(c)

Figure 5.9: The result at step 294 (reducing cross-sections, reward setting 1,
infeasible solution). (a) Cross-section index Ji (Vs = 6.704[m3]). (b) The maxi-
mum stress ratio in the member and the COF at the node. The beam highlighted
in red exceeds the stress constraint. (c) The inter-story drift ratio of the column
and the deformation at the mid-point of the beam over its length.

115

Next, the result trained for increasing the size of the members is explained.
Figure 5.10 shows the histories of the cumulative reward in the test simulations
recorded at every 10 episodes for reward setting 1. Similarly to the task of
reducing the cross-sections, the training is implemented for different learning
rates α = 5.0 × 10−5 and α = 1.0 × 10−5. With both learning rates, the
performance of the RL agent can be improved steadily as the number of training
episodes increases. The case of α = 1.0×10−5 is focused here in order to match
the hyperparameters when the member cross-section is reduced.

It took about 19.9 hours for the training with α = 1.0 × 10−5 through
approximately 1.36 million linear structural analyses with Intel(R) Core(TM)
i9-7900X CPU @ 3.30GHz, while taking 44.4 hours with the CPU only. The RL
agent at the time of having learned 4500 episodes with the highest cumulative
reward is considered to be the best performing agent. The agent acquires a
reasonable strategy to intensively increase the size of columns and beams in the
lower layer in the early stage of the test simulation, as seen in Fig. 5.11.

Because the member sizes are sequentially increased from the infeasible so-
lution to the feasible solution in this simulation, the cross-sectional design of
the 261st step, which is the terminal state, becomes the sub-optimal solution.
The cross-section of the beam on the left side of the upper end is designed to be
slightly excessive, and the total structural volume Vs = 7.000[m3] is inferior to
the case of reducing the cross-sections in Fig. 5.8 Vs = 6.778[m3] as a result, but
the cross-sections are designed with a good balance of stresses, displacements,
and COFs.

0 1000 2000 3000 4000 5000
trained episodes

220

200

180

160

140

120

100

80

cu
m

ul
at

iv
e

re
w

ar
ds

= 5.0 × 10 5

= 1.0 × 10 5

Figure 5.10: Histories of the cumulative reward of each test measured every 10
episodes (increasing cross-sections, reward setting 1)

116

t = 0 t = 50 t = 100 t = 150

t = 200 t = 250 t = 261 (sub-optimal)

Figure 5.11: Incremental sequence of cross-sections (reward setting 1)

550 950 950 550

500 650 650 500

450 650 650 450

450 600 600 450

400 550 500 400

600 500 400

600 750 500

650 550 500

600 500 600

800 450 600

(a)

(b)

0.002 0.002 0.001 0.002

0.004 0.004 0.004 0.004

0.005 0.005 0.005 0.005

0.005 0.005 0.005 0.005

0.003 0.003 0.003 0.003

0.002 0.001 0.002

0.002 0.000 0.001

0.001 0.001 0.001

0.002 0.001 0.001

0.001 0.001 0.001

(c)

Figure 5.12: The result at step 261 (increasing cross-sections, reward setting
1, feasible solution). (a) Cross-section index Ji (Vs = 7.000[m3]). (b) The
maximum stress ratio in the member and the COF at the node. (c) The inter-
story drift ratio of the column and the deformation at the mid-point of the beam
over its length.

117

Reward setting 2

The training result for reward setting 2 is given in the following. First, the
training histories for reducing the cross-sections with α = 5.0 × 10−5 and α =
1.0 × 10−5 are provided in Fig. 5.13. There is no significant difference in the
history between the two learning rates. In order to match the parameter setting
that gives better training results in the task of increasing cross-sections later
explained in Fig. 5.17, the result of the training with the learning rate α =
5.0× 10−5 will be described in detail below.

The best test simulation at the 490th episode is illustrated in Fig. 5.14. In
the early phase of the episode, the cross-sections of upper beams are intensively
reduced to avoid exceeding the COF constraints. After that, the cross-sections
of the columns and beams of the entire frame are reduced in a well-balanced
manner, and finally, the sub-optimal cross-section design shown in Fig. 5.15 is
obtained at the 290th step.

0 1000 2000 3000 4000 5000
trained episodes

20

40

60

80

100

120

140

160

180

cu
m

ul
at

iv
e

re
w

ar
ds

= 5.0 × 10 5

= 1.0 × 10 5

Figure 5.13: Histories of the cumulative reward of each test measured every 10
episodes (reducing cross-sections, reward setting 2)

t = 0 t = 50 t = 100 t = 150

t = 291 (infeasible)t = 200 t = 250 t = 290 (sub-optimal)

Figure 5.14: Decremental sequence of cross-sections (reward setting 2)

118

600 850 800 550

600 700 700 550

600 700 650 550

550 650 600 500

450 550 450 350

650 450 450

750 550 500

700 500 450

750 550 550

700 450 450

(a)

(b)

0.002 0.002 0.002 0.002

0.004 0.004 0.004 0.004

0.005 0.005 0.005 0.005

0.004 0.004 0.004 0.004

0.003 0.003 0.004 0.004

0.001 0.001 0.001

0.001 0.001 0.001

0.001 0.001 0.001

0.001 0.001 0.001

0.001 0.001 0.001

(c)

Figure 5.15: The result at step 290 (reducing cross-sections, reward setting
2, feasible solution). (a) Cross-section index Ji (Vs = 7.058[m3]). (b) The
maximum stress ratio in the member and the COF at the node. (c) The inter-
story drift ratio of the column and the deformation at the mid-point of the beam
over its length.

119

600 800 800 550

600 700 700 550

600 700 650 550

550 650 600 500

450 550 450 350

650 450 450

750 550 500

700 500 450

750 550 550

700 450 450

(a)

(b)

0.002 0.002 0.002 0.002

0.005 0.005 0.005 0.005

0.005 0.005 0.005 0.005

0.004 0.004 0.004 0.004

0.003 0.003 0.004 0.004

0.001 0.001 0.001

0.001 0.001 0.001

0.001 0.001 0.001

0.001 0.001 0.001

0.001 0.001 0.001

(c)

Figure 5.16: The result at step 291 (reducing cross-sections, reward setting
2, infeasible solution). (a) Cross-section index Ji (Vs = 7.032[m3]). (b) The
maximum stress ratio in the member and the COF at the node. (c) The inter-
story drift ratio of the column and the deformation at the mid-point of the beam
over its length. The column highlighted in yellow exceeds the displacement
constraint.

120

Next, the result of increasing the cross-sections with reward setting 2 is
provided. The training histories with learning rates α = 5.0 × 10−5 and α =
1.0 × 10−5 are shown in Fig. 5.17. Although the agent performance can be
stably improved by using either learning rate, it has become possible to learn a
larger cumulative reward when the learning rate is α = 5.0 × 10−5 than when
α = 1.0× 10−5. The elapsed CPU time for the training with α = 5.0× 10−5 is
18.7 hours using the CPU and GPU, while it takes 43.4 hours when using the
CPU only.

Figure 5.18 shows the sequence of design changes at the time of 4650-episode
training, in which the maximum cumulative reward was obtained when the
training was performed at a learning rate of α = 5.0 × 10−5. The bottom
columns have intensively been enlarged, and then the columns and beams of
the entire frame have been changed in a well-balanced manner.

The resulting feasible cross-section design is shown in Fig. 5.19. The total
structural volume of the sub-optimal solution obtained by this simulation is the
smallest among the various training results shown so far. On the other hand, the
cross-section of the central beam that supports the 3rd floor is over-designed at
800, and there is still room for improvement toward a more slender cross-section
design.

0 1000 2000 3000 4000 5000
trained episodes

220

200

180

160

140

120

100

80

cu
m

ul
at

iv
e

re
w

ar
ds

= 5.0 × 10 5

= 1.0 × 10 5

Figure 5.17: Histories of the cumulative reward of each test measured every 10
episodes (increasing cross-sections, reward setting 2)

121

t = 0 t = 50 t = 100 t = 150

t = 200 t = 261 (sub-optimal)

Figure 5.18: Incremental sequence of cross-sections (reward setting 2)

500 800 750 500

500 600 600 450

500 550 550 450

450 550 550 450

450 550 500 400

600 450 450

700 800 550

700 550 500

650 500 500

750 500 500

(a)

(b)

0.002 0.002 0.002 0.002

0.005 0.005 0.005 0.005

0.005 0.005 0.005 0.005

0.005 0.005 0.005 0.005

0.003 0.003 0.003 0.004

0.002 0.001 0.001

0.001 0.000 0.001

0.001 0.001 0.001

0.001 0.001 0.001

0.001 0.001 0.001

(c)

Figure 5.19: The result at step 247 (increasing cross-sections, reward setting
2, feasible solution). (a) Cross-section index Ji (Vs = 6.418[m3]). (b) The
maximum stress ratio in the member and the COF at the node. (c) The inter-
story drift ratio of the column and the deformation at the mid-point of the beam
over its length.

122

5.4.2 Investigation of generalization performance 1: 5×3-
grid frame

The trained RL agents in Sec. 5.4.1 are applied to another frame with 5 spans
and 3 stories, as shown in Fig. 5.20. The second span from the left is 12m, and
the remaining spans are all 8m and the floor height is 4m for each story.

The cross-section design change to this frame is implemented using the fol-
lowing trained agents which are already trained in the previous section.

Agent(−) reducing size, reward setting 1, α = 1.0× 10−5, Figs. 5.6 - 5.9

Agent(+) increasing size, reward setting 2, α = 5.0× 10−5, Figs. 5.17 - 5.19

First, the result of reducing the cross-sections using Agent(−) is explained.
All cross-sections start from Ji = 1000, and the cross-section design becomes
infeasible at the 203rd step. Therefore, the cross-sections at 202nd step is re-
garded as the sub-optimal cross-section design as shown in Fig. 5.21. There is
relatively little variation in the resulting cross-sections; the chosen cross-sections
are between Ni = 450 and Ni = 850 for columns and Ni = 550 and Ni = 850
for beams.

4m

4m

4m

12m 8m 8m 8m 8m

Figure 5.20: 5× 3-grid steel frame

650 800 850 850 850 700

450 750 800 750 750 500

450 650 700 650 650 500

650 750 600 650 650

600 700 550 550 650

700 850 650 600 700

(a) (b)

(c)

0.001 0.001 0.001 0.001 0.001 0.001

0.002 0.002 0.002 0.002 0.002 0.002

0.002 0.002 0.002 0.002 0.002 0.002

0.001 0.001 0.001 0.001 0.001

0.001 0.002 0.001 0.001 0.001

0.001 0.001 0.000 0.001 0.001

(d)

Figure 5.21: The result at step 202 (using Agent(−)). (a) Cross-section index
Ji (Vs = 7.995[m3]). (b) Deformation against short-term load (scaled by ×100)
(c) The maximum stress ratio in the member and the COF at the node. (d)
The inter-story drift ratio of the column and the deformation at the mid-point
of the beam over its length.

123

Next, Agent(+) is applied to the same 5× 3-grid frame. The cross-sections
start from the minimum Ji = 200. The cross-sections are sequentially increased
by the agent and the feasible solution is obtained at step 288, as shown in
Fig. 5.22. Although the cross-section of the bottom-layer beams is designed
to be small, this result is reasonable considering the boundary conditions and
displacements; the supported nodes are strictly not allowed to be displaced, so
that the inter-story drift of the columns in the bottom layer becomes small as
shown in Fig. 5.22(b), and the stress of the beams in the bottom layer also
becomes small.

500 800 850 750 650 500

500 800 850 750 650 500

500 800 850 750 650 500

500 750 650 550 500

750 750 750 650 550

750 1000 750 600 600

(a) (b)

(c)

0.002 0.001 0.001 0.001 0.001 0.002

0.002 0.002 0.002 0.002 0.002 0.002

0.002 0.002 0.002 0.002 0.002 0.002

0.001 0.001 0.001 0.001 0.001

0.000 0.001 0.000 0.001 0.001

0.000 0.001 0.000 0.001 0.001

(d)

Figure 5.22: The result at step 288 (using Agent(+)). (a) Cross-section index
Ji (Vs = 8.207[m3]). (b) Deformation against short-term load (scaled by ×100)
(c) The maximum stress ratio in the member and the COF at the node. (d)
The inter-story drift ratio of the column and the deformation at the mid-point
of the beam over its length.

124

5.4.3 Investigation of generalization performance 2: 4×6-
grid frame

Next, Agent(−) and Agent(+) are applied to a larger scale frame as shown in
Fig. 5.23. The frame has 4 spans with lengths of 10m, 10m, 8m, and 8m from
the left. The uniform floor height of 4m is assigned to each floor.

The cross-sections, deformed shape, stress ratios, COFs and displacements
of the sub-optimal solution obtained by Agent(−) are shown in Fig. 5.24. 10m-
span beams have a larger cross-section than 8m-span beams, and both columns
and beams are designed in a well-balanced manner. The total structural volume
is Vs = 12.940[m3].

Similarly, the sub-optimal cross-sectional design obtained by Agent(+) is
shown in Fig. 5.25. The total structural volume is Vs = 13.554[m3] which is
larger than the solution obtained by Agent(−), due to the over-design of beams
with Ji = 1000 and upper columns. On the other hand, the deformation of the
entire structure is kept small due to the high rigidity, as shown in Figs. 5.24(b)
and 5.24(d).

4m

4m

4m

4m

4m

4m

10m 10m 8m 8m

Figure 5.23: 5× 3-grid steel frame

125

750 850 900 850 700

600 800 850 800 600

600 800 750 750 600

550 750 750 750 550

550 700 750 700 550

450 550 500 500 400

700 650 550 550

750 750 700 700

750 700 700 700

700 700 650 650

700 700 550 600

700 700 550 550

(a) (b)

(c)

0.002 0.002 0.002 0.002 0.002

0.004 0.004 0.004 0.004 0.004

0.005 0.005 0.005 0.005 0.005

0.005 0.005 0.005 0.005 0.005

0.004 0.004 0.004 0.004 0.004

0.004 0.004 0.004 0.004 0.004

0.001 0.001 0.001 0.001

0.001 0.001 0.000 0.000

0.001 0.001 0.000 0.000

0.001 0.001 0.000 0.001

0.001 0.001 0.001 0.001

0.001 0.001 0.001 0.001

(d)

Figure 5.24: The result at step 322 (using Agent(−)). (a) Cross-section index
Ji (Vs = 12.940[m3]). (b) Deformation against short-term load (scaled by ×100)
(c) The maximum stress ratio in the member and the COF at the node. (d)
The inter-story drift ratio of the column and the deformation at the mid-point
of the beam over its length.

126

600 850 900 900 650

550 700 800 750 650

550 700 750 750 650

550 700 750 750 650

500 700 750 750 550

450 650 750 600 500

600 650 600 500

700 1000 850 600

650 1000 750 550

600 750 750 600

650 800 750 500

750 750 600 550

(a) (b)

(c)

0.002 0.002 0.002 0.002 0.002

0.004 0.004 0.004 0.004 0.004

0.004 0.004 0.004 0.004 0.004

0.004 0.004 0.004 0.004 0.004

0.003 0.003 0.003 0.003 0.003

0.002 0.002 0.003 0.003 0.003

0.001 0.001 0.001 0.001

0.001 0.000 0.000 0.001

0.001 0.000 0.000 0.001

0.001 0.001 0.000 0.001

0.001 0.000 0.000 0.001

0.001 0.001 0.001 0.001

(d)

Figure 5.25: The result at step 499 (using Agent(+)). (a) Cross-section index
Ji (Vs = 13.554[m3]). (b) Deformation against short-term load (scaled by ×100)
(c) The maximum stress ratio in the member and the COF at the node. (d)
The inter-story drift ratio of the column and the deformation at the mid-point
of the beam over its length.

127

5.4.4 Comparison of efficiency and accuracy with particle
swarm optimization

Finally, the performance of Agent(+) and Agent(-) are compared with PSO in
view of the computational cost and the quality of the solution. Like GAs, PSO is
also one of the most popular metaheuristics. PSO is first developed to simulate
the movement of a bird flock and a fish school [148]. PSO algorithms utilize a
population of candidate solutions. Each particle’s position is repeatedly updated
based on its position, velocity, and the best-known positions of the particle and
the entire population.

The PSO algorithm used in this study is described in Table 5.6. The mo-
mentum factor is fixed to ξ = 0.7 and the social coefficient c1 and the cognitive
coefficient c2 are both set to be 2.0. The maximum number of iterations and
the number of particles are set to be 5000 and 10, respectively. The lower and
upper bounds are set to be xLi = 0.0 and xUi = 1.0 (i = 1, · · · , nm). In PSO,
the variables take continuous values. The continuous variables are converted to
cross-section index Ji using the following equation.

Ji = 200 + 50× TR
(
17xj,i − 1.0× 10−10

)
(5.16)

where TR is a truncation operator. 17 is the number of possible cross-sections
Ji ∈ {200, 250, · · · , 1000}. In Eq. (5.16), a very small value 1.0× 10−10 is used
to avoid the non-existing index Ji = 1050 when xj,k = 1.0. Note that the
negative value within (−1.0, 0.0) is truncated to 0; this means that Ji = 200
when xj,k = 0.0. To ensure the fairness of the problem definition, if the cross-
section of a column is smaller than that of upper columns in the same axis, the
cross-section is modified so as to become equal to the maximum cross-section
among the upper columns. For example, if the bottom column’s cross-section is
Ji = 550 and the cross-section of the upper columns in the same axis is Ji = 700
or Ji = 750, the bottom column’s cross-section is modified to Ji = 750. The
initial variables are all set to be xj , i = 0.5 (i ∈ {1, · · · , nm}) for all the particles
j ∈ {1, · · · , np}. The initial velocity of each variable is provided from a uniform
distribution of [−0.05, 0.05].

The cost function to be minimized by the PSO algorithm is defined as

F (J) = Vs(J) + b1C1(J) + b2C2(J) + b3C3(J) (5.17a)

C1(J) = max

{
max

i∈{1,··· ,nm}
(σ̃i − 1) , 0

}
(5.17b)

C2(J) = max

{
max

i∈{1,··· ,nm}

(
d̃i − 1

)
, 0

}
(5.17c)

C3(J) = max

{
max
k∈Ωβ}

(1.5− βk) , 0
}

(5.17d)

where b1, b2 and b3 are the penalty coefficients for the stress, displacement
and COF constraints, respectively. b1, b2 and b3 are set to be 1000 in this
study. This algorithm is terminated if the least cost function value F (xb) is
not updated for nt = 10 consecutive cycles. To consider the variation of the
solutions due to randomness, the PSO algorithm is executed 10 times, and their
median value is extracted.

128

Table 5.6: PSO method used in this study

input: F : cost function, xj : initial solution of particle j, vj : initial
velocity of particle j, xU: upper bounds, xL: lower bounds,
vU(= 0.1) maximum velocity, np(= 50): number of particles,
nt(= 10): stopping criterion, ξ(= 0.7): momentum factor,
c1(= 2.0): social coefficient, c2(= 2.0): cognitive coefficient

output: xb: best solution
xb ←− x1
for j ← 1 to np do

xpb,j ←− xj

if F (xj) < F (xb) then
xb ←− xj

while I ≤ nt do
I ← I + 1
for j ← 1 to np do

xj ←− xj + vj

foreach xj,i ∈ xj do
if xj,i < xLi then

xj,i ←− xLi
if xj,i > xUi then

xj,i ←− xUi

if F (xj) < F (xb) then
xb ←− xj

I ← 0

if F (xj) < F (xpb,j) then
xpb,j ←− xj

for j ← 1 to np do
vj ←− ξvj + c1(xb − xj) + c2(xpb,j − xj)
foreach vj,i ∈ vj do

if vj,i < −vU then
vj,i ←− −vU

if vj,i > vU then
vj,i ←− vU

return xb

129

The comparative result is described in Table 5.7, in which the elapsed CPU
time tc using Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz and the total struc-
tural volume Vs are summarized. Note that the CPU time tc[s] for RL+GE
includes initializing the frame model, importing the trained RL agent, and sim-
ulating the design changes of the members until the terminal state. Owing to
the penalty terms, the resulting solutions obtained by the PSO algorithm are
all feasible that satisfies all the constraints on stress, displacement, and COF.
The elapsed CPU time tc of PSO is the average of 10 optimizations. For 3-span,
5-story frame and 4-span, 6-story frame examples, it is noteworthy that the
computational cost of RL+GE is lower than PSO, while the proposed RL+GE
method achieves the solution comparable to the solution obtained by PSO with
np = 50 particles in terms of the total structural volume Vs. Although the
computational cost of RL+GE is also low in the 5-span, 3-story example, the
total structural volume is larger than the median solution obtained by PSO.
From this comparison result, it was found that there is still room for further
improvement in the accuracy of the training RL agent.

Table 5.7: Comparison between proposed method (RL+GE) and PSO in view
of total structural volume Vs[m

3] and CPU time for one optimization tc[s]

problem nm
RL+GE RL+GE

PSO
Agent(−) Agent(+)

8124
4
4
4
4

8

35
{tc = 2.6 tc = 2.3 tc = 6.2

Vs= 6.778 Vs= 6.418 Vs= 6.642

1284
4
4

8 8 8
33

{tc = 1.7 tc = 2.4 tc = 8.0

Vs= 7.995 Vs= 8.207 Vs= 6.220

810 104
4
4
4
4
4

8

54
{tc = 3.9 tc = 6.0 tc = 18.3

Vs= 12.940 Vs= 13.554 Vs= 12.999

5.5 Conclusion

In this chapter, the proposed RL method has been demonstrated through the
cross-section optimization of steel frames under constraints on stress, displace-
ment, and COF, where the cross-section of each member is selected from a set
of standard dimensions. The agent learns sequences of design changes of the
member cross-section of the 3-span, 5-story frame through a number of simu-
lations in which the spans between the columns and the floor heights vary for
each episode.

Two RL agents are trained separately depending on the task. One agent is

130

trained to reduce the size of members from the maximum cross-section and the
other is trained to increase the size of members from the minimum cross-section.
The training is implemented for different learning rates α and reward functions
r. The trained RL agents that recorded a higher cumulative reward are capable
of changing the cross-sections so as to achieve a minimum-volume design while
satisfying the stress, displacement, and COF constraints. The trained RL agents
are also applied to 5-span, 3-story and 4-span, 6-story steel frames without re-
training and are found to design the cross-sections in a well-balanced manner.
The trained RL agent is further compared with PSO in accuracy and efficiency.
The obtained feasible design through the trained agent is comparable to the
design obtained by the PSO algorithm in the total structural volume, and the
computational cost of using the agent is much lower than implementing the PSO
algorithm.

131

132

Chapter 6

Conclusion

6.1 Summary

This study addresses a combined method of GE and RL for the optimal de-
sign of skeletal structures. Although it requires a high computational cost for
the training, the trained agent is capable of finding sub-optimal solutions for
a skeletal structure with different geometry, topology, and support and loading
conditions without re-training. Moreover, the computational cost of using the
trained agent is much lower than using metaheuristic methods to obtain an opti-
mal solution. The agent trained by the proposed method exhibited satisfactory
performance for simplified structural design problems that requires complex de-
cision making. The background of this study is explained in Chapter 1 as an
introduction. The results obtained in Chapters 2-5 are summarized below.

Chapter 2 introduces previous researches on RL, which is the basis of the
proposed method. First, the outline of ML methods and the characteristics of
RL are explained. Next, the definition and the components of an MDP, which
is a decision-making process targeted by RL, are described. The value functions
and policies which are important concepts in RL are further introduced. The
recent RL methods are based on TD learning. In order to show the importance
of TD learning, the DP method and the MC method, which are the basis of TD
learning, were explained, and their advantages and disadvantages were summa-
rized. Two representative RL methods SARSA and Q-Learning applying the
concept of TD learning are also explained. When using tabular representations,
it is difficult to calculate and store the state and action values for all possible
combinations of states and actions, which is called the curse of dimensionality.
To deal with this problem, a function approximation method using an NN is
introduced to reduce the size of the training parameters. Finally, a DQN was
introduced as an example of combining the NN and RL.

In Chapter 3, The general procedure for converting a structural optimization
problem into an RL task was first explained. Since the RL task is formulated as
an MDP, the method of defining its components (states, actions, and rewards)
are described. In particular, the state is represented by member features ex-
pressed as vectors, which are computed from node and member inputs through
GE. Here, skeletal structures are regarded as graphs and numerical data about
neighbor nodes and members are aggregated to each member. The detail of the

133

GE formulation for each member was first explained, and another GE formula-
tion that simultaneously computes all the member features using a connectivity
matrix was explained next. Although the operations of the above two formu-
lations yield the same result, the latter is much more computationally efficient
than the former, owing to efficient matrix multiplication algorithms. Using the
extracted member features, the action value to change the design of each mem-
ber is computed. In the same manner as the member feature extraction, the
equation to compute the action values was re-formulated using matrix opera-
tions. A simple example with a 5-bar truss was presented to make the above
procedure easier to understand. The loss function to train the RL agent for
more accurate estimation of action values is defined, and the overall training
workflow for minimization of the loss was finally described. The definition of an
MDP depends on the structural optimization problem to be solved, and thus
cannot be fully generalized. In this study, the definition of an MDP is demon-
strated through two examples and the proposed method is applied to them to
confirm the validity of the MDP settings and the proposed method.

In Chapter 4, the proposed method was applied to topology optimization
of planar trusses for volume minimization under stress and displacement con-
straints. Note that the proposed method belongs to a binary type approach
where the cross-sectional area of each member either keeps its initial value or
obtains a very small value. A variety of load and support conditions were pro-
vided for an initial GS, and the removal of unnecessary members and the update
of the trainable parameters were implemented simultaneously. It was shown
that the trained agent is not only capable of obtaining sub-optimal solutions
at a low computational cost, but also reusable to other trusses with different
geometry, topology, and boundary conditions at a low computational cost. The
effects of hyper-parameters such as the learning rate, the size of feature vectors,
and the discount rate on training results were also discussed. Furthermore, the
action values of removing each member estimated by the trained agent were
quantitatively evaluated to confirm that the trained agent correctly evaluates
the structural importance of each member. In addition, the trained agent is
utilized for generating initial topology for simultaneously optimizing topology
and geometry using FDM. By introducing FDM, the nodal coordinates of the
equilibrium shape can be obtained as a function of force densities only. The
optimization problem to minimize the compliance subject to a total structural
volume constraint is also formulated using functions of force densities only. The
agent is utilized to reduce the number of design variables by removing un-
necessary members before the optimization. This way, a more sparse optimal
topology can be obtained at a lower computational cost.

In Chapter 5, the proposed method was applied to another optimization
problem: discrete cross-section optimization of planar steel frames. The cross-
sections of the steel frames are designed from a prescribed set of standard dimen-
sions so as to minimize the total structural volume while satisfying constraints
on stress, displacement, and column-to-beam over-strength factor. For such a
difficult problem, the trained agent is capable of finding good solutions compa-
rable to those obtained by metaheuristics. As well as in the previous chapter,
the trained agent can be used for frames with different nodes and members at a
low computational cost, and it was confirmed that the agent acquired a versatile
policy to change the member cross-sections even if the numbers of layers and
spans are changed.

134

6.2 Future outlook

The agent trained with the proposed method is expected to become a supporting
tool that instantly feedbacks a sub-optimal structural design. Unlike supervised
learning, the trained model learns the sequence towards a desirable state instead
of the desirable state only. Therefore, any step of the sequence towards the
sub-optimal design can be queried by structural designers, which improves the
degree of freedom and flexibility in the interactive design between the RL agent
and the designers. This improvement is also expected to enhance our design
exploration towards better structural designs.

Although the trained RL model in this study can be applied to more various
skeletal structures compared with previous studies, there are still some cases
that the trained agent may not apply due to the change of the size of trainable
parameters; for example,

· when the objective or the constraints of structural design changes
· when the structural type changes; for example, from a truss to a frame
· when the dimension of the structural model changes between 2D and 3D

For such cases, it is necessary to set up a new agent and train it from the
beginning. Although it might also be difficult to apply the trained agent if
the scale of the target structure is significantly different from that during the
training, it is possible to re-train the agent inheriting the parameters as the
initial values. Furthermore, in order to take the advantage of the trained agent
at the maximum, it is also necessary to design a graphical user interface (GUI)
for the users to utilize the agent.

The architecture, engineering, and construction (AEC) industry has drasti-
cally changed along with the advent of digital technology. In the 1990s, soft-
ware such as AutoCAD [149] has realized the concept of computer-aided design
(CAD), which has reduced development costs and shortened design cycles of the
buildings by smoothing and visualizing design inputs, analysis processes, and
feedback from the computer. The success of the CAD is succeeded by a building
information modeling (BIM) in the 2000s. BIM software such as Revit [150] has
facilitated exchanges and inter-operations of building information like materials
and dimensions by centralizing it into a 3D model-based common framework.
As a result, the processes of planning, design, construction and management of
buildings by AEC experts in multiple disciplines have become more efficient.
The recent trend of parametric and generative design using Grasshopper [151]
or Dynamo [152] saw another phase of digitalization in the AEC industry.

ML is widely recognized as a breakthrough of current problems in AI and
is also expected as an extension of the AEC digitalization described above.
However, there are still excessive expectations for current AI technologies. Frey
and Osborne [153] quantified the effect of the recent technological progress on
the future of employment and reported that the role of drafting for architectural
and civil drawings will be computationalized with the probability of 52% and
that of construction and related works with the probability of 71%. The problem
is that such shocking numbers come first, and it is not fully understood how the
working style of engineers will change due to the current AI technologies.

It must not be ignored that designers have flexibly adapted to the progress
of technology and have increased their literacy for new technologies. Nowa-
days, most architectural designers have become familiar with CAD and BIM

135

software and know its technological aspects to some extent. In order to benefit
from recent AI technologies, it is of great significance at first to know what
the currently proposed ML methods can and cannot do in the AEC industry.
The author hopes that this doctoral thesis will help all the people involved in
architectures to gain an understanding and a perspective towards better collab-
oration between structural design and AI.

136

Appendix A

GPU implementation for
accelerating the training

The core operation of the learning process by the proposed method is large-scale
matrix multiplication, which requires a high computational cost. Therefore,
how to improve the efficiency of large-scale matrix operations greatly affects
the learning efficiency. This appendix discusses in detail the techniques used in
Chapter 5 to improve the efficiency of matrix operations with the GPU from
both hardware and software perspectives.

A central processing unit (CPU) is a part of electronic circuits in a computer
to execute a sequence of instructions called program. The CPU is responsible
for the entire calculation process of the computer, and exhibits excellent perfor-
mance in sequentially processing complex tasks.

On the other hand, a graphics processing unit (GPU) is originally designed
for rapid manipulation of graphics and their outputs onto a display device. The
GPUs are roughly divided into those built into the CPU called Integrated GPU
(IGPU) and those having their own source of random access memory (RAM)
independent from the CPU called dedicated (or discrete) GPU. Although IGPUs
are usually cheaper and uses less power compared with dedicated GPUs, Since
only a small percentage of memory can be assigned for image processing tasks,
the performance of IGPUs is limited for intensive tasks. On the other hand,
dedicated GPUs can allocate intensive tasks to their own memory and thus
superior to IGPUs in terms of performance. GPUs generally have a much larger
number of cores than CPUs. While each core of the GPU is operated at lower
frequencies compared with the CPU, the GPU cores work in parallel to handle
large-scale data more quickly.

Although GPUs typically handle computations for graphics, there is an in-
creasing number of applications of general-purpose computing on graphics pro-
cessing units (GPGPU), in which the computation traditionally handled by a
CPU is performed by a GPU. The GPGPU is possible to allocate the calculation
processing to the processors utilizing each ability so that a GPU is in charge of
the calculation process with a large computational load and a CPU is in charge
of other sequential processing.

The utilization of GPGPU requires an application programming interface
(API) that allows software developers to build their own algorithms and pass

137

intensive kernels to the GPU. Nvidia corporation developed the compute unified
device architecture (CUDA) that is a parallel computing platform and an API
for GPGPU. By using CUDA, instructions of high-speed arithmetic processing
using GPU can be easily written using general-purpose programming languages
such as C, C++, and Fortran without requiring programming knowledge about
graphics programming.

For numerical computing over multi-dimensional arrays and matrices, NumPy
[154] is the most prevalent library for the Python programming language. CuPy
[155] is an open-source library for accelerated computing with NVIDIA GPUs
and CUDA platform. CuPy was born as a back-end of Chainer [156, 157, 158],
which is an open-source framework for training NNs using back-propagation
methods. CuPy became separated from Chainer as an independent library
in 2017. CuPy automatically wraps and compiles the code to make CUDA
kernels, using C++ codes. As shown in Codes A.1 and A.2, CuPy’s syn-
tax is highly compatible with NumPy; both operations yield the same result
Y =WX ={10, 10, 10}. The array is transferred from a GPU to a CPU in the
second last line of Code A.2, and the transferred array is re-transferred from
the CPU to the GPU in the last line of Code A.2.

Listing A.1: matrix operation using NumPy

1 import numpy as np
2

3 X_cpu = np.ones ((10,))
4 W_cpu = np.ones ((10 ,3))
5 Y_cpu = np.dot(X_cpu , W_cpu)

Listing A.2: matrix operation using CuPy

1 import cupy as cp
2

3 X_gpu = cp.ones ((10,))
4 W_gpu = cp.ones ((10 ,3))
5 Y_gpu = cp.dot(X_gpu , W_gpu)
6

7 Y_cpu = cp.asarray(Y_gpu)
8 Y_gpu2 = cp.asnumpy(Y_cpu)

In the example of truss topology optimization in Chapter 4, the training is
performed by a CPU only using NumPy and Chainer. In the example of frame
cross-section optimization in Chapter 5, the training was accelerated by using
CuPy and Chainer for weighting input values by trainable parameters Θ and
tuning trainable parameters using the RMSProp. Note that NumPy instead of
CuPy is used to weight the input values by trainable parameters Θ after the
training so that the trained agent becomes available on a PC that does not have
a dedicated GPU or does not install CUDA.

138

Bibliography

[1] W. Hsu, B. Liu, Conceptual design: issues and challenges, Computer-
Aided Design 32 (2000) 849 – 850.

[2] C. Mueller, J. Ochsendorf, From analysis to design: A new computa-
tional strategy for structural creativity, in: 2nd International Workshop
on Design in Civil and Environmental Engineering, pp. 1–11.

[3] C. Cui, M. Sasaki, Creation of three-dimensional structural form by ex-
tended eso method (application to structural design), 2003. (in Japanese).

[4] T. Kimura, Y.Hiraiwa, M.Sasaki, Structural design of the crematorium in
kawaguchi, 2016.

[5] T. Zegard, C. Hartz, A. Mazurek, W. F. Baker, Advancing building
engineering through structural and topology optimization, Structural and
Multidisciplinary Optimization 62 (2020) 915–935.

[6] M. Banachowicz, Nonlinear shaping architecture designed with using evo-
lutionary structural optimization tools, IOP Conference Series: Materials
Science and Engineering 245 (2017) 1–9.

[7] K. S. S. Co.Ltd., Kawaguchi city megurino-mori, 2020 (accessed Septem-
ber 27, 2020). http://www.kawaguchishi-megurinomori.jp/.

[8] H. Busta, SOM and Oak Ridge National Lab debut
3D-printed shelter and car, 2020 (accessed October 1,
2020). https://www.architectmagazine.com/technology/

som-and-oak-ridge-national-lab-debut-3d-printed-shelter-and-car_

o.

[9] D. Luenberger, Linear and Nonlinear Programming, Addison-Wesley,
1984.

[10] N. Karmarkar, A new polynomial-time algorithm for linear programming,
in: Proceedings of the Sixteenth Annual ACM Symposium on Theory of
Computing, STOC ’84, Association for Computing Machinery, New York,
NY, USA, 1984, p. 302–311.

[11] H. B. Curry, The method of steepest descent for non-linear minimization
problems, Quarterly of Applied Mathematics 2 (1944) 258–261.

139

[12] P. E. Gill, W. Murray, M. A. Saunders, M. H. Wright, Sequential quadratic
programming methods for nonlinear programming, in: E. J. Haug (Ed.),
Computer Aided Analysis and Optimization of Mechanical System Dy-
namics, Springer Berlin Heidelberg, Berlin, Heidelberg, 1984, pp. 679–700.

[13] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cam-
bridge, MA, USA, 1998.

[14] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated
annealing, Science 220 (1983) 671–680.

[15] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings
of ICNN’95 - International Conference on Neural Networks, volume 4, pp.
1942–1948.

[16] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine
learning on heterogeneous systems, 2020 (accessed September 3, 2020).
https://www.tensorflow.org/.

[17] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch,
in: NIPS-W, pp. 1–4.

[18] MathWorks, Statistics and machine learning toolbox, 2020 (ac-
cessed September 3, 2020). https://uk.mathworks.com/products/

statistics.html.

[19] D. Prayogo, M.-Y. Cheng, Y.-W. Wu, D.-H. Tran, Combining machine
learning models via adaptive ensemble weighting for prediction of shear
capacity of reinforced-concrete deep beams, Engineering with Computers
(2019).

[20] J.-S. Chou, A.-D. Pham, Enhanced artificial intelligence for ensemble
approach to predicting high performance concrete compressive strength,
Construction and Building Materials 49 (2013) 554 – 563.

[21] M. Khandelwal, Blast-induced ground vibration prediction using support
vector machine, Engineering with Computers 27 (2011) 193–200.

[22] T. Tamura, M. Ohsaki, J. Takagi, Machine learning for combinatorial op-
timization of brace placement of steel frames, Japan Architectural Review
1 (2018) 419–430.

[23] M. Papadrakakis, N. D. Lagaros, Y. Tsompanakis, Structural optimiza-
tion using evolution strategies and neural networks, Computer Methods
in Applied Mechanics and Engineering 156 (1998) 309 – 333.

140

[24] A. A. Markov, N. M. Nagorny, The Theory of Algorithms, Springer Pub-
lishing Company, Incorporated, 1st edition, 2010.

[25] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, D. Hassabis, Mastering
the game of go without human knowledge, Nature 550 (2017) 354–359.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, D. Hassabis, Human-level control through deep
reinforcement learning, Nature 518 (2015) 529–533.

[27] S. Nakamura, T. Suzuki, High-speed calculation in structural analysis by
reinforcement learning, The 32nd Annual Conference of the Japanese Soci-
ety for Artificial Intelligence JSAI2018 (2018) 3K1OS18a01. (in Japanese).

[28] D. Chiba, M. Suzuki, M. Hayashi, K. Watanabe, Development of active
response control system using ai (part 2. creation of ai for response control
by deep reinforcement learning), 2018. (in Japanese).

[29] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, L. D. Jackel, Backpropagation applied to handwritten zip code
recognition, Neural Computation 1 (1989) 541–551.

[30] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, J. Schmidhuber,
High-performance neural networks for visual object classification, CoRR
abs/1102.0183 (2011).

[31] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in: the 25th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’12, Curran
Associates Inc., USA, 2012, pp. 1097–1105.

[32] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, Y. Bengio, Generative adversarial networks,
ArXiv abs/1406.2661 (2014).

[33] M. Radovic, O. Adarkwa, Q. Wang, Object recognition in aerial images
using convolutional neural networks, Journal of Imaging 3 (2017).

[34] A. Uçar, Y. Demir, C. Güzeliundefined, Object recognition and detection
with deep learning for autonomous driving applications, Simulation 93
(2017) 759–769.

[35] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen,
C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney,
R. Weiss, K. Wilson, Cnn architectures for large-scale audio classification,
in: International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2017, pp. 1–5.

141

[36] Y. Kim, Convolutional neural networks for sentence classification, in:
Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Association for Computational Linguistics,
Doha, Qatar, 2014, pp. 1746–1751.

[37] Y. Yu, T. Hur, J. Jung, Deep learning for topology optimization design,
ArXiv abs/1801.05463 (2018).

[38] S. Banga, H. Gehani, S. Bhilare, S. Patel, L. Kara, 3d topology optimiza-
tion using convolutional neural networks, arXiv abs/1808.07440 (2018).

[39] Non-iterative structural topology optimization using deep learning,
Computer-Aided Design 115 (2019) 172–180.

[40] Y. Zhang, A. Chen, B. Peng, X. Zhou, D. Wang, A deep convolutional
neural network for topology optimization with strong generalization abil-
ity, arXiv abs/1901.07761 (2019).

[41] I. Sosnovik, I. Oseledets, Neural networks for topology optimization, Rus-
sian Journal of Numerical Analysis and Mathematical Modelling 34 (2019)
215 – 223.

[42] Z. Nie, T. Lin, H. Jiang, L. B. Kara, TopologyGAN: Topology optimiza-
tion using generative adversarial networks based on physical fields over
the initial domain, ArXiv abs/2003.04685 (2020).

[43] Z. Nie, H. Jiang, L. Kara, Stress field prediction in cantilevered struc-
tures using convolutional neural networks, Journal of Computing and
Information Science in Engineering 20 (2019).

[44] H. Jiang, Z. Nie, R. Yeo, A. B. Farimani, L. B. Kara, StressGAN: A
Generative Deep Learning Model for 2D Stress Distribution Prediction, in:
International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, volume Volume 11B: 46th
Design Automation Conference (DAC).

[45] A. Liew, R. Avelino, V. Moosavi, T. Van Mele, P. Block, Optimising the
load path of compression-only thrust networks through independent sets,
Structural and Multidisciplinary Optimization 60 (2019) 231–244.

[46] H. Cai, V. W. Zheng, K. Chang, A comprehensive survey of graph em-
bedding: Problems, techniques, and applications, IEEE Transactions on
Knowledge and Data Engineering 30 (2018) 1616–1637.

[47] F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S. Schoenholz,
G. E. Dahl, O. Vinyals, S. Kearnes, P. F. Riley, O. A. von Lilienfeld,
Machine learning prediction errors better than DFT accuracy, CoRR
abs/1702.05532 (2017).

[48] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural
message passing for quantum chemistry, CoRR abs/1704.01212 (2017).

142

[49] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social
representations, in: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, Associ-
ation for Computing Machinery, New York, NY, USA, 2014, p. 701–710.

[50] I. Bello, H. Pham, Q. V. Le, M. Norouzi, S. Bengio, Neural combinatorial
optimization with reinforcement learning, in: 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Workshop Track Proceedings, OpenReview.net, 2017, pp. 1–5.

[51] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, L. Song, Learning com-
binatorial optimization algorithms over graphs, in: Proceedings of the
31st International Conference on Neural Information Processing Systems,
NIPS’17, pp. 6351–6361.

[52] J. Jiang, C. Dun, Z. Lu, Graph convolutional reinforcement learning for
multi-agent cooperation, CoRR abs/1810.09202 (2018).

[53] A. Malysheva, T. T. K. Sung, C. Sohn, D. Kudenko, A. Shpilman,
Deep multi-agent reinforcement learning with relevance graphs, CoRR
abs/1811.12557 (2018).

[54] W. Zheng, D. Wang, F. Song, Opengraphgym: A parallel reinforce-
ment learning framework for graph optimization problems, in: V. V.
Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A.
Sloot, S. Brissos, J. Teixeira (Eds.), Computational Science - ICCS 2020
- 20th International Conference, Amsterdam, The Netherlands, June 3-5,
2020, Proceedings, Part V, volume 12141 of Lecture Notes in Computer
Science, Springer, 2020, pp. 439–452.

[55] A. Grover, J. Leskovec, Node2vec: Scalable feature learning for networks,
in: KDD : proceedings. International Conference on Knowledge Discovery
and Data Mining, KDD ’16, Association for Computing Machinery, New
York, NY, USA, 2016, p. 855–864.

[56] N. Zhao, H. Zhang, M. Wang, R. Hong, T.-S. Chua, Learning con-
tent–social influential features for influence analysis, International Journal
of Multimedia Information Retrieval 5 (2016) 137–149.

[57] C. Wang, C. Wang, Z. Wang, X. Ye, P. S. Yu, Edge2vec: Edge-based
social network embedding 14 (2020).

[58] R. Furuta, M. Yamakawa, N. Katoh, K. Araki, M. Ohsaki, A design
method for optimal truss structures with redundancy based on combina-
torial rigidity theory, Journal of Structural and Construction Engineering
79 (2014) 583–592. (in Japanese).

[59] R. Razani, Behavior of fully stressed design of structures and its relation-
shipto minimum-weight design, AIAA Journal 3 (1965) 2262–2268.

[60] U. Kirsch, Optimal topologies of truss structures, Computer Methods in
Applied Mechanics and Engineering 72 (1989) 15–28.

143

[61] M. P. Bendsøe, O. Sigmund, Topology Optimization: Theory, Methods
and Applications, Springer, 2004.

[62] W. S. Dorn, R. E. Gomory, H. J. Greenberg, Automatic design of optimal
structures, Journal de Mecanique 3 (1964) 25–52.

[63] M. Ohsaki, Genetic algorithm for topology optimization of trusses, Com-
puters and Structures 57 (1995) 219–225.

[64] G. Cheng, X. Guo, ε-relaxed approach in structural topology optimiza-
tion, Structural Optimization 13 (1997) 258–266.

[65] W. Achtziger, M. Stolpe, Global optimization of truss topology with
discrete bar areas―part ii: Implementation and numerical results, Com-
putational Optimization and Applications 44 (2009) 315–341.

[66] C. Y. Sheu, L. A. Schmit, Jr., Minimum Weight Design of Elastic Redun-
dant Trusses under Multiple Static Loading Conditions, AIAA Journal
10 (1972) 155–162.

[67] U. T. Ringertz, A branch and bound algorithm for topology optimization
of truss structures, Engineering Optimization 10 (1986) 111–124.

[68] M. Ohsaki, N. Katoh, Topology optimization of trusses with stress and
local constraints on nodal stability and member intersection, Structural
and Multidisciplinary Optimization 29 (2005) 190–197.

[69] P. Hajela, E. Lee, Genetic algorithms in truss topological optimization,
International Journal of Solids and Structures 32 (1995) 3341 – 3357.

[70] B. Topping, A. Khan, J. Leite, Topological design of truss structures using
simulated annealing, Structural Engineering Review 8 (1996) 301–304.

[71] T. Hagishita, M. Ohsaki, Topology optimization of trusses by growing
ground structure method, Structural and Multidisciplinary Optimization
37 (2009) 377–393.

[72] M. Ohsaki, K. Hayashi, Force density method for simultaneous optimiza-
tion of geometry and topology of trusses, Structural and Multidisciplinary
Optimization 56 (2017) 1157–1168.

[73] K. Hayashi, M. Ohsaki, FDMopt: Force density method for optimal
geometry and topology of trusses, Advances in Engineering Software 133
(2019) 12–19.

[74] P. Hajela, L. Berke, Neural network based decomposition in optimal
structural synthesis, Computing Systems in Engineering 2 (1991) 473 –
481.

[75] S. Lee, J. Ha, M. Zokhirova, H. Moon, J. Lee, Background information
of deep learning for structural engineering, Archives of Computational
Methods in Engineering 25 (2018) 121–129.

[76] R. Swift, S. Batill, Application of neural networks to preliminary struc-
tural design.

144

[77] Z. Szewczyk, P. Hajela, Neural network approximations in a simulated an-
nealing based optimal structural design, Structural optimization 5 (1993)
159–165.

[78] R. Hecht-Nielsen, Counterpropagation networks, Applied Optics 26 (1987)
4979–4984.

[79] M. J. D. Powell, Algorithms for nonlinear constraints that use lagrangian
functions, Mathematical Programming 14 (1978) 224–248.

[80] T. Kimura, M. Ohsaki, R. Okazaki, Simultaneous optimization of brace
locations and cross-sections of beams and columns of steel frames, Jour-
nal of Structural and Construction Engineering 83 (2018) 1445–1454. (in
Japanese).

[81] N. Tamura, H. Ohmori, Supporting system for structural design of steel
frame structures by using multi-objective optimization method, Jour-
nal of Structural and Construction Engineering 73 (2008) 891–897. (in
Japanese).

[82] K. Hager, R. Balling, New approach for discrete structural optimization,
Journal of Structural Engineering 114 (1988) 1120–1134.

[83] S. Yoshitomi, M. Yamakawa, K. Uetani, A method for selecting optimum
discrete sections of steel frames using two-step relaxation, Journal of
Structural and Construction Engineering 69 (2004) 95–100. (in Japanese).

[84] A. L. Samuel, Some studies in machine learning using the game of checkers,
IBM Journal of Research and Development 3 (1959) 210–229.

[85] M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of Machine Learn-
ing, The MIT Press, 2012.

[86] E. Togootogtokh, A. Amartuvshin, Deep learning approach for very sim-
ilar objects recognition application on chihuahua and muffin problem,
ArXiv abs/1801.09573 (2018).

[87] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, in: International Conference on Learning Repre-
sentations.

[88] L. van der Maaten, G. Hinton, Viualizing data using t-SNE, Journal of
Machine Learning Research 9 (2008) 2579–2605.

[89] S. Gu, E. Holly, T. Lillicrap, S. Levine, Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates, in: Proceed-
ings 2017 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, Piscataway, NJ, USA, 2017.

[90] IBM, Models for machine learning, 2020 (accessed Septem-
ber 7, 2020). https://developer.ibm.com/articles/

cc-models-machine-learning/.

[91] B. F. Skinner, Science and human behavior, New York, Macmillan, 1953.

145

[92] D. Schacter, D. T. Gilbert, D. M. Wegner, Psychology (2nd Edition),
Worth, New York, 2011.

[93] E. L. Thorndike, Animal intelligence, Psych Revmonog 8 (1911).

[94] R. S. Sutton, A. G. Barto, Introduction to Reinforcement Learning, MIT
Press, Cambridge, MA, USA, 1st edition, 1998.

[95] R. Bellman, On the theory of dynamic programming, Proceedings of the
National Academy of Sciences 38 (1952) 716–719.

[96] R. Bellman, Dynamic Programming, Rand Corporation research study,
Princeton University Press, 1957.

[97] R. Bellman, A markovian decision process, Indiana Univ. Math. J. 6
(1957) 679–684.

[98] R. A. Howard, Dynamic Programming and Markov Processes, Technology
Press and Wiley, 1960.

[99] D. Michie, R. A. Chambers, BOXES: An experiment in adaptive control,
in: E. Dale, D. Michie (Eds.), Machine Intelligence, Oliver and Boyd,
Edinburgh, UK, 1968.

[100] A. G. Barto, R. S. Sutton, C. W. Anderson, Neuronlike adaptive elements
that can solve difficult learning control problems, IEEE Transactions on
Systems, Man, and Cybernetics SMC-13 (1983) 834–846.

[101] OpenAI, Cartpole-v1, 2020 (accessed October 1, 2020). https://gym.
openai.com/envs/CartPole-v1/.

[102] C. J. C. H. Watkins, Learning from Delayed Rewards, Ph.D. thesis, King’s
College, Cambridge, UK, 1989.

[103] P. Maes, I. behavior, J. Meyer, M. Mataric, S. Wilson, J. Pollack, From
Animals to Animats 4: Proceedings of the Fourth International Confer-
ence on Simulation of Adaptive Behavior, Bradford book, MIT Press,
1996.

[104] O. Berger-Tal, J. Nathan, E. Meron, D. Saltz, The exploration-
exploitation dilemma: A multidisciplinary framework, PLOS ONE 9
(2014) 1–8.

[105] M. A. Wiering, Explorations in efficient reinforcement learning, Ph.D.
thesis, University of Amsterdam, 1999.

[106] J. Langford, Efficient Exploration in Reinforcement Learning, Springer
US, Boston, MA, pp. 389–392.

[107] M. Tokic, Adaptive ϵ-greedy exploration in reinforcement learning based
on value differences, in: R. Dillmann, J. Beyerer, U. D. Hanebeck,
T. Schultz (Eds.), KI 2010: Advances in Artificial Intelligence, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 203–210.

[108] A. Mignon, R. L. A. Rocha, An adaptive implementation of ϵ-greedy in
reinforcement learning, Procedia Computer Science 109 (2017) 1146–1151.

146

[109] R. Bellman, The theory of dynamic programming, Bulletin of the Amer-
ican Mathematical Society 60 (1954) 503–515.

[110] S. P. Singh, R. S. Sutton, Reinforcement learning with replacing eligibility
traces, Machine Learning 22 (1996) 123–158.

[111] R. S. Sutton, Learning to predict by the methods of temporal differences,
Machine Learning 3 (1988) 9–44.

[112] G. A. Rummery, M. Niranjan, On-Line Q-Learning Using Connectionist
Systems, Technical Report, Cambridge University, 1994.

[113] C. J. C. H. Watkins, P. Dayan, Technical note: Q-learning, Machine
Learning 8 (1992) 279–292.

[114] M. Roderick, J. MacGlashan, S. Tellex, Implementing the Deep Q-
Network, CoRR abs/1711.07478 (2017).

[115] R. Bellman, Adaptive Control Processes, Princeton University Press,
1961.

[116] N. J. van Eck, M. van Wezel, Application of reinforcement learning to
the game of othello, Computers and Operations Research 35 (2008) 1999–
2017.

[117] C. E. Shannon, XXII. Programming a computer for playing chess, The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 41 (1950) 256–275.

[118] B. T. Polyak, A. B. Juditsky, Acceleration of stochastic approximation by
averaging, SIAM Journal on Control and Optimization 30 (1992) 838–855.

[119] L. Bottou, On-line learning and stochastic approximations, in: In On-
line Learning in Neural Networks, Cambridge University Press, 1998, pp.
9–42.

[120] T. Tieleman, G. Hinton, Lecture 6e - rmsprop: Divide the gradient by a
running average of its recent magnitude, COURSERA: Neural Networks
for Machine Learning, 2012.

[121] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations
by back-propagating errors, Nature 323 (1986) 533–536.

[122] L.-J. Lin, Reinforcement Learning for Robots Using Neural Networks,
Ph.D. thesis, USA, 1992.

[123] J. Sola, J. Sevilla, Importance of input data normalization for the appli-
cation of neural networks to complex industrial problems, IEEE Transac-
tions on Nuclear Science 44 (1997) 1464–1468.

[124] M. Puheim, L. Madarász, Normalization of inputs and outputs of neural
network based robotic arm controller in role of inverse kinematic model,
in: SAMI 2014 - IEEE 12th International Symposium on Applied Machine
Intelligence and Informatics, p. 4.

147

[125] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-
parameter optimization, in: Proceedings of the 24th International Con-
ference on Neural Information Processing Systems, NIPS’11, Curran As-
sociates Inc., Red Hook, NY, USA, 2011, p. 2546–2554.

[126] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization,
Journal of Machine Learning Research 13 (2012) 281–305.

[127] J. Snoek, H. Larochelle, R. P. Adams, Practical bayesian optimiza-
tion of machine learning algorithms, in: Proceedings of the 25th In-
ternational Conference on Neural Information Processing Systems - Vol-
ume 2, NIPS’12, Curran Associates Inc., Red Hook, NY, USA, 2012, p.
2951–2959.

[128] N. Vithayathil Varghese, Q. H. Mahmoud, A survey of multi-task deep
reinforcement learning, Electronics 9 (2020) 21.

[129] W. Miller, Computational complexity and numerical stability, STOC
’74, Association for Computing Machinery, New York, NY, USA, 1974, p.
317–322.

[130] S. S. Skiena, Sorting and Searching, Springer London, London, pp. 103–
144.

[131] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, Third Edition, The MIT Press, 3rd edition, pp. 75–59.

[132] F. Le Gall, Powers of tensors and fast matrix multiplication, in: Pro-
ceedings of the 39th International Symposium on Symbolic and Algebraic
Computation, ISSAC ’14, Association for Computing Machinery, New
York, NY, USA, 2014, p. 296–303.

[133] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.

[134] W. McGuire, R. Gallagher, R. Ziemian, Matrix Structural Analysis, Wi-
ley, 2015.

[135] X. Guo, Z. Du, G. Cheng, C. Ni, Symmetry properties in structural
optimization: Some extensions, Structutal Multidisciplinary Optimization
47 (2013) 783–794.

[136] H.-J. Schek, The force density method for form finding and computa-
tion of general networks, Computer Methods in Applied Mechanics and
Engineering 3 (1974) 115–134.

[137] J. Zhang, M. Ohsaki, Tensegrity Structures: Form, Stability, and Sym-
metry, Mathematics for Industry, Springer Japan, 2015.

[138] A. Tibert, S. Pellegrino, Review of form-finding methods for tensegrity
structures, International Journal of Space Structures 18 (2003) 209–223.

[139] J. Zhang, M. Ohsaki, Adaptive force density method for form-finding
problem of tensegrity structures, International Journal of Solids and
Structures 43 (2006) 5658 – 5673.

148

[140] W. S. Hemp, Optimum structures, Clarendon Press Oxford, 1973.

[141] W. Achtziger, On simultaneous optimization of truss geometry and topol-
ogy, Structural and Multidisciplinary Optimization 33 (2007) 285–304.

[142] P. E. Gill, W. Murray, M. A. Saunders, SNOPT: An SQP algorithm for
large-scale constrained optimization, SIAM JOURNAL ON OPTIMIZA-
TION 12 (1997) 979–1006.

[143] J. Stoer, Principles of sequential quadratic programming methods for
solving nonlinear programs, in: K. Schittkowski (Ed.), Computational
Mathematical Programming, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1985, pp. 165–207.

[144] S. K. Eldersveld, Large-Scale Sequential Quadratic Programming Algo-
rithms, Ph.D. thesis, Stanford University, Stanford, CA, USA, 1992.

[145] Ministry of Land, Infrastructure, Transport and Tourism of Japan, Tech-
nical Standards Manual on Building Structures: 2007 Edition, National
Marketing Cooperative of Official Gazettes, second edition, 2008. (in
Japanese).

[146] Ministry of Land, Infrastructure, Transport and Tourism of Japan, No-
tice of milt no.1024: on determining special allowable stress and special
material strength, 2001. (in Japanese).

[147] M. Nakashima, S. Sawaizumi, Column-to-beam strength ratio required
for ensuring beam-collapse mechanism in earthquake responses of steel
frames, in: Proceedings of the 12 th World Conference on Earthquake
Engineering.

[148] J. Kennedy, The particle swarm: social adaptation of knowledge, in: Pro-
ceedings of 1997 IEEE International Conference on Evolutionary Compu-
tation (ICEC ’97), pp. 303–308.

[149] B.-C. Björk, M. Laakso, CAD standardisation in the construction industry
―a process view, Automation in Construction 19 (2010) 398 – 406.

[150] M. Imtaar, Complete Technical BIM Project Using Autodesk Revit: Ar-
chitecture - Structure - MEP, CreateSpace Independent Publishing Plat-
form, North Charleston, SC, USA, 2016.

[151] R. McNeel, Grasshopper - Algorithmic modeling for rhino,
http://www.grasshopper3d.com/, 2020. Accessed: 2020-10-27.

[152] Autodesk, Open source graphical programming for design, 2020 (accessed
September 17, 2020). https://dynamobim.org/.

[153] C. B. Frey, M. A. Osborne, The Future of Employment: How Susceptible
are Jobs to Computerisation?, Working Paper, Oxford Martin School,
University of Oxford, Oxford, UK, 2013.

149

[154] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Pi-
cus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del R’ıo,
M. Wiebe, P. Peterson, P. G’erard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, Array program-
ming with NumPy, Nature 585 (2020) 357–362.

[155] R. Okuta, Y. Unno, D. Nishino, S. Hido, C. Loomis, Cupy: A numpy-
compatible library for nvidia gpu calculations, in: Proceedings of Work-
shop on Machine Learning Systems (LearningSys) in The Thirty-first An-
nual Conference on Neural Information Processing Systems (NIPS).

[156] S. Tokui, K. Oono, S. Hido, J. Clayton, Chainer: a next-generation open
source framework for deep learning, in: Proceedings of Workshop on
Machine Learning Systems (LearningSys) in The Twenty-ninth Annual
Conference on Neural Information Processing Systems (NIPS).

[157] T. Akiba, K. Fukuda, S. Suzuki, ChainerMN: Scalable Distributed Deep
Learning Framework, in: Proceedings of Workshop on ML Systems in The
Thirty-first Annual Conference on Neural Information Processing Systems
(NIPS).

[158] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki,
K. Uenishi, B. Vogel, H. Yamazaki Vincent, Chainer: A deep learning
framework for accelerating the research cycle, in: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, ACM, pp. 2002–2011.

150

List of presentations related
to this study

Peer-reviewed journal

1. Kazuki Hayashi and Makoto Ohsaki. Reinforcement learning for optimum
design of a plane frame under static loads. Engineering with Computers,
2020. (published online)

2. Kazuki Hayashi and Makoto Ohsaki. Reinforcement learning and graph
embedding for binary truss topology optimization under stress and dis-
placement constraints. Frontiers in Built Environment, 6(59), Apr 2020

3. Kazuki Hayashi and Makoto Ohsaki. FDMopt: Force density method
for optimal geometry and topology of trusses. Advances in Engineering
Software, 133:12–19, Jul 2019

4. Makoto Ohsaki and Kazuki Hayashi. Force density method for simulta-
neous optimization of geometry and topology of trusses. Structural and
Multidisciplinary Optimization, 56(5):1157–1168, Nov 2017

International conference with full paper

1. Kazuki Hayashi, Makoto Ohsaki, and Caitlin Mueller. FDMOPT: A new
tool for simultaneous optimization of geometry and topology of truss struc-
tures. In IASS symposium 2018, Boston, USA. Internatinal Assosication
of Shell and Spatial Structures, Jul 2018

2. Kazuki Hayashi, Makoto Ohsaki, and Caitlin Mueller. Force density method
for simultaneous optimization of geometry and topology of spatial trusses.
In IASS symposium 2017, Hamburg, Germany. Internatinal Assosication
of Shell and Spatial Structures, Sep 2017

Other oral presentations

1. Kazuki Hayashi and Makoto Ohsaki. Minimum-volume design of steel
frames using reinforcement learning. In ECCOMAS Congress 2020 and
14th WCCM, number P00322. International Association for Computa-
tional Mechanics (IACM) and European Community on Computational
Methods in Applied Schences (ECCOMAS), Jan 2021

151

2. Kazuki Hayashi and Makoto Ohsaki. Development of an agent for dis-
crete cross-section design of planar steel frames using graph embedding
and reinforcement learning. In 43rd Symposium on Computer Technol-
ogy of Information, Systems and Applications, number H03. Architectural
Institute of Japan, Dec 2020. (in Japanese)

3. Kazuki Hayashi and Makoto Ohsaki. Reinforcement learning and graph
embedding for sequential optimal design of plane trusses and frames. In
Asian Congress of Structural and Multidisciplinary Optimization(ACSMO),
Seoul, Korea, number P00322. Asian Society of Structural and Multidisci-
plinary Optimization (ASSMO) and Korean Society for Design Optimiza-
tion (KSDO), Nov 2020

4. Kazuki Hayashi and Makoto Ohsaki. Reinforcement learning and graph
embedding for cross-sectional design of planar steel frames. In Summaries
of technical papers of annual meeting (Structure I). Architectural Institute
of Japan, Jul 2020. (in Japanese)

5. Kazuki Hayashi and Makoto Ohsaki. Graph embedding and reinforce-
ment learning for topology optimization of planar trusses with stress and
displacement constraints. In Summaries of technical reports of annual
meeting (Structure), number 2044, pages 193–196. Architectural Institute
of Japan Kinki Branch, Jun 2020. (in Japanese)

6. Kazuki Hayashi and Makoto Ohsaki. Deep-Q network for truss topology
optimization with stress constraints. In IASS symposium 2019, Barcelona,
Spain, number 249. Internatinal Assosication of Shell and Spatial Struc-
tures, Oct 2019

7. Kazuki Hayashi and Makoto Ohsaki. Shape optimization of frame struc-
tures using dynamic programming. In the 41st Symposium on Computer
Technology of Information, Systems and Applications, number H14. Ar-
chitectural Institute of Japan, Dec 2018. (in Japanese)

8. Kazuki Hayashi and Makoto Ohsaki. Force density method for simulta-
neous optimization of geometry and topology for latticed shells with free-
form design surface. In Summaries of technical papers of annual meeting
(Structure I), number 20180, pages 359–360. Architectural Institute of
Japan, Jul 2018. (in Japanese)

9. Kazuki Hayashi and Makoto Ohsaki. Force density method for simulta-
neous optimization of geometry and topology of trusses. In Summaries
of technical papers of annual meeting (Structure I), number 20514, pages
1027–1028. Architectural Institute of Japan, Jul 2017. (in Japanese)

10. Kazuki Hayashi and Makoto Ohsaki. Simultaneous topolgy and shape
optimization by force density method - Analysis of constraint method for
member length and nodal position. In the 40th Symposium on Computer
Technology of Information, Systems and Applications, number H82. Ar-
chitectural Institute of Japan, Dec 2017. (in Japanese)

11. Kazuki Hayashi and Makoto Ohsaki. Simultaneous optimization of topol-
ogy and geometry of planar truss using force density as design variable. In
the 11th colloquium analysis and generation of structural shapes and sys-
tems, number 16. Architectural Institute of Japan, Oct 2016. (in Japanese)

152

List of other presentations

Peer-reviewed journal

1. Kazuki Hayashi, Yoshiki Jikumaru, Makoto Ohsaki, Takashi Kagaya, and
Yohei Yokosuka. Discrete Gaussian curvature flow for piecewise constant
Gaussian curvature surface. Computer-Aided Design, Jan 2021. (published
online)

2. Hiroto Ota, Takuya Ito, and Kazuki Hayashi. Design review system with
“ Live AHP” to visualize and share jury’s own decision evaluation. The
AIJ Journal of Technology and Design, 27(65):562–567, Feb 2021. (in
Japanese, accepted for publication)

International conference with full paper

1. Kazuki Hayashi and Makoto Ohsaki. Structural performance of triangular
latticed shells with regularized panels for bézier design surfaces. In 12th
Asian Pacific Conference on Shell and Spatial Structures (APCS2018),
pages 337–347, Oct 2018

2. Kazuki Hayashi and Makoto Ohsaki. Regularization of triangular latticed
shell panels for bézier surfaces. In IASS symposium 2018, Boston, USA.
Internatinal Assosication of Shell and Spatial Structures, Jul 2018

Other oral presentations

1. Hitoro Ota, Takuya Ito, and Kazuki Hayashi. Study on communication
environment to visualize and share jury’s own ”design evaluation” - Design
review system with AHP application. In Summaries of technical papers
of annual meeting (education), number 50476. Architectural Institute of
Japan, Jul 2020. (in Japanese)

2. Hiroto Ota and Kazuki Hayashi. Development of an application to visu-
alize and share user’s own design review expressed as AHP - A report of
experiment in the review-event“Diploma x Kyoto”. In Summaries of pre-
sentations of Design symposium, pages 143–148, Nov 2019. (in Japanese)

3. Kazuki Hayashi and Makoto Ohsaki. Regularization of edge length of tri-
angular panels for latticed shells with free-form surfaces. In Summaries of
technical reports of annual meeting (Structure), number 58, pages 293–296.
Architectural Institute of Japan Kinki Branch, Jun 2018. (in Japanese)

153

4. Kazuki Hayashi and Hiroto Ota. A study on critique of architectural and
urban design by the method of using ahp. In Summaries of technical papers
of annual meeting (architectural planning), number 5448, pages 895–896.
Architectural Institute of Japan, Sep 2015. (in Japanese)

154

Acknowledgement

This research was kindly sponsored by Grant-in-Aid for JSPS Research Fellow
No.JP18J21456, JSPS Overseas Challenge Program for Young Researchers, and
JSPS KAKENHI No.JP18K18898.

I would like to express my heartfelt gratitude to my supervisor, Professor
Makoto Ohsaki, whose expertise in structural optimization has been invaluable
in formulating the research questions and methodology. Not only did he teach
me countless lessons about how to work in the academic world, but he always
understood what I wanted to do and believed in my decision.

I would like to acknowledge the vice-chairs in my dissertation committee,
Professor Izuru Takewaki, and Associate Professor Masahiro Kurata. Their ex-
pertise, guidance, and encouragement have been crucial for the work of this
thesis. I also thank Professor Kei Senda, an expert on reinforcement learning,
for his valuable comments on applying structural design problems to reinforce-
ment learning. I would like to thank Professor Yoshikazu Araki and Associate
Professor Jingyao Zhang, for their insightful feedback in the meetings that have
brought my work to a higher level. I give sincere thanks to Dr. Toshiaki Kimura
for his many forms of support in my research life. He taught me a great deal
about what a structural engineer should be. I would also like to express my grat-
itude to the laboratory members for their assistance at every research phase.
I am very thankful to Safumi Saiki for her administrative assistance that has
accelerated my efforts over the years.

My research has also been greatly improved thanks to the stimuli from my
experience at the Massachusetts Institute of Technology (MIT) in the United
States and École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.
My sincere thanks go to Associate Professor Caitlin Mueller in MIT for welcom-
ing me as a visiting student in her laboratory when I was in the master course.
Her enthusiasm in connecting architectural design and structural engineering is
still a source of my passion for research. During at MIT, I also had the great
pleasure to have worked with Yijiang Huang, Jingwen Wang, Dr. Paul Mayen-
court, Assistant Professor Nathan Brown, Dr. Pierre Cuvilliers, Dr. Renaud
Danhaive, and Dr. Samuel Letellier-Duchesne. I would also like to extend my
deepest gratitude to Emeritus Professor Ian Smith and Dr. Gennaro Senatore
for giving me an invaluable experience at EPFL. Their constructive advice and
insightful suggestions have been influential in shaping my methods. I also wish
to thank Dr. Arka Reksowardojo, Dr. Yafeng Wang, and Dr. Slah Drira for
their great amount of assistance and patience that cannot be overestimated.

Finally, I cannot forget to thank my family for their love and unwavering
trust in me. I am grateful for everything they have done for me and for making
my life so wonderful.

155

