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Abstract

Recent significant advances in information and communication technologies have facili-

tated the collection of large amounts of data from Internet of Things (IoT) sensors, online

transactions, and other channels. Machine learning technologies are creating a consider-

able impact in various fields from marketing to science using such big data. In contrast,

there are still many scenarios where we can access only a small amount of data, i.e., tens

to few hundreds. The small data arises for several reasons. In particular, high data acqui-

sition costs make it difficult to collect a considerable amount of data, for example, during

scientific and medical experiments. In other cases, the data related to rare events such as

natural disasters requires long collection periods. The number of data newly measured is

small, for example, in newly launched websites. The small data limits the effective use of

machine learning methods because of a lack of information gained from the data.

In this dissertation, we tackle the learning problems of machines from small data. W

supplement the insufficient information with external data and focus on the exploration

and exploitation of useful information. Three research topics addressed in this dissertation

are classified based on the type of external data. First, we deal with the long-term

prediction of time-series data, which tends to be part of the small data scenario because

of the long data collection time. Auxiliary data, which is a type of external data, is not

directly relevant to tasks but is useful in training models. However, it is not easy to prepare

auxiliary data. We propose a framework that explores auxiliary data from the original

training data. Next, we extend change-point detection problems with a setting where a

learner can access additional data. Additional data, which is another type of external data,
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can be used as additional training data. We propose a general framework applicable to

different types of data and change-points. The proposed framework determines the next

additional data considering the exploration and exploitation of information to identify

the solution. Finally, we handle a Bayesian optimization problem. We use additional

data in this topic; however, the queries for the additional data are random, in contrast

to that for the previous topic and standard Bayesian optimization. We propose two

algorithms for scenarios wherein distribution of random queries is known and unknown.

Algorithms explore and exploit information when determining the next additional data to

be acquired. We demonstrate the effectiveness of the proposed exploration-exploitation

approaches with external data via experiments in the small data scenarios using synthetic

and real-world data.
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Chapter 1

Introduction

It has become easier to collect a big amount of data in real time through Internet of Things

(IoT) sensors, online transactions, and other channels owing to the recent significant

advances in information and communication technologies. In addition to the availability

of large amounts of data, improvements in computational performance have led to the

rapid growth of machine learning, and this is making considerable impacts on a variety

of fields ranging from marketing to science. Machine learning is loosely defined as the

learning of machines (models) from experiences to predict the future and to gain valuable

insights. The experiences are represented as electric records, observations, and data. A

wide range of problems have been developed for different types of data and purposes.

• Classification: A classification task involves building a classifier that assigns a class

label to each data point using a set of input data and class label data. This task

is employed in many real-world applications such as image classification, weather

prediction, and speech recognition. In weather prediction, which is also known as

time-series prediction, the input corresponds to today’s weather, humidity, and wind

speed, while the labels correspond to tomorrow’s weather(i.e., sunny or rainy).

• Regression: Regression is a problem of learning relationships between an input

variable and a real-valued output variable from a set of input–output observations.
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A relationships is used to predict the output from the input. Examples of regression

include prediction of stock values and demand forecasting.

• Clustering: Clustering methods classify each data point into a specific group.

Unlike in a classification task, a set of label data is not provided. The obtained

groups are utilized to gain some valuable insights from the data by observing the

groups that the data points clustered into. For example, the artificial phylogenies

of organisms at the species, genus, or higher level are generated in plant systematics

using clustering techniques.

• Change detection: While the above problems focus on finding rules that work

for the population, change (and anomaly) detection attempts to identify a minority

behaving differently from the majority. Changes and anomalies in data often contain

valuable information; for example, industrial machine failures, changes in marketing

trends, and so on.

We briefly describe the typical problem setting of classification and regression. The entity

that performs the task is called learner. The learner is given a set of n input–label

observations D = {(xi, yi) ∈ X × Y}ni=1, called training data, where (xi, yi)
i.i.d.∼ PXY .

Y = {0, 1} for classification and Y = R for regression. The goal is to obtain a model

f ∈ F that predicts y from x well, that is, f should minimize the expected predictive

error defined as

R(f) = E(X,Y )∼PXY
[l(f(X), Y )] ,

where l denotes a loss function as a performance measure quantifying the degree to which

f fails to capture the relationship between x and y. However, the learner can access PXY

only via training data D. Therefore, the model is obtained, for example, by minimizing
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the training loss

Rn(f) =
1

n

n∑
i=1

l(f(xi), yi).

Such a selection of a model f using training data D is called training. The measurement

of the model performance using test data, which is unseen data, is called test.

The spread of machine learning in society has been supported by the ease of access to

massive amounts of data. However, despite the rise in such “big data,” there are still many

scenarios wherein we can access only a small amount of data, i.e., tens to a few hundreds

of observations. The “small data” can be attributed to several reasons in many real-world

scenarios. Data acquisition is often expensive in terms of financial and temporal costs.

Limited budgets allow us to collect only small-sized datasets, and it is specifically the case

for survey, medical, and experimental data. In other scenarios, natural disasters such as

volcanic eruptions and earthquakes are rare events, which occur a few times annually.

However, it is not easy to collect a lot of data over a long period of time, and therefore,

the number of data is likely to be small. In the other cases, if the data is just beginning

to be observed, its size is small. In newly launched websites, because the time elapsed

collecting data is not large, there is an insufficient number of past transactions. This

scenario is known as the cold-start problem in the literature of recommendation tasks.

Thus, we are faced with small-data in many real-world situations that results in the

challenge of learning from small data. The smallness of data makes the effective use of

machine learning methods considerably limited because of the lack of information through

the data. The difficulty of the problem is rigorously stated in the statistical learning

theory. According to the Vapnik–Chervonenkis (VC) theory [75], with probability at

least 1− δ, the expected predictive error R(f) of a function f ∈ F over a function family

F is upper-bounded by

R(f) ≤ Rn(f) +O

((
|F|VC − log δ

n

)α)
,
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where |F|VC denotes the VC dimension of the function space F and α represents a sample

efficiency constant such that 0.5 ≤ α ≤ 1. We can see that a smaller n produces the larger

upper bound, and it is difficult to guarantee the good performance of the model.

As stated above, the difficulty in the small data problem lies in the insufficiency of

information from small data. To overcome the difficulty, a major approach is to make

effective use of external data to supplement the amount of information from small data.

External data is classified into two types: auxiliary data and additional data. Auxiliary

data is data that can not be directly used as training data but is relevant to the task and

useful for improving the performance of machine learning models. Auxiliary data is often

available only during training time but not during test time. For example, when the task

is to predict the health status of patients via their body conditions such as temperature

and blood pressure, medical records maintained by doctors can be used as auxiliary data.

Because medical records contain essential information about the health status of patients,

it may be useful for training the prediction model. In the literature, there exist several

approaches that employ auxiliary data as follows.

• Semi-supervised learning: A learner receives labeled training data and unlabeled

data. Semi-supervised learning [86] is employed in scenarios where unlabeled data

is easily accessible but labels are expensive to obtain. Unlabeled data as auxiliary

data can help the learner estimate the population of input data.

• Transfer learning: Transfer learning [57] is a framework that transfers knowledge

obtained from a source task to the target task. Data from the source task corre-

sponds to auxiliary data. It is assumed that the source task is related to the target

task in some sense; there are several variants of transfer learning with respect to the

relationship between the tasks.

• Learning using privileged information: Learning using privileged information

(LUPI) [76, 77] is a learning scheme that utilizes auxiliary data attached with each

data point for training a prediction model. The auxiliary data is assumed to be an
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intelligent representation of the original data.

To use these auxiliary data approaches effectively, the key or difficulty lies in the prepa-

ration of auxiliary data that helps in training models using original data. Unfortunately,

we can not expect the use of auxiliary data in general scenarios. In the health prediction

example, it may not be easy to collect a set of medical records because of privacy concerns.

The other type of external data, additional data is data that a learner can additionally

access and use to train the model. Since data acquisition often incurs some costs, the

total number of additional data is limited. For example, we may collect more survey data

from the survey respondents by incurring costs. Various methods that use additional data

have been developed in the machine learning community; these methods are listed below.

• Bayesian optimization (BO): BO [66] is a framework for optimizing an unknown

expensive-to-evaluate function wherein a learner determines the next input to query

the function for its value in an interactive manner. The applications include hyper-

parameter tuning of machine learning models and chemical compound search.

• Active learning: Active learning [64] is a learning scheme where a learner actively

selects an unlabeled data point and queries an oracle for its label at a cost to train the

model better. The motivation is similar to that of semi-supervised learning, where

the labeling cost is high. Active learning is often implemented by crowdsourcing.

The selection of good additional data with a limited number of data acquisitions is impor-

tant. Some data may be informative for training models, while others may not. Consider

the above survey as an example. If the amount of survey data from men is sufficient,

women’s opinions may provide more information than men’s opinions. This would mean

that asking for only women’s opinions would be more cost-efficient than asking only men

or asking both randomly.

In this dissertation, we tackle machine learning with small data based on an external

data approach. We provide systematic methodologies that explore and exploit useful

information to better train machine learning models in the three research topics. Further,
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Chapter 3 Long-Term Prediction of Small Time-Series Data Using Generalized Distillation
• Development of a framework that explores and exploits auxiliary data

Chapter 4 Active Change-Point Detection
• Formulation of change-point detection where a learner can access additional data
• Development of a meta-algorithm that explores and exploits information

Chapter 5 Bayesian Optimization with Partially Specified Queries
• Formulation of Bayesian optimization with partially specified queries
• Development of algorithms that explore and exploit information

Overall Contributions
• Development of methodologies that explore and exploit information for machine learning with small data
• Experimental validation of the effectiveness of the proposed external data approaches

Figure 1.1: Contributions of this dissertation and chapters.

we demonstrate the effectiveness of the methodologies through experimental simulations.

The contributions of this dissertation are summarized in Figure 1.1. The relationship

among the three topics is illustrated as a taxonomy in Figure 1.2. The remaining chapters

of this dissertation are summarized as follows.

Chapter 2 describes general problem settings using external data. We introduce a

couple of existing techniques that use auxiliary data and additional data: generalized

distillation (GD) and BO.

Chapter 3 discusses the long-term prediction of time-series data in the small data sce-

nario. Long-term prediction is a common and important task to predict time-series data

in the long-term from current data. The applications include the task to predict whether

a stock price rises in future months given the past-to-current stock prices. Another exam-

ple is predicting health conditions in a month given the daily heart rate data. The small

data scenarios in long-term prediction are likely to occur because the data collection over

long periods of time is time consuming and difficult. The long-term prediction of small

time-series data is a challenging task, not only because the training sample size is small,

but also because the far future is more uncertain than the near future. Auxiliary data

possibly improves the performance, but the availability of auxiliary data is not expected

in general scenarios because the collection of auxiliary data over long periods of time is
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Deterministic Input Query

Chapter 3 Long-Term Prediction of Small Time-Series Data Using Generalized Distillation

Chapter 4 Active Change-Point Detection

Chapter 5 Bayesian Optimization with Partially Specified Queries

Auxiliary Data

Additional Data

Random Input Query

External Data Approach

Figure 1.2: Taxonomy of the three research topics ddressed in this dissertation.

not easy. Additional data might be accessible in some scenarios; however, it requires long

periods of time to collect additional data because of the problem setting. Therefore, we

propose a framework that explores useful auxiliary data from the original time-series data.

Hence, the framework does not require a user to prepare any auxiliary data or additional

data. The idea is to use middle-time data between the current time and the prediction

time as auxiliary data. The middle-time data is available only during the training phase

and not during the test phase. Then, the middle-time data is exploited to improve model

performance based on GD. We demonstrate that the exploitation of the middle-time data

as auxiliary data is effective via experiments using synthetic data and real-world data in

a small data scenario.

Chapter 4 extends change-point detection with an additional data setting. Typical

change-point detection settings have thus far considered only a static setting, where data

is provided with a fixed size. However, when data is not sufficiently provided, change-

point detection suffers from poor estimation. We consider change-point detection in an

additional data setting, which we call Active Change-Point Detection (ACPD). ACPD

is motivated well with important applications in society. For example, in experiments
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to find a phase transition, experimenters sequentially measure physical properties of a

material at a particular temperature. Because each measurement incurs a cost and the

budget for experiments is limited, they would like to examine the phase transition with

as few experiments as possible. Therefore, what needs to be addressed is balancing the

trade-off between acquiring data at points where there is insufficient data to explore the

change-point and acquiring data at points where there is sufficient data to estimate the

change-point better. The former and latter are called exploration and exploitation, re-

spectively. We propose a framework that sequentially finds useful additional data to

detect change-points while considering the balance between exploration and exploitation.

Our idea is to consider the problem as a black-box optimization problem of an unknown

change score function. Under this idea, BO is performed with change scores calculated

using a particular change-point detection algorithm. This approach can be applied for

different types of data and change-points, by appropriately selecting a kernel function and

a change-point detection algorithm based on the user’s interest. We show that the pro-

posed framework finds change-points with a smaller number of additional data compared

to baseline methods using synthetic data and real-world data such as phase transition

data and seafloor depth data.

Chapter 5 proposes a novel BO framework that utilizes random queries to reduce the

cost of acquiring additional data. In Chapter 4 and standard BO, queries for additional

data can be fully specified, i.e., it is deterministic. However, the full specification of

queries is costly in some scenarios, for example, when the production of queries is out-

sourced. Therefore, we instead consider the use of queries which is partially specified for

its economical cheapness. We formalize Bayesian Optimization with Partially Specified

Queries (BOPSQ), which utilizes partially specified queries to find the maximum input of

a black-box function. In BOPSQ, it is assumed that the unspecified part of queries follows

a known or unknown distribution, and hence, the full queries are random, which is in con-

trast to Chapter 4 and standard BO. The trade-off between exploration and exploitation

needs to be addressed in BOPSQ. A learner needs to focus on not only exploration to

8



avoid falling into a local solution but also on exploitation to find the better solution. For

the cases of known and unknown distributions, we propose two algorithms that properly

handle the trade-off. We further guarantee the performance of the algorithms with regret

upper bounds. The experimental results using synthetic data and real-world data indicate

the effectiveness of the algorithms.

Chapter 6 presents the concluding remarks of this dissertation. Further, we discuss

the limitations and possibilities of machine learning with small data.
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Chapter 2

Preliminaries

In this chapter, we present preliminaries for the following chapters. First, for Chapter 3,

we describe GD, which is a framework that utilizes auxiliary data to train machine learning

models better. Then, for Chapters 4 and 5, we introduce BO, which is a procedure where

additional data is sequentially acquired to maximize an unknown function.

2.1 Generalized Distillation

2.1.1 Learning Using Privileged Information

A set of input–label pairs {(xi, yi) ∈ X ×{0, 1}}n is provided in a standard binary classi-

fication problem. A learning paradigm that utilizes auxiliary data, called LUPI [77, 76],

was proposed. The auxiliary data is specially called privileged information (PI), because

it is only available during the training phase as a privilege. PI x∗ ∈ X ∗ is associated to

each input–label pair (xi, yi) and assumed to be some intelligent representation of xi.

A specific example of LUPI is the prediction of patients’ health status based on their

body conditions such as temperature and blood pressure. Medical records maintained by

doctors correspond to PI. Because the medical records are what doctors, who are experts

in medicine, have written about patients’ health status from the body conditions, they
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can be considered as intelligent representations of the body conditions. Medical records

are available during the training phase but not during the test phase. Another example of

LUPI is an image classification of numbers wherein input and output data are the noisy

image of a number and the number, respectively. One may use noiseless images as PI.

In the problem setting of LUPI, a set of triplets including input, PI, and output

{(xi, x?i , yi) ∈ X × X ? × {0, 1}}ni=1 is provided. Then, the task is to output a prediction

model f : X → {0, 1}.

2.1.2 Framework

Distillation [28] is a model compression technique used for the faster inference of deep

neural networks. Lopez-Paz et al. [48] incorporated the LUPI setting into distillation and

proposed GD. First, in GD, a teacher model f ∗ : X ∗ → R, f ∗ ∈ F∗, is trained. Then,

a student model fs : X → R, fs ∈ Fs, is trained using the teacher model as the final

prediction model. The training in GD (for classification tasks) proceeds as follows.

1. Train a teacher model f ? ∈ F? using a set of input and PI pairs {(x?i , yi)}ni=1 by

solving

f? = arg min
f∈F?

1

n

n∑
i=1

l(yi, σ(f(xi))) + Ω(f), (2.1)

where l(y, y′) = −y log(y′)−(1−y) log(1−y′) represents a cross-entropy loss function,

Ω(·) denotes a regularizer, and σ(x) = 1/(1+exp(−x)) represents a sigmoid function.

2. Generate soft targets {si | si = σ (f ?(x?i )/T )}ni=1 using f ?, where T > 0 is a temper-

ature hyperparameter.

3. Using an imitation hyperparameter λ ∈ [0, 1], pairs of input and output {(xi, yi)}ni=1,

and pairs of input and soft target {(xi, si)}ni=1, train a student model fs ∈ Fs by

solving

fs = arg min
f∈Fs

1

n

n∑
i=1

[(1− λ)l(yi, σ(f(xi))) + λl(si, σ(f(xi)))] . (2.2)

11
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Figure 2.1: Learning scheme of GD using PI.

Figure 2.1 summarizes the learning scheme of GD.

2.1.3 Conditions Under Which Generalized Distillation Works

Lopez-Paz et al. [48] discussed the conditions under which GD works based on the VC

theory [75]. The possible conditions are (a) the hypothesis space of the teacher model

|Ft|C is sufficiently smaller than that of the student model; (b) the approximation error

of the teacher model is sufficiently smaller than that of the student model; and (c) the

sample efficiency of the student model using GD is greater than the sample efficiency of

the baseline model without GD.

2.2 Bayesian Optimization

This section describes the problem setting of BO, Gaussian processes (GPs), which are

commonly used as a function prior in BO, and the popular BO techniques.

2.2.1 Black-Box Optimization

Black-box optimization, also known as zeroth-order optimization, is a framework for find-

ing the maximizer of an unknown, i.e., black-box function in an interactive manner. Let

X ⊂ Rd be a d-dimensional compact set and f : X → R be an unknown real-valued func-

tion. In each iteration, a learner determines an input variable x ∈ X . The learner then

evaluates the function at x and obtains an output y = f(x) + ε, where ε ∼ N (0, σ2). The
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goal is to find the maximizer x∗ = arg maxx∈Xf(x) with as few evaluations as possible.

BO is an approach for black-box optimization when it is expensive to evaluate an

unknown function. The total number of function evaluations is assumed to be less than a

few hundreds. A black-box optimization with a GP prior for f is called Gaussian process

bandit.

The key notion in the BO problems (or rather bandit problems) is the trade-off between

exploration and exploitation of knowledge. When a learner knows f(x) takes a high value,

she may query the function for the value around x by exploiting the knowledge. When she

does not know what value f(x) takes, she may query the function for the value around x

to explore the knowledge. Since the number of the function evaluations is limited, there

exists a trade-off between them when selecting the next data.

2.2.2 Gaussian Processes

Definition

A GP is a stochastic process that has been widely applied for nonlinear regression and

classification. We first define a GP as shown below.

Definition 1 (Gaussian Process [60]) We call a function f : X → R follows a GP,

represented as f ∼ GP(µ, k), if an output vector f = (f(x1), f(x2), ..., f(xn))> of any

finite input set x = (x>1 , x
>
2 , ..., x

>
n )> ∈ X n, n ∈ N follows a multivariate Gaussian

distribution described as

f ∼ N (µ, K),

where µ : X → R and k : X × X → R denote mean function and covariance function,

respectively, and (µ)i = µ(xi), (K)i,j = k(xi, xj) for i, j ∈ [n].

As indicated in Definition 1, the covariance function k characterizes the smoothness of

the function or similarity between data points: if covariance k(x, x′) between x, x′ ∈ X
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Figure 2.2: Graphical model of a GP for three inputs.

is high, their outputs f(x) and f(x′) are highly correlated and vice versa. The graphical

model of a GP is illustrated in Figure 2.2.

Covariance Functions

Covariance functions have an important role in characterizing GPs and they are also

called kernel functions in the literature of kernel methods. A set of kernel functions have

been proposed. The linear kernel defines the covariance by an inner product between two

points as

k(x, y) = x>y + σ2, (2.3)

where σ ≥ 0. Here, the function is simply represented by a linear function. The Gaussian

kernel, also known as the square exponential kernel, is defined as

k(x, y) = exp

(
‖x− y‖2

2l2

)
, (2.4)

where l > 0 is called bandwidth. The Matérn kernel is a class of kernel functions written

as

k(x, y) =
21−νrνBν(r)

Γ(ν)
, (2.5)
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(a) 100 prior sample paths (b) 100 posterior sample paths.

Figure 2.3: 100 sample paths from (a) a GP prior and (b) its posterior.

where r =
√

2ν ‖x− x′‖/l, Bν denotes a modified Bessel function, and l, ν > 0. The

hyperparameter ν determines the smoothness of the function, and as ν →∞, the Matérn

kernel becomes equivalent to the Gaussian kernel.

Posterior

Assume f ∼ GP(µ, k). Suppose that a set of input–output observations D = {(xi, yi)}ni=1

is given. The posterior also follows a GP f ∼ GP(µn, kn). Here, we have a posterior mean

µn(x), posterior variance σ2
n(x), and posterior covariance kt(x, y) as

µn(x) = µ(x) + k>x
(
K + σ2I

)−1
(y − µ(x)), (2.6)

σ2
n(x) = kn(x, x), (2.7)

kn(x, y) = k(x, y)− k>x
(
K + σ2I

)−1
ky, (2.8)

where (kx)i = k(xi, x), (K)(i,j) = k(xi, xj), I denotes an identity matrix, and (y)i = yi

for i, j ∈ [n]. Figure 2.3 shows 100 sample paths from a GP prior with a zero mean and

from the posterior GP with three observations; it indicates that the uncertainty of sample

paths decreases given the observations.
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Hyperparameter Learning

A set of hyperparameters θ ∈ Θ of a kernel function kθ have an effect on GP prediction.

It is optimized by the type II maximum likelihood estimation, which maximizes the log

marginal likelihood as

θ∗ = max
θ∈Θ

{
log p(y|x, θ) = −1

2
y>
(
K + σ2I

)−1
y − 1

2
log
∣∣K + σ2I

∣∣− n

2
log 2π

}
.

This optimization can be solved by gradient-based solvers.

As another mean, we consider a fully Bayesian approach; place a prior on θ, and

marginalize θ as

p(f | x,D) =

∫
θ∈Θ

p(f | x, θ,D)p(θ | D)dθ.

However, because the integral is often analytically intractable, approximation or Markov

chain Monte Carlo methods are used to compute the integral.

2.2.3 Acquisition Functions

BO [66] is a methodology for black-box optimization with an expensive-to-evaluate func-

tion. The BO methods typically assume a GP prior on the black-box function f ∼

GP(µ, k). Without loss of generality, we assume a zero mean µ = 0.

BO methods often use an acquisition function a : X → R that quantifies how much an

input point should be evaluated. Suppose a set of observations D = {(xi, yi)}t−1
i=1 is given

in iteration t. The next input query is determined as

xt = arg max
x∈X

a(x). (2.9)

After observing an output yt for the query xt, the data and GP model are updated. The

BO methods repeat this procedure until the query budget is exhausted. Algorithm 1
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Algorithm 1 Bayesian Optimization

Input: A GP prior GP(0, k), a query budget T
Initialize D0 ← ∅
for t = 1, 2, . . . , T do

Determine the next input variables xt ∈ X using Equation (2.9)
Evaluate the function at xt and observe an output yt
Update Dt+1 ← Dt ∪ {(xt, yt)} and GP

end for

summarizes the framework of the BO methods.

A popular choice for the acquisition function is the Gaussian process upper confidence

bound (GP-UCB) [70], which uses a deterministic acquisition function

a(x) = µt−1(x) + β
1/2
t σt−1(x), (2.10)

where βt denotes a monotonically increasing deterministic function in t and controls the

balance between exploration and exploitation. Expected improvement (EI) [51] is the

expected values above the current greatest observed output ybest
t−1 , given as

a(x) = σt−1(x) (γt−1(x)Φ (γt−1(x)) +N (Φ (γt−1(x)) | 0, 1)) , (2.11)

γt−1(x) =
µt−1(x)− ybest

t−1

σt−1(x)
,

where Φ(·) denotes the cumulative distribution function of the standard normal. The

other popular choice is Thompson sampling [62], which utilizes a posterior sample path

as a probabilistic acquisition function written as

a(x) = gt(x), (2.12)

where gt ∼ GP(µt−1, kt−1).

Figure 2.4 illustrates the optimization procedure of GP-UCB with βt = 32 for t =

1, 2, 3, 4 over an interval [0, 1]. For t = 1, 2, 3, it explores around x = 0.3 according to
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(a) t = 1 (b) t = 2

(c) t = 3 (c) t = 4

Figure 2.4: Optimization procedure of GP-UCB with βt = 32.

the high posterior mean and posterior variance. The new three observations decreased

the posterior variance at around x = 0.3. Then, x = 1 was selected for high posterior

variance.
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Chapter 3

Long-Term Prediction of Small

Time-Series Data Using Generalized

Distillation

In this chapter, we tackle the long-term prediction of time-series data, which is likely to

suffer from the small-data scenario. While auxiliary data can possibly assist in training

machine learning models, its preparation is not necessarily easy. We propose a framework

that explores auxiliary data from training data in long-term time-series prediction. The

key idea of the proposed framework is to exploit middle-time data between input and

output times as auxiliary data, which is available only in the training phase and not in

the test phase.

3.1 Introduction

Long-term prediction of time-series is a considerably common and important task. One

example is a task to predict whether a stock price will rise in future months given the

past-to-current stock price. Another example is a task to predict health status in a month

given the daily heart rate data. In typical time-series prediction given time-series data
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{xt}Lt=1, the task is to build a one-step-ahead predictor that predicts xt+1 as output from

xt as input. In long-term prediction, the task is to build a long-term-ahead predictor

that predicts xt+k from xt for k > 1. Time-series data can be small in two terms of

the short length of the time-series and the small number of time series episodes. Long-

term prediction tends to result in the small data scenario due to the time and cost of

collecting time-series data over time. In addition, because the time-series data points are

correlated with each other and not independent and identically distributed (i.i.d.), this

is a case where there is substantially smaller data size than in the case of i.i.d. data [8].

Further, the size of data in long-term prediction is smaller than that of the one-step-

ahead prediction by k − 1 because L− k input–output pairs {(xt, xt+k)}L−kt=1 are available

for long-term prediction while L − 1 input–output pairs {(xt, xt+1)}L−1
t=1 are available for

one-step-ahead prediction. In addition to the small data scenario in long-term prediction,

the nature of time-series data, where the far future is more uncertain than the near future,

makes the long-term prediction of the small time-series data a considerably challenging

task.

The difficulty of the problem is rigorously stated in the statistical learning theory, as

stated in Chapter 1. The VC theory [75] states that, with probability at least 1− δ, the

expected predictive error R(f) of a function f ∈ F over a function family F is upper-

bounded by

R(f) ≤ Rn(f) +O

((
|F|VC − log δ

n

)α)
, (3.1)

where |F|VC denotes the VC dimension of the function class F , Rn(f) is the training loss

for f with sample size n, and α is a sample efficiency constant such that 0.5 ≤ α ≤ 1.

Thus, roughly speaking, the second term O(n−α) of the upper bound in Equation (3.1)

excluding the constant term is the gap between the expected predictive error R(f) and the

training error Rn(f), which is the quantity we want to minimize. A smaller second term

indicates more effective training. However, this term is 100α times larger when the size
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Figure 3.1: Separable case.
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Figure 3.2: Nonseparable case.

of data is n = 100 than when n = 10, 000. This observation indicates that learning from

small data is unreliable. The exponential part α represents the convergence rate (sample

efficiency constant) as n increases, and in a simple classification problem where the two

classes are fully separable such that a = 1 as illustrated in Figure 3.1, the convergence rate

of the upper bound in Equation (3.1) is O(n−1). If the two classes can not be completely

separated such that α = 1/2 as illustrated in Figure 3.2, the convergence rate is O(n−
1
2 ).

Therefore, to obtain the same upper bound for both besides the constant term, they need

sample sizes of n = 100 and n = 10, 000, respectively; thus, we see that the difference in

the sample size varies exponentially. Figures 3.1 and 3.2 show that the simple decision

boundary separating the training sample classes coincides with the ground-truth decision

boundary as n increases when the two classes are separable: the learning in the separable

case is easy. However, it is not always the case when the two classes are nonseparable;

i.e., the learning in the nonseparable case is not easy. The above consideration suggests

that the upper bound of the expected predictive error for small data can be decreased if

the sample efficiency constant α successfully approaches 1 or if the nonseparable learning

problem is transformed into a separable learning problem.

Recent studies for such small-sample-size problems focus on exploiting auxiliary data [32].
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A promising framework using such auxiliary data to improve the sample efficiency α to 1

is LUPI [77, 76] and GD [48]. The LUPI framework has demonstrated its effectiveness in

the small data scenario by exploiting PI to assist the training of machine learning models.

However, we may not assume the availability of PI in all situations. For example, in

Chapter 2.1, we introduced the prediction of patients’ health status as a LUPI problem,

where medical records can be used as PI; however, medical records are not always avail-

able because they contain private information. The preparation of PI itself is as difficult

as the preparation of data.

In this chapter, we propose a novel framework for the long-term prediction of small-

sized time-series data based on GD. In particular, the framework solves the difficulty in

preparing PI using the property of long-term prediction that middle-time data between

input time t and prediction time t + k is unavailable during the test phase but available

during the training phase. This property is inherent only in long-term prediction. Our

main idea is using middle-time data as PI. The middle-time data is somehow related

to input and prediction time data and can be more powerful than the original input in

prediction for time-series data with the Markov property. Based on the GD framework,

we exploit middle-time data to improve the predictive performance of machine learning

models in the small data scenario. We demonstrate the effectiveness of the proposed

framework on both synthetic data and real-world data in the small-data scenarios. Ex-

perimental results indicate that the proposed framework performs well, particularly when

the task is difficult and has high input dimensions.

The rest of this chapter is organized as follows. Section 3.2 introduce the problem

setting of long-term time-series prediction. In Section 3.3, we propose a new approach for

training long-term prediction models by exploiting middle-time data. Section 3.4 sum-

marizes related works and discusses relations between them and the proposed framework.

In Section 3.5, we present the experimental results on synthetic data and real-world data

to demonstrate the effectiveness of our proposed framework. Finally, in Section 3.6, we

provide the concluding remarks in this chapter with some possible future research direc-
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tions.

3.2 Problem Setting

We define the long-term time-series prediction problem as a task given an input time-

series sequence of L length {xt ∈ X}Lt=1 and an output time-series sequence {yt ∈ Y}Lt=1

to build a prediction model that predicts yt+k from {xτ}tτ=1 at time t for k > 1. The

input domain X can be multi-dimensional, continuous, and discrete. The output domain

Y is one-dimensional and can be continuous or discrete. In the patients’ health status

prediction example, the input includes two-dimensional real values of body temperature

and blood pressure, PI is multi-dimensional discrete values of a medical record written in

the natural language, and the output is a binary value of the health status (healthy or

unhealthy).

In the long-term time-series prediction problem, it is assumed that k > 1. However,

a very large k may make the problem too hard because xt and yt+k may be independent.

Hence, we assume that k is not too large, and therefore, yt+k can be predicted from xt.

It is important to note that This problem setting is different from the multi-step

time-series prediction problem [14, 78], where the goal is to build a model that predicts

an output sequence {yτ}t+kτ=t+1 from {xτ}tτ=1 at time t, although long-term prediction is

referenced to as multi-step prediction in some literatures. The difference between the two

problem settings is illustrated in Figure 3.3.

3.3 Proposed Framework

The key idea of the proposed framework is to exploring further information from middle-

time data {xτ}t+k−1
τ=t+1 between input time t and prediction time t + k. Then, middle-

time data is utilized as PI in the GD framework. In fact, middle-time data satisfies the

condition of PI: unavailability during the test phase. This idea is based on the inherent
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Figure 3.3: Difference between the problem settings of the long-term prediction (marked
as “A”) and multi-step prediction (marked as “B”).

nature of long-term prediction and does not appear in the one-step-ahead prediction

setting. Further, middle-time data has some relationship between input data and output

data. In the case of time-series data with the Markov property, middle-time data can be

considered a smart representation of input data because middle-time data has stronger

correlation with the output data than the input data; i.e., middle-time data is more useful

than the input data for the prediction. Hence, middle-time data can be used as PI. In

the GD framework, it is assumed that the data satisfy the i.i.d condition. Time-series

data does not satisfy the i.i.d condition and data points have correlations with each other.

Nevertheless, the discussion on the GD framework with time-series data would be possible

as well with i.i.d. data under some assumptions such as the stationarity of time series

data, the existence of spectral density, and its finite maximum eigenvalue [8]. Here, the

actual sample size of time-series data reduces because of its autocorrelation.

Figure 3.4 illustrates the idea of the proposed framework. In particular, when L-length

training time-series data {xt}Lt=1 is provided and we use middle-time data from time t+ 1

to t + k − 1 as PI, we have a set of triplets of input, PI, and output {(xt, x?t , xt+k)}L−kt=1 .

Next, a teacher model is trained using PI and output data {(x?t , xt+k)}L−kt=1 . The teacher
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Figure 3.4: Idea of the proposed framework for long-term prediction.

model computes soft targets from input data {st | st = σ (f ?(x?t )/T )}L−kt=1 , where T is a

temperature hyperparameter. Finally, a student model is trained using a set of input–

output pairs {(xt, xt+k)}L−kt=1 and a set of PI–output pairs {(xt, st+k)}L−kt=1 . Algorithm 2

demonstrates the pseudo-code for binary classification. For regression problems, the loss

function is replaced with an appropriate one such as the mean square error.

When prediction time k and the number of dimensions of data d are large, the use of

all middle-time data as PI may worsen the prediction performance of the teacher model

because of the curse of dimension of (k − 2)d. A bad teacher produces a bad student in

the GD framework. Therefore, we consider using a part of the middle-time data as PI. We

simply consider (A) one-step-ahead data xt+1, (B) data at the middle time xd(t+k)/2e, and

(C) one-step-behind data from the prediction time xt+k−1 for the time-series data with the

Markov property, as illustrated in Figure 3.5, according to the conditions under which GD

works in Section 2.1.3. (C) may decrease the approximation error of the teacher model

because of the strong correlation between (C) and output data; however, the sample

efficiency constant may not improve because of the weak correlation between (C) and

input data because the problem for the teacher model to predict the output value from

(C) is different from the original problem for the student model. (A) may not decrease
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Algorithm 2 Proposed Framework for Long-term Prediction of Small Time-Series Data

Input:
Input sequence: {xt}Lt=1

Output sequence: {yt}Lt=1

Rule to generate a PI sequence: R
Prediction time: k
Temperature hyperparameter: T > 0
Imitation hyperparameter: λ ∈ [0, 1]

Output: Student model fs ∈ Fs
1: Generate a PI sequence {x?t}Lt=1 using rule R from input sequence {xt}Lt=1.
2: Generate a set of input–output pairs {(xt, yt+k)}L−kt=1 and a set of PI–output pairs
{(x?t , yt+k}L−kt=1 .

3: Train a teacher model f ? ∈ F? using {(x?t , xt+k)}L−kt=1 as

f ? = arg min
f∈F?

1

L− k

L−k∑
t=1

l(x?t , σ(f(x?t ))) + Ω(‖f‖).

4: Generate soft targets {st | st = σ (f ?(x?t )/T )}L−kt=1 using f ?.
5: Train a student model fs ∈ Fs with a set of input–output pairs {(xt, yt)}L−kt=1 and a

set of input–soft-target pairs {(xt, st)}L−kt=1 as

fs = arg min
f∈Fs

1

L− k

L−k∑
t=1

[(1− λ)l(xt+k, σ(f(xt))) + λl(st+k, σ(f(xt)))].

6: return Student model fs ∈ Fs.

the approximation error of the teacher model because of the weak correlation between (A)

and output data; however, the sample efficiency constant may improve owing to the strong

correlation between (A) and input data because the problem to predict the output value

from (A) is similar to the original problem. The property of (B) may lie between those of

(A) and (C). In summary, there may be a trade-off between the prediction accuracy of the

teacher model and the similarity between the original problem for the student model and

the problem for the teacher model. In Section 3.5.1, we empirically examine differences

in prediction performance among the middle times.
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Figure 3.5: Difference of the middle-time data: (A) one-step-ahead data xt+1, (B) data at
the middle time xd(t+k)/2e, and (C) one-step-behind data from the prediction time xt+k−1.

3.4 Related Work

In this section, we review existing works from several viewpoints and discuss the relations

between them and the proposed framework.

Time-series prediction [9] is an attractive task in machine learning and data mining,

and it has been extensively studied. The task is to predict the future of sequence data. The

applications range widely in various fields including finance, climatology, medicine, and

control. Several approaches have been proposed, including autoregressive models [1, 30]

and support vector machine models [10, 52].Recently, neural network models such as

recurrent neural networks [13, 42] have gained attention for their promising results.

For multi-step time-series prediction, a method that transforms the original data into

some meaningful and interpretable entities following the principle of justifiable granular-

ity based on hidden Markov models was proposed [23]. A multi-integration strategy was

proposed [54], wherein a prediction is generated by integrating predictions of multiple
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predictive models. In this strategy, k-nearest-neighbor-based least-squares support vector

machines were employed for multiple predictors, and an autoregressive model was used

for the integration. An optimally pruned extreme learning machine was applied to the

multi-step time-series prediction [22]. A combination method of a direct prediction strat-

egy and a sophisticated input selection criteria was proposed [69]. Here, input selection

criteria were optimized using a proposed selection strategy that combines forward selec-

tion, backward elimination or pruning, and forward–backward selection. The performance

of nonlinear autoregressive models that use neural networks with exogenous inputs was

examined [35]. These methods are designed for multi-step prediction. Therefore, we do

not compare them in the experimental part.

The problem of small data can be improved by utilizing auxiliary data, which is

available only in the training phase but not in the test phase. Jonschkowski et al. [32]

systematically summarized learning schemes using auxiliary information. One represen-

tative approaches is transfer learning [57], where auxiliary data is called source data and

it is associated with the target task in some sense. In multi-view learning [71], auxiliary

data is associated with input data.

GD was originally proposed by Lopez-Paz et al. [48] for unifying distillation [28] and

LUPI [76, 77]. Distillation is a model compression technique that trains a neural network

with shallower and narrower layers using hard targets (training labels) and soft targets

generated by another neural network with deeper and wider layers. It is assumed that

soft targets have valuable information, e.g., the distance from each sample to the decision

boundary, which can accelerate the learning rate of the smaller network. Vapnik and

Vashist [77], Vapnik and Izmailov [76] proposed a new learning paradigm LUPI. In LUPI,

a student model is trained with a set of triplets: input, PI, and output. Note that PI is

considered a smart expression of knowledge for each instance provided by an intelligent

teacher. Further, GD unifies distillation and LUPI, where a student model is trained with

hard targets and soft targets provided by a teacher model trained with PI.

Ao et al. [5] applied GD to transfer learning, where soft targets are generated using
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other domain data as PI weighted by imitation hyperparameters, and support vector

machines are employed as a student model. That formalization enables the learning of

the imitation hyperparameters.

In addition, GD is applied to time-series data. A noise-robust automatic speech recog-

nition system using acoustic speech data was proposed [49]. An acoustic model based on

deep neural networks and hidden Markov models is used, wherein the input is speech data

and the output is its state. The teacher model is trained with noiseless speech data, whose

soft targets are used to train the student model with noisy speech data. Further, GD is

extended and applied to speech normalization tasks [33, 34]. Although these studies dealt

with time-series data, our work is the first to apply GD to the long-term prediction of

time-series data. Our work does not assume that PI is given, and the proposed framework

generates it from original training data by utilizing the property of long-term prediction.

3.5 Empirical Evaluation

In this experiment, we focus on the prediction of time-series data in small-data scenarios.

We conduct a preliminary experiment using simple synthetic data to examine how different

PI works. Then, we evaluate the proposed framework using synthetic datasets and real-

world datasets with different dimensions. The experimental results indicates that the

proposed framework improves prediction accuracy when the dimension of data is relatively

high.

3.5.1 Preliminary Experiment

The use of all middle-time data may cause a poor performance of the teacher model and

the proposed framework because of the curse of dimensionality. The number of dimensions

of all middle-time data is d(k − 1), which is large in the long-term prediction scenario.

Further, because of the autocorrelation of time-series data, the use of all middle-time

data is redundant. Therefore, in our experiments, we use part of middle-time data and
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compare them at different times.

In this experiment, we generate a set of 50 sequences of length 25, {{xit}t=24
t=0 }50

i=1, using

a random walk with the Markov property written as

xt+1 = xt + ε,

where ε ∼ N (0, 0.3) and x0 ∼ N (0, 1). Each sequence is labeled yi according to whether

the value at t = 20 is positive or negative, as shown in Figure 3.6. We set the task to

predict y given x0 and evaluate each method using 1000 test sequences. We conduct each

experiment 30 times.

We set a logistic regression model as a teacher model and a student model in the

proposed framework as

p(y | x) = σ(wx+ w0).

Parameters w,w0 ∈ R are estimated by the maximum likelihood estimation. The predic-

tion is performed as

y = I(p(1 | x) > 0.5),

where I(·) denotes the indicator function. The training data, which is a set of triplets of

input, PI, and output {(xi0, xi
?
, yi)}50

i=1. We set the time range for the middle-data used

as PI xil from l = 0 to 24. We set the temperature hyperparameter T = 1.0 and the

imitation hyperparameter λ = 0.5, 1.0. Learning with λ = 1.0 corresponds to learning

with only soft targets.

Figure 3.7 shows the prediction error of the proposed method with different middle-

time from 0 to 24 for PI. The proposed method with λ = 0.5 and 1.0 improved the

mean prediction error of the baseline model (a simple logistic regression model without

the proposed framework). The PI indexed with l = 3, 4, which is relatively close to

30



O
ut
pu
t

Time

Figure 3.6: Random walk data. Red and blue curves indicate class 1 and 0, respectively.

the input time, achieved the best results. This may be because the middle-time data is

relatively close to the input time and has a strong correlation with input data as discussed

in Section 3.3. The mean minus one standard deviation of the accuracy of the proposed

method when l ≤ 15 are better than that of the baseline model but not when l > 15

because of the large standard deviation. This is probably because the uncertainty of PI

and the variance of data increased as l increased.

3.5.2 Data Description

We conduct experiments on both synthetic data and real-world data. We create a Mackey–

Glass dataset using a chaotic differential equation, and we use the PM2.5 data observed

in Beijing. Using the two datasets, we attempt three experimental settings. The experi-

mental settings are summarized in Table 3.1.
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Figure 3.7: Test prediction error when changing middle-time data used as PI in the
random walk data. Solid and shaded lines represent the mean and standard deviation of
the 30 trials, respectively.

Table 3.1: Experimental setup.

Data
Input
length
(student)

Input
dimensions
(student)

Input
length
(teacher)

Input
dimensions
(teacher)

Prediction
time

Training
time-series
length

Validation
time-series
length

Test
time-series
length

Mackey–Glass 4 4 2 2 8 100 100 10000

PM2.5 (3,7,10,13,16)
(33,77,110,
143,176)

2 22 15 110 100 184

Mackey–Glass Data

We generate one-dimensional chaotic time-series data called Mackey–Glass data using a

differential equation described as

dx(t)

dt
= −ax(t) +

bx(t− t0)

1 + x(t− t0)c
. (3.2)

The increment at time t depends on the linear term of the state at t and the nonlinear

term of the state at t − t0. In this experiment, we set a = 0.1, b = 0.2, c = 10, t0 = 16,

and x(t0) = 0.9. The generated sequence in the discretized time in Figure 3.8 is periodic

but it changes slightly. We obtain a binary-labeled sequence as an output sequence based
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Figure 3.8: Mackey–Glass data generated by Equation (3.2).

on whether the k-step-ahead value is greater, yt = I(xt ≤ xt+k), and we set k = 8. The

time-series is split into a 100-length training sequence, a 100-length validation sequence,

and a 1000-length test sequence such that they do not overlap. We then take a four-length

input sequence (xt−3, xt−2, xt−1, xt)
> as the input of the student model and a two-length

PI sequence as the input of the teacher model.

Beijing PM2.5 Data

As the real-world data to demonstrate the performance of the proposed framework in a real

setting, we use the Beijing PM2.5 dataset 1 where the task is to predict the concentration of

PM2.5 in the air in the long-term. The long-term prediction of PM2.5 is important because

PM2.5 affects the planning of roads and public transportation systems such as trains. This

dataset is eight-dimensional time-series data containing the concentration of PM2.5 in the

air, humidity, and other measures, observed every hour from 2010 to 2014 in Beijing. We

preprocess the data as follows. We transform the one-dimensional wind direction that

takes four values {East,West, South,North} into a four-dimensional binary vector for

1https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
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Figure 3.9: PM2.5 data, where poullution indicates the concentration of PM2.5.

each direction. We compute the mean value of every four days to reduce the size of the

time-series. We further normalize them into the range [0, 1] using min-max normalization:

(x− xmin)/(xmax − xmin). Figure 3.9 shows the data after preprocessing, where pollution

indicates the concentration of PM2.5. The temperature and other parameters vary with

a yearly cycle, but the noise in all features is large. In addition to Mackey–Glass data,

we obtain a binary-labeled sequence as an output sequence based on whether the k-step-

ahead values of the concentration of PM.25 are greater. We set k = 15, which corresponds

to the prediction in a couple of months. The time-series is split into a 100-length training

sequence, a 100-length validation sequence, and a 184-length test sequence so that they

do not overlap. The input length of the teacher model is set to 2. To examine the effect

of the input dimensions for the student model, we attempt different input lengths of the

student model as summarized in Table 3.1.
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Figure 3.10: Illustration of the types of PI used in the experiments: AI (data after the
input data), M (data at the middle-time between the input and the output data), and
BAO (data before and after the output data).

3.5.3 Specifications of Model and Privileged Information

We use logistic regression models as the student and teacher models. The models are

trained to predict output yt+k using input xt. We may use one-step-ahead prediction

models by iteratively repeating the one-step-ahead prediction k times. However, this ap-

proach accumulates the prediction error exponentially because of the iterative prediction

[78]. Thus, we employ the model that directly predicts yt+k from xt. The parameters are

determined by maximum likelihood estimation. We add L1 norm ‖w‖1 or L2 norm ‖w‖2

as a regularizer. We compare three types of PI: data just after input data (AI), data at

middle-time (M) between input and output data, and data before and after output data

(BAO). Figure 3.10 illustrates AI, M, and BAO. The hyperparameters, i.e., the weight

of the regularizer, the type of PI, the imitation hyperparameter, and the temperature

hyperparameter, are determined using validation data. Because the proposed method is

designed to improve the prediction accuracy of prediction models, we do not compare

other prediction models except for the baseline model in this experiment.

3.5.4 Results and Discussion

Table 3.2 shows prediction accuracies of the methods for the Mackey–Glass data. The

proposed method does not improve the baseline model. The baseline model could predict

the data well with an accuracy of 0.971 because the Mackey–Glass data is periodic and
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Table 3.2: Prediction accuracy of the proposed method and baseline model for the
Mackey–Glass data.

Baseline Model Proposed Method
0.971 0.932

one-dimensional, i.e., easy to predict. The numbers of the input dimensions of the stu-

dent model (baseline model) and the teacher model are 4 and 2, respectively, and their

hypothesis spaces are small. In particular, their VC dimensions are 5 and 3, respectively.

Therefore, the teacher model may not have sufficinet room to improve the student model

because of the small prediction error of the student model.

Figure 3.11 shows the prediction accuracy of the proposed method and the baseline

model when changing the input length (3, 7, 10, 13, 16). The proposed method succeeded

in improving the baseline model except when the input length was 3. Since the PM2.5

data is 11-dimensional and the number of the input dimensions is 11× (input length), the

VC dimension of the linear model is 11× (input length) + 1. When the input length is 3,

the VC dimensions of the student model and the teacher model are 34 and 23, respectively.

Since the ratio of these values are 1/3, which is comparable to the Mackey–Glass data, it

is likely that the prediction accuracy of the teacher model is insufficient to improve the

student model. When the input length is further increased, the difference between the

VC dimensions of the teacher model and the student model becomes larger. As a result,

the conditions (a), (b), and (c) in Section 2.1 are satisfied, and therefore, the proposed

framework worked effectively. In addition, taking the AI, which uses the data just after

the input data as PI, tended to produce better results. This is likely because the AI is

highly correlated with the input data, similar to the results of the preliminary experiment

in Section 3.5.1.
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Figure 3.11: Prediction accuracy of the proposed method and the baseline model when
changing the input length (3, 7, 10, 13, 16).

3.6 Conclusion

The amount of time-series data for long-term prediction tends to be small because of the

high cost of data collection, which causes a poor performance of prediction models. In this

chapter, we proposed a novel framework for the long-term prediction of small-sized time-

series data. Our main idea is to explore and exploit middle-time data between input time

and prediction time, which is available only in the training phase due to the property

of long-term prediction. The proposed framework uses the middle-time data as PI in

the GD framework to train the prediction model better. The experimental results using

the synthetic datasets and the real-world datasets showed that the proposed framework

outperformed the baseline method, particularly when the data was multi-dimensional and

the hypothesis space was large. The experimental results for comparing different middle-

time data suggested that the middle-time data relatively close to the input time worked

well and the teacher models with high prediction accuracy were not necessarily good to

train the student models.

We conclude this chapter with several possible future works. First, we need further
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examinations of more complex and difficult cases with higher-dimensional time-series data

such as movie data. According to both the conditions when the GD framework works

and the experimental results, the proposed framework will perform better for such data.

Considering the recent outstanding successes of deep neural networks, it would be inter-

esting to see how the proposed framework performs for temporal neural networks such as

recurrent neural networks.

Another important direction is to develop methods to learn hyperparameters from

only training data without validation data because it is not desirable to split a small

amount of data into a training dataset and a validation dataset for tuning. A thorough

investigation of datasets of various types and sizes would yield more insights about when

the proposed framework works well, and this would considerably help us address machine

learning tasks with small data.
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Chapter 4

Active Change-Point Detection

In the previous chapter, we tackled the small data problem based on the approach that

explores and exploits auxiliary data. This chapter handles change-point detection in the

small data scenario. We consider solving the small data problem by employing the other

approach using additional data. We extend change-point detection in the additional data

setting where a learner sequentially determines an input query and observes an output by

paying additional cost. We propose a general meta-algorithm that automatically balances

exploration and exploitation of information to detect the change-point, which is applicable

to various types of data and change-points. The main idea of the proposed meta-algorithm

is to regard the problem as a black-box optimization of an unknown change score function.

4.1 Introduction

The problem of detecting abrupt changes in data is called change-point detection [7,

25], and this is closely related to concept drift [19], event detection [24], and time-series

segmentation [38]. It has been enthusiastically studied in data mining and industry, and it

covers a broad range of data types such as sensor data [31] and dynamic network data [82],

among others. Its applications include fault detection [37], network-intrusion detection

[84], and trend change detection [47]. Typical change-point detection problems assume
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that parts of time-series data are sequentially observed in an online manner or that the

entire data is provided at once in a offline manner.

However, the data acquisition cost in change-point detection is often high. The small

number of data makes change-point detection difficult. One example is found in material

science. Imagine a physical experiment that attempts to detect a phase transition temper-

ature of a material (Figures 4.1, 4.2, and 4.3). A phase transition is a sudden change in a

physical property (e.g., density, energy, electric resistance, and specific heat) and a phase

(e.g., gel-sol, solid-liquid, and nematic-isotropic) at a particular temperature. Finding

phase transitions is important for developing new materials, and they can be viewed as

a change-point detection problem. Phase transitions are examined via real experiments

and simulations, wherein an experimenter sets a material at a particular temperature and

observes its physical property. Such experiments require financial or temporal resources

to collect data.

Another example is found in geoscience. Studying the geography of the seafloor,

which has rugged landscapes such as ocean trenches (Figure 4.9(a)), is important for

understanding ocean currents and other phenomena. Finding such trenches corresponds

to change-point detection. Measuring the depth of the sea requires a considerable amount

of resources.

Therefore, we consider the use of additional data at additional cost to improve the

performance of change-point detection in the small data setting, which has not been con-

sidered in existing literature. In this chapter, we propose ACPD, a novel active learning

problem of change-point detection. The goal is to detect a change-point in a black-box

expensive-to-evaluate target function; however, unlike traditional change-point detection

problems, we actively obtain data by querying the target function for its outputs. We

aim to determine an effective sequence of input queries to find the change-point using as

few queries as possible because of the high data acquisition cost. In the material science

example, the input and the output correspond to the temperature and the physical prop-

erty, respectively. In the geography example, they correspond to the location (longitude
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Figure 4.1: First-order phase transition from solid to liquid state at 143.15 (unit) and 100
randomly sampled observations.

and latitude) and the depth, respectively. ACPD does not consider the input is time.

We propose a simple and general solution to ACPD, which relies on neither the un-

derlying data structures nor the definitions of change-points. Our solution is a meta-

algorithm based on an idea that we consider ACPD as black-box optimization of a change

score function. It reuses an existing change-point detection algorithm to compute change

scores from data. Further, it employs a BO technique to determine the next input to

find where the change score is high. Our empirical results using synthetic datasets and

real-world datasets such as material science data and seafloor depth data that include dif-

ferent types of data and change-points, demonstrate the query efficiency of the proposed

framework.

The remainder of this chapter is organized as follows. Section 4.2 briefly reviews the

basic settings of offline change-point detection based on which we formalize the ACPD

problem. Then, we develop a novel meta-learning framework using the BO method in

Section 4.3. In Section 4.4, we empirically demonstrate the query efficiency of the pro-

posed framework in comprehensive settings. Section 4.5 summarizes the related work.

Section 4.6 concludes this chapter.
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Figure 4.2: Second-order phase transition from gel to sol at 143.15 (unit) and 100 ran-
domly sampled observations.

4.2 Problem Setting

In this section, we describe the problem setting of the standard offline change-point de-

tection and its typical approach. Then, we state the problem setting of ACPD.

4.2.1 Change-Point Detection

There exist a variety of problem settings of change-point detection for the definitions of

data and change-points. For simplicity, we review the standard (passive) problem setting

of one-dimensional change-point detection with a change-point in an offline setting [7, 21].

Let f : X → R be an unknown function parameterized by a piecewise-constant pa-

rameter θ ∈ Θ. We assume a domain X is an interval in R. θ changes from θ1 to θ2 at a

change-point xcp ∈ X : f(x) = f(x | θ1) if x < xcp, otherwise f(x) = f(x | θ2). Suppose n

observations D = (X, Y ) = {(xi, yi) ∈ X × R}ni=1 from the function are given, where the

index i is aligned in the ascending order of X (i.e., xi ≤ xj for 1 ≤ i < j ≤ n) and the

output contains noise yi = f(xi | θ) + εi, εi ∼ N (0, σ2).

We define a change-point in observations xcp′ ∈ X as the point at which the function

mechanism or the model parameter θ changes. Thus, yi = f(xi | θ1) + εi for xi < xcp′

and yi = f(xi | θ2) + εi for xcp′ ≤ xi. Typical settings deal with temporal data, i.e., xi
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Figure 4.3: Nematic-isotropic phase transition of the CBO11O material at 426.9 [K] [63]
and 100 randomly-sampled observations.
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Figure 4.4: Overview of the active change-point detection procedure.

corresponds to a time index that we do not assume in this chapter. We assume that xi

corresponds to a temperature value, yi corresponds to the measured value of a physical

property, and their relationship is governed by some physical law f with some noise

(Figures 4.1, 4.2, and 4.3).

In change-point detection problems, the goal is to find the change-point in observations

xcp′ ∈ X. A typical approach is to model a change score function sD : X → R, which

quantifies how f “changes” over inputs. The change-point is estimated as the point that
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maximizes the change score

x̂cp′ = arg max
x∈X

sD(x). (4.1)

The change score function is designed such that its scores reflect the type of change-points

we want to detect. A possible choice is the maximum likelihood function, which is given

as

sD(x) = max
θ1,θ2

ln

 ∏
j|xj<x

p(yj | xj, θ1)
∏

k|x≤xk

p(yk | xk, θ2)

, (4.2)

where p(y | x, θ) denotes the probability density function of a normal distribution with

mean f(x | θ) and variance σ2. The change score is computed according to how the model

with parameters fits the data.

4.2.2 Active Change-Point Detection

For simplicity, we assume one-dimensional continuous input and output variables, and

there exists only one change-point as the point with a sudden change in our problem

setting as stated before; however, the problem setting can be extended to other types of

inputs, outputs, and change-points, e.g., multi-dimensional inputs, outputs and multiple

change-point cases, which we will show in the experiments.

In contrast to the passive change-point detection problem, a learner has no control

over inputs to the target system f , and the ACPD problem allows the learner to interact

with the target system by actively selecting the inputs to be investigated.

The goal of ACPD is to estimate the change-point xcp ∈ X in the function (not in

observations) by querying the target function f in an iterative manner. At each iteration,

a learner first determines the next input query based on the past observations, provides

an input query x ∈ X to the target function, and then observes the corresponding output

y. We have a limited budget B ∈ N, which is the maximum number of queries we can
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Figure 4.5: Proposed Meta-ACPD framework.

make in total; therefore, an ACPD algorithm is required to suggest an effective sequence

of input queries to find the change-point based on past observations. An overview of the

ACPD procedure is illustrated in Figure 4.4.

4.3 Proposed Framework

There are many possible definitions of change-points and change score functions depending

on target applications. Therefore, instead of designing a solution specialized for a par-

ticular choice of data and change-points, we propose Meta-ACPD, a simple and general

ACPD framework that is applicable to a wide variety of data and change-points.

Our key idea is to view the ACPD problem as a black-box optimization problem of

a change score function. As a summary of the meta-algorithm, Meta-ACPD utilizes an

existing change-point detection method specified by a user to compute change scores

and then perform BO [51, 67] on the change scores to decide the next input that would

maximize the change score. At each iteration, Meta-ACPD uses a change-point detection

method to obtain change scores S for data points X observed so far. Meta-ACPD then

estimates the change scores over the input space using a GP with the computed change

scores, and it determines the next query input xnext such that it maximizes the change

score using an acquisition function. Meta-ACPD iterates this procedure until the given

budget runs out and then outputs the final change-point estimate x̂cp using the change-
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point detection algorithm. Our proposed procedure (for one-change-point functions) is

illustrated in Figure 4.5 and Algorithm 3.

In the setting of the offline change-point detection, we see that we typically estimate

the change-point as the data point that maximizes some change score in a set of n ob-

servations D = (X, Y ) = {(xi, yi)}ni=1. In ACPD, we attempt to find a change-point in a

domain X such as R. If we had an infinitely large number of observations D∞ over the

entire domain X , we could estimate the change-point in the same way as the passive of-

fline change-point detection, i.e., by finding the maximizer in the set of computed change

scores. Then, the change score function sD∞ could be regarded as a function that maps

from X to R. However, we can only access a finite number of observations D. Therefore,

we consider estimating sD∞ from D, and Equation (4.1) can be regarded as a black-box

optimization of the unknown change score function s : X → R. However, in addition to

the fact that the observations are finite and noisy, the change scores depend on the se-

lection of the observations; further different sets of observations produce different change

scores. To take the uncertainty of the computed change scores into consideration, we

model the change score function with a probabilistic model, a GP. That model enables us

to utilize BO to determine the next input for finding the maximum change score.

Given n observations D = (X, Y ) = {(xi, yi)}ni=1, a change-point detection algorithm

selected by a user is applied to D to obtain a set of change scores D′ as

D′ = {(xi, si) | si = sD(xi)}ni=1 = (X,S). (4.3)

We assume that a black-box change score function s follows a GP s ∼ GP(0, k) with a

particular kernel function k. Given the computed change scores D′, the posterior mean

µD′ and variance σ2
D′ are obtain using Equations (2.6) and (2.7), respectively. Finally, BO

is performed using a particular acquisition function as indicated in Equation (2.9), to de-

termine the next input. By evaluating the target function at the next input, Meta-ACPD

observes the corresponding output ynext. The above iteration terminates when the query
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Algorithm 3 Meta-ACPD

Input:
A change-point detection algorithm and its change score function: s
An acquisition function: a
A query budget: B
An initial set of observations: D = {(xi, yi)}ni=1

Output: The change-point estimate x̂cp

1: for t = 1, 2, . . . , B do
2: Apply s to D and obtain change scores D′ (Equation (4.3))
3: Determine the next input xnext using a (Equation (2.9))
4: Observe the output ynext by evaluating the target function at xnext

5: Update the observations D ← D ∪ {(xnext, ynext)}
6: end for
7: return The change-point estimate x̂cp

budget runs out or some particular condition is satisfied. Consequently, Meta-ACPD es-

timates the change-point using the change-point detection algorithm. Alternatively, one

can estimate the change-point as the point with the maximum posterior mean

x̂cp = arg max
x∈X

µD′(x). (4.4)

One of the significant advantages of the proposed framework is that it depends on

neither the target data types nor the definitions of the change-points because of the idea

that ACPD is considered as black-box optimization of a change score function. It utilizes

an existing change-point detection algorithm to compute one-dimensional change scores,

which allows a user to select a proper change-point detection algorithm based on the

change-point type of interest. Since it determines the next input using a BO technique,

a user can select a proper kernel function based on the type of data. Hence, it would

work for different types of inputs, outputs, and change-points, such as multi-dimensional

input–output, noise-level changes, and multiple change-points.

Further, the application of BO in the proposed framework can be expected to improve

the accuracy of the regression of the target function (not the change score function) and the

search for the change-point. When adopting the likelihood as the change score definition,
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wherein the regression of the target function is performed, it is necessary to improve the

accuracy of the regression. The posterior variance (Equation (2.7)) is typically used inside

an acquisition function such as GP-UCB (Equation (2.10)) and EI (Equation (2.11)). This

posterior variance is determined only by input data {xi}ni=1. Querying for points with a

large posterior variance corresponds to a typical active learning method that queries points

with high uncertainty, uncertainty sampling [44]. Thus, performing BO in the proposed

framework improves the regression accuracy of the target function by active learning.

Change scores computed from the data can be different when the data is updated.

For two sets of observations Dn = {(xi, yi)}ni=1 and Dn+1 = {(xi, yi)}n+1
i=1 , it is possibly

that sDn(xi) 6= sDn+1(xi) for i = 1, ..., n. In the standard BO, it is assumed that the

input–output data does not varies. It can be considered that when the amount of data

is sufficiently large, the effect of updating the data is small; however, especially in the

initial stage when the amount of data is small, the change scores are likely to vary. The

next input to be evaluated determined using such unreliable change scores is at the risk

of being incorrect. However, the proposed framework, which internally performs BO,

prioritizes the exploration of the entire input domain over the use of the obtained change

scores in the initial stage when the amount of data is small, and this produces data

that are relatively uniformly distributed in the input domain. Empirically, the change

scores computed using evenly distributed data in the input domain are more similar to

the change scores computed using a large amount of data compared to those computed

using unevenly distributed data in the input domain. Hence, the effect of updating data is

relatively not serious for the proposed framework. In the experimental part in Section 4.4,

we report that the proposed framework avoids this problem by performing exploration,

although the exploitation approaches tend to fall into local solutions in the initial stages

when the data size is small.
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4.4 Experiments

For a comprehensive study of the empirical performance of the proposed approach, we

study change-point detection accuracy under measurement cost limitations using several

target functions with different types of data and change-points.

4.4.1 Target Functions

Functions with one change-point

We first introduce four real-valued functions with a one-dimensional input and a change-

point. As simple bench-marking settings, we use

• a noncontinuous piecewise-linear function PTbias (Figure 4.1)

f(x) =

0.1x+ 30 (x < 143.15)

0.1x+ 60 (otherwise).

• a continuous piecewise-linear function PTslope (Figure 4.2)

f(x) =

0.1x+ 30 (x < 143.15)

x+ 147 (otherwise).

These two functions are considered a first-order phase transition and a second-order phase

transition, respectively.

Further, we use a five-dimensional-output piecewise-linear function MO defined as

f(x) =

ax+ b (x < −130)

ax+ b+ 50 (otherwise),

where a = (0.26,−1.29, 0.49,−1.12,−0.45)> and b = (1.70, 0.79, 0.33, 0.45,−0.37)>.
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As a more realistic scenario, we use the nematic-isotropic phase transition function of

the CBO11O material referred to as NI (Figure 4.3), which is a regression result in the

real experiment [4, 63]. The function is

f(x) =

2.13− 2.99
(

x
427.03

− 1
)

+ 0.0162
∣∣ x

427.03
− 1
∣∣−0.51

(424 ≤ x < 426.9)

2.13− 2.99
(

x
426.82

− 1
)

+ 0.006
∣∣ x

426.82
− 1
∣∣−0.51

(426.9 ≤ x ≤ 429)

.

Gaussian noise is added to the output of each function : y = f(x) + ε, ε ∼ N (0, σ2),

where the standard deviation is set to σ = 20 for PTbias, PTslope, and MO, and σ = 0.1

for NI.

Multiple-change-point function

Our proposed framework can be generalized to target functions with multiple change-

points. We use a piecewise-constant function with three change-points MCP (Figure 4.6).

The function is defined as

f(x) =



9.34 (x < −143.5)

0.94 (−143.5 ≤ x < −77.7)

9.45 (−77.7 ≤ x < −41.9)

4.30 (otherwise).

Gaussian noise ε ∼ N (0, 12) is added to its output.

Multiple-input function

Another possible extension is multi-dimensional-input functions. In this setting, we focus

on finding steep depth changes in a seafloor depth dataset, which is important for sea

floor surveys. We use a seafloor depth dataset1 for the area around Hokkaido, Japan,

1Area 0450-09 (https://www.geospatial.jp/ckan/dataset/1976)
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Figure 4.6: Piecewise-constant multiple-change-point function (MCP) and its 100 noisy
observations.

provided by the Cabinet Office, Government of Japan. The dataset is a 450 m mesh data

of 840×780 cells, and we downsample it into 280×260 for limited computational resources,

as shown in Figure 4.9(a). The two-dimensional location (longitude and latitude) is used

as input and the depth is used as output.

4.4.2 Comparing Methods

To the best of our knowledge, there is no existing method that directly addresses the

ACPD problems. Hence, we compare the proposed meta-algorithm with two naive base-

lines: a random search and ε-greedy search. They explore the change-points using change

scores computed by a given change-point detection algorithm. The random search sam-

ples the next input from a uniform distribution. ε-greedy search switches between the

random search with probability ε and a greedy search with probability 1 − ε, where the

greedy search suggests the middle point between the input with the greatest change score

x1st and the input with the second greatest change score x2st: xnext = (x1st + x2st)/2. We

test different ε ∈ {0.1, 0.5, 0.9}.
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4.4.3 Change Scores

We employ the maximum likelihood in Equation (4.2) as the change score for the one-

change-point functions PTbias,PTslope, NI, MO, and the multiple-change-point function,

MCP. We use a third-order polynomial function for NI, a constant function for MCP,

and linear functions for the others. We calibrate the original likelihood change scores

{(xi, si)}ni=1 to {((xi−1 + xi)/2, si)}ni=2 to make them symmetric in the input space.

For computing the change score in the multiple-input problem, we use a spatial

anomaly detection method AvgDiff [40]. It computes the change score of a data point

(x, y) by comparing output y with outputs of its spatial nearest neighbors NN(x). The

score is defined as

s(x, y) =
∑

(xi,yi)∈NN(x)

w(x, xi) |y − yi| ,

where w(x, xi) denotes a spatial weight between x and xi. Here, we do not explicitly

assume a regression model of the target function like the maximum likelihood. Since

AvgDiff uses spatial nearest neighbors, we think of it as implicitly assuming a regression

model based on a k-nearest neighbor method that is a nonparametric model. We use the

normalized inverse Euclidean distance

w(x, xi) =
1

W0‖x− xi‖
,

where W0 =
∑

(xi,yi)∈NN(x) 1/‖x − xi‖, and the 10-nearest neighbors in the Euclidean

distance

NN(x) = arg min
A⊂D,|A|=10

∑
(xi,yi)∈A

‖x− xi‖.

The choice of the change-point detection method or the change score definition depends

on the types of change-points that a user wants to detect. A thorough comparison of the

different methods for each function is beyond the scope of this chapter.
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4.4.4 Change-Point Estimation and Evaluation Metrics

For one-change-point functions, we assume that the number of change-points is known

and that the change-point is estimated by Equation (4.1). We evaluate the absolute error

|xcp − x̂cp
t | between the estimated change-point x̂cp

t in iteration t and the ground-truth

change-point xcp.

For the multiple-change-point function MCP, we assume that the number of change-

points is unknown. Change-points {x̂cp
i }n̂i=1 are estimated using a segmentation-based

approach [18] with the Bayesian information criterion penalty [85] described as

Ω({xcp
i }n̂i=1) =

n̂

2
logN.

The estimation error is measured by the Hausdorff distance [74]

e({xcp
i }ni=1, {x̂

cp
i }n̂i=1)

= max{ max
xcp∈{xcp

i }ni=1

min
x̂cp∈{x̂cp

i }n̂i=1

|xcp − x̂cp|, max
x̂cp∈{x̂cp

i }n̂i=1

min
xcp∈{xcp

i }ni=1

|xcp − x̂cp|}.

For the multiple-input function, i.e., the seafloor depth dataset, we consider inputs

with rapid depth changes as change-points; however, there are no ground-truths. Ac-

cording to the motivation of ACPD, we use the change-points estimated using all data

as the ground-truth change-points. In particular, we compute the ground-truth change

scores using all 72, 800 data points (Figure 4.9(b)). We define inputs with the top k

change scores and others as the ground-truth change-points and non-change-points, re-

spectively. Each method is evaluated by the precision@k of change scores estimated by

the posterior mean of the GP at the same inputs as the ground-truths. Because the

number of change-points is assumed to be few compared to non-change-points, we set

k ∈ {728(1%), 3640(5%), 7280(10%), 10920(15%), 14560 (20%)}.

We sample five points from a uniform distribution as the initial data for the one-

dimensional input functions, and 20 points for the seafloor depth data. Each method
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explores for B = 100 iterations. We measure each of the above performance values at

each iteration and evaluate the mean value over B iterations and a final value after B

iterations. We conduct each experiment 30 times.

4.4.5 Settings of Proposed Framework

The proposed method is a meta-algorithm, and it needs the specifications of the underlying

BO method, i.e., covariance function k and acquisition function a. We use the Matérn

5/2 kernel (M52), where ν = 5/2 in Equation (2.5). To study how to balance the trade-off

between exploration and exploitation, we compare two acquisition functions: GP-UCB in

Equation (2.10) and EI in Equation (2.11). We set the hyperparameter of the GP-UCB

algorithm as β
1/2
t ∈ {0, 3, 6, 9,∞}, where β

1/2
t = 0 and β

1/2
t = ∞ corresponds to a full

exploitation strategy and a full exploration strategy, respectively. The hyperparameters

of the covariance function are optimized by the type II maximum likelihood estimation

every time a new observation is obtained.

4.4.6 Results and Discussions

Tables 4.1 and 4.2 summarize the results of the mean error over iterations and the er-

ror after the final iteration, respectively, for target functions besides the seafloor depth

data. For PTbias, PTslope, and NI, the proposed meta-algorithm with EI and GP-UCB

(β
1/2
t = 3, 6, 9) performed well. All results of EI except for the MCP mean error over iter-

ations are better than those of the comparing methods. Through the iterations, the pro-

posed methods effectively decreases the errors in Figure 4.7 and increases the precision@k

in Figure 4.8. In contrast, the greedy approaches (GP-UCB (β
1/2
t = 0) and ε-greedy

search) showed poor results. This might be because the greedy approaches fell into lo-

cal optimums. As discussed in Section 4.3, change scores may vary depending on data.

When the computed change scores at the non-change-points were incorrectly high, the

greedy approaches may have fallen into incorrect solutions. The full exploitation strategy
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without any exploration, GP-UCB (β
1/2
t = 0) did not improve after falling into the in-

correct solution as shown in Figures 4.7 and 4.8. The proposed meta-algorithm not only

exploited the knowledge, but also explored the input space uniformly in the early stages,

which could provide the change scores similar to the ground-truth change scores. Owing

to this property, the proposed meta-algorithm could avoid falling into incorrect solutions

and thereby demonstrate the good performance.

For MCP, the greedy approaches (GP-UCB (β
1/2
t = 0) and ε-greedy search (ε = 0.1))

showed worse results than the exploration approaches (Tables 4.1 and 4.2). This may

be because it is required to explore uniformly the input domain for the three change-

points distributed over the input domain. The proposed meta-algorithm with GP-UCB

(β
1/2
t ≥ 6), which prioritizes exploration over exploitation, demonstrated the performance

equal to or slightly better than the comparing methods. This can be derived from the

inherently difficult multiple change-point detection with an unknown number of change-

points, for which the errors of the methods were not significantly different. The proposed

meta-algorithm with GP-UCB (β
1/2
t ≥ 6) exploited the knowledge while mainly focusing

on exploring, which may provide the slightly better performance than the comparing

methods for errors after the final iteration.

For the seafloor depth data, Tables 4.3 and 4.4 show the mean precision@k over the it-

erations and the precision@k after the final iteration, respectively. The proposed methods,

except for the full exploitation strategy with GP-UCB (β
1/2
t = 0), performed better than

the comparing methods for all different k. EI and GP-UCB (β
1/2
t = 9) worked well for the

mean precision@k over iterations and precision@k after the final iteration, respectively.

This may be because balancing between exploration and exploitation was important,

compared to the one-dimensional-input functions for the large search space of the seafloor

depth data. GP-UCB (β
1/2
t = ∞) implemented only exploration and no exploitation,

which does not result in sample-efficient change-point detection. Figure 4.9(c,d,e,f) shows

the observed data and the posterior means obtained by the GP of the proposed framework

with EI, GP-UCB (β
1/2
t = 9), ε-greedy (ε = 0.1) search, and the random search. The
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Table 4.1: Means and standard deviations of the mean errors over iterations for 30 trials.

Method PTbias PTslope NI MO MCP
Meta-ACPD (EI) 23.6 ± 20.1 23.6± 8.8 0.145± 0.117 15.4± 13.6 33.8± 6.7

Meta-ACPD (GP-UCB β
1/2
t = 0) 37.7± 29.0 35.9± 25.9 0.760± 0.657 24.5± 26.9 60.6± 21.2

Meta-ACPD (GP-UCB β
1/2
t = 3) 27.5± 20.8 21.5 ± 9.1 0.123 ± 0.082 16.6± 18.0 32.5± 4.2

Meta-ACPD (GP-UCB β
1/2
t = 6) 28.9± 18.4 26.0± 12.2 0.138± 0.091 15.3 ± 16.5 30.4± 2.8

Meta-ACPD (GP-UCB β
1/2
t = 9) 27.9± 23.8 25.5± 12.6 0.173± 0.126 17.0± 13.4 29.5± 1.9

Meta-ACPD (GP-UCB β
1/2
t =∞) 45.2± 33.0 32.4± 11.6 0.242± 0.180 21.4± 8.8 28.4 ± 2.3

ε-greedy (ε = 0.1) 40.1± 24.9 37.1± 21.3 0.434± 0.395 32.5± 20.5 61.3± 15.2
ε-greedy (ε = 0.5) 35.7± 22.9 32.4± 19.3 0.239± 0.231 18.7± 12.5 34.1± 5.4
ε-greedy (ε = 0.9) 37.4± 24.3 34.9± 12.7 0.233± 0.166 15.9± 6.9 29.3± 2.6
Random 42.9± 22.6 34.7± 15.8 0.273± 0.201 16.1± 7.2 30.0± 3.5

Table 4.2: Means and standard deviations of the errors after the final iteration for 30
trials.

Method PTbias PTslope NI MO MCP
Meta-ACPD (EI) 15.5± 34.9 17.0± 18.3 0.0026± 0.0030 0.1 ± 0.1 12.6± 7.3

Meta-ACPD (GP-UCB β
1/2
t = 0) 36.4± 29.5 36.5± 26.5 0.6875± 0.6777 11.7± 26.3 36.8± 27.6

Meta-ACPD (GP-UCB β
1/2
t = 3) 13.3 ± 24.2 13.1 ± 12.0 0.0008 ± 0.0009 4.7± 18.0 13.5± 7.0

Meta-ACPD (GP-UCB β
1/2
t = 6) 16.7± 31.2 16.9± 14.6 0.0011± 0.0018 0.3± 1.4 12.5 ± 8.6

Meta-ACPD (GP-UCB β
1/2
t = 9) 18.7± 34.5 15.8± 12.2 0.0014± 0.0015 1.4± 6.1 12.8± 5.6

Meta-ACPD (GP-UCB β
1/2
t =∞) 32.1± 45.7 22.2± 15.5 0.0410± 0.0596 0.9± 0.8 12.5 ± 8.8

ε-greedy (ε = 0.1) 33.7± 32.0 33.3± 24.8 0.1751± 0.3558 15.1± 22.0 34.8± 21.9
ε-greedy (ε = 0.5) 24.7± 37.7 22.2± 19.4 0.0343± 0.1200 0.7± 1.8 17.8± 6.9
ε-greedy (ε = 0.9) 20.4± 33.7 22.6± 12.0 0.0177± 0.0151 0.6± 0.8 13.0± 6.1
Random 36.6± 43.4 24.2± 24.0 0.0268± 0.0398 0.9± 0.7 12.9± 7.0

proposed methods explored the ground-truth change-points and non-change-points in a

balanced manner. Consequently, their change scores computed using only 120 data points

correspond well to the ground-truth change scores (Figure 4.9(b)) computed using 72, 800

data points. In contrast, ε-greedy (ε = 0.1) search (Figure 4.9(e)) only explored the few

change-points and failed to explore the other change-points. The change scores by the

random search (Figure 4.9(f)) do not correspond to the ground-truths clearly in the right

bottom part.
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Table 4.3: Means and standard deviations of mean precision@k of each method over
iterations for 30 trials, where k is indicated by the percentage of the number of data.

Method Precision@1% Precision@5% Precision@10% Precision@15% Precision@20%
Meta-ACPD (EI) 0.145 ± 0.072 0.321± 0.057 0.446± 0.050 0.497± 0.034 0.543± 0.027

Meta-ACPD (GP-UCB β
1/2
t = 0) 0.056± 0.054 0.193± 0.049 0.291± 0.052 0.347± 0.048 0.398± 0.052

Meta-ACPD (GP-UCB β
1/2
t = 3) 0.137± 0.051 0.331± 0.037 0.456± 0.038 0.502± 0.032 0.546± 0.026

Meta-ACPD (GP-UCB β
1/2
t = 6) 0.116± 0.061 0.328± 0.036 0.464± 0.032 0.510± 0.028 0.557± 0.027

Meta-ACPD (GP-UCB β
1/2
t = 9) 0.106± 0.050 0.337 ± 0.037 0.472 ± 0.037 0.515 ± 0.035 0.561 ± 0.031

Meta-ACPD (GP-UCB β
1/2
t =∞) 0.039± 0.030 0.292± 0.053 0.420± 0.054 0.472± 0.046 0.538± 0.040

ε-greedy (ε = 0.1) 0.044± 0.080 0.163± 0.063 0.259± 0.052 0.327± 0.046 0.388± 0.048
ε-greedy (ε = 0.5) 0.038± 0.025 0.204± 0.052 0.329± 0.057 0.394± 0.047 0.453± 0.042
ε-greedy (ε = 0.9) 0.042± 0.046 0.232± 0.061 0.374± 0.062 0.441± 0.051 0.504± 0.048
Random 0.040± 0.067 0.219± 0.059 0.355± 0.064 0.432± 0.062 0.505± 0.062

Table 4.4: Means and standard deviations of precision@k of each method after iterations
for 30 trials, where k is indicated by the percentage of the number of data.

Method Precision@1% Precision@5% Precision@10% Precision@15% Precision@20%
Meta-ACPD (EI) 0.269 ± 0.175 0.464 ± 0.062 0.584 ± 0.052 0.613 ± 0.041 0.638± 0.031

Meta-ACPD (GP-UCB β
1/2
t = 0) 0.084± 0.119 0.232± 0.077 0.324± 0.083 0.368± 0.089 0.393± 0.090

Meta-ACPD (GP-UCB β
1/2
t = 3) 0.260± 0.113 0.409± 0.072 0.542± 0.065 0.587± 0.051 0.620± 0.041

Meta-ACPD (GP-UCB β
1/2
t = 6) 0.207± 0.159 0.425± 0.081 0.553± 0.056 0.593± 0.042 0.632± 0.030

Meta-ACPD (GP-UCB β
1/2
t = 9) 0.192± 0.117 0.454± 0.059 0.580± 0.054 0.607± 0.037 0.637± 0.030

Meta-ACPD (GP-UCB β
1/2
t =∞) 0.074± 0.091 0.426± 0.055 0.575± 0.048 0.593± 0.033 0.640 ± 0.027

ε-greedy (ε = 0.1) 0.052± 0.082 0.184± 0.066 0.291± 0.053 0.362± 0.052 0.417± 0.053
ε-greedy (ε = 0.5) 0.047± 0.048 0.242± 0.080 0.382± 0.074 0.450± 0.058 0.507± 0.047
ε-greedy (ε = 0.9) 0.064± 0.112 0.284± 0.091 0.447± 0.069 0.516± 0.050 0.574± 0.043
Random 0.064± 0.115 0.307± 0.072 0.473± 0.078 0.541± 0.061 0.606± 0.047

4.5 Related Work

To the best of our knowledge, there is no work directly comparable to ACPD, and threfore,

we review related works in a wide context by illustrating differences of their problem

settings.

Change-point detection [7, 25] is the task of finding abrupt changes in time-series data.

There are several closely related tasks such as concept drift [19], event detection [24], and

time-series segmentation [38, 18]. Spatial outlier detection [40] is the task of detecting

areas significantly different from the other areas in spatial data. Spatial outlier detection

and image segmentation [56] can be considered multiple-input change-point detection

problems. In general, change-point detection assumes either that each observation in a
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time-series data is given at every time step in an online manner or that all parts of the

time-series are given at once in a batch manner. In both the settings, the costs of acquiring

data are not usually considered and their goals are just to provide the label of “change”

or “normal” to each data point. In the ACPD problem, it is assumed that target data

is not a time-series data. ACPD focuses on changes in a function [21] and the data is

acquired in an active manner by paying some cost of measurement.

Further, ACPD is related to experimental design [11], where statistical models are used

to determine efficient and effective series of experimental designs. BO [51, 67] suggests

the next input to be evaluated based on past observations to seek the optimum of a black-

box function that is expensive to evaluate. GPs [60] are the typical choice for models of

black-box functions because they can handle uncertainty in the model. Various types of

acquisition functions have been proposed, and they determine the next input by balancing

exploration and exploitation based on the posterior mean and variance of the GP. We use

the BO technique as the key component of our proposed framework because our objective

is to find the optimum in a black-box change score function.

Active learning [65] is the task of learning a classifier model in an interactive manner

by determining the next data point to query an oracle (e.g., a human annotator) for its

label. The goal is to build a classifier that minimizes the predictive classification loss by

choosing informative data points. Further, it can be considered that the problem setting

of active learning is similar to that of BO, where the oracle and the label correspond to

the black-box function and the real-valued output, respectively. However, their objectives

are different: the predictive classification loss and the black-box function. The idea of

active learning is applied to anomaly detection [15], where a data point is queried to be

labeled an anomaly or a normal.

The closely related work to ACPD is interactive image segmentation [79, 81]. In this

setting, all pixel values of an image are given, and at each iteration, a set of pixels is

queried to an oracle for its label to segment the image. The problem may be regarded as

an ACPD problem, where change-points are the boundaries of the segmentation, the input
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is a two-dimensional coordinate of an image, and the output is a value and label of a pixel;

however, all pixel values as a part of the output are provided. Further, ACPD mainly

focuses on real-valued functions but not functions whose output is binary; however, it can

handle them by properly selecting a change-point detection algorithm.

The other related work is active learning with drifting streaming data [80]. At each

iteration, a learner obtains a piece of data, and she determines if she queries an oracle for

its class label to train a classifier for drifting streaming data. This problem is similar to

ACPD, where the input is time and the output is the data and its label. However, the

difference is that data as a part of output is given and input corresponds the time.

4.6 Conclusion

Change-point detection problems in experimental data suffer from the small data problem

because of the high costs to acquire data. The key is to select data with high information

content for change point detection within the limited budget. We proposed ACPD, a

novel active learning problem for cost-efficient change-point detection in an expensive-

to-evaluate black-box function. In ACPD, a learner determines the next input to be

evaluated to find the change-point in the function with as few evaluations as possible.

We proposed the general meta-algorithm applicable to different types of data and change-

points. The proposed meta-algorithm reuses an existing change-point detection method

and a BO technique. The idea behind the proposed meta-algorithm is that we regard

the ACPD problem as a black-box optimization problem of a change score function. The

experimental results using the synthetic data and the real-world data showed that the

proposed meta-algorithm outperformed the comparing methods considering exploration

and exploitation for the different types of data and change-points.

In the future, we plan to extend the proposed meta-algorithm to the case where a user

wants to detect change-points of Nc change definitions in the function using Nc change

scores. In this case, it is considered possible to extend the proposed meta-algorithm by
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modeling the relationship between input and Nc-dimensional change score with a multi-

dimensional output GP [72]. Further, there may be more than one candidate regression

model for the black-box function. For example, when a simple linear model and a complex

nonlinear model are used, their model selection problems need to be addressed.
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Figure 4.7: Error curves of the methods for the target functions.
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Figure 4.8: Precision@k curves of the methods for the seafloor depth.
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Chapter 5

Bayesian Optimization with Partially

Specified Queries

The additional data settings including ACPD in Chapter 4 often handle deterministic

input queries, that is, the learner can query a black-box function for its value at a fully

specified input. However, the full specification of input queries requires large costs in

some scenarios. This chapter considers a BO problem with a partial specification of input

queries, which is potentially cheaper than the full specification. Thus, in contrast to

deterministic fully specified queries, partially specified queries are random. Further, we

propose algorithms that balance exploration and exploitation of information to detect the

optimal solution based on posterior sampling and a multi-armed bandit approach.

5.1 Introduction

BO [66] is a promising approach for black-box optimization of an expensive-to-evaluate

unknown function. Its applications include the hyperparameter tuning of machine learning

models with the highest predictive accuracy [67] and searching compound structures with

desirable properties [39]. BO is conducted in an iterative manner. In each iteration, a BO

method determines the values of input variables in an input domain X ⊂ Rd, evaluates a
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black-box function f : X → R at that input query and observes the corresponding output

y ∈ R. The final goal is to find the input that maximizes the function with as few function

evaluations as possible.

Whereas a learner can fully specify all values of input variables in the standard BO

setting, this is not true for all cases. For example, consider the design of airfoils with

low self-noise. In this case, we ask a manufacturer to produce an airfoil by specifying

its various features, including angle of attack and chord length. However, it is costly to

specify all feature values; instead, with a limited budget, we are restricted to specify only

a subset of the features. After obtaining the ordered airfoil, the values of the unspecified

features are revealed, and its self-noise is measured via an acoustic test.

Another example is crowdsourcing, by which human-intelligent tasks are outsourced to

an undetermined number of people on the Internet. Most existing crowdsourcing platforms

allow us to ask workers to do the task by specifying conditions such as age, country, and

experience in order to obtain high quality deliverables [46]. However, if the conditions

are too strict, there is a risk that there will be no workers available to participate in the

task. Upon the completion of the task, we observe the quality of the deliverable and the

features of the workers who worked on the task.

In this chapter, we propose a novel Gaussian process bandit framework, which we

call BOPSQ. In BOPSQ, unlike the standard BO setting, a learner selects a subset of

input variables and specifies their values. We call such an input query a partially specified

query. Next, the learner observes the values of the unspecified input variables determined

according to a known or unknown distribution. Then, the learner evaluates the black-box

function at the full input variables to obtain the corresponding output. Hence, the learner

is required to consider the extent to which the input variables contribute to the function’s

output as well as which values the unspecified input variables will take. Williams et al.

[83], Lattimore et al. [43] also handled partially specified queries. However, in their works,

the input variables whose values are specified are fixed, or infinite input spaces are not

considered for the Gaussian process bandit.
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We propose two algorithms for cases of known and unknown input distributions. In the

case of the known input distribution, the uncertainty lies only in the function estimation,

and we can naturally extend a posterior sampling approach to this setting. In the case

of the unknown input distribution, the learner further needs to take the uncertainty in

the distribution estimation into account. We adopt a multi-armed bandit approach to

appropriately explore the input distribution.

The remainder of this chapter is organized as follows. Section 5.2 describes notations

used in this chapter and the problem setting of BOPFQ. Section 5.3 introduces two

algorithms for the cases where the input distribution is known and unknown, providing

their regret upper bounds. The proofs are given in Section 5.4. The empirical evaluation

of the proposed algorithms are demonstrated in Section 5.5 using test functions and real-

world functions. Section 5.6 summarizes the related works to BOPFQ. Section 5.7 gives

concluding remarks with possible future directions.

5.2 Problem Setting

We propose a novel Gaussian process bandit problem that utilizes partially specified

queries, BOPSQ. We first define some terms and notations. Then, we introduce the

framework and define regret for BOPSQ.

5.2.1 Notation

Let X = X (1) × . . . × X (d) ⊂ Rd, d ∈ N, be a compact domain and f : X → R be an

unknown function of interest. We call the indices of input variables which a learner can

specify the values of, a control variable set, denoted by I ⊂ [d]. We call the remaining

indices of input variables which the learner can not specify the values of, an uncontrol

variable set, denoted by Ī = [d] \ I. Let I ⊂ 2[d] be a family of control variable sets. We

call the values of control (uncontrol) variable set control (uncontrol) variables, denoted

by xI ∈ X I (xĪ ∈ X Ī). Here, xI = {x(i) ∈ X (i) | i ∈ I} and X I = X i1 × . . . × X ik for

66



I = {i1, . . . , ik} ⊂ [d]. Let X = (X(1), ..., X(d))> ∼ P (X) be a random vector according

to an input distribution P over X and Y be a random variable over R corresponding to

the output variable. With a slight abuse of notation, we write f(xI , xĪ) for f(x).

5.2.2 Framework

The optimization procedure consists of T iterations. A learner is given a non-empty family

of control variable sets I ⊂ 2[d], which we assume is static over T iterations for simplicity

in this chapter. In each iteration, the learner selects a control variable set I ∈ I and

specifies their values xI ∈ X I . Next, the learner observes uncontrol variables X Ī drawn

from a conditional distribution P (X Ī | XI = xI), which is either known or unknown. By

evaluating a black-box function f at the input variables (xI , X Ī), the learner observes the

corresponding output Y = f(xI , X Ī) + ε, where ε ∼ N (0, σ2).

In the standard BO setting, the goal is to find the optimal input variables x∗. However,

in BOPSQ, the learner may not always select x∗ and obtain f(x∗) because the input query

is random. Therefore, for the objective function, we consider the conditional expectation

of f(xI , X Ī) over X Ī given XI = xI . We define the goal as finding the optimal control

variable set I∗ ∈ I and control variables xI
∗ ∈ X I∗ in as few evaluations as possible,

defined as

(I∗, xI
∗
) = arg max

I∈I,xI∈X I

E[f(XI , X Ī) | f,XI = xI ]. (5.1)

Hereafter, we write xI
∗

instead of (I∗, xI
∗
) for simplicity.

Some specific forms set as the family of control variable sets I recover existing BO

settings. The simple setting in which the learner can select all input variables as a

control variable set, I = {[d]}, corresponds to the standard BO setting. When the family

of control variable sets is always fixed to one particular subset, I = {I}, I ⊂ [d], 0 <

|I| < d, we consider this setting as BO with environmental variables [83]. In this sense,

BOPSQ is a generalization of these BO settings. The major difference appears when the
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learner is required to select a control variable set for |I| > 1. Moreover, when the input

distribution P (X) is unknown, the learner is required to consider the uncertainty of the

input distribution estimation as well as the function estimation.

Let I ⊂ J ∈ I, that is, I be a subset of J . Then, it is easy to see that the maxi-

mum of the objective function for I in Equation (5.1) is no larger than that for J , i.e.,

maxxI∈X I E[f(XI , X Ī) | f,XI = xI ] ≤ maxxJ∈XJ E[f(XJ , X J̄) | f,XJ = xJ ]. Thus, we

assume the family of control variable sets contains no control variable set that is a subset

of other control variable sets.

5.2.3 Regret

The final goal is to find the optimal control variables xI
∗

defined in Equation (5.1). We

define instantaneous regret IR(t) in iteration t, which evaluates the gap between the

optimal solution and the choice xIt , described as

IR(t) =E[f(XI∗ , X Ī∗) | f,XI∗ = xI
∗
]− E[f(XIt , X Īt) | f,XIt = xIt ].

The resultant performance measure, Bayes cumulative regret BayesRegret(T ), is the ex-

pectation and summation over T iterations of the instantaneous regret, defined as

BayesRegret(T ) =
T∑
t=1

E [IR(t)] .

Our focus is designing algorithms whose regret is sublinear. The sublinear regret leads to

no-regret, which means that the mean regret over T asymptotically approaches 0.

lim
T→∞

BayesRegret(T )

T
→ 0.

In other words, an algorithm that satisfies no-regret asymptotically finds the optimal

solution.

68



5.3 Algorithms

We consider two cases where the input distribution is known and unknown, propose two

algorithms based on posterior sampling for these cases, and also provide their regret

bounds that are sublinear for popular kernels.

5.3.1 TSPSQ-known for Known Input Distribution

We first focus on the case where the joint input distribution P (X) or the set of conditional

distributions {P (X Ī | XI)}I∈I is known. For example, in the airfoil design provided by a

manufacturer, this case corresponds to the situation in which the manufacturer publishes

random options for the unspecified features. In the crowdsourcing example, this case

corresponds to a situation where the past offer history is accessible. We propose an

algorithm based on Thompson sampling, which we call Thompson Sampling with Partially

Specified Queries for the known input distribution case (TSPSQ-known).

Acquisition Function

In iteration t, TSPSQ-known determines the next control variables as

xIt = arg max
I∈I,xI∈X I

E[gt(X
I , X Ī) | gt, XI = xI ], (5.2)

where gt is a sample from the GP posterior gt ∼ GP(µt−1, kt−1). The pseudo-code is given

in Algorithm 4.

Equation (5.2) approaches the ground-truth objective in Equation (5.1) as the poste-

rior sample gt approximates the ground-truth function f better with more observations.

TSPSQ-known is a natural extension of Thompson sampling; if we set I = {[d]} as the

standard BO setting, the acquisition function in Equation (5.2) is reduced to gt(x).
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Regret Bound

We first introduce the notion of maximum information gain, which is the basis of typical

regret analysis for BO. The maximum information gain in iteration T , denoted by γT ,

is the maximum possible information gain achievable by any algorithm for f via queries

A = {x1, x2, ..., xT} ⊂ X and the corresponding outputs yA = {y1, y2, ..., yT}, defined as

γT = max
A⊂X ,|A|=T

I(f ; yA). (5.3)

Here, I(f ; yA) denotes the mutual information between f and yA. Srinivas et al. [70]

provided the bounds of γT for various types of kernels: γT ∈ O(log T ) for the linear kernel

k(x, y) = x>y, γT ∈ O
(
(log T )d+1

)
for the Gaussian kernel k(x, y) = exp (0.5‖x− y‖2/l2),

and γT ∈ O
(
T d(d+1)/(2ν+d(d+1)) log T

)
for the Matérn kernel k(x, y) = (21−ν/Γ(ν)) rνBν(r),

where r = (
√

2ν/l) ‖x− y‖, Bν is the modified Bessel function, and l, ν > 0.

We then derive the regret bound of TSPSQ-known for the case where the ground-

truth input distribution is known.

Theorem 2 Let X ⊂ [0, 1]d, d ∈ N, be a compact domain. Assume k(x, x′) ≤ 1 and that

there exist constants a′, b′ > 0 for the partial derivatives of sample paths f such that

l > 0,∀j ∈ [d], P
(

sup
x∈X

∣∣∣∣∂f(x)

∂x(j)

∣∣∣∣ > l

)
≤ a′e−(l/b′)2

. (5.4)

Then, by running TSPSQ-known for T iterations, it holds that

BayesRegret(T ) ∈ O(
√
dTγT log T ).

The analysis is mainly based on the techniques by Russo and Roy [62], Srinivas et al.

[70], where the cumulative regret is decomposed into terms with respect to discretization

errors of X , the difference between f and the upper confidence bound µt−1(x)+β
1/2
t σt−1(x),

and the difference between xI
∗

and xIt . A detailed proof of Theorem 2 is found in Sec-
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Algorithm 4 TSPSQ-known (TSPSQ-unknown)

Input: A GP prior GP(0, k), a query budget T , and a family of control variable sets
I (and a set of conditional distributions {P (X Ī | XI)}I∈I for TSPSQ-known)

Initialize D0 ← ∅ (and S(i)
0 ← ∅ for i ∈ Īt for TSPSQ-unknown)

for t = 1, 2, . . . , T do
Determine the next control variables xIt using Equation (5.2) for TSPSQ-known
(or Equation (5.6) for TSPSQ-unknown)
Observe uncontrol variables X Īt

Evaluate f at (xIt , X Īt), and observe the corresponding output yt
Update Dt ← Dt−1 ∪ {((xIt , X Īt), yt)} and GP (and S(i)

t ← S
(i)
t−1 ∪ {X(i)} for i ∈ Īt

for TSPSQ-unknown)
end for

tion 5.4.1.

Note that the growth rate of the regret bound in T matches the existing results of

Thompson sampling and GP-UCB in the standard BO setting shown by Russo and Roy

[62], Srinivas et al. [70], respectively, though their definitions of regret are different. This

is because the ground-truth input distribution is given, and the uncertainty in estimation

is therefore only in f , as in the standard BO setting. The regret bound is sublinear for

the popular kernels, such as the linear kernel, the Gaussian kernel, and the Matén kernel.

5.3.2 TSPSQ-unknown for Unknown Input Distribution

Next, we consider the case where the joint input distribution P (X), or the set of condi-

tional distributions {P (X Ī | XI)}I∈I is unknown. We propose Thompson Sampling with

Partially Specified Queries for the unknown input distribution (TSPSQ-unknown).

Unlike the known input distribution case, the estimation of the input distribution needs

to be addressed in the unknown input distribution case. However, without any assumption

on the model of distributions, this would require an exponential number of samples in d

to obtain the estimate of the distribution with sufficiently small error, because it would

be inevitable to estimate the conditional distribution for each combination of control

variables (a discussion is presented in the following). Therefore, to make the estimation
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statistically tractable, we assume that input variables are independent of each other; and

the cumulative distribution function F (X ≤ x) is decomposed as

F (X ≤ x) =
d∏
i=1

F (i)(X(i) ≤ x(i)).

Further, we assume F i are continuous over X (i) for i ∈ [d]. Based on the assumptions, we

propose an algorithm and derive its regret upper bound.

Discussion on Estimating an Unknown Dependent Input Distribution

We consider a simple toy example that illustrates the essential hardness of the problem

when the input distribution is not necessarily independent.

For simplicity we consider the binary input space, X = {0, 1}6 with I = {I ⊂ [d] |

|I| = 3}, but the discussion below is easily extended to the continuous case with general

input dimension d and the number of control variables m = |I|. Let us consider the case

that the learner already knows the complete information of the objective function f(x),

which is expressed as

f(x) =

1, if |{i | x(i) = 0}| ≥ 4,

0, otherwise.

Now, consider the following two distributions P and Q. Under P , X(i) is i.i.d. with

P (X(i) = 0) = ε for sufficiently small ε > 0. Under Q, the sequences in S given below

appear more frequently, satisfying

Q(x) =

P (x)/ε, if x ∈ S,

P (x)/A, otherwise,
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where

S = {000011, 100011, 010011, 001011},

A =
1−

∑
x∈S P (x)

1−
∑

x∈S Q(x)
=

1− ε3(1− ε)2(3− 2ε2)

1− ε2(1− ε)2(3− 2ε2)
≈ 1.

We can see that, under Q, it is uniquely optimal to choose I = {1, 2, 3} with xI = 000.

This is because, in this choice Q(X Ī = 011|XI = 000) ≈ 1/2 whereas X Ī almost always

becomes 111 (resulting in f(x) = 0) in any other choice. Nevertheless, it requires an

enormous number of samples to distinguish P and Q unless choosing I = {1, 2, 3} with

x = 000, because X Ī almost always takes value 111 in all other cases.

By the same argument, for arbitrary I such that |I| = 3, we can consider a distribution

Q′ such that choosing I with xI = 000 is optimal but Q′ cannot be distinguished from P

unless trying this choice. Therefore, it is necessary to try combinatorially many candidates

of I to find the input such that f(x) becomes 1 with a nonnegligible probability. From

this observation, we can conclude that dependent input distributions essentially make the

task exponentially hard.

Acquisition Function

We first define a function ḡt using a posterior sample gt ∼ GP(µt−1, kt−1), written as

ḡt

(
xI , xĪ

)
= gt

(
xI , xĪ

)
+
∑
i∈Ī

αt√
|S(i)
t−1|

, (5.5)

where S(i)
t−1 is a set of observations of the uncontrol variables until iteration t− 1 for

i ∈ [d], defined as S(i)
t−1 = {X(i)

s | i ∈ Īs, s ∈ [t− 1]}, and αt is a monotonically increasing

function in t. TSPSQ-unknown determines the next control variables as

xIt = argmax
xI∈X I ,I∈I

EX Ī∼F̂ I

[
ḡt

(
xI , X Ī

)]
, (5.6)
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where F̂ I denotes the empirical distribution function for I, defined as F̂ I(XI ≤ xI) =∏
i∈I F̂

(i)(X(i) ≤ x(i)), F̂ (i)(X(i) ≤ x(i)) = 1/|S(i)
t−1|

∑
x̂(i)∈S(i)

t−1
1[x̂(i) ≤ x(i)] The pseudo-

code is given in Algorithm 4.

The acquisition function of TSPSQ-unknown in Equation (5.6) works similarly

to that of TSPSQ-known in Equation (5.2) for the known input distribution case.

TSPSQ-unknown takes expectation using the empirical distribution instead of the

ground-truth distribution. The second term on the right hand side of Equation (5.5)

encourages increasing the number of samples from the input distributions with few sam-

ples and prevents the learner from falling into a local solution caused by misestimation

of the input distribution. Hence, αt controls the exploration-exploitation trade-off in the

distribution estimation. This is conceptually same as the approach of the UCB algo-

rithms for the multi-armed bandit problems [6]. In this sense, we can see that BOPSQ is

a mixture of the Gaussian process bandit problems and the multi-armed bandit problems.

TSPSQ-unknown avoids a regret bound exponentially dependent on the number of

input variables d for the independence assumption, as shown later, because it need not

to consider the combinations of d-dimensional domains in the distribution estimation.

However, its computational cost in each iteration still exponentially depends on d due to

the combinations of S(i)
t−1 for i ∈ Ī. This cost could be a serious burden when d, or the size

of the uncontrol variable set |Ī| is large. A general solution to this problem would not be

easily found; however, the problem can be mitigated when some assumptions hold. For

example, Kandasamy et al. [36], Mutny and Krause [53] assumed the additivity of f with

respect to each x(i) for i ∈ [d], i.e., f(x) =
∑

i∈[d] fi(x
(i)), and then the computational

cost is reduced to linear in d. Because the problem can be separated from BOPSQ, for

simplicity, we do not consider this issue in depth.

Regret Bound

We then derive a regret bound for the unknown input distribution case.
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Theorem 3 Let X ⊂ [0, 1]d, d ∈ N, be a compact domain. Assume k(x, x′) ≤ 1 and that

there exist constants a, b, a′, b′ > 0 for the sample paths f and their partial derivatives

such that Assumption (5.4) holds and

l > 0, P
(

sup
x∈X
|f(x)| > l

)
≤ ae−(l/b)2

. (5.7)

Suppose an unknown cumulative distribution function of the input variables is factorized

into F (X ≤ x) =
∏d

i=1 F
(i)(X(i) ≤ x(i)), and F (i) is continuous over X (i). Define αt =

2b′ log t. Then, by running TSPSQ-unknown for T iterations, it holds that

BayesRegret(T ) ∈ O
(√

dT log T
(√

γT +
√
m log T

))
,

where γT is the maximum information gain defined in Equation (5.3) and m = maxI∈I |Ī|

is the maximum number of dimensions of uncontrol variables.

The main difference of the proof from that for Theorem 2 lies in the evaluation of the

distribution estimation, which does not appear in the standard BO setting. Therefore, we

employ techniques in multi-armed bandit problems and the Dvoretzky–Kiefer–Wolfowitz

inequality [16, 50] to derive the upper bound. The whole proof is found in Section 5.4.2.

The growth rate of the regret bound in T in Theorem 3 matches the existing results

for the standard BO setting [62, 70], as with TSPSQ-known. This is because the bound

for the estimation of f is still dominant in the total regret bound compared to a bound

for the estimation of the input distribution thanks to the independence assumption. Note

that the bound depends only on the square root of d, and no exponential term appears in

d. As the maximum number of dimensions of uncontrol variables m decreases, the bound

improves. This is because the learner can specify the values of the many input variables

as desired and the error with respect to the distribution estimation becomes small. Note

that the growth rate in T of the maximum information gain γT is greater than m log T

for the linear, Gaussian, and Matérn kernels, as shown in Section 5.3.1.
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5.4 Proofs

5.4.1 Proof of Theorem 2

In this section, we present the proof of Theorem 2, where the input distribution is known.

We first introduce a relevant result. Srinivas et al. [70] provided a bound of sum of

posterior variances over T iterations using the maximum information gain γT as

T∑
t=1

σ2
t−1(xt) ≤

2

log(1 + σ−2)
γT . (5.8)

The analysis basically follows the frameworks by Russo and Roy [62], Srinivas et al.

[70]. First, we discretize the domain X in iteration t into grid points [X ]t so that |[X ]t| =

τ dt and ‖x − [x]t‖1 ≤ d/τt for all x ∈ X , where [x]t is the closest point in [X ]t and

τt = t2da′b′
√
π. Note that this discretization is deterministic.

Define an upper confidence bound (UCB) sequence Ut(·) = µt−1(·) + β
1/2
t σt−1(·) in

iteration t, where βt = 4(d + 1) log(t) + 2d log(da′b′
√
π). Using the UCB sequence, we

decompose BayesRegret(T ) into

BayesRegret(T ) =
T∑
t=1

E
[
f(XI∗ , X Ī∗)− f([XI∗ ]t, [X

Ī∗ ]t)
]

︸ ︷︷ ︸
A1

+
T∑
t=1

E
[
f([XI∗ ]t, [X

Ī∗ ]t)− Ut([XI∗ ]t, [X
Ī∗ ]t)

]
︸ ︷︷ ︸

A2

+
T∑
t=1

E
[
Ut([X

I∗ ]t, [X
Ī∗ ]t)− Ut([XIt ]t, [X

Īt ])
]

︸ ︷︷ ︸
A3

+
T∑
t=1

E
[
Ut([X

It ]t, [X
Īt ]t)− f([XIt ]t, [X

Īt ]t)
]

︸ ︷︷ ︸
A4
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+
T∑
t=1

E
[
f([XIt ]t, [X

Īt ]t)− f(XIt , X Īt)
]

︸ ︷︷ ︸
A5

. (5.9)

We will bound the terms A1 and A5. By Assumption 5.4, we have

A1 ≤
T∑
t=1

E

[
d

τt
sup

x∈X ,j∈[d]

∣∣∣∣∂f(x)

∂x(j)

∣∣∣∣
]

≤ d
T∑
t=1

1

t2da′b′
√
π

∫ ∞
0

P

(
sup

x∈X ,j∈[d]

∣∣∣∣∂f(x)

∂x(j)

∣∣∣∣ ≥ l

)
dl

≤
√
π3

6a′b′

∫ ∞
0

a′e−l
2/b′2dl

=
π2

12
. (5.10)

By applying the same argument to A5 as above, we obtain the same upper-bound.

Next, we will upper-bound A2. For a random variable Z ∼ N (µ, η2) with µ ≤ 0,

E[Z1[Z > 0]] =
∫∞

0
z/(η
√

2π) exp(−(z − µ)2/(2η2))dz ≤ (η/
√

2π) exp (−µ2/(2η2)). Since

f(x)− Ut(x) conditioned on Dt−1 follows N (−β1/2
t σt−1(x), σ2

t−1(x)), we have

E[1[f(x) > Ut(x)] · (f(x)− Ut(x)) | Dt−1] ≤ σt−1(x)√
2π

exp

(
−βt

2

)
≤ 1√

2π|[X ]t|t2
, (5.11)

where we used σt(x) ≤ 1 and βt = 4(d+1) log(t)+2d log(da′b′
√
π) = 2 log(t2|[X ]t|). Then,

A2 =
T∑
t=1

E
[
E[f([XI∗ ]t, [X

Ī∗ ]t)− Ut([XI∗ ]t, [X
Ī∗ ]t) | Dt−1]

]
≤

T∑
t=1

E[E[1[f([XI∗ ]t, [X
Ī∗ ]t)− Ut([XI∗ ]t, [X

Ī∗ ]t) ≥ 0]

· (f([XI∗ ]t, [X
Ī∗ ]t)− Ut([XI∗ ]t, [X

Ī∗ ]t)) | Dt−1]]

≤
T∑
t=1

E[E[
∑
x∈[X ]t

1[[f(x)− Ut(x) ≥ 0] · (f(x)− Ut(x)) | Dt−1]]
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≤
T∑
t=1

∑
x∈[X ]t

1√
2π|[X ]t|t2

≤
√

2π3

12
. (5.12)

Since XI∗ and XIt are identically distributed from the same distribution conditioned

on Dt−1 and Ut is deterministic, we have

A3 =
T∑
t=1

E
[
E
[
Ut([X

I∗ ]t, [X
Ī∗ ]t)− Ut([XIt ]t, [X

Īt ])
∣∣∣ Dt−1

]]
= 0. (5.13)

Finally, we will bound A4. Since f and (XIt , X Īt) conditioned onDt−1 are independent,

we have

A4 =
T∑
t=1

E
[
E
[
Ut([X

It ]t, [X
Īt ]t)− f([XIt ]t, [X

Īt ]t)
∣∣∣ Dt−1, X

It , X Īt
]]

=
T∑
t=1

β
1/2
t E

[
σt−1([XIt ]t, [X

Īt ]t)
]

≤ β
1/2
T E

[ T∑
t=1

σt−1([XIt ]t, [X
Īt ]t)
]

≤ β
1/2
T E

[(
T

T∑
t=1

σ2
t−1([XIt ]t, [X

Īt ]t)

)1/2 ]

≤ β
1/2
T E

[(
T

2γT
log(1 + σ−2)

)1/2
]

=

√
2TβTγT

log(1 + σ−2)
, (5.14)

where we used the monotonic increase of βt in the first inequality, the Cauchy-Schwarz

inequality in the second inequality, and Inequality (5.8) in the third inequality.

By combining Equation (5.9) and Inequalities (5.10), (5.12), (5.13), and (5.14), we

complete the proof. �
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5.4.2 Proof of Theorem 3

In this section, we give the proof of Theorem 3, where the input distribution is unknown

and assumed to be independent of each other variables.

We define an UCB sequence Ut(·) = µt−1(·) + β
1/2
t σt−1(·) in iteration t, where βt =

4(d+ 1) log(t) + 2d log(da′b′
√
π). We further define

¯̄gt

(
xI , xĪ

)
= gt

(
xI , xĪ

)
+ 2

∑
i∈Ī

αt√
|S(i)
t−1|

XJt = argmax
xJ∈XJ ,J∈I

EX J̄∼F J̄

[
gt

(
xJ , X J̄

)]
.

Then, we decompose the regret at iteration t into

E
[
f
(
XI∗ , X Ī∗

)]
− E

[
f
(
XIt , X Īt

)]
= E

[
f
(
XI∗ , X Ī∗

)]
− E

[
EX J̄t∼F J̄t

[
gt

(
XJt , X J̄t

)]]
︸ ︷︷ ︸

B1,t

+ E
[
EX J̄t∼F J̄t

[
gt
(
XJt , J̄t

)]]
− E

[
EX J̄t∼F̂ J̄t

[
ḡt

(
XJt , X J̄t

)]]
︸ ︷︷ ︸

B2,t

+ E
[
EX J̄t∼F̂ J̄t

[
ḡt

(
XJt , X J̄t

)]
− EX Īt∼F̂ Īt

[
ḡt

(
XIt , X Īt

)]]
︸ ︷︷ ︸

B3,t

+ E
[
EX Īt∼F̂ Īt

[
ḡt

(
XIt , X Īt

)]]
− E

[
EX Īt∼F Īt

[
¯̄gt

(
XIt , X Īt

)]]
︸ ︷︷ ︸

B4,t

+ E
[
EX Īt∼F Īt

[
¯̄gt

(
XIt , X Īt

)]]
− E

[
EX Īt∼F Īt

[
gt

(
XIt , X Īt

)]]
︸ ︷︷ ︸

B5,t

+ E
[
EX Īt∼F Īt

[
gt

(
XIt , X Īt

)]]
− E

[
EX Īt∼F Īt

[
Ut

(
XIt , X Īt

)]]
︸ ︷︷ ︸

B6,t

+ E
[
EX Īt∼F Īt

[
Ut

(
XIt , X Īt

)]]
− E

[
f
(
XIt , X Īt

)]
︸ ︷︷ ︸

B7,t

. (5.15)
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First, since f and gt follow the same distribution given Dt−1, we have

E
[
f
(
XI∗ , X Ī∗

)]
= E

[
max
xI

EX Ī∼F Ī

[
f
(
xI , X Ī

)]]
= E

[
E
[
max
xI

EX Ī∼F Ī

[
f
(
xI , X Ī

)]
|Dt−1

]]
= E

[
E
[
max
xI

EX Ī∼F Ī

[
gt

(
xI , X Ī

)]
|Dt−1

]]
= E

[
E
[
EX J̄t∼F J̄t

[
gt

(
XJt , X J̄t

)]
|Dt−1

]]
= E

[
EX J̄t∼F J̄t

[
gt

(
XJt , X J̄t

)]]
,

for which we have

B1,t = 0. (5.16)

Next, we will upper-bound B2,t and B4,t. We decompose B2,t into

B2,t = E
[
1 [‖g′t‖∞ ≤ ζt]

(
EX J̄t∼F J̄t

[
gt

(
XJt , X J̄t

)]
− EX J̄t∼F̂ J̄t

[
gt

(
XJt , X J̄t

)])]
− E

∑
i∈J̄t

αt√
|S(i)
t |


+ E

[
1 [‖g′t‖∞ > ζt]

(
EX J̄t∼F J̄t

[
gt

(
XJt , X J̄t

)]
− EX J̄t∼F̂ J̄t

[
gt

(
XJt , X J̄t

)])]
≤ E

[
1 [‖g′t‖∞ ≤ ζt]

(
EX J̄t∼F J̄t

[
gt

(
XJt , X J̄t

)]
− EX J̄t∼F̂ J̄t

[
gt

(
XJt , X J̄t

)])]
− E

∑
i∈J̄t

αt√
|S(i)
t |

+ 2E [1 [‖g′t‖∞ > ζt] ‖gt‖∞]

≤ E
[
1 [‖g′t‖∞ ≤ ζt]

(
EX J̄t∼F J̄t

[
gt

(
XJt , X J̄t

)]
− EX J̄t∼F̂ J̄t

[
gt

(
XJt , X J̄t

)])]
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− E

∑
i∈J̄t

αt√
|S(i)
t |


+ 2ηtE [P [‖g′t‖∞ > ζt|Dt−1]] + 2E [E [1 [‖gt‖∞ > ηt] ‖gt‖∞ |Dt−1]]

= E
[
1 [‖g′t‖∞ ≤ ζt]

(
EX J̄t∼F J̄t

[
gt

(
XJt , X J̄t

)]
− EX J̄t∼F̂ J̄t

[
gt

(
XJt , X J̄t

)])]
︸ ︷︷ ︸

B2-1,t

−E

∑
i∈J̄t

αt√
|S(i)
t−1|


︸ ︷︷ ︸

B2-2,t

+ 2ηtP [‖f ′‖∞ > ζt]︸ ︷︷ ︸
B2-3,t

+ 2E [1 [‖f‖∞ > ηt] ‖f‖∞]︸ ︷︷ ︸
B2-4,t

, (5.17)

where ‖g′t‖∞ := supx∈X ,j∈[d] |∂gt(x)/∂x(j)|, ζt := b′
√

2 log t, ηt := b
√

2 log(t+ 1), and

b′, b > 0 are the constants in Assumptions (5.7) and (5.4). Here, the last equality is

because f and g′t are independently distributed from the same distribution given Dt−1.

Using the independence assumption of the input random variables and integration by

parts, we have

EX J̄t∼F J̄t

[
gt

(
XJt , X J̄t

)]
− EX J̄t∼F̂ J̄t

[
gt

(
XJt , X J̄t

)]
=

|J̄t|∑
i=1

E
X J̄t\J̄t,i

[∫ 1

0

gt

(
xJ̄t,i , X J̄t\J̄t,i

)(
dF J̄t,i(xJ̄t,i)− dF̂ J̄t,i(xJ̄t,i)

)]

=

|J̄t|∑
i=1

E
X J̄t\J̄t,i

[
−
∫ 1

0

∂gt

∂xJ̄t,i

(
xJ̄t,i , X J̄t\J̄t,i

)(
F J̄t,i(xJ̄t,i)− F̂ J̄t,i(xJ̄t,i)

)
dxJ̄t,i

]
≤ ‖g′t‖∞

∑
i∈J̄t

e
(i)

|S(i)
t−1|

, (5.18)

where

e
(i)

|S(i)
t−1|

:= sup
x(i)∈X (i)

∣∣∣∣F (i)(x(i))− F̂ (i)

|S(i)
t−1|

∣∣∣∣
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and E
X J̄t\J̄t,i denotes an expectation operator for abbreviation defined as

E
X J̄t\J̄t,i := E

X J̄t,1∼F J̄t,1 · · ·EX J̄t,i−1∼F J̄t,i−1EX J̄t,i+1∼F̂ J̄t,i+1 · · ·EX J̄t,|Ī|∼F̂ J̄t,|J̄t|
.

Using Inequality (5.18), we have

B2-1,t +B2-2,t ≤ E

1 [‖g′t‖∞ ≤ ζt] ‖g′t‖∞
∑
i∈J̄t

e
(i)

|S(i)
t−1|

− E

∑
i∈J̄t

αt√
|S(i)
t−1|


≤ ζt

∑
i∈J̄t

E

[
e

(i)

|S(i)
t−1|
−
√

2 log t

|S(i)
t−1|

]
(5.19)

Since samples xi ∈ S it−1 for i ∈ J̄t are independently distributed given |S it−1| and F i

is the continuous cumulative distribution function for the assumption, by applying the

Dvoretzky–Kiefer–Wolfowitz inequality [16, 50] conditioned on n = |S it−1|, for ε > 0, we

have

P (i)
n (ε) := P

(
e

(i)

|S(i)
t−1|

> ε
∣∣∣ |S it−1| = n

)
≤ 2 exp (−2nε2).

Define εt,n := ε+
√

(2 log t)/n for ε > 0, and we have

E

e(i)

|S(i)
t−1|
−
√√√√2 log t∣∣∣S(i)

t−1

∣∣∣


= E

1
e(i)

|S(i)
t−1|
−
√√√√2 log t∣∣∣S(i)

t

∣∣∣ ≤ ε


e(i)

|S(i)
t−1|
−
√√√√2 log t∣∣∣S(i)

t

∣∣∣



+ E

1
e(i)

|S(i)
t−1|
−
√√√√2 log t∣∣∣S(i)

t

∣∣∣ > ε


e(i)

|S(i)
t−1|
−
√√√√2 log t∣∣∣S(i)

t

∣∣∣


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E
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e
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t−1|
−
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2 log t
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∣∣∣S(i)
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∣∣∣ = n

](
e
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|S(i)
t−1|
−
√

2 log t

n
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82



≤ ε+
T∑
n=1

∫ ∞
εt,n

(
x−

√
2 log t

n

)
d
(
−P (i)

n (x)
)

≤ ε+
T∑
n=1

−[(x−√2 log t

n

)
P (i)
n (x)

]∞
εt,n

+

∫ ∞
εt,n

P (i)
n (x)dx


≤ ε+

T∑
n=1

(
2εe−2nε2t,n +

∫ ∞
εt,n

1

nx
· 2nxe−2nx2

dx

)

= ε+
T∑
n=1

(
2εe−nε

2
t,n +

[
− 1

nx
· e−nx2

]∞
εt,n

−
∫ ∞
εt,n

1

nx2
· e−nx2

dx

)

≤ ε+ 2ε
T∑
n=1

e−nε
2
t,n +

T∑
n=1

1

nεt,n
e−nε

2
t,n

≤ ε+ 2ε
T∑
n=1

e−nε
2−2 log t +

T∑
n=1

1

nε
e−nε

2−2 log t

= ε+
2ε

t2

∞∑
n=1

e−nε
2

+
1

εt2

T∑
n=1

1

n
e−nε

2

≤ ε+
2ε

t2
· 1

eε2 − 1
− 1

εt2
log(1− e−ε

2

) (5.20)

≤ ε+
2ε

t2
· 1

ε2
+

1

εt2

(
ε2 + log

(
1

eε2 − 1

))
(5.21)

≤ ε+
2

εt2
+
ε

t2
+

1

εt2
log

1

ε2
(5.22)

≤ ε+
2

εt2
+
ε

t2
+

1

εt2
log

(
1

ε2

)
, (5.23)

where we used
∑∞

n=1 x
n/n = − log(1− x) in Equality (5.20) and ex ≥ x + 1 in Inequali-

ties (5.22) and (5.21). By taking the summation over T and combining Inequalities (5.19)

and (5.23), we have

T∑
t=1

(B2-1,t +B2-2,t) ≤
T∑
t=1

ζt
∑
i∈J̄t

(
ε+

2

εt2
+
ε

t2
+

1

εt2
log

(
1

ε2

))
≤ b′m

√
2 log T

(
εT +

π2

3ε
+
π2

6
ε+

π2

6ε
log

(
1

ε2

))
, (5.24)

where m = maxI∈I |Ī|.
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B2-3,t after taking summation over T is upper-bounded because of Assumption (5.4).

T∑
t=1

B2-3,t ≤
T∑
t=1

2ηta
′e−(ζt/b′)2

≤ 2a′b
√

2 log(T + 1)
T∑
t=1

1

t2

≤
π2a′b

√
2 log(T + 1)

3
, (5.25)

where we used monotonic increase of B in the second inequality.

The term B2-4,t is upper-bounded as

B2-4,t = 2E
[∫ ∞

0

1 [1 [‖f‖∞ > ηt] · ‖f‖∞ > z] dz

]
= 2E

[∫ ∞
0

1 [‖f‖∞ > ηt] · 1 [‖f‖∞ > z] dz

]
= 2E

[∫ ηt

0

1 [‖f‖∞ > ηt] dz +

∫ ∞
ηt

1 [‖f‖∞ > z] dz

]
= 2ηtP [‖f‖∞ > ηt] + 2

∫ ∞
ηt

P (‖f‖∞ > z) dz

≤ 2ηtae
−(ηt/b)2

+ 2

∫ ∞
ηt

ae−(z/b)2

dz (5.26)

≤ 2ηtae
−(ηt/b)2

+ 2a

∫ ∞
ηt

z

ηt
e−(z/b)2

dz

= 2ηtae
−(ηt/b)2

+
ab2

ηt
e−(ηt/b)2

=

(
2ηt +

b2

ηt

)
ae−(ηt/b)2

, (5.27)

where we used Assumptions (5.7) and (5.4) in Inequality (5.26). Therefore, by taking

summation over T , we have

T∑
t=1

B2-4,t ≤
T∑
t=1

(
2ηt +

b2

ηt

)
ae−(ηt/b)2
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≤
(

2
√

2 log(T + 1) +
1√

2 log 2

)
ab

T∑
t=1

1

t2 + 1

=
π2ab

√
2 log(T + 1)

3
+

π2ab

6
√

2 log 2
, (5.28)

where we used Inequality (5.27) in the first inequality and the monotonic increase of ηt

in the second inequality.

By combining Inequalities (5.17), (5.24), (5.25) and (5.28), we obtain

T∑
t=1

B2,t ≤
π2ab

6
√

2 log 2
+
π2b(a+ a′)

√
2 log(T + 1)

3

+ b′m
√

2 log T

(
εT +

π2

3ε
+
π2

6
ε+

π2

6ε
log

(
1

ε2

))
(5.29)

Applying the same argument to
∑T

t=1B4,t, we obtain the same bound.

Due to the definition of the acquisition function given Dt−1, we have

B3,t ≤ 0. (5.30)

Next, we upper-bound B5,t. We have

T∑
t=1

B5,t ≤ 2αTE

 T∑
t=1

∑
i∈Īt

1√
|S(i)
t−1|


= 2αTE

 T∑
n=1

d∑
i=1

T∑
t=1

1

[
i ∈ Īt, |S(i)

t−1| = n
]

√
n


= 2αTE

 T∑
n=1

d∑
i=1

1

[⋃T
t=1

{
i ∈ Īt, |S(i)

t−1| = n
}]

√
n

 (5.31)

≤ 2αTE

dmT/de∑
n=1

d∑
i=1

1√
n

 (5.32)
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≤ 2dαT

∫ mT/d+1

0

1√
x
dx

≤ 8b′
√
d(mT + d) log T, (5.33)

where we used monotonic increase of αt in the first inequality. Equality (5.31) is because

events {i ∈ Īt, |S(i)
t−1| = n} for n = 1, . . . , T happen once at most over t = 1, . . . , T .

Inequality (5.32) is because
∑T

n=1

∑d
i=1 1

[⋃T
t=1

{
i ∈ Īt, |S(i)

t−1| = n
}]
≤ mT and 1/

√
n is

monotonically decreasing in n.

To upper-bound the term B6,t, we decomposed it into three terms as

B6,t = E
[
E
[
EX Īt∼F Īt

[
gt

(
XIt , X Īt

)
− gt

(
[XIt ]t, [X

Īt ]t

)] ∣∣∣Dt−1

]]
︸ ︷︷ ︸

B6-1,t

+ E
[
E
[
EX Īt∼F Īt

[
gt

(
[XIt ]t, [X

Īt ]t

)
− Ut

(
[XIt ]t, [X

Īt ]t

)
)
] ∣∣∣Dt−1

]]
︸ ︷︷ ︸

B6-2,t

+ E
[
E
[
EX Īt∼F Īt

[
(Ut

(
[XIt ]t, [X

Īt ]t

)
− Ut(XIt , X Īt))

] ∣∣∣Dt−1

]]
︸ ︷︷ ︸

B6-3,t

. (5.34)

Because f and g′t are independently distributed from the same distribution given Dt−1,

we upper-bound the term B6-1,t after summing over T as

T∑
t=1

B6-1,t ≤
T∑
t=1

d

τt
E

[
E

[
sup

x∈X ,j∈[d]

∣∣∣∣∂gt(x)

∂x(j)

∣∣∣∣ | Dt−1

]]

=
T∑
t=1

d

τt
E

[
E

[
sup

x∈X ,j∈[d]

∣∣∣∣∂f(x)

∂x(j)

∣∣∣∣ | Dt−1

]]

=
T∑
t=1

d

τt
E

[
sup

x∈X ,j∈[d]

∣∣∣∣∂f(x)

∂x(j)

∣∣∣∣
]

≤ π2

12
, (5.35)

where we applied the same argument as Inequality (5.10) in the last inequality.

Since gt(x)−Ut(x) conditioned on Dt−1 follows N (−β1/2
t σt−1(x), σ2

t−1(x)), by applying
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the same argument as Inequality (5.12), we have

T∑
t=1

B6-2,t ≤
T∑
t=1

E[E[1[gt([X
It ]t, [X

Īt ]t)− Ut([XIt ]t, [X
Īt ]t) ≥ 0]

· (gt([XIt ]t, [X
Īt ]t)− Ut([XIt ]t, [X

Īt ]t)) | Dt−1]]

=
T∑
t=1

E[E[
∑
x∈[X ]t

1[gt(x)− Ut(x) ≥ 0] · (gt(x)− Ut(x)) | Dt−1]]

≤
T∑
t=1

E[E[
∑
x∈[X ]t

1[f(x)− Ut(x) ≥ 0] · (f(x)− Ut(x)) | Dt−1]]

≤
T∑
t=1

∑
x∈[X ]t

1√
2π|[X ]t|t2

≤
√

2π3

12
. (5.36)

Since f and (XIt , X Īt) are independent given Dt−1, we upper-bound B6-3,t as

T∑
t=1

B6-3,t ≤
T∑
t=1

E
[
E
[∣∣∣f([XIt ]t, [X

Ī ]t)− f(XIt , X Īt)
∣∣∣ | XIt , X Īt ,Dt−1

]]
+

T∑
t=1

E
[
β

1/2
t (σt−1([XIt ]t, [X

Īt ]t)− σt−1(XIt , X Īt))
]

≤
T∑
t=1

E

[
d

τt
sup

x∈X ,j∈[d]

∣∣∣∣∂f(x)

∂x(j)

∣∣∣∣
]

+
T∑
t=1

β
1/2
t E

[
σt−1([XIt ]t, [X

Īt ]t)
]

≤ π2

12
+

√
2TβTγT

log(1 + σ−2)
, (5.37)

where we applied the same argument as Inequalities (5.10) and (5.14) in the last inequality.

By combining Equation (5.34) and Inequalities (5.35), (5.36), and (5.37), we have

T∑
t=1

B6,t ≤
π2

6
+

√
2π3

12
+

√
2TβTγT

log(1 + σ−2)
(5.38)
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Since f and (XIt , X Īt) given Dt−1 are independent, by applying the same argument

as (5.14) to B7,t over T , we have

T∑
t=1

B7,t ≤

√
2TβTγT

log(1 + σ−2)
. (5.39)

Finally, we combine Equation (5.15) and Inequalities (5.16), (5.29), (5.30), (5.33),

(5.38), and (5.39), and we have

BayesRegret(T ) ≤π
2

6
+

√
2π3

12
+

π2ab

3
√

2 log 2

+
2π2(a+ a′)′b

√
2 log(T + 1)

3
+ 8b′

√
d(mT + d) log T

+ 2b′m
√

2 log T
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εT +

π2

3ε
+
π2

6
ε+

π2

6ε
log

(
1

ε2
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+ 2

√
2TβTγT

log(1 + σ−2)

(5.40)

By setting ε =
√

log T/T , we have
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2

6
+

√
2π3

12
+

π2ab

3
√

2 log 2
+

√
2π2b′m

3

log T√
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+
2π2(a+ a′)′b

√
2 log(T + 1)

3
+

2π2b′m
√

2T

3
+
π2b′m

√
2T

3
log

(
T

log T

)
+ 2b′m

√
2T log T + 8b′

√
d(mT + d) log T + 2

√
2dTβTγT

log(1 + σ−2)

∈ O
(√

dT log T (
√
γT +

√
m log T )

)
, (5.41)

which completes the proof. �
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5.5 Experiments

We demonstrate the effectiveness of the proposed algorithms for the known and unknown

input distributions using a set of test functions and real-world datasets.

5.5.1 Comparing Methods

We compare the proposed algorithms to four baselines: DropoutBO, WrapperBOs,

RandomBO, and Random.

DropoutBO [45] was originally proposed for the high-dimensional BO, and it se-

quentially determines a partially specified query by performing optimization over a low-

dimensional input domain. In each iteration, DropoutBO randomly selects It ∈ I and

then performs the standard BO over X I to determine xIt .

WrapperBOs performs the standard BO for each I ∈ I. It applies |I| GP models

{GPI}I∈I to a set of datasets {{(xIi , yi)}ti=1}I∈I , respectively, where xi = (xIi , X Īi). It

determines the next control variables as xIt = arg maxI∈I,xI∈X IaI(xI), where aI : X I → R

is the acquisition function associated with GPI . WrapperBOs can be considered a

wrapper method [26] in the literature of feature selection. This method is computationally

inefficient because it treats each I ∈ I independently and repeats the fitting of the GP

models |I| (which is possibly an exponential number) times.

RandomBO directly uses the standard BO method with a randomly determined

control variable set. First, it determines the next d-dimensional input as in the standard

BO, xt = arg maxx∈Xa(x). Then, It is randomly selected from a uniform distribution

over I. Next, it queries for xItt .

Random simply determines the next control variables according to a uniform distri-

bution.

We use the Gaussian kernel function for GP models and employ Thompson sampling

for the methods.
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5.5.2 Approximation of Sample Paths

All methods except Random use a sample path gt ∼ GP(µt−1, kt−1). By approximating

the GP with a finite-dimensional Bayesian linear model, we can efficiently optimize gt [27].

Bochner’s theorem [61] guarantees that for any continuous shift-invariant kernel k(x− y),

its Fourier transform is a non-negative measure k̂(ω)/α, where α =
∫
ω
k̂(ω)dω denotes a

normalization constant. The principle of random Fourier features [59] is to approximate

the kernel function as

k(x− y) = αE[e−iω
>(x−y)] ≈ Φ(x)>Φ(y),

where

Φ(x) =

√
2α

M



sin (ω>1 x)

cos (ω>1 x)
...

sin (ω>M/2x)

cos (ω>M/2x)


and {ωi}M/2

i=1
i.i.d.∼ k̂(ω). Then, the GP is approximated with an M -dimensional Bayesian

linear model. The sample path is approximated as

gt(x) ≈ Φ(x)>θt, θt ∼ N (µ̃t, Σ̃t),

where µ̃t = A−1Φ (Xt−1)> Yt−1, Σ̃t = σ2A−1, A = Φ (Xt−1)>Φ (Xt−1) + σ2I, Φ (Xt−1) =

(Φ (x1) , . . .Φ (xt−1))> ∈ R(t−1)×M , and Yt−1 = (y1, . . . , yt−1)>. The random Fourier fea-

tures enable us to deal with a large number of samples. In the experiments, we set

M = 1000.
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5.5.3 Experiments Using a Test Function with Fixed Parame-

ters

In these experiments, we study the cases of the known and unknown input distributions

where parameters are fixed to the ground-truth ones. We use the Branin-Hoo func-

tion [58] (Figure 5.1(left)) over a two dimensional input domain as a black-box target

function without observation noise. We model a joint distribution of input variables with

a Gaussian distribution N (µ,Σ) truncated over [0, 1]2, where we set µ = (0.5, 0.5)> and

Σ = ((0.01, 0)>, (0, 0.05)>) (Figure 5.1 (right)). We set a family of control variable sets

as I = {{1}, {2}}. The Branin-Hoo function has three minimum points (red dots in

Figure 5.1 (left)); however, the optimal control variable is different (red line in Figure 5.1

(right)). We fix the hyperparameters of the kernel function to those obtained by the type I

I maximum likelihood estimation using thousands of data points as the ground-truth ones.

TSPSQ-unknown for the unknown input distribution has a hyperparameter c > 0 in

αt = c log t in Equation (5.6) to control the exploration-exploitation trade-off in the dis-

tribution estimation. To select a practical value for the unknown input distribution case,

we conduct a sensitivity experiment on c. We repeat each experiment 30 times and report

the average value.

The results for the known input distribution case are shown in Figure 5.2, where the

solid lines and shaded areas are the means and standard deviations for 30 trials, respec-

tively. TSPSQ-known achieved a small regret in the early iterations and outperformed

the baselines by finding the nearly optimal solution. Figure 5.3 (left) shows the cumulative

regret at the 100th iteration of TSPSQ-unknown with different values of hyperparam-

eter c for the unknown input distribution case. We observed that the smaller c is better

than the larger c in the mean for 30 trials. In particular, TSPSQ-unknown with c = 0.12

worked the best and found the nearly optimal solution, as shown in Figure 5.3 (right)

by controlling the balance between exploration and exploitation in the distribution es-

timation. The result for c = 0.12 is competitive with that of TSPSQ-known for the

91



0.0 0.2 0.4 0.6 0.8
x(1)

0.0

0.2

0.4

0.6

0.8

x(2
)

x *

xI *

0.0 0.2 0.4 0.6 0.8
x(1)

0.0

0.2

0.4

0.6

0.8

x(2
)

Figure 5.1: Branin-Hoo function (left) and the input probability density function(right).
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Figure 5.2: Cumulative regret for the Branin-Hoo function with the known input distri-
bution.

known input distribution. The larger c values suffered from the higher regret because

they focused on exploration; however, the result is still better than the baselines. The

variance for the smaller c values was larger because it focused only on exploitation.

5.5.4 Experiments Using Test Functions

Next, we conduct numerical simulations using two test functions: a cosine mixture func-

tion [2] over a two-dimensional domain and the Rosenbrock function [58] over a four-

dimensional domain. We model a joint distribution of input variables with a Gaussian

92



10 3 10 2 10 1 100 101 102 103

Hyperparameter

12

14

16

18

20

22

24

26

Re
gr

et
 a

t 1
00

th
 It

er
at

io
n

0 20 40 60 80 100
Iterations

0

5

10

15

20

25

30

Cu
m

ul
at

iv
e 

Re
gr

et

0.001
0.01
0.12
1.27
13.7

Figure 5.3: Cumulative regret at 100th iteration (left) and the cumulative regret over the
iterations (right) of TSPSQ-unknown with different hyperparameters c for the Branin-
Hoo function with the unknown input distribution.

distribution N (µ,Σ), where we set µ = (0.7, 0.7)>, Σ = ((0.01, 0)>, (0, 0.05)>) for the

cosine mixture function and µi = 0.7, Σi,i = 0.01,Σi,j|i 6=j = 0, i, j ∈ [4] for the Rosen-

brock function. We set the observation variance σ2 = 10−3 for both functions, following

Hernández-Lobato et al. [27]. The hyperparameters of the kernel functions and the pa-

rameter of the observation noise are learned by the type II maximum likelihood estimation

every 10 iterations. According to the results in Section 5.5.3, we set c = 0.12 for TSPSQ-

unknown for the unknown input distribution case. The other settings are the same as

in Section 5.5.3.

Figures 5.4 and 5.5 show the cumulative regret for the known and unknown input dis-

tribution cases for the cosine mixture function and the Rosenbrock function, respectively.

Note that the performance of the baselines does not change for cases. The proposed

algorithms, TSPSQ-known and TSPSQ-unknown, outperformed the baselines and

achieved the small regret. They finally yielded the nearly optimal solutions, while the

baselines increased their cumulative regrets linearly. TSPSQ-unknown is again com-

petitive with TSPSQ-known although it is not given the ground-truth input distribu-

tion. This result might be because the error in the function estimation is dominant in the

overall error than the error in the distribution estimation for TSPSQ-unknown. The

upper bound of TSPSQ-unknown in Theorem 3 may illustrate this result. In the upper
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Figure 5.4: Cumulative regret for the cosine mixture function.
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Figure 5.5: Cumulative regret for the Rosenbrock function.

bound, the first term
√
γT ∈ O

(
(log T )(d+1)/2

)
corresponding to the function estimation

is larger than the second term
√
m log T corresponding to the distribution estimation in

growth rate.

5.5.5 Experiments Using Real-World Datasets

Finally, we conduct experiments using two real-world datasets: the airfoil self-noise

dataset1 and the word similarity dataset [68], which is a set of answers by 10 workers

1https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
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to 30 word pair similarity tasks in crowdsourcing as shown in Figure 5.6. Using the airfoil

self-noise dataset, we aim to minimize airfoil self-noise via 5 input variables including

angle of attack and chord length. Using the word similarity dataset, we aim to find good

workers whose answers are accurate via 10 input variables. The answer in the dataset is

given as an integer from 0 to 10. We use randomly selected 10 answers as the input vari-

ables. For the output variable, we calculate the negative mean of the absolute difference

between the remaining 20 answers and the true answers so that the good workers have

the high output value. We set a family of control variable sets I as a set of combinations

of 2 of 5 input variables for the airfoil self-noise dataset and a set of combinations of 5 of

10 input variables for the word similarity dataset. To reduce the computational cost, we

randomly reduce the size of the family to 10 for the word similarity dataset. The discus-

sion on a large |I| is found in Section 5.3.2. For these datasets, the ground-truth functions

and the ground-truth input distributions are unknown and only available through noisy

observations. Output data corresponding to the input points we query for is not always

available. Therefore, we substitute a posterior mean function of a GP obtained by learning

each dataset as each ground-truth function2. The observation noise is also set according

to the learned parameter. For a proxy for the ground-truth input distributions, we apply

kernel density estimation with the Gaussian kernel to the datasets, whose bandwidth is

obtained by the median heuristic [20].

Figures 5.7 and 5.8 illustrate the cumulative regret for the known and unknown in-

put distribution cases for the airfoil self-noise function and the word similarity function,

respectively. Both TSPSQ-known and TSPSQ-unknown performed better than the

baselines. In the early iterations, there was no significant difference in the regret of each

method, but the proposed algorithms could keep their regrets small after the 20th itera-

tion in Figure 5.7 and after the 30th iteration in Figure 5.8. TSPSQ-unknown is again

competitive with TSPSQ-known in these experiments, possibly because of the the more

difficult function estimation than the distribution estimation, as discussed previously.

2This setting is common in real-world data experiments in the BO literature [27].
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Figure 5.7: Cumulative regret for the airfoil self-noise function.

5.6 Related Work

There is a large body of literature on BO. Here, we primarily focus on variants of the

problem settings of BO rather than specific solutions and techniques.

BOPSQ is related to BO where the objective is represented as an expected value

of a black-box function f with respect to some random variables. One instance is BO

with noisy inputs [55], where an input x is perturbed into x̃ and the objective is de-

fined as maxx∈X Ex̃[f(x̃) | x]; however, Oliveira et al. [55] handled the usual input

queries with input noise but not partially specified queries. Another instance is BO

with environmental variables [83], where a black-box function takes control variables

x and random variables W , called environmental variables, as input. The objective

is defined as the expected value of the black-box function with respect to the envi-

ronmental variables, maxx∈X EW [f(x,W )]. This setting corresponds to BOPSQ when

I = {I}, I ⊂ [d], 0 < |I| < d, where x and W are considered control variables and the

uncontrol variables, respectively. When |I| > 1 in BOPSQ, the feature selection problem

appears, and the learner is required to consider the exploration-exploitation trade-off in

the distribution estimation.

The most related work is causal bandit [43], in which a learner considers how to
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Figure 5.8: Cumulative regret for the word similarity function.

intervene in a causal model. In the problem setting, a causal model is provided as a

directed acyclic graph over random variables X ∈ {0, 1}d and Y ∈ R. In each iteration,

the learner specifies values of any subset of X and then observes the remaining subset of X

and Y . The objective is to maximize the expectation of Y conditioned on specified values.

The primary difference is that BOPSQ deals with infinite input spaces as the Gaussian

process bandit, while the causal bandit does finite input spaces as the multi-armed bandit.

Other related works are multi-task BO [72] and contextual Gaussian process bandit

optimization [41], where a black-box function returns an output value according to in-

put variables and a task index or context information. The objective is described as

maxx∈X
∑

w f(x,w), where w indicates the task index or context information. Here, x

and w can be regarded as control variables and uncontrol variables, respectively, when

the family of control variable sets is always fixed to one set, |I| = 1. However, in these

settings, neither the input variable selection nor the distribution estimation is performed,

and the learner determines x after w is observed.

BOPSQ is also related to the feature selection problem [26], which is the task of

selecting a subset of features that are most relevant to an output. In BOPSQ, the selection

of a control variable set I ∈ I corresponds to feature selection. Chen et al. [12] proposed a

method that jointly optimizes the objective and selects features for high-dimensional BO
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where it is assumed that only a subset of input variables are associated with a black-box

function. Further, Li et al. [45] dealt with high-dimensional BO and their approach is

performing optimization only with respect to randomly chosen features. Random values

or the values of the input variables with the best function value so far are used as the

values of the unchosen features. These methods operate in the standard BO setting, and

neither handle partially specified queries nor consider input distribution.

5.7 Conclusion

BO is a promising approach for optimizing an expensive-to-evaluate black-box function.

However, the existing BO frameworks can not deal with scenarios where it is difficult

to specify all values of input variables. We proposed BOPSQ, which is a novel problem

setting that utilizes partially specified queries. In BOPSQ, unlike the standard BO setting,

a learner specifies only the values of some input variables, and the values of the unspecified

input variables are randomly determined according to a known or unknown distribution.

For the known and unknown input distribution cases, we proposed the algorithms based

on posterior sampling, TSPSQ-known and TSPSQ-unknown. Further, we derived

their regret upper bounds that are sublinear for the popular kernels. In the experiments,

we demonstrated the effectiveness of the proposed algorithms using the test functions and

the real-world datasets.

In BOPSQ, uncontrol variables are sampled from a conditional distribution described

by X Ī ∼ P (X Ī | XI = xI). For this sampling, we may consider another scenario: a

causal intervention in a directed acyclic graph over random variables [43], described by

X Ī ∼ P (X Ī | do(XI = xI)). If the input distribution is neither known nor independent,

the intervention scenario would differ from our scenario.

One future direction is to consider the cost of selecting a control variable set [73].

This investigation would be relevant to real-world scenarios, where specifying values of

more control variables is more costly. The developments of BOPFQ algorithms for best-

99



arm identification and parallelized function evaluation should also be investigated in the

future. For cases where the input distribution is unknown, TSPSQ-unknown assumes

independent input distribution. This assumption may be too strong in some real-world

scenarios. Even if the theoretical performance cannot be ensured, it is essential to develop

algorithms that relax this assumption.
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Chapter 6

Conclusion

In this dissertation, we addressed the learning from small data, which is a difficult problem

because of the small amount of information available from the data. The approach in a

broader sense is the use of external data other than the original small training data; this

approach is further classified into two depending on the type of external data:

• Auxiliary data: Auxiliary data is data that can not be directly used for training

machine learning models but is useful for that purpose. GD, which is one of the

frameworks to exploit auxiliary data, extracts information from auxiliary data via

a teacher model to train a student model.

• Additional data: Additional data, which is directly used to train machine learning

models, is acquired by paying some cost. In the black-box optimization problem,

the trade-off between exploration and exploitation needs to be addressed.

We proposed systematic methodologies that explore and exploit useful information to

train machine learning models better in three research topics. Those methodologies are

based on approaches using such auxiliary data and additional data.

We proposed the framework that improves prediction models by exploring and exploit-

ing auxiliary data in the long-term prediction of small time-series data. The advantage

of the framework is that it does not requires a user to prepare auxiliary data, which is
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often difficult or costly. The key idea is the exploitation of middle-time data between the

input time and the prediction time as auxiliary data based on the property of long-term

prediction. Then, a prediction model is trained based on the GD framework using the

middle-time data. The experimental results investigating the effects of the middle-time

data at different times indicated that middle-time data relatively close to the input time

performed well. The experimental results using synthetic data and real-world data showed

that the proposed framework improved prediction models especially when the number of

input dimensions was high.

Next, we extended change-point detection to an additional data setting, ACPD, where

a learner can obtain additional data. We proposed the general meta-algorithm that can

be applied to different types of data and change-points. Our idea was considering ACPD

as a black-box optimization problem of an unknown change score function based on an

existing change-point detection approach. A BO technique was applied to change scores

computed by a change-point detection technique to determine the data to be acquired

next. The formulation allows a user to change a kernel function and change score definition

based on the types of data and change-point of interest. The proposed meta-algorithm

outperformed the baselines by balancing exploration and exploitation of information in

the experiments using synthetic data and real-world data such as the phase transition

data and the seafloor depth data.

ACPD and the standard BO problems assumed that the input query is deterministic: a

learner can specify the values of all input variables. We considered the novel BO problem

called BOPSQ where the input query is random. In particular, a learner can specify

the values of some input variables, and the values of unspecified variables are randomly

determined according to a known or unknown input distribution. We proposed the two

algorithms based on Thompson sampling for scenarios where the input distribution is

known and unknown. The algorithm for the unknown input distribution case employs a

multi-armed bandit approach to appropriately explore the input distribution. We derived

their regret upper bounds, which are sublinear for the popular kernel functions. We

102



demonstrated the effectiveness of the proposed algorithms using the synthetic function

and the real-world datasets.

From a broader perspective, the underlying problem is the justification of assumptions

for the use of methods in real-world scenarios. In the approach using auxiliary data, the

crucial problem is checking if auxiliary data is truly effective for the target task. We

introduced that auxiliary data is possibly helpful for training machine learning models.

However, when it is not relevant to the task, it would rather deteriorate the model.

Further, the experimental results in Chapter 3 showed that the middle-time data was

not effective for the easy problems. Existing approaches using auxiliary data assume

that auxiliary data has a relationship to the target data, which can be represented as

a graphical model. Causal discovery methods [29] that estimate the graphical model of

random variables can be possibly used to check if auxiliary data works according to the

assumption. However, causal discovery with small data itself can not be easily solved. In

the approach using additional data, model misspecification is a large problem. Although

the regret upper bound of a BO method is sublinear, it is guaranteed only if the unknown

function follows a GP: smooth and no jump points. However, real-world functions of

interest often do not meet the assumptions. When a model misspecification occurs, a BO

method may perform worse than random sampling. A goodness of fit test [3] can determine

if the specified model fits data well. However, like causal discovery, the goodness of fit test

with small data is itself a difficult problem and requires another assumption. According to

the above consideration, there may not exist a general solution without any assumption.

However, from an application point of view, it may be enough that methods work well in

real-world scenarios, and approaches such as transfer learning [57] and meta-learning [17]

aim at this by generalizing across different tasks. Incorporating other types of knowledge

such as physical systems into models may be another promising approach.
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