
Doctoral Thesis

A Study of NonInteractive
ZeroKnowledge Proof Systems in a

BlackBox Framework

Supervisor: Masayuki Abe & Mehdi Tibouchi

Department of Social Informatics
Graduate School of Informatics

Kyoto University
Japan

Kyosuke Yamashita

A Study of NonInteractive
ZeroKnowledge Proof Systems in a

BlackBox Framework

Kyosuke Yamashita

Abstract
This dissertation studies the limitation of noninteractive zeroknowledge proof sys
tems (NIZKs) in a blackbox framework.

A blackbox construction is one of the most wellknown methodology to inves
tigate the essential characteristics of cryptographic primitives. In this methodology,
we are given an oracle that implements a cryptographic primitive, and consider if we
can construct another primitive by using the oracle. Because an underlying primitive
is given as an oracle, if there is a blackbox construction of a primitive Q based on
a primitive P , it means that we can achieve Q from P no matter how P is imple
mented. However, if there is no such a blackbox construction, it indicates that there
is no universal “compiler” that compiles P to Q, and thus we might have to rely on
algebraic structures to construct Q based on P .

An NIZK is a cryptographic primitive between two parties a prover and a verifier
who share a statement of an NPlanguage. The prover, who is the only one possessing
a secret (or a witness), convinces the verifier that he knows the secret by sending a
single message. NIZKs are fundamental building blocks in cryptography, and are
used in many applications such as electronic voting systems and blockchains. So far,
NIZKs have been developed for each assumption such as the existence of a trapdoor
permutation or pairing.

This dissertation investigates the limitation of NIZKs by treating them as oracles.
When we use an NIZK as a building block in a certain application, it is often required
that the NIZK supports a specific language that is convenient for the construction,
which typically contains a conjunctive/disjunctive relation. Furthermore, we often
attempt to extend a language that an NIZK proves, if we want to construct an NIZK
for an NPcomplete language. We consider the problem of extending a language that
an NIZK proves to a language that includes a conjunctive/disjunctive relation in a
blackbox manner, and show negative results on it.

In the first result, we simplify the NIZK oracle in the existing blackbox frame
work, and demonstrate that such a simplification does not affect the capability of the
framework. An involved oracle in a blackbox framework may cause complicated
proofs. Therefore, the newly proposed oracle makes the framework easy to use.

In the second result, we consider the problem of constructing an NIZK that proves
the secret equality behind two distinct NP statements, which is useful in theory and
practice. Namely, we show that, given NIZKs for languagesL andL′, it is impossible
to construct an NIZK that proves the equality of secrets of L and L′ in a blackbox
manner. This result indicates that standard NIZKs are not sufficient to construct an
NIZK for the secret equality.

In the final result, we investigate the limitation of an NIZK that employs the
commitandprove methodology (CPNIZK). CPNIZKs are used in real world ap
plications such as cryptocurrency, and it is known that we can construct an NIZK
for the secret equality based on CPNIZKs. However, we show that, even if we are
given CPNIZKs for certain languages, it is impossible to construct an NIZK for a
language that includes a disjunctive relation (i.e., the OR relation) in a blackbox
manner. Therefore, we conclude that we should rely on algebraic structures if we
want to enhance the power of NIZKs in terms of languages that they can prove.

These results indicate the hardness of using NIZKs in an abstract way. We con
jecture that this is because the capability of an NIZK is determined by the assumption
that the NIZK is based on, and the language that the NIZK proves. Therefore, NIZKs
will develop for each assumption. In particular, if a new assumption is proposed in
the future, we should construct an NIZK by exploiting the characteristic of the as
sumption.

Acknowledgements

First and foremost, the author would like to show his greatest appreciation to his
supervisors, Professor Masayuki Abe and Professor Mehdi Tibouchi. None of the
results in this dissertation was accomplished without their helpful and patient sup
ports. The author would like to thank to his advisors, Professor Akinori Kawachi,
Professor Masatoshi Yoshikawa and Professor Shigeo Matsubara for giving insight
ful comments. The author is grateful to Dr. Goichiro Hanaoka and Dr. Takahiro
Matsuda, who gave him an opportunity to work in National Institute of Advanced
Industrial Science and Technology as a research assistant.

Contents

1 Introduction 1
1.1 NonInteractive ZeroKnowledge Proof System 1
1.2 BlackBox Construction . 4
1.3 Related Work . 5
1.4 Summary of Contributions . 6

2 Preliminary 9
2.1 Basic Notation . 9
2.2 BlackBox Construction and Separation 10
2.3 Cryptographic Primitives . 14
2.4 The NaorYung Construction . 18

3 Simplification of The Augmented BlackBox Framework 20
3.1 Introduction . 20

3.1.1 Related Work . 21
3.2 The WI Oracle by Brakerski et al. 22
3.3 Simplified Proof System Oracle 24
3.4 The NaorYung Construction . 28
3.5 Impossibility of a KA from a OWF 28

3.5.1 Previous Separation Result 29
3.5.2 Our Result . 30

3.6 Conclusion And Future Work . 32

4 Impossibility of NIZKs for Plaintext Equality 33
4.1 Introduction . 33

4.1.1 Related Work . 34
4.1.2 Technical Overview . 35
4.1.3 Comparison to the Results of Abe et al. 35

4.2 Basic Notation . 36
4.3 An NIZK Oracle for a Single Ciphertext Language 38
4.4 Separation . 42

i

4.5 Conclusion and Open Question . 52

5 Limits on The Power of CommitandProve NIZKs 53
5.1 Introduction . 53

5.1.1 Related Work . 54
5.2 Basic Notation . 54
5.3 A CPNIZK Oracle . 57
5.4 Separation . 61
5.5 Conclusion and Future Work . 72

6 Conclusion 73

A Publications List 75

Bibliography 77

ii

Chapter 1

Introduction

1.1 NonInteractive ZeroKnowledge Proof System
In our society, there are often conflicts between identity verification and privacy pro
tection. For instance, when voting, voters should be authenticated, but individual
must not be identified, and when one buys something with age limit, his age should
be certificated, but it is not necessary to reveal his exact age. The same situation hap
pens in information systems. There is a case that one wants to authenticate himself to
use an online service by sending his password, but does not want to reveal the pass
word itself. In either case, a sender, who possesses a private information, certifies it
without disclosing the secret itself.

A zeroknowledge proof system (ZK) [1] and a noninteractive zeroknowledge
proof system (NIZK) [2] are cryptographic primitives that realize the above men
tioned requirements. They constitute two parties a prover and a verifier who share a
certain problem (i.e., a statement of an NPlanguage). The prover in ZK, who is the
only one possessing a secret (or a witness), proves his knowledge about the secret
with interacting the verifier. The security requirements of a ZK are that a malicious
prover cannot cheat a verifier on an invalid statement (which is called the soundness),
and the interaction does not leak anything about the secret apart from the prover’s
knowledge about the secret (which is called the zeroknowledge property).

An NIZK is a variant of ZKs which requires only a single message from a prover.
As the proof is done by a single message, NIZKs are considered more efficient and
practical than ZKs. In the aforementioned scenario, the proof can be completed even
if it is difficult for a sender (i.e., a prover) and a verifier to keep communicating
online. That is, once the prover sends a proof, he can be offline and wait for the the
result. Therefore, NIZKs could provide us more efficient and flexible applications.

The construction of an efficient NIZK was a longstanding open problem. How
ever, Groth and Sahai [3] and Groth et al. [4] proposed a pairingbased technique to

1

construct an efficient and practical NIZK. Recently, more efficient NIZKs are pro
posed [5, 6], and are used in electronic votings [7, 8, 9], electronic auction [10, 11, 12],
and cryptocurrencies such as ZCash [13] and Ethereum [14]. We introduce the fol
lowing two examples as concrete applications of NIZKs.

Example 1: Contingent Payment One of the most notable applications of NIZKs
in blockchain is the contingent payment [15, 16, 17], which follows the above sce
nario [17]: Alice wants to know the answer of a sudoku puzzle, and she broadcasts a
message that she will pay whoever provides her the answer. Bob knows the answer,
and wants to sell the solution. However, there is a problem; they do not trust each
other. This problem can be resolved by using an NIZK as follows: First, Bob en
crypts the solution m by a symmetric key encryption scheme to obtain a ciphertext
c = Enc(sk,m) where sk is a symmetric key, and randomize the secret key by using
a hash function H to obtain h = H(sk). Then, Bob sends a proof that shows “the
plaintext of c is the solutionm” ∧ “the preimage of h is the secret key that is used to
obtain c.” If Alice is convinced by the proof, then she sends a transaction that says
she will pay whoever provides her the secret key sk to blockchain. In this scenario,
the NIZK plays essential role to realize the fair trade between Alice and Bob. In fact,
the NIZK proves the following language that shows the equality of secrets:

L = {c, h | ∃m, sk, sk′ s.t. c = Enc(sk,m) ∧ h = H(sk′) ∧ sk = sk′}.

Example 2: Electronic Voting Another important example is an electronic voting
that uses an NIZK and a homomorphic encryption scheme. A homomorphic encryp
tion scheme is an encryption scheme that allows a computation on encrypted data,
such as Enc(m) + Enc(m′) = Enc(m+m′) (note that an encryption scheme should
take a key, but we here omit it for simplicity). Suppose that we are having a majority
voting, where a voter sends 1 if yes, 0 otherwise, with encrypting the value by the
encryption scheme. The voting organizer can calculate the some of votes due to the
homomorphic property, but cannot detect whether a voter votes 0 or 1 due to the se
curity of the encryption scheme. However, if a malicious voter encrypts, say, 100
and send the ciphertext, then it obviously cancels 100 yes votes. Therefore, it should
be guaranteed that a vote is either 0 or 1, and an NIZK for the following language
could be used for this purpose:

L = {c |c = Enc(0) ∨ Enc(1) }.

Comparison with Other Methodologies

We introduce existing methodologies that could substitute NIZKs, and discuss the su
periority of NIZKs. One possible solution for the conflict between authentication and

2

privacy is a multiparty computation (MPC). An MPC is a cryptographic primitive
where multiple parties possess their own secrets, and compute something (such as the
summation of the secrets) based on the secrets without revealing them. This could
provide a good solution for electronic votings and electronic auctions. However, it is
often the case that anMPC becomes complicated one. That is, malicious parties could
collude each other, and manipulate the computational result. Therefore, we should
model such an involved adversary to prove the security, which is a cumbersome task.
We note that, assuming the absence of adversaries might make the situation simpler,
but it is far from realistic.

Recently, trusted execution environment (TEE) is gathering attention, such as
Intel SGX [18] and Arm TrustZone [19]. TEE offers an isolated environment that
an important process runs independent of other process, and guarantees the correct
computation. As TEE guarantees secure computations and forces honest behavior,
it provides many cryptographic applications. However, the problem is that, we must
trust the hardware suppliers. Therefore, if we incorporate these hardwares into an in
formation system, we should construct the system to be less dependent on this device.

Compared with these technologies, NIZKs provide simpler models and theoreti
cal security. Note that NIZKs are modeled in several ways. It is known that we can
not construct an NIZK for a nontrivial language in the standard model [20]. There
fore, several models have been proposed such as the common reference string (CRS)
model [21], the hidden bit model [22], and the random oracle model [23, 24]. The
CRS model is a model that a prover and a verifier have access to a common reference
string (CRS) generated by a trusted third party, and the proof and the verification are
done by using the CRS. It is known that we can construct NIZKs for NPcomplete
language in the CRSmodel [4, 5, 25, 26, 27], where all constructions are based on cer
tain assumptions. The CRSmodel is the most practical one, while it requires a trusted
third party. As pointed out by Bellare and Naor [25], it is necessary to use a doubly
enhanced trapdoor permutation to realize the hidden bit model, which is a slightly
stronger primitive. When we implement an NIZK in the random oracle model, we
should use a hash function instead of a random oracle. However, we do not know
if there exists a hash function that perfectly simulates a random oracle (note that the
existence of such a hash function immediately indicates P ̸=NP). Therefore, the CRS
model is the most widely used model. Note that the CRS model can be classified
in terms of the way of the CRS generation such as the preprocessing model [28],
the designated verifier/ prover model [29], the quasiadaptive NIZK [30], the bare
publickey model [31, 32], the helper model [33], the multistring model [34], and
the subversion resilience NIZK [35]. While there are variety of NIZKs, we only treat
NIZKs in the standard CRS model in this dissertation.

We argue that, by using an NIZK, we can prove the security of an information
system easily, and reduce the dependence of the security on specific hardware. Sup
pose that we want to construct an NIZK that a CRS is reusable (i.e., a multitheorem

3

NIZK). In such a construction, the CRS generation is a onceforall task. Therefore,
we can useMPCs or TEE to generate a CRS, and after that we can prove something by
relying only on the property of an NIZK whose security is theoretically guaranteed.
Therefore, NIZKs could provide a better solution for the conflict between authen
tication and privacy, while we cannot eliminate the dependence on a trusted third
party.

1.2 BlackBox Construction
One of the central goal in theoretical cryptography is to uncover relationships between
cryptographic primitives. The seminal work by Impagliazzo and Rudich [36] formal
ized the problem of constructing a “highlevel” primitive with assuming the existence
of a “lowlevel” primitive. That is, if there exists a “compiler” that compiles a prim
itive P to another primitive Q, it is said that there exists a blackbox construction
of Q based on P . In a blackbox construction, an underlying primitive P is given
as an oracle, which satisfies syntactical and security definitions of P . Therefore, a
blackbox construction of Q from P indicates that P is sufficient for Q regardless
of the assumption that P is based on (e.g., integer factoring or lattice based assump
tion). This line of research has been successful and we know many positive results
for blackbox constructions. For instance, it is known that a oneway function can be
used to construct the following primitives: a signature scheme [37], a pseudorandom
generator [38], and a commitment scheme [39] (in fact, these primitives are equiva
lent to a oneway function). Further, more involved primitives have been studied in
a blackbox manner. For instance, a trapdoor permutation can be used to construct a
public key encryption scheme [40], or a private information retrieval [41].

On the other hands, showing the absence of a blackbox construction is also an
important direction. We can expand our knowledge of the conditions for a primitive
to exist if we show the impossibility of a blackbox construction of the primitive
based on another primitive. The work [36] showed that there is no (fully) black
box construction of a key agreement protocol based on a oneway functions. They
demonstrated an adversary in the random oracle model that breaks the security of a
key agreement protocol with polynomial many queries to the random oracle. This is
sufficient to separate a oneway function and a key agreement protocol, as a oneway
function exists in the random oracle model. This line of research has been successful,
and a large number of followup works are seen in the literature. For instance, we
know that the following blackbox impossibilities; a collision resistant hash function
cannot be based on a oneway permutation [42], an oblivious transfer cannot be based
on a public key encryption scheme (and vice versa) [43], and a virtual blackbox
obfuscation cannot be based on a oneway function [44].

In fact, there are many types of blackbox constructions and techniques to show

4

the impossibility of blackbox constructions. In Chapter 2.2, we present these taxon
omy and make a short survey of them.

We remark that the blackbox researches helps us to understand what the world
we live in is. We now believe that public key primitives are separated from symmetric
key primitives due to the result in [36]. In fact, Impagliazzo [45] conjectured that the
world we live in is one of the following:

Algorithmica: P = NP.

Heuristica: NPproblems are hard in worst case, but easy on average.

Pessiland: NPproblems are hard on average, but oneway functions do not exist.

Minicrypt: Oneway functions exist.

Cryptomania: Public key cryptography is possible.

We cannot deny the possibility that we live in Cryptomania, as long as we believe that
public key encryption schemes exist. However, we do not know even oneway func
tions exist (note that the existence of a oneway function implies P ̸=NP). Therefore,
the blackbox research could help us to understand what the world should be.

1.3 Related Work
We introduce previous works that deeply relate to the results of this dissertation.
Overall, they treat NIZKs in a blackbox manner.

We have mentioned the blackbox researches thus far in this dissertation. How
ever, another line of research has been developed. That is, the construction of primi
tives that uses the internal structure of underlying primitives, such as algebraic struc
tures, named nonblackbox construction. Blackbox construction says nothing about
nonblackbox techniques. For instance, it is known that a chosenciphertext at
tack secure public key encryption scheme (CCAPKE) cannot be based on a chosen
piaintext attack secure public key encryption scheme (CPAPKE) in a blackboxman
ner (in slightly restricted model) [46], we can realize such a construction if we employ
nonblackbox techniques [47, 48]. In particular, every efficient construction of an
NIZK for an NPcomplete language is constructed in a nonblackbox manner.

The Augmented BlackBox Framework

Brakerski et al. [49] proposed a blackbox framework that encompasses the power
of nonblackbox techniques. That is, they initiated the work of utilizing NIZKs in a
blackbox framework, named the augmented blackbox framework. They introduced

5

an oracle that implements an NIZK for an NPcomplete language, and showed fol
lowing results: It is possible to construct a CCAPKE based on a CPAPKE, and it is
impossible to construct a keyagreement scheme based on a oneway function. Note
that it is not surprising we can construct a CCAPKE in a blackbox manner because
the NIZK oracle proves an NPcomplete language. In chapter 3, we simplify their
oracle so that it becomes easy to use.

BlackBox Language Extension

One of the ultimate goal in the construction of NIZKs is to deal with an NPcomplete
language. When an NIZK is proposed based on some new assumption, it is often the
case that it proves only a restricted language. Then, cryptographers consider how to
expand the language that the NIZK proves, or reductions to NPcomplete languages.
Further, the expansion is done by combining languages by a binary operator ⋄ ∈
{∧,∨}. However, we do not know whether such a language expansion can be done
in general.

Abe et al. [50] initiated the study of a blackbox language extension. They showed
that, given simulationsound NIZKs (SSNIZKs) [51] for a language L, it is impossi
ble to construct a (standard) NIZK for L∨L′, where L′ is some NP language. (Note
that, given NIZKs for L and L′, we can trivially construct a standard NIZK for L∧L′
by executing the given NIZKs in parallel.) This result suggests that we should use
nonblackbox techniques when we construct an NIZK for an NPcomplete language.
As another contribution, they introduced a technique named swapping technique in
their proof. Chapter 4 and 5 rely on the technique, and thus we introduce the tech
nique in Chapter 4.

1.4 Summary of Contributions
As practical NIZKs have been already proposed, NIZKs have become building blocks
for practical cryptographic applications. We remark that NIZKs have been studied in
a blackbox manner [25, 52, 53, 54]. However, most of them treat NIZKs as “target”
primitives of the constructions, and focus on a specific variant of an NIZK. To the best
of our knowledge, there are few results that treat NIZKs as an underlying primitive
in a blackbox manner, apart from the works [49, 50].

The study of NIZKs has been developed for each assumptions, and many NIZKs
have been proposed based on several assumptions such as the existence of a trap
door permutation [25, 21], pairing [3, 4, 5], the existence of an indistinguishability
obfuscation [26, 27], DiffieHellman assumption [55, 56, 57], and lattice based as
sumption [58, 59]. However, this could take time and effort for cryptographers. If
some new assumption is proposed in the future, we should construct NIZKs based on

6

the assumption from scratch, and consider how to use the NIZK in practice, which
are cumbersome tasks. Therefore, studying a blackbox construction of a primitive
based on an NIZKmight help us to find an efficient way to use an NIZK as a building
block.

This dissertation studies NIZKs in a blackbox framework. We first study how
to implement an NIZK as an oracle. As already mentioned, there exists a blackbox
framework that treats an NIZK oracle [49]. However, their instantiation is slightly
complicated, and thus we simplify the oracle so that it becomes easier to use. Then,
we consider the problem of blackbox language extensions. Namely, we focus on a
language and a technique that are employed in real world applications of NIZKs. We
consider the construction of an NIZK for the witness equality, and show that such an
NIZK cannot be obtained based on NIZKs that proves smaller languages in a black
box manner (recall that an NIZK for the witness equality is one of the most notable
application of NIZKs). However, if we employ a technique named the commitand
prove, we can trivially construct an NIZK for the witness equality. In fact, many
real world NIZK use this technique. Hence, we investigate the limitation of such
an NIZK, i.e., we consider the blackbox language extension based on the specific
NIZK.

This dissertation is composed as follows: Chapter 2 introduces basic notations.
Then, following chapters presents our main results:

Chapter 3 The blackbox framework that treats an NIZK oracle was initiated by
Brakerski et al. [49]. They proposed an oracle that implements an NIZK and
showed both positive and negative results on blackbox constructions in their
framework. However, their oracle instantiation was complicated so that it be
comes difficult to use it. In this chapter we simplify the oracle in [49] and
obtain the same results for both construction and separation. Such a simplifi
cationmakes the framework easy to treat, and helps the framework to be known
widely.

Chapter 4 One of the most typical usage of NIZKs is to prove the witness equal
ity behind two different NPstatements (e.g., a plaintext of a ciphertext and a
preimage of a hash function), and such an NIZK is used in real world appli
cations such as blockchain systems. In this chapter, we show that there is no
(fully) blackbox construction of an NIZK for the witness equality based on
NIZKs for each languages. This result suggests that if we want to construct an
NIZK for such a practical language, we should rely on certain mathematical
structures that relate to underlying assumptions.

Chapter 5 Regardless of the negative result in Chapter 4, we can construct an NIZK
for the witness equality if we employ a specific technique named the commit
andprove methodology [60, 61, 62]. Therefore, an NIZK which uses the

7

commitandprove methodology (CPNIZK) is powerful enough to break the
barrier demonstrated in Chapter 4, and is actually used in many practical appli
cations. In this chapter, we uncover the limitation of CPNIZKs in a blackbox
manner. That is, given CPNIZKs for certain languages L and L′ respectively,
we show that there is no (fully) blackbox construction of a (standard) NIZK for
a language L ∨ L′, where such an NIZK has been paid attention in cryptogra
phy. Hence, there is no generic methodology to expand languages that NIZKs
prove even though we have practical NIZKs that rely on certain assumption.

Finally, Chapter 6 concludes this dissertation.
Caveat. We stress that the existence of CPNIZK does not mean that the analysis
in Chapter 4 is wasted. First, the NIZK modeled in Chapter 4 is of the most abstract
(i.e., the most standard) form. Such an NIZK encompasses every variant of NIZKs,
including a CPNIZK. Therefore, Chapter 4 investigates the possibility to construct
an NIZK for the witness equality from any NIZK. Second, it is not trivial if we can
construct an NIZK for the witness equality from standard NIZKs. One of the main
purpose of the blackbox research is to investigate the theoretical limitation of the
capability of a primitive. Furthermore, it sometimes conflicts to our intuition. For
instance, the blackbox construction of a signature scheme based on a oneway func
tion [37] is surprising, since a signature schemes is a public key flavor primitive,
while oneway function is a symmetric key flavor one. Therefore, the result in Chap
ter 4 is meaningful to understand the limitation of standard NIZKs, even if we can
break such a barrier by employing a specific technique.

8

Chapter 2

Preliminary

2.1 Basic Notation
We denote by n ∈ N a security parameter throughout this paper. We often use the
notion of a “negligible function,” which is defined as below:

Definition 1 (Negligible Function) A function f : N → R is negligible if for every
polynomial function poly, there exists an integer N s.t. for all n > N , it holds that
f(n) < poly(n) .

Apolynomial function and a negligible function are denoted by poly and negl, respec
tively. For a finite set X , the notation x ← X represents a sampling of an instance
x ∈ X with a uniform distribution overX . Similarly, for an algorithmA, the compu
tation that A takes x as input and outputs y is denoted by y ← A(x). A probabilistic
polynomialtime Turing machine is denoted by PPT. A Turing machine M that has
access to an oracle O is called an oracle Turing machine, denoted by MO. For an NP
language L, the NP relation is denoted by RL, and we let Ln := L ∩ {0, 1}n and
Rn := {(x,w) | (x,w) ∈ RL ∧ x ∈ Ln}. For a function f , we denote the inverse
function by f−1. When y has no preimage, we write f−1(y) = ⊥. For a function
f : {0, 1}n1 → {0, 1}n2 , where n1 < n2, we say y ∈ {0, 1}n2 is legitimate with
respect to f if y has a preimage x s.t. f(x) = y. We say that a query to an oracle is
successful if it has a result other than ⊥.

The notation y ← O(x) represents that a query to an oracle O on x results in y.
We use oracles and algorithms that implement several functionalities. We denote by
M(func, x) an algorithm or an oracle M that works as a functionality func on input x.
If the input is not important in the context, we writeM.func to denote the functionality
func implemented by M. We regard an oracle O as a set of entries (func, x; y) where
func is a function implemented by O, x is an input of func and y is an output s.t.
y ← O(func, x). We denote by O(func, x, y) such an entry.

9

We use bracket notation [·] to represent a variable that matches any value; for
instance, y ← O([x]) is a query that results in y, and we refer to the input value
as x thereafter. When the matched value is not important in the context, we write
y ← O(∗).

A partial oracle S of an oracle O is a set that is defined on only some subset of
inputs of O, and S is consistent with O if there exists another set S ′ s.t. S ∪ S ′ = O.
We sometimes denote an oracle S by S = S1||S2|| · · · , where Si are partial oracles
and S works as follows: Given a query on x, it first searches for a matching entry
S1(x, [y]) and returns y if such a query exists, otherwise it searches S2 and so on.

2.2 BlackBox Construction and Separation
Variants of BlackBox Construction

We formally introduce the notion of blackbox construction by following the taxon
omy in [63, 64]. Before that, we define cryptographic primitives as follows.

Definition 2 (Cryptographic Primitive) A primitive P is a pair (FP , RP) of a set
of functions f : {0, 1}∗ → {0, 1}∗ and a relation over pairs (f,M) where f ∈ FP

and M is a (possibly inefficient) Turing machine.

We say f implements P or f is an implementation of P if f ∈ FP . A Turing machine
M P breaks the security of P if there exists an implementation f ∈ FP s.t. (f,M) ∈
RP . Thus, we say f ∈ FP is a secure implementation of P if there exists no PPT M
s.t. (f,M) ∈ RP .

Now, we formally define what a blackbox construction means as follows:

Definition 3 There exists a fully blackbox construction of a primitiveQ from a prim
itive P if there exist PPT oracle machines G and S s.t.

• For any implementation f of P , Gf implements Q.

• For any implementation f of P and any oracle Turing machine M, if Mf Q
breaks the security of Q, then Sf,M P breaks the security of P .

We say G is a construction, and S is a reduction. The definition of a fully blackbox
construction requires a “universal compiler” that lifts an underlying primitive P up to
a target primitive Q. That is, Gf implements Q for any f ∈ FP , and Sf,M P breaks
the security of P for any f ∈ FP and any adversary M that Qbreaks the security of
Q.

A more relaxed variant of a blackbox construction is a semi blackbox construc
tion that is formally defined as follows:

10

Definition 4 There exists a semi blackbox construction of a primitiveQ from a prim
itive P if there exist PPT oracle machines G s.t.

• For any implementation f of P , Gf implements Q.

• For any implementation f of P , if there exists a PPT oracle machine M s.t. Mf

Qbreaks the security of Q, then there exists a PPT oracle machine S s.t. Sf

P breaks the security of P .

A construction G in a semi blackbox construction is also required to be universal.
The key difference between a fully blackbox construction and a semi blackbox con
struction is that a reduction S is allowed oracle access to an adversary M or not. That
is, a reduction S in a semi blackbox construction does not have oracle access to
M, meaning that S could depend on the internal structure of M. Therefore, a semi
blackbox construction is more relaxed variant than a fully blackbox construction.

Other more relaxed variant of a blackbox construction is a ∀∃semi blackbox
construction. In this construction, a construction is no longer required to be universal.

Definition 5 There exists a ∀∃semi blackbox construction of a primitive Q from a
primitive P if for any implementation f ∈ FP , there exists a PPT oracle machine G
s.t.

• Gf implements Q.

• If there exists a PPT oracle machine M s.t. Mf Qbreaks the security ofQ, then
there exists a PPT oracle machine S s.t. Sf P breaks the security of P .

Finally, we introduce a relativizing construction, which is useful when we prove
the absence of a blackbox construction. We first define the existence of a primitive
relative to an oracle, and then define a relativizing construction.

Definition 6 Let O be an oracle. Then,

• O implements a primitive P if there exists an implementation f ∈ FP that is
computable by a PPT oracle machine that has oracle access to O.

• An implementation f is secure relative to O if there is no PPT oracle machine
M s.t. MO P breaks f .

• A primitive P exists relative to O if there exists a secure implementation f of
P relative to O.

Definition 7 There exists a relativizing construction of a primitive Q from P , if for
any oracle O, if P exists relative to O then so does Q.

11

The blackbox constructions we have introduced so far have the following impli
cation:

Theorem 1 ([63]) If there exists a fully blackbox construction of Q from P , then
there exists a semi blackbox construction and a relativizing construction of Q from
P . If there exists either a semi blackbox construction or a relativizing construction
of Q from P , then there exists a ∀∃semi blackbox construction of Q from P .

BlackBox Separation Techniques

This time we introduce known techniques to show blackbox impossibility. Recall
that we focus on negative results on blackbox constructions in this dissertation. We
say that there is fully (resp, semi, ∀∃semi and relativizing) blackbox separation if
there is no fully (resp, semi, ∀∃semi and relativizing) blackbox construction. If we
simply say there is no blackbox construction, it indicates the absence of a fully black
box construction.
OneOracle Technique
This technique originates from the seminal work by Impagliazzo and Rudich [36].
To prove a separation between a primitive P and a primitive Q by following this
technique, we first demonstrate the existence of the underlying primitive P relative
to an oracle O. Then, we demonstrate a (possibly inefficient) adversary MO that Q
breaks any implementation GO of Q. In fact, Impagliazzo and Rudich showed the
following theorem, which is sufficient, combined with Theorem 1, to rule out a fully
blackbox construction of a key agreement protocol based on a oneway function.

Theorem 2 There is no relativizing blackbox construction of a key agreement pro
tocol from a oneway function.

The oneoracle technique is most commonly used to show blackbox separations.
In fact, many wellknown results are proven by this technique, such as the impos
sibility of a collisionresistant hash function from a oneway permutation [65], an
identitybased encryption scheme from a trapdoor permutation [66], and the mutual
impossibility between an oblivious transfer and a public key encryption scheme [43].

We remark that the work by Brakerski et al. [49] also uses this technique, while it
seems that they introduce multiple oracles. They introduced an oracle that constitutes
an NIZK for a language that is relativized with another oracle. However, in their
separation proof, these oracles are given to both the construction and the adversary.
Thus, we can regard these oracles as a single oracle. Further, the followup works [50,
67, 68] also employ this technique.
TwoOracle Technique
Another variant of the technique showing a blackbox separation is twooracle tech
nique, which was introduced by Hsiao and Reyzin [69] to show a separation between

12

publiccoin collisionresistant hash functions and privatecoin ones. Unlike the one
oracle technique, this technique directly shows a fully blackbox separation by intro
ducing the following types of oracles; a helper oracle A that implements an underly
ing primitive, and a breaker oracle B that is used to construct an adversary of a target
primitive Q. They proposed that it is sufficient to demonstrate the following oracles
A and B to show there is no fully blackbox construction of a primitive Q from a
primitive P :

• There is a PPT oracle machine L s.t. LA implements P .

• For any PPT oracle machine G, if GA implements Q, then there exists a PPT
oracle machine M s.t. MA,B Qbreaks the security of GA.

• There is no PPT oracle machine S s.t. SA,B P breaks the security of LA.

In [69], they introduced a helper oracle G that implements a privatecoin collision
resistant hash function and a “collisionfinder” oracle F, and showed the separation
by following the above proposal.

There are many works that employ the twooracle technique. Haintner et al. [70]
showed tight lower bound of a statistically hiding commitment scheme based on a
oneway function. The following are also proven by this technique: A fully black
box separation of a noninteractive commitment scheme from a oneway permuta
tion [71], and a fully blackbox separation of a collisionresistant hash function from
a hierarchical identitybased encryption scheme [72].
MetaReduction
A technique that has a different flavor compared with previous techniques is the meta
reduction, which was introduced by Gennaro and Trevisan [73]. This technique says
that if there exists a reduction from a primitive Q to a primitive P , then we can use
this reduction to break the security of P . A metareduction that demonstrates the
impossibility of a primitive Q from a primitive P proceeds as follows:

• Assume that there exists P (or some assumption).

• Construct a reduction (i.e., an algorithm) S from Q to P . That is, for any ad
versary A that Qbreaks the security of an implementation of Q, SA P breaks
the security of an implementation of P .

• Demonstrate a PPT simulator that simulates the reduction S, and prove that the
distributions of outputs of S and the simulator are indistinguishable.

In other words, a metareduction uses a reduction as an adversary that breaks the se
curity of an underlying primitive. Note that the existence of such a simulator conflicts
the assumption that the existence of the underlying primitive.

13

A striking result of the metareduction technique is by Gentry and Wichs [54].
They proved that the soundness of a succinct noninteractive argument (SNARG),
which is a variant of an efficient NIZK due to its succinct proof size, cannot be based
on a falsifiable assumption [74]. Note that falsifiable assumptions are modeled as
a game between a challenger and an adversary, which include general assumptions
such as the existence of a oneway function, a trapdoor permutations etc, and con
crete assumptions such as the hardness of factoring, DDH assumption etc. Therefore,
this result suggests that we should rely on stronger assumptions such as knowledge
assumption to construct a SNARG. Similarly, Pass [52] showed that it is impossible
to base the adaptive soundness of a statistical NIZK based on falsifiable assumptions.

Furthermore, the metareduction technique can be used to show lower bounds in
security loss (or security preservation in [75]). Coron [76] initiated such a usage of the
metareduction technique to show the lower bound for the security of the probabilistic
signature scheme, and followup works are seen in the literature [77, 78, 79].

2.3 Cryptographic Primitives
In what follows, we introduce cryptographic primitives that appear in this disserta
tion.

OneWay Function

We first introduce the most fundamental cryptographic primitive, a oneway function.
Intuitively, a oneway function is easy to compute, but hard to invert. The formal
definition of a oneway function is as follows:

Definition 8 (OneWay Function) A function f is a oneway function (OWF) if the
following conditions hold:

• There exists a PPT Mf s.t. for any x, it holds that Mf (x) = f(x)

• For any PPT A, there exists a negligible function ϵ s.t.

Pr
x←Df

[A(f(x)) = f−1(f(x))] ≤ ϵ

where Df is a domain of f . If the second condition is satisfies, then we say f
has ϵsecurity or f is an ϵOWF.

Asmentioned earlier, a oneway function is equivalent to many primitives such as
a signature scheme [37, 80], a pseudorandom generator [38], a pseudorandom func
tion [81] (and thus, a symmetric key encryption scheme), a commitment scheme [39],
and an (interactive) zeroknowledge proof system [82]. Note that these results are
shown in a blackbox manner, but they do not guarantee its efficiency.

14

Public Key Encryption Scheme

We define a public key encryption scheme. This primitive is also referred to an asym
metric key encryption scheme, because a party who encrypts a message and a party
who decrypts a ciphertext have different keys.

Definition 9 (Public Key Encryption Scheme) A tupleΠ = (Π.Key,Π.Enc,Π.Dec)
of PPTs is a public key encryption scheme (PKE) where each machine works as fol
lows:

Π.Key: pk ← Π(Key, sk)
Given a secret key sk, output a public key pk.

Π.Enc: c← Π(Enc, pk,m, r)
Given a public key pk, a plaintext m and a randomness r, output a ciphertext
c.

Π.Dec: {m,⊥} ← Π(Dec, sk, c)
Given a secret key sk and a ciphertext c, output a plaintext m or ⊥ where ⊥
indicates c is invalid. With probability 1, Π(Dec, sk, Π(Enc, pk,m, r)) = m
where pk ← Π(Key, sk).

Definition 10 (Security Property of PKEs) Let Π = (Π.Key, Π.Enc, Π.Dec) be a
PKE. For atk ∈ {CPA,CCA1, CCA2} and any PPT adversary A = (A0,A1), if
the advantage |Pr[ExptPKEatk

A,Π(n) = 1]−1/2| of the following experiment ExptPKEatk
A,Π

is negligible in n, then Π is said to be atk secure:
ExptPKEatk

A,Π(n)

Choose a secret key sk, pk ← Π(Key, sk),
(m0,m1, µ)← AO0

0 (pk),
b← {0, 1}, r ← {0, 1}n, c← Π(Enc, pk,mb, r),

b′ ← AO1
1 (µ, c)

:
Output 1 if b′ = b
else output 0

where O0 = ϕ and O1 = ϕ if atk = CPA, O0 = Π(Dec, sk, ·) and O1 = ϕ if
atk = CCA1, and O0 = Π(Dec, sk, ·), O1 = Π(Dec, sk, ·) if atk = CCA2. None
of the queries of A1 contains the challenge ciphertext c if atk = CCA2.

One of the most interesting open question regarding PKEs is that if we can con
struct a CCAPKE based on a CPAPKE in a blackbox manner. Gertner et al. [46]
demonstrated that such a construction is impossible if a decryption algorithm of a
construction does not have access to an encryption functionality of an underlying
CPAPKE. However, Cramer et al. [83] showed that this is possible if an adversary
is allowed to make polynomially many queries where the polynomial is determined
by a key generation algorithm (note that the adversary in [46] can make arbitrarily

15

polynomial many queries). We remark that many nonblackbox constructions have
been proposed that uses an NIZK [47, 48, 51, 84], a hashproof system [85, 86, 87],
and an identity based encryption scheme [88].

NonInteractive ZeroKnowledge Proof System

Now, we introduce an NIZK formally. Before that, we define relevant primitives, a
proof system and a witness indistinguishable proof system.

Definition 11 A pair Π = (Π.Prv,Π.Vrf) of machines that works as follows is a
proof system for a language L:

Π.Prv: π ← Π.Prv(x,w, r)
Given an instance x, a witness w and a randomness r, output a proof π

Π.Vrf: b← Π.Vrf(x, π)
Given an instance x and a proof π, output a bit b ∈ {0, 1}, where 1 means
accepts and 0 means reject.

Definition 12 A proof systemΠ = (Π.Prv,Π.Vrf) for a languageL has the following
properties:

Completeness: For any n ∈ N, for any (x,w) ∈ RL, and any randomness r ∈
{0, 1}n, Pr[Π.Vrf(x,Π(Prv, x, w, r)) = 1] ≥ 1− negl(n).

Soundness: For any n ∈ N, any x /∈ L, and any π ∈ {0, 1}poly(n), it holds that
Pr[Π.Vrf(x,Π.Prv(x,w, r))] ≤ negl(n).

Definition 13 A proof system Π = (Π.Prv,Π.Vrf) for a language L is a witness
indistinguishable proof system (WI), if for any adversaryA the advantage denoted by
|Pr[ExptWIΠ,A(n) = 1]− 1

2
| of the following experiment ExptWIΠ,A(n) is negligible:

(x,w0, w1)← AΠ(1n);
b← {0, 1}; r ← {0, 1}n; if (x,w0), (x,w1) ∈ RL
π ← Π(Prv, x, wb, r); : output 1 iff b′ = b

b′ = AΠ(1n, π) else output a random bit.

Our target primitive, an NIZK, is formally defined as follows.

Definition 14 (NonInteractive ZeroKnowledge Proof System) A tuple of PPTs
Π = (Π.Crs, Π.Prv, Π.Vrf, Π.CrsSim, Π.PrvSim) that work as follows is a non
interactive zeroknowledge proof system (NIZK) for a language L.

Π.Crs: σ ← Π(Crs, τ)
Given a trapdoor τ , output a common reference string (CRS) σ.

16

Π.Prv: π ← Π(Prv, σ, x, w)
Given a CRS σ, an instance x and a witness w, output a proof π or ⊥.

Π.Vrf: b← Π(Vrf, σ, x, π)
Given a CRS σ, an instance x and a proof π, output a bit b ∈ {0, 1} where 1
means accept and 0 means reject.

Π.CrsSim: (σ, τ)← Π(CrsSim, τ)
Given a trapdoor τ , output τ and a CRS σ.

Π.PrvSim: π ← Π(PrvSim, σ, x, τ)
Given a CRS σ, an instance x and a trapdoor τ , output a proof π or ⊥.

Definition 15 (Security Properties of NIZKs) AnNIZKΠ for a languageL has the
following properties.

Completeness: For any n ∈ N, any σ ← Π(Crs, τ) and any (x,w) ∈ RL, it holds
that Pr[Π(Vrf, σ, x,Π(Prv, σ, x, w)) = 1] ≥ 1− negl(n).

Soundness: For any PPT adversary A, it holds that
Pr[σ ← Π(Crs, τ), (x, π)← A(σ) : Π(Vrf, σ, x, π) = 1 ∧ x /∈ L] ≤ negl(n).

Adaptive ZeroKnowledge: For any stateful PPT adversary A, it holds that

AdvZKA,Π,L(n)

=

∣∣∣∣∣∣Pr
 σ ← Π(Crs, τ)

(x,w)← A(σ)
π ← Π(Prv, σ, x, w)

:
A(π) = 1
∧(x,w) ∈ RL

−Pr

 (σ, τ)← Π(CrsSim, τ)
(x,w)← A(σ)

π ← Π(PrvSim, σ, x, τ)
:
A(π) = 1
∧(x,w) ∈ RL

∣∣∣∣∣∣
≤negl(n).

While the above definition of the adaptive zeroknowledge property is standard,
we use the following definition for ease of the discussion in Chapter 4 and 5:

AdvZKA,Π,L(n)

=Pr

 σ ← Π(Crs, τ)
(x,w)← A(σ)

π ← Π(Prv, σ, x, w)
:
A(π) = 1
∧(x,w) ∈ RL

− Pr

 (σ, τ)← Π(CrsSim, τ)
(x,w)← A(σ)

π ← Π(PrvSim, σ, x, τ)
:
A(π) = 1
∧(x,w) ∈ RL

≤negl(n).

17

Note, however, that this form of definition is essentially the same as the standard
definition; if there exists an adversary A s.t. AdvZKA,Π,L(n) ≤ − poly(n), then it
implies the existence of another adversary A′ s.t. AdvZKA′,Π,L(n) ≥ poly(n).

Sahai [51] introduced the notion of a simulationsoundNIZK (SSNIZK) that cap
tures the intuition behind zeroknowledge proof systems. That is, a proof generated
by an NIZK does not increase the power of an adversary apart from the capability of
proving the same statement.

Definition 16 ((Unbounded) SimulationSound NIZK) Let Π = (Π.Crs, Π.Prv,
Π.Vrf,Π.CrsSim,Π.PrvSim) be an NIZK for a languageL. ThenΠ is an (unbounded)
simulationsound NIZK (SSNIZK) for L if for any stateful PPT adversary A, the
probability Pr[ExptSSA,Π,L(n) = 1] is negligible in n where ExptSSA,Π,L(n) is de
fined as follows:
ExptSSA,Π,L(n)

(σ, τ)← Π(CrsSim, 1n)
(x, π)← AΠ(PrvSim,σ,·,τ)(σ)

:
output 1 ifx /∈ L ∧ x /∈ Q ∧ Π(Vrf, σ, x, π) = 1
else output 0

where Q is a list of queries that A makes to Π(PrvSim, σ, ·, τ).

As mentioned earlier, NIZKs are becoming building blocks for several applica
tions, and used to construct many cryptographic protocols. There has been construc
tions that uses NIZKs as building block such as CCAPKEs [47, 84], digital signa
tures [89, 90] and multiparty computations [60].

2.4 The NaorYung Construction
Every work in this dissertation somewhat relates to the wellknown NaorYung con
struction (or the NaorYung/Sahai paradigm) [47, 51]. The NaorYung construc
tion is a methodology which enhances a CPAPKE into a CCAPKE by using an
NIZK as follows: Encrypt a message by two distinct public keys of a CPAPKE
together with a zeroknowledge proof that shows these two ciphertexts are gener
ated from the same plaintext. Let Π = (Π.Key,Π.Enc,Π.Dec) be a CPAPKE and
L = (L.Crs, L.Prv, L.Vrf, L.CrsSim, L.PrvSim) be an NIZK for the following plaintext
equality language with respect to Π:

LΠ
EQ = {(c0, c1, pk0, pk1) | ∃m, r0, r1 s.t. c0 = Π(Enc, pk0,m, r0)

∧ c1 = Π(Enc, pk1,m, r1)}.

The formal description of the NaorYung construction M is as follows:

18

M.Key: pk∗ ← M(Key, sk0, sk1)
Given secret keys sk0 and sk1, compute public keys pk0 ←Π(Key, sk0), pk1 ←
Π(Key, sk1) and a CRS σ ← L(Crs, 1n), and output pk∗ := (pk0, pk1, σ).

M.Enc: c∗ ← M(Enc, pk∗,m, r0, r1)
Given a public key pk∗ = (pk0, pk1, σ), a plaintextm and randomnesses r0, r1 ∈
{0, 1}n, compute c0 = Π(Enc, pk0,m, r0), c1 = Π(Enc, pk1,m, r1) and π ←
L(Prv, σ, (c0, c1, pk0, pk1),m, r0, r1) and output c∗ := (c0, c1, π).

M.Dec: m← M(Dec, sk∗, c∗)
Given a secret key sk∗ = sk0 and a ciphertext c∗ = (c0, c1, π), output ⊥ if
L(Vrf, σ, (c0, c1, pk0, pk1), π) = 0, otherwise outputm := Π(Dec, sk0, c0).

The above construction is not necessarily CCA2 secure. The first CCA2PKE
based on general assumption is by Dolev et al. [84]. However, their construction is
quite complicated, and Sahai [51] removed this drawback. He showed that CCA2
security can be achieved if the NIZK in the NaorYung construction is simulation
sound.

19

Chapter 3

Simplification of The Augmented
BlackBox Framework

3.1 Introduction
In this chapter, we show the first result; the simplification of the blackbox framework
introduced by Brakerski et al [49].

After the seminal work of Impagliazzo and Rudich [36], blackbox construction
has become one of the main research topic in cryptography. However, nonblack
box techniques, which are the methodologies that use internal structure of an under
lying primitive (such as algebraic structure) to construct more highlevel primitives,
are also extensively studied independent of blackbox techniques [47, 89, 91, 92].
Among them, the NaorYung construction [47] is one of the most widelyknown non
blackbox result.

Although blackbox and nonblackbox techniques have been developed inde
pendently, a new framework that combines them has proposed. Brakerski et al. [49]
introduced the augmented blackbox framework that captures the power of certain
nonblackbox techniques. More precisely, they introduced an oracle that instanti
ates a WI [93] for an NPcomplete language, and showed a blackbox construction
of an NIZK based on the oracle. To demonstrate the power of the framework, they
showed known construction and separation in their model; the NaorYung construc
tion is possible in their framework, and the separation between a OWF and a key
agreement protocol (KA) [94]. We remark that it is not known if we can construct
a CCAPKE based only on a CPAPKE in a blackbox manner. Therefore, the aug
mented blackbox framework is powerful enough to capture the power of nonblack
box constructions.

As mentioned in Chapter 2, one of the major blackbox technique is relativizing
(Definition 7). In the beginning of the line of the blackbox works, researchers treated

20

simple oracles such as the one that implements a OWF [47]. However as more so
phisticated primitives appeared, they became have to deal with oracles that implement
more complicated primitives such as trapdoor permutation [66, 95], which led more
advanced security proof. Moreover in [49], the augmented blackbox framework
was accompanied by further complicated oracle that implements an NIZK. Although
the augmented blackbox framework is an elegant framework, security proofs in this
framework might become a cumbersome task due to the high complexity of the ora
cle. It is generally preferable to introduce simpler oracle from the view of separation
proofs.

In this work we simplify the WI oracle in [49] that aims to give the same results
for both construction and separation. Technically, we simplify the prover oracle from
Prv(x,w, r) to Prv(x,w) by removing the randomness r, which results in a nonWI
oracle but we can build an NIZK based on it. A question is how nontrivial this
seemingly small change is and how it aims in separating cryptographic objects in the
presence of NIZKs. As it is observed in Section 6.3.3 of [96], a very small change of
the specification of Prv spoils the separation proof．Thus it is highly nontrivial to
see if the small change works or not.

In the particular case about the impossibility of a KA based on a OWF, the proof
of separation in [49] is done in a way that the randomness r does not play an essential
role in building an adversary. Thus we conclude that the randomness in Prv was not
necessary in the first place.

3.1.1 Related Work
As is already mentioned, the augmented blackbox framework captures the power of
NIZKs. There are followup works of [49] that capture other nonblackbox tech
niques. Asharov and Segev [67] showed that there is no blackbox constructions of a
collisionresistant function family from an indistinguishability obfuscation, and of a
perfectly complete keyagreement protocol from a privatekey functional encryption
scheme. The more recent work of Garg et al. [68] captures the power of Yao’s garbled
circuit [97] and showed PKEs are impossible in their model. These frameworks give
rather complicated oracles such as functional encryption schemes or garbled circuit.
Couteau et al. [98] introduced the notion of blackbox uselessness s.t. if there is no
blackbox construction of Q based on P and P ′ respectively, then combining P and
P ′ does not help to construct Q in a blackbox manner. In their security proof, they
heavily rely on the technique used in [49].

21

3.2 The WI Oracle by Brakerski et al.
This section reviews the work of Brakerski et al. [49]. They introduced a distribution
of oracles s.t. a pair of oracles chosen according to this distribution constitutes a WI
and they built an NIZK based on the oracle. Moreover they defined the augmented
blackbox framework and demonstrated the power of the framework by showing the
construction and separation in their model. We first overview their result, and then
introduce the observation regarding the specification of the oracle made by Yerukhi
movich [96], which has motivated this work.

Instantiation of a WI Oracle

Fix a security parameter n ∈ N and an oracle O. Let L = CIRCUITSATO. The
distribution of oracles that a pair of oracles WIn = (WIn.Prv,WIn.Vrf) chosen ac
cording to this distribution constitutes a WI for Ln with overwhelming probability as
follows.

WIn.Prv: π ← WIn(Prv, x, w, r)
The prover oracle WIn.Prv is a random function s.t. WIn.Prv : {0, 1}3n →
{0, 1}7n. Given an instance x ∈ {0, 1}n, a witness w ∈ {0, 1}n and a random
ness r ∈ {0, 1}n, output a proof π ∈ {0, 1}7n. Note that WIn.Prv does not
check if (x,w) ∈ Rn.

WIn.Vrf: b← WIn(Vrf, x, π)
The verifier oracle WIn.Vrf is a function s.t. WIn.Vrf : {0, 1}8n → {0, 1}.
Given an instance x ∈ {0, 1}n and a proof π ∈ {0, 1}7n, WIn.Vrf works as
follows:

WIn(Vrf, x, π) =
{
1 if ∃w, r s.t. π = WIn(Prv, x, w, r) ∧ (x,w) ∈ Rn

0 otherwise.

We say a pair of oracles chosen according to this distribution aWI oracle. Let WI =
{WIn}n∈N be a family of WI oracles. Then it has been shown that WI constitutes a
WI for L.

Theorem 3 For measure 1 of the oracles WI under the distribution above, WI con
stitutes a WI for L.

Recall that the augmented blackbox framework is defined to capture the power
of NIZKs, whereas the above oracles only constitutes a WI. To achieve the purpose,
they showed there exists a blackbox construction of an NIZK for L based on the WI
oracle.

22

Theorem 4 There exists a blackbox construction of an NIZK based on WI.

As a technical result, the following theorem is shown.

Theorem 5 Let O be an oracle s.t. there exists a OWF fO relative to O, and WI be
a WI oracle. Then fO is oneway relative to O and WI.

They demonstrated that the NaorYung/Sahai construction is accomplished in this
framework. This is not surprising, as the NIZK is capable to prove an NPcomplete
language.

Theorem 6 There is an augmented blackbox construction of a CCAPKE based on
a CPAPKE.

Although the augmented blackbox framework is powerful enough to encom
pass the NaorYung/Sahai construction, still there exists a gap between a OWF and a
KA [47].

Theorem 7 There is no augmented blackbox construction of a (perfectly complete)
KA based on a OWF.

In Chapter 3.5.1, we review their proof in detail.

Important Observation

Wemention an important observation regarding the oracle interfacemade byYerukhi
movich [96], which contains the full version of [49]. He first tried to instantiate
the prover interface independent on w, i.e., WI(Prv, x, r) = π, to guarantee that the
proof does not leak any secret. However, he found such an instantiation is too pow
erful to construct a KA in blackbox way: Let A and B be PPTs who play a KA. A
chooses random strings x, r ← {0, 1}n and B picks x′ ← {0, 1}n. They make query
y = O(x) and y′ = O(x′) and send the values r, y, y′ each other. Then,A andB query
WI.Prv for a proof of the following language {y, y′ | ∃w s.t. y = O(w)∧y′ = O(w))}
and obtain proofs πA and πB. Note that this language has exactly two witnesses x
and x′ and each of A and B knows one, while an eavesdropper cannot learn either
due to the onewayness of O. If WI.Prv is independent of the witness then πA = πB

and A and B have a secret which an eavesdropper can not learn. Since a KA cannot
be constructed under the instantiation WI(Prv, x, w, r) = π, a slight modification on
the oracle can significantly affect on its capability.

23

3.3 Simplified Proof System Oracle
This section introduces a more simplified proof system oracle. In [49], they con
structed an NIZK by making use of witness indistinguishability of the WI oracle de
fined in Chapter 3.2. However, as the prover oracle is a random function, we observe
that we can remove the random coin r from its interface, resulting a simpler prover
oracle. We begin by describing distribution of oracles s.t. an oracle chosen according
to this distribution constitutes a proof system oracle. Then we show that we can con
struct a WI based on the simplified oracle in a blackbox manner over the choice of
the simplified oracle. Finally we show that, for measure 1 of oracles under this dis
tribution, we can construct a WI. Since a WI can be constructed based on our oracle,
we obtain the same construction and separation results as [49]. Our simplified oracle
actually makes the construction of WI slightly more complicated than before. How
ever it is mostly a onceforall task where our construction can be reused in future
proofs of separation.

CoinFree Proof System Oracle

Fix a security parameter n and an oracle O. Throughout this chapter, we let L =
CIRCUIT-SATO. We introduce a distribution of pair of oracles as follows.

Definition 17 A pair CFn = (CFn.Prv,CFn.Vrf) of oracles chosen from the follow
ing distribution is a coinfree proof system oracle for Ln;

CFn.Prv: π ← CFn(Prv, x, w)
The prover oracleCFn.Prv is a random functionCFn.Prv : {0, 1}2n→ {0, 1}6n.
Given an instance x ∈ {0, 1}n and a witness w ∈ {0, 1}n, output a proof
π ∈ {0, 1}6n. Note that CFn.Prv does not check if (x,w) ∈ RLn .

CFn.Vrf: b← CFn(Vrf, x, π)
The verifier oracle CFn.Vrf is a random function CFn.Vrf : {0, 1}7n→ {0, 1}.
Given an instance x ∈ {0, 1}n and a proof π ∈ {0, 1}6n, CFn.Vrf works as
follows:

CFn(Vrf, x, π) =
{
1 if ∃w s.t. π = CFn(Prv, x, w) ∧ (x,w) ∈ RLn
0 otherwise.

We treat the infinite oraclesCF = (CF.Prv,CF.Vrf) as a sequence of oracles {CFn}n∈N.
It is clear that CFn constitutes a proof system. We remark that CFn is no longer
witness indistinguishable, since an adversary, given a proof π in the experiment
ExptWI, can decide which witnessw0 orw1 was used to generate π bymaking queries
CFn(Prv, x, w0) and CFn(Prv, x, w1).

24

Construction of a WI

We build a WI for Ln based on a coinfree proof system oracle. Our construction
is similar to the construction of the NIZK in [49]. The key observation for our con
struction is that we can flip a random coin in the construction, and any NP language
can be cast to the instance of CF since it proves an NPcomplete language. Given
(x,w) ∈ RLn , the prover randomizes these values and proves knowledge aboutw and
the randomness so that the proof achieves witness indistinguishability. Technically,
we introduce a OWF f for the randomization and let the prover choose r ← {0, 1}n
uniformly, compute c = f(r) and prove both (x,w) ∈ RLn and c = f(r) simultane
ously. As proven later, because Ln is an NPcomplete language, we can reduce the
above two statements to a single statement for L3n.

Fix a security parameter n. Let O be an oracle and CF3n be a coinfree proof
system oracle s.t. there exists an ϵOWF fO : {0, 1}n → {0, 1}2n relative to O
and CF3n. Such a OWF exists because of Theorem 5 and the fact that a WI im
plies a proof system generally. We define L∗n := {c | ∃ r s.t. c = fO(r)} and L̂n :=
{(x, c) | ∃ w, r s.t. c = fO(r) ∧ (x,w) ∈ RLn}. The construction of WI is, given
(x,w) ∈ RL̂n , choose r ← {0, 1}

n uniformly, compute c = fO(r) and apply Karp
reduction [99] to ((x, c), (w, r)) ∈ RL̂n to obtain (x′, w′) ∈ L3n. While it is al
ready known that for any oracle O, the class NPO has a complete language [100], we
demonstrate the above reduction explicitly.

Lemma 1 There exists a Karp reduction from L̂n to L3n.

Proof of Lemma 1. Given (x, c), whether (x, c) ∈ L̂n can be determined by proving
x ∈ Ln and c ∈ L∗n one by one. Furthermore, Ln is already CIRCUIT-SATO with
input length n. Hence, if we prove that L∗n can be reduced to L2n then the lemma is
done. Toward this, we show the existence of a circuit C that simulates the verifier 1
for L∗n.

Without loss of generality, we consider the simplest construction of f . That is,
given an oracle O : {0, 1}n → {0, 1}2n and r ∈ {0, 1}n, f makes a query to O on
r and outputs the answer c accordingly. An Ogate in a circuit is represented as a
gate with n input wires and 2n output wires. The simulator circuit C is described as
follows:

• Given r ∈ {0, 1}n and c ∈ {0, 1}2n, it forwards r to an Ogate resulting in
c′ ∈ {0, 1}2n.

• Output 1 if c = c′ (this comparison is performed by comparing c and c′ one by
one bit), otherwise 0.

1The terminology verifier is in terms of language, not in terms of proof system.

25

Clearly,C can be constructed at most polynomial number of gates. Note that, no mat
ter how f modifies the answer from O, it can be represented by polynomial number
of gates. □

Now, we are ready to construct a WI based on the oracles. Formally, we construct
a WI Π = (Π.Prv,Π.Vrf) as follows:

ΠO,CF3n .Prv: π ← ΠO,CF3n(Prv, x, w)
Given x,w ∈ {0, 1}n, choose r ← {0, 1}n uniformly and compute c = fO(r).
Let x̂ := (x, c) and ŵ := (w, r). Note that if (x,w) ∈ RLn then (x̂, ŵ) ∈ RL̂n .
Apply Karp reduction to (x̂, ŵ) ∈ RL̂n to obtain (x′, w′) ∈ RL3n . Note that
while ŵ ∈ {0, 1}2n, it can be reduced to the witness for L3n. Compute π′ =
CF3n(Prv, x′, w′), and output π := (c, π′).

Π.VrfO,CF3n: b← ΠO,CF3n(Vrf, x, π̂)
Given x ∈ {0, 1}n and π̂ = (c, π) ∈ {0, 1}2n × {0, 1}18n, let x′ := (x, c).
Apply Karp reduction to x′ ∈ L̂ to obtain x̂ ∈ L3n. Output b = CF3n(Vrf, x̂, π).

To prove the security of the construction formally, we should show the existence
of a family of oracles CF = {CFn}n∈N s.t. for measure 1 of oracles CF under the
distribution defined in Definition 17 the construction is a WI for Ln. Toward this,
firstly we show that the construction is WI for Ln with overwhelming probability
over the choice of coinfree proof system oracles for a fixed security parameter n.

Lemma 2 Fix a security parameter n and an oracle O. The construction Π is a WI
for Ln ∈ NPO with overwhelming probability over the choice of CF3n.

Proof of Lemma 2. The completeness is immediate and the soundness is as following.
Suppose that Π.Vrf is given an x /∈ Ln and a (forged) proof π = (c, π′) for x. Then
Π.Vrf applies Karp reduction to (x, c) to obtain x′ and makes a query to CF3n.Vrf on
(x′, π′) to determine if the proof is valid. Since Karp reduction is deterministic and
CF3n has the soundness, there is no chance that this proof is accepted.

We show the witness indistinguishability by following the idea of the proof of
Lemma 2.4 in [49]. Let A be an adversary which is bounded by at most q queries.
Note that an adversary in the experiment ExptWIO,CF3n

A (n) has oracle access toO and
CF3n and we abuse notation to write A to denote AO,CF3n . The experiment proceeds
as follows. The adversary A outputs values (x,w0, w1) with (x,w0), (x,w1) ∈ RLn .
Given x,w0 and w1, the challenger chooses b ← {0, 1} and r ← {0, 1}n uniformly,
computes c = fO(r), apply Karp reduction to (x, c) and (wb, r) to obtain (x′, w′) ∈
RL3n , compute π′ = CF3n(Prv, x′, w′), and outputs π = (c, π′). Then A is given π
and tries to decide which of w0 and w1 was used to generate π. In the following we
first define an bad event s.t. A breaks the witness indistinguishability by accident and
prove that such an event occurs only with negligible probability. Then we show that,

26

assuming such event never happens, A breaks the witness indistinguishability only
with negligible probability.

Let Spoof be an event that A makes a query CF3n(Vrf, x′, π′) returning 1, yet
no query to CF3n.Prv on (x′, w′) ∈ RL3n that results in π′ was made previously.
We prove that Spoof occurs only with negligible probability. Because CF3n.Prv is a
random function, Spoof is the event that uniformly chosen π′ ∈ {0, 1}18n is a valid
proof for x′. However, the probability that such π′ is valid is at most 26n/218n = 2−12n

because at most 26n points are distributed in the range ofCF3n.Prv andmaking a query
to CF3n.Prv reveals one point in the range. Taking a union bound, the probability that
Spoof occurs during the execution of A is at most q · 2−12n, which is negligible.

We prove that, assuming Spoof never occurs, no polynomial time adversary A
can violate the witness indistinguishability. As Spoof never occurs, A is necessary
to compute w′ s.t. CF3n(Prv, x′, w′) = π′. Note that A can compute x′ by herself
from given information x and c. To find such w′ without Spoof, A should compute
r s.t. c = fO(r), which is possible only with negligible probability because f is an
ϵOWF. Summarizing the above discussion,A breaks the witness indistinguishability
with probability at most q · 2−12n + ϵ, which is negligible. □

For the proof of the formal security of the construction, we use the following
BorelCantelli Lemma.

Theorem 8 Let E1, E2, · · · be a sequence of events on the same probability space.
Then

∑∞
n=1 Pr[En] <∞ implies that Pr[

∧∞
k=1

∨
n≥k En] = 0.

Lemma 3 Fix an oracle O. For measure 1 of oracles CF under the distribution
defined in Definition 17, the construction Π is a WI for L.

Proof of Lemma 3. Let fO be an ϵOWF andA be an adversary whose running time is
bounded by a polynomial q. The completeness and the soundness can be shown in the
same way as the proof of Lemma 2. Without loss of generality, we set ϵ = poly ·2−n.
Then, as shown in the proof of Lemma 2, the probability that A succeeds to break
the witness indistinguishability of Π is at most q · 2−12n + ϵ = q · 2−12n + poly · 2−n
< (q + poly) · 2−n < 2−n/2. In other words, we have∣∣∣∣ PrCF3n

[
ExptWIO,CF3n

A (n) = 1]− 1

2

]∣∣∣∣ < 2−n/2.

For any n ∈ N and any adversary A, let En,A denote the event where an oracle
CF3n is chosen s.t. ∣∣∣∣ PrCF3n

[
ExptWIO,CF3n

A (n) = 1]− 1

2

]∣∣∣∣ > 2−n/3.

Applying an averaging argument, for any sufficiently large n ∈ N and any adversary
A, the probability that En,A occurs is at most 1/n2. Then the BorelCantelli Lemma

27

implies that the probability that En,A happens for infinitely many values of n is zero
over the choice of CF. Therefore, for sufficiently large n and measure 1 of oracles
under the distribution for coinfree proof system oracles, we have∣∣∣∣Prn

[
ExptWIO,CF3n

A (n) = 1]− 1

2

]∣∣∣∣ ≤ 2−n/3.

We remark that q is an arbitrary polynomial. Hence, we obtain the following state
ment by removing measure 0 of countable many oracles for specific adversaries: For
measure 1 of oracles and any PPT adversary A, it holds that |Pr

n
[ExptWIO,CF3n

A (n) =

1]− 1/2| < negl. □
The following corollary implies that our coinfree proof system oracle introduces

better results than the previous WI oracle, when we consider blackbox separation in
the augmented blackbox framework.

Corollary 1 Let O be an oracle that implements a primitive Q, WI be a WI oracle
and CF be a coinfree proof system oracle. If there exists an augmented blackbox
construction of a primitive P based on O and WI, then there exists an augmented
blackbox construction of P based on O and CF.

We say an augmented blackbox framework that takes a coinfree proof system
oracle a simplified augmented blackbox framework.

3.4 The NaorYung Construction
In this section, we claim that the NaorYung/Sahai paradigm [47, 51] falls into the
simplified augmented blackbox framework as well as the original augmented black
box framework. TheNaorYung construction requires anNIZK forL′ = {(c0, c1, pk0,
pk1) | ∃ m, r0, r1 s.t.c0 = O(e, pk0,m, r0) ∧ c1 = O(e, pk1,m, r1)} where O =
(g, e, d) constitutes a CPAPKE, pk0 and pk1 are public keys generated by g, m is a
plaintext, c0 and c1 are ciphertexts and r0 and r1 are randomnesses. By following the
construction of an NIZK in [49], we can construct an NIZK for L based on the WI
presented in Chapter 3.3, and L′ can be reduced to L. Moreover we can translate the
NIZK into an SSNIZK [51] for L. (For more discussion, see [49], Section 3.)

Lemma 4 Let O be an oracle that implements a CPAPKE and CF be a coinfree
proof system oracle. We can construct a CCAPKE based on O and CF.

3.5 Impossibility of a KA from a OWF
As stated in Theorem 7, it has been shown that there exists no augmented blackbox
construction of a perfectly complete 1bit KA based on a OWF and the oracleWI [49].

28

In the first attempt, we tried to simplify the separation proof in the presence of a coin
free proof system oracle. However, we found that the randomness of WI did not play
an essential role in the proof. Hence, we confirm that randomness is not necessary for
proof system oracle in the augmented blackbox framework at first place. We first
review the separation proof in [49] (in particular, the construction of the adversary),
introduce notation and analyze the separation proof.

Before the detailed discussion, we formally introduce a KA as follows:

Definition 18 (KeyAgreement Protocol) A pair (A,B) of interactive algorithms
that work as follows is a keyagreement protocol (KA): On input a security parameter
and randomnesses rA and rB respectively, A andB interacts each other, and outputs
a value kA and kB respectively. A KA is perfectly complete if Pr[kA = kB] = 1.

The set of messages sent by A and B respectively during the execution of a KA is
called a transcript, denoted by T . An execution of a KA (A,B) on input a security
parameter n and randomnesses rA and rB that results in a transcript T and a key k is
denoted by (T, k)← ⟨A(rA), B(rB)⟩(n).

We treat a 1bit KA (i.e., a KA such that |k| = 1), and thus we define a security
of a 1bit KA as follows:

Definition 19 (Security of a KA) For any adversary A,

Pr[(T, k)← ⟨A(rA), B(rB)⟩(n) : k′ = A(T) ∧ k′ = k] ≤ 1/2 + negl .

3.5.1 Previous Separation Result
We introduce the idea behind the adversary in [49]. First, they overviewed the proof
by Impagliazzo and Rudich [36] as follows. Let us consider the construction of a KA
based only on a random oracleO and let (A,B) be a blackbox construction of a 1bit
KA with perfect completeness based on O. Given security parameter 1n, A and B
interact each other, resulting a transcript T and a shared key k. Let rA be a random
tape of A and Q(A) be a set of query/answer pair that A made. A pair (rA, Q(A)) is
said a view of A. The intuition behind the adversary is that, if A and B agree on a
key, then they must make the same query to O obtaining the same value (otherwise
it implies that the KA is possible without O).

They built an adversary E that attacks the KA, where E is computationally un
bounded but makes at most polynomially many queries. Given 1n and T ,E simulates
the view ofA at first, then learns aboutO based on the simulation. Hence,E finds the
common query with exploiting its inefficiency, because the KA is perfectly complete.
(See [49] for more discussion.)

However, the intuition is not the case in the augmented blackbox framework.
Suppose that a party, say A, obtains a proof π for an x ∈ Ln, and send x and π to

29

B. Then B obtains the value WI(Vrf, x, π) = 1, while A knows the value without
making the query to WI.Vrf. Hence, they can obtain the same value without common
query.

To overcome this problem, they modified E to simulate the query/answer pairs
made by both parties. Let Q(B) be a set of query/answer pair that B makes in the
execution of a KA,Q(AB) := Q(A)∪Q(B) and q be the number of queries that are
made during the execution of (A,B). The adversary E works as follows.
Adversary. Let Q(E) be a set of query/answer pair and K be a set of “key candi
dates.” First E sets Q(E) := ϕ and K := ϕ. Then E repeats the following 2q + 1
times:

Simulation Phase E simulates the view of A that is consistent with T and Q(E) (if
there is no such view, then E aborts). Let Q̂(E) denote the set of the simulated
query/answer pairs in this phase. Note that Q̂(E) is not necessary consistent
with the real oraclesO and WI. Following the simulated view, E outputs a key
k̂ and setsK := K ∪ {k̂}.

Update Phase E makes all queries in Q̂(E) \ Q(E) to O and WI, and adds the re
sulting query/answer pairs to Q(E).

After 2q + 1 iterations, E outputs the majority ofK as a simulated shared key.
They demonstrated that, in an iteration of E, either E learns a query made by

B, or E outputs a correct key. Therefore, as (A,B) makes at most q queries, taking
the majority of K, E outputs a correct key with high probability. The proof will be
described in Chapter 3.5.2.

3.5.2 Our Result
Preliminaries

Let O be a random oracle and CFn be a oracle that is uniformly chosen according
to the distribution defined in Definition 17. A set of queries Q fixes x ∈ L if ei
ther (i) there is a w and an Oquery in Q s.t. (x,w) ∈ RL, or (ii) there is a query
CFn(Vrf, x, ·) = 1 in Q. A set of queries Q fixes x /∈ L if there is no Oquery in Q
that implies x ∈ L, regardless of how any of the other Oqueries outside of Q are
answered. By following [49], we set the normal form of a KA as follows: In case
a party makes a query CFn(Prv, x, w), the party also makes Oqueries necessary to
fix x ∈ L beforehand, and in case a party receives a proof π = CFn(Prv, x, w) then
the party also asks CFn(Vrf, x, π). Partial oracles that only contain the query/answer
pairs in Q(E) ∨ Q̂(E) is denoted by O′ and CF′n = (CF′n.Prv,CF′n.Vrf).

30

The Separation Proof

In [49] they showed that the adversary in Chapter 3.5.1 breaks the KA. We give the
overview of the proof. Although in [49], they dealt with some subtleties, we ignore
them and focus only on essential part of the proof.

They first showed that the event Spoof defined in the proof of Lemma 2 occurs
with probability at most 1/8 throughout the execution of E, and supposed this event
never occurs. Then, they defined three events concerning Q̂(E) and showed that the
first event implies E learns at least one correct query/answer pair in Q(AB) and the
other events imply the first event (or such an event cannot occur). The events are as
follows:

E1: Q̂(E) disagrees with Q(AB) on the answer to some O, CFn.Prv or CFn.Vrf
query.

E2: There is an x s.t. Q(AB) fixes x ∈ L but Q̂(E) fixes x /∈ L, or vice versa.

E3: A CF′n.Vrfquery returning 0 conflicts withO or CFn.Prvqueries inQ(AB), or
vice versa.

While events E2 and E3 contain some subcases, we do not describe the details here.
It is clear that E learns at least one correct query/answer pair inQ(AB) if E1 occurs.

Moreover they proved that if none of these events occurs, then E computes a
correct key, by showing the existence of oracles that result in T . Since |Q(AB)| ≤ q,
E1 occurs at most q times. Thus at least q + 1 keys in K are correct keys in the final
step of the attack, resulting a correct key.

Analysis of The Proof

As stated at the beginning of Chapter 3.5, we found that the randomness of WI does
not play an essential role in the separation proof. That is, the events E1, E2 and E3

occur even in the presence of a coinfree proof system oracle. Here we explain why
these events cannot be excluded.

The event E1 is the case that the answer of the real oracle and the simulated oracle,
say O and O′, differs on the same query. Because O is a random oracle, there is
no guarantee that E simulates this oracle perfectly. Similarly, E2 occurs due to the
unpredictability of oracles. The third event capture the case that both parties obtain
the same value without common query. Even in the presence of a coinfree proof
system oracle, there is no denying that this event happens. Hence, we conclude that
the randomness is not necessary for the separation proof between a KA and a OWF
in the augmented blackbox framework and obtain the following lemma.

31

Lemma 5 Let O be a random oracle and CF be a coinfree proof system oracle s.t.
a OWF f exists relative to O and CF. There is no simplified augmented blackbox
construction of a KA with perfect completeness based on O and CF.

3.6 Conclusion And Future Work
In this work we introduced the coinfree proof system oracle, and showed the same
construction and separation results in [49]. Regarding the separation proof, we con
firmed that the coinfree proof system oracle works correctly. We hope that our sim
pler oracle makes it easier to prove securities in the augmented blackbox framework.

There are open questions still remain. One of such question is to show other
construction or separation results in the simplified augmented blackbox framework,
especially to known blackbox separation results. Focusing on specific topic, the con
struction of the NIZK is based on a proof system oracle for an NPcomplete language,
which seems too strong. It is still debatable whether we can construct an NIZK based
on a proof system oracle for more restricted language.

32

Chapter 4

Impossibility of NIZKs for Plaintext
Equality

4.1 Introduction
In this chapter, we demonstrate the second result. That is, we show the blackbox
impossibility of an NIZK that proves the witness equality.

Recently, practical NIZKs have been proposed such as [3, 30, 101] and thus
NIZKs are becoming building blocks for practical applications such as blockchain.
There already exist NIZKs for NP complete languages based on some assumptions [2,
21, 102, 103]. However, when it comes using NIZKs as building blocks for advanced
protocols, it is often assumed that NIZKs support convenient languages for the con
structions [104, 105].

An extended language [50] (or a composite statement [106]1) is a language that
combines two languages L and L̂ by a logical binary operator ⋄ ∈ {∧,∨}, i.e., L ⋄
L̂. There are several applications that employ NIZKs for extended languages. For
instance, it is often necessary that an NIZK in a cryptocurrency supports both Boolean
and algebraic statements. Thus, an NIZK for an extended language is employed to
meet this requirement [106, 107].

While NIZKs for extended languages are seen in the literature, to the best of
our knowledge, there are few works that treat such NIZKs in a blackbox manner.
However, Abe et al. [50] initiated the study of blackbox language extension, which
investigates, given NIZKs for languages L and L̂ respectively, if we can construct an
NIZK for L ⋄ L̂ in a blackbox manner. For instance, given NIZKs for languages L
and L̂ respectively, it is possible to construct an NIZK for L ∧ L̂ by invoking given
NIZKs in parallel. They showed the (im)possibility of NIZKs that prove extended

1While the terminology “composite statement” in [106] includes nested functions, we only focus
on statements combined by AND or OR in this paper.

33

languages. However, their result tells nothing about extended languages that take
account of binary relations between witnesses.

It is nontrivial whether we can construct NIZKs for extended languages that take
account of witness relations in a blackbox manner whereas such languages are found
in the literature [47, 89, 104, 105]. For instance, it is not obvious if we can construct
an NIZK for (x ∈ L)∧(x̂ ∈ L̂)∧(w = ŵ)where (x,w) ∈ RL and (x̂, ŵ) ∈ RL̂ from
NIZKs for L and L̂ in a blackbox manner. We refer to such a language as an equality
language. Often it is not hard to construct an NIZK for an equality language in a
nonblackbox manner, especially by exploiting algebraic properties. For instance,
the wellknown ChaumPedersen protocol [108] constitutes an NIZK in the random
oracle model for the equality language over discrete logarithms of group elements.
It should also be noted that relations among witnesses might be easily proven if the
underlying NIZK employs the commitandprove methodology (CPNIZK) [61, 62]
where commitments of witnesses are provided as parts of proofs. The CP systems,
including CPNIZKs, are popular in the literature, e.g., [107, 109, 110, 111, 112], as
noted in [113].

As mentioned above, CPNIZKs for proving the witness equality have already
been proposed. However, there also exist NIZKs that do not invoke commitment
schemes at all and it is open if we can construct NIZKs for proving equality languages
based on such NIZKs in a blackbox manner.

We study a blackbox language extension to NIZKs for an equality language. We
in particular focus on NIZKs for proving the equality of plaintexts embedded in a
pair of ciphertexts, which is a wellstudied NIZK required in the NaorYung con
struction [47], i.e., the plaintext equality language defined in Chapter 2.4. Note that
zeroknowledge proofs for this language are found in the literature such as [110, 112].
We focus on such a language since the NaorYung construction is one of the most no
table applications of an NIZK that proves an equation among witnesses. Technically,
we first introduce oracles that constitute a CPAPKE and a simulationsound NIZK
(SSNIZK) [51] that proves the validity of a ciphertext generated by the CPAPKE
respectively. Then we show that, given these oracles, there is no blackbox construc
tion of a (standard) NIZK for the plaintext equality language. Our result suggests
that we should rely on specific properties or structures of the underlying NIZKs or
language to prove witness equality even at the expense of the efficiency or generality
of the construction.

4.1.1 Related Work
As is alreadymentioned above, equality languages are seen in the literature [105, 107,
108, 109, 111, 113], and some of them deal with the plaintext equality language [47,
110, 112]. Particularly, Campanelli et al. [107] introduced a framework for commit

34

andprove SNARKs (CPSNARKs). They generalized CPSNARKs for certain basic
binary relations, and the CPSNARK that proves the equality between two committed
values plays an essential role for their framework. Because SNARKs are known to
be efficient NIZKs, we claim that proving equality between witnesses is meaningful
for both theoretical and practical aspects. We remark that CPSNARKs are found in
the literature such as [114, 115].

Abe et al. [50] showed the impossibility of a blackbox constructions of NIZKs
for L ∨ L̂ (resp., SSNIZKs for L ∧ L̂) based on NIZKs (resp., SSNIZKs) for lan
guages L and L̂. In spite of such negative results, there is still room for consideration
of a blackbox construction of NIZKs for extended languages. We argue that our re
sult is orthogonal to [50] as it is not trivial if an SSNIZK for a conjunctive language
implies a (standard) NIZK for a conjunctive language that takes account of a witness
relation (and thus, the plaintext equality language).

4.1.2 Technical Overview
We follow the “swapping technique” that is introduced in [50] in the construction of
our adversary. The idea behind the technique is the following: Let O be an oracle
implemented by a uniformly chosen random injection and LO = {x | ∃w s.t.x =
O(w)} be a language. Let x = O(w) for some w and x′ /∈ LO, where |x| = |x′|.
Suppose that we are considering a game between a challenger and an adversary, and
the adversary internally simulates some oracle algorithm. When the algorithm makes
a query to O on w, the adversary actually relays the query to the oracle. Even if
the adversary returns x′ as the answer to the algorithm (i.e., the adversary sets x′ :=
O(w)), the algorithm cannot detect this swap, as O is implemented by a random
injection. In other words, there must be another “correct” oracleO′ that maps w to x′
in the oracle distribution. Thus, the simulated algorithm runs correctly and outputs
its result based on the swapped value.

Our adversary works as follows: LetM be a blackbox construction of a proof sys
tem for the plaintext equality language that is complete and zeroknowledge. Given
a CRS in a soundness game, the adversary runs the prover algorithm of M on a false
statement. The adversary cheats the prover by following the above swapping tech
nique, and finally the prover outputs a (forged) proof. This proof should pass the
verification by M since it is generated by the prover. Actually, the oracle O and the
construction of the adversary are more involved. See Chapter 4.4 for more details.

4.1.3 Comparison to the Results of Abe et al.
We argue that the swapping technique can be applied to our problem, as both our work
and [50] treat conjunctive languages, while the plaintext equality language requires
the equality of witnesses behind two ciphertexts. In [50], they demonstrated that a

35

forged proof is indistinguishable from a real proof by showing that M.Vrf makes a
query on a witness only with negligible probability. We take a step further and prove
that the absence of such a query causes M.Vrf not to validate the witness equality.

More technically, our adversary differs from in [50] in terms of the soundness
game it participates. Recall that we consider the standard soundness game whereas
they considered the unbounded simulationsoundness game. In [50], the adversary
simulates the oracle answers based on a list of query/answer pairs that the chal
lenger gives to the adversary, and they put an assumption, named the “full verifi
cation model,” that the list contains sufficient information for the simulation. On the
contrary, we consider the standard soundness game so that the adversary’s behav
ior becomes simpler and we do not put any assumptions such as the full verification
model.

4.2 Basic Notation
In this chapter, we introduce notations that are necessary for this work. We formally
define an extended language.

Definition 20 (Extended Language [50]) Let L and L̂ be languages, and let ⋄ ∈
{∨,∧} denotes a logical binary operator. An extended language is defined as the
union

⋃
n(Ln ⋄ L̂n) where Ln ⋄ L̂n := {(x, x̂) |(x ∈ Ln) ⋄ (x̂ ∈ L̂n)}. An extension

is nontrivial if Ln ⋄ L̂n /∈ Ln′ for any n and n′.

If a statement (x, x̂) for an extended language L ⋄ L̂ satisfies x ∈ L and x̂ ∈ L̂, we
say such a statement is an (yes, yes)instance, and define other such statements in the
obvious way.

Definition 21 (Extended Language with Witness Relation) Let L and L̂ be lan
guages, R be a binary relation and ⋄ ∈ {∨,∧} denotes a logical binary operator. An
extended language with witness relation R is defined as the union

⋃
n(Ln ⋄ L̂n), for

any n and n′,

Ln ⋄ L̂n := {(x, x̂) |∃w, ŵ s.t. {(x,w) ∈ RLn ⋄ (x̂, ŵ) ∈ RL̂n} ∧ R(w, ŵ) = 1}.

The extension is nontrivial if Ln ⋄ L̂n /∈ Ln′ for any n and n′.

In this work we make use of the CPAPKE oracle defined by Gertner et al. [46].

Definition 22 (The CPAPKE Oracle [46]) Let O = (O.g,O.e, O.d,O.w, O.u) be
an oracle that is chosen uniformly according to the following distributions.

36

O.g: pk ← O(g, sk)
Given a secret key sk ∈ {0, 1}n, output a public key pk ∈ {0, 1}3n where O.g
is a random injection.

O.e: c← O(e, pk, b, r)
Given a public key pk ∈ {0, 1}3n, a message bit b ∈ {0, 1} and a randomness
r ∈ {0, 1}n, output a ciphertext c ∈ {0, 1}3n where O(e, pk, ·, ·) is a random
injection for any pk ∈ {0, 1}3n.

O.d: {0, 1,⊥} ← O(d, sk, c)
Given a secret key sk ∈ {0, 1}n and a ciphertext c ∈ {0, 1}3n, output a bit
b ∈ {0, 1} if there exists a randomness r s.t. O(e,O(g, sk), b, r) = c; otherwise
output ⊥.

O.w: O(e, pk, sk1, rpk,1,j), · · · , O(e, pk, skn, rpk,n,j)← O(w, pk, j)
Given a public key pk ∈ {0, 1}3n and an index j ∈ {0, 1}n, output ⊥ if
O(g−1, pk) = ⊥ 2; otherwise output O(e, pk, sk1, rpk,1,j), · · · , O(e, pk, skn,
rpk,n,j) where (sk1, · · · , skn) = sk = O(g−1, pk) and rpk,k,j are uniformly
chosen from {0, 1}n for any 1 ≤ k ≤ n.

O.u: {⊤,⊥} ← O(u, pk, c)
Given a public key pk ∈ {0, 1}3n and a ciphertext c ∈ {0, 1}3n, output ⊤ if
there exist an sk ∈ {0, 1}n, b ∈ {0, 1} and r ∈ {0, 1}n s.t. O(g, sk) = pk and
O(e, pk, b, r) = c; otherwise ⊥.

We denote by On the set of all oracles that satisfy the above syntax for a security
parameter n.

Theorem 9 (The Construction of a CPAPKE [46]) LetO= (O.g,O.e, O.d,O.w,
O.u) be an oracle uniformly chosen from the distribution defined in Definition 22.
Then, the following construction Π is a CPAPKE.

ΠO.Key: pk∗ ← ΠO(Key, sk∗)
Given a secret key sk∗ ∈ {0, 1}n, compute pk ← O(g, sk∗) and output sk∗
and pk∗ := pk.

ΠO.Enc: c∗ ← ΠO(Enc, pk∗, b, r)
Given a public key pk∗ = pk, a message bit b ∈ {0, 1} and a randomness
r ∈ {0, 1}n, compute c = O(e, pk, b, r) and output c∗ := c.

ΠO.Dec: b← ΠO(Dec, sk∗, c∗)
Given a secret key sk∗ = sk and a ciphertext c∗ = c, output b = O(d, sk, c)
where it might be the case that b = ⊥.

2Since O.g is injective, O.g−1 is uniquely defined.

37

It is known that there is no blackbox construction of a CCAPKE based on O in a
bit restricted model named the shielding model [46].
The NaorYung Construction
Recall that the NaorYung construction requires an NIZK for the following plaintext
equality language:

LΠ
EQ = {(c0, c1, pk0, pk1) | ∃m, r0, r1 s.t. c0 = Π(Enc, pk0,m, r0)

∧ c1 = Π(Enc, pk1,m, r1)}.

where Π = (Π.Key,Π.Enc,Π.Dec) is a CPAPKE (for the formal definition, see
Chapter 2.4).

We remark that LΠ
EQ is an extended language with witness relation which is de

fined in Definition 21 since it requires that plaintexts behind two ciphertexts are the
same. We sometimes omit the description “with respect to Π” if it is clear from the
context. Note that LΠ

EQ is a nontrivial extended language.

4.3 AnNIZKOracle for a SingleCiphertext Language
This section introduces an oracle s.t. given a CPAPKE oracle and a pair of a pub
lic key and a ciphertext, the oracle constitutes an SSNIZK that proves the validity
of the ciphertext. Recall that our main purpose is to show the impossibility of the
construction of an NIZK for the plaintext equality language from a CPAPKE and an
SSNIZK for the CPAPKE. As a first step, we show the existence of a CPAPKE and
an SSNIZK respectively, based on the CPAPKE oracle introduced in Definition 22
and an NIZK oracle that we introduce in this chapter.

Before introducing our NIZK oracle, we formally define the language that the or
acle is able to prove and give an intuition behind the oracle. LetΠ = (Π.Key,Π.Enc,
Π.Dec) be a CPAPKE. A single ciphertext language with respect to Π is

LΠ
CPA := {(c, pk) | ∃b, r s.t. c = Π(Enc, pk, b, r)}.

Now, we define the NIZK oracle. Our oracle has several interfaces that almost
constitute the functionalities of an NIZK. Namely, the CRS generator and the prover
interfaces are implemented by random injections Hcrs and Hprf respectively, where
these random injections work only when valid inputs are given to the interfaces. We
guarantee the soundness of a proof by constructing the prover interface so that it
works only when it is given a correct witness or a trapdoor.

Definition 23 (An NIZK Oracle) Let O be a CPAPKE oracle chosen uniformly
from the distribution defined inDefinition 22 andHcrs : {0, 1}n → {0, 1}2n andHprf :
{0, 1}8n → {0, 1}9n be random injections. An NIZK oracle ZK = (ZK.Crs,ZK.Prv,

38

ZK.PrvSim,ZK.Vrf) is equipped withHcrs andHprf, with oracle access toO (we omit
superscript O for legibility), and provides four functionalities:

ZK.Crs: σ ← ZK(Crs, τ)
Given a trapdoor τ ∈ {0, 1}n, output a CRS σ ← Hcrs(τ).

ZK.Prv: {π,⊥} ← ZK(Prv, σ, (c, pk), b, r)
Given a CRS σ ∈ {0, 1}2n, a statement (c, pk) where c, pk ∈ {0, 1}3n, a bit
b ∈ {0, 1} and a randomness r ∈ {0, 1}n, output ⊥ if ⊥ ← H−1c (σ),⊥ ←
O(g−1, pk) or c ̸= O(e, pk, b, r), otherwise output π ← Hprf(σ||c||pk).

ZK.PrvSim: {π,⊥} ← ZK(PrvSim, σ, (c, pk), τ)
Given a CRS σ ∈ {0, 1}2n, a statement (c, pk) where c, pk ∈ {0, 1}3n and a
trapdoor τ ∈ {0, 1}n, output⊥ if τ ↚ H−1c (σ) or⊥ ← O(g−1, pk), otherwise
output π ← Hprf(σ||c||pk).

ZK.Vrf: {0, 1} ← ZK(Vrf, σ, (c, pk), π)
Given a CRS σ ∈ {0, 1}2n, a statement (c, pk) where c, pk ∈ {0, 1}3n and a
proof π ∈ {0, 1}9n, output 1 if (σ||c||pk)← H−1p (π), otherwise 0.

We let ZKn denote the set of all oracles that satisfy the above syntax for a security
parameter n.

Given σ without τ , the validity of σ can be checked easily by making a query
ZK(Prv, σ, (c, pk), b, r) if the query O(e, pk, b, r) = c has been made previously.

We first show the construction of a CPAPKE under the existence of O and ZK.
It has been already proven that the construction Π in Theorem 9 is a CPAPKE under
the existence of O [46]. Hence, it is sufficient to show that queries to ZK does not
break the CPA security of Π.

Lemma 6 Let O be a CPAPKE oracle chosen uniformly from the distribution de
fined in Definition 22 and ZK be an NIZK oracle chosen uniformly from the distribu
tion in Definition 23. Then the construction Π in Theorem 9 is CPA secure under the
existence of O and ZK.

Proof of Lemma 6. What we are to prove is that there is no PPT adversaryAO,ZK that
breaks the CPA security of Π. It is sufficient for the lemma to show the following
claim.

Claim 1 If there exists an adversary AO,ZK that breaks the CPA security of Π, then
an adversary ÂO that breaks CPA security of Π can be constructed from A.

39

Proof of Claim 1. As the existence of an adversary that breaks the CPA security of
Π only with accessing O contradicts the result in [46], the above claim implies that
there is no adversaryAO,ZK that breaks CPA security of Π. In what follows we show
that a PPT with oracle access to O can simulate ZK within negligible difference. Let
q be a bound for running time of a PPT. We assume that, for ease of discussion, A is
stateful.

We first define two bad events and prove that these events occur only with neg
ligible probability. Then, under the assumption that these events never happen, we
show that ZK can be simulated by an oracle PPT ÂO within negligible difference.

Let BadCrs be an event that a PPT adversaryAO,ZK makes a query on a legitimate
CRS σ without prior generation by ZK.Crs. Similarly, let BadProof be an event that a
PPT adversaryAO,ZK makes a query on a legitimate proof π without prior generation
by ZK.Prv or ZK.PrvSim.

We first evaluate BadCrs. Recall that ZK.Crs is implemented by a random in
jections Hcrs : {0, 1}n → {0, 1}2n. Considering the domain of Hcrs, the probability
that a CRS which is not generated by ZK.Crs is legitimate is at most 2n/22n = 1/2n.
As A makes at most q queries, the probability that this event occurs is at most q/2n,
which is negligible.

BadProof can be evaluated in the same way as BadCrs. Since both of ZK.Prv and
ZK.PrvSim are implemented by a random injection Hprf : {0, 1}8n → {0, 1}9n, this
event happens with probability at most q/2n. Summarizing the above, these events
occur with probability at most 2q/2n, which is negligible.

Now we show how a PPT with oracle access to O simulates ZK, assuming those
bad events never happen.

ZK(Crs, τ): If τ is already asked, return the assigned answer. Otherwise, pick a CRS
σ ∈ {0, 1}2n uniformly and output σ as an answer.

ZK(Prv, σ, (c, pk), b, r): If either π = ZK(Prv, σ, (c, pk), b, r) or π = ZK(PrvSim, σ,
(c, pk), τ) is already answered, returnπ. Note thatZK(Prv, σ, (c, pk), [b], [r]) =
ZK(PrvSim, σ, (c, pk), [τ]) since both ZK.Prv and ZK.PrvSim return the same
proof π = Hprf(σ||c||pk). Further, we do not care if a query to O.e that results
in c has been made previously as we are only focusing on how to simulate ZK.
Output ⊥ if the query that results in σ is not made previously. Otherwise, pick
a proof π ∈ {0, 1}9n uniformly and output π as an answer.

ZK(PrvSim, σ, (c, pk), τ): If either π = ZK(Prv, σ, (c, pk), b, r) or π = ZK(PrvSim,
σ, (c, pk), τ) is already answered, return π. (The fact that π is already answered
indicates σ = ZK(Crs, τ) is already asked.) Output ⊥ if the query that results
in σ is not asked previously. Otherwise, pick a proof π ∈ {0, 1}9n uniformly
and output π as an answer.

40

ZK(Vrf, σ, (c, pk), π): If b = ZK(Vrf, σ, (c, pk), π) is already asked, output the an
swer b. Output ⊥ if the queries that result in σ or π are not asked previously.
Output 1 if a query to ZK.Prv or ZK.PrvSim that results in π has been made
previously, otherwise 0.

The above simulation is correct unless BadCrs and BadProof happen. Hence, if
there exists an adversaryAO,ZK that breaks the CPA security ofΠwith nonnegligible
advantage, then we can construct an adversary ÂO that breaks the CPA security of Π
with nonnegligible advantage, which concludes the claim.

Summarizing the above, we conclude that Π is a CPAPKE under the existence
of O and ZK, which justifies Claim 1, and thus Lemma 6. □
The Construction of an SSNIZK
Now, we present the construction of an SSNIZK based on the NIZK oracle.

Lemma 7 Let O be a CPAPKE oracle chosen uniformly from the distribution de
fined in Definition 22, ZK be an NIZK oracle chosen uniformly from the distribution
in Definition 23 and Π be the CPAPKE in Theorem 9. The following construction L
is an SSNIZK for LΠ

CPA.

LO,ZK.Crs: σ ← LO,ZK(Crs, 1n)
Given a security parameter, choose a trapdoor τ ← {0, 1}n and output a CRS
σ ← ZK(Crs, τ).

LO,ZK.Prv: π ← LO,ZK(Prv, σ, (c, pk), b, r)
Given a CRS σ, a statement (c, pk), a bit b and a randomness r, output π ←
ZK(Prv, σ, (c, pk), b, r).

LO,ZK.Vrf: b← LO,ZK(Vrf, σ, (c, pk), π)
Given a CRS σ, a statement (c, pk) and a proof π, output a bit b← ZK(Vrf, σ,
(c, pk), π).

LO,ZK.CrsSim: (τ, σ)← LO,ZK(CrsSim, 1n)
Given a security parameter, choose a trapdoor τ ← {0, 1}n, and output τ and
a CRS σ ← ZK(Crs, τ).

LO,ZK.PrvSim: π ← LO,ZK(PrvSim, σ, (c, pk), τ)
Given a CRS σ, a statement (c, pk) and a trapdoor τ , output π ← ZK(PrvSim,
σ, (c, pk), τ).

Proof of Lemma 7. In the following, we omit the superscript O,ZK for simplic
ity. The completeness is immediate. We show L is zeroknowledge. The differ
ence between L.Crs and L.CrsSim is only their interface. Further, for any σ and
(c, pk) s.t. pk ← O(g, [sk]), c ← O(e, pk, [b], [r]) and σ ← ZK(Crs, [τ]), it holds

41

that ZK(Prv, σ, (c, pk), b, r) = ZK(PrvSim, σ, (c, pk), τ). Therefore, for any PPT A,
AdvZKA,L,LΠCPA

(n) = 0.
To show the simulation soundness, we show that any PPT adversaryAO,ZK, whose

running time is bounded by a polynomial q, has negligible advantage in the experi
ment ExptSSA,L,LΠCPA

. In order to break the simulationsoundness,A should create a
forgery proof π′ for a pair (c′, pk′) /∈ LΠ

CPA. Since the proof is computed by the ran
dom injection Hprf and LΠ

CPA is with respect to O, A has to make a successful query
to forge the proof. That is, (i) making a query to ZK.Prv on (c′, pk′) that returns π′,
(ii) making a query to ZK.PrvSim on (c′, pk′) returning π′, or (iii) making a query to
ZK.Vrf on (c′, pk′) and π′ that returns 1.

The first case is useless as ZK.Prv outputs ⊥ for any (c′, pk′) /∈ LΠ
CPA. In the

second case, to make a successful query to ZK.PrvSim on σ, A is required to find
the trapdoor τ of σ. As ZK.CrsSim is implemented by the random injection Hcrs, all
A can do is to make a query to ZK.PrvSim to find the uniformly chosen trapdoor
τ ∈ {0, 1}n. However, the probability that such a τ is the trapdoor of σ is at most
1/2n. Hence, taking union bound on at most q queries, the probability thatA succeeds
to output a forgery proof is at most q/2n, which is negligible.

In the third case, A seeks for π′ s.t. 1 ← ZK(Vrf, σ, (c′, pk′), π′). Similar to
the previous case, the probability that such a π′ is in the domain of Hprf is at most
28n/29n = 1/2n. ThusA succeeds to output a forgery proof in the third strategy with
probability at most q/2n. To summarize the above, the probability that A succeeds
to output a forgery proof is at most 2q/2n, which is negligible. □

4.4 Separation
This chapter presents a negative result on constructions of (standard) NIZKs for the
plaintext equality language. That is, there is no fully blackbox construction of an
NIZK for the plaintext equality language based on a CPAPKE Π and an SSNIZK
for LΠ

CPA. We note that, as mentioned earlier, our result is not obtained trivially from
the result of Abe et al. [50]. This chapter is devoted to prove the following theorem.

Theorem 10 There does not exist a fully blackbox construction M that converts any
SSNIZK for LΠ

CPA with respect to a CPAPKE Π into an NIZK for LΠ
EQ that is com

plete, adaptive zeroknowledge and sound.

For proving the theorem, it suffices to show the absence of a blackbox construc
tion of an NIZK for LΠ

EQ from a specific CPAPKE Π and an NIZK for LΠ
CPA, as

we are concerned about fully blackbox separation. Thus, we prove the theorem with
respect to the CPAPKE Π introduced in Theorem 9. We assume the existence of a
construction M that is complete and zeroknowledge for LΠ

EQ based on O and ZK,

42

which are uniformly chosen from distributions introduced in Definition 22 and Defi
nition 23 respectively. Then, we construct an adversary that breaks the soundness of
M. Hence, we show the following lemma to prove our main theorem.

Lemma 8 Let O and ZK be oracles that are uniformly chosen from the distributions
introduced in Definition 22 and Definition 23 respectively, where ZK is chosen with
respect toO. Furthermore, letΠ be a CPAPKE introduced in Theorem 9 and M be a
blackbox construction of a proof system forLΠ

EQ based onO and ZK that is complete
and adaptive blackbox zeroknowledge, which is based on O and ZK. Then there
exists a polynomial time adversary A that breaks the soundness of M.

Proof of Lemma 8. Before exhibiting our adversary, we set terminologies. In the
following, we omit the superscript O,ZK if it is unnecessary. Let q = poly(n) be
the maximum number of queries that M makes to O and ZK in its execution. We
construct an adversaryAO,ZK that attacks the soundness of M in the soundness game.
We note that, while O and ZK constitute an SSNIZK for LΠ

CPA based on O and ZK,
we do not require M to have the simulation soundness. Thus, the soundness game we
will consider is not ExptSS, but a simpler one: A challenger outputs a CRS σ̂. Given
σ̂, an adversary generates a forgery proof π̂ for a statement x̂ /∈ LΠ

EQ, and sends x̂ and
π̂ to the challenger. If the challenger accepts π̂, then the adversary wins the game.
Overview and idea for an adversary. We construct an adversary that simulates the
prover algorithm MO,ZK.Prv on a false statement, and fools the prover as if it were a
correct statement. Given σ̂, the adversary computes two public keys pk1 and pk2 and
computes ciphertexts c1 = O(e, pk1, b, r1), c2 = O(e, pk2, b, r2) and c′1 = O(e, pk1,
1 − b, r1) for a message bit b and randomnesses r1 and r2. Then, A runs M.Prv on
σ̂, x̂ = (c′1, c2, pk1, pk2) and ŵ = (b, r1, r2). We remark that M.Prv is supposed to
return ⊥ on this input since x̂ /∈ LΠ

EQ. A crucial observation is that, O and ZK are
equipped by random injections, and there is another pair of oraclesO∗ and ZK∗ in the
distributionsOn and ZKn that contain entries that swap the computation results for c1
and c′1. For instance, there exists an oracle O∗ that includes entries O∗(e, pk, b, r; c′1)
and O∗(e, pk, 1 − b, r; c1). (Note that M is supposed to work properly with such
swapped oracles as O∗ is a valid oracle.) We exploit this property to construct the
adversary.

Another important observation is that M.Prv simulated by A does not directly
access the given oracles. In other words, when M.Prv calls an oracle, A forwards
the query to the corresponding oracle, and returns its output to M.Prv. When M.Prv
makes inexpedient queries for the forgery,A swaps the answer to the other consistent
one. Because O.e and ZK.Prv are implemented by random injections, M.Prv cannot
detect such swapping. To do so, the adversary defines partial oraclesO′ andZK′ based
on the query/answer pairs that she learned when she computed c1 and c′1. Then, A
runs M.Prv with algorithms O′′ and ZK′′ that, roughly speaking, work as follows: If

43

M.Prv makes a query that is registered in O′ or ZK′, then A returns the registered
answer, otherwiseA forwards the query to the real oracles and returns the answer. In
other words, A runs MO′′,ZK′′

.Prv on a false statement to obtain a forged proof. Note
that M with oracle access toO′′ and ZK′′ does not abort unless the completeness error
happens since they are correct oracles in On and ZKn, respectively.

Soundness Game and the Adversary

In what follows, we describe our adversary in a soundness game.
Step 1: Setup Phase
The challenger generates a CRS σ̂ ← M(Crs, 1n) and sends σ̂ to the adversary A.
Step 2: Forgery Phase
Given σ̂,A samples two distinct secret keys sk1, sk2 ← {0, 1}n and computes pk1 =
O(g, sk1) and pk2 = O(g, sk2). Choose b ← {0, 1} and r1, r2 ← {0, 1}n, set
b′ := 1 − b and compute c1 = O(e, pk1, b, r1), c2 = O(e, pk2, b, r2) and c′1 =
O(e, pk1, b

′, r1). Then, A defines partial oracles O′ and ZK′ based on the query/an
swer pairs she has learned whereO′ consists of entries (e, pk1, b′, r1; c1), (e, pk1, b, r1;
c′1), (d, sk1, c

′
1; b), and (d, sk1, c1; b′) andZK′ consists of entries (Prv, ·, (c1, pk1), b, r1;

⊥) and (Prv, ·, (c′1, pk1), b′, r1; ⊥). Let x̂ := (c′1, c2, pk1, pk2) and ŵ := (b, r1, r2).
Run MO′′,ZK′′

(Prv, σ̂, x̂, ŵ) where O′′ and ZK′′ simulate O and ZK as follows:
[Algorithm O′′]

• If a given query is in O′, return the output that is registered in O′.

• For any other queries, forward it to O and return the output.

[Algorithm ZK′′]

• If a given query is in ZK′, return the answer corresponding to the query that is
registered in ZK′.

• Given a query (Prv, [σ], (c′1, pk1), b, r1)with a legitimateσ, return π ← ZK(Prv,
σ, (c′1, pk1), b

′, r1) and record (Prv, σ, (c′1, pk1), b, r1; π) to ZK′. Recall that for
a function f : {0, 1}n1 → {0, 1}n2 where n1 < n2, we say y ∈ {0, 1}n2 is
legitimate if there exists x ∈ {0, 1}n1 s.t. f(x) = y.

• Given a query (Prv, [σ], (c1, pk1), b′, r1)with a legitimateσ, return π ← ZK(Prv,
σ, (c1, pk1), b, r1) and record (Prv, σ, (c1, pk1), b′, r1; π) to ZK′.

• For any other queries, forward it to ZK and return the output.

When M outputs a proof π̂, A sends x̂ and π̂ to the challenger.

44

Step 3: Verification Phase
Given x̂ = (c′1, c2, pk1, pk2) and π̂, the challenger outputs 1 if 1 ← M(Vrf, σ̂, x̂, π̂).
Otherwise it outputs 0.

Now, we show the adversary demonstrated in the above soundness game breaks
the soundness of M.
Evaluation of A

Let P be the probability that the challenger outputs 1 in Step 3. The probabil
ity is taken over the choice of O,ZK and all random coins by the challenger and
the adversary. Let AdvZKA′,M,LΠEQ

≤ ρzk for any stateful PPT adversary A′, and
Pr[Vrf(σ, x,Prv(σ, x, w)) = 1] ≥ 1 − ρco for any n ∈ N, any σ ← Crs(1n) and any
(x,w) ∈ RLΠEQ

. As M is complete and zeroknowledge, ρco and ρzk are negligible in
n. We let |Pr[ExptPKEcpa

A′′,Π = 1] − 1/2| ≤ ρcpa = negl(n) for any PPT adversary
A′′, which is taken over the choice of oracles and randomness in the experiment. We
assume that M makes at most q = poly(n) queries.

In order to prove the lemma, we show that P is nonnegligible by considering
a sequence of games s.t. the final game introduces the situation that the challenger
outputs 1 trivially. Let Pi denotes the probability that the challenger outputs 1 in
Game i. In games from Game 1 to Game 4, we exclude some bad events that happen
only by accident and simplify the game. In the remaining games, we replace oracle
O and ZK with O′′ and ZK′′ respectively step by step, finally reaching the situation
that M.Vrf always accepts the proof unless the completeness error occurs. Again,
the intuition behind the analysis is that, swapping oracle answers only results in the
other correct oracle, as we are considering oracles that are implemented by random
injections.
Game 0: The above soundness game. Thus P0 = P .
Game 1: The game halts if one of the following events occurs:

• A successful query that includes a legitimate σ is made without a prior query
that results in σ.

• A successful query that includes a legitimate π is made to ZK.Vrf without a
prior query that generates π.

In other words, the above cases exclude the events that the challenger and the
adversary find a legitimate CRS or a legitimate proof by chance. A query on σwithout
prior generation is successful only if σ is in the domain ofHcrs. Thus, considering the
domain of Hcrs, it happens with probability at most 2n/22n = 1/2n. Similarly, any
query toZK.Vrf on πwithout prior generation byZK.Prv orZK.PrvSim outputs 1 with
probability at most 28n/29n = 1/2n. Since at most 3q queries can be made throughout
the soundness game byM, there is at most 3q(1/2n+1/2n) = 6q/2n chance of halting
the game by observing the above events. Thus we have |P1 − P0| ≤ 6q/2n. In what

45

follows, we consider probabilities which are conditioned on the events do not occur.
We will exclude certain events in Game 24 as well, and treat the probabilities in the
same manner.
Game 2: The game halts if one of the following events occurs:

• A query that includes a legitimate public key pk is made without a prior query
to O.g that results in pk.

• A query that includes a legitimate ciphertext c is made without a prior query to
O.e or O.w that results in c.

The first event describes the situation where a uniformly chosen public key is in
the range of g. Considering the domain of g, this event happens with probabil
ity at most 2n/23n = 1/22n. We evaluate the second case as follows. Recall that
for a public key pk, the encryption oracle O(e, pk, ·, ·) constitutes a random injec
tion {0, 1}n+1 → {0, 1}3n. Hence, even if one knows a legitimate public key pk,
the probability that he generates a legitimate ciphertext without making a query to
O.e or is at most 2n+1/23n = 2/22n. Similarly, as O.w outputs n ciphertexts, the
probability that a legitimate ciphertext without making a query to O.w or is at most
n · 2n+1/23n = 2n/22n. As at most 3q queries are made by M in the soundness game,
we have |P2 − P1| ≤ 3q(1/22n + 2/22n + 2n/22n) = (6n+ 9)q/22n.
Game 3: The game halts if a query that contains one of the following values is made
in Step 1; sk1, sk2, pk1, pk2, c1, c′1, c2, r1 and r2. Note that this event can be defined
after the adversary in Step 2 obtains these values.

This avoids the challenger to learn the secrets beforehand. Since the secret keys
and the randomnesses are chosen uniformly and O.g and O.e are random injections,
the challenger finds these values only by chance. We evaluate the probability to make
a query on each value as follows.
The secret keys: Considering the domain ofO.g, the probability that making queries
on a specific secret key is at most 1/2n. Hence, given at most q queries in an execution
of M, the probability that making a query on sk1 or sk2 is bounded by q(1/2n +
1/2n) = 2q/2n. The remaining cases are evaluated in the same way.
The public keys: The probability that a query on a specific public key is made with
out prior generation is at most 1/23n. We remark that the situation making a query
on sk1 or sk2 to O.g to find pk1 or pk2 is already excluded by the above case. Thus,
this event occurs with probability at most q(1/23n + 1/23n) = 2q/23n.
The ciphertexts: Similar to the above case, the probability that the challenger finds
a specific ciphertext is at most 1/23n. Taking union bound for at most q queries and
three ciphertexts, a query on the ciphertexts is made with probability at most 3q/23n.
The randomness: Since r1 and r2 are chosen uniformly, this event happens only by
chance among at most q queries. Therefore, this event occurs with probability at most

46

2q/2n. Summarizing the above, we have |P3 − P2| ≤ 4q/2n + 5q/23n.
Game 4: The game halts if the output of O.w contains c1, c′1 or c2 in Step 1. We
exclude this case because we cannot avoid the possibility that the challenger makes
a query to O.w to obtain something about the proof. Recall that the output of O.w
is uniformly chosen n ciphertexts. Since O.e is a random injection, the probability
that an output of O.w contains a specific ciphertext is at most n/23n. Since at most
q queries are made in Step 1, we have |P4 − P3| ≤ nq(1/23n + 1/23n + 1/23n) =
3nq/23n.
Game 5: Replace O and ZK in Step 1 with O′′ and ZK′′ with partial oracles O′ and
ZK′ defined at the end of Step 2. In other words, the randomness in the adversary
is chosen at the beginning of the game. Observe that the adversary in the previous
game chooses b, r1 and r2 in Step 2 independent of σ̂. Hence, it does not affect the
distribution of the output of this game if the randomness in the adversary is chosen
beforehand. The view of Step 1 changes only if M makes a query defined in O′ or
ZK′. Observe that each query registered in O′ and ZK′ contains r1 or sk1. Hence this
event does not happen as we have excluded such cases in Game 3. Thus we have
P5 = P4.
Game 6: Replace O and ZK in Step 3 with O′′ and ZK′′ that contains the partial ora
cles O′ and ZK′ defined at the end of Step 2, respectively. Note that the view in Step
3 differs only if the challenger (i.e., M.Vrf) makes a query registered in O′ or ZK′.
Observe that such a query contains the secret randomness r1, i.e.,O′(e, pk1, b, r1; c′1),
O′(e, pk1, b

′, r1; c1), ZK′(Prv, ·, (c1, pk1), b, r1;⊥), ZK′(Prv, ·, (c′1, pk1), b′, r1;⊥), ZK′
(Prv, [σ], (c′1, pk1), b, r1; [π]) and ZK′(Prv, [σ], (c1, pk1), b′, r1; [π]). Hence, it is suf
ficient to show the probability that the challenger makes queries on r1 in Step 3 to
evaluate the difference between Game 5 and Game 6.

Let AskRndi be an event that r1 is asked byM.Vrf in Step 3 in Game i. Obviously,
|P6−P5| ≤ Pr[AskRnd6]. In what follows, we consider a sequence of subgames that
finally reaches the situation where π̂ is independent of r1 and we can evaluate the
probability that AskRnd occurs.
Game 6.0: The same as Game 6.
Game 6.1: We use the following oracles Õ and Z̃K instead. LetO′ andZK′ be the same
partial oracles as previous game. Let Rcpa and Rzk be uniformly chosen partial oracles
so that Õ := O′||Rcpa ∈ On and Z̃K := ZK||Rzk ∈ ZKn where Z̃K constitutes an
NIZK forLÕ

CPA and bad events inGame 14 never happen in Step 1. Note that such Õ
and Z̃K must exist asOn and ZKn are implemented by random injections. We remark
that in both Game 6.0 and 6.1, only queries outside of O′ and ZK′ are made as long
as AskRnd never happens in Step 3. As these oracles in both Game 6.0 and Game 6.1
yield the same view in the soundness game, we have Pr[AskRnd6.0] = Pr[AskRnd6.1].
Game 6.2: Choose oracles uniformly, i.e., Õ ← On and Z̃K ← ZKn so that the

47

events defined in Game 14 never happen. Furthermore, we modify the adversary so
that it runs M.Prv on x̂ = (c1, c2, pk1, pk2) and ŵ = (b, r1, r2). In Game 6.1, the
partial oracles O′ and ZK′ are determined by the (random) choice of oracles and the
randomness of the adversary and the remaining parts of oracles are chosen uniformly
so that they are consistent to O′ and ZK′ respectively. Thus, the view in Game 6.2
does not differ from that in Game 6.1 while we have modified the way of choosing
oracles. Therefore, we have Pr[AskRnd6.2] = Pr[AskRnd6.1].
Game 6.3: Replace M.Crs and M.Prv in the game with M.CrsSim and M.PrvSim and
let the challenger pass the trapdoor τ̂ generated in Step 1 to the adversary. Note that
this modification does not affect the upperbound of the probability that the events
defined inGame 14 occur. We allow the challenger to pass τ̂ to the adversary because
we are considering a game transition. That is, in a game transition, it is sufficient if
we can compare the distribution of outputs of games. Hence, it does not matter how
intermediate games of the transition are composed. We first claim the following:

Claim 2 Pr[AskRnd6.2] − Pr[AskRnd6.3] ≤ ρzk + 2ϵ where ϵ = 10q/2n + (6n +
9)q/22n + (3n+ 5)q/23n.

Note that ϵ is the summation of the upperbounds of the probabilities that events
defined in Game 14 occur. The proof of this claim appears at the end of this chapter.

Now, a proof generated in Game 6.3 is independent of r1 since it is generated
by M.PrvSim. We show that if Pr[AskRnd6.3] ≥ ρcpa + ϵ, then we can construct
an adversary that breaks the CPA security of ΠÕ,Z̃K. We construct a PPT adversary
B = (B0,B1) in the experiment ExptPKEcpa

B,Π(n) so that B1 simulates Game 6.3 and
outputs a correct message bit if AskRnd happens.

B0 : Given a public key pk, output µ where µ contains pk (note that as we are con
sidering 1bit messages, it is not necessary to choose massages explicitly).

B1 : Given (µ, c) where c is a ciphertext, simulate Game 6.3 as described below.
Throughout the simulation, if B1 observes events that are defined in Game 1 or
Game 2, then abort the simulation and output a random bit.

(i) Choose a trapdoor τ̂ ← {0, 1}n and run MÕ,Z̃K(CrsSim, τ̂) to obtain σ̂.
(ii) Choose sk′ ← {0, 1}n to obtain pk′ = O(g, sk′), choose b∗ ← {0, 1}

uniformly and r′ ← {0, 1}n and compute c′ = O(e, pk′, b∗, r′). Halt the
simulation and output a random bit b′ if B1 observes that events defined
in Game 3 or Game 4 occur.

(iii) Run MÕ,Z̃K(PrvSim, σ̂, (c, c′, pk, pk′), τ̂) to obtain a proof π̂.

48

(iv) Run MÕ,Z̃K(Vrf, (c, c′, pk, pk′), π̂). If MÕ,Z̃K.Vrf makes a query that in
cludes some randomness r, then the adversary sees if c = O(e, pk, b∗, r).
If such an r is found, then abort the simulation and output b′ := b∗, oth
erwise output a random bit b′.

Note that the above simulation can be done in polynomial time. Now, we have the
following claim.

Claim 3 If Pr[AskRnd6.3] ≥ ρcpa + ϵ, then |Pr[ExptPKEcpa
B,Π(n) = 1]− 1/2| ≥ ρcpa.

Proof of Claim 3. Let b ∈ {0, 1} be a plaintext behind c. Let AskRndcpa be an event
that a query that contains r s.t. c = O(e, pk, b∗, r) is made in (iv) and Bad be an
event that events defined in Game 14 occur during the execution of B1. Observe that
Pr[AskRnd6.3] = Pr[AskRndcpa | Bad∧ b∗ = b] = Pr[AskRndcpa | Bad]/2. Furthermore
Pr[b′ = b | AskRndcpa] = 1 and Pr[b′ = b | AskRndcpa] = 1/2. Then, we have the
following formula, which justifies Claim 3.

Pr[ExptPKEcpa
B,Π(n) = 1] = Pr[b′ = b]

=Pr[b′ = b | AskRndcpa] · Pr[AskRndcpa] + Pr[b′ = b | AskRndcpa] · Pr[AskRndcpa]

=Pr[b′ = b | AskRndcpa] · Pr[AskRndcpa]

+ Pr[b′ = b | AskRndcpa] · (1− Pr[AskRndcpa])

=Pr[AskRndcpa] +
1

2
(1− Pr[AskRndcpa]) =

1

2
+

1

2
Pr[AskRndcpa]

=
1

2
+

1

2
(Pr[AskRndcpa | Bad] · Pr[Bad] + Pr[AskRndcpa | Bad] · Pr[Bad])

≥1

2
+

1

2
Pr[AskRndcpa | Bad] · Pr[Bad] =

1

2
+ Pr[AskRnd6.3] · Pr[Bad]

=
1

2
+ Pr[AskRnd6.3] · (1− Pr[Bad]) ≥ 1

2
+ Pr[AskRnd6.3] · (1− ϵ)

≥1

2
+ Pr[AskRnd6.3]− ϵ ≥ 1

2
+ ρcpa.

□
Due to Claim 3, we obtain Pr[AskRnd6.3] ≤ ρcpa + ϵ. Summarizing the above,

we have |P6 − P5| ≤ Pr[AskRnd6.0] = Pr[AskRnd6.1] = Pr[AskRnd6.2] ≤ ρzk + 2ϵ +
Pr[AskRnd6.3] ≤ ρzk + 2ϵ+ ρcpa + ϵ = ρzk + ρcpa + 3ϵ, which is negligible.
Game 7: Similar to the modification in Game 6.1, modify O′′ and ZK′′ to be O′′ :=
O′||Rcpa and ZK′′ := ZK′||Rzk with random partial oracles Rcpa and Rzk that make
O′′ and ZK′′ one of oracles in On and ZKn respectively, so that it no longer uses O
and ZK, respectively. As the same discussion in Game 6.1 can be applied, we have
P7 = P6.

49

Now O′′ and ZK′′ are oracles in On and ZKn respectively, that generate a cor
rect proof on (c′1, c2, pk1, pk2). Then, M.Vrf accepts the generated proof unless the
completeness error occurs. Thus we have P7 > 1− ρco.

Summarizing the above, we have P > 1 − ρco − ρzk − ρcpa − 4ϵ where ϵ =
10q/2n+(6n+9)q/22n+(3n+5)q/23n, hence P is nonnegligible. This concludes
Lemma 8, thus Theorem 10. What remains is to apply a standard technique from
BorelCantelli Lemma that allows us to choose oracles from particular distributions.
□
Proof of Claim 2. To justify the claim, we construct a stateful PPT adversary B′O,ZK

that attacks the zeroknowledgeness of M. The adversary works in a zeroknowledge
game (between a challenger) as follows:

Step I : Given a CRS σ̂, sample two distinct secret keys sk1, sk2 ← {0, 1}n and
compute pk1 = O(g, sk1) and pk2 = O(g, sk2). Choose b ← {0, 1} and
r1, r2 ← {0, 1}n and compute c1 = O(e, pk1, b, r1) and c2 = O(e, pk2, b, r2).
Set x̂ = (c1, c2, pk1, pk2) and ŵ = (b, r1, r2) and output (x̂, ŵ). (Note that
(x̂, ŵ) is chosen in the same way as Game 6.2 and Game 6.3).

Step II : Given a proof π̂, run M(Vrf, σ̂, x̂, π̂). Output b′ = 1 if B′ observes a query
that includes r1 during the execution of M.Vrf, otherwise b′ = 0. Note that
since B′ simulates M.Vrf, B′ fetches all queries made by M.Vrf.

We denote the situation by b̃ = 1 (resp., b̃ = 0) where the challenger runs M.Crs and
M.Prv (resp., M.CrsSim and M.PrvSim). Let BadRl (resp., BadSm) be an event that
one of the events that are described in Game 14 occurs in the CRS generation phase
of the challenger conditioned on b̃ = 1 (resp., b̃ = 0). We remark that, considering the
upperbounds by Game14, Pr[BadRl] and Pr[BadSm] are upperbounded by 10q/2n+
(6n+ 9)q/22n + (3n+ 5)q/23n (= ϵ).

Observe that the distributions of values that are given to M.Vrf (i.e., σ̂, x̂, π̂) in
Step II are the same as those ofGame 6.2 (resp., Game 6.3), if b̃ = 1 (resp., b̃ = 0) and
BadRl (resp., BadSm) does not occur. Thus, it holds that Pr[b′ = 1 |b̃ = 1∧ BadRl] =
Pr[AskRnd6.2] and Pr[b′ = 1 |b̃ = 0∧BadSm] = Pr[AskRnd6.3]. Therefore, considering
the advantage AdvZKB′,M,LΠEQ

, we obtain the following formula:

50

ρzk ≥ AdvZKB′,M,LΠEQ
= Pr[b′ = 1 |b̃ = 1]− Pr[b′ = 1 |b̃ = 0]

=Pr[b′ = 1 |b̃ = 1 ∧ BadRl] · Pr[BadRl] + Pr[b′ = 1 |b̃ = 1 ∧ BadRl] · Pr[BadRl]
− Pr[b′ = 1 |b̃ = 0 ∧ BadSm] · Pr[BadSm]− Pr[b′ = 1 |b̃ = 0 ∧ BadSm] · Pr[BadSm]
≥− Pr[b′ = 1 |b̃ = 0 ∧ BadSm] · Pr[BadSm]

+ Pr[b′ = 1 |b̃ = 1 ∧ BadRl] · Pr[BadRl]− Pr[b′ = 1 |b̃ = 0 ∧ BadSm] · Pr[BadSm]
≥− Pr[BadSm]
+ Pr[b′ = 1 |b̃ = 1 ∧ BadRl] · Pr[BadRl]− Pr[b′ = 1 |b̃ = 0 ∧ BadSm] · Pr[BadSm]
≥− ϵ

+ Pr[b′ = 1 |b̃ = 1 ∧ BadRl] · Pr[BadRl]− Pr[b′ = 1 |b̃ = 0 ∧ BadSm] · Pr[BadSm]
=− ϵ+ Pr[AskRnd6.2] · Pr[BadRl]− Pr[AskRnd6.3] · Pr[BadSm]
=− ϵ+ Pr[AskRnd6.2] · (1− Pr[BadRl])− Pr[AskRnd6.3] · (1− Pr[BadSm])
=− ϵ+ (Pr[AskRnd6.2]− Pr[AskRnd6.3])

− Pr[AskRnd6.2] · Pr[BadRl] + Pr[AskRnd6.3] · Pr[BadSm]
≥− ϵ+ (Pr[AskRnd6.2]− Pr[AskRnd6.3])− Pr[AskRnd6.2] · Pr[BadRl]
≥− 2ϵ+ (Pr[AskRnd6.2]− Pr[AskRnd6.3]).

Therefore, we obtain Pr[AskRnd6.2]− Pr[AskRnd6.3] ≤ ρzk + 2ϵ, as we claimed. □

Limitation of the Swapping Technique

Finally, we discuss the limitation of the power of the swapping technique. At the
first attempt in this work, we tried to prove that it is impossible to obtain an NIZK
for the witness equality fromNIZKs for arbitrary nontrivial languages in a blackbox
manner. However, we found that there is a language class that the swapping technique
does not work. That is, if multiple queries are necessary to verify the language, the
verifier in the soundness game could detect the swapping.

Let O be a random oracle, L = {x | ∃w s.t. x = O(O(w))}, (x,w) ∈ RL and
O(w) = a. The adversary forges a proof for an invalid statement x′ /∈ L by setting
O(a) := x′. However, if the proof generated by M.Prv contains a (note that such a
construction does not harm the zeroknowledge property as a is output by the random
oracle), the verifier could detect the swapping by making a query x = O(a) ̸= x′.
We might be able to correct the drawback with respect to the language L, but we do
not know how to deal with this type of problem generally.

Regardless of this negative observation, we argue that the swapping technique
is still a powerful methodology. We remark that proving the knowledge about the
language L = {x | ∃w s.t. x = O(w)}, where O is some oracle, captures a natural

51

scenario that, given an output of a cryptographic protocol, prove its validity. As the
swapping technique could deal with this type of practical languages, it is still a useful
tool for proving a separation in a blackbox manner.

4.5 Conclusion and Open Question
In this work we uncovered the impossibility of a blackbox construction of an NIZK
for the plaintext equality language based on a CPAPKE and an SSNIZK for a single
ciphertext language. However, it still remains open whether we can extend a specific
NIZK to an NIZK for an equality language in a blackbox way. While there are
known results that employ the CP technique for an equality language [107, 109, 110,
111, 112], it is still open if such a language can be generally proven by, for instance,
QuasiAdaptive NIZKs [30].

Another important direction is showing the (im)possibility of NIZKs for witness
relations other than equality. There are a lot of constructions of NIZKs for these
extended languages that employ nonblackbox techniques such as [104, 116, 117].
It is still debatable whether these NIZKs are possible in a blackbox manner.

52

Chapter 5

Limits on The Power of
CommitandProve NIZKs

5.1 Introduction
In this chapter, we investigate the limitation on the power of NIZKs that employ the
commitandprovemethodology [60, 61, 62]. Roughly speaking, this technique guar
antees that, given a proof and a commitment, the proof is carried out with respect to
the opening of the commitment. NIZKs that employ the commitandprove method
ology (CPNIZKs) are seen in the literature [3, 107, 114, 115, 118]. The commitand
prove methodology itself is of interest. For instance, as noted in [113], the commit
andprove technique is standard when one wants to prove that the witnesses to two
distinct statements are the same [107, 109, 110, 111, 112].

One of the most notable applications of CPNIZKs is Zcash [13], which uses zk
SNARK by [5] to guarantee the anonymity of users. In fact, the zkSNARK does
not explicitly employ a commitandprove methodology. However, as mentioned
in [119], a prover in Zcash proves knowledge about a committed value, and thus we
can regard Zcash as an application of a CPNIZK.

In Chapter 4, we showed that, given anNIZK that proves the validity of the cipher
text of a CPAPKE, it is impossible to construct an NIZK that proves the equality of
the plaintexts behind two distinct ciphertexts in a blackbox manner. However, while
somewhat folklore, we can construct an NIZK that proves the witness equality if the
underlying NIZKs are CPNIZKs. Suppose that we are given CPNIZKs for distinct
languages L and L̂ that share the same commitment scheme. Then, we can construct
an NIZK for the languageL = {x, x̂ | ∃w, ŵ s.t. (x,w) ∈ RL∧(x̂, ŵ) ∈ RL̂∧w = ŵ}
by executing the NIZKs on the same commitment. In other words, the commitand
prove methodology trivially breaks the barrier presented in Chapter 4. However, it is
not clear if a commitandprove technique overcomes the negative result for disjunc

53

tive languages by [50]. Hence, the following question is still open:

Is it possible to construct an NIZK for a disjunctive language based on CPNIZKs in
a blackbox manner?

We investigate the above problem and answer negatively. That is, there is no fully
blackbox construction of an NIZK for a disjunctive language based on CPNIZKs.
We first formalize CPNIZKs and introduce an oracle that implements a CPNIZK for
a certain language. Then, we demonstrate a polynomialtime adversary that attacks
the soundness of an NIZK for a disjunctive language.

Specifically, let O be a certain oracle and ZK be an oracle that implements a CP
NIZK for an oraclerelativized language, denoted by LO. Assume that there exists a
blackbox constructionMO,ZK of a proof system forLO∨L′ that is complete and zero
knowledge, where L′ is some language. Then, we can construct an adversary that
breaks the soundness of M in the standard soundness game. We follow the swapping
technique which was introduced in Chapter 4. This result suggests that if we want
to augment the capability of NIZKs in terms of the languages they prove, we should
rely on certain algebraic structures.

5.1.1 Related Work
As mentioned above, many CPNIZKs have been proposed [3, 107, 114, 115, 118].
Particularly, in [107], a commitandprove methodology plays an essential role in
obtaining a modular composition of zkSNARKs.

AΣprotocol for a disjunctive language has already been proposed [7]. Therefore,
we can obtain an NIZK for a disjunctive language in the random oracle model if we
apply the FiatShamir transformation [23] to the Σprotocol. However, this does not
affect the meaning of this work as we consider NIZKs in the CRS model.

5.2 Basic Notation
We formally define a commitandprove NIZK. We partially follow the definition
in [118], but there are some differences. We will explain the differences after the
definition.

Definition 24 (CPNIZK) A tuple of Turing machines Π = (Π.Crs,Π.Com,Π.Prv,
Π.Vrf,Π.CrsSim,Π.ComSim,Π.PrvSim) that work as follows is a commitandprove
noninteractive zeroknowledge proof system (CPNIZK) for a language L.

Π.Crs: ck ← Π(Crs, τ)
Given a trapdoor τ , output a CRS (or a commitment key) ck.

54

Π.Com: c← Π(Com, ck, w, r)
Given a CRS ck, a witness w and a randomness (or an opening) r, output a
commitment c or ⊥.

Π.Prv: π ← Π(Prv, ck, x, w, r)
Given a CRS ck, an instance x, a witnessw and a randomness r, output a proof
π or ⊥.

Π.Vrf: b← Π(Vrf, ck, x, c, π)
Given a CRS ck, an instance x, a commitment c and a proof π, output a bit
b ∈ {0, 1} where 1 means accept and 0 means reject.

Π.CrsSim: (ck, τ)← Π(CrsSim, τ)
Given a trapdoor τ , output a CRS ck and τ .

Π.ComSim: c← Π(ComSim, ck, τ, r)
Given a CRS ck, a trapdoor τ and a randomness r, output a commitment c if
ck = Π(Crs, τ), otherwise ⊥.

Π.PrvSim: π ← Π(PrvSim, ck, x, c, τ)
Given a CRS ck, an instance x, a commitment c and a trapdoor τ , output π.

Definition 25 (Security Properties of CPNIZKs) A CPNIZKΠ for a language L
satisfies the following conditions.

Completeness: For any n ∈ N, any σ ← Π(Crs, τ), any (x,w) ∈ RL and any c ←
Π(Crs, ck, w, [r]), Pr[Π(Vrf, σ, x, c,Π(Prv, σ, x, w, r)) = 1] ≥ 1− negl(n).

Soundness: For any PPT adversary A, the following holds;

Pr
[

σ ← Π(Crs, τ)
(x, c, π)← A(σ) : Π(Vrf, σ, x, c, π) = 1 ∧ x /∈ L

]
≤ negl(n).

Composable ZeroKnowledge: Π is composable zeroknowledge if the following
two conditions hold:

• For any PPT A, the following advantage AdvKeyINDΠ,A,L is negligible
in n:
|Pr[ck ← Π(Crs, τ) : 1 ← A(ck)] − Pr[(ck, τ) ← Π(CrsSim, τ) : 1 ←
A(ck)]|.

• For any stateful PPTA, the following advantage AdvPrfINDΠ,A,L is neg
ligible in n:

55

∣∣∣∣∣∣∣∣Pr

(ck, τ)← Π(CrsSim, τ)
(x, c, w)← AO0(·)(ck, τ)

if (w, [r], c) ∈ Q thenπ ← Π(Prv, ck, x, w, r)
otherwise output⊥

:
A(π) = 1
∧(x,w) ∈ RL

−Pr

(ck, τ)← Π(CrsSim, 1n)
(x, c, w)← AO1(·)(ck, τ)

if (w, [r], c) ∈ Q thenπ ← Π(PrvSim, ck, x, c, τ)
otherwise output⊥

:
A(π) = 1
∧(x,w) ∈ RL

∣∣∣∣∣∣∣∣

where O0 = Π(Com, ck, ·, ·), O1 = Π(ComSim, ck, τ, ·) and Q is a list made
by the challenger as follows (note that A actually calls an oracle through the
challenger): When A calls O0 or O1, the adversary sends a witness w to the
challenger, then the challenger chooses a randomness r uniformly, obtains
c = Π(Com, ck, w, r) or c = Π(ComSim, ck, τ, r), returns c to A and records
(w, r, c) to Q.

There are three differences between our definition and the definition in [118].
In [118], every algorithm of a CPNIZK takes a tag as an input to identify the type
of value that is given, such as a group element or a field element, while we do not
require such a tag. Second, they divide a witness into pieces while we treat only a
single witness, because it is sufficient for our purpose. Finally, in the composable
zeroknowledge game of [118], the adversary outputs a statement and indices that
correspond to the witnesses and commitments it chooses, while ours outputs a state
ment, a single witness and a single commitment.

In this work we treat a CPNIZK for a hard language that is defined as following,
since it is convenient for our purpose.

Definition 26 (Hard Language) Let R be an efficiently verifiable binary relation.
Let Ln = {x ∈ {0, 1}poly(n) | ∃w ∈ {0, 1}poly′(n) s.t.R(x,w) = 1} and L =

⋃
n Ln.

Let Cn ⊆ {0, 1}poly(n) be a set and C =
⋃

n Cn. L is ϵindhard if the followings hold:

• For any security parameter n, Ln ∩ Cn = ∅.

• L and C are efficiently samplable. That is, for any security parameter n, there
exist distributionsDLn andDCn fromwhichLn and Cn are efficiently samplable
respectively.

• For any PPT A and any security parameter n, it hols that

LangINDLn,Cn,A(n) = |Pr[x← DLn : 1← A(x)]− Pr[x← DCn : 1← A(x)]|
≤ ϵind

where ϵind is negligible.

56

5.3 A CPNIZK Oracle
In this section, we introduce an oracle that implements a CPNIZK for a hard lan
guage and demonstrate that such an oracle indeed constitutes a CPNIZK. Before
introducing the CPNIZK oracle, we define another oracle that implements a hard
language as follows:

Definition 27 LetHsmpl : {0, 1}n+1 → {0, 1}2n be a random injection. An oracle O
provides the three functionalities SmplYes, SmplNo and Promise as follows:

O.SmplYes: x← O(SmplYes, w)
Given w ∈ {0, 1}n, compute x← Hsmpl(1||w) and output x.

O.SmplNo: x← O(SmplNo, w)
Given w ∈ {0, 1}n, compute x← Hsmpl(0||w) and output x.

O.Promise: b← O(Promise, x)
Given x ∈ {0, 1}2n, output 0 if ⊥ ← Hsmpl(x), otherwise 1.

Let On be the set of all oracles that satisfy the above syntax with security parameter
n, and let O be the collection of On for all n > 0.

For O ∈ On, let LO = (LO.SmplYes, LO.SmplNo, LO.Promise) be an oracle ma
chine that works as follows:

LO.SmplYes: Given (SmplYes, w), output x← O(SmplYes, w).

LO.SmplNo: Given (SmplNo, w), output x← O(SmplNo, w).

LO.Promise: Given (Promise, x), output b← O(Promise, x).

It is known that LO constitutes a hard language as shown in the following lemma:

Lemma 9 ([50]) The algorithm LO constitutes a hard language (LO
n , COn) where

LO
n = {x | ∃w s.t.x = Hsmpl(1||w)},
COn = {x | ∃w s.t.x = Hsmpl(0||w)}.

Now, we introduce an oracle that almost directly implements a CPNIZK for LO
n .

The oracle has several functionalities, and some of them are implemented by random
injections, which are accessible only within the interfaces. Namely, the CRS gen
erator and prover interfaces (i.e., Crs, Prv and PrvSim) are implemented by random
injectionsHcrs andHprf, respectively, where these random injections work only when
valid inputs are given to the interfaces. We guarantee the soundness of a proof gener
ated by the oracle by making the prover interfaces so that they work only when they
are given a correct witness or a trapdoor of a CRS.

57

Definition 28 Let O ∈ On be an oracle of the kind that is defined in Definition 27,
and let LO

n be the language defined in Lemma 9. An NIZK oracle ZK = (ZK.Crs,
ZK.Com, ZK.Prv, ZK.Vrf, ZK.PrvSim) for LO

n is equipped with random injections
Hcrs : {0, 1}n → {0, 1}2n, Hcom : {0, 1}4n → {0, 1}5n and Hprf : {0, 1}9n →
{0, 1}10n that implement the functionalities below1.

ZK.Crs: ck ← ZK(Crs, τ)
Given a trapdoor τ ∈ {0, 1}n, output a CRS ck ← Hcrs(τ).

ZK.Com: c← ZK(Com, ck, w, r)
Given a CRS ck ∈ {0, 1}2n, a witness w ∈ {0, 1}n and a randomness r ∈
{0, 1}n, output a commitment c← Hcom(ck||w||r) if there exists a trapdoor τ
s.t. H−1crs (ck) = τ , otherwise output ⊥.

ZK.Prv: π ← ZK(Prv, ck, x, w, r)
Given a CRS ck ∈ {0, 1}2n, a statement x ∈ {0, 1}2n, a witness w ∈ {0, 1}n
and a randomness r ∈ {0, 1}n, if (x,w) ∈ RLOn and there exists a trapdoor
τ s.t. H−1crs (ck) = τ , then compute c = Hcom(ck, w, r) and output a proof
π ← Hprf(ck||x||c), otherwise output ⊥.

ZK.Vrf: b← ZK(Vrf, ck, x, c, π)
Given a CRS ck ∈ {0, 1}2n, a statement x ∈ {0, 1}2n, a commitment c ∈
{0, 1}5n and a proof π ∈ {0, 1}10n, output 1 if π = Hprf(ck||x||c). Otherwise
output 0.

ZK.PrvSim: π ← ZK(PrvSim, ck, x, c, τ)
Given a CRS ck ∈ {0, 1}2n, a statement x ∈ {0, 1}2n, a commitment c ∈
{0, 1}5n and a trapdoor τ ∈ {0, 1}n, if ck = Hcrs(τ) then output a proof
π ← Hprf(ck||x||c), otherwise output ⊥.

Let Zn be the set of all oracles that satisfy the above syntax with security parameter
n, and let Z be the collection of Zn for all n > 0. The reader may wonder that the
above oracle lacks interfaces that implement CrsSim and ComSim. However, we can
construct such functionalities from ZK.Crs and ZK.Com, respectively.

The Construction of a CPNIZK

Let O ∈ On be an oracle of the type defined in Definition 27, LO
n be the language

defined in Lemma 9 and ZK ∈ Zn be an oracle of the type defined in Definition 28.
We construct M for a CPNIZK for LO

n based on O and ZK as follows:
1Since these functions are injections, their inverse functions are defined uniquely.

58

M.Crs: ck ← M(Crs, τ)
Given a trapdoor τ , output ck ← ZK(Crs, τ).

M.Com: c← M(Com, ck, w, r)
Given a CRS ck, a witness w and a randomness r, output a commitment c ←
ZK(Com, ck, w, r).

M.Prv: π ← M(Prv, ck, x, w, r)
Given a CRS ck, a statement x, a witness w and a randomness r, output a proof
π ← ZK(Prv, ck, x, w, r).

M.Vrf : b← M(Vrf, ck, x, c, π)
Given a CRS ck, a statement x, a commitment c and a proof π, output a verifi
cation result b← ZK(Vrf, ck, x, c, π).

M.CrsSim: (ck, τ)← M(CrsSim, τ)
Given a trapdoor τ , output τ and a CRS ck ← ZK(Crs, τ).

M.ComSim: c← M(ComSim, ck, τ, r)
Given a CRS ck, a trapdoor τ and a randomness r, if ck ← ZK(Crs, τ), then
output a commitment c = ZK(Com, ck, τ, r).

M.PrvSim: π ← M(PrvSim, ck, x, c, τ)
Given a CRS ck, a statement x, a commitment c and a trapdoor τ , output a
proof π ← ZK(PrvSim, ck, x, c, τ).

Lemma 10 M is a CPNIZK for LO
n .

Proof of Lemma 10. LetA be a PPT adversary. Without loss of generality, we assume
that A makes at most q = poly(n) queries. Completeness is immediate. We show
that M is sound. Suppose that A is given a legitimate CRS ck and outputs x /∈ LO

n ,
c and π. Since x /∈ LO

n , A should evoke M.Prv to generate π for x that passes the
verification byM.Vrf. There are two possibilities in whichA can create such a proof:
Call ZK.PrvSim on a trapdoor τ of ck, c and x to obtain a simulated proof, or compute
a proof π so that it passes the verification without a query that results in π.

Regarding the first case, as ZK.Crs is implemented by a random injection, A
should make a query to ZK.Crs on a trapdoor and see if the given CRS is returned to
find τ . Since there are 2n candidates for τ , the probability that A makes a query on
τ is 1/2n. Taking the union bound for at most q queries, A makes such a query with
probability at most q/2n. We evaluate the second case. We remark that, in this case,
A computes a legitimate π without making a query to ZK.PrvSim, since otherwise
it implies the first case. Considering the domain of Hprf : {0, 1}9n → {0, 1}10n, the

59

probability that such a proof is legitimate is at most q · 29n/210n = q/2n, which is
negligible.

Now, we show that M is composable zeroknowledge. As a first step, we prove
that AdvKeyINDM,A,LOn is negligible inn. SinceM.Crs andM.CrsSim are implemented
by the same random injection, A cannot distinguish the algorithm from which the
CRS comes. Thus, we have AdvKeyINDM,A,LOn (n) = 0.

We demonstrate that, by a hybrid argument, for any PPT A, AdvPrfINDM,A,LOn
is negligible. Let O0 and O1 be the oracles that are explicitly given in Definition 24
(note that in the composable zeroknowledge game,O and ZK are given in addition to
O0 orO1). We sayA is in the “real” (resp., “simulated”) world ifA is givenO0 (resp.,
O1). We introduce three games where the first game corresponds to the real world
and the third game corresponds to the simulated world. Let Pi be the probability that
A chooses a pair (x,w) ∈ RLOn and finally outputs 1 in Game i.
Game 0: A composable zeroknowledge game where the adversary is given O0 and
the challenger runs M.Prv to obtain a proof π. We describe the composable zero
knowledge game in the real world as follows:

Step 1 The challenger uniformly chooses τ ← {0, 1}n, runs (ck, τ)← M(CrsSim, τ)
and sends (ck, τ) to the adversary.

Step 2 Given (ck, τ), the adversary outputs (x,w, c), where (x,w) ∈ RLO and c is
obtained as follows:

• The adversary sends w to the challenger along with calling O0.
• Givenw, the challenger chooses a randomness r ∈ {0, 1}n uniformly, ob
tains c = M(Com, ck, x, w, r), sends c to the challenger and adds (w, r, c)
to Q where Q is an initially empty list.

Note that the adversary obtains at most q commitments.

Step 3 Given (x,w, c), the challenger determineswhether there exists an entry (w, r, c)
inQ. If such an entry exists, then the challenger computesπ ← M(Prv, ck, x, w,
r) and sends π to the adversary, otherwise outputs ⊥.

Step 4 Given π, the adversary outputs 0 if A decides that π is generated by the real
prover, otherwise 1.

Game 1: Modify Game 0 so that the challenger runs M(PrvSim, ck, x, c, τ) to obtain
π in Step 3.

We remark that M.PrvSim gives an output other than ⊥ on the input (ck, x, c, τ).
Observe that M(PrvSim, ck, x, c, τ) = M(Prv, ck, x, w, r) = π = Hprf(ck||x||c).
Hence, this modification does not change the distribution of the composable zero
knowledge game and we have P1 = P0.

60

Game 2: Replace O0 in Game 1 with O1. Note that this game corresponds to the
simulated world.

Recall thatO0 andO1 are actuallyM.Com and M.ComSim, respectively, and they
are implemented by the same random injection Hcom. Therefore, the distribution of
the output of this game differs from that of Game 1 only if A obtains a commitment
that is generated by the challenger herself, i.e., only ifAmakes a query that includes
the randomness r, which is chosen uniformly by the challenger. That is, as A knows
the trapdoor τ and the witnessw,A can obtain c bymaking queriesZK(Com, ck, w, r)
and ZK(ComSim, ck, τ, r) if A obtains r.

To analyze the probability that A makes a query that includes r, we should con
sider two cases. First, A makes such a query before obtaining c. As r ∈ {0, 1}n
is chosen uniformly, the probability that a query made by A contains r is 1/2n.
Considering the assumption that A makes at most q queries during the composable
zeroknowledge game, the probability that this event occurs is at most q/2n. The
second case is that A makes such a query after obtaining c. That is, A might gain
some information about r from c. However, c is generated by the random injection
Hcom. Hence, we can apply the same discussion as the first case and conclude that
this event happens with probability at most q/2n. Summarizing the above, we have
|P2 − P1| ≤ 2q/2n. Now, the difference between Game 0 and Game 2 corresponds
to the advantage in the composable zeroknowledge game. Summarizing the above,
we have AdvPrfINDM,A,LOn (n) ≤ 2q/2n, which is negligible. □

Remark 1 Let ZK,ZK′ ∈ ZKn be oracles that constitute CPNIZKs for some lan
guages L and L′ respectively. If ZK.Com and ZK′.Com are implemented by the same
random injection, then we can construct an NIZK that proves witness equality (i.e.,
an NIZK for (x,w) ∈ RL ∧ (x′, w′) ∈ RL′ ∧ w = w′).

5.4 Separation
This section presents our main result. That is, we show the following theorem:

Theorem 11 Given a hard language L and a CPNIZK for L respectively, there is
no fully blackbox construction of a (standard) NIZK for L ∨ L̂ where L̂ is a hard
language.

As we would like to show fully blackbox separation, it suffices to show the ab
sence of a blackbox construction of an NIZK for a specificL∨L̂. LetO be an oracle
of the type defined in Definition 27, LO

n be the language defined in Lemma 9 and ZK
be an oracle of the type defined in Definition 28. Thus, we assume that there exists a
blackbox construction M of a proof system for LO

n ∨ L̂, where L̂ is a hard language
along with Ĉ, which is complete and zeroknowledge, and we present an adversary

61

that attacks the soundness ofM. AsM is complete, for any n ∈ N, any σ̃ ← M(Crs, τ̃)
and any (x̃, w̃) ∈ RLOn∨L̂, we have Pr[M(Vrf, σ̃, x̃,M(Prv, σ̃, x̃, w̃)) = 1] ≥ 1 − ρco
where ρco is negligible. Similarly, it holds that AdvZKA,M,LO∨L̂ ≤ ρzk for any PPT A
where ρzk is negligible.

We implicitly assume that a CRS (resp., a proof) generated by M.Crs (resp.,
M.Prv) contains CRSs (resp., proofs) generated by ZK.Crs (resp., ZK.Prv), since oth
erwise, it implies that we can construct M without the oracle ZK. Furthermore, we
assume that a proof π̃ generated by M.Prv contains a commitment that is necessary
to verify a proof embedded in π̃. Without loss of generality, we assume that every
algorithm in this section makes at most q = poly(n) queries. Thus, at most q values
are embedded in every value output by M. As LO

n and L̂ are hard languages, for any
PPTA, it holds that LangINDLOn ,COn ,A(n) ≤ ρind and LangINDL̂n,Ĉn,A(n) ≤ ρ̂ind where
ρind and ρ̂ind are negligible in n respectively.
Observation on a CRS. As observed in [50], even if a CRS σ̃ generated by M.Crs
contains some legitimate CRSs with respect to ZK.Crs, these CRSs cannot be used to
generate a proof byM.Prv unless its trapdoor is known toM.Prv. SinceM.Prv proves
a disjunctive language, there are cases in which only one side of a statement is true
(i.e., an (yes, no)instance or a (no, yes)instance). However, a proof generated by
M.Prv should not leak which side of the statement is the yesinstance, as M is zero
knowledge. Assume that σ̃ contains a legitimate CRS with respect to ZK.Crs without
its trapdoor (we say such a CRS is nontrivial), and that M.Prv is given a (no, yes)
instance. Then, the prover algorithm cannot prove the noinstance on the nontrivial
CRS, as its trapdoor is required to prove the noinstance. If M.Prv is supposed to use
only this type of CRS, then a proof generated by M.Prv may leak the fact that the
instance is a (no, yes)instance. Hence, to generate a zeroknowledge proof, M.Prv
should use a CRS with respect to ZK.Crs whose trapdoor is embedded in σ̃ (we say
such a CRS is trivial) or a CRS that is generated by the prover algorithm itself.
Overview of The Adversary. Before formally demonstrating an adversary A, we
sketch the adversary in the standard soundness game. First, given a CRS σ̃, the ad
versary learns trivial CRSs and their trapdoors with respect to ZK.Crs by following
the above observation. Since we do not know how these pairs are encoded in σ̃, we
let A run M.Prv and M.Vrf sufficiently many times on σ̃, an (yes, no)instance and
its witness where they are chosen uniformly. After this step, A samples a (no, no)
instance (x, x̂) uniformly and runs M.Prv on the instance to forge a proof. Similar
to Chapter 4, during the execution of M.Prv, we apply the swapping technique [50].
Recall that a query made by M.Prv is actually relayed by the adversary. Thus, when
M.Prv makes a query to ZK.Prv on x and a CRS ck whose trapdoor τ is known to A
(i.e., a trivial CRS or a CRS generated during the execution of M.Prv), the adversary
obtains a proof by making a query to ZK.PrvSim on x, ck and τ and returns the an
swer to M.Prv. Note that a query to ZK.Prv on x and ck should result in ⊥ since x

62

is a noinstance. However, there might be a case in which M.Prv makes a query on
a CRS whose trapdoor is not known (i.e., a nontrivial CRS or a CRS that is found
accidentally without prior generation by ZK.Crs). In such a case, the adversary as
signs a randomly chosen proof as the answer to the query. (Clearly, if such a proof is
verified by the challenger, it results in 0 with high probability, and the attack might
fail. However, we will show later that such a random proof is verified by M.Vrf with
only low probability.) After M.Prv outputs a (forged) proof, the adversary passes it
to the challenger. Then, the challenger verifies the proof by M.Vrf, and it should pass
the verification, as it was generated by M.Prv.
Soundness Game and The Adversary
We describe the adversary in a standard soundness game as follows:
Step 1: The challenger chooses τ̃ uniformly, computes a CRS σ̃ ← M(Crs, τ̃) and
sends it to the adversary. Let Qleg be a list of CRSs and their trapdoors s.t. ck ←
O(Crs, τ) appears during this step.
Step 2: Given the CRS σ̃, the adversary A repeats the following qc times where c
is some constant: Sample (xi, wi) ∈ RLOn and (x̂i, ŵi) ∈ RĈ uniformly, and obtain
πi ← M(Prv, σ̃, xi, x̂i, wi, ŵi) and b = M(Vrf, σ̃, xi, x̂i, π).

Let Qtriv be a set of (ck, τ) pairs s.t. a query ck = ZK(Crs, τ) or ZK(PrvSim,
ck, ·, ·, τ, ·) = π ̸= ⊥ appears during this step. Roughly speaking, Qtriv is a set of
pairs of a trapdoor and a CRS s.t. the adversary generates them in this phase or the
pair is encoded in σ̃
Step 3: A choosesw ∈ {0, 1}n and x̂ ∈ Ĉ uniformly and obtains x = O(SmplNo, w)
and x∗ = O(SmplYes, w). The adversary defines new partial oracles O′ and ZK′
based on the query answer pairs that she has learned. That is, the adversary applies
the swapping technique to x and x∗ in O and ZK, respectively.
Partial Oracle O′
A new oracleO′ is obtained by swapping x and x∗ inO. That is,O′ consists of entries
O′(SmplYes, w;x) and O′(SmplNo, w;x∗).
Partial Oracle ZK′
The new oracle ZK′ contains the entries ZK′(Prv, ·, x, w, ·;⊥).

Let x̃ = (x∗, x̂) and w̃ = (w,⊥). The adversary evokes MO′′,ZK′′
(Prv, σ̃, x̃, w̃)

where O′′ and ZK′′ are algorithms defined as follows:
[Algorithm O′′]
Algorithm O′′ works as follows:

• If O′′ is given a query registered in O′, then it returns the registered answer.

• Otherwise, it forwards the query to O and returns the answer.

[Algorithm ZK′′]
Let Qintl be an initially empty set. Algorithm ZK′′ works as follows (recall that the

63

bracket notation [x] means a value that matches any value, and we denote the value
by x thereafter):

• For any query registered in ZK′, return the registered answer.

• ZK′′.Crs: For any query of the form (Crs, [τ]), return ck ← ZK(Crs, τ) and
record (ck, τ) in Qintl.

• ZK′′.Prv: For any query of the form (Prv, [ck], x∗, w, [r])with a legitimate CRS
ck, obtain c = ZK(Com, ck, w, r) and do the following:

– If there exists an entry (ck, [τ]) ∈ Qtriv∪Qintl, then return π = ZK(PrvSim,
ck, x∗, c, τ) and record (Prv, ck, x∗, w, r; π) to ZK′.

– If there is no entry s.t. (ck, [τ]) ∈ Qtriv ∪Qintl, then choose π ∈ {0, 1}10n
uniformly, returnπ and record (Prv, ck, x∗, w, r; π) and (Vrf, ck, x∗, c, π; 1)
to ZK′.

• For every other query, forward it to ZK and return the answer.

If M.Prv outputs a proof π̃, send x̃ and π̃ to the challenger.
Step 4: Given x̃ and π̃, the challenger outputsM(Vrf, σ̃, x̃, π̃). IfM(Vrf, σ̃, x̃, π̃) = 1,
then the adversary wins.
Evaluation
We first introduce the following lemmas, which are useful for the analysis of the
adversary.

Lemma 11 ([120]) Let X1, · · · , Xn+1 be independent Bernoulli random variables.
Let Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p for some p ∈ [0, 1]. Let E be an
event in which the first n variables are sampled at 1 andXn+1 is sampled at 0. Then,
Pr[E] ≤ 1/(e · n) where e is the base of the natural logarithm.

Lemma 12 ([121]) LetA,B, and F be events defined in some probability space, and
suppose that A ∧ ¬F ⇔ B ∧ ¬F . Then, |Pr[A]− Pr[B]| ≤ Pr[F].

Our adversary follows the swapping technique similar to Chapter 4, but the analysis is
slightly different. That is, in Chapter 4, we first ruled out several bad events, and then
evaluated the probability that the adversary wins the game, under the assumption that
these bad event never happens. In other words, we directly reduced the probability
space so that the bad events do not occur. In this chapter, we follow Lemma 12,
aiming to simpler analysis as we are not necessary to shrink probability space.

We show that the challenger accepts the proof with noticeable probability by a
hybrid argument. We start with the soundness game, and ultimately reach a situation

64

where the challenger accepts the proof trivially. The first game, Game 0, is the sound
ness game itself. In the next four games, from Game 1 to Game 4, we exclude certain
bad events that happen only by accident. Note that in these games, we sometimes let
the soundness game abort (or halt) if these bad events happen. This means that the
challenger outputs 0 and the adversary loses the soundness game. Then, we modify
the game step by step, finally reaching a situation where the challenger trivially ac
cepts the proof unless a completeness error occurs. Let P be the probability that the
challenger accepts the proof in the soundness game and Pi be the same probability in
Game i.
Game 0: This is the soundness game; thus, P0 = P .
Game 1: This game excludes the case where a legitimate value suddenly appears
without its prior generation by O or ZK. That is, we halt the game if one of the
following events occurs:

• A successful query that includes a legitimate CRS ck is made but there is no
entry (ck, [τ]) in Qleg ∪Qtriv ∪Qintl.

• A successful query that includes

– x ∈ LO
n or x ∈ COn

– a legitimate commitment c
– a legitimate proof π

is made without their prior generation by the given oracles.

Regarding the first case, the probability that a CRS without prior generation by
ZK.Crs is legitimate is bounded by 1/2n, as Hcrs is a random injection s.t. Hcrs :
{0, 1}n → {0, 1}2n. Therefore, the probability that this query occurs can be evalu
ated if we take the union bound for the number of queries that are made during the
soundness game. Recall that M makes at most q queries in its execution. Thus, the
number of queries made in Steps 1, 3 and 4 are at most q respectively, since in these
steps, only a single subroutine of M is executed once (we ignore the instance sam
pling queries byA in Step 3 because they are obviously irrelevant to the query we are
concerned with). In Step 2, M.Prv and M.Vrf are executed qc times. Thus, at most
2q · qc queries are made in this step (the instance sampling queries are ignored here
as well). Since at most 3q + 2qc+1 queries are made in the game, the probability that
the first case deviates is at most (3q + 2qc+1)/2n. The other cases can be evaluated
in the same manner by considering the domains of Hsmpl : {0, 1}n+1 → {0, 1}2n,
Hcom : {0, 1}4n → {0, 1}5n and Hprf : {0, 1}9n → {0, 1}10n. Thus, we have

|P1 − P0| ≤ 5(3q + 2qc+1)/2n.

65

Game 2: We halt the game if a query including w is made in Step 1 or 2. As w is
uniformly chosen by A and M.Crs makes at most q queries in Step 1, the probability
that a query on w is made in Step 1 is at most q/2n. Recall that the adversary chooses
qc witnesses and runs M.Prv and M.Vrf qc times in Step 2. As M makes at most q
queries, there are at most qc + 2q · qc chances to make a query on w in Step 2. Thus,
we have

|P2 − P1| ≤ (q + qc + 2qc+1)/2n,

which is negligible.
Game 3: We halt the game if the challenger observes b = 0 in Step 2. This excludes
the case in which the challenger learns nothing in this step. Note that the challenger
observes b = 0 only when a completeness error occurs, as the challenger chooses
values honestly in this step. As this step is executed qc times, we have

|P3 − P2| ≤ qc · ρco.

Game 4: We abort the game if a randomly assigned proof π by ZK′′ in Step 3 appears
as a result of a query to ZK.Prv or ZK.PrvSim by the end of Step 3. Similar toGame 1,
there are at most 2q+2qc+1 queries that may occur in this event (note that here we do
not consider the case where this event occurs in Step 4). As ZK.Prv and ZK.PrvSim
are implemented by the random injectionHprf, the probability that such a π is returned
by ZK.Prv or ZK.PrvSim is at most (2q+2qc+1)/2n. Furthermore, as there are at most
q randomly assigned proofs, we have

|P4 − P3| ≤ q(2q + 2qc+1)/2n

Game 5: This game excludes the case where the adversary fails to learn all the trivial
CRSs embedded in σ̃ in Step 2 and its trapdoor appears suddenly in Step 3. That
is, the game halts if M.Prv in Step 3 makes a query ZK(PrvSim, [ck], x, [c], [τ]) that
results in a proof π ̸= ⊥ while (ck, τ) /∈ Qtriv ∪Qintl.

As the query results in a value other than⊥, it implies that τ is the trapdoor of ck.
Furthermore, we exclude the casewhere a legitimate ck appears without its generation
by ZK in Game 1. Therefore, this is a case where a pair (ck, τ) ∈ Qleg does not appear
in Step 2 but appears in Step 3. For each such pair, the probability that it does not
appear in Step 2 but appears in Step 3 for the first time is bounded by 1/(eqc) due to
Lemma 11. As σ̃ contains at most q such pairs, we have

|P5 − P4| ≤ 1/(eqc−1).

Game 6: Replace O and ZK in Steps 1 and 2 with O′′ and ZK′′, which contain the
partial oracles O′ and ZK′ defined at the end of Step 3, respectively. Observe that

66

the randomness chosen by the adversary is independent of the oracles and the ran
domness chosen by the challenger. Hence, modifying the game so thatA chooses its
randomness at the beginning of the soundness game does not affect the distribution
of the soundness game. The view changes only if a query that includes x, x∗ or w is
made in Step 1 or Step 2, and we have already excluded such cases. Thus, we have
P6 = P5.
Game 7: Replace O and ZK in Step 4 with O′′ and ZK′′, respectively. The view of
the game changes if M.Vrf makes one of the following queries in Step 4:

• A query (PrvSim, [ck], x, [c], [τ]) that results in π ̸= ⊥ while (ck, τ) /∈ Qtriv ∪
Qintl and there already exists an entry (Prv, ck, x, w, r; π′ ̸= ⊥) in ZK′ s.t.
c = O(Com, ck, w, r) and π ̸= π′.

• A query that is registered in O′ or ZK′.

Let us elaborate the first query. The proof π′ is randomly assigned by the adver
sary in Step 3 to (ck, τ) /∈ Qtriv ∪ Qintl, but the entry (Prv, ck, x, w, r; π′) is in ZK′.
Recall that we have already excluded the case where a legitimate CRS suddenly ap
pears without prior generation by O.Crs in Game 1. Hence, if M.Vrf makes such a
query, it means that the adversary failed to learn a pair of a CRS and its trapdoor in
Step 2 and such a pair appears in Step 4. Applying the same discussion as in Game
5, we obtain that such a query is made with probability at most 1/(eqc−1).

Observe that the second query is classified into two cases:

• A query that containsw, i.e., (SmplYes, w), (SmplNo, w) and (Prv, [ck], x, w, [r])

• A query to ZK.Vrf that verifies a randomly assigned proof by ZK′′ in Step 3.

Intuitively, the zeroknowledgeness of M is compromised if the first query is made.
Regarding the second query, we follow the observation that a nontrivial CRS cannot
be used to generate a proof π̃.

We define two events regarding these queries and show that they are made with
small probability. Let AskW be an event in which M.Vrf makes a query on w in Step
4, and let VerRand be an event in which M.Vrf in Step 4 makes a query to ZK.Vrf that
includes a randomly assigned proof generated by ZK′′. By AskWi (resp., VerRandi),
we denote an event in which AskW (resp., VerRand) occurs in game i. We claim the
following two statements:

Claim 4 Pr[AskW7] ≤ ρzk + q/2n.

Claim 5 Pr[VerPi7] ≤ 1/(eqc−1) + q/2n + 2ρzk + ρind + ρ̂ind.

67

The proofs of these claims appear after the proof of Theorem 11. Therefore, we obtain

|P7 − P6| ≤ 1/(eqc−1) + Pr[AskW] + Pr[VerPi]
≤ 1/(eqc−1) + 2q/2n + 3ρzk + ρind + ρ̂ind.

Game 8: Let Ro and Rzk be uniformly chosen partial oracles such that O′||Ro ∈ On

and ZK′||Rzk ∈ Zn. ReplaceO′′ and ZK′′ withO′||Ro and ZK′||Rzk respectively. Such
oracles must exist since both O and ZK are implemented by random injections.

Recall that in Game 7, oracles O′′ = O′||O and ZK′′ = ZK′||ZK are given. Fur
thermore, we have already excluded the case where M.Vrf in Step 4 makes queries
that are inconsistent withO′ and ZK′ in Game 7. Therefore, replacingO and ZK with
Ro and Rzk does not change the view in Step 4. Thus, we have P8 = P7.

Observe that now a proof generated by M.Prv is a correct proof on (x, x̂). There
fore, M.Vrf should accept such a proof unless a completeness error occurs. Hence,

P8 ≥ 1− ρco.

Summarizing the above evaluations, we have

P ≥1− (17q + 2q2 + qc + 12qc+1 + 2qc+2)/2n

− 2/(eqc−1)− (1 + qc)ρco − 3ρzk − ρind − ρ̂ind,

which concludes Theorem 11. □
Proof of Claim 4. We evaluate AskW by introducing subgames that ultimately reach
a situation where a proof generated by the prover algorithm becomes independent of
the witness. Let Game 7.0 be Game 7 and Game 7.1 be the following:
Game 7.1: Let Ro and Rzk be uniformly chosen partial oracles such that O′||Ro ∈ On

and ZK′||Rzk ∈ Zn. Replace O′′ and ZK′′ with O′||Ro and ZK′||Rzk, respectively.
Note that such oracles must exist since both O and ZK are implemented by random
injections.

Observe that the distribution inGame 7.1 differs from that of Game 7.0 only when
a query in O′ or ZK′ is made. Thus, we obtain that Pr[AskW7.1] = Pr[AskW7.0].
Game 7.2: Replace O′||Ro and ZK′||Rzk with O ← On and ZK← Zn. Furthermore,
let the adversary run M.Prv on a correct instance, i.e., on (x∗, x̂).

Such modifications do not yield a difference between Game 7.1 and Game 7.2.
Note that in Game 7.1, the partial oracles O′ and ZK′ are determined by the choice
of oracles and randomnesses in the challenger and the adversary, and Ro and Rzk are
chosen uniformly. Thus, modifying the choice of oracles so that they are chosen
uniformly does not change the view of the game. Hence, we have Pr[AskW7.2] =
Pr[AskW7.1].

68

Game 7.3: ReplaceM.Crs in Step 1 andM.Prv in Step 3withM.CrsSim andM.PrvSim,
respectively. Furthermore, let the challenger pass the trapdoor generated byM.CrsSim
to the adversary. We claim the following.

Claim 6 Pr[AskW7.2]− Pr[AskW7.3] ≤ ρzk.

Proof of Claim 6. We construct a stateful PPT adversary B = (B0,B1) that attacks
the zeroknowledgeness of M, assuming that Pr[AskW7.2]−Pr[AskW7.3] > ρzk. Such
an adversary contradicts the assumption thatM is zeroknowledge, thus justifying the
claim. The adversary works in the (standard) zeroknowledge game with a challenger
as follows:

B0: Given aCRS σ̃, samplew ← {0, 1}n and x̂ ∈ Ĉ and obtainx∗ = O(SmplYes, w).
Set x̃ = (x∗, x̂) and w̃ = (w,⊥) and output (x̃, w̃). Note that (x̃, w̃) is chosen
in the same way as for the challenger of Game 7.2 and Game 7.3.

B1: Given a proof π̃, run M(Vrf, σ̃, x̃, π̃). If B1 observes a query that includes w
during the execution of M.Vrf (i.e., AskW occurs), output b′ = 1, otherwise
b′ = 0.

We denote by b = 1 (resp., b = 0) the situation where the challenger works with
M.Crs and M.Prv (resp., M.CrsSim and M.PrvSim). Observe that the distribution of
(σ̃, x̃, π̃) in B1 is the same as that given to M.Vrf in Step 4 in Game 7.2 (resp., Game
7.3) if b = 1 (resp., b = 0). Thus, we obtain that

Pr[b′ = 1|b = 1] = Pr[AskW7.2],

Pr[b′ = 1|b = 0] = Pr[AskW7.3].

Considering the definition of AdvZKB,M,LO∨L̂, we obtain the following formula:

AdvZKB,M,LO∨L̂ =Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

=Pr[AskW7.2]− Pr[AskW7.3] > ρzk

which contradicts the assumption that M is zeroknowledge. Therefore, we obtain
Pr[AskW7.2]− Pr[AskW7.3] ≤ ρzk. □

Now we show that Pr[AskW7.3] ≤ q/2n. As a proof generated by M.PrvSim is
independent of w, the verifier makes a query on w only by chance. As M.Vrf makes
at most q queries, Pr[AskW7.3] ≤ q/2n. Summarizing the above, we have

Pr[AskW7.0] = Pr[AskW7.1] = Pr[AskW7.2] ≤ ρzk + Pr[AskW7.3] ≤ ρzk + q/2n.

We have thus proven Claim 4. □

69

Proof of Claim 5. Recall thatVerPi is the event that a randomly assigned proof in Step
3 is verified by M.Vrf in Step 4. It should be analyzed carefully as we do not know
whether a proof is a randomly assigned proof when M.Vrf makes a query to ZK.Vrf,
i.e., VerPi is not observable. However, we observe that there exists an alternative
event that almost implies VerPi.

We introduce an alternative event VerCrs and show that Pr[AskW] ≤ Pr[VerCrs]+
1/(eqc−1). Observe that a proof is randomly assigned only when a query that contains
a CRS ck s.t. (ck, [τ]) /∈ Qtriv ∪ Qintl is made in Step 3. Hence, whenever VerPi
occurs, such a CRS is queried byM.Vrf. As we have already excluded the case where
a legitimate CRS suddenly appears without its prior generation by given oracle in
Game 1, the appearance of such a CRS in Step 4 is due to one of the following:

• ck is trivial but the adversary failed to learn (ck, τ) in Step 2

• ck is nontrivial.

The first case can be evaluated as in Game 5; thus such a query is made with proba
bility at most 1/(eqc−1). Regarding the second case, we define VerCrs to be an event
in which M.Vrf makes a query (Vrf, [ck], [x], [c], [π]) to ZK s.t. ck ∈ Qnt where Qnt
is the list of CRSs queried in Step 2 but (ck, [τ]) /∈ Qtriv (“nt” stands for nontrivial).
From the above observation, we have Pr[VerPi] ≤ Pr[VerCrs] + 1/(eqc−1). Now, we
evaluate Pr[VerCrs] by introducing several subgames. We first introduce the same
game transition as in Game 7.1 to Game 7.3. Then, we modify the game so that it
ultimately reaches the situation where a proof is generated on a (no, yes)instance;
thus VerCrs does not occur. Let Game 7.0′ be Game 7.
Game 7.1′ (the same as Game 7.1): Replace O′′ and ZK′′ with O′||Ro and ZK′||Rzk
respectively. Similar to Game 7.1, we have Pr[VerCrs7.1] = Pr[VerCrs7.0].
Game 7.2′ (the same as Game 7.2): Replace O′||Ro and ZK′||Rzk with O ← On

and ZK ← Zn. Furthermore, let the adversary run MO,ZK.Prv on a correct instance,
i.e., on (x∗, x̂). Since the same discussion as in Game 7.2 can be applied, we have
Pr[VerCrs7.2] = Pr[VerCrs7.1].
Game 7.3′ (the same as Game 7.3): Replace M.Crs in Step 1 and M.Prv in Step 3
with M.CrsSim and M.PrvSim respectively. Furthermore, let the challenger pass the
trapdoor generated by M.CrsSim to the adversary. We claim the following:

Claim 7 Pr[VerCrs7.2′]− Pr[VerCrs7.3′] ≤ ρzk.

Proof of Claim 7. We first construct a zeroknowledge adversary B′ = (B′0,B′1) as
follows:

B′0: Given a CRS σ̃, execute Step 2 in the soundness game. Then, choose w ∈
{0, 1}n and x̂ ∈ Ĉ uniformly and obtain x∗ = O(SmplYes, w). Set x̃ = (x∗, x̂)
and w̃ = (w,⊥) and output (x̃, w̃).

70

B′1: Given a proof π̃, run M(Vrf, σ̃, x̃, π̃). Output b′ = 1 if B′1 observes VerCrs,
otherwise output b′ = 0.

Similar to Game 7.3, we denote by b = 1 (resp., b = 0) the situation where the
challenger runs M.Crs and M.Prv (resp., M.CrsSim and M.PrvSim). Then, we obtain

Pr[b′ = 1|b = 1] = Pr[VerCrs7.2′],
Pr[b′ = 1|b = 0] = Pr[VerCrs7.3′].

Considering the definition of AdvZKB′,M,LO∨L̂, we obtain the following formula:

AdvZKB′,M,LO∨L̂ =Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

=Pr[VerCrs7.2′]− Pr[VerCrs7.3′].

Therefore, if Pr[VerCrs7.2′]− Pr[VerCrs7.3′] > ρ zk, it contradicts the zeroknowledge
property of M, which justifies Claim 7. □
Game 7.4′: Modify the adversary so that it chooses (x̂, ŵ) ∈ RL̂ instead of x̂ ∈ Ĉ in
Step 2 (i.e., A samples an (yes, yes)instance). Note that since A runs M.PrvSim, ŵ
is not given to M.PrvSim.

Recall that L̂ is a hard language, along with Ĉ. Thus, it contradicts the instance
indistinguishability of L̂ if |Pr[VerCrs7.4′]−Pr[VerCrs7.3′]| > ρ̂ind. Therefore, we have
|Pr[VerCrs7.4′]− Pr[VerCrs7.3′]| ≤ ρ̂ind.
Game 7.5′: Modify the adversary so that it chooses (x∗, w) ∈ RC instead of (x∗, w) ∈
RL (i.e., the adversary samples a (no, yes)instance). Similar to Game 7.4′, we obtain
|Pr[VerCrs7.5′]− Pr[VerCrs7.4′]| ≤ ρind.
Game 7.6′: Replace M.CrsSim and M.PrvSim with M.Crs and M.Prv, respectively.
Note that asA samples a (no, yes)instance, the adversary runs M.Prv on x̃ = (x∗, x̂)
and w̃ = (⊥, ŵ). Since the same discussion as in Game 7.3′ can be applied, we have
Pr[VerCrs7.5′]− Pr[VerCrs7.6′] ≤ ρzk.

AsM.Prv runs on a (no, yes)instance, there is little chance thatVerCrswill occur.
That is, the probability of a query (Prv, [ck], x∗, w, [r]) having a legitimate CRS ck ∈
Qnt is bounded by q/2n, as O.SmplNo is implemented by a random injection and
M.Prv is not given w. Therefore, Pr[VerCrs7.6′] ≤ q/2n.

To sum up the above, we have

Pr[VerCrs7.0′] = Pr[VerCrs7.1′] = Pr[VerCrs7.2′]
≤ Pr[VerCrs7.3′] + ρzk ≤ Pr[VerCrs7.4′] + ρzk + ρ̂ind

≤ Pr[VerCrs7.5′] + ρzk + ρind + ρ̂ind

≤ Pr[VerCrs7.6′] + 2ρzk + ρind + ρ̂ind

≤ q/2n + 2ρzk + ρind + ρ̂ind.

71

Therefore, we obtain

Pr[VerPi7] ≤ 1/(eqc−1) + q/2n + 2ρzk + ρind + ρ̂ind.

We have thus proven Claim 5. □

5.5 Conclusion and Future Work
We revealed that there is no fully blackbox construction of an NIZK for a disjunctive
language based on CPNIZKs. This result suggests that we should rely on a certain
mathematical structure if we want to augment the capability of NIZKs in terms of
the language they prove, while a commitandprove methodology is itself powerful
enough to break the barrier shown in Chapter 4.

There is room for considering a blackbox language extension. That is, we might
be able to characterize languages (or binary relations) such that we cannot obtain
NIZKs for them in a blackbox manner.

72

Chapter 6

Conclusion

It is often required that an authentication is done without revealing any private infor
mation. This seemingly contradictory requirement can be satisfied by using NIZKs.
While several efficient and practical NIZKs have been proposed and are used in many
applications, they depend on underlying assumptions. Hence, much is not known
about the general treatment of NIZKs as building blocks.

In this dissertation, we have studied blackbox constructions that use NIZKs as
oracles. As mentioned earlier, extending languages that NIZKs prove is important
in the following sense: (i) NIZKs for extended languages have a lot of applications
in both theory and practice. Recall that the NaorYung construction, which is an im
portant paradigm in theoretical cryptography, employs an NIZK for a language that
includes conjunction and equality. Regarding disjunctive relation, a majority voting
can be implemented by an NIZK that proves a vote is indeed 0 or 1, as mentioned in
Chapter 1. Thus, if we can expand a language that an NIZK proves in a blackbox
manner, it could help to construct these applications efficiently. (ii) Extending lan
guages is an important direction to construct an NIZK for an NPcomplete language.
An ultimate goals regarding NIZKs is to construct an NIZK for an NPcomplete lan
guage, and it is often the case that such an NIZK is achieved by language extensions.
Therefore, a blackbox language extension could provide a generic way toward this
goal. However, this dissertation have revealed that there is no universal way to con
struct an NIZK for certain extended languages based on NIZKs for smaller languages.

In Chapter 3, we have simplified the existing framework that takes account of an
NIZK, and obtained a new insight regarding an implementation of anNIZK in a black
box framework. In the following chapters, we have demonstrated the impossibilities
of language extensions of NIZKs in a blackbox manner based on the knowledge
that we obtained in Chapter 3. Readers may wonder that the NIZK oracles (namely,
the prover interfaces) defined in Chapter 4 and 5 accepts a randomness, while we
have excluded such a value from the prover interface in Chapter 3. This is because
the coinfree oracle in Chapter 3 proves an NPcomplete language, while the other

73

oracles are for specific languages. Therefore, we found out that the power of NIZKs
deeply depend on languages they prove.

In Chapter 4, we have shown that it is impossible to construct an NIZK for the
witness equality based on (standard) NIZKs in a blackbox manner. We remark that
NIZKs for the witness equality has a vast number of applications in both theory and
practice. This result suggests that we should rely on algebraic structures or the feature
of languages if we want to construct an NIZK for the witness equality from NIZKs
for smaller languages.

In Chapter 5, we have proven that we cannot construct an NIZK for an OR
composition language even from CPNIZKs in a blackbox manner. Note that we can
construct an NIZK for the witness equality if underlying NIZKs are CPNIZKs, and
thus the commitandprove methodology trivially breaks the barrier demonstrated in
Chapter 4. Therefore, even if we use such powerful oracles, it is impossible to extend
languages that underlying NIZKs prove in a blackbox manner.

We stress that the existence of CPNIZKs does not damage the meaning of the
analysis in Chapter 4. That is, it was nontrivial if we can construct an NIZK for the
witness equality from standard NIZKs in a blackbox manner. A blackbox construc
tion provides a general transformation from a primitive to another one. Therefore,
we considered the possibility of the construction of NIZKs for the witness equality
from the NIZK of the most abstract form.

We remark that these results do not exclude the possibility nonblackbox con
structions of NIZKs for extended languages (in fact, a lot of such constructions are
seen in the literature). There are many constructions of NIZKs based on specific
assumptions, such as pairing or lattice. Our results rule out the possibility that there
exists a universal methodology to enhance the power of NIZKs in terms of languages,
which works under any assumptions.

In summary, while an NIZK is a useful cryptographic primitive and there are prac
tical constructions of NIZKs based on concrete assumptions, we have demonstrated
the limitation of enhancing the capability of NIZKs in a blackbox manner. This in
dicates that, if we want to extend a language that an NIZK proves, we should rely on
the characteristic of the underlying assumption. Therefore, we conclude that NIZKs
will develop for each underlying assumption, and in particular, cryptographers should
construct an NIZK from scratch if a new assumption is proposed in the future.

74

Appendix A

Publications List

Journal Articles

• KyosukeYamashita, Mehdi Tibouchi, andMasayuki Abe, “ACoinFreeOracle
Based Augmented Black Box Framework (Full Paper)”, IEICE TRANSAC
TIONS on Fundamentals of Electronics, Communications and Computer Sci
ences, Vol.E103A, No.10, pp.11671173, Oct. 2020.

• Kyosuke Yamashita, Mehdi Tibouchi and Masayuki Abe, “On the Impossi
bility of NIZKs for Disjunctive Languages from CommitandProve NIZKs”,
IEEE Access, 2021.

Conference Proceedings Articles

• KyosukeYamashita, Mehdi Tibouchi, andMasayuki Abe “ACoinFreeOracle
Based Augmented Black Box Framework”, ProvSec2019

• Kyosuke Yamashita, Mehdi Tibouchi and Masayuki Abe “On BlackBox Ex
tension of a NonInteractive ZeroKnowledge Proof System for Secret Equal
ity”, INDOCRYPT 2020: 882904

Talks

• Kyosuke Yamashita, Mehdi Tibouchi, and Masayuki Abe. “On Augmented
BlackBox Constructions Based on an Oracle Without Witness Indistinguisha
bility”, SCIS 2019.

• Kyosuke Yamashita, Mehdi Tibouchi, and Masayuki Abe. “On Augmented
BlackBox Construction Based on an Oracle Without Witness Indistinguisha
bility”, IWSEC 2019 (invited talk).

75

• Kyosuke Yamashita, Mehdi Tibouchi, and Masayuki Abe. “The Augmented
Black Box Framework and ZeroKnowledge Proofs of Plaintext Equality”,
SCIS 2020.

• Kyosuke Yamashita, Mehdi Tibouchi, and Masayuki Abe. “Limits on The
Power of CommitandProve NIZKs”, SCIS 2021.

Chapter 3 is based on “ACoinFree Oracle BasedAugmented Black Box Framework
(Full Paper)”, IEICE TRANSACTIONS on Fundamentals of Electronics, Communi
cations and Computer Sciences, Vol.E103A, No.10, pp.11671173, Oct. 2020, DOI:
https://doi.org/10.1587/transfun.2019DMP0018, copyright ©2020 IEICE.

Chapter 5 is based on “On the Impossibility of NIZKs for Disjunctive Languages from
CommitandProve NIZKs”, IEEE Access, DOI: 10.1109/ACCESS.2021.3056078,
2021 copyright ©2021 IEEE.

76

Bibliography

[1] G. Oded, S Micali, and AWigderson. How to prove all npstatements in zero
knowledge, and a methodology of cryptographic protocol design. In Proceed
ings on Advances in cryptology—CRYPTO ’86, pages 171–185, London, UK,
UK, 1987. SpringerVerlag.

[2] Manuel Blum, Paul Feldman, and Silvio Micali. Noninteractive zero
knowledge and its applications. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, STOC ’88, pages 103–112, New York,
NY, USA, 1988. ACM.

[3] Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear
groups. In Nigel Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
pages 415–432, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[4] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninter
active zeroknowledge. J. ACM, 59(3), June 2012.

[5] Jens Groth. On the size of pairingbased noninteractive arguments. In Marc
Fischlin and JeanSébastien Coron, editors, Advances in Cryptology – EU
ROCRYPT 2016, pages 305–326, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[6] Benedikt Bunz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions
and more. In 2018 IEEE Symposium on Security and Privacy (SP), pages
315–334, 2018.

[7] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Yvo G.
Desmedt, editor, Advances in Cryptology — CRYPTO ’94, pages 174–187,
Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[8] Jens Groth. Noninteractive zeroknowledge arguments for voting. ACNS’05,
pages 467–482, Berlin, Heidelberg, 2005. SpringerVerlag.

77

[9] Helios Voting.

[10] Silvio Micali and Michael O. Rabin. Cryptography miracles, secure auctions,
matching problem verification. Commun. ACM, 57(2):85–93, February 2014.

[11] D. C. Parkes, M. O. Rabin, S.M. Shieber, and C. A. Thorpe. Practical Secrecy
Preserving, Verifiably Correct and Trustworthy Auctions, pages 70–81. Asso
ciation for Computing Machinery, New York, NY, USA, 2006.

[12] Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure vickrey auctions with
out threshold trust. In Matt Blaze, editor, Financial Cryptography 2003,
Bermuda, 1114 March 2002, 2003.

[13] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash pro
tocol specification, 2020.1.15 edition, 2020.

[14] Vitalik Buterin. Ethereum White Paper.

[15] Georg Fuchsbauer. Wi is not enough: Zeroknowledge contingent (service)
payments revisited. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS’19, pages 49–62, New York,
NY, USA, 2019. Association for Computing Machinery.

[16] Mathias HallAndersen. Fastswap: Concretely efficient contingent payments
for complex predicates. IACR Cryptol. ePrint Arch., 2019:1296, 2019.

[17] M. Campanelli, R. Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero
knowledge contingent payments revisited: Attacks and payments for services.
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu
nications Security, 2017.

[18] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instruc
tions and software model for isolated execution. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security
and Privacy, HASP ’13, New York, NY, USA, 2013. Association for Com
puting Machinery.

[19] Arm. Arm trustzone technology. https://developer.arm.com/
ip-products/security-ip/trustzone.

[20] Oded Goldreich and Yair Oren. Definitions and properties of zeroknowledge
proof systems. Journal of Cryptology, 7, 06 2002.

78

https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

[21] U Feige, D Lapidot, and A Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput., 29(1):1–28, September
1999.

[22] U. Feige, D. Lapidot, and A. Shamir. Multiple noninteractive zero knowledge
proofs based on a single random string. In Proceedings [1990] 31st Annual
Symposium on Foundations of Computer Science, pages 308–317 vol.1, 1990.

[23] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Andrew M. Odlyzko, editor, Ad
vances in Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg,
1987. Springer Berlin Heidelberg.

[24] David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. J. Cryptol., 13(3):361–396, January 2000.

[25] Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive zero
knowledge based on any trapdoor permutation. J. Cryptology, 9:149–166, 06
1996.

[26] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
Deniable encryption, and more. STOC ’14, pages 475–484, New York, NY,
USA, 2014. Association for Computing Machinery.

[27] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of
chaos. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography,
pages 474–502, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[28] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zeroknowledge with preprocessing. In Shafi Goldwasser, editor, Advances in
Cryptology — CRYPTO’ 88, pages 269–282, New York, NY, 1990. Springer
New York.

[29] Rafael Pass, abhi shelat, and Vinod Vaikuntanathan. Construction of a non
malleable encryption scheme from any semantically secure one. In Cyn
thia Dwork, editor, Advances in Cryptology CRYPTO 2006, pages 271–289,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[30] Charanjit S. Jutla and Arnab Roy. Shorter quasiadaptive nizk proofs for linear
subspaces. Journal of Cryptology, 30(4):1116–1156, Oct 2017.

[31] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable
zeroknowledge (extended abstract). In Proceedings of the ThirtySecond An
nual ACM Symposium on Theory of Computing, STOC ’00, pages 235–244,
New York, NY, USA, 2000. Association for Computing Machinery.

79

[32] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable pro
tocols with relaxed setup assumptions. In 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 186–195, 2004.

[33] Michael BenOr and Dan Gutfreund. Trading help for interaction in statistical
zeroknowledge proofs. Journal of Cryptology, 16:95–116, 03 2008.

[34] Jens Groth and Rafail Ostrovsky. Cryptography in the multistring model. In
Alfred Menezes, editor, Advances in Cryptology CRYPTO 2007, pages 323–
341, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[35] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. Nizks with an un
trusted crs: Security in the face of parameter subversion. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016,
pages 777–804, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[36] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences
of oneway permutations. In Proceedings of the Twentyfirst Annual ACM
Symposium on Theory of Computing, STOC ’89, pages 44–61, New York, NY,
USA, 1989. ACM.

[37] J. Rompel. Oneway functions are necessary and sufficient for secure signa
tures. In Proceedings of the TwentySecond Annual ACM Symposium on The
ory of Computing, STOC ’90, pages 387–394, New York, NY, USA, 1990.
Association for Computing Machinery.

[38] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any oneway function. SIAM J. Comput.,
28(4):1364–1396, March 1999.

[39] Moni Naor. Bit commitment using pseudorandomness. J. Cryptol., 4(2):151–
158, January 1991.

[40] Manuel Blum and Shafi Goldwasser. An efficient probabilistic publickey en
cryption scheme which hides all partial information. In George Robert Blakley
and David Chaum, editors, Advances in Cryptology, pages 289–299, Berlin,
Heidelberg, 1985. Springer Berlin Heidelberg.

[41] Eyal Kushilevitz and Rafail Ostrovsky. Oneway trapdoor permutations are
sufficient for nontrivial singleserver private information retrieval. In Bart
Preneel, editor, Advances in Cryptology EUROCRYPT 2000, pages 104–121,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

80

[42] Daniel R. Simon. Finding collisions on a oneway street: Can secure hash
functions be based on general assumptions? In Kaisa Nyberg, editor, Advances
in Cryptology — EUROCRYPT’98, pages 334–345, Berlin, Heidelberg, 1998.
Springer Berlin Heidelberg.

[43] Y. Gertner, S. Kannan, T. Malkin, O. Reingold, andM. Viswanathan. The rela
tionship between public key encryption and oblivious transfer. In Proceedings
41st Annual Symposium on Foundations of Computer Science, pages 325–335,
2000.

[44] Mohammad Mahmoody, Ameer Mohammed, and Soheil Nematihaji. On the
impossibility of virtual blackbox obfuscation in idealized models. In Eyal
Kushilevitz and Tal Malkin, editors, Theory of Cryptography, pages 18–48,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[45] R. Impagliazzo. A personal view of averagecase complexity. Proceedings of
Structure in Complexity Theory. Tenth Annual IEEE Conference, pages 134–
147, 1995.

[46] Yael Gertner, Tal Malkin, and StevenMyers. Towards a separation of semantic
and cca security for public key encryption. In Proceedings of the 4th Confer
ence on Theory of Cryptography, TCC’07, pages 434–455, Berlin, Heidelberg,
2007. SpringerVerlag.

[47] Moni Naor and Moti Yung. Publickey cryptosystems provably secure against
chosen ciphertext attacks. In Proceedings of the Twentysecond Annual ACM
Symposium on Theory of Computing, STOC ’90, pages 427–437, New York,
NY, USA, 1990. ACM.

[48] Yehuda Lindell. A simpler construction of cca2secure publickey encryp
tion under general assumptions. In Proceedings of the 22Nd International
Conference on Theory and Applications of Cryptographic Techniques, EU
ROCRYPT’03, pages 241–254, Berlin, Heidelberg, 2003. SpringerVerlag.

[49] Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich. Lim
its on the power of zeroknowledge proofs in cryptographic constructions. In
Theory of Cryptography 8th Theory of Cryptography Conference, TCC 2011,
volume 6597 of Lecture Notes in Computer Science, page 559. Springer, 2011.

[50] Masayuki Abe, Miguel Ambrona, and Miyako Ohkubo. On blackbox exten
sions of noninteractive zeroknowledge arguments, and signatures directly
from simulation soundness. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PublicKey Cryptography – PKC 2020,
pages 558–589, Cham, 2020. Springer International Publishing.

81

[51] Amit Sahai. Nonmalleable noninteractive zero knowledge and adaptive
chosenciphertext security. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, FOCS ’99, pages 543–, Washington, DC,
USA, 1999. IEEE Computer Society.

[52] Rafael Pass. Unprovable security of perfect nizk and noninteractive non
malleable commitments. In Amit Sahai, editor, Theory of Cryptography, pages
334–354, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[53] Nir Bitansky, Dana DachmanSoled, Sanjam Garg, Abhishek Jain, Yael Tau
man Kalai, Adriana LópezAlt, and Daniel Wichs. Why “fiatshamir for
proofs” lacks a proof. In Amit Sahai, editor, Theory of Cryptography, pages
182–201, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[54] CraigGentry andDanielWichs. Separating succinct noninteractive arguments
from all falsifiable assumptions. STOC ’11, pages 99–108, New York, NY,
USA, 2011. Association for Computing Machinery.

[55] Geoffroy Couteau and Dennis Hofheinz. Designatedverifier pseudorandom
generators, and their applications. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, pages 562–592, Cham, 2019.
Springer International Publishing.

[56] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated
verifier nizks for all np from cdh. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, pages 593–621, Cham, 2019.
Springer International Publishing.

[57] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Designated verifier/prover and preprocessing nizks from diffiehellman as
sumptions. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptol
ogy – EUROCRYPT 2019, pages 622–651, Cham, 2019. Springer International
Publishing.

[58] Sam Kim and David J. Wu. Multitheorem preprocessing nizks from lattices.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
– CRYPTO 2018, pages 733–765, Cham, 2018. Springer International Publish
ing.

[59] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for np from
(plain) learning with errors. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, pages 89–114, Cham, 2019.
Springer International Publishing.

82

[60] Oded Goldreich, S. Micali, and AviWigderson. How to play any mental game.
pages 218–229, 01 1987.

[61] Joe Kilian. Uses of Randomness in Algorithms and Protocols. PhD thesis,
Cambridge, MA, USA, 1990.

[62] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable twoparty and multiparty secure computation. Conference Pro
ceedings of the Annual ACM Symposium on Theory of Computing, 08 2003.

[63] Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibility be
tween cryptographic primitives. In Moni Naor, editor, Theory of Cryptogra
phy, pages 1–20, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[64] Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of blackbox
reductions, revisited. In Kazue Sako and Palash Sarkar, editors, Advances
in Cryptology ASIACRYPT 2013, pages 296–315, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[65] Daniel R. Simon. Finding collisions on a oneway street: Can secure hash
functions be based on general assumptions? In Kaisa Nyberg, editor, Advances
in Cryptology — EUROCRYPT’98, pages 334–345, Berlin, Heidelberg, 1998.
Springer Berlin Heidelberg.

[66] Dan Boneh, Periklis A. Papakonstantinou, Charles Rackoff, Yevgeniy Vahlis,
and Brent Waters. On the impossibility of basing identity based encryption on
trapdoor permutations. 2008 49th Annual IEEE Symposium on Foundations
of Computer Science, pages 283–292, 2008.

[67] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability
obfuscation and functional encryption. In Proceedings of the 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science (FOCS), FOCS ’15,
pages 191–209, Washington, DC, USA, 2015. IEEE Computer Society.

[68] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ameer
Mohammed. Limits on the power of garbling techniques for publickey en
cryption. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology – CRYPTO 2018, pages 335–364, Cham, 2018. Springer Interna
tional Publishing.

[69] ChunYuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or
do secure hash functions need secret coins? In Matt Franklin, editor, Ad
vances in Cryptology – CRYPTO 2004, pages 92–105, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

83

[70] I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in inter
active protocols a tight lower bound on the round complexity of statistically
hiding commitments. In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’07), pages 669–679, 2007.

[71] Mohammad Mahmoody and Rafael Pass. The curious case of noninteractive
commitments – on the power of blackbox vs. nonblackbox use of primitives.
In Reihaneh SafaviNaini and Ran Canetti, editors, Advances in Cryptology
– CRYPTO 2012, pages 701–718, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[72] MohammadMahmoody and AmeerMohammed. On the power of hierarchical
identitybased encryption. InMarc Fischlin and JeanSébastien Coron, editors,
Advances in Cryptology – EUROCRYPT 2016, pages 243–272, Berlin, Heidel
berg, 2016. Springer Berlin Heidelberg.

[73] R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic crypto
graphic constructions. InProceedings 41st Annual Symposium on Foundations
of Computer Science, pages 305–313, 2000.

[74] Moni Naor. On cryptographic assumptions and challenges. In Dan Boneh,
editor, Advances in Cryptology CRYPTO 2003, pages 96–109, Berlin, Hei
delberg, 2003. Springer Berlin Heidelberg.

[75] Michael Luby. Pseudorandomness and Cryptographic Applications. 01 1996.

[76] JeanSébastien Coron. Optimal security proofs for pss and other signature
schemes. In Lars R. Knudsen, editor, Advances in Cryptology—EUROCRYPT
2002, pages 272–287, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[77] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the impossibility
of tight cryptographic reductions. In Marc Fischlin and JeanSébastien Coron,
editors, Advances in Cryptology – EUROCRYPT 2016, pages 273–304, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[78] Saqib A. Kakvi and Eike Kiltz. Optimal security proofs for full domain hash,
revisited. In David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology – EUROCRYPT 2012, pages 537–553, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[79] AndrewMorgan, Rafael Pass, and Elaine Shi. On the adaptive security of macs
and prfs. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptol
ogy – ASIACRYPT 2020, pages 724–753, Cham, 2020. Springer International
Publishing.

84

[80] IftachHaitner, ThomasHolenstein, Omer Reingold, Salil Vadhan, andHoeteck
Wee. Universal oneway hash functions via inaccessible entropy. EURO
CRYPT’10, pages 616–637, Berlin, Heidelberg, 2010. SpringerVerlag.

[81] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic
applications of random functions (extended abstract). In George Robert
Blakley and David Chaum, editors, Advances in Cryptology, pages 276–288,
Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.

[82] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity or all languages in np have zeroknowledge proof systems.
J. ACM, 38(3):690–728, July 1991.

[83] R. Cramer, D. Hofheinz, and Eike Kiltz. A note on bounded chosen cipher
text security from blackbox semantical security. IACR Cryptol. ePrint Arch.,
2006:391, 2006.

[84] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptogra
phy. In Proceedings of the Twentythird Annual ACM Symposium on Theory
of Computing, STOC ’91, pages 542–552, New York, NY, USA, 1991. ACM.

[85] Ronald Cramer and Victor Shoup. A practical public key cryptosystem prov
ably secure against adaptive chosen ciphertext attack. In Hugo Krawczyk,
editor, Advances in Cryptology — CRYPTO ’98, pages 13–25, Berlin, Heidel
berg, 1998. Springer Berlin Heidelberg.

[86] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure publickey encryption. In Lars R. Knudsen,
editor, Advances in Cryptology — EUROCRYPT 2002, pages 45–64, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[87] Ronald Cramer and Victor Shoup. Design and analysis of practical publickey
encryption schemes secure against adaptive chosen ciphertext attack. SIAM J.
Comput., 33(1):167–226, January 2004.

[88] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosenciphertext security from
identitybased encryption. In Christian Cachin and Jan L. Camenisch, editors,
Advances in Cryptology EUROCRYPT 2004, pages 207–222, Berlin, Heidel
berg, 2004. Springer Berlin Heidelberg.

[89] Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures and
message authentication based on noninteractive zero knowledge proofs. In
Gilles Brassard, editor, Advances in Cryptology — CRYPTO’ 89 Proceedings,
pages 194–211, New York, NY, 1990. Springer New York.

85

[90] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin
Boyd, editor, Advances in Cryptology — ASIACRYPT 2001, pages 552–565,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[91] B. Barak. How to go beyond the blackbox simulation barrier. In Proceedings
42nd IEEE Symposium on Foundations of Computer Science, pages 106–115,
2001.

[92] Marc Fischlin. Roundoptimal composable blind signatures in the common
reference string model. In Cynthia Dwork, editor, Advances in Cryptology
CRYPTO 2006, pages 60–77, Berlin, Heidelberg, 2006. Springer Berlin Hei
delberg.

[93] U. Feige and A. Shamir. Witness indistinguishable and witness hiding proto
cols. In Proceedings of the Twentysecond Annual ACM Symposium on Theory
of Computing, STOC ’90, pages 416–426, New York, NY, USA, 1990. ACM.

[94] Whitfield Diffie and Martin Hellman. New directions in cryptography. Infor
mation Theory, IEEE Transactions on, 22:644 – 654, 1976.

[95] Andrew C. Yao. Theory and application of trapdoor functions. In Proceedings
of the 23rd Annual Symposium on Foundations of Computer Science, SFCS
’82, pages 80–91, Washington, DC, USA, 1982. IEEE Computer Society.

[96] Arkady Yerukhimovich. A STUDY OF SEPARATIONS IN CRYPTOGRAPHY:
NEW RESULTS AND NEW MODELS. PhD thesis, Graduate School of the
University of Maryland, 2011.

[97] A. C. Yao. How to generate and exchange secrets. In 27th Annual Symposium
on Foundations of Computer Science (sfcs 1986), pages 162–167, 1986.

[98] Couteau Geoffro, Farshim Pooya, and Mahmoody Mohammad. Blackbox
uselessness: Composing separations in cryptography. In ITCS, 2021.

[99] RichardM.Karp. Reducibility amongCombinatorial Problems, pages 85–103.
Springer US, Boston, MA, 1972.

[100] Judy Goldsmith and Deborah Joseph. Three results on the polynomial isomor
phism of complete sets. In Annual Symposium on Foundations of Computer
Science (Proceedings), pages 390 – 397, 11 1986.

[101] Jens Groth. Simulationsound nizk proofs for a practical language and constant
size group signatures. In Xuejia Lai and Kefei Chen, editors, Advances in
Cryptology – ASIACRYPT 2006, pages 444–459, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

86

[102] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect noninteractive zero
knowledge for np. In Serge Vaudenay, editor, Advances in Cryptology EU
ROCRYPT 2006, pages 339–358, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[103] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for np from
(plain) learning with errors. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, pages 89–114, Cham, 2019.
Springer International Publishing.

[104] Sanjam Garg and Divya Gupta. Efficient round optimal blind signatures. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology –
EUROCRYPT 2014, pages 477–495, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[105] Dennis Hofheinz and Tibor Jager. Tightly secure signatures and publickey
encryption. In Reihaneh SafaviNaini and Ran Canetti, editors, Advances
in Cryptology – CRYPTO 2012, pages 590–607, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[106] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Noninteractive
zeroknowledge proofs for composite statements. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, pages
643–673, Cham, 2018. Springer International Publishing.

[107] Matteo Campanelli, Dario Fiore, and Anaïs Querol. Legosnark: Modular de
sign and composition of succinct zeroknowledge proofs. In CCS ’19, 2019.

[108] David Chaum and Torben Pryds Pedersen. Wallet databases with observers.
In Ernest F. Brickell, editor, Advances in Cryptology — CRYPTO’ 92, pages
89–105, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[109] Olivier Blazy, David Derler, Daniel Slamanig, and Raphael Spreitzer. Non
interactive plaintext (in)equality proofs and group signatures with verifiable
controllable linkability. In Kazue Sako, editor, Topics in Cryptology CTRSA
2016, pages 127–143, Cham, 2016. Springer International Publishing.

[110] Seung Geol Choi, Ariel Elbaz, Ari Juels, Tal Malkin, and Moti Yung. Two
party computing with encrypted data. In Kaoru Kurosawa, editor, Advances
in Cryptology – ASIACRYPT 2007, pages 298–314, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[111] Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Roundoptimal
blackbox twoparty computation. In CRYPTO, 2015.

87

[112] David C. Parkes, Michael O. Rabin, Stuart M. Shieber, and Christopher
Thorpe. Practical secrecypreserving, verifiably correct and trustworthy auc
tions. Electronic Commerce Research and Applications, 7(3):294 – 312, 2008.
Special Section: New Research from the 2006 International Conference on
Electronic Commerce.

[113] Dakshita Khurana, Rafail Ostrovsky, and Akshayaram Srinivasan. Round op
timal blackbox “commitandprove”. In Amos Beimel and Stefan Dziem
bowski, editors, Theory of Cryptography, pages 286–313, Cham, 2018.
Springer International Publishing.

[114] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin
Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile
verifiable computation. In 2015 IEEE Symposium on Security and Privacy,
pages 253–270, May 2015.

[115] Helger Lipmaa. Proverefficient commitandprove zeroknowledge snarks.
In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,
Progress in Cryptology – AFRICACRYPT 2016, pages 185–206, Cham, 2016.
Springer International Publishing.

[116] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunctions
for hash proof systems: New constructions and applications. In Elisabeth Os
wald andMarc Fischlin, editors, Advances in Cryptology EUROCRYPT 2015,
pages 69–100, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[117] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryp
tion scheme secure against key dependent chosen plaintext and adaptive cho
sen ciphertext attacks. In Antoine Joux, editor, Advances in Cryptology EU
ROCRYPT 2009, pages 351–368, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[118] Alex Escala and Jens Groth. Finetuning grothsahai proofs. In Hugo
Krawczyk, editor, PublicKey Cryptography – PKC 2014, pages 630–649,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[119] Matteo Campanelli Daniel Benarroch and Dario Fiore. Proposal: Commit
andprove zeroknowledge proof systems. 2nd edition of the ZK proof work
shop, 2020.

[120] Evgene Vahlis. Cryptography: Leakage Resilience, Black Box Separations,
and Credentialfree Key Exchange. PhD thesis, Graduate Department of Com
puter Science University of Toronto, 2011.

88

[121] Victor Shoup. Sequences of games: A tool for taming complexity in security
proofs. IACR Cryptology ePrint Archive, 2004:332, 01 2004.

89

	Introduction
	Non-Interactive Zero-Knowledge Proof System
	Black-Box Construction
	Related Work
	Summary of Contributions

	Preliminary
	Basic Notation
	Black-Box Construction and Separation
	Cryptographic Primitives
	The Naor-Yung Construction

	Simplification of The Augmented Black-Box Framework
	Introduction
	Related Work

	The WI Oracle by Brakerski et al.
	Simplified Proof System Oracle
	The Naor-Yung Construction
	Impossibility of a KA from a OWF
	Previous Separation Result
	Our Result

	Conclusion And Future Work

	Impossibility of NIZKs for Plaintext Equality
	Introduction
	Related Work
	Technical Overview
	Comparison to the Results of Abe et al.

	Basic Notation
	An NIZK Oracle for a Single Ciphertext Language
	Separation
	Conclusion and Open Question

	Limits on The Power of Commit-and-Prove NIZKs
	Introduction
	Related Work

	Basic Notation
	A CP-NIZK Oracle
	Separation
	Conclusion and Future Work

	Conclusion
	Publications List
	Bibliography

