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Abstract

Advances in information technologies have made it possible to store a wide variety

of large-scale data. However, data must be utilized, not just stored, to create value

for society. Machine learning is one of the most promising methods to utilize such

data. We are already surrounded by machine learning-based technologies. Machine

learning has become a part of our life, and the development of advanced machine

learning technologies will enrich our lives.

Machine learning can be broadly defined as computational methods that increase

the performance of a particular task by learning certain models from data. In the era

of big data, large-scale data is expected: however, in recent years, the size of models

is also increasing. This is because increasing the size of models enables machine

learning to improve the accuracy of certain tasks and handle large data. Such large

models are already used in the field of bioinformatics, computer vision, and natural

language processing.

In this dissertation, we propose fast algorithms to reduce the processing times

for large models. The additional capital investment cost is not required by utilizing

algorithmic solutions. This dissertation focuses on wide and deep models in large

models that perform an important role in machine learning, i.e., wide models are

used for analyzing high-dimensional data such as genome data and deep models are

crucial for recent applications in artificial intelligence.

For wide models, we primarily handle feature selection on the basis of linear re-

gression models with high-dimensional data. The key to the proposed algorithms is to

utilize sparsity in the models. Our algorithms safely skip unnecessary computations

and intensively learn important parts in the model. In addition, our approach does

not require additional hyperparameters that incur additional tuning costs. Experi-

ments verify that our method reduces the processing times of wide models without
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degrading accuracy.

While considering deep models, we handle deep neural networks (DNNs), which

are fundamental models in recent artificial intelligence technologies. As DNNs require

long processing times for training (learning phase) and inference (prediction phase),

which is a crucial problem, we propose two efficient algorithms, one for training

and the other for inference. For training, we propose an optimization method with

preconditioning to effectively reduce the training loss. For inference, we propose a

model compression method that erases unimportant parts from deep models and

produces lightweight models. Experiments demonstrate that our algorithms can

effectively reduce the training loss or model size while maintaining the accuracy.
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Chapter 1

Introduction

1.1 Machine Learning

Machine learning can be broadly defined as computational methods that increase

the performance of some task by learning some model from data (Mitchell, 1997;

Shalev-Shwartz and Ben-David, 2014; Mohri et al., 2018). It has become one of the

most crucial information technologies as the amount of data available increases. We

are already surrounded by machine learning-based technology as follows:

• A number of personal computers and smart speakers install intelligent personal

assistants that perform tasks for humans on the basis of their voice or text

commands: they use machine learning to recognize these commands.

• Facial recognition systems on smartphones learn from face data to perform

biometric authentication for unlocking a device and making payments.

• Cars with a driving safety support system prevent traffic accidents by utiliz-

ing machine learning-based systems such as traffic sign recognition and lane-

keeping assist.

We can also search for various contents such as documents, images, movies and songs

thanks to search engines using machine learning, and satellite navigation software

learns from traffic data to estimate travel times. It is also widely used in scientific

applications such as bioinformatics, medicine, and astronomy. Machine learning
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has become a part of our life, and the development of advanced machine learning

technologies will enrich our lives.

1.2 Wide and Deep Models

Models in machine learning are learned from collected data with learning algorithms.

With the increase of the size of collectable data thanks to the progress of information

technologies, the size of models used in machine learning has also increased. Although

various types of large models exist, this dissertation focuses on wide and deep models.

The wide model means that its parameters to be learned take the form of a long

vector or a wide matrix as shown in Figure 1.1. On the other hand, the deep model

has a deep hierarchical structure in the parameters as described in Figure 1.2. The

following examples are famous wide and deep models which are relevant to this

dissertation:

Lasso. Lasso (Tibshirani, 1996) is a popular feature selection method for wide

models in machine learning (Li et al., 2017). Since it can find some important

features for some tasks from high-dimensional data, it has been used for a long

time to analyze data. In genome data analysis, lasso is often used to select SNP

(single nucleotide polymorphism) related to disease from human genome (Wu

et al., 2009): the dimensions of the data reach millions and more (1000 Genomes

Project Consortium and others, 2015). In such a case, the width of the model

also reaches more than millions. Since there are many high-dimensional data

in the real world such as text data, network traffic data, bibliographic data,

and hyperspectral medical images, feature selection is a fundamental tool for

analyzing such data.

Deep learning. Deep learning (Goodfellow et al., 2016) is a subfield of machine

learning that uses deep models. They have hierarchical structures and the

depth of the hierarchy can reach more than 100 (He et al., 2016b). Thanks to

the deep hierarchical structure, deep learning has achieved high accuracy for

various tasks such as image recognition (Krizhevsky et al., 2012), speech recog-

nition (Seide et al., 2011), and machine translation (Sutskever et al., 2014).

For this reason, deep learning is widely used in various fields such as com-
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puter vision, speech processing, and natural language processing, and a crucial

fundamental technology for artificial intelligence.

As shown in the examples above, the wide and deep models play important roles

across various research fields.

1.3 Computation Cost

The previous section describes that large models in machine learning have con-

tributed to society via contributions to various research fields. However, the compu-

tation cost has clearly increased due to the large size of the models.

In the case of lasso, it incurs high computation cost as the width becomes larger.

For instance of graph construction (Meinshausen and Buhlmann, 2006), the width

of lasso corresponds to the number of data points. For such a situation, lasso cannot

finish the computation within a month when we use more than one million data

points (Fujiwara et al., 2016a).

Deep learning obviously requires a long processing time due to the deep hierarchi-

cal structure. In the field of computer vision, AlexNet, a model used in deep learning,

won an ILSVRC image classification competition with 8 layers in 2012 (Krizhevsky

et al., 2012). In the same competition in 2015, the deep model called Residual Net-

work (ResNet) used 152 layers and won the competition (He et al., 2016b). Due to

the increase in the number of layers, ResNet requires 20 times longer processing time

than AlexNet for the inference (Bianco et al., 2018).

As we described above, wide and deep models are computationally expensive

although they are fundamental models for machine learning applications. We need

efficient methods for these models to make machine learning more accessible and

easy to use.

1.4 Fast Methods for Wide and Deep Models

In this dissertation, we develop fast algorithms for large models to reduce the pro-

cessing time. Although various types of large models exist in machine learning, we

focus on the wide and deep models as we have described in the previous sections.
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This dissertation is divided into two parts. In the first part, we develop fast

algorithms for typical wide models whose parameters take the form of a long vector

(Figure 1.1 (a), Chapter 2) and a large matrix (Figure 1.1 (b), Chapter 3). In the

second part, we focus on deep neural networks: they are typical deep models that

have hierarchical structures for parameters (Figure 1.2). We propose algorithms to

speed up the training (Chapter 4) and the inference (Chapter 5).

We list the contributions to be presented in each chapter of the dissertation:

Part I: Fast algorithms for wide models.

Chapter 2: Linear regression model for high-dimansional feature vector is a

typical wide model. Since its parameters take the form of a long pa-

rameter vector corresponding to a high-dimensional feature vector, it re-

quires a long processing time for learning. In this chapter, we focus on

linear regression models with structured sparsity-inducing norms (Jenat-

ton, 2011). By introducing the norms to the models, a lot of elements

in the parameter vector turn to be zeros. We propose a fast algorithm

without degrading accuracy on the basis of the property: it safely skips

unnecessary computations by utilizing the sparsity. Another advantage of

structured sparsity-inducing norms is the ability to handle a wide variety

of structured data. Although we start with Sparse Group Lasso (Simon

et al., 2013) that can handle data with group structures, we show that our

algorithm can be extended to data with overlapping groups (Overlapping

Group Lasso) and graph structures (Graph Lasso) (Jacob et al., 2009).

Chapter 3: The deterministic CUR matrix decomposition (Bien et al., 2010)

is a low-rank approximation method for a data matrix on the basis of

a regularized self-representation model (Zhu et al., 2015). Its parameter

takes the form of a matrix, and the size of the parameter matrix increases

with the size of the data matrix: CUR matrix decomposition requires a

long processing time when it decomposes a large data matrix. In this

chapter, we propose a fast algorithm for the deterministic CUR matrix

decomposition by utilizing the sparsity in a regularized self-representation

model similarly to Chapter 2. Experiments show that our method is up to

10× faster than the original method, and up to 4× faster than the state-
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of-the-art method while achieving the same accuracy without additional

hyperparameters.

Part II: Fast algorithms for deep models.

Chapter 4: Deep Neural Networks (DNNs) are major models in the field of re-

cent artificial intelligence including machine learning. They have achieved

high accuracy for a wide range of tasks thanks to the hierarchical struc-

tures of the parameters. However, the large number of parameters incurs

a large computation cost for the training of DNNs. Adaptive learning

rate algorithms (Tieleman and Hinton, 2012; Zeiler, 2012; Kingma and

Ba, 2014) are used to accelerate the training by adjusting the amount of

the update for each parameter in DNNs. This chapter proposes an adap-

tive learning rate algorithm: the key idea is to effectively handle the noise

of the gradient. Experiments demonstrate that our method effectively

reduces the training loss especially in the case of a noisy setting.

Chapter 5: This chapter proposes a method accelerating the inference of

DNNs while Chapters 4 focuses on accelerating the training. Although

DNNs effectively extract features from input data by stacking a lot of lay-

ers, the stacking is clearly a cause of the increase of the processing time for

the inference. To address this problem, our method erases multiple layers

from DNNs without degrading accuracy. Our key idea is to use Residual

Networks as the models of DNNs, and introduce a priority term that iden-

tifies the importance of layers; we can select unimportant layers according

to the priority and erase them after the training. In addition, we retrain

the networks to avoid critical drops in accuracy after layer erasure. Our

experiments show that our method reduces the number of layers by 24.00

%∼42.86 % without any drop in accuracy and speeds up the inference.
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(a) Chapter 1: long vector (b) Chapter 2: large matrix

Figure 1.1: Part I: wide models.

Figure 1.2: Part II: deep models.
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Chapter 2

Fast Block Coordinate Descent for

Linear Regression Models with

Structured Sparsity-Inducing

Norms

2.1 Introduction

Sparse Group Lasso (SGL) (Friedman et al., 2010; Simon et al., 2013) is a popular

feature-selection method based on the linear regression model for data that have

group structures. For the analysis of such data, it is important to identify not only

individual features but also groups of features that have some relationships with the

response. SGL finds such groups and features by obtaining sparse parameters corre-

sponding to the features in the linear regression model. In particular, SGL effectively

achieves parameter sparsity by utilizing two types of regularizations: feature- and

group-level regularization. Owing to its effectiveness, SGL is used in the analysis

of various data, e.g., gene expression data (Nam and Kim, 2008; Roth and Fischer,

2008) and climate data (Ndiaye et al., 2016).

In order to obtain the sparse parameters in SGL, Block Coordinate Descent

(BCD) is used as a standard approach (Friedman et al., 2010; Simon et al., 2013).
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BCD iteratively updates the parameters for each group until convergence. In partic-

ular, in each iteration, it first checks whether the parameters in a group are updated

to zeros by using all the parameters or data points. If the parameters in the group

are determined as nonzeros, BCD updates the parameters in the group. It applies

the aforementioned steps to the parameters of each group until the parameters of all

groups converge.

Although SGL is practical for analyzing group structured data, BCD suffers from

high computation costs. The main bottleneck is the computation to check whether

the parameters of a group are updated to zeros, because the computation uses all the

parameters or data points. The screening technique is the main existing approach for

reducing the computation cost of BCD by reducing the data size (Wang and Ye, 2014;

Ndiaye et al., 2015; 2016; 2017). This technique eliminates features and groups whose

parameters are zeros, before entering the iterations of BCD. However, the screening

techniques cannot be expected to reduce the data size when the initial parameters

are far from optimal (Johnson and Guestrin, 2016). The screening techniques often

face such problems in practice, and the efficiency of BCD would not be increased

in such cases. Therefore, speeding up BCD is still an important topic of study for

handling large data.

This chapter proposes a fast BCD for SGL. Our main idea is to identify the

groups whose parameters must be updated to zeros by only using the parameters

in the group, whereas the standard method uses all the parameters or data points.

As the number of parameters in one group is typically much smaller than the total

number of parameters or data points, our method efficiently skips the computation

of groups whose parameters must be updated to zeros. Another idea is to extract

a candidate group set, which contains groups whose parameters must not be updated

to zeros. As the parameter groups in the set are likely to largely contribute to the

prediction (Fujiwara et al., 2016b;a), we can expect BCD to effectively optimize

the objective function by preferentially updating the parameter groups in the set.

An attractive point of our method is that it does not need any additional hyperpa-

rameters, which incur additional tuning costs. In addition, it provably guarantees

convergence to the same value of the objective function as the original BCD. Experi-

ments demonstrate that our method enhances the efficiency of BCD while achieving

the same prediction error. Although we first consider the case of non-overlapping
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groups, we show that our method is relatively easy to be extended for overlapping

groups and graphs by using overlap norm (Jacob et al., 2009).

2.2 Preliminary

2.2.1 Sparse Group Lasso

This section defines the SGL as a method of linear regression analysis that finds

small sets of groups in addition to features that achieve high prediction accuracy

for the response. Let n be the number of data points, where each data point is

represented as a p-dimensional feature vector, y ∈ Rn be a continuous response, and

G be the total number of feature groups. A data matrix X ∈ Rn×p is represented as

X = [X(1),X(2), ...,X(G)], where X(g) ∈ Rn×pg is the block matrix of X corresponding

to the g-th feature group with the number of features pg. Similarly, parameter

vector β ∈ Rp is represented as β = [β(1)T, β(2)T, ..., β(G)T]T, where β(g) ∈ Rpg is the

parameter (regression coefficient) vector of group g. Therefore, the linear regression

model in SGL is represented as y = Xβ = X(1)β(1) + · · · + X(G)β(G). Solution β̂ is

obtained by solving the following problem:

β̂ = arg min
β∈Rp

( 1
2n
||y −∑G

g=1 X
(g)β(g)||22 + (1− α)λ

∑G
g=1

√
pg||β(g)||2 + αλ||β||1), (2.1)

where α ∈ [0, 1] and λ ≥ 0 are regularization constants; α decides the balance of the

convex combination of l1 and l2 norm penalties and λ controls the degree of sparsity

of the solution.

2.2.2 Block Coordinate Descent

BCD is a standard approach used to obtain solution β̂ of SGL (Simon et al., 2013).

It consists of a group-level outer loop and an element-level inner loop. The group-

level outer loop checks whether parameter vector β(g) for each feature group is a

zero vector. If β(g) turns to be a nonzero vector, the element-level loop updates each

parameter in β(g). The process terminates if the whole parameter vector converges.

In the element-level inner loop, BCD updates β(g) in group g if the parameter

vector of the group is not a zero vector. The updated parameter vector β
(g)
new is defined
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as follows:

β
(g)
new =

(
1− t(1−α)λ

||S(Z(g),tαλ)||2

)
+
S(Z(g), tαλ). (2.2)

In Equation (2.2), (·)+ = max(0, ·) and Z(g) = β(g) + t
n
(X(g)Tr(−g)− X(g)TX(g)β(g)),

where t ≥ 0 is the step size. r(−g) is the partial residual and is defined as follows:

r(−g) = y −∑G
l 6=g X

(l)β(l). (2.3)

S(·, ·) is the coordinate-wise soft-threshold operator; the j-th element is computed

as S(z, γ)[j] = sign(z[j])(|z[j]| − γ)+. β
(g) is iteratively updated in the element-level

inner loop using Equation (2.2) until convergence. If the parameter vector of the

group is determined as a zero vector, Equation (2.2) is skipped. The computation

cost of Equation (2.2) is O(p2g) time because X(g)TX(g) in Z(g) are precomputed before

entering the main loop. In addition, X(g)Tr(−g) has already been computed in the

group-level outer loop, as described next.

In the group-level outer loop, β(g) is the zero vector if the following condition

holds:

||S(X(g)Tr(−g), αλ)||2 ≤
√
pg(1− α)λ. (2.4)

In other words, if Equation (2.4) holds, the parameter vector of group g is a zero

vector; Equation (2.2) is then skipped, and the parameter vector is not updated.

X(g)Tr(−g) in Equation (2.4) is computed using the following equation that consists

of only matrix operations:

X(g)Tr(−g) = X(g)Ty − X(g)TXβ + X(g)TX(g)β(g). (2.5)

In this equation, X(g)Ty, X(g)TX, and X(g)TX(g) are precomputed before entering the

loops. The costs of the precomputations have relatively low impacts on the total

computational cost because precomputations are performed only once in the total

computation, and are easily parallelized. On the other hand, the computation cost of

Equation (2.5) is still high because it requires O(ppg + p2g) time, and it is repeatedly

performed until convergence. As a result, we need O(ppg+p
2
g) time for Equation (2.4)
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at every iteration. We can modify Equation (2.5) to have O(npg) time by maintaining

the partial residuals of Equation (2.3) as described in (Huang et al., 2012). However,

in either case, the computation cost of Equation (2.4) depends on p or n. Therefore,

Equation (2.4) incurs a large computation cost for high-dimensional features or a

large number of data points.

2.3 Proposed Approach

In this section, we introduce our algorithm, which efficiently obtains the solution

of SGL. First, we explain the ideas underlying our algorithm. Next, we introduce

several lemmas that are necessary to derive our algorithm. We then describe the

algorithm. We show all the proofs in Section 2.8.

2.3.1 Idea

In SGL, obtaining the solution through BCD incurs a high computation cost. This

is because (i) Equation (2.4) requires O(ppg + p2g) or O(npg) time, which incurs a

large computation cost for large feature vectors or a large number of data points,

and (ii) BCD always checks all of the feature groups using Equation (2.4) at every

iteration even when most of the groups have zero vectors.

Our main idea is to identify groups whose parameter vectors must be updated

to zero vectors by approximating Equation (2.4), which checks whether the param-

eter vector of each group is a zero. In particular, we compute an upper bound of

||S(X(g)Tr(−g), αλ)||2 instead of computing the exact value. If the upper bound is lower

than
√
pg(1−α)λ, the parameter vector of the group must be updated to a zero vec-

tor. As a result, we can safely skip the computation of the group. As the evaluation

of our upper bound requires only O(pg) time instead of the O(ppg + p2g) or O(npg)

time for the original Equation (2.4), we can effectively reduce the computation cost.

Another idea is to extract a candidate group set, which contains groups whose

parameter vectors must not be updated to zero vectors. As the parameters in the set

are likely to largely contribute to the prediction (Fujiwara et al., 2016b;a), we can

expect BCD to effectively optimize the objective function by preferentially updating

the parameters in the set. In addition, our method only requires O(G) time to

construct the set, and thus the computation cost is relatively low.
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2.3.2 Upper Bound for Skipping Computations

We introduce an upper bound of ||S(X(g)Tr(−g), αλ)||2 in Equation (2.4). To derive a

tight upper bound, we introduce reference parameter vectors and partial residuals of

Equation (2.3) that are computed before entering the group-level outer loop. To be

specific, we can obtain a tight bound by explicitly utilizing the term representing the

difference between the reference and current parameter vectors. As many parameter

vectors rapidly converge during the iterations, the difference between the reference

and current parameter vectors rapidly decreases. First, we define U (g) that is used to

identify groups whose parameter vectors must be updated to zero vectors as follows:

Definition 2.1 Let r̃(−g) be a partial residual of Equation (2.3) before entering the

group-level outer loop. Then, we define U (g) as follows:

U (g) = ||X(g)Tr̃(−g)||2 + Λ(g, g) +
∑G

l=1 Λ(g, l), (2.6)

where Λ(g, l) = ||K̂(g)[l]||2||β(l) − β̃(l)||2. The i-th element of K̂(g)[l] ∈ Rpg is given as

||K(g,l)[i, :]||2, that is, the l2 norm of the i-th row vector in block matrix K(g,l) ∈ Rpg×pl

of K := XTX ∈ Rp×p. β̃(g) is a parameter vector before entering the group-level outer

loop.

Note that we can precompute ||X(g)Tr̃(−g)||2 and ||K̂(g)[·]||2 before entering the group-

level outer loop and the main loop, respectively. Next, the following lemma shows

that U (g) is an upper bound of ||S(X(g)Tr(−g), αλ)||2:

Lemma 2.1 (Upper bound) For each ||S(X(g)Tr(−g), αλ)||2 of group g, we have

U (g) ≥ ||S(X(g)Tr(−g), αλ)||2.

Then, the following lemma shows the property of the upper bound corresponding to

groups with parameters that must be updated to zeros:

Lemma 2.2 (Groups with zero vectors) Parameter β(g) for group g is updated

to a zero vector if U (g) in Definition 2.1 satisfies U (g) ≤ √pg(1−α)λ given ||X(g)Tr̃(−g)||2,
||K̂(g)[·]||2, and β̃.

Lemma 2.2 indicates that we can identify groups whose parameters must be updated

to zeros by using upper bound U (g) instead of ||S(X(g)Tr(−g), αλ)||2. The error bound

of U (g) for ||S(X(g)Tr(−g), αλ)||2 is described in a later section.

28



2.3.3 Online Update Scheme of Upper Bound

Although we can identify groups whose parameters must be updated to zeros by using

the upper bound U (g), O(p+ pg) time is still required to compute Equation (2.6) of

the upper bound even if we precompute ||X(g)Tr̃(−g)||2 and ||K̂(g)[·]||2. As the standard

approach requires O(ppg + p2g) or O(npg) time, the efficiency of our approach would

be moderate. This is the motivation behind our use of the online update scheme for

the upper bound that further reduces the computation cost. In particular, when a

parameter vector of a group is updated, we use the following updating rule for the

upper-bound computation:

Definition 2.2 (Online update scheme of upper bound) If β(g) is updated to

β(g)′, we update upper bound U (g) of Equation (2.6) as follows:

U (g)′=U (g)−2Λ(g, g)+2||K̂(g)[g]||2||β(g)′−β̃(g)||2. (2.7)

Equation (2.7) clearly holds because we subtract old values of 2Λ(g, g) from Equa-

tion (2.6), and add updated values of 2||K̂(g)[g]||2||β(g)′− β̃(g)||2 to the equation. In

terms of the computation cost, we have the following lemma:

Lemma 2.3 (Computation cost for online update scheme of upper bound)

The computation of Equation (2.7) requires O(pg) time given precomputed ||X(g)Tr̃(−g)||2
and ||K̂(g)[·]||2 when the parameter vector of group g is updated.

The above lemma shows that we can update the upper bound in O(pg) time. The

computation cost is significantly low compared with the computations of Equa-

tions (2.4) and (2.6), which require O(ppg + p2g) (or O(npg)) and O(p + pg) times,

respectively. Therefore, we can efficiently identify groups whose parameters must be

updated to zeros on the basis of Lemma 2.2 and Definition 2.2.

2.3.4 Candidate Group Set for Selective Updates

In this section, we introduce a method to extract the candidate group set, which

contains the groups whose parameters must not be updated to zeros. We expect BCD

to effectively update the parameter vectors by preferentially updating the parameter

vectors on the candidate group set. To extract the candidate group set, we utilize a
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criterion, which approximates ||S(X(g)Tr(−g), αλ)||2 in Equation (2.4). If the criterion

for a group is above a threshold, the group is included in the set. We first define

C(g), which is used to check whether the group is included in the candidate group

set.

Definition 2.3 We define C(g) as follows:

C(g) = ||X(g)Tr̃(−g)||2 − αλ
√
pg/2, (2.8)

where r̃(−g) is a partial residual of Equation (2.3) before entering the group-level outer

loop.

The error bounds of C(g) and U (g) for ||S(X(g)Tr(−g), αλ)||2 are shown as follows:

Lemma 2.4 (Error bound) Let ε be an error bound of C(g) for ||S(X(g)Tr(−g), αλ)||2
such that |C(g)−||S(X(g)Tr(−g), αλ)||2| ≤ ε. We then have ε = Λ(g, g) +

∑G
l=1 Λ(g, l)+

αλ
√
pg/2. In addition, we have |U (g) − ||S(X(g)Tr(−g), αλ)||2| ≤ 2ε.

The above lemma suggests that C(g) approximates ||S(X(g)Tr(−g), αλ)||2 better than

U (g) because the error bound of C(g) is half the size of that of U (g). We extract a set

C with respect to C(g) by using the following definition:

Definition 2.4 C is defined as

C = {g ∈ {1, ..., G}|C(g) >
√
pg(1− α)λ}. (2.9)

Set C has the following property:

Lemma 2.5 (Groups containing nonzero vectors) C in Definition 2.4 given C(g)

for g ∈ {1, ..., G} contains the groups whose parameters must be updated to nonzeros.

The above lemma suggests that C comprises not only the groups whose parameters

must be updated to nonzeros but also groups whose parameters can be updated to

nonzeros. Thus, we call C candidate group set. In terms of the computation cost, we

have the following lemma to extract the candidate group set:

Lemma 2.6 (Computation cost of candidate group set) Given precomputed

||X(g)Tr̃(−g)||2, we can extract candidate group set C in O(G) time.
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2.3.5 Algorithm

This section describes our algorithm, which utilizes the above-mentioned definitions

and lemmas. Algorithm 2.1 gives a full description of our approach, which is based

on BCD with the sequential rule (Ghaoui et al., 2012): a standard approach for

SGL. The sequential rule is used to tune regularization constant λ with respect to

the sequence of (λq)
Q−1
q=0 , where λ0 > λ1 > ... > λQ−1: it sequentially optimizes the

parameter vector by using (λq)
Q−1
q=0 , and reuses the solution of the previous λ as the

initial parameters for the current λ.

Our main idea is to skip groups whose parameters must be updated to zeros

during the optimization by utilizing Lemma 2.2. As upper bound U (g) in Lemma 2.2

can be computed with a low computation cost as described in Lemma 2.3, we can

efficiently avoid the computation of Equation (2.4), which is the main bottleneck

of the standard BCD. In addition, we extract the candidate group set before we

start to optimize the parameters for the current λ. The impact of the computation

cost is relatively low on the total cost, as shown in Lemma 2.6. We expect BCD to

raise the effectiveness by preferentially updating the parameters in the set based on

Lemma 2.5.

In Algorithm 2.1, (lines 2–4), we first precompute ||K̂(g)[l]||2, which is used for

computing the upper bounds. In the loop of the sequential rule, we construct the

candidate group set (lines 6–10). Although we compute Equation (2.9) in the initial

iteration, we reuse the term ||X(g)Tr̃(−g)||2 of the previous iteration in the equation

for the other iterations. Next, BCD is performed on the parameter vectors of the set

(lines 11–19). Then, the algorithm enters the loop of another BCD with upper bounds

(lines 20–36). The reference parameter vector is set (line 21), and ||X(g)Tr̃(−g)||2 is

precomputed, which is also used for the computation of the upper bounds (lines 22

and 23). In the group-level outer loop, upper bound U (g) of group g is computed

using Equation (2.7) (line 25). Note that Equation (2.6) is used for the initial

computation of the upper bound. If bound U (g) is lower than threshold
√
pg(1−α)λ,

the parameters of the group are set to zeros by following Lemma 2.2 (lines 26 and

27). If the bound does not meet the condition, the same procedure as that of the

original BCD is performed (lines 28–34). Next, ||β(g) − β̃(g)||2, which is used for the

computation of the upper bound is updated (line 35).

In terms of the computation cost, our algorithm has the following property:
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Theorem 2.1 (Computation cost) Let S and S ′ be the ratios of the un-skipped

groups to all the updates for all the parameter groups in Algorithm 2.1 when Lemma 2.2

and Equation (2.4) are used, respectively. Suppose that all groups have the same size,

pg. If tm and tf are the numbers of iterations of BCD for the main loop and element-

level loop, respectively, our approach requires O(G{(Q+Stm)(ppg+p
2
g)+S

′pgtm(tfpg+

1) +Q}) or O(G{(Q+ Stm)npg + S ′pgtm(tfpg + 1) +Q}) time.

According to Theorem 2.1, when we have a large number of groups that are skipped

on the basis of the upper bound, the rate of un-skipped groups S in Theorem 2.1 is

small. As a result, the total computation cost is effectively reduced.

In terms of the objective value after convergence, our algorithm has the following

property:

Theorem 2.2 Suppose that the regularization constants λq > 0 in Algorithm 2.1

are the same as those of the original BCD. In addition, we assume that the BCD

converges to a global optimal solution. Then, the solution of Algorithm 2.1 has the

same value of the objective function as that of the original BCD.

Theorem 2.2 shows that our algorithm returns the same value of the objective func-

tion as the original approach if BCD is not trapped on solutions other than global

optimal solutions or does not cycle parameters. Furthermore, if the order of the up-

dates in BCD in our algorithm is the same as the original BCD under the assumption

in Theorem 2.2 , our method returns the same parameters and the objective value

as those of the original BCD.
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Algorithm 2.1 Fast Sparse Group Lasso

1: A = {1, ..., G}, β ← 0, β̃ ← 0; . A has all the group indices
2: for each g ∈ A do . The precomputation for the bounds

3: for each l ∈ A do

4: compute ||K̂(g)[l]||2;
5: for q = 0 to Q− 1 do . The loop for the sequential rule

6: C = ∅; . Initialize candidate group set C
7: for each g ∈ A do . The loop for extracting candidate group set

8: compute C(g) by Equation (2.8);

9: if C(g) >
√
pg(1− α)λq then . Add groups to C by following Lemma 2.5

10: add g to C;

11: repeat . The main loop for BCD on candidate group set C
12: for each g ∈ C do . Group-level outer loop

13: if ||S(X(g)Tr(−g), αλl)||2 ≤
√
pg(1− α)λq then . Check Equation (2.4)

14: β(g) ← 0;

15: else

16: repeat . Element-level loop

17: update β(g) by Equation (2.2);

18: until β(g) converges

19: until β converges

20: repeat . The main loop for BCD with the upper bounds

21: β̃ ← β; . Set the reference parameter vector

22: for each g ∈ A do . The precomputation for the upper bounds

23: compute ||X(g)Tr̃(−g)||2;
24: for each g ∈ A do . Group-level outer loop

25: compute U (g) by Equation (2.7);

26: if U (g) ≤ √pg(1− α)λq then . Skip the group by following Lemma 2.2

27: β(g) ← 0;

28: else

29: if ||S(X(g)Tr(−g), αλl)||2 ≤
√
pg(1− α)λq then . Check Equation (2.4)

30: β(g) ← 0;

31: else

32: repeat . Element-level loop

33: update β(g) by Equation (2.2);

34: until β(g) converges

35: update ||β(g) − β̃(g)||2; . For online update for the upper bounds

36: until β converges
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2.3.6 Extention: Overlapping Group Lasso and Graph Lasso

Our algorithm assumes that groups do not overlap each other. However, our algo-

rithm is relatively easy to be extended for overlapping groups (Overlapping Group

Lasso) and graphs (Graph Lasso) by using Latent Group Lasso (Jacob et al., 2009;

Obozinski et al., 2011). It uses independent latent parameter vectors for each

group to handle overlapping groups. The original parameter vector is represented

as the summation of the latent parameter vectors which is called latent decomposi-

tion (Obozinski et al., 2011). To obtain the solution of the latent parameter vectors,

we utlize covariate duplication that duplicates the parameters belonging to several

groups (Jacob et al., 2009; Obozinski et al., 2011). Latent decomposition and covari-

ate duplication allow us to use the same objective function as problem (2.1) for SGL

with a different size of the problem. Therefore, since we can use the same updating

rule of BCD for Latent Group Lasso as that of the original BCD for problem (2.1),

our algorithm can be also used for Overlapping Group Lasso and Graph Lasso via

Latent Group Lasso. By following (Obozinski et al., 2011), the problem setup of

Latent Group Lasso is described below.

Let X ∈ Rn×p be a matrix of features and groups be overlapped each other.

We can represent X as X̃ ∈ Rn×
∑G

g=1 pg by having a block matrix X(g) ∈ Rn×pg

for each group independently. Note that
∑G

g=1pg = p holds when groups do not

overlap. By using new matrix of features X̃, the linear regression model is represented

as y =
∑G

g=1X̃
(g)
v(g) where v(g) is a latent parameter vector of group g. Latent

Group Lasso (Jacob et al., 2009) uses λ
∑G

g=1

√
pg||v(g)||2 as the penalty for this model.

Therefore, in the case of SGL with overlapping groups, solution v̂ ∈ R
∑G

g=1 pg is

obtained by solving the following problem:

v̂ = arg min

v∈R
∑G

g=1 pg

(1
2
||y −∑G

g=1X̃
(g)
v(g)||22 + (1− α)λ

∑G
g=1

√
pg||v(g)||2 + αλ||v||1), (2.10)

where v ∈ R
∑G

g=1 pg represents v = [v(1)T, v(2)T, ..., v(G)T]T. Problem (2.10) can be seen

as an equation that has a different size from problem (2.1). Therefore, our algorithm

can be used for problem (2.10) of overlapping groups. According to (Jacob et al.,

2009), we can solve Graph Lasso that has graph structures in the feature vector by

utilizing problem (2.10). For instance, if we have undirected graph (I,E) where I and

E are features and edges among features respectively, we can consider the problem
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that finds important edges from the graph. In this case, we replace the regularization

term in problem (2.10) with λ
∑

e∈E
√

2||v(e)||2 where v(e) ∈ R2 corresponds to two

nodes (features). In other words, we treat an edge as a group and select important

edges (groups) via problem (2.10). Although we cite the selection of edges as an

example, we can also regard cliques and subgraphs as groups.

2.4 Related Work

To improve the efficiency of optimization with sparsity-inducing regularization, safe

screening is generally used (Ghaoui et al., 2012); it eliminates zero parameters in

the solution before the optimization is initiated. As the size of the feature vector

can be reduced before entering the optimization, the efficiency of the optimization

is improved. The current state-of-the-art safe screening method for SGL is the GAP

Safe rule (Wang and Ye, 2014; Ndiaye et al., 2015; 2016; 2017), which is based on

duality gap computation. The duality gap is computed as the difference between

the primal and dual problems of SGL. They define a safe region that contains the

solution based on the duality gap. By utilizing the safe region, this approach can

identify groups and features that must be inactive, and eliminates them. If the safe

region is small, this approach effectively eliminates groups and features. However,

unless λ is large or a good approximate solution is already known, the screening is

often ineffective (Johnson and Guestrin, 2016). To overcome this problem, Ndiaye

et al. (Ndiaye et al., 2017) used the dynamic safe rule (Bonnefoy et al., 2014; 2015)

with the GAP Safe rule for SGL. This dynamic GAP Safe rule effectively eliminates

groups and features by repeatedly using the GAP Safe rule during the iterations of

BCD.

2.5 Experiments

We evaluated the processing time and prediction error of our approach by conducting

experiments on six datasets from the LIBSVM1 website (abalone, cpusmall, boston,

bodyfat, eunite2001, and pyrim). The numbers of data points were 4177, 8192, 506,

252, 336, and 74, respectively. The number of features were 8, 12, 13, 14, 16, and

1https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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27, respectively. In order to obtain group structure, we used the polynomial features

of these datasets (Roth and Fischer, 2008). In particular, we created second-order

polynomial features. The groups, which consisted of product over combinations of

features up to the second degree, were created by using a polynomial kernel. For

instance, if we had a pair of features (a, b), we created six features of (1, a, b, ab, a2, b2)

by using polynomial feature.2 We handled these six features as one group and con-

catenated the original features and the feature groups by following the existing ex-

perimental setting of Group Lasso (Roth and Fischer, 2008). Since these groups are

overlapped and the feature vector has duplicated features, we can say that this exper-

imental setting uses latent decomposition and covariate duplication as we described

in Section 2.3.6. In such a setting, we can use the original BCD and our method as

shown in Section 2.3.6. As a result, the numbers of groups for each dataset were 36,

78, 91, 105, 136, and 378, respectively. The total numbers of features were 176, 408,

481, 560, 736, and 2133, respectively.

We compared our method with the original BCD, GAP Safe rule (Ndiaye et al.,

2016), and dynamic GAP Safe rule (Ndiaye et al., 2017). We tuned λ for all ap-

proaches based on the sequential rule by following the methods in (Wang and Ye,

2014; Ndiaye et al., 2015; 2016; 2017). The search targets for hyperparameter λ was

a non-increasing sequence of Q parameters (λq)
Q−1
q=0 defined as λq = λmax10−δq/Q−1.

We used δ = 4 and Q = 100 (Wang and Ye, 2014; Ndiaye et al., 2015; 2016; 2017).

For a fair comparison, λmax was computed according to the dual norm by following

the concept of GAP Safe rule (Ndiaye et al., 2016); GAP Safe rule safely eliminates

groups and features under this setting. For dynamic GAP Safe rule, the interval of

duality gap computations is set to 10 (Ndiaye et al., 2017). For another tuning pa-

rameter α, we used the settings α ∈ [0.2, 0.4, 0.6, 0.8]. We stopped the algorithm for

each λq when the relative tolerance ||β − βnew||2/||βnew||2 dropped below 10−5 for all

approaches (Johnson and Guestrin, 2016; 2017). All the experiments were conducted

on a Linux 2.20 GHz Intel Xeon server with 264 GB of main memory.
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Figure 2.1: Processing times of sequential rules for each hyperparameter α.

2.5.1 Processing Time

We evaluated the processing times of the sequential rules for each α ∈ [0.2, 0.4, 0.6, 0.8].

Figure 2.1 shows the processing time of each approach on the six datasets. Note that

the processing times include precomputation times for a fair comparison. In the

figure, the terms origin, GAP, dynamic GAP, and ours represent the standard BCD,

GAP Safe rule (Ndiaye et al., 2016), dynamic GAP Safe rule (Ndiaye et al., 2017),

and our approach, respectively. Our approach is faster than the previous approaches

for all datasets and hyperparameters; it reduces the processing time by up to 97%

from the standard approach as shown in Figure 2.1 (f). Table 2.1 shows the num-

ber of computations of Equation (2.4), which is the main bottleneck of BCD. We

can see that our method could reduce the number of the bottleneck computations.

Furthermore, Figure 2.2 is the ratio of the number of the performed computations

2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

PolynomialFeatures.html
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Table 2.1: Numbers of computations of Eq. (2.4)

dataset # of computations of Eq. (2.4)

origin ours

abalone 1.141×105 3.168 × 103

cpusmall 2.105×105 7.768 × 104

boston 1.248×106 9.998 × 104

bodyfat 1.694×107 2.403 × 106

eunite2001 8.629×105 2.052 × 105

pyrim 7.667×107 7.523 × 106

of Equation (2.4) in our algorithm to that of the original BCD for each λ in the

sequential rule with α = 0.2 on boston dataset. K in the figure is the number of

iterations of BCD. In particular, our method could effectively skip the computations

for large λ. This is because U (g) ≤ √pg(1 − α)λ in Lemma 2.2 is more likely to

hold for large λ. In addition, the number of the skipped computations is also large

for large K because term ||β(g)− β̃(g)||2 in our upper bound becomes smaller as the

parameters converge. As a result, the upper bound becomes tighter as the parame-

ters converge and U (g) ≤ √pg(1 − α)λ in Lemma 2.2 is more likely to hold. These

results suggest the effectiveness of the upper bound and candidate group set, which

effectively reduce the number of computations, and contribute to the reduction of

the processing time, as shown in Figure 2.1. The GAP Safe rule and dynamic GAP

Safe rule eliminate groups and features that must be inactive, and increase the effi-

ciency of BCD. However, when they cannot eliminate a significant number of groups

and features, they require a large computation cost for BCD. To be specific, large

numbers of groups and features remain when λ has a small value even if we use

dynamic GAP Safe rule. This is because the safe region is large for small λ (Ndiaye

et al., 2015; 2016), and it contains many groups and features that may be active.

Furthermore, if the screening cannot eliminate a significant number of groups and

features, the processing time may increase owing to the computation of the duality

gap, as shown for α = 0.4 in Figure 2.1 (a).
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Figure 2.2: Ratio of performed computations of Eq. (2.4) for each λ in the sequential
rule (boston dataset with α = 0.2). K is the number of iterations of BCD.

2.5.2 Accuracy

In this section, we evaluate the value of the objective function on training data and

the prediction error on test data to confirm the effectiveness of our algorithm. We

split the data into training and test data for each dataset. That is, 50% of a dataset

was used as training data for evaluating the objective value and the other 50% of

a dataset was used as test data for evaluating the prediction error in terms of the

squared loss for the response. The results of the objective value and the prediction

error are shown in Tables 2.2 and 2.3, respectively. The objective values and the

prediction errors of our approach are the same as those of the original approach.

The results presented in Tables 2.2 and 2.3 indicate that our method can achieve

the same accuracy as that of the original approach while improving the efficiency. It

should be noted that the solutions obtained by the original BCD and the proposed

method can be different. This is because the objective function is not necessarily

strongly convex function and the updating orders are different between the original

BCD and the proposed method. In fact, Theorem 2.2 only guarantees the consistency

of the objective values between the original BCD and the proposed method under the

assumption of convergence to a global optimal solution. If the updating order in our

algorithm is the same as the original BCD, our method returns the same parameters

and the objective value as those of the original BCD.

2.5.3 Overlapping Group Lasso and Graph Lasso

We show the processing times of our algorithm in the case of Overlapping Group

Lasso and Graph Lasso on artificial datasets. We generated artificial datasets by

following (Ndiaye et al., 2016) and (Jacob et al., 2009): y was generated by following
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Table 2.2: Values of objective function after convergence.

dataset objective value

origin ours

abalone 2.209 2.209
cpusmall 7.862 7.862
boston 9.613 9.613
bodyfat 5.284 × 10−3 5.284 × 10−3

eunite2001 2.004 × 102 2.004 × 102

pyrim 4.568 × 10−3 4.568 × 10−3

Table 2.3: Prediction errors.

dataset prediction error

origin ours

abalone 2.232 2.232
cpusmall 7.886 7.886
boston 9.887 9.887
bodyfat 5.434 × 10−3 5.434 × 10−3

eunite2001 2.010 × 102 2.010 × 102

pyrim 4.615 × 10−3 4.615 × 10−3

y = Xβ+0.01ε where ε ∼ N(0, nI), and X followed a multivariate normal distribution

such that the correlation between i-th and j-th features was 0.5|i−j|. Each element of

β was generated from sign(ξ) × U where U and ξ follow uniform distributions such

that U ∼ [0.5, 10] and ξ ∼ [−1, 1], respectively.

For Overlapping Group Lasso, each size of groups was 10, and we set p =

1000, n = 100. We generated two datasets whose sizes of the overlaps were 2 and 5,

respectively: when the size of overlap is 2, indices of the groups are represented as

{1, ..., 10}, {9, ..., 18}, ....
For Graph Lasso, we generated datasets such that each edge corresponds to each

group (Jacob et al., 2009). We set p = 100, n = 100, and used chain graph by

folowing (Jacob et al., 2009). We generated two datasets whose lengths of the chains

were 2 and 4, respectively. The other settings such as hyperparameters were the
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Figure 2.3: Processing times of sequential rules of Overlapping Group Lasso for each
hyperparameter α.

same as those in the previous experiments.

Figures 2.3 and 2.4 are the processing times of Overlapping Group Lasso and

Graph Lasso, respectively. Our algorithm is faster than the original algorithm in

both cases. The results suggest that our algorithm can be extended to Overlapping

Group Lasso and Graph Lasso on the basis of overlap norm (Jacob et al., 2009), and

speed up these methods.
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Figure 2.4: Processing times of sequential rules of Graph Lasso for each hyperpa-
rameter α.
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2.6 Discussion

In this chapter, we proposed a fast BCD for SGL. Although our method skips un-

necessary updates by utilizing the upper bound, the bound will be loose if we simply

take an upper bound of ||S(X(g)Tr(−g), αλ)||2 by using the Cauchy–Schwarz inequality

and the triangle inequality. The point of our bound is to incorporate difference of

the parameter vectors ||β(g)− β̃(g)||2 in Equation (2.6). The term of ||β(g)− β̃(g)||2 be-

comes increasingly smaller during the optimization because we regularly update β̃(g)

as described in line 21 of Algorithm 2.1. Since we will finally obtain ||β(g)− β̃(g)||2 = 0

and Λ(·, ·) = 0 in Equation (2.6) if the parameter vector converges to a global opti-

mum solution, we expect the bound to be tight during the optimization. It is also

worth mentioning that the upper bound of Equation (2.6) is not the tightest upper

bound. In fact, we can replace Λ(g, g) with −Λ(g, g) in Equation (2.6) to derive a

tighter bound than Equation (2.6). In this way, we expect our method to be further

accelerated by finding a tighter upper bound than Equation (2.6).

2.7 Summary

We proposed a fast Block Coordinate Descent for Sparse Group Lasso. The main bot-

tleneck of the original Block Coordinate Descent is the computation to check whether

groups have zero or nonzero parameter vectors, because it uses all the parameters or

data points. In contrast, our approach identifies the groups whose parameters must

be updated to zeros by using the parameters in the group, and skips the computa-

tion. Furthermore, the proposed approach identifies the candidate group set, which

contains the groups whose parameters must not be updated to zeros. The parameters

are preferentially updated in the set to raise the effectiveness of Block Coordinate

Descent. The attractive point of our method is that it does not need any additional

hyperparameters. In addition, it provably guarantees the same results as the original

method. The experimental results showed that our method reduces the processing

time by up to 97% without any loss of accuracy compared with that of the original

method. We also showed that our method can be extended to Overlapping Group

Lasso and Graph Lasso; it could be used for various wide linear regression models

with structured sparsity-inducing norms.
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2.8 Proofs

Proof of Lemma 2.1

Before we prove the above lemma, we prove the following lemmas:

Lemma 2.7 For each ||S(X(g)Tr(−g), αλ)||2 of group g, we have ||X(g)Tr(−g)||2 ≥
||S(X(g)Tr(−g), αλ)||2.

Proof We have

||S(z, αλ)||2 = ||sign(z)(|z|−αλ)+||2 = ||(|z|−αλ)+||2. (2.11)

In addition, we have

||(|z| − αλ)+||2 ≤ |||z|||2 = ||z||2, (2.12)

because 0 ≤ (|z|−αλ)+ ≤ |z|. From Equations (2.11) and (2.12), we have ||S(z, αλ)||2 ≤
||z||2. Because z = X(g)Tr(−g), we achieve the inequality of Lemma 2.7. �

Now, we prove Lemma 2.1:

Proof Let K(g,:) ∈ Rpg×p be a block matrix of K that corresponds to group g. We

introduce notations R(g) := X(g)Tr(−g) and R̃(g) := X(g)Tr̃(−g) for simplicity. From

Equation (2.5), we have

R(g) = X(g)Ty−K(g,:)β+K(g,g)β(g).

This equation is transformed to the following form:

X(g)Ty−K(g,:)β̃+K(g,g)β̃(g)+K(g,g)∆β(g)−K(g,:)∆β

= R̃(g)+K(g,g)∆β(g)−∑G
l=1K

(g,l)∆β(l),

where ∆β(g) =β(g)−β̃(g) and ∆β=β−β̃. From the aforementioned equation and the

triangle inequality, we obtain the following inequality:

||R(g)||2≤||R̃(g)||2+||K(g,g)∆β(g)||2+
∑G

l=1||K(g,l)∆β(l)||2. (2.13)
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In the second and third terms on the right-hand side of Equation (2.13), the i-th

element of K(g,l)∆β(l) is computed as the inner product of K(g,l)[i, :]∆β(l). We then

obtain the following upper bound for the absolute value of the inner product by using

the Cauchy–Schwarz inequality:

|K(g,l)[i, :]∆β(l)| ≤ ||K(g,l)[i, :]||2||∆β(l)||2. (2.14)

In addition, because ||∆β(l)||2 is a scalar, we obtain the following inequality for

||K(g,l)∆β(l)||2 in Equation (2.13) by using Equation (2.14):

||K(g,l)∆β(l)||2≤||K̂(g)[l]||2||∆β(l)||2 = Λ(g, l). (2.15)

From Equations (2.13) and (2.15), we obtain the following upper bound:

||R(g)||2 ≤ ||R̃(g)||2+Λ(g, g)+
∑G

l=1 Λ(g, l)=U (g).

Finally, we obtain the following upper bound by using the aforementioned inequality

and Lemma 2.7:

||S(X(g)Tr(−g), αλ)||2≤||X(g)Tr(−g)||2 = ||R(g)||2≤U (g),

which completes the proof. �

Proof of Lemma 2.2

Proof We have ||S(X(g)Tr(−g), αλ)||2 ≤ U (g) ≤ √pg(1 − α)λ from Lemma 2.1 if

U (g) ≤ √pg(1−α)λ. Because ||S(X(g)Tr(−g), αλ)||2 ≤ √pg(1− α)λ holds for group g,

β(g) is the zero vector from Equation (2.4). �

Proof of Lemma 2.3

Proof For the computation of Equation (2.6), we can precompute ||X(g)Tr̃(−g)||2 and

||K̂(g)[·]||2 before entering the group-level loop and main loop, respectively. Thus, we

can obtain the terms ||X(g)Tr̃(−g)||2, ||K̂(g)[·]||2, and Λ(g, l) in Equation (2.6) in O(1)

time. If β(g) is updated to β(g)′, the upper bound of Equation (6) can be updated

by using Equation (2.7). It needs O(pg) time because ||β(g)′ − β̃(g)||2 is computed in
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O(pg) time, and we can obtain Λ(g, g) and ||K̂(g)[g]||2|| in O(1) time, just as described.

Therefore, we can compute the upper bound of Equation (2.6) in O(pg) time for group

g by using Equation (2.7). �

Proof of Lemma 2.4

Before we prove the above lemma, we introduce the following definitions and lemmas:

Definition 2.5 (Lower bound) Let L(g) be a lower bound of ||S(X(g)Tr(−g), αλ)||2
in Equation (2.4) and r̃(−g) be a partial residual of Equation (2.3) before entering the

group-level outer loop. Then, L(g) is defined as follows:

L(g) = ||X(g)Tr̃(−g)||2 − Λ(g, g)−∑G
l=1 Λ(g, l)− αλ

√
2pg, (2.16)

where Λ(g, l) = ||K̂(g)[l]||2||β(l) − β̃(l)||2. In the above equation, the i-th element of

K̂(g)[l] ∈ Rpg is given as ||K(g,l)[i, :]||2, that is, the l2 norm of the i-th row vector in

block matrix K(g,l) ∈ Rpg×pl of K := XTX ∈ Rp×p. β̃(g) is a parameter vector before

entering the group-level outer loop.

Lemma 2.8 For each ||S(X(g)Tr(−g), αλ)||2 of group g, we have L(g)

≤ ||S(X(g)Tr(−g), αλ)||2.

Proof Let I+(g) ∈ {0, 1}pg be a vector whose i-th element takes 1 if the absolute value

of i-th element in X(g)Tr(−g) is greater than αλ, and takes 0 if the absolute value of

the element is less than or equal to αλ. We then have

||S(X(g)Tr(−g), αλ)||2 = |||X(g)Tr(−g)| − αλI+(g) − |X(g)Tr(−g)| � (1− I+(g))||2. (2.17)

According to Equation (2.17) and the triangle inequality, we have

|||X(g)Tr(−g)| − αλI+(g) − |X(g)Tr(−g)| � (1− I+(g))||2
≥ ||X(g)Tr(−g)||2 − ||αλI+(g)||2 − ||X(g)Tr(−g) � (1− I+(g))||2. (2.18)

Let p+g be the number of elements, taking the value 1 in I+(g). Then, we clearly have

||αλI+(g)||2 = αλ
√
p+g . (2.19)
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In addition, because the absolute values of the elements in X(g)Tr(−g) � (1 − I+(g)) is

less than or equal to αλ, we have

||X(g)Tr(−g) � (1− I+(g))||2 ≤ ||αλ(1− I+(g))||2 = αλ
√
pg − p+g . (2.20)

From Equations (2.17), (2.18), (2.19), and (2.20), we have

||S(X(g)Tr(−g), αλ)||2≥||X(g)Tr(−g)||2 − αλ
√
p+g − αλ

√
pg − p+g

=||X(g)Tr(−g)||2 − αλ(
√
p+g +

√
pg − p+g )

≥||X(g)Tr(−g)||2 − αλ
√

2pg. (2.21)

We use the inequality of
√
p+g +

√
pg − p+g ≤ 2

√
pg/2 in Equation (2.21). Next, we

derive the lower bound of ||X(g)Tr(−g)||2 in Equation (2.21). Similar to Equation (2.13)

in the proof of the upper bound, we have the following inequality by using the triangle

inequality:

||X(g)Tr(−g)||2 = ||R(g)||2≥||R̃(g)||2−||K(g,g)∆β(g)||2−
∑G

l=1||K(g,l)∆β(l)||2. (2.22)

From Equations (2.22) and (2.15), we obtain the following lower bound:

||X(g)Tr(−g)||2 ≥ ||R̃(g)||2−Λ(g, g)−∑G
l=1 Λ(g, l). (2.23)

Finally, we obtain the following lower bound by using Equations (2.21) and (2.23):

||S(X(g)Tr(−g), αλ)||2≥ ||X(g)Tr̃(−g)||2−Λ(g, g)−∑G
l=1 Λ(g, l)− αλ

√
2pg = L(g),(2.24)

which completes the proof. �

The following lemma shows that we can identify groups whose parameters must be

updated to nonzeros by using the lower bound:

Lemma 2.9 (Groups with nonzero vectors) If we have L(g) >
√
pg(1 − α)λ,

parameter β(g) for group g is a nonzero vector.

Proof We have ||S(X(g)Tr(−g), αλ)||2 ≥ L(g) >
√
pg(1 − α)λ from Lemma 2.8 if

L(g) >
√
pg(1−α)λ. Because ||S(X(g)Tr(−g), αλ)||2 > √pg(1 − α)λ holds for group g,

β(g) is the nonzero vector from Equation (2.4). �

47



If we have L(g) ≤ √pg(1 − α)λ, it is clear that parameter β(g) for group g can have

a zero vector. Now, we prove Lemma 2.4:

Proof From Lemma 2.1 and 2.8, we have

L(g) ≤ ||S(X(g)Tr(−g), αλ)||2 ≤ U (g). (2.25)

In addition, we also have

L(g) ≤ C(g) ≤ U (g), (2.26)

because

L(g)+U(g)

2
= ||X(g)Tr̃(−g)||2 − αλ

√
pg/2 = C(g). (2.27)

Thus, we have L(g) = C(g) − Λ(g, g)−∑G
l=1 Λ(g, l)− αλ

√
pg/2, and U (g) = C(g)+

Λ(g, g) +
∑G

l=1 Λ(g, l) +αλ
√
pg/2. Therefore, the exact value of ||S(X(g)Tr(−g), αλ)||2

exists within C(g) ± ε, where ε = Λ(g, g) +
∑G

l=1 Λ(g, l) + αλ
√
pg/2. In other words,

we have

|C(g) − ||S(X(g)Tr(−g), αλ)||2|≤ε. (2.28)

For the upper bound, we clearly obtain the following inequality from Equation (2.25):

|U (g) − ||S(X(g)Tr(−g), αλ)||2| ≤ |U (g) − L(g)| = 2ε, (2.29)

which completes the proof. �

Proof of Lemma 2.5

Proof From Equation (2.26), we have

L(g) ≤ C(g). (2.30)

By following Definition 2.4, we add a group to the candidate group set when the

condition of C(g) >
√
pg(1 − α)λ holds. Then, we can consider two situations for

the group from Equation (2.30): (i) C(g) ≥ L(g) >
√
pg(1 − α)λ and (ii) C(g) >
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√
pg(1 − α)λ ≥ L(g). In the case of (i), the group must have a nonzero parameter

vector based on Lemma 2.9. In the case of (ii), the group can clearly have a nonzero

parameter vector according to Lemma 2.9. Therefore, the candidate group set con-

tains the groups whose parameters must be nonzeros because case (i) is included in

the condition of C(g) >
√
pg(1− α)λ in Definition 2.4. �

The candidate group set contains a subset of the nonzero groups identified by

using the lower bound of Lemma 2.9. The lower bound confidently identifies groups

with nonzero vectors while the upper bound of Lemma 1 identifies groups with zero

vectors.

Proof of Lemma 2.6

Proof Equation (2.8) can be clearly computed at O(1) time if we pre-compute

||X(g)Tr̃(−g)||2. Therefore, we require O(G) time to extract the candidate group set

because we compute Equation (2.8) for all the groups. �

Proof of Theorem 2.1

Proof In Algorithm 1, first, ||K̂(g)[l]||2 is precomputed, which requires O(pg) time.

For all groups, the precomputation requires O(p) time. Before entering the group-

level loop, ||X(g)Tr̃(−g)||2 is precomputed in O(GQ(ppg + p2g)) or O(GQnpg) time to

obtain the upper bounds. We can update the upper bounds when a parameter vector

in a group is updated according to Definition 2.2. Thus, the updates of upper bounds

require O(GS ′pg) time for a group-level loop by following Lemma 2.3. If the group is

not skipped with respect to the upper bound, Equation (2.4) is computed in O(ppg+p
2
g)

time. Because the unskipped rate is S, the computation cost is O(GS(ppg + p2g)) or

O(GSnpg) time. If the group is not skipped with respect to Equation (2.4), the

parameter vector is updated using Equation (2.2). Equation (2.2) requires O(p2g)

time because ||S(Z(g), tαλ)||2 in Equation (2.4) requires O(pg) time, and Z(g) can be

obtained in O(p2g) time based on precomputations. Because the unskipped rate is S ′

and the number of iterations for the element-level loop is tf , the computation requires

O(GS ′tfp
2
g) time. Because the number of iterations for the main loop of BCD is tm,

the total computation cost of our approach is O(G{(Q+Stm)(ppg+p
2
g)+S ′pgtm(tfpg+

1) +Q}) or O(G{(Q+ Stm)npg + S ′pgtm(tfpg + 1) +Q}) time. �
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Proof of Theorem 2.2

Proof Since we assume that BCD converges to a global optimal solution, our algo-

rithm converges at line 19 of Algorithm 2.1. This is because the lines 11–19 perform

the original BCD on the parameter groups corresponding to the candidate group set.

Although the lines 20–36 perform BCD with the upper bound, the parameter vector

of group g must be a zero vector if U (g) ≤ √pg(1 − α)λ holds from Lemma 2.2.

Thus, we safely skip the computation of such groups. In other cases, the parameter

vector can be a nonzero vector, and Algorithm 2.1 does not skip the computation of

such groups. Therefore, since BCD of lines 20–36 safely skips unnecessary updates

and uses all the parameter vectors, it converges to a global optimal solution at line

36 of Algorithm 2.1 under our assumption of convergence of the original BCD and

achieves the same objective value as that of the original BCD after convergence. �

We note that Theorem 2.2 holds regardless of the group updating order because it

guarantees the converged value of the objective function rather than the converged

parameter vector under our assumption of convergence to a global optimal solution.

Since the problem of SGL is either convex or strongly convex depending on the

condition of X, the optimal value of the objective function is unique (while the optimal

parameter vector may be non-unique).

We also note that if we assume that the order of updates for our method is the

same as that of the original BCD, our algorithm returns the same parameter vectors

and objective value as those of the original BCD. This property obviously holds since

our method uses the same updating rule for parameter vectors as that of the original

BCD and safely skips unnecessary updates.
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Chapter 3

Fast CUR Matrix Decomposition

for Regularized

Self-Representation Model

3.1 Introduction

Matrix decomposition is a fundamental tool of machine learning, and it is used to

decompose a data matrix into its low-rank approximation. Among various matrix

decomposition methods such as Singular Value Decomposition (SVD), CUR matrix

decomposition (CUR) (Mahoney and Drineas, 2009) has been a popular method due

to its high interpretability. This is because the decomposed matrices consist of the

subsets of the columns and the rows of the original data matrix. Namely, the decom-

posed matrices preserve the original elements in the data matrix. Thanks to its high

interpretability, CUR has been successfully applied to a large number of domains,

including gene expression data (Bien et al., 2010), network traffic data (Tong et al.,

2008), bibliographic data (Sun et al., 2007), collaborative filtering (Mackey et al.,

2011), hyperspectral medical image (Mahoney et al., 2006), and text data (Drineas

et al., 2008).

In the literature, randomized algorithms (Mahoney and Drineas, 2009; Sun et al.,

2007; Drineas et al., 2006; Tong et al., 2008) and deterministic algorithms (Bien

et al., 2010; Mairal et al., 2011; Papailiopoulos et al., 2014) were proposed for CUR.
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Although randomized algorithms were proposed first, they would be disconcerting

to the practitioners as they obtain a different result on every run (Bien et al., 2010;

Mairal et al., 2011). Specifically, when the sizes of the decomposed matrices are small,

they can obtain a poor approximate result because the variance of the approximate

results is large (Sun et al., 2007; Bien et al., 2010). To overcome these drawbacks, re-

searchers have focused on deterministic algorithms that utilize a sparse optimization

approach (Bien et al., 2010; Mairal et al., 2011). In deterministic algorithms, ma-

trix decomposition is seen as a convex optimization problem with sparsity-inducing

norms on the basis of group Lasso (Yuan and Lin, 2006). The model used in this

approach is known as regularized self-representation (RSR) (Zhu et al., 2015). In

particular, they optimize an objective with respect to the parameter vectors corre-

sponding to the columns and the rows of the data matrix. Since the unimportant

parameter vectors are turned into zero vectors by the sparsity-inducing norms, they

can deterministically obtain the important columns and rows, which are used to

construct the decomposed matrices.

Although deterministic algorithms are attractive, they suffer from high compu-

tation costs. In order to optimize the objective, they usually use coordinate descent,

which iteratively updates each parameter vector corresponding to each column and

row of the data matrix (Bien et al., 2010). Unfortunately, the computation cost of

updating a parameter vector is quadratic with respect to the number of columns or

rows of the data matrix. In addition, they need to iteratively update all the param-

eters until convergence. For the aforementioned reasons, deterministic algorithms

require longer processing times as the sizes of data matrices increase.

This chapter proposes a fast deterministic algorithm for CUR. Our approach

utilizes two ideas to speed up the deterministic CUR. The first idea is to safely skip

the updates of the parameters in coordinate descent. Since a high computation cost

is needed for one update in coordinate descent, we can effectively reduce the total

computation cost by skipping the updates. Specifically, we identify the rows and

columns whose parameters must be updated to zeros in linear time with respect to the

number of columns or rows by approximately evaluating the necessary and sufficient

conditions for the parameters to be zeros. The second idea is to preferentially update

the parameters that must be updated to nonzeros. Because these nonzero parameters

would correspond to the important columns and rows for the construction of the
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decomposed matrices, our algorithm is expected to effectively optimize the objective

function. Similarly to the computation in the first idea, it can identify the columns

and rows whose parameters must be nonzeros in linear time. Another advantage

of our algorithm is that it does not have additional hyperparameters, which incur

additional computation costs for the tuning. Theoretically, our algorithm provably

guarantees convergence to the same value of the objective function as that of the

original algorithm. Experiments show that our method is up to 10× faster than

the original method, and up to 4× faster than the state-of-the-art method while

achieving the same accuracy.

3.2 Preliminary

In this section, we first explain the deterministic CUR by following (Bien et al.,

2010; Mairal et al., 2011). Next, we describe coordinate descent, which optimizes

the objective of deterministic CUR. Throughout the chapter, given a matrix A,

A(i) and A(i) denote the i-th row vector and i-th column vector of A, respectively.

Similarly, given a set of indices I, AI and AI denote the submatrices of A containing

only rows and columns in I, respectively. ||A||F represents the Frobenius norm of

matrix A.

3.2.1 Deterministic CUR Matrix Decomposition

CUR provides a low-rank approximation to a data matrix X ∈ Rn×p. In particular,

CUR decomposes the data matrix X into the form of a product of three matrices

as X ≈ CUR, where C ∈ Rn×c, U ∈ Rc×r, and R ∈ Rr×p. Unlike other low-rank

approximations such as Singular Value Decomposition (SVD), CUR extracts C and

R as small numbers of the column and row vectors of X, respectively. In other

words, columns of C and rows of R are subsets of the columns and the rows of the

original data matrix X, respectively. This property helps practitioners to interpret

the result more easily than that in the case of SVD (Tong et al., 2008). If we need

U after selecting C and R, U is given by computing C+XR+ where A+ represents

the Moore-Penrose generalized inverse of matrix A.

To select C or R, Bien et al. (2010) utilized a sparse optimization approach. In

particular, the selection of C or R from X can be seen as a convex optimization
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Algorithm 3.1 Deterministic CUR

1: A = {1, ..., p}, W← 0
2: repeat

3: for each i ∈ A do

4: update W(i) by Equation (3.2);

5: until W converges

problem with sparsity-inducing norms. For the selection of C, the optimization

problem is defined as follows:

min
W∈Rp×p

(1
2
||X−XW||2F + λ

∑p
i=1 ||W(i)||2), (3.1)

where W ∈ Rp×p is the parameter matrix, and λ ≥ 0 is a regularization constant.

This formulation is also known as regularized self-representation (RSR) (Zhu et al.,

2015). The term ||W(i)||2 induces W(i) to be a zero vector; this sparsity-inducing

norm is also used in group Lasso (Yuan and Lin, 2006). The regularization constant

λ controls the degree of sparsity of the parameter matrix W. If W(i) is a zero

vector, the corresponding column of the data matrix X(i) can be considered as an

unimportant column for problem (3.1). On the other hand, X(i) is important when

the corresponding W(i) is a nonzero vector. Therefore, we can select columns C

as XI , where I ⊆ {1, ..., p} represents the indices corresponding to the nonzero

row vectors of W. In this case, we obtain U = WI or U = (XI)+X. We note that

although the above problem handles the selection of C, Mairal et al. (2011) naturally

extended the problem to the simultaneous selection of both R and C. Throughout

the chapter, we handle problem (3.1) focusing on simplicity; however, our approach

can be easily applied to the problem of (Mairal et al., 2011) as described in Section

3.3.6.

3.2.2 Coordinate Descent

Problem (3.1) is simply solved by using coordinate descent (Bien et al., 2010). The

algorithm iteratively updates each parameter vector W(i) corresponding to each row

of the parameter matrix W until W converges. Suppose that X(i) is normalized as
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||X(i)||2 = 1. Then, the following equation is used to update W(i):

W(i) =(1− λ/||zi||2)+ zi. (3.2)

In the equation, zi ∈ R1×p is computed as follows:

zi = X(i)T(X−∑p
j 6=i X

(j)W(j)). (3.3)

Algorithm 3.1 shows the pseudocode of coordinate descent. The inner loop (lines

3–4) performs Equation (3.2) to update each row of W, and the outer loop (lines

2–5) repeats the update process until W converges. The computation cost of Equa-

tion (3.3) is O(p2n) time. Therefore, Equation (3.2) also requires O(p2n) time.

Equation (3.2) can be modified to have O(p2) or O(pn) time as described in (Huang

et al., 2012). However, in any case, the computation cost is still large because p2 or

pn is prohibitively large for a large data matrix.

3.3 Proposed Approach

This section presents our fast deterministic CUR. First, we provide an overview of our

ideas in Section 3.3.1. Next, we provide their full descriptions in Sections 3.3.2, 3.3.3,

and 3.3.4. We then describe our algorithm in Section 3.3.5. Finally, we introduce

an extension of our algorithm for the simultaneous selection of both R and C in

Section 3.3.6. The omitted proofs can be found in Section 3.7.

3.3.1 Ideas

To obtain the solution of CUR, coordinate descent requires a long processing time

since the computation cost of Equation (3.2) is high, and the equation is performed

for all the parameter vectors at every iteration until convergence.

To speed up coordinate descent, we safely skip the computations for the rows

of W that must be updated to zero vectors during the optimization. Our approach

can effectively reduce the computation cost by skipping unnecessary computations of

Equation (3.2). To identify the unnecessary rows of W, we approximately evaluate

the necessary and sufficient conditions for the parameter vectors to be zero vectors.
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In particular, we compute upper bounds of the condition scores instead of the exact

scores. The computation of the exact score requires O(p2) or O(pn) time. On the

other hand, because the computation of the upper bound requires only O(p) time,

we can effectively reduce the processing time of the coordinate descent.

Another idea is to preferentially update the parameter vectors W(i) that must be

updated to nonzero vectors. Since these nonzero parameter vectors correspond to the

columns C, as explained in Section 3.2.1, we can expect the algorithm to effectively

optimize the objective by intensively updating the parameter vectors. We utilize

lower bounds of the condition scores for the parameter vectors to be updated to zero

vectors to identify such parameter vectors. Because the additional computation cost

is O(p) time, we can efficiently identify the parameter vectors that must be updated

to nonzero vectors.

3.3.2 Approximation of Condition Score for Zero Parameter

This section introduces the key approximations of the condition scores of the nec-

essary and sufficient conditions for the parameter vectors to be zero vectors: the

upper and lower bounds of the scores. As described in Section 3.3.1, the upper and

lower bounds are used to identify the parameter vectors that must be updated to

zero vectors and nonzero vectors, respectively. First, we introduce the lemma of

the necessary and sufficient condition for the zero parameter vector and its score as

follows:

Lemma 3.1 (Necessary and Sufficient Condition for Zero Parameter) Let

Ki := ||zi||2 be the condition score for W(i), where zi is computed using Equa-

tion (3.3). Suppose that W(j) is fixed for i 6= j. Then, we have W(i) = 0 if and only

if Ki ≤ λ.

We can check whether W(i) is a zero vector by using Lemma 3.1. However, zi

in Lemma 3.1 incurs a high computation cost: it requires O(p2) or O(pn) time as

described in Section 3.2.2. As a result, the computation cost of the condition score Ki

is also O(p2) or O(pn) time. To overcome this problem, we approximately compute

the condition score. In particular, we evaluate two types of approximated scores

instead of the exact score. These scores are defined as follows:

56



Definition 3.1 Let Ki and Ki be approximated scores of the condition score Ki

in Lemma 3.1. K̃i and W̃ denote the condition score and the parameter matrix

before entering the inner loop (lines 3–4 in Algorithm 3.1) of the coordinate descent,

respectively. We define Ki and Ki as follows:

Ki = K̃i + ||∆W(i)||2 + ||G(i)||2||∆W||F , (3.4)

and

Ki = K̃i − ||∆W(i)||2 − ||G(i)||2||∆W||F , (3.5)

where ∆W(i) = W(i)− W̃(i) and ∆W = W− W̃. G(i) ∈ R1×p is the i-th row vector

of G := XTX ∈ Rp×p.

Note that we can precompute K̃i and ||G(i)||2 before entering the inner loop and

the outer loop, respectively. Although these approximated scores still require O(p2)

time, we introduce an efficient computation for them in Sections 3.3.3 and 3.3.4.

The following lemma shows that Ki and Ki are upper and lower bounds of Ki,

respectively:

Lemma 3.2 (Upper and Lower Bounds) We have Ki ≥ Ki and Ki ≤ Ki for

the approximated scores given in Definition 3.1.

We use the upper and lower bounds as the approximations of the condition score.

The error bounds of the approximations are given as follows:

Lemma 3.3 (Error Bound) Let ε be defined as 2||∆W(i)||2+2||G(i)||2||∆W||F . Then,

we have |Ki−Ki| ≤ ε and |Ki−Ki| ≤ ε for the upper and lower bounds, respectively.

3.3.3 Skipping Computations

This section introduces our first idea to skip the computations for the rows of W that

must be updated to zero vectors during the optimization. Because Equation (3.2)

requires a high computation cost, we expect the coordinate descent to reduce the

processing time by skipping the computations. To identify W(i) that must be up-

dated to a zero vector, we utilize the upper bound of the condition score Ki in

Definition 3.1. Specifically, we utilize the following property of the upper bound:
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Lemma 3.4 (Rows with Zero Vectors) When Ki ≤ λ holds, we have W(i) = 0

for the i-th row vector.

According to Lemma 3.4, we can identify the rows that must be updated to zero

vectors by using the upper bounds Ki. However, the computation cost of the upper

bound is still high because Equation (3.4) requires O(p2) time even if we precompute

K̃i and ||G(i)||2 due to the computation of ||∆W||F . Since the previous approaches

require O(p2) or O(pn) times for Equation (3.2), the computation of the upper bound

is not very efficient. Therefore, we introduce an efficient computation for the upper

bound. In particular, we perform an online update for ||∆W||F in the upper bound

when a parameter vector is updated as follows:

Lemma 3.5 (Online Update) When W(j) is updated to W′
(j), an upper bound

Ki 6=j is computed as follows:

Ki = K̃i + ||∆W(i)||2 + δ||G(i)||2, (3.6)

where

δ =
√
||∆W||2F − ||∆W(j)||22 + ||∆W′

(j)||22. (3.7)

The above online updating scheme1 requires the following computation cost:

Lemma 3.6 (Computation Cost for Online Update) Given precomputed K̃i

and ||G(i)||2, the computation cost of Equation (3.6) is O(p) time when W(j) is up-

dated.

Lemma 3.6 shows that our online updating scheme can compute the upper bound

within O(p) time, which is lower than O(p2) or O(pn) times for Equation (3.2) in

the previous approaches. Therefore, we can efficiently identify the rows that must be

updated to zero vectors, and skip the computation of Equation (3.2), which incurs

a high computation cost.

Although the upper bound can be efficiently computed, the error bound of the

upper bound ε in Lemma 3.3 is also important for reducing the processing time. This

1We note that ||∆W′
(i)||2 is used instead of ||∆W(i)||2 in Equation (3.6) when i = j; however, this

case would not be happen in our algorithm because the coordinate descent updates the parameter
vectors in a cyclic order.
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is because it is difficult to maintain the condition Ki ≤ λ in Lemma 3.4 if ε is large.

As a result, the number of skipped rows may be moderate. To increase the number

of skipped rows, ε should be small. Fortunately, the error bounds of the upper and

lower bounds have the following advantage:

Lemma 3.7 (Convergence of Error Bound) If W reaches convergence by the

coordinate descent, we have ε = 0 for the error bound. Namely, the upper bound Ki

and the lower bound Ki converge to the exact condition score Ki when W converges.

Lemma 3.7 indicates that the upper bound matches the condition score when the

parameter converges. Intuitively, the upper bound becomes increasingly tighter dur-

ing the optimization as the bound depends on ∆W(i) and ∆W. Since ε becomes

increasingly smaller during the optimization, the upper bounds can accurately iden-

tify the rows that must be updated to zero vectors as the optimization progresses.

As a result, we can effectively skip the computations of the rows by using the upper

bound.

3.3.4 Selective Update

This section presents our second idea to preferentially update W(i) that must be

a nonzero vector. Since the nonzero parameter vectors correspond to the columns

C, we can expect the coordinate descent to effectively optimize the objective by

intensively updating the nonzero parameter vectors. Specifically, we first construct

the set including rows that must be updated to nonzero vectors. Next, we perform

coordinate descent on the set. We then update all the parameter vectors via the

coordinate descent with the upper bounds until convergence.

To find W(i) that must be updated to a nonzero vector, we utilize the lower

bound of the condition score Ki in Definition 3.1. Similarly to the upper bound, the

lower bound has the following property:

Lemma 3.8 (Rows with Nonzero Vectors) When Ki > λ holds, we have W(i) 6=
0 for the i-th row vector.

Lemma 3.8 shows that we can identify a row that must have a nonzero vector by

using the lower bound Ki. We define a subset of the rows on the basis of Lemma 3.8

as follows:
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Definition 3.2 (Row Set M) We define the set M by using the lower bound Ki as

follows:

M = {i ∈ {1, ..., p}|Ki > λ}. (3.8)

The set M has the following property:

Lemma 3.9 (Row Set M) The set M contains the rows that must be updated to

nonzero vectors.

As shown in Definition 3.2, the computation cost to construct the set M depends

on the computation cost of the lower bound Ki. Similarly to the computation of the

upper bound, the lower bound requires O(p2) time for the original computation of

Equation (3.5) and O(p) time for the online updating scheme similar to Lemma 3.5.

Since we must check the condition of Lemma 3.8 for each row to construct the set M,

we need O(p2) time even if we use the online updating scheme. This is the motivation

behind the lower bound computation using the upper bound. In particular, after the

upper bound is updated by following Lemma 3.5, we compute the lower bound by

utilizing the error bound of Lemma 3.3 as follows:

Lemma 3.10 (Computation using Upper Bound) After the upper bound Ki is

computed by using Equations (3.6) and (3.7), the lower bound Ki is computed as

follows:

Ki = Ki − 2||∆W(i)||2 − 2δ||G(i)||2. (3.9)

The computation cost of Equation (3.9) is as follows:

Lemma 3.11 (Computation Cost for Lower Bound) After the upper bound is

computed using Equations (3.6) and (3.7), Equation (3.9) requires O(1) time.

Lemma 3.11 shows that the lower bound can be efficiently computed after the com-

putation of the upper bound. This is because we can reuse the computed variables

of the upper bounds for the computation of the lower bounds. Finally, we obtain the

cost of constructing the set M as follows:

Lemma 3.12 (Computation Cost for Set M) We can construct the set M in

Lemma 3.9 in O(p) time after the upper bounds are computed.
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The computation cost of O(p) time is significantly lower compared with the original

computation based on Equation (3.5), which requires O(p3) time to construct the

set M.

3.3.5 Algorithm

Algorithm 3.2 shows the pseudocode of our algorithm, namely Fast Deterministic

CUR, which utilizes the above-mentioned definitions and lemmas. The algorithm

utilizes two ideas as described in the previous sections: i) it safely skips the compu-

tations for the rows of W that must be updated to zero vectors by using the upper

bounds Ki, and ii) it preferentially updates the parameter vectors corresponding to

the row set M, which must be updated to nonzero vectors. Since the original de-

terministic CUR has the regularization constant λ as described in problem (3.1), we

tune the regularization constant by using the sequential rule (Ghaoui et al., 2012)

with a warm start (Friedman et al., 2007), which is a standard approach for opti-

mization with sparsity-inducing norms (Wang and Ye, 2014; Ndiaye et al., 2017; Ida

et al., 2019). Specifically, it sequentially tunes the regularization constant λ with

respect to the sequence (λq)
Q−1
q=0 , where λ0 > λ1 > ... > λQ−1. The parameter ma-

trices W are sequentially optimized for each regularization constant by using the

coordinate descent, and the initial parameter matrix of the current λq is the result

of the previous λq−1.

In Algorithm 3.2, we first precompute ||G(i)||2 for computing the upper bounds

and lower bounds (lines 2–3). We next enter the loop of the sequential rule (lines

4–25). In the loop, we construct the set M by using the lower bounds of the condition

scores (lines 5–9). If the lower bound Ki is larger than λq, we add the index of the

row to M (lines 8–9). It should be noted that when Ki is computed, we use the

K̃i, ∆W(i), and δ used in the last computation of the upper bound in the previous

loop of the sequential rule. If q = 0, we compute the lower bounds by the original

definition of Equation (3.5). Another strategy for computing the lower bounds in the

case of q = 0 is to first run lines 15–24 once and compute the lower bounds by using

Equation (3.9). After constructing the set M, we perform coordinate descent on the

set (lines 10–13). We then enter the loop of the coordinate descent with the upper

bounds of the condition scores (lines 14–25). We set W̃ in line 15 and compute K̃i

(lines 16–17). The computation results are used to compute the upper bounds Ki
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(line 19). If the upper bound is less than or equal to λq, W(i) turns to be 0 (lines

20–21). In other cases, W(i) is updated as usual (lines 22–23). Subsequently, we

update δ by following the online updating scheme of Lemma 3.5 (line 17).

The computation cost of Algorithm 3.2 is given as follows:

Theorem 3.1 (Computation Cost) Let tu be the total number of outer loops for

the coordinate descent with the upper bounds. Suppose that S is the ratio of updates

to the total number of inner loops, which is un-skipped by the upper bounds. If tm

is the total number of inner loops for the set M, Algorithm 3.2 requires O(p{n(tm +

ptuS) +Q}) time.

We expect the algorithm to reduce tu by preferentially updating the parameter vec-

tors on the basis of the set M in Lemma 3.9. In addition, S would be small when

the algorithm skips a large number of updates by utilizing the upper bounds in

Lemma 3.4. As a result, the total computation cost would be effectively reduced.

In terms of the optimization result, Algorithm 3.2 has the following property:

Theorem 3.2 (Optimization Result) Suppose that Algorithm 3.2 has the same

regularization constants λq > 0 as those of the original algorithm, and the coordinate

descent converges to a global optimal solution. Then, Algorithm 3.2 converges to the

same objective values as those of the original algorithm.

The aforementioned theorem suggests that our algorithm achieves the same accuracy

as that of the original algorithm under the assumption of convergence to a global

optimal solution. Therefore, we expect Algorithm 3.2 to speed up the deterministic

CUR without degrading the accuracy. This property corresponds to Theorem 2.2 in

Section 2.3.5. Thus, our algorithm returns the same parameters and objective value

as those of the original algorithm if we assume that the order of the updates in our

algorithms is the same as the original algorithm.
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Algorithm 3.2 Fast Deterministic CUR

1: A = {1, ..., p}, W← 0, W̃← 0, G← XTX
2: for each i ∈ A do
3: compute ||G(i)||2;
4: for q = 0 to Q− 1 do

5: M = ∅;
6: for each i ∈ A do

7: compute the lower bound Ki by Equation (3.9);

8: if Ki > λq then

9: add i to M;

10: repeat

11: for each i ∈M do

12: update W(i) by Equation (3.2);

13: until W converges

14: repeat

15: W̃←W;

16: for each i ∈ A do

17: compute K̃i;

18: for each i ∈ A do

19: compute the upper bound Ki by Equation (3.6);

20: if Ki ≤ λq then

21: W(i) ← 0;

22: else

23: update W(i) by Equation (3.2);

24: update δ by Equation (3.7);

25: until W converges
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3.3.6 Extension

We propose Algorithm 3.2 on the basis of problem (3.1) by following (Bien et al.,

2010). Although it only selects the columns C as described in Section 3.2, Mairal

et al. (2011) naturally extended the problem to achieve simultaneous selection of

both rows R and columns C by using the row-wise and column-wise regularization

terms. Although these regularization terms overlap, we can handle the terms by

using the overlapping norm (Jacob et al., 2009). Specifically, we define the follow-

ing optimization problem for the simultaneous selection by combining the extension

of (Mairal et al., 2011) and the overlapping norm (Jacob et al., 2009):

min
W∈Rp×n

(1
2
||X−XWX||2F +λr

∑p
i=1||V(i)||2+λc

∑n
j=1||H(j)||2), (3.10)

where V∈Rp×n and H∈Rp×n are latent variables: the parameter matrix is decom-

posed into a sum of the latent variables as W=V+H;
∑p

i=1 ||V(i)||2 and
∑n

j=1 ||H(j)||2
are the overlapping norms, which correspond to row-wise and column-wise regular-

ization terms, respectively; and λr, λc ≥ 0 are regularization constants for the norms.

To solve problem (3.10), we perform row-wise and column-wise coordinate de-

scents. Therefore, we have two types of condition scores for the parameters to be

zeros as follows:

Lemma 3.13 (Necessary and Sufficient Condition for Zero Parameter) Let

Ri := ||X(i)T{X−(XW−X(i)V(i))X}XT||2 and Cj := ||XT{X−X(WX−H(j)X(j))}XT
(j)||2

be the condition scores for the parameters to be zeros for V(i) and H(j), respectively.

Then, we obtain V(i) = 0 if and only if Ri ≤ λr, and H(j) = 0 if and only if Cj ≤ λc.

We note that the columns C and the rows R are selected on the basis of the indices

corresponding to the nonzero rows in V and nonzero columns in H, respectively.

Namely, if I ⊆ {1, ..., p} and J ⊆ {1, ..., n} are the indices corresponding to the

nonzero rows in V and nonzero columns in H respectively, we obtain XI and XJ

as columns C and rows R, respectively. If we need U after selecting XI and XJ ,

U is given by computing (XI)+X(XJ )+ where A+ represents the Moore-Penrose

generalized inverse of matrix A. Then, we can compute the approximated scores for

the condition scores as follows:
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Definition 3.3 We define Ri and Ri be approximated scores of the condition score

Ri. R̃i denotes the condition score before entering the inner loop of the coordinate

descent. Then, Ri and Ri are respectively computed as Ri=R̃i+ρi and Ri=R̃i−ρi,
where ρi :=G

(i)
(i)||∆V(i)||2||F||F +||G(i)||2||∆W||F ||F||F , and F := XXT ∈ Rn×n. Simi-

larly, the approximated scores of Cj and Cj for the condition score Cj are respectively

computed as Cj = C̃j+σj and Cj = C̃j−σj, where σj := ||G||F ||∆H(j)||2F(j)
(j)

+||G||F ||∆W||F ||F(j)||2.

Similarly to the proof of Lemma 3.2, we can show that Ri and Ri are the upper

and lower bounds for Ri from Lemma 3.13, respectively. In addition, Cj and Cj are

also the upper and lower bounds for Cj, respectively. We note that the assumption

of ||X(i)||2 = 1 in Lemma 3.2 is not required for Definition 3.3. These bounds can

realize our two ideas as described in the chapter: i) safely skipping the computations

for rows and columns by using the upper bounds, and ii) prioritizing the update

order by using the lower bounds.

3.4 Related Work

The deterministic CUR is a convex optimization problem with sparsity-inducing

norms as shown in problem (3.1). As these norms correspond to the group-level reg-

ularizations used in group Lasso (Yuan and Lin, 2006), we can use several techniques

for group Lasso to speed up CUR.

To efficiently solve group Lasso, screening rules (Tibshirani et al., 2012; Wang

et al., 2013; Bonnefoy et al., 2015; Ndiaye et al., 2017) are popular methods, which

eliminate several parameters before achieving optimization. Since they reduce the

size of the problem, we can expect the optimization algorithm to reduce the pro-

cessing time. Dual Polytope Projections (DPP) is a screening rule that utilizes the

geometric property of the dual solution (Wang et al., 2013). Unfortunately, DPP

may eliminate parameters incorrectly because it theoretically requires the exact so-

lution of the previous λ in the sequential rule, which is not practically available in

the iterative optimization algorithm. Bonnefoy et al. (2015) proposed a dynamic

method of screening: it eliminates the parameters, not only before the optimization

but also during the optimization. As a result, it can be expected to eliminate a large

number of parameters. However, if the number of eliminated parameters is small,
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the processing time can increase due to the overhead of the screening process (Ida

et al., 2019).

Sequential strong rule (SSR) (Tibshirani et al., 2012) is a heuristic strategy for

screening, which approximately eliminates the parameters. Although it can eliminate

parameters incorrectly, this can be avoided by checking the Karush–Kuhn–Tucker

(KKT) condition after the optimization. In spite of the fact that SSR is a relatively

old method, it still achieves the state-of-the-art results compared with the recent

screening methods (Ndiaye et al., 2017).

Although our idea of selective update using lower bounds in Section 3.3.4 can be

seen as a screening, we utilize another idea of skipping computations using upper

bounds in Section 3.3.3. As a general problem, screenings could not speed up the

optimization when the number of eliminated features is small (Johnson and Guestrin,

2016; 2017; Ida et al., 2019). On the other hand, our method can effectively skip

updates by using upper bounds during the optimization even if lower bounds cannot

eliminate so many features because our bounds become increasingly tighter during

the optimization as shown in Lemma 3.7. In addition, our screening using lower

bounds is efficient because it only requires O(p) time as shown in Lemma 3.12.

All the aforementioned methods including our method can further improve the

efficiency by utilizing a warm start strategy (Friedman et al., 2007; Ndiaye et al.,

2017). The warm start uses the solution of the previous λ as the initial parameters

of the current λ in the sequential rule. As a result, it empirically speeds up the

optimization algorithm.

3.5 Experiments

We evaluated the processing times and values of the objectives. We compared our

method with the original deterministic CUR (origin) (Bien et al., 2010), the sequen-

tial strong rule (SSR) (Tibshirani et al., 2012), and the sequential strong rule with

warm start (SSR+WS) (Ndiaye et al., 2017). We tuned λ for all the approaches based

on the sequential rule by following the methods in (Tibshirani et al., 2012; Wang and

Ye, 2014; Ndiaye et al., 2017; Ida et al., 2019). The search space was a non-increasing

sequence of Q parameters (λq)
Q−1
q=0 defined as λq = λmax10−γq/Q−1. λmax is the small-

est λ for which all the parameters are zeros at the optimal solutions and it was
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computed by following (Tibshirani et al., 2012). We used γ = 4 and Q = 100 (Wang

and Ye, 2014; Ndiaye et al., 2017; Ida et al., 2019). We stopped the algorithm for

each λq when the relative tolerance of the parameter matrix dropped below 10−5 for

all the approaches (Johnson and Guestrin, 2016; 2017; Ida et al., 2019). We stopped

the sequential rule when all the parameters were nonzeros since our purpose is to

select the subset of the columns. We conducted the experiments on five datasets

from the LIBSVM2 (Chang and Lin, 2011) and OpenML3 (Vanschoren et al., 2013)

websites, namely colon-cancer, Bioresponse, QSAR-TID-52, Madelon, and Slashdot,

and the sizes of the data matrices were 62×2000, 3751×1776, 877×1024, 2000×500,

and 3782 × 1079, respectively. Each experiment was conducted with one CPU core

and 264 GB of main memory on a 2.20 GHz Intel Xeon server running Linux.

3.5.1 Processing Time

We evaluated the processing times of the sequential rules for each method. Table 3.1

shows the wall clock times for the five datasets. Note that the processing times

include precomputation times for a fair comparison. Our method was faster than the

previous methods for all the datasets. It reduced the processing time by up to 34.64%

compared to the original method. Although SSR+WS was competitive in comparison

to our method on the Madelon dataset, our method was faster than SSR+WS on

the other datasets. This is because the speed-up of SSR+WS is moderate due to the

overheads of checking the KKT conditions when the number of eliminated parameters

is small. Unfortunately, SSR and SSR+WS could not finish the computations within

a month on the colon-cancer and Bioresponse datasets due to the overheads. On the

other hand, our method quickly extracts the parameter vectors that must be updated

to nonzero vectors at O(p) time. In addition, it efficiently skips the parameter vector

that must be updated to a zero vector at O(p). Thanks to the small overheads, our

method reduces the processing times even on datasets that are not suitable for SSR

and SSR+WS.

2https://www.csie.ntu.edu.tw/~cjlin/libsvm/
3https://www.openml.org/
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Table 3.2: Numbers of updates of Eq. (3.2). Our method effectively reduces the
number of bottleneck computations.

Dataset
# of updates of Eq. (3.2)

origin ours

colon-cancer 8.344× 107 4.181 × 107

Bioresponse 9.048× 107 7.655 × 107

QSAR-TID-52 1.991× 106 1.131 × 106

Madelon 1.847× 106 2.162 × 105

Slashdot 6.571× 105 1.898 × 105

Table 3.2 shows the numbers of updates of Equation (3.2) in the original method

and our method on each dataset. The results suggest that our approximations of the

upper and lower bounds effectively reduced the number of updates by skipping un-

necessary updates and preferentially updating the parameters. Since Equation (3.2)

is the main bottleneck as described in Section 3.2.2, our method could effectively

reduce the processing time as shown in Table 3.1.

Figure 3.1 shows the mean and standard deviation for approximation errors of

the upper and lower bounds during the optimization (lines 14–25 in Algorithm 3.2).

The result was obtained with λq = 1.2 on the Slashdot dataset; the ratio of zero

parameters was 80% in this setting. Similar results were obtained for the other

settings. This result suggests that the error bounds become increasingly smaller

during the optimization; it supports our theoretical result of Lemma 3.7. Namely,

the upper and lower bounds become tight during the optimization. Thanks to the

small approximation errors, our method effectively identifies the parameter vectors

that must be updated to nonzero and zero vectors by using the lower and upper

bounds, respectively.

We also investigated the relationship between the processing time and the size

of the data matrix. We used the gene expression data from (Ramaswamy et al.,

2002), which is a data matrix of 190× 16063. We randomly sampled 100, 500, 1000,

5000, and 10000 columns from the data matrix, and evaluated the processing times

to select 1% of all the columns from these five data matrices on two CPU cores.

As shown in Figure 3.2, our method was faster than the existing methods for all
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Figure 3.1: Mean and standard deviation for approximation errors of the upper and
lower bounds during optimization. Our bounds become tight during the optimiza-
tion.

sizes. Specifically, for 1000 columns, our method was 10× and 4× faster than the

original method and SSR+WS, respectively. We omit the results of the comparison

methods for 10000 columns because they could not finish the computations within a

month. The results show that our method achieves higher efficiency than the existing

methods.
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Figure 3.2: Log wall clock time vs. number of columns with the gene expression data.
Our method is up to 10× and 4× faster than the original method and SSR+WS,
respectively. We omit some computation results which could not finish within a
month.
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Table 3.3: Values of objectives. Our method converges to the same objective as that
of the original method.

Dataset
Objective

origin ours

colon-cancer 1.336 1.336
Bioresponse 9.683 × 101 9.683 × 101

QSAR-TID-52 5.727 × 102 5.727 × 102

Madelon 9.390 × 102 9.390 × 102

Slashdot 1.837 × 103 1.837 × 103

3.5.2 Accuracy

We evaluated the value of the objective function to confirm the effectiveness of our

method. Table 3.3 shows the results: they are final values of the objective functions

in the sequential rules. The values of the objectives of our method are the same as

those of the original method. This is because our method is guaranteed to yield the

same value of the objective function as that of the original method, as described in

Theorem 3.2. We note that SSR and SSR+WS also achieved the same objectives

as those of the original method for QSAR-TID-52, Madelon, and Slashdot datasets

because they are safe screening methods. However, they could not finish the compu-

tations within a month on the other datasets as shown in Table 3.1. Table 3.3 shows

that our method can maintain the accuracy while speeding up CUR.

3.6 Summary

We proposed a fast deterministic CUR matrix decomposition. The main bottleneck

of the original method is the coordinate descent, which requires a large number of

parameter updates. Our method utilizes two ideas to tackle this problem: i) it safely

skips the updates by identifying the parameters that must be updated to zeros,

and ii) it preferentially updates the parameters that must be updated to nonzeros.

The key is to approximately evaluate the necessary and sufficient conditions for the

parameter vectors to be zero vectors by using the upper and lower bounds of the

condition scores. In addition, it provably guarantees the same results as those of
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the original method. The experimental results showed that our method is up to 10×
faster than the original method, and up to 4× faster than the state-of-the-art method

without requiring any additional hyperparameters or incurring any loss of accuracy.

Although we handle only matrix decomposition in this chapter, our method can

be extended to tensor decomposition. Furthermore, our ideas can be generalized

for various types of structured data such as graph, tree, and heterogeneous data.

These future works will enable a wide range of applications to be implemented more

efficiently.

3.7 Proofs

Proof of Lemma 3.1

Proof For the objective in problem (3.1), W(i) = 0 holds if and only if the following

condition holds from (Sra et al., 2012):

−zi + λvi = 0, (3.11)

where vi is an element of the subdifferential of ||W(i)||2. The subdifferential for the

l2 norm is represented as ∂||W(i)||2 = {vi ∈ R1×p|||vi||2 ≤ 1} if W(i) = 0 (Sra

et al., 2012). Therefore, we obtain the condition Ki ≤ λ in Lemma 3.1 by using

Equation (3.11) and the condition ||vi||2 ≤ 1. �

We note that Lemma 3.1 is a known result (see Hastie et al. (2015); Yuan and Lin

(2006); Simon et al. (2013); Friedman et al. (2010); Sra et al. (2012) in detail).

Proof of Lemma 3.2

Proof From Equation (3.3) and ||X(i)||2 = 1, we obtain

zi = G(i)−G(i)W + W(i). (3.12)
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If z̃i := G(i)−G(i)W̃ + W̃(i) is zi before entering the inner loop of the coordinate

descent, Equation (3.12) is transformed into the following form:

zi =G(i)−G(i)W̃ + W̃(i)−G(i)∆W + ∆W(i)

= z̃i−G(i)∆W + ∆W(i). (3.13)

From the aforementioned equation and the triangle equality, we obtain the following

inequality:

||zi||2 ≤ ||z̃i||2 + ||∆W(i)||2 + ||G(i)∆W||2. (3.14)

For the term ||G(i)∆W||2, we obtain the following inequality by using the Cauchy-

–Schwarz inequality:

||G(i)∆W||2 ≤ ||G(i)||2||∆W||F . (3.15)

From Equations (3.14) and (3.15), we obtain the following upper bound in the lemma:

Ki ≤ K̃i + ||∆W(i)||2 + ||G(i)||2||∆W||F = Ki. (3.16)

We obtain ||zi||2 ≥ ||z̃i||2 − ||∆W(i)||2 − ||G(i)∆W||2 for the lower bound by using Equa-

tion (3.13) and the triangle inequality, similarly to that in the case of the upper bound.

From the inequality and Equation (3.15), we obtain the lower bound in the lemma:

Ki ≥ K̃i − ||∆W(i)||2 − ||G(i)||2||∆W||F = Ki, (3.17)

which completes the proof. �

Proof of Lemma 3.3

Proof From Lemma 3.2, we have Ki ≤ Ki ≤ Ki. Therefore, the error bound of the

upper bound is |Ki−Ki| ≤ |Ki−Ki| = 2||∆W(i)||2 + 2||G(i)||2||∆W||F = ε. Similarly

to that for the upper bound, we obtain |Ki−Ki| ≤ |Ki−Ki| = ε for the lower bound.

�
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Proof of Lemma 3.4

Proof When Ki ≤ λ holds, we have Ki ≤ Ki ≤ λ from Lemma 3.2. Therefore, we

have W(i) = 0 from Lemma 3.1 as Ki ≤ λ holds. �

Proof of Lemma 3.5

Proof For the term ||G(i)||2||∆W||F in Equation (3.4), since we have ||∆W||2F =

||[||∆W(1)||2, ..., ||∆W(p)||2]||22 = ||∆W(1)||22 + ...+ ||∆W(p)||22, we can update ||∆W||2F by

using the following equation:

||∆W||2F − ||∆W(j)||22 + ||∆W′
(j)||22 = δ2 (3.18)

Therefore, we obtain Equation (3.6) by using δ instead of ||∆W||F in Equation (3.4).

�

Proof of Lemma 3.6

Proof We can precompute K̃i and ||G(i)||2 before entering the inner loop and outer

loop, respectively. In addition, we have ||∆W(i)||2 and ||∆W||F as scalars. Thus, we

obtain the terms K̃i, ||G(i)||2, ||∆W(i)||2, and ||∆W||F at O(1) times. When ∆W(j)

is updated to ∆W′
(j), the computation of ||∆W′

(j)||2 in Equation (3.7) requires O(p)

time. Therefore, the total computation cost of Equation (3.6) is O(p) time. �

Proof of Lemma 3.7

Proof If W converges, we have ∆W(i) = 0 and ∆W = 0. Since the error bound ε

is 2||∆W(i)||2 + 2||G(i)||2||∆W||F in Lemma 3.3, we obtain ε = 0. In addition, because

we have K̃i = Ki when W converges, the upper bound Ki and the lower bound Ki

converge to the condition score Ki from Equations (3.4) and (3.5). �

Proof of Lemma 3.8

Proof When Ki > λ holds, we have Ki ≥ Ki > λ from Lemma 3.2. Therefore,

since Ki > λ holds, we have W(i) 6= 0 from Lemma 3.1. �
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Proof of Lemma 3.9

Proof Lemma 3.9 holds since the set M includes indices of rows that must be up-

dated to nonzero vectors from Lemma 3.8. �

Proof of Lemma 3.10

Proof Since Ki ≥ Ki from Lemma 3.2, the lower bound is computed as Ki = Ki−ε
from the proof of Lemma 3.3. Since we have ε = |Ki−Ki| = 2||∆W(i)||2 + 2δ||G(i)||2
after W(j) is updated to W′

(j), we obtain Equation (3.9). �

Proof of Lemma 3.11

Proof The terms K̃i, ||∆W(i)||2, δ = ||∆W||F , and ||G(i)||2 in Equation (3.5) have

already been computed in Equations (3.6) and (3.7). Since we obtain these terms at

O(1) times, the computation cost of Equation (3.9) is O(1) time. �

Proof of Lemma 3.12

Proof Lemma 3.12 holds from Lemma 3.11 since the computation of the construc-

tion for the set M checks Ki, which requires O(1) time, for p rows. �

Proof of Lemma 3.13

Proof Suppose that L(W) := 1
2
||X−XWX||2F in problem (3.10). By following the

property of the overlapping norm (Jacob et al., 2009), W is an optimal solution of

problem (3.10) if and only if the following conditions hold for any rows and columns:

(i) W can be decomposed as W = V+H, (ii) if V(i) = 0 then ||∇iL(W)||2 ≤ λr, (iii)

if V(i) 6= 0 then ∇iL(W) = −λrV(i)/||V(i)||2, (iv) if H(j) = 0 then ||∇jL(W)||2 ≤ λc,

and (v) if H(j) 6= 0 then ∇jL(W) = −λcH(j)/||H(j)||2, where ∇iL(·) and ∇jL(·) are

the partial gradients of L(·) with respect to the parameters in i-th row and j-th col-

umn, respectively. We consider conditions (ii) and (iv) since Lemma 3.13 handles the

condition for zero parameters. By using the covariate duplication method (Obozinski

et al., 2011), if V(i) = 0, ∇iL(W) in condition (ii) is computed as follows:

∇iL(W) = X(i)T{X−(XW−X(i)V(i))X}XT. (3.19)
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Therefore, we obtain the condition Ri ≤ λr for V(i) = 0 in Lemma 3.13 from

||∇iL(W)||2 = Ri and condition (ii). Similarly, if H(j) = 0, ∇jL(W) in condition

(iv) is computed as follows:

∇jL(W) = XT{X−X(WX−H(j)X(j))}XT
(j). (3.20)

From ||∇jL(W)||2 = Cj and condition (iv), we obtain the condition Cj ≤ λc in

Lemma 3.13. �

Proof of Theorem 3.1

Proof The precomputations of XTX and ||G(i)||2 for all the rows require O(p2n)

and O(p2) times, respectively. Since the lower bound Ki is computed at O(1) time

from Lemma 3.11, the construction of the set M requires O(p) time as shown in

Lemma 3.12. According to the sequential rule, the total cost of the construction is

O(pQ) time. Since computation of all the rows of K̃i requires O(p2n) time, the total

cost is O(p2ntu) time for all the outer loops of the coordinate descent with the upper

bounds. From Lemma 3.6, the total computation cost of the upper bounds Ki is

O(p2tu) because O(p2) time is required to compute the upper bounds of all the rows.

To update the parameter vectors, we need O(pntm) time for the coordinate descent

on the set M. For the coordinate descent with the upper bounds, O(p2ntuS) time is

required for the updates. This is because the total number of inner loops is ptu, and

the updates are performed only when they are unskipped by the upper bound. Thus,

Algorithm 3.2 needs O(p{n(tm+ptuS)+Q}) time. �

Proof of Theorem 3.2

Proof Since we assume that the coordinate descent converges to a global optimal

solution, our algorithm converges to a global optimal solution at line 13 of Algo-

rithm 3.2. In addition, from Lemma 3.4, Algorithm 3.2 safely skips unnecessary

updates of the coordinate descent (lines 20–21). Since we assume that the coordi-

nate descent converges to a global optimal solution in the theorem, Algorithm 3.2

converges to the same objective values as those of the original algorithm at line 25 if

their regularization constants are the same. �
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Part II

Fast Algorithms for Deep Models
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Chapter 4

Fast Gradient Descent with

Adaptive Learning Rate for Deep

Neural Networks

4.1 Introduction

Adaptive learning rate algorithms are widely used for efficient training of deep neural

networks. RMSProp (Tieleman and Hinton, 2012) and its follow-on methods such as

AdaDelta (Zeiler, 2012) and Adam (Kingma and Ba, 2014) are being used in many

deep neural networks such as Convolutional Neural Networks (CNNs) (LeCun et al.,

1998) since they can be easily implemented with high memory efficiency.

However, the gradients used in RMSProp include noise caused by stochastic opti-

mization techniques such as mini-batch setting. With batch setting, since the model

inputs are fixed in each iteration, only parameter updates change the gradients. On

the other hand, with mini-batch setting, since the inputs are not fixed in each itera-

tion, gradients can also be changed by randomly selecting the inputs in each iteration.

This change in the mini-batch setting can be seen as noise. Although RMSProp uses

noisy gradients, it does not consider the noise when it adjusts the learning rate. This

indicates that the efficiency of RMSProp can be improved by effectively handling

noise in the gradients.

This chapter proposes a novel adaptive learning rate algorithm called SDProp.
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The key idea is to utilize covariance matrix based preconditioning to effectively han-

dle noise in the gradients. The covariance matrix is derived by assuming a dis-

tribution for the noise in the observed gradients. Since the distribution effectively

captures the noise, SDProp can effectively capture the changes in gradients caused by

random input selection in each iteration. In experiments, we compare SDProp with

RMSProp. SDProp needs 50 % fewer training iterations than RMSProp to reach the

final training loss for CNN in CIFAR-10, CIFAR-100 and MNIST datasets. In ad-

dition, SDProp outperforms Adam, a state-of-the-art algorithm based on RMSProp,

in several datasets. Our approach is also more effective than RMSProp for train-

ing Recurrent Neural Network (RNN) (Elman, 1990) and very deep fully-connected

neural networks.

4.2 Preliminary

We briefly review the background of this chapter. First, we describe SGD, which is a

basic algorithm in stochastic optimization for training deep neural networks. Next,

we review RMSProp that can effectively train deep neural networks on the basis of

SGD and the adaptive learning rate.

4.2.1 Stochastic Gradient Descent

Many learning algorithms aim at minimizing loss function f(θ) with respect to pa-

rameter vector θ. SGD is a popular algorithm in the mini-batch setting. To minimize

f(θ), SGD iteratively updates θ with a mini-batch of samples as follows:

θ
(t)
i = θ

(t−1)
i − α∇θif(θ(t−1);x(t−1)) (4.1)

where α is the learning rate, θ
(t)
i is the i-th element of the parameter vector at time

t, x(t−1) is the sample or mini-batch at time t − 1, and ∇θif(θ(t−1);x(t−1)) is the

gradient with respect to the i-th parameter given by θ(t−1) and x(t−1). SGD applies

Equation (4.1) to each sample or mini-batch while Gradient Descent (GD) applies

Equation (4.1) to all data in the batch setting. Although ∇θif(θ(t−1);x(t−1)) includes

noise due to the random selection of mini-batch x(t−1), SGD uses it in the training

phase. Since SGD only uses a part of the data for computing ∇θif(θ(t−1);x(t−1)),
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each iteration has reduced computation cost while memory efficiency is high.

4.2.2 RMSProp

RMSProp is a popular algorithm based on SGD for training neural networks. AdaDelta

and Adam are follow-up methods of RMSProp. RMSProp rapidly reduces loss func-

tion f(θ) by adapting the learning rate of SGD. The updating rule of RMSProp is

as follows:

v
(t)
i = βv

(t−1)
i + (1− β)

(
∇θif(θ(t−1);x(t−1))

)2
(4.2)

θ
(t)
i = θ

(t−1)
i − α√

v
(t)
i +ε
∇θif(θ(t−1);x(t−1)) (4.3)

where v
(t)
i is the moving average of squared gradients

(
∇θif(θ(t−1);x(t−1))

)2
, β is

the decay rate for computing v
(t)
i , and ε is a small positive value for the stable

computation. Intuitively, RMSProp divides the learning rate, α, by magnitude

√
v
(t)
i

of the past gradients. Therefore, if the i-th parameter has large gradients in terms of

the magnitude in the past, RMSProp yields a small learning rate because

√
v
(t)
i in

Equation (4.3) is large. Empirically, this idea efficiently reduces the value of the loss

function for deep neural networks. Follow-up methods such as AdaDelta and Adam

are based on this idea.

4.3 Proposed Method

We first introduce our idea of the covariance matrix based preconditioning. Then,

we introduce our algorithm on the basis of this idea. All the proofs can be found in

Section 4.7.

4.3.1 Idea

RMSProp utilizes the moving average of squared gradients to adjust the learning

rate as described in the preliminary section. However, in stochastic optimization

approaches, the gradients include noise because input x(t−1) is randomly selected

in each iteration. Since RMSProp does not consider the noise in the gradients, it

may be difficult to effectively adjust the learning rate. In order to handle the noise,
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we propose SGD with preconditioning on the basis of the covariance matrix of the

gradients.

In the covariance matrix based preconditioning, we assume that the gradients fol-

low a Gaussian distribution. By following (Sra et al., 2012), we assume the following

Gaussian distribution of gradient ĝt = ∇θf(θ(t);x(t)) ∈ Rd:

ĝt|ḡt ∼ N(ḡt, Ct) (4.4)

where ḡt ∈ Rd is the true gradient without the noise while ĝt ∈ Rd includes the noise.

N(ḡt, Ct) is a Gaussian distribution with mean ḡt and covariance matrix Ct; Ct is the

covariance matrix of ĝt whose size is d × d. The diagonal elements in Ct represent

the magnitude of oscillation of the gradients ĝt that include the noise. Specifically,

let Ct[i, j] be the i-th row and the j-th column element in Ct, Ct[i, j] represents the

covariance of the i-th and the j-th gradient. Therefore, if the i-th gradient strongly

correlates with the j-th gradient, Ct[i, j] has large absolute value. On the other hand,

Ct[i, i] represents the variance of the i-th gradient. Therefore, Ct[i, i] has large value

if the gradient strongly oscillates in the i-th dimension.

Intuitively, large oscillations in i-th dimension incur high variance of updating

directions and inefficient progress in plain SGD. However, it is difficult to reduce the

oscillation since it can be a result of the noise induced by the mini-batch setting.

How can we reduce the oscillation by using Ct ? This is the motivation behind

our approach; we assume that plain SGD efficiently progresses if we can control the

oscillation by utilizing Ct. In this chapter, we propose the preconditioning of Ct to

control the oscillation. Namely, we reduce the condition number of Ct by utilizing

preconditioning on the basis of the covariance matrix of the gradients. In particular,

our preconditioning transforms Ct into an identity matrix. We describe our approach

in the next section.

4.3.2 Covariance Matrix Based Preconditioning

The previous section suggests that large values in the diagonal of Ct prevent the

efficient progress of SGD. Therefore, if we could control the values in the diagonal of

Ct, we improve the efficiency of SGD. Our covariance matrix based preconditioning

transforms Ct into ρ2I where I is an identity matrix whose size is d × d and ρ is a
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hyper-parameter that has a positive value. Since the element in the diagonal of Ct

represents the variance of the gradients, we can hold the variance to constant value

ρ2. If the variance is larger than ρ2, its value is reduced to ρ2.

We first describe the approach used to transform Ct into I instead of ρ2I. This is

because once Ct is transformed into I, it is easy to transform I into ρ2I as we describe

later. To execute the preconditioning of Ct, we use the transformation gp = D−1ĝt

where D ∈ Rd×d is called as the preconditioning matrix. In this transformation, gp

is a transformed gradient and ĝt is a gradient as defined in Equation (4.4). Since

the transformation is an affine transformation of ĝt generated from the Gaussian

distribution in Equation (4.4), we have following distribution of gp:

gp = D−1ĝt|ḡt ∼ N(D−1ḡt, D
−1Ct(D

−1)T). (4.5)

In Equation (4.5), we use the following major rule to transform Equation (4.4)

into (4.5): if X ∼N(m,Σ) and Y =AX, then Y ∼N(Am,AΣAT ); N(m,Σ) is a

Gaussian distribution that has mean m and covariance matrix Σ, A is a matrix

for affine transformation and Y is a transformed variable. By setting D = C
1/2
t in

Equation (4.5), we have the following property :

Theorem 4.1 If we transform gradient ĝt to yield gp = C
−1/2
t ĝt, we have the follow-

ing Gaussian distribution:

gp|ḡt ∼ N(C
−1/2
t ḡt, I) (4.6)

where I is an identity matrix whose size is d× d.

The above theorem indicates that the transformation of gp = C
−1/2
t ĝ results in the

Gaussian distribution of gp whose covariance matrix is identity matrix I. In other

words, we can control the covariance matrix to be I by using gp instead of ĝ.

Our preconditioning transforms the value of variance for gradients into 1 by using

gp. However, gp may have an extremely large value if the variance is 1. Thus, we

introduce hyper-parameter ρ to generalize our preconditioning. Specifically, by using

the transformation of gp = ρC
−1/2
t ĝ instead of gp = C

−1/2
t ĝ, we have the following

distribution:

ρC
−1/2
t ĝt|ḡt ∼ N(ρC

−1/2
t ḡt, ρ

2I). (4.7)
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The above equation denotes that ρ controls the value of the covariance matrix while

the previous transformation only gives an identity matrix as shown in Equation (4.6).

We show that ρ has the same role as learning rate α when we derive SDProp in the

next section.

Since we compute the gradients at each time t in SGD, we have to incrementally

compute covariance matrix Ct although Theorem 4.1 is based on the property that

Ct is a positive semi-definite matrix. In order to incrementally compute Ct as a

positive semi-definite matrix, we use the online updating rule of (Sra et al., 2012) as

follows:

Ct = γCt−1+γ(1−γ)(ĝt−µt−1)(ĝt−µt−1)T (4.8)

µt = γµt−1+(1−γ)ĝt (4.9)

where µt is the moving average of ĝt and γ is the hyper-parameter of the decay rate

for the moving average that has γ ∈ [0, 1). Ct and µt are initialized as µ1 = ĝ1 and

C1 = 0. The above updating rule gives the following property:

Theorem 4.2 If we compute covariance matrix Ct by using Equations (4.8) and (4.9),

Ct is positive semi-definite.

Thus, if we compute Ct by using Equations (4.8) and (4.9), we can execute the

preconditioning specified by Theorem 4.1.

4.3.3 Algorithm

Since deep neural networks have a large number of parameters, the idea described

in the previous section incurs large memory consumption of O(d2) where d is the

number of parameters. In addition, it costs O(d3) time to compute D = C
1/2
t by using

eigenvalue decomposition (Halko et al., 2011). To avoid these problems, we employ

diagonal preconditioning matrix D = diag(Ct)
1/2. Since this approach only needs the

diagonal terms, the memory and computation costs are O(d). Although this approach

ignores the correlation of gradients, it is sufficient to control the oscillation in each

dimension. This is because the diagonal of Ct represents the variance of the oscillation

as described in the previous section. By picking the diagonal of Equation (4.7), the
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updating rule is:

θ(t) = θ(t−1) − ρ · diag (Ct)
−1/2∇θf(θ(t−1);x(t−1)). (4.10)

We rewrite this updating rule (all steps) as follows:

µ
(t)
i = γµ

(t−1)
i +(1−γ)∇θif(θ(t−1);x(t−1)) (4.11)

c
(t)
i = γc

(t−1)
i +γ(1−γ)(∇θif(θ(t−1);x(t−1))−µ(t−1)

i )2 (4.12)

θ
(t)
i = θ

(t−1)
i − ρ√

c
(t)
i +ε
∇θif(θ(t−1);x(t−1)) (4.13)

where µ
(t)
i is the moving average of gradients for the i-th parameter at time t and γ is

the hyper-parameter of the decay rate for the moving average that has γ ∈ [0, 1). c
(t)
i

is the exponentially moving variance of gradients for the i-th parameter at time t. We

use γ in Equation (4.12) as the decay rate of the exponentially moving variance. µ
(t)
i

and c
(t)
i are initialized as 0. For stable computation, ε is set at a small positive value.

Equation (4.13) corresponds to Equation (4.10). We call the algorithm SDProp

because Equation (4.13) includes Standard Deviation
√
c
(t)
i . Although c

(t)
i includes the

bias imposed by initialization, we can remove the bias in the same way as (Kingma

and Ba, 2014).

Notice that ρ takes the same role as learning rate α in Equation (4.3) of RMSProp.

Therefore, Equation (4.13) divides the learning rate by the square root of centered

variance c
(t)
i while Equation (4.3) of RMSProp divides the learning rate by the square

root of uncentered variance v
(t)
i . In other words, RMSProp and its follow-up methods

such as Adam adapt the learning rate by the magnitude of gradients while we adapt it

by the variance of gradients. Although RMSProp and SDProp have similar updating

rules, they have totally different goals as described in the previous sections.

4.4 Experiments

We performed experiments to compare SDProp to RMSProp and Adam, a state-of-

the-art algorithm based on RMSProp. Kingma and Ba (2014) show that Adam is

a more efficient and effective approach than RMSProp or AdaDelta by integrating

momentum into RMSProp. First, we show the efficiency and effectiveness of our
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approach by using CNN. Second, since SDProp effectively handles the oscillation

described in the previous section, we evaluate SDProp by using small mini-batches

which suffer noise in the gradients. Third, we show the efficiency and effectiveness of

SDProp for RNN. Fourth, we demonstrate the effectiveness of SDProp for 20 layered

fully-connected neural network.

4.4.1 Efficiency and Effectiveness for CNN

We investigate the efficiency and effectiveness of SDProp. We used 4 datasets to

assess the classification of images; CIFAR-10, CIFAR-100 (Krizhevsky and Hinton,

2009), SVHN (Sermanet et al., 2012) and MNIST. The experiments were conducted

on a 7-layered CNN with ReLU activation function. The loss function was negative

log likelihood. We compared SDProp to RMSProp and Adam. In SDProp, we

tried various combinations of hyper-parameters by using γ ∈ {0.9, 0.99} and ρ ∈
{0.1, 0.01, 0.001}. In RMSProp, we tried combinations of hyper-parameters by using

β ∈ {0.9, 0.99} and α ∈ {0.1, 0.01, 0.001}. As a result, SDProp achieves the lowest

loss in the settings of γ = 0.99, ρ = 0.001. RMSProp has the lowest loss when

β = 0.99 and α = 0.001. Adam achieves the lowest loss when β1 = 0.9, β1 = 0.999

and α = 0.001. The mini-batch size was 128. The number of epochs was 50. We

use the training loss to evaluate the algorithms because they optimize the training

criterion.

Figure 4.1 shows the training losses of each dataset. In CIFAR-10, CIFAR-100

and SVHN, SDProp yielded lower losses than RMSProp and Adam in early epochs.

In MNIST, although the training loss of SDProp and Adam nearly reached 0.0,

SDProp reduces the loss faster than Adam. SDProp needs 50 % fewer training

iterations than RMSProp to reach its final training loss in CIFAR-10, CIFAR-100

and MNIST. Since SDProp effectively captures the noise, it effectively reduces the

loss even if the gradients are noisy. In the next experiment, we investigate the

performance of SDProp in terms of its effectiveness against noise by using noisy

gradients.
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(a) CIFAR-10
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(b) CIFAR-100
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(d) MNIST

Figure 4.1: Training losses for CNN. We show the results for (a) CIFAR-10, (b)
CIFAR-100, (c) SVHN and (d) MNIST.
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Table 4.1: Training accuracy percentage for CIFAR-10 in CNN for different mini-
batch sizes. We tuned the hyper-parameters; the 1st row presents mini-batch size.

16 32 64 128
RMSProp 81.42 93.10 94.98 95.07

Adam 83.24 93.57 95.48 97.12
SDProp 90.17 94.87 96.54 97.31

4.4.2 Sensitivity of Mini-batch Size

The previous experimental results show that SDProp is more efficient and effective

than existing methods because it well handles the noise in our idea and in practice.

In other words, SDProp is expected to effectively train the model even if we use

small mini-batch sizes that incur noisy gradients (Dekel et al., 2012). Therefore, we

investigated the sensitivity of SDProp and existing methods to mini-batch size. While

the main purpose of this experiment is to reveal the one performance attribute of

SDProp, the result suggests that SDProp can be used on devices with scant memory

that must use small mini-batches.

We compared SDProp to RMSProp and Adam using mini-batch sizes of 16, 32,

64 and 128. We used the CIFAR-10 dataset for the 10-class image classification task.

We used CNN as per the previous section. The hyper-parameters are also the same

as the previous section; they are tuned by grid search. The number of epochs was

50.

Table 4.1 shows the final training accuracies. SDProp outperforms RMSProp and

Adam in all mini-batch size values examined. Specifically, although small mini-batch

size of 16 incurs very noisy gradients, SDProp obviously achieves effective training

unlike RMSProp and Adam. In addition, Table 4.1 shows that the superiority of our

approach over RMSProp and Adam increases as mini-batch size falls. For example,

if the mini-batch size is 16, our approach has 8.75 percent higher accuracy than

RMSProp and 2.24 percent more accurate if the mini-batch size is 128. This indicates

that our covariance matrix based preconditioning effectively handles the noise of

gradients.
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Figure 4.2: Cross entropies in training RNN for shakespeare dataset (left) and source
code of linux kernel (right).

4.4.3 Efficiency and Effectiveness for RNN

We evaluated the efficiency and effectiveness of SDProp for the Recurrent Neural

Network (RNN). In this experiment, we predicted the next character by using previ-

ous characters via character-level RNN. We used the subset of shakespeare dataset

and the source code of the linux kernel as the dataset (Karpathy et al., 2015). The

size of the internal state was 128. The pre-processing of the dataset followed that

of (Karpathy et al., 2015). The mini-batch size was 128. In SDProp, we tried grid

search with ρ ∈ {0.1, 0.01, 0.001} and γ ∈ {0.9, 0.99}. As a result, SDProp used

the settings of ρ = 0.01 and γ = 0.99. In RMSProp, we tried grid search with

α ∈ {0.1, 0.01, 0.001} and β ∈ {0.9, 0.99}. Finally, we used the settings of α = 0.01

and β = 0.99 for RMSProp. The training criterion was cross entropy. We used

gradient clipping and learning rate decay. Gradient clipping is a popular approach

for scaling down the gradients by manually setting a threshold; it prevents gradients

from exploding in RNN training (Pascanu et al., 2013). We set the threshold to 5.0.

We decayed the learning rate α every tenth epoch by the factor of 0.97 for RMSProp

following (Karpathy et al., 2015). In SDProp, ρ was also decayed the same as α of

RMSProp.

Figure 4.2 shows the results of the shakespeare dataset and the source code of the

linux kernel. SDProp reduces the training loss faster than RMSProp. Since SDProp

effectively handles the noise induced by the mini-batch setting, it can efficiently train
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Table 4.2: Average, Best and Worst training accuracy percentage of 20 layered fully-
connected networks.

Accuracy
Method α β Ave. Best Worst

RMSProp 0.001 0.9 92.86 97.95 84.79
0.99 98.81 99.11 98.34

ρ γ Ave. Best Worst
SDProp 0.001 0.9 93.77 97.9 87.57

0.99 99.20 99.42 99.09

models other than CNN, such as RNN.

4.4.4 20 Layered Fully-connected Neural Network

In this section, we performed experiments to evaluate the effectiveness of SDProp

for training deep fully-connected neural networks. Dauphin et al. (2014) suggests

that the number of saddle points exponentially increases with the dimensions of the

parameters. Since deep fully-connected networks typically have parameters with

higher dimension than other models such as CNN, this optimization problem has

many saddle points. This problem is challenging because SGD slowly progresses

around saddle points (Dauphin et al., 2014).

We used a very deep fully-connected network with 20 hidden layers, 50 hidden

units and ReLU activation functions. We used the MNIST dataset for the 10-class

image classification task. This setting is the same as (Neelakantan et al., 2015)

used in evaluating the effectiveness of SGD with high dimensional parameters. The

training criterion was negative log likelihood. The mini-batch size was 128. We

initialized parameters from a Gaussian with mean 0 and standard deviation 0.01

following Neelakantan et al. (2015). We compared SDProp to RMSProp. In SDProp,

we tried the combinations of hyper-parameters by using γ ∈ {0.9, 0.99} and ρ ∈
{0.1, 0.01, 0.001}. In RMSProp, we tried the combinations of hyper-parameters by

using β ∈ {0.9, 0.99} and α ∈ {0.1, 0.01, 0.001}. The number of epochs was 50. We

tried 10 runs for each of the above settings.

Table 4.2 lists the results for the best setting of α and ρ. It shows averages, best,

worst of training accuracies for each setting. The result shows that SDProp achieves

higher accuracy than RMSProp for the best setting. In addition, the difference
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between best and worst accuracy of SDProp is smaller than RMSProp. Since SDProp

effectively handles the randomness of noise, it can reduce result uncertainty. The

results show that SDProp effectively trains models that have very high dimensional

parameters.

4.5 Discussion

This chapter proposed a novel preconditioning on the basis of the covariance matrix

of gradients. This section explains the relationship between TONGA (Roux et al.,

2008), which is closely related to this study. TONGA is another major covariance

matrix based preconditioning that assumes a prior distribution for the gradients. It

computes the posterior distribution of the gradients and updates the parameters on

the basis of the posterior distribution. As a result, the covariance matrix is used as

the preconditioning matrix in TONGA. Interestingly, Roux et al. (2008) revealed that

the updating rule of TONGA is almost identical to that of natural gradient (Amari,

1998). On the other hand, our method uses the square root of the covariance matrix

as the preconditioning matrix. Although this difference seems to be trivial, TONGA

and our method are proposed for different purposes. Namely, our method transforms

the covariance matrix into ρI as described in Section 4.3.2 while TONGA does not.

In addition, the updating rule of our method is different from that of natural gradient

unlike TONGA as it utilizes the square root of the covariance matrix. Although our

method can be regarded as whitening of gradients, more research is still needed to

conclude why whitening of gradients improves the efficiency of training DNNs.

4.6 Summary

We proposed SDProp for the effective and efficient training of deep neural networks.

Our approach utilizes the idea of using covariance matrix based preconditioning to

effectively handle the noise present in the gradients. Our experiments showed that,

for various datasets and models, SDProp is more efficient and effective than existing

methods. In addition, SDProp achieved high accuracy even if the gradients were

noisy.
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4.7 Proofs

Proof of Theorem 4.1

Proof By using eigen decomposition, we can represent Ct as Ct = UΣUT where

U is an orthogonal matrix of d × d and Σ is a diagonal matrix of (λ1, λ2, ..., λd).

Since Ct is assumed to be a positive semi-definite matrix, all eigen values are equal

to or higher than 0. Thus, C
1/2
t can be computed as C

1/2
t =UΣ1/2UT. By setting

the covariance term of Equation (4.5) to D−1=(C
1/2
t )−1=UΣ−1/2UT, the Gaussian

distribution of gp is represented as follows:

gp = C
−1/2
t ĝt|ḡt ∼ N(C

−1/2
t ḡt, C

−1/2
t Ct(C

−1/2
t )T)

= N(C
−1/2
t ḡt, UΣ−1/2UTUΣUT(UΣ−1/2UT)T)

= N(C
−1/2
t ḡt, I).

In the above formulations, since U is an orthogonal matrix, we use UUT= I and

(UΣ−1/2UT)T=UΣ−1/2UT. As a result, we have the distribution of Equation (4.6).

�

Proof of Theorem 4.2

Proof In order to prove Theorem 4.2, we first prove that (ĝt−µt−1)(ĝt−µt−1)T in

Equation (4.8) is a positive semi-definite matrix. By setting y = xT(ĝt−µt−1), we

have:

xT(ĝt−µt−1)(ĝt−µt−1)Tx = yyT ≥ 0.

By following the definition of positive semi-definite matrixes, if we have matrix A

of d × d such that xTAx ≥ 0 holds for every non-zero column vector x of d real

numbers, A is a positive semi-definite matrix. Since the above inequation shows that

xT(ĝt−µt−1)(ĝt−µt−1)Tx ≥ 0 holds, it is clear that (ĝt−µt−1)(ĝt−µt−1)T is a positive

semi-definite matrix even if µt−1 in Equation (4.9) has any real value.

Then, we prove that Ct in Equation (4.8) is a positive semi-definite matrix by

mathematical induction.
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Initial step: If t=1, the initialization yields C1 = 0. Since C2 is computed as C2 =

γ(1− γ)(ĝ2−µ1)(ĝ2−µ1)
T by using Equation (4.8) and (4.9), C2 is a positive semi-

definite matrix. This is because (ĝt−µt−1)(ĝt−µt−1)T is a positive semi-definite matrix

as proved above.

Inductive step: We assume that Ct−1 is a positive semi-definite matrix. Since Ct is

computed as Ct = γCt−1 + γ(1 − γ)(ĝt − µt−1)(ĝt − µt−1)T by using Equations (4.8)

and (4.9), xTCtx is represented as follows:

xTCtx = xT(γCt−1+γ(1−γ)(ĝt−µt−1)(ĝt−µt−1)T)x

= γxTCt−1x+γ(1−γ)xT(ĝt−µt−1)(ĝt−µt−1)Tx.

In the above equation, xTCt−1x ≥ 0 and xT(ĝt−µt−1)(ĝt−µt−1)Tx ≥ 0 because Ct−1

and (ĝt−µt−1)(ĝt−µt−1)T are positive semi-definite matrices. Therefore, Ct is a

positive semi-definite matrix because xTCtx ≥ 0 holds in the above equation. This

completes the inductive step. �
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Chapter 5

Inference Acceleration with

Layer-Wise Model Compression

for Residual Networks

5.1 Introduction

Convolutional Neural Networks (CNNs) (LeCun et al., 1998) are important tools in

the machine learning community because they have a wide field of applications. Al-

though modern CNNs need a lot of time for the training phase, it can be shortened

by using many computation resources. In fact, Akiba et al. (2017) shows that large

CNNs can be trained within 15 minutes on ImageNet datasets by using 1024 GPUs.

On the other hand, after the training phase, the inference phase is used to perform

prediction in service deployment. Since the era of IoT has arrived, it is increasingly

important to perform inference on devices with limited resources such as image clas-

sification on embedded systems (Wu et al., 2016), character recognition on portable

devices (Xiao et al., 2017) and speech recognition on mobile devices (Schuster, 2010).

While we need to perform inference with limited resources, the number of layers

in CNNs has been increasing every year in order to raise accuracy. In 1998, LeNet-5

used 5 layers to classify handwriting digits (LeCun et al., 1998). In 2012, AlexNet

won an ILSVRC image classification competition with 8 layers (Krizhevsky et al.,

2012). In the competition of 2014, VGG Net and GoogleNet stacked 19 and 22 layers,
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respectively (Simonyan and Zisserman, 2014; Szegedy et al., 2015). Residual Network

(ResNet) used 152 layers and won the competition in 2015 (He et al., 2016b). The

paper of ResNet has many citations, more than 5,000 just within the last two years,

and ResNet is being used as a standard CNN-based model.

However, due to its sheer number of layers, ResNet incurs considerable com-

putation overheads such as processing time and memory usage. Although we can

efficiently train CNNs by using GPUs, it is still difficult to perform inference effi-

ciently with limited resources such as embedded systems and mobile devices. Several

approaches reduce the number of layers in performing the inference phase (Larsson

et al., 2017; Ba and Caruana, 2014; Zagoruyko and Komodakis, 2016; Veit and Be-

longie, 2018; Wu et al., 2018; Huang and Wang, 2018). Unfortunately, they incur

additional memory requirements or degrade the accuracy on real-world datasets such

as ImageNet. Therefore, we need other strategies that reduce the number of layers

without increasing memory consumption while keeping accuracy high.

To achieve this goal, we propose Network Implosion (NI); it erases multiple layers

from ResNet without increasing the computation costs in the inference phase. Our

proposal introduces a priority term that indicates the importance of each layer.

We can select and erase unimportant layers according to the priority after training

the network. In addition, our method can avoid any critical drop in accuracy by

retraining the network with large learning rate after erasure. Our experiments show

that NI reduces the number of layers in ResNet with no additional computation costs

in the inference; for classification tasks on CIFAR-10/100 and ImageNet, the layer

reductions are 57.14%∼76.00%.

5.2 Related work

Dynamic Layer Pruning. Veit et al. (2016) found that ResNet does not suffer

a significant loss of accuracy if a few layers are erased. In their experiments, when

layers were erased from networks, ResNet suffered only a slight drop in accuracy

while the accuracy of the VGG architecture (Simonyan and Zisserman, 2014) dropped

significantly in the inference phase. Inspired by the results gained, some recent papers

erase layers from ResNet in order to raise processing speed. Wu et al. (2018); Veit

and Belongie (2018) dynamically erase layers that are not needed during the inference
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phase. These “Dynamic Layer Pruning” can easily keep the accuracy, however, they

can not reduce the memory consumption.

Static Layer Pruning. “Static Layer Pruning” completely erases layers while

Dynamic Layer Pruning only selects layers to be removed during the inference. Thus

Static Layer Pruning is preferable in terms of the computation cost for the inference

because it reduces the memory consumption while Dynamic Layer Pruning cannot.

Wen et al. (2016); Huang and Wang (2018) utilize sparse regularizations (Fujiwara

et al., 2016a;b) that erase layers from ResNet. Yu et al. (2018) ignores layers that have

subthreshold activations. However, since these methods need to tune the continuous

hyper parameters of the regularization or the threshold, it is difficult to obtain the

desired number of layers.

Teacher-Student Training. The teacher-student training regime is a well-

known algorithm that trains shallow student networks by using deep trained teacher

networks (Ba and Caruana, 2014; Hinton et al., 2015). In teacher-student training,

the shallow student networks can be effectively trained because the deep trained

teacher network gives the probability distribution over the classes to the student

networks in order to boost their training. Since we can freely design the student

network, we can reduce the number of layers without additional computation costs in

the inference. In addition, Hinton et al. (2015) reports that teacher-student training

improves the accuracy on several datasets and tasks.

Other several papers also try to reduce the number of layers in deep neural

networks. FractalNet (Larsson et al., 2017) can reduce the number of layers for the

inference phase without increasing the parameters; unfortunately, it degrades the

accuracy when a 20-layer model was used instead of a 40-layer model. Zagoruyko and

Komodakis (2016) showed how to achieve high accuracy by increasing the number

of parameters in each layer even if the network is shallow. However, their 50-layer

model has more parameters than the usual 200-layer model.

5.3 Preliminary

This section introduces ResNet, which is now widely used as a standard CNN-based

model. ResNets have blocks called Residual Units (He et al., 2016b). Since each

Residual Unit has multiple convolutional layers, ResNets can have deep architectures
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by stacking Residual Units. The l-th Residual Unit introduced in (He et al., 2016a)

is defined as follows:

xl+1 = xl + F (xl), (5.1)

where xl is the input to the l-th Residual Unit. F (·) is a module that consists

of convolutional layers, batch normalizations (Ioffe and Szegedy, 2015) and Recti-

fied Linear Units (ReLUs) (Krizhevsky et al., 2012). Therefore, each Residual Unit

performs identity mapping of xl and nonlinear mapping of F (·). Thanks to this

structure, ResNet can compute the output even if we erase F (·) that includes several

layers. ResNets also have the structure called stages (Greff et al., 2017). A stage has

several stacked Residual Units of the same dimensionality for inputs and outputs.

Note that the dimensionality can be changed between stages by using down-sampling

and increasing channels of convolutions.

In terms of layer pruning for ResNet, Static Layer Pruning is preferable as com-

pared with Dynamic Layer Pruning because it reduces all computation cost. How-

ever, previous approaches cannot directly decide the number of layers. In addition,

it is difficult for Static Layer Pruning to recover the accuracy because it completely

erases layers. Next section introduces our method of Static Layer Pruning, Network

Implosion that can directly decide the number of layers and keep the accuracy.

5.4 Proposed method

This section introduces the algorithm of Network Implosion which effectively erases

multiple layers and recovers accuracy by employing erasure and retraining scheme.

This scheme repeatedly erases layers and retrains the model. In order to realize the

erasure and retraining scheme, we need to solve two problems:

(i) Identifying unimportant residual units. ResNet has several important

layers whose erasure will dramatically degrade the accuracy. In fact, since ResNet

computes new representations when a stage is changed, several layers after the change

are important in terms of achieving accuracy (Greff et al., 2017). Therefore, we need

to determine the importance of each Residual Unit in order to select those whose

erasure will not drastically degrade accuracy.

To solve the problem, we introduce priority, measure of Residual Unit importance.
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This priority can be learned from training data in the same way as other parameters

in ResNet. We can erase top-k Residual Units in increasing order of priority. In

particular, we determine the priority of F (·) in Equation (5.1). Notice that we have

xl+1 = xl from Equation (5.1) by erasing F (·) as shown in (Veit et al., 2016). This

is equivalent to erasing the Residual Unit for Equation (5.1) because input xl passes

as output to xl+1 without change. In order to determine the importance of F (·), we

use the following weighted Residual Unit:

xl+1 = xl + wlF (xl), (5.2)

where wl is a scalar that can be learned by back propagation in the same way as other

ResNet parameters. If wl is small in terms of absolute value, it scales down the output

of F (·). In other words, F (·) has little impact on the result if wl is small in terms of

its absolute value. Therefore, we can select top-k unimportant nonlinear mappings

F (·) according to the values of |wl|. However, we should not erase the first Residual

Unit in a stage: it is the first Residual Unit after the dimensionality of xl changed.

Although most Residual Units have outputs of the same dimensionality as inputs in

Equation (5.1), the first Residual Unit in a stage changes the dimensionality of the

inputs. Greff et al. (2017) suggests that these Residual Units are important with

regard to accuracy because they produce new representations in ResNet by changing

the dimensionality. Therefore, we use original Residual Units of Equation (5.1) as

the first Residual Units in each stage and do not erase them.

(ii) Recovering accuracy for erasing multiple layers. Veit et al. (2016)

reports that accuracy decreases significantly when multiple layers are erased. For

this problem, we gradually erase Residual Units and retrain the network after each

erasure. Specifically, our algorithm has four steps as follows; (i) train the network

as usual; (ii) erase a few Residual Units according to |wl|, e.g. k = 1; (iii) retrain

network until the number of retraining epochs reaches n, the number of epochs for

retraining; (iv) repeat (ii) and (iii) until we erase a specified number of layers. Note

that (Han et al., 2015) retrains the network one time after erasing parameters in

order to maintain the accuracy. However, this approach fails if we erase multiple

Residual Units. This is because we erase, at one time, more parameters than the

previous method.

In addition, we retrain the network after the erasure with large learn-
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Algorithm 5.1 Network Implosion.

Input: training set D, initial learning rate η, number of Residual Units L, number
of Residual Units to be erased at a time k, total number of Residual Units to be
erased L′, number of epochs for retraining n

1: Initialize parameters of layers in ResNet and weights {wl : l ∈ [L]}.
2: Train the model by using SGD with η.
3: Set l′ = L and s = 0.
4: while l′ > L′ do
5: s← s+ 1

6: Set Is = ∅.
7: Select top-k small elements from {|wl| : l ∈ [L]} and add the indices into Is.

8: Erase wiF (xi) in Equation (5.2) where i ∈ Is.
9: Retrain the model by using SGD with η for n epochs.

10: l′ ← l′ − k

ing rate. When we erase multiple layers, the structure of the network drastically

changes. Thus we need to effectively change the parameters in the remaining layers

to efficiently recover the accuracy. To realize this, we set a large learning rate when

we retrain the network by using training algorithms such as Stochastic Gradient De-

scent (SGD) (Robbins and Monro, 1951; Ida et al., 2017). In particular, we reuse

the original learning rate of initial network training.

Algorithm 5.1 shows the procedure of Network Implosion. It repeatedly trains

and erases Residual Units as explained above. First, we train ResNet with the

learning rate η (line 2). Next, we erase top-k nonlinear mappings F (·) according to

the importance of |wl| (lines 5-8). Then, we retrain ResNet with the initial learning

rate η (line 9). We repeat the procedure until the accuracy drops or we erase sufficient

numbers of layers (lines 4-11).

5.5 Experiments

We performed experiments to evaluate Network Implosion. We first investigated the

accuracy of our method, and then computational costs for the inference phase. We

implemented our approach in Torch7 (Collobert et al., 2011).

We performed image classification tasks using CIFAR-10, CIFAR-100 (Krizhevsky

and Hinton, 2009) and ImageNet dataset (Russakovsky et al., 2015) from ILSVRC2012.
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CIFAR-10, CIFAR-100 and ImageNet have 10, 100 and 1000 classes, respectively.

The image size is 32×32×3 for CIFAR-10/100. For ImageNet, we scaled the images

256×256×3 and took 224×224×3 single center-crop for training and testing by fol-

lowing (Szegedy et al., 2015). We applied color, scale and aspect ratio augmentation

to the images the same as (Krizhevsky et al., 2012; Szegedy et al., 2015).

We implemented ResNet following (He et al., 2016a) as it is used for many image

classification tasks. Specifically, each Residual Unit has three convolutional layers

with batch normalization and ReLU forming a bottleneck structure. The numbers of

stages are three for CIFAR-10/100, and four for ImageNet. As a result, the number

of layers is 56 for CIFAR-10/100, and 50 for ImageNet, the same as (He et al., 2016b).

We used projection shortcuts (He et al., 2016a) for increasing dimensions; this is used

when stages are changed. The other hyper parameters were also set according to (He

et al., 2016a) which is widely used in the deep learning community; the number of

epochs was 200; the training algorithm was SGD with momentum; the momentum

was 0.9; the initial learning rate was 0.1; the learning rate was divided by 10 at

81 and 122 epochs for the CIFAR-10 and CIFAR-100 datasets. For ImageNet, we

decayed the leaning rate by multiplying the learning rate by 0.1 at every 30 epochs.

The mini-batch size was 128 for CIFAR-10/100, and 512 for ImageNet. The weight

decay was 0.0001. The parameters in each layer were initialized as in (He et al.,

2015), a standard method for deep neural networks with ReLU activations.

For comparison, we also used the teacher-student training regime based on Knowl-

edge Distillation (Hinton et al., 2015; Ba and Caruana, 2014). The teacher-student

training regime can reduce the number of layers without additional computation

costs for the inference while previous dynamic layer pruning cannot as described in

the section of related work. In addition, teacher-student training regime can directly

detemines the number of layers while previous static layer pruning cannot. We used

56 and 50 layered ResNets as the teacher networks for CIFAR-10/100 and ImageNet,

respectively. The temperature was 4, and we used 0.9 for a tunable parameter to

balance cross entropies in CIFAR-10/100 as a result of grid search (see (Hinton et al.,

2015) for a description of these hyper parameters). In ImageNet, the temperature

was 1 and we used 0.5 for the tunable parameter.

In our approach, we used Residual Units of Equation (5.2) when xl+1 had the

same dimensionality as xl. When the dimensionality of xl+1 differed from xl, we used
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the original Residual Units of Equation (5.1) and did not erase them. This is because

such Residual Units are important for generating new representations as described

in the previous sections. We erased one Residual Unit (k=1) after each training or

retraining cycle. Since each Residual Unit has three convolution layers, we can erase

three layers by erasing a Residual Unit. In the retraining phase, we used the initial

learning rate of 0.1. The number of epochs was 60. We divided the learning rate by

10 at 20 and 40 epochs.

5.5.1 Accuracy

We evaluated the validation accuracies of our approach, teacher-student training

regime, and original ResNet. For CIFAR-10/100, we reduced the number of layers

from 56 to 11. For ImageNet, we trained 50, 34 and 18 layer models for original

ResNet and teacher-student training regime while our method reduced the layers

from 50 to 17.

Figure 5.1 shows the experimental results. The red dotted lines in the figure

are initial accuracies of Network Implosion; these are accuracies of 56 and 50 layer

models for CIFAR-10/100 and ImageNet, respectively. Although Network Implo-

sion erases layers from the model, it yielded accuracies above the red dotted lines

by erasing layers. Finally, we could reduce the number of layers to 32, 35 and 38

for CIFAR-10, CIFAR-100 and ImageNet without accuracy loss, respectively. These

numbers correspond to crossover points of the red and black lines in Figure 5.1. In

other words, we could reduce the number of layers by 42.86%, 37.50% and 24.00%

for CIFAR-10, CIFAR-100 and ImageNet, respectively. Notice that when we simply

reduced the number of layers in original ResNet, the accuracies fell even though the

number of training epochs was the same as our method (blue dashed lines in the fig-

ures). Although the teacher-student training regime achieves comparable accuracies

to our method for CIFAR-10, it rapidly degrades the accuracies as more layers were

eliminated for CIFAR-100 and ImageNet (green dot-dash lines in the figures). In

particular, it drastically degraded the accuracy at 34 layers whereas our algorithm

kept the accuracy high for ImageNet. These results reveal that Network Implosion

is effective in reducing the number of layers even if we use real-world datasets such

as ImageNet.
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5.5.2 Computation Costs

We evaluated the computation costs for the inference phase: the number of MAC

(multiply-accumulate) operations, the processing times of forward and backward

propagations, and the number of parameters. MAC is the main operation of deep

neural networks and is used in convolution and fully-connected layers. As the pro-

cessing times, we averaged 100 runs for forward and backward propagation. In

addition, we counted the number of parameters to be learned for evaluating model

sizes. We used the same setting as the previous section for training. By using Net-

work Implosion, we reduced 56-layered models to 32 and 35 layers for CIFAR-10

and CIFAR-100, respectively. For ImageNet, we reduced the 50-layered model to 38

layers. These models are the smallest models with no drop in accuracy as described

in Figure 5.1.

Table 5.1 shows the results. The table shows that the numbers of MACs are

reduced to 60.93 %, 62.89 % and 78.59 % of baselines for CIFAR-10, CIFAR-100,

and ImageNet, respectively. In proportion to the number of MACs, we could reduce

the processing times of forward propagation to 60.23 %, 70.13 % and 76.69 % of

baselines for each dataset. For backward propagation, which is used for fine-tuning

in Transfer Learning (Yosinski et al., 2014), we could achieve 59.71 %, 60.44 % and

78.19 % of the processing times for the respective datasets. In terms of model size,

our approach reduced the number of parameters to 69.82 %, 90.50 % and 93.15

% of baselines for CIFAR-10, CIFAR-100 and ImageNet with no drop in accuracy,

respectively. The results reveal that our approach erases layers without additional

computation costs or drop in accuracy for the inference phase.
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(c) Stage 3

Figure 5.2: Scatter plot of the absolute values of priorities wl and the means of
the magnitudes (l2 norm) of the scaled output wlF (xl) for each stage of 56-layered
ResNet trained with CIFAR-10. We can see that when the priority term takes the
small value, the output also takes the small value.

5.5.3 Scale-up/down Effect of Priority Term

In the proposed method, the absolute value of wl is used as a measure of the impor-

tance of Residual Units. In other words, our idea assumes that the output of F (xl) is

scaled down when the absolute value of wl is small. As a result, the magnitude of the

output of wlF (xl) is small, and its impact on the output of the model is reduced. To

confirm this assumption, we visualized the relationship between the absolute values

of wl and the means of the magnitudes of wlF (xl) (l2 norm) on the validation dataset

for 56-layer ResNet trained with CIFAR-10 for each stage. Figure 5.2 shows the re-

sults. From this figure, we can see that when the absolute values of wl are small, the

l2 norms of wlF (xl) are also small. The results suggest that F (xl) is scaled down or

up by wl, and the absolute value of wl can be empirically used as the importance of

Residual Unit.

5.6 Summary

We proposed Network Implosion that can erase multiple layers from ResNets with

no loss of accuracy. It offers high accuracy by using priority to select which Resid-

ual Units to erase; the remaining units are retrained with large learning rate. We

evaluated our approach on CIFAR-10, CIFAR-100 and ImageNet. The results show
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that Network Implosion effectively reduces the number of layers without degrading

the accuracy even on real-world datasets such as ImageNet.
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Conclusion and Future Direction

Although machine learning has become a part of our life, the computation cost has

increased due to the increase in model sizes. The theme of this dissertation is to

propose fast algorithms for such large models. In this dissertation, we categorized

the large models into wide models (Part I) and deep models (Part II), and proposed

fast algorithms that utilized the characteristics for each category. In this chapter,

we summarize the works for Parts I and II, and point out some potential research

directions.

Conclusion

Part I: Fast algorithms for wide models.

We proposed fast algorithms for wide models that take the form of long vectors

(Chapter 2) and large matrices (Chapter 3) as their parameters. The key to

the proposed algorithms is to introduce sparsity and compute upper and lower

bounds of the condition scores for the parameters to be zeros. The proposed

algorithms have the following attractive properties by utilizing the upper/lower

bound techniques:

• High speed: Our algorithms skip unnecessary computations and inten-

sively update important parameters by utilizing upper bounds and lower

bounds, respectively. Experiments demonstrated that our methods are

faster than the original methods by up to tens of times.

• High accuracy: Our algorithms are guaranteed to achieve the same

objective values as that of the original algorithm. This is because the

skips of computations in our algorithms are safe, and the optimization
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problems are convex optimizations. Experiments showed that our method

achieved the same objective values as that of the original methods.

• No additional hyperparameters: We designed our algorithms to have

no additional hyperparameters. Thus our algorithms are practitioner-

friendly as they do not increase the tuning costs for hyperparameters.

Besides, we also showed that it is relatively easy to extend our methods to

various types of data such as overlapping features, graph-structured features,

and tensors. Therefore, our algorithms would be useful tools in dealing with a

wide variety of data.

Part II: Fast algorithms for deep models.

We focus on deep neural networks that are the main deep models in the field

of recent artificial intelligence. Since it is crucial problems that deep neural

networks take long processing times for phases of training (Chapter 4) and

inference (Chapter 5), we proposed fast algorithms for each phase as follows:

Training phase. For the training phase, we proposed the adaptive learning

rate on the basis of the covariance matrix based preconditioning (Chap-

ter 4). Although our method does not reduce the time complexity of the

training, it could effectively reduce the training loss: it can reach the same

accuracy as that of existing methods in less time. The characteristic point

of our algorithm is to effectively handle the noise present in the gradients

on the basis of covariance matrix based preconditioning. Thanks to this

property, it can effectively train models even if we use small mini-batch

sizes which incur noisy gradients. Since it can be used for various types

of deep neural networks such as MLP, RNN, and CNN, it would be help-

ful to accelerate the trial-and-error of the training for a wide range of

applications.

Inference phase. For the inference phase, we focused on residual networks

which is a popular model in the field of computer vision (Chapter 5). As

the processing time of the inference increases due to a large number of

layers, we proposed the method of erasing unimportant layers. Surpris-

ingly, it could keep accuracy by retraining the model with a large learning
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rate even if several layers were erased. Namely, we can accelerate the

inference without degrading accuracy. The algorithm would reduce the

running costs of machine learning applications after service deployment.

In addition, our approach can be used for models that have identity maps

like ResNet. As various models with identity maps have appeared, e.g

Transformers in natural language processing (So et al., 2019), our algo-

rithm would be widely used for various applications other than computer

vision.

This dissertation proposed fast algorithms for wide and deep models as we sum-

marized the above. As the amount of data continues to increase, we believe that our

algorithms allow us to handle larger data.

Future Direction

Finally, we list some future directions that sound interesting below:

• Extension to other types of regularizations: In Part I, we proposed

the upper/lower bound technique for l2 norm regularization. An interesting

research direction is whether this technique can be extended to other types

of regularizations. In particular, the speeding-up of optimizations with non-

convex regularizations is a challenging problem in the community of sparse

optimization although the non-convex regularizations have statistically good

properties (Fan and Li, 2001). This is because most existing methods uti-

lize convexity to accelerate the optimizations. Since our upper/lower bound

technique does not assume the convexity, it will be applicable to non-convex

regularizations.

• Speed-up without warm start strategy: In Part I, our methods and most

existing methods utilize warm start strategy with the sequential rule. Although

the sequential rule is similar to a grid search for regularization constants, we

cannot parallelize the search due to the warm start strategy. Therefore, it

would be preferable to propose fast methods without warm start strategy for

practitioners.
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• Theoretical analysis about depth of deep models: In Chapter 5, we pro-

posed the method that erases unimportant layers to accelerate the inference.

Surprisingly, we empirically show that it could erase several layers without de-

grading accuracy even on a real world dataset. The result suggests the next

research question: what is the minimum number of layers needed to produce

the highest accuracy in theory? Although our method requires additional com-

putation cost due to the erasure and retraining scheme, we may save the cost

if the above question is answered.

• Upper/lower bound technique for deep models: In Chapter 4, we pro-

posed an adaptive learning rate on the basis of covariance matrix based precon-

ditioning. However, we found the important observation from the experimental

results of Chapter 5: we can erase several layers without degrading accuracy

even on a real-world dataset. In other words, several layers turn to be unnec-

essary layers during the optimization. For such a situation, we may use the

upper/lower bound technique proposed in Part I because it can skip unneces-

sary computations during the optimizations. We may accelerate the training of

ResNets by utilizing the upper/lower bound technique in addition to covariance

matrix based preconditioning.
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