
On Enumeration of Tree-Like Graphs

and Pairwise Compatibility Graphs

Naveed Ahmed Azam



On Enumeration of Tree-Like Graphs and

Pairwise Compatibility Graphs

Naveed Ahmed Azam

Department of Applied Mathematics and Physics

Graduate School of Informatics

Kyoto University

Kyoto, Japan

K
Y
O
T

O
UNIVER

S
IT
Y

F
O

U
N
DED

1
8

9
7

KYOTO JAPAN

February 24, 2021



Doctoral dissertation

submitted to the

Graduate School of Informatics, Kyoto University

in partial fulfillment of

the requirement for the degree of

DOCTOR OF APPLIED MATHEMATICS



Preface

Graph enumeration with given constraints is an interesting problem considered

to be one of the fundamental problems in graph theory, with many applications

in natural sciences and engineering such as bioinformatics and computational

chemistry. Particularly, graph enumeration helps in understanding, classification,

and discovery of new chemical compounds. For an enumeration method, it is

necessary to generate all possible required structures without duplication in low

computational complexity, due to which designing an enumeration method is not

an easy task.

This research work aims to prove some mathematical results and based on

them propose new methods to enumerate tree-like graphs and pairwise compati-

bility graphs (PCGs) efficiently.

A polymer is a large molecule with interesting chemical properties. Polymers

can be schematically represented by a graph, called polymer topology, possibly

with self-loops and multi-edges, such that the graph is connected and the degree of

each vertex in the graph is at least three. Classification of polymer topologies can

lay a foundation for the elucidation of structural relationships between different

macro-chemical molecules and their synthetic pathways. Polymer topologies are

often classified based on their cycle rank, which is defined to be the number of

edges that must be removed to get a simple spanning tree of the given topology.

The tree-like graphs with ∆ self-loops and no multiple edges contain all tree-like

polymer topologies with no multiple edges and cycle rank ∆. Thus as a first

step towards the enumeration of polymer topologies and multigraphs with degree

constraint in general, it is interesting to count and generate all tree-like graphs

with a given cycle rank.

For two integers n ≥ 1 and ∆ ≥ 0, we propose a method to count all non-

isomorphic tree-like graphs with n vertices and cycle rank ∆. Branching al-

gorithms and Polya’s enumeration theorem are the two most commonly used

methods to solve counting problems. However, branching algorithms can only

count all solutions after generating each one of them, and Polya’s enumeration

theorem uses a group of symmetries and its cyclic index, which makes these meth-

ods inefficient or difficult to use for some problems. Unlike the traditionally used

algorithms, we achieve our goal by designing an algorithm based on dynamic

programming (DP) that counts the number of non-isomorphic rooted tree-like
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graphs with n vertices and cycle index ∆ in O(n2(n + ∆(n + ∆ · min{n,∆})))
time and O(n2(∆2 +1)) space. By this result, we get a lower bound and an upper

bound on the number of tree-like polymer topologies of chemical compounds with

a given cycle rank.

To generate all non-isomorphic tree-like graphs with n vertices and cycle

rank ∆, we use a canonical representation of the underlying graphs instead of

traditional branching algorithms. Branching algorithms generate numerous in-

termediate invalid structures, and hence are inefficient. Thus we first character-

ize tree-like graphs in terms of their canonical representations and then generate

these representations to get the required graphs. Our algorithm generates all

required graphs with n vertices in O(n) time per graph and O(n) space in to-

tal, without generating invalid intermediate structures. As a consequence of our

method, we can get all tree-like polymer topologies with a given cycle rank.

Pairwise compatibility graphs are used to study problems as the evolutionary

relationship between a set of organisms in bioinformatics and clique problem in

graph theory. A graph is a PCG if it can be represented by an edge-weighted tree

whose set of leaves is the set of vertices of the graph, and there is an edge between

two vertices in the graph if and only if the distance between them in the tree is

within a given interval. Confirming and constructing finite-size evidence that a

graph is not a PCG is a challenging task since it involves: (i) a large number of

tuples called configurations that consists of the graph, a tree, a correspondence

between the vertices in the graph and the leaves in the tree, and a bi-partition of

all pairs of non-adjacent vertices in the graph; and (ii) an infinite search space of

weights.

Motivated from the application and theoretical aspects of PCGs, we propose

two linear programming (LP) formulations to construct finite-size evidence to

prove if a graph is a PCG or not due to a given configuration. We prove that the

feasibility of one formulation implies the infeasibility of the other formulation,

and hence the solution to these formations will serve as finite-size evidence for

the graph to be PCG or not. We then prove a sufficient condition for a graph to

be PCG based on an integer linear programming (ILP) formulation where we try

to construct a configuration and weights in a restricted domain due to which the

graph is PCG. Furthermore, we characterize the configurations with four vertices

such that the LP formulation is feasible in terms of a system of linear inequalities.

Finally, we propose a method to enumerate all PCGs with a given number

of vertices based on the newly discovered theoretical results. To handle the

difficulty of a large number of configurations, we propose a PCG generator that

heuristically generates PCGs, and algorithms to generate all configurations that
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do not contain a configuration with four vertices for which the LP formulation

is infeasible. Our method is the first enumeration method to generate all PCGs

with a given number of vertices. By using this method, we enumerated all PCGs

with eight and nine vertices and proved that there are exactly seven and 1,494

minimal non-PCGs, respectively.

We believe that the work described in this thesis will help in developing the

related fields in theoretical and application aspects.

Kyoto, January 2021

Naveed Ahmed Azam
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1 Introduction

Counting and generation of discrete objects are two fundamental problems in

combinatorial mathematics [9, 12, 24, 44, 51, 52, 54, 64, 70], and have many appli-

cations in applied fields such as graph theory, chemoinformatics, bioinformatics,

and material informatics [4–7, 13, 30, 34, 37, 39, 40, 45, 49, 50, 53, 55, 60, 61, 69].

The counting problem asks to count all possible objects under given constraints.

On the other hand, the generation problem asks to list all possible objects under

given constraints. The counting or generation problem is called an enumera-

tion problem and the methods that are used to solve these problems are called

enumeration methods.

For an enumeration method, it is necessary to satisfy the following three

conditions:

(i) Consider all solutions: The method does not miss any of the required objects;

(ii) Avoid duplication: The method does not count and generate isomorphic

objects; and

(iiii)Low computational complexity: The method can count and generate all

solutions in low time and space complexity.

Designing such a method is not an easy task, because of the underlying symme-

tries and the computation difficulty for their detection.

Counting and generation of chemical compounds have a long history and

numerous applications in designing novel drugs [4, 13, 15, 28, 35, 39, 43, 45, 49,

68, 69] and structure elucidation [14, 26, 29, 31, 50]. The problem of counting and

generation of chemical compounds can be viewed as the problem of enumerating

graphs with given constraints. Several chemical compound generation methods

have been proposed [30, 34, 37, 40, 55, 60, 61], where some methods [34, 55] focus

on general chemical compounds, while the other methods [1, 30, 37, 60, 61] deal

with restricted chemical graphs. Enumeration of restricted chemical compounds

with specialized tools is more efficient than with the tools which use general graph

structures [38, 59]. This led to a new trend of developing efficient enumeration

of restricted chemical compounds in the field of chemoinformatics [63].

A polymer is a large molecule with interesting chemical properties consisting

of many sub-molecules. From a graph-theoretic perspective, we represent the
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2 Chapter 1. INTRODUCTION

structure of a polymer with a graph G called polymer topology, possibly with self-

loops and multi-edges, such that G is connected and the degree of each vertex

in G is at least three [36]. For a chemical graph, we get its polymer topology by

repeatedly

(i) removing the vertices of degree one; and

(ii) replacing each vertex u of degree two and the edges uv and uw incident to

u by an edge vw, where vw is a self-loop when v = w.

For example, the polymer topologies of the chemical compounds remdesivir C27H35N6O8P

(Figure 1.1(a)) and dexamethasone C22H29FO5 (Figure 1.1(c)) are illustrated in

Figure 1.1(b),(d), respectively. Observe that two different chemical compounds

can have the same polymer topology.

Tezuka and Oike [62] pointed out that a classification of polymer topologies

will lay a foundation for the elucidation of structural relationships between dif-

ferent macro-chemical molecules and their synthetic pathways. Different kinds

of graph-theoretic approaches have been applied to classify and enumerate poly-

mer topologies [33, 71]. For a connected graph G, possibly with self-loops and

multi-edges, the cycle rank is defined to be the number of edges that must be

removed to get a simple spanning tree of G. Recently, Haruna et al. [36] proposed

a method to enumerate all polymer topologies with cycle rank up to five.

Pairwise compatibility graphs (PCGs) is a class of graphs that is introduced

as follows [42]. For a tree T , a non-negative real-valued edge weight function w

on T and two non-negative reals dmin and dmax, the pairwise compatibility graph

PCG(T,w, dmin, dmax) is defined to be the unweighted simple undirected graph

G such that

(i) the set of vertices in G is the set of leaves in T ; and

(ii) any two vertices u and v are adjacent in G if and only if the distance between

the leaves u and v in T is in the closed interval [dmin, dmax].

In such a case, we call the tree T a witness tree for the PCG G. Fig. 1.2 illustrates

an example of a PCG with five vertices.

PCGs received great attention in the field of bioinformatics and graph theory,

such as the study on the evolutionary history of a given set of organisms [42].

Kearney et al. [42] introduced PCGs to create a link between the sample problem

of pairwise leaf distance for a phylogenetic tree and the clique problem. A phy-

logenetic tree is an evolutionary tree that represents some relationships between

a given set of organisms. The reconstruction of phylogenetic tree is one of the

fundamental problems of bioinformatics. The input of the sampling problem of
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4 Chapter 1. INTRODUCTION

pairwise leaf distance is a phylogenetic tree, two integers i and j and two non-

negative real numbers dmin and dmax. The output of this problem is a set of size i

consists of sample of j leaves that are selected uniformly at random from the

tree such that the distance between any two leaves in the sample is in the open

interval (dmin, dmax) [42]. Given a graph and an integer k, the clique problem

asks to confirm if the graph contains a complete graph with at least k vertices.

Thus Kearney et al. [42] has reduced the sampling problem of pairwise leaf dis-

tance to the clique problem for the PCG corresponding to the edge weighted

phylogenetic tree, dmin and dmax

Early on, Kearney et al. [42] conjectured that all graphs are PCGs, and Cala-

moneri et al. [20] proved that all graphs with at most seven vertices are PCGs.

However, the conjecture has been refuted by Yanhaona et al. [67] by constructing

a counter example of a non-PCG (NPCG) with 15 vertices. Baiocchi et al. [10]

and Durocher et al. [27] constructed NPCGs with nine and eight vertices. Fig. 1.3

illustrates NPCGs with eight vertices given in [10] and [27].

(a) (b)

Figure 1.3. Two known NPCGs with eight vertices: (a) The NPCG given

in [10]; and (b) The NPCG given in [27].

The pairwise compatibility tree construction problem (PCTCP) introduced by

Kearney et al. [42] is one of the fundamental problems on PCGs. The input to

the PCTCP is an unweighted simple undirected graph G with n vertices. The

output of the PCTCP is an “evidence” (or a proof) to show if the given graph

G is a PCG or not. It is important to mention that if G is a PCG, then a tuple

(T,w, dmin, dmax) such that G = PCG(T,w, dmin, dmax) will be such evidence.

However, when G is not a PCG, then how can we construct evidence with a

finite size to verify that G 6= PCG(T,w, dmin, dmax) for any tree T with n leaves,

non-negative real valued function w, and non-negative real numbers dmin and

dmax? Furthermore, an infinite search space of an edge weight function w and

two reals dmin and dmax would be necessary to confirm that G is not a PCG.

Kearney et al. [42] developed a relation between the PCTCP and the well-known

clique problem: They proved that a polynomial-time algorithm for solving the
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PCTCP leads to a polynomial-time algorithm for solving the clique problem in

some special graph classes. It is widely believed among the research community

that the PCTCP is NP-hard [18, 27]. Similarly, several variants of PCGs have

been studied (see [11, 16, 17, 19, 21, 48, 58, 66]).

Motivated from the application and theoretical aspects of the polymer topolo-

gies and PCGs, we prove some mathematical results which are then used to

propose enumeration methods for these graph classes. Our contributions are:

(i) Propose an efficient method to count all tree-like graphs with a given cycle

rank in Chapter 2 as a first step towards enumeration of polymer topologies and

graphs with degree constraint in general; (ii) Characterize tree-like graphs with a

given cycle rank in terms of canonical representation based on which we propose

an algorithm to generate such graphs in Chapter 3; (iii) Derive some theoretical

results related to PCGs to efficiently solve the PCTCP in Chapter 4; and (iv) By

using the results proved in (iii), propose a method to enumerate all PCGs with

a given number of vertices in Chapter 5.





2 Counting Tree-Like Graphs

with a Given Cycle Rank

2.1 Introduction

Different kinds of methods are used to solve counting problem, where branching

algorithms and Polya’s enumeration theorem are the two most commonly used

methods for this problem. In branching algorithms, the computation is performed

by following a computation tree, and the required solutions are attained at the

leaves of the computation tree. It is important to mention that the branching

algorithms can only count all solutions after generating each one of them, and

therefore they are inefficient for the problem where we first want to know the size

of the solution space before the generation of solutions.

The well-known Polya’s enumeration theorem [56, 57] is used for counting

all distinct objects. The idea of this method is to use the cyclic index of the

group of symmetries of the underlying object to develop a generating function,

which is then used to count all possible objects. Note that finding the group of

symmetries and its cyclic index is a challenging task, which may make the use of

Polya’s theorem harder for some problems.

The drawback of branching algorithms discussed above and the difficulty of

using Polya’s theorem necessitate the exploration of new enumeration methods

to solve counting problems efficiently.

Dynamic programming (DP) is an other algorithm paradigm where

(i) the original problem is partitioned into subproblems that satisfy some recur-

sive relations; and

(ii) the union of the solution sets of the subproblems is equal to the solution set

of the original problem.

Unlike branching algorithms and Polya’s theorem, the main advantage of using

the DP is that we can count all non-isomorphic structures without their genera-

tion and calculation of their group of symmetries.

7
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For a multi-graph G, we define the skeleton to be the simple graph obtained by

removing all self-loops and multiple edges from G. Notice that the class of graphs

with a tree skeleton, ∆ ≥ 0 self-loops, and no multiple edges contains all tree-like

polymer topologies with cycle rank ∆, and therefore, it is an interesting problem

to count and generate all such graphs as a first step towards the enumeration of

polymer topologies and degree bounded graphs in general. Figure 2.1 illustrates

examples of chemical compounds that have tree-like polymer topologies with self-

loops and no multiple edges.
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Figure 2.1. Three chemical compounds with their tree-like polymer topolo-

gies containing self-loops: (a–c) the chemical structures of C12H22O11, C21H17FO2,

and C24H20NP with CIDs 5988, 137,321,354, 75,352, respectively, obtained from

the PubChem database; (d–f) the polymer topologies of the chemical structures

in (a–c) with cycle ranks 2–4, respectively.

We use DP to count all mutually non-isomorphic graphs with n vertices, ∆

self-loops, no multi-edges and tree skeleton. To achieve this goal, we count the

number of non-isomorphic rooted graphs with tree skeleton, n vertices, ∆ self-

loops and no multi-edges, since every tree can be uniquely viewed as a rooted tree

by either regarding its unicentroid as the root, or in the case of bicentroid, by

introducing a virtual vertex on the bicentroid and assuming the virtual vertex to

be the root. As an application of our results, we get lower and upper bounds on

the number of tree-like polymer topologies with self-loops of a given cycle rank.

The rest of the chapter is organized as follows: Section 2.2 reviews some no-

tions and results related to graph theory. Section 2.3 explains our graph counting
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method. In Section 2.4, we discuss some experimental results and application of

our counting method. Section 2.5 makes some concluding remarks.

2.2 Preliminaries

Throughout Chapter 2 and 3, the term graph stands for an undirected graph with

no multi-edges and possibly with self-loops unless stated otherwise. Let G be a

graph. We denote an edge between two vertices u and v in G by uv where we

consider uv = vu. Let V (G) and E(G) denote the vertex set and edge set of G,

respectively. Let n(G) denote |V (G)| and s(G) denote the number of self-loops

in G. For a vertex v ∈ V (G), we denote by s(v) the number of self-loops on

the vertex v. We define size s(G) of graph G to be the sequence (n(G), s(G)).

For a vertex v in G, let NG(v) denote the set of vertices incident to v except

v itself and the degree degG(v) of v in G is defined to be |NG(v)|. A graph H

with the properties V (H) ⊆ V (G) and E(G) ⊆ E(G) is called a subgraph of

G. A simple path between two distinct vertices u, v ∈ V (G) is defined to be a

subgraph P of G with vertex set V (P ) = {u = w1, w2, . . . , v = wk} and edge set

E(P ) = {wiwi+1 | 1 ≤ i ≤ k − 1}. A graph is called a connected graph if there

is a path between any two distinct vertices in the graph. A connected component

of a graph G is defined to be a maximal connected subgraph H of G, i.e., for

any vertex v ∈ V (G) \ V (H) it holds that every subgraph with the vertex set

V (H) ∪ {v} is disconnected.

For a graph G, we define the skeleton γ(G) of G to be the simple graph

obtained by removing all self-loops from G. A graph with a fixed vertex r is

called a rooted graph with root r. For a rooted graph G, we denote by rG the

root of G. For a rooted graph G with root rG, we define the rooted skeleton γ(G)

of G to be the rooted simple graph obtained by removing all self-loops from G

with root rG.

Two rooted graphs G and G′ are called isomorphic if there exists a bijection

σ : V (G)→ V (G′) such that

(i) σ(rG) = r′G;

(ii) for each vertex v ∈ V (G), it holds that s(v) = s(σ(v)); and

(iii) for any two vertices u, v ∈ V (G), it holds that uv ∈ E(G′) if and only if

σ(u)σ(v) ∈ E(G′).

By Jordan [41], any simple tree with n ≥ 1 vertices has either a unique

vertex or edge, the removal of which creates connected components with at most

b(n − 1)/2c or exactly n/2 vertices, respectively. Such a vertex is called the
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unicentroid, the edge is called the bicentroid, and collectively they are called the

centroid of the tree. It is important to note that there exits a bicentroid only for

trees with an even number of vertices. Note that any tree can be uniquely viewed

as a rooted tree by either regarding its unicentroid as the root, or in the case of

a bicentroid, by introducing a virtual vertex on the bicentroid and assuming the

virtual vertex as the root.

Let T be a rooted tree. Let rT denote the root of T . For any two distinct

vertices u, v ∈ V (T ), let PT (u, v) denote the unique simple path between them in

T . For a vertex v ∈ V (T ) \ {rT }, we define the ancestors of v to be the vertices

on the path PT (v, rT ) other than v. If u is an ancestor of v, then we call v a

descendant of u. For a vertex v ∈ V (T ) \ {rT }, the parent p(v) of v is defined to

be the ancestor u of v such that u ∈ NT (v). We call the vertex v a child of p(v).

Two vertices with the same parent in T are called siblings.

Let n ≥ 1 and ∆ ≥ 0 be two integers. We denote by H(n,∆) a maximal

set of mutually non-isomorphic rooted graphs with a tree skeleton, n vertices,

and ∆ self-loops. We denote |H(n,∆)| by h(n,∆). Recall that the cycle rank of

each graph in H(n,∆) is ∆. Let H be a rooted graph in H(n,∆). For a vertex

v ∈ V (H), let Hv denote the subgraph of H rooted at v induced by v and its

descendants in the rooted skeleton γ(H). For a vertex v ∈ NH(rH) of root rH of

H, we call the subgraph Hv a root-subgraph of H.

2.3 Counting Tree-Like Graphs with a Given Number

of Vertices and Self-loops

We develop a method to compute for any two integers n ≥ 1 and ∆ ≥ 0, the

size h(n,∆) of a maximal set H(n,∆) of mutually non-isomorphic rooted graphs

with n vertices and ∆ self-loops; i.e., we are interested in the following problem.

Counting Problem

Input: Two integers n ≥ 1 and ∆ ≥ 0.

Output: h(n,∆).

We solve this problem by using dynamic programming based on the infor-

mation of the number of vertices and self-loops in the subgraphs rooted at the

children of the root of each graph in H(n,∆). We define the following notions.

Let n ≥ 1 and ∆ ≥ 0 be any two integers. For each graph H ∈ H(n,∆), we

define

Maxv(H) ,max({|V (Hv)| | v ∈ NH(rH)} ∪ {0}),

Maxs(H) ,max({s(Hv) | v ∈ NH(rH), |V (Hv)| = Maxv(H)} ∪ {0}).
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Note that for any graph H ∈ H(1,∆), it holds that Maxv(H) = 0 and

Maxs(H) = 0.

Let m, d ≥ 0 be any two integers. We define

H(n,∆,m≤, d≤) , {H ∈ H(n,∆) | Maxv(H) ≤ m,Maxs(H) ≤ d}.

Observe that by the definition of H(n,∆,m≤, d≤) it holds that

(i) H(n,∆,m≤, d≤) = H(n,∆, n− 1≤, d≤) if m ≥ n;

(ii) H(n,∆,m≤, d≤) = H(n,∆,m≤,∆≤) if d ≥ ∆ + 1; and

(iii) H(n,∆) = H(n,∆, n− 1≤,∆≤).

Therefore, from now on, we assume that m ≤ n − 1 and d ≤ ∆. Further,

by the definition of H(n,∆,m≤, d≤) it holds that H(n,∆,m≤, d≤) 6= ∅ (resp.,

H(n,∆,m≤, d≤) = ∅) if “n = 1” or “n−1 ≥ m ≥ 1” (resp., otherwise (n ≥ 2 and

m = 0)).

We define

H(n,∆,m=, d≤) , {H ∈ H(n,∆,m≤, d≤) | Maxv(H) = m}.

It follows from the definition of H(n,∆,m=, d≤) that H(n,∆,m=, d≤) 6= ∅
(resp., H(n,∆,m=, d≤) = ∅) if “n = 1” or “n − 1 ≥ m ≥ 1” (resp., otherwise

(n ≥ 2 and m = 0)). Further we have the following relations.

H(n,∆,m≤, d≤) = H(n,∆, 0=, d≤) if m = 0, (2.3.1)

H(n,∆,m≤, d≤) = H(n,∆,m− 1≤, d≤) ∪H(n,∆,m=, d≤) if m ≥ 1, (2.3.2)

where H(n,∆,m− 1≤, d≤) ∩H(n,∆,m=, d≤) = ∅ for m ≥ 1.

Next we define

H(n,∆,m=, d=) , {H ∈ H(n,∆,m=, d≤) | Maxs(H) = d}.

Note that if “n = 1 and d = 0” or “n− 1 ≥ m ≥ 1” (resp., otherwise (“n = 1

and d ≥ 1” or “n ≥ 2 and m = 0”)), then by the definition of H(n,∆,m=, d=) it

holds that H(n,∆,m=, d=) 6= ∅ (resp., H(n,∆,m=, d=) = ∅). Furthermore, we

get the following relations for H(n,∆,m=, d≤).

H(n,∆,m=, d≤) = H(n,∆,m=, 0=) if d = 0, (2.3.3)

H(n,∆,m=, d≤) = H(n,∆,m=, d− 1≤) ∪H(n,∆,m=, d=) if d ≥ 1, (2.3.4)

where H(n,∆,m=, d− 1≤) ∩H(n,∆,m=, d=) = ∅ for d ≥ 1.

Let n − 1 ≥ m ≥ 0, and ∆ ≥ d ≥ 0 be four integers. Let h(n,∆,m≤, d≤),

h(n,∆,m=, d≤) and h(n,∆,m=, d=) denote the number of elements in the fam-

ilies H(n,∆,m≤, d≤), H(n,∆,m=, d≤) and H(n,∆,m=, d=), respectively. We

discuss recursive relations for h(n,∆,m≤, d≤) and h(n,∆,m=, d≤) in Lemma 2.1.
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Lemma 2.1. For any four integers n− 1 ≥ m ≥ 0, and ∆ ≥ d ≥ 0, it holds that

(i) h(n,∆,m≤, d≤) = h(n,∆, 0=, d≤) if m = 0;

(ii) h(n,∆,m≤, d≤) = h(n,∆,m− 1≤, d≤) + h(n,∆,m=, d≤) if m ≥ 1;

(iii) h(n,∆,m=, d≤) = h(n,∆,m=, 0=) if d = 0; and

(iv) h(n,∆,m=, d≤) = h(n,∆,m=, d− 1≤) + h(n,∆,m=, d=) if d ≥ 1.

Proof. The case (i) follows by Equation (2.3.1). The case (ii) follows by Equa-

tion (2.3.2) and the fact that for m ≥ 1 it holds that H(n,∆,m − 1≤, d≤) ∩
H(n,∆,m=, d≤) = ∅. By Equation (2.3.3) the case (iii) follows. The case (iv) fol-

lows by Equation (2.3.4) and the fact that for d ≥ 1 it holds that H(n,∆,m=, d−
1≤) ∩H(n,∆,m=, d=) = ∅.

Next we discuss some boundary conditions for our DP to compute h(n,∆).

Lemma 2.2. For any four integers n− 1 ≥ m ≥ 0, and ∆ ≥ d ≥ 0, it holds that

(i) h(n,∆, 0=, d=) = 1 (resp., h(n,∆, 0=, d=) = 0) if n = 1 and d = 0 (resp.,

otherwise (“n = 1 and d ≥ 1” or “n ≥ 2”));

(ii) h(n,∆, 0=, d≤) = h(n,∆, 0≤, d≤) = 1 (resp., h(n,∆, 0=, d≤) =

h(n,∆, 0≤, d≤) = 0) if n = 1 (resp., otherwise (n ≥ 2));

(iii) h(n,∆, 1=, d=) = 1 if “n = 2” or “n ≥ 3 and d = 0”; and

(iv) h(n,∆, 1=, d≤) = h(n,∆, 1≤, d≤) = d+ 1 if “n = 2” or “n ≥ 3 and d = 0”.

Proof. (i) The result follows from the definition ofH(n,∆, 0=, d=), since a graph

H with maxv(H) = 0 exists if and only if |V (H)| = 1 and maxs(H) = 0.

(ii) By Lemma 2.1(i), (ii) and (iv) it holds that h(n,∆, 0≤, d≤) = h(n,∆, 0=, d≤) =
d∑
p=0

h(n,∆, 0=, p=). This and Lemma 2.2(i) imply the required result.

(iii) When n ≥ 2, then for any graphH ∈ H(n,∆, 1=, d=) it holds that |NH(rH)| =
n − 1. Thus for each v ∈ NH(rH) it holds that |V (Hv)| = 1 and s(Hv) = d

if “n = 2” or “n ≥ 3 and d = 0”, i.e., Hv ∈ H(1, d, 0≤, d≤). But by

Lemma 2.2(ii) it holds that h(1, d, 0≤, d≤) = 1. Hence we have the required

result.

(iv) Let “n = 2” or “n ≥ 3 and d = 0”. By Lemma 2.1(iii) and (iv) it holds that

h(n,∆, 1=, d≤) =
d∑
p=0

h(n,∆, 1=, p=). This and Lemma 2.2(iii) imply that

h(n,∆, 1=, d≤) = d+ 1. (2.3.5)
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Furthermore, by Lemma 2.1(iii) it holds that h(n,∆, 1≤, d≤) = h(n,∆, 0=, d≤)+

h(n,∆, 1=, d≤). By Lemma 2.2(ii), we have h(n,∆, 1≤, d≤) = h(n,∆, 1=, d≤).

Hence the result follows by Equation (2.3.5).

By Lemma 2.2, we can get that h(1,∆) = 1 and h(2,∆) = ∆ + 1. Fur-

thermore, Lemma 2.1(i)–(iv) give recursive relations for h(n,∆,m≤, d≤) and

h(n,∆,m=, d≤) which depend on h(n,∆,m=, d=). Thus for n ≥ 3, m ≥ 1, and

∆ ≥ d ≥ 0, our next goal is to develop a recursive relation for h(n,∆,m=, d=).

For any graph H ∈ H(n,∆,m=, d=) and any vertex v ∈ NH(rH), the subgraph

Hv of H satisfies exactly one of the following three conditions:

(C-1) |V (Hv)| = m and s(Hv) = d.

(C-2) |V (Hv)| = m and 0 ≤ s(Hv) < d.

(C-3) |V (Hv)| < m and 0 ≤ s(Hv) ≤ ∆.

For any graph H ∈ H(n,∆,m=, d=), we define the residual graph of H to be

the subgraph ofH rooted at rH induced by the vertices V (H)\
⋃

v∈NH(rH),
Hv∈H(m,d,m−1≤,d≤)

V (Hv).

Note that the residual graph of a graph H has at least one vertex, i.e., the root

of H. We give an illustration of a residual graph in Figure 2.2.

¼ ¼{

Each subgraph has 

m vertices and 

d self-loops 

{

No subgraph has 

m vertices and 

d self-loops 

root rH 

H 

Residual graph

Figure 2.2. An illustration of a residual graph, where H ∈ H(n,∆,m=, d=) and

the residual graph of H is shown by dashed lines.

Lemma 2.3. For any four integers n ≥ 3, m ≥ 1, and ∆ ≥ d ≥ 0, and a graph

H ∈ H(n,∆,m=, d=), let q = |{v ∈ NH(rH) | Hv ∈ H(m, d,m− 1≤, d≤)}|. Then

it holds that
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(i) 1 ≤ q ≤ b(n− 1)/mc with q ≤ b∆/dc when d ≥ 1.

(ii) The residual graph of H belongs to exactly one of the families H(n−qm,∆−
dq,m=,min{∆− dq, d− 1}≤) and H(n− qm,∆− dq,min{n− qm− 1,m−
1}≤,∆− dq≤).

Proof. (i) Since H ∈ H(n,∆,m=, d=), there exists at least one vertex v ∈
NH(rH) such that Hv ∈ H(m, d,m− 1≤, d≤). This implies that q ≥ 1. Also,

it holds that n − 1 ≥ mq and ∆ ≥ dq. This implies that q ≤ b(n − 1)/mc
with q ≤ b∆/dc when d ≥ 1.

(ii) Let K denote the residual graph of H. By the definition of K it holds that

K ∈ H(n−mq,∆−dq, n−mq− 1≤,∆−dq≤). Furthermore, for each vertex

v ∈ NH(rH)∩V (K), the graph Hv satisfies exactly one of the conditions (C-

2) and (C-3). Now, if there exists a vertex v ∈ NH(rH) ∩ V (K) such that

Hv satisfies condition (C-2), then d− 1 ≥ 0, and hence K ∈ H(n− qm,∆−
dq,m=,min{∆ − dq, d − 1}≤). On the other hand, if condition (C-2) does

not hold for any v ∈ NH(rH)∩ V (K); i.e., either NH(rH)∩ V (K) = ∅ or for

each v ∈ NH(rH) ∩ V (K) it holds that |V (Hv)| ≤ min{n − qm − 1,m − 1}
and 0 ≤ s(Hv) ≤ ∆ − dq, then by the definition of K it holds that K ∈
H(n− qm,∆− dq,min{n− qm− 1,m− 1}≤,∆− dq≤). This completes the

proof.

For any five integers n ≥ 3, m ≥ 1, ∆ ≥ d ≥ 0, and t ≥ 0, let c(m, d; t) ,(h(m,d,m−1≤,d≤)+t−1
t

)
denote the number of combinations with repetition of t

graphs from the family H(m, d,m − 1≤, d≤). In Lemma 2.4, we give a recur-

sive relation for h(n,∆,m=, d=).

Lemma 2.4. For any five integers n ≥ 3, m ≥ 1, ∆ ≥ d ≥ 0, and q, such that

1 ≤ q ≤ b(n− 1)/mc with q ≤ b∆/dc when d ≥ 1, it holds that

(i) h(n,∆,m=, d=) =
∑

q c(m, d; q)h(n− qm,∆,min{n− qm− 1,m− 1}≤,∆≤)

if d = 0;

(ii) h(n,∆,m=, d=) =
∑

q c(m, d; q)(h(n−qm,∆−dq,m=,min{∆−dq, d−1}≤)+

h(n− qm,∆− dq,min{n− qm− 1,m− 1}≤,∆− dq≤)) if d ≥ 1;

(iii) h(n,∆,m=, d=) =
∑

q c(m, d; q − 1)((h(m, d,m − 1≤, d≤) + q − 1)/q)h(n −
qm,∆,min{n− qm− 1,m− 1}≤,∆≤) if d = 0; and

(iv) h(n,∆,m=, d=) =
∑

q c(m, d; q − 1)((h(m, d,m − 1≤, d≤) + q − 1)/q)(h(n −
qm,∆ − dq,m=,min{∆ − dq, d − 1}≤) + h(n − qm,∆ − dq,min{n − qm −
1,m− 1}≤,∆− dq≤)) if d ≥ 1.
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Proof. Let H be a graph in the family H(n,∆,m=, d=). By Lemma 2.3(i), there

exists a unique integer q, 1 ≤ q ≤ b(n− 1)/mc with q ≤ b∆/dc when d ≥ 1, such

that there are exactly q subgraphs Hv with v ∈ NH(rH) and Hv ∈ H(m, d,m −
1≤, d≤). Further, by Lemma 2.3(ii) the residual graph of H belongs to the family

H(n−qm,∆,min{n−qm−1,m−1}≤,∆≤) (resp., H(n−qm,∆−dq,m=,min{∆−
dq, d − 1}≤) ∪ H(n − qm,∆ − dq,min{n − qm − 1,m − 1}≤,∆ − dq≤)) if d = 0

(resp., otherwise). Note that H(n − qm,∆ − dq,m=,min{∆ − dq, d − 1}≤) ∩
H(n− qm,∆− dq,min{n− qm− 1,m− 1}≤,∆− dq≤) = ∅. This implies that for

a fixed integer q in the range given in the lemma, the number of graphs K in the

family H(n,∆,m=, d=) with exactly q subgraphs Kv ∈ H(m, d,m − 1≤, d≤), for

v ∈ NK(rK), are

(a) c(m, d; q)h(n− qm,∆,min{n− qm− 1,m− 1}≤,∆≤) if d = 0; and

(b) c(m, d; q)(h(n − qm,∆ − dq,m=,min{∆ − dq, d − 1}≤) + h(n − qm,∆ −
dq,min{n− qm− 1,m− 1}≤,∆− dq≤)) if d ≥ 1.

Note that, form = 1 and d = 0, we have 1 ≤ q ≤ n−1, and by Lemma 2.2(ii) it

holds that h(n−q,∆, 0≤,∆≤) = 0 (resp., h(n−q,∆, 0≤,∆≤) = 1), if 1 ≤ q ≤ n−2

(resp., otherwise (if q = n−1)). This implies that any graph H ∈ H(n,∆, 1=, 0=)

has exactly q = n− 1 subgraphs Hv ∈ H(1, 0, 0≤, 0≤), for v ∈ NH(rH). However,

observe that for each integer m ≥ 2 or d ≥ 1, and q satisfying the conditions given

in the lemma, there exists at least one graph H ∈ H(n,∆,m=, d=) such that H

has exactly q subgraphs Hv ∈ H(m, d,m− 1≤, d≤), for v ∈ NH(rH). Hence, this

and case (a) (resp., case (b)) imply Lemma 2.4(i) (resp., Lemma 2.4(ii)).

Furthermore, it holds that

c(m, d; q) =
(h(m, d,m− 1≤, d) + q − 1)!

(h(m, d,m− 1≤, d)− 1)!q!

=
(h(m, d,m− 1≤, d) + q − 2)!

(h(m, d,m− 1≤, d)− 1)!(q − 1)!
× (h(m, d,m− 1≤, d) + q − 1)

q

= c(m, d; q − 1)× (h(m, d,m− 1≤, d≤) + q − 1)

q
.

Hence, Lemma 2.4(iii) and (iv) follow from Lemma 2.4(i) and (ii), respectively.

Lemma 2.5. For any four integers n−1 ≥ m ≥ 0, and ∆ ≥ d ≥ 0, h(n,∆,m≤, d≤)

can be obtained in O(nm(n+∆(n+d·min{n,∆}))) time and O(nm(∆(d+1)+1))

space.

The proof of Lemma 2.5 follows from Algorithm 1 and Lemma 2.6.
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Corollary 2.1. For any two integers n ≥ 1 and ∆ ≥ 0, h(n,∆, n− 1≤,∆≤) can

be obtained in O(n2(n+ ∆(n+ ∆ ·min{n,∆}))) time and O(n2(∆2 + 1)) space.

We design a DP algorithm to compute h(n,∆) based on the recursive struc-

tures of h(n,∆,m≤, d≤), h(n,∆,m=, d≤) and h(n,∆,m=, d=), 0 ≤ m ≤ n−1 and

0 ≤ d ≤ ∆, as given in Lemmas 2.1 and 2.4, where h(n,∆) = h(n,∆, n−1≤,∆≤)

for n ≥ 1 and ∆ ≥ 0. For any four integers n − 1 ≥ m ≥ 0, and ∆ ≥ d ≥ 0, we

present Algorithm 1 for solving the problem of calculating h(n,∆,m≤, d≤). In

this algorithm, for each integers 1 ≤ i ≤ n, 0 ≤ j ≤ ∆, 0 ≤ k ≤ min{i,m}, and

0 ≤ p ≤ min{j, d}, the variables h [i, j, k≤, p≤], h [i, j, k=, p≤], and h [i, j, k=, p=]

store the values of h(i, j, k≤, p≤), h(i, j, k=, p≤), and h(i, j, k=, p=), respectively.

Algorithm 1 DP Based Counting Algorithm for h(n,∆,m≤, d≤)

Input: Integers n− 1 ≥ m ≥ 0 and ∆ ≥ d ≥ 0.

Output: h(n,∆,m≤, d≤).

1: h[1, j, 0=, 0=] := h[1, j, 0=, p≤] := h[1, j, 0≤, p≤] := 1;

h[i, j, 0=, p≤] := h[i, j, 0≤, p≤] := 0;

h[2, j, 1=, p=] := 1; h[2, j, 1=, p≤] := h[2, j, 1≤, p≤] := p+ 1

for each 2 ≤ i ≤ n, 0 ≤ j ≤ ∆, 0 ≤ p ≤ min{j, d};
2: for i := 3, 4, . . . , n do

3: for j := 0, 1, . . . ,∆ do

4: for k := 1, 2, . . . ,min{i,m} do

5: for p := 0, 1, . . . ,min{j, d} do

6: if p = 0 and k = 1 then

7: h[i, j, 1=, 0=] := h[i, j, 1=, 0≤] := h[i, j, 1≤, 0≤] := 1

8: else /* p ≥ 1 or k ≥ 2 */

9: c := 1; h[i, j, k=, p=] := 0; /* Initialization */

10: if p = 0 then

11: ` := b(i− 1)/kc
12: else /* p ≥ 1 */

13: ` := min{b(i− 1)/kc, bj/pc}
14: end if ;

15: for q := 1, 2, . . . , ` do

16: c := c · (h[k, p, k − 1≤, p≤] + q − 1)/q;

17: if p = 0 then

18: h[i, j, k=, p=] := h[i, j, k=, p=]+c ·h[i−qk, j,min{i−kq−1, k−1}≤, j≤]

19: else /* p ≥ 1 */

20: h[i, j, k=, p=] := h[i, j, k=, p=] + c · h[i− kq, j − pq, k=,min{j − pq, p−
1}≤] +

h[i− kq, j − pq,min{i− kq − 1, k − 1}≤, j − pq≤]
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21: end if

22: end for;

23: if p = 0 then /* k ≥ 2 */

24: h[i, j, k=, 0≤] := h[i, j, k=, 0=]

25: else /* p ≥ 1 */

26: h[i, j, k=, p≤] := h[i, j, k=, p− 1≤] + h[i, j, k=, p=]

27: end if ;

28: h[i, j, k≤, p≤] := h[i, j, k − 1≤, p≤] + h[i, j, k=, p≤]

29: end if

30: end for

31: end for

32: end for

33: end for;

34: Output h[n,∆,m≤, d≤] as h(n,∆,m≤, d≤).

Lemma 2.6. For any four integers n− 1 ≥ m ≥ 0, and ∆ ≥ d ≥ 0, Algorithm 1

outputs h(n,∆,m≤, d≤) in O(nm(n+∆(n+d·min{n,∆}))) time and O(nm(∆(d+

1) + 1)) space.

Proof. Correctness: For each integer 1 ≤ i ≤ n, 0 ≤ j ≤ ∆, 0 ≤ k ≤ min{i,m},
and 0 ≤ p ≤ min{j, d}, all the substitutions and if-conditions in Algorithm 1

follow from Lemmas 2.1, 2.2, 2.3 and 2.4. Furthermore, the values h[i, j, k≤, p≤],

h[i, j, k=, p≤], and h[i, j, k=, p=] are computed by the recursive relations given

in Lemmas 2.1 and 2.4. This implies that Algorithm 1 correctly computes the

required value h[n,∆,m≤, d≤].

Complexity analysis: There are three nested loops over the variables i, j, and

p at line 1, which take O(n(∆(d+ 1) + 1)) time. Following there are five nested

loops: over variables i, j, k, p, and q at lines 2, 3, 4, 5, and 15, respectively. The

loop at line 2 is of size O(n), while the loop at line 3 is of size O(∆). Similarly,

the loops at lines 4 and 5 are of size O(m) and O(d), respectively. The fifth

nested loop at line 15 is of size O(n) (resp., O(min{n,∆})) if p = 0 (resp.,

otherwise). Thus from line 2 - 1, Algorithm 1 takes O(n2m) (resp., O(nm∆(n+

d ·min{n,∆}))) time if ∆ = 0 (resp., otherwise). Therefore, Algorithm 1 takes

O(nm(n+ ∆(n+ d ·min{n,∆}))) time.

The algorithm stores three four-dimensional arrays. When ∆ = 0, for each

integer 1 ≤ i ≤ n, and 1 ≤ k ≤ min{i,m} we store h[i, 0, k≤, 0≤], h[i, 0, k=, 0≤]

and h[i, 0, k=, 0=], taking O(nm) space. When ∆ ≥ 1, then for each integer

1 ≤ i ≤ n, 0 ≤ j ≤ ∆, 1 ≤ k ≤ min{i,m} and 0 ≤ p ≤ min{j, d} we

store h[i, j, k≤, p≤], h[i, j, k=, p≤] and h[i, j, k=, p=], taking O(nm∆(d+ 1)) space.

Hence, Algorithm 1 takes O(nm(∆(d+ 1) + 1)) space.
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Theorem 2.1. For any two integers n ≥ 1 and ∆ ≥ 0, the number of non-

isomorphic graphs with n vertices, ∆ self-loops and tree skeleton can be obtained

in O(n2(n+ ∆(n+ ∆ ·min{n,∆}))) time and O(n2(∆2 + 1)) space.

Proof. By Jordan [41], we can uniquely consider any tree as a rooted tree by either

regarding its unicentroid as the root, or in the case of a bicentroid, by introducing

a virtual vertex on the bicentroid and assuming the virtual vertex as the root

of the tree. By the definition of a unicentroid, the number of mutually non-

isomorphic graphs with n vertices, ∆ self-loops, tree skeleton and a unicentroid

is h(n,∆, b(n − 1)/2c≤,∆≤). Further, if n is even, then there exist trees with

n vertices and a bicentroid. This implies that the number of mutually non-

isomorphic graphs with n vertices, ∆ self-loops and tree skeleton is h(n,∆, b(n−
1)/2c≤,∆≤) when n is odd. Let n be an even integer. Then any graph H

with n vertices, ∆ self-loops, tree skeleton and a bicentroid has two connected

components, A and B obtained by the removal of the bicentroid such that A ∈
H(n/2, i, n/2− 1≤, i≤) and B ∈ H(n/2,∆− i, n/2− 1≤,∆− i≤) for some 0 ≤ i ≤
b∆/2c, where if ∆ is even then for i = ∆/2, both of the components A and B

belong to H(n/2,∆/2, n/2− 1≤,∆/2≤).

Note that for any 0 ≤ i ≤ b(∆− 1)/2c, it holds that

H(n/2, i, n/2− 1≤, i≤) ∩H(n/2,∆− i, n/2− 1≤,∆− i≤) = ∅.

Therefore, when ∆ is odd (resp., even), the number of mutually non-isomorphic

graphs with n vertices, ∆ self-loops, tree skeleton and a bicentroid is

b(∆−1)/2c∑
i=0

h(n/2, i, n/2− 1≤, i≤) h(n/2,∆− i, n/2− 1≤,∆− i≤)+

α

(
h(n/2,∆/2, n/2− 1≤,∆/2≤) + 1

2

)
,

such that α = 0 (resp., α = 1). Thus, the number of mutually non-isomorphic

graphs with n vertices, ∆ self-loops and tree skeleton is

h(n,∆,b(n− 1)/2c≤,∆≤) +

b(∆−1)/2c∑
i=0

h(n/2, i, n/2− 1≤, i≤)

h(n/2,∆− i, n/2− 1≤,∆− i≤) + α

(
h(n/2,∆/2, n/2− 1≤,∆/2≤) + 1

2

)
(2.3.6)

such that α = 0 (resp., α = 1) when ∆ is odd (resp., even). Moreover, for each

0 ≤ i ≤ ∆, Algorithm 1 also computes and stores h(n/2, i, n/2 − 1≤, i≤) during

the calculation of h(n,∆, b(n − 1)/2c≤,∆≤), and therefore the required result

follows from Lemma 2.6.
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2.4 Results and Application

We implemented the proposed DP algorithm and counted graphs with a given

number of vertices, self-loops and tree skeleton. The experiments were performed

on a PC with an Intel Core i7-500 processor, running at 2.70 GHz, 16 GB of

memory, and Windows 10. The results are listed in Table 2.1 from which it is

evident that the proposed method efficiently counts graphs with n vertices, ∆

self-loops and tree skeleton.

Table 2.1. Experimental results of the counting algorithm.

(n,∆) Number of Graphs Time (sec.)

(10, 0) 106 0.000173

(20, 0) 823,065 0.00048

(10, 5) 91,037 0.001193

(10, 30) 6,629,790,712 0.00881

(20, 10) 5,143,681,226,004 0.006869

(30, 10) 2,547,562,522,909,694,331 0.015901

We next give a lower bound and an upper bound on the number of tree-like

polymer topologies with self-loops of a given cycle rank. For this we prove the

following results.

Lemma 2.7. For an integer n ≥ 2, there exists at least one tree-like polymer

with n vertices and ∆ self-loops if ∆ ≥
⌈
n
2

⌉
+ 1.

Proof. Consider a tree T of n vertices of diameter
⌊
n
2

⌋
such that T contains a

path of length
⌊
n
2

⌋
, in which each non-end vertex has degree at least 3. Observe

that when n is even, the tree T has exactly
⌈
n
2

⌉
−1 vertices of degree 3, and hence

n−
⌈
n
2

⌉
+ 1 =

⌈
n
2

⌉
+ 1 vertices of degree less than 3. When n is odd, the tree T

has
⌈
n
2

⌉
−3 vertices of degree 3 and one vertex of degree 4. Thus, in this case, the

number of vertices of degree less than 3 is n−
⌈
n
2

⌉
+ 2 =

(
2
⌈
n
2

⌉
− 1
)
−
⌈
n
2

⌉
+ 2 =⌈

n
2

⌉
+ 1. This implies that T can be transformed into a polymer with

⌈
n
2

⌉
+ 1

self-loops by assigning a self-loop to each vertex of degree less than 3. Hence,⌈
n
2

⌉
+ 1 self-loops are sufficient to get a tree-like polymer with n vertices.

For two integers n ≥ 1 and ∆ ≥ 0, let g(n,∆) denote the number of graphs

with n vertices, ∆ self-loops and tree skeleton. For r ≥ 1, let p(r) denote the

number of tree-like polymers of rank r with self-loops and no multi-edges. Observe

that a graph with n vertices, k self-loops and tree skeleton at each vertex is a
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polymer with n vertices of cycle rank kn. From this fact and Lemma 2.7 it holds

that ∑
n,k∈Z+:nk=r

g(n, 0) ≤ p(r) ≤
∑

n∈Z+:dn2 e+1≤r

g(n, r). (2.4.7)

2.5 Concluding Remarks

We presented an efficient method to count the number of all mutually non-

isomorphic graphs with a given number of vertices, self-loops and tree skeleton.

The proposed method is based on dynamic programming where we count the

number of all mutually non-isomorphic rooted graphs with a given number n of

vertices, ∆ self-loops and tree skeleton in O(n2(n+ ∆(n+ ∆ ·min{n,∆}))) time

and O(n2(∆2 + 1)) space. As an application of our results, we gave lower and

upper bounds on the number of tree-like polymer topologies with a given cycle

rank. This is an interesting application of DP to objects such as trees, and offers

the advantage of getting the size of the entire solution space at low computational

complexity without explicitly generating each object.

An interesting direction for future research is to efficiently count all mutually

non-isomorphic tree-like polymer topologies with a given number of vertices and

self-loops.



3 Enumerating Tree-Like Graphs

with a Given Cycle Rank

3.1 Introduction

For an enumeration method it is necessary to generate all possible required

structures without duplication in low computational complexity, due to which

designing an enumeration method is not an easy task. Several methods has

been developed to generate chemical graphs. These methods are mainly based

on the branching algorithm paradigm; the required chemical compounds appear

at the leaves of a computation tree. However, these algorithms generate many

invalid intermediate structures that appear at the non-leaf nodes of the com-

putation tree [40]. Due to this fact, these methods are inefficient to generate

chemical compounds with more than 20 non-hydrogen atoms. Thus, it is natural

to explore and develop such methods that can enumerate chemical compounds

without generating invalid intermediate structures. Jin et al. [40] proposed one

such chemical compound generation method based on the junction tree and the

variational autoencoder.

Recall that the polymer topology of a chemical compound is a connected

multi-graph where all vertices have degree at least three. Polymer topologies P

are often classified with respect to their cycle rank, which is the number of edges

that are necessary to remove to get a spanning tree of P . The class of graphs

with a tree skeleton, ∆ ≥ 0 self-loops, and no multiple edges contains all tree-like

polymer topologies with cycle rank ∆.

Recently, Azam et al. [8] proposed a method to count all trees with given

numbers of vertices and self-loops by using dynamic programming. As a result,

they gave the upper bound and the lower bound on the number of tree-like

mutually non-isomorphic polymer topologies with a given rank.

In this chapter we develop an efficient method to enumerate all mutually non-

isomorphic graphs with a tree skeleton, n vertices, ∆ self-loops, and no multiple

edges without generating invalid intermediate structures. The idea of our method

is to define a canonical representation of rooted graphs with the said structures

21
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and then enumerate these graphs by generating their canonical representations.

As a consequence of our method, we can get all polymer topologies with a tree

skeleton, a given cycle rank, self-loops, and no multiple edges.

We organize this chapter as follows: In Section 3.2, we discuss some prelimi-

naries. In Section 3.3, we first prove the mathematical properties based on which

we develop our enumeration method. We discuss experimental results and an

application of our enumeration method to generate all polymer topologies with

a tree skeleton and a given cycle rank in Section 3.4. We conclude and discuss

some future directions in Section 3.5.

3.2 Preliminaries

Let n ≥ 1 and ∆ ≥ 0 be two integers and H be a rooted graph in H(n,∆). An

ordered graph (H,π) of H is defined to be the rooted graph H with a left-to-

right ordering π on the children of each vertex of the rooted skeleton γ(H). Let

K = (H,π) be an ordered graph of H. For a vertex v ∈ V (K), we define the

ordered subgraph Kv of K to be a subgraph of K rooted at v induced by v and

its descendants in the rooted skeleton γ(K) with preserving the ordering π on the

children of each vertex in γ(Kv). For a vertex v ∈ NK(rK), we call the ordered

subgraph Kv an ordered root-subgraph of K.

For an ordered tree, we discuss two vertex orderings: depth first search (DFS)

ordering [25] and sibling-depth first search (SDFS) ordering. In DFS ordering,

we index the vertices of a given ordered tree starting from the root and visiting

them from left to right. Masui et al. [46] introduced the SDFS ordering for simple

ordered trees. For an ordered tree T = (L, π) with n vertices and a left-to-right

ordering π, the SDFS ordering is defined to be a vertex ordering obtained by

indexing the vertices from the set {1, 2, . . . , n} such that:

(i) The root has index one;

(ii) All siblings are indexed consecutively according to the left-to-right order-

ing π; and

(iii) All descendants of a vertex v are indexed consecutively with indices larger

than that of v and smaller than the indices of the descendants of any vertex

u, which is not a descendant of v with index larger than v.

Examples of an ordered tree and its vertex indexing in DFS and SDFS order-

ing are illustrated in Figure 3.1.

Let A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bm) be two sequences over inte-

gers. We say that the sequence A is lexicographically smaller A ≺ B than the
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rLp rLv1
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v4

v9 v10 v11

(c)

Figure 3.1. Examples of an ordered tree and vertex indexing: (a) an ordered

tree T = (L, π) with left-to-right ordering π indicated by the dashed arrow;

(b) ordered tree T = (L, π) from (a) with vertices indexed in depth first search

(DFS) order; and (c) ordered tree T = (L, π) from (a) with vertices indexed in

sibling-depth first search (SDFS) order.

sequence B if there exists an integer `, 1 ≤ ` ≤ min{n,m}, such that for each

integer i, 1 ≤ i ≤ `, it holds that ai = bi and

(i) either ` = n with n < m or

(ii) ` < min{n,m} with a`+1 < b`+1.

In such a case, we say that the sequence B is lexicographically greater B � A
than the sequence A. We define the concatenation A⊕B of the sequences A and

B to be the sequence (a1, . . . , an, b1, . . . , bm).

3.3 Enumerating Tree-Like Graphs with a Given Num-

ber of Vertices and Self-loops

For two integers n ≥ 1 and ∆ ≥ 0, the aim of this section is to present a method

to generate all rooted graphs in H(n,∆). The idea of our enumeration method is

to generate a rooted graph H ∈ H(n,∆) by generating a canonical ordered graph
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of H. To achieve this, we define a canonical graph of a rooted graph H ∈ H(n,∆)

and represent the canonical ordered graph with a sequence by using its ordered

subgraphs. Finally, generate the canonical ordered graph of a rooted graph by

using the sequence representation of the canonical ordered graph.

We next present a canonical representation of rooted graphs in H(n,∆) based

on a generalization of the canonical representation of simple rooted trees with n

vertices introduced by Masui et al. [46]. Recall that H(n, 0) denote a maximal

set of all mutually rooted non-isomorphic simple rooted trees with n vertices.

Further, note that for ∆ ≥ 1, it is necessary for a canonical representation of a

rooted graph H ∈ H(n,∆) to contain the information of vertices and self-loops

in H.

Let H be a rooted graph in H(n,∆) and rH denote its root. Further, let

K = (H,π) be an ordered graph of H with a left-to-right ordering π. For an

integer i ∈ [1, n] and i-th vertex vi of K following the SDFS ordering on the rooted

skeleton γ(K), let K(i) denote the ordered subgraph Kvi of K for convenience.

We introduce a canonical representation of K by using the information of the

number of vertices and self-loops in the ordered subgraphs of K. For the vertices

{v1, v2, . . . , vn} of K indexed by SDFS ordering on the rooted skeleton γ(K), we

define the sequence representation SR(K) of K to be a sequence of the size of

each ordered subgraph K(i), integer i ∈ [2, n], of K:

SR(K) , (s(K(2)), s(K(3)), . . . , s(K(n))). (3.3.1)

Examples of a rooted graph H ∈ H(11, 3), an ordered graph K = (H,π) of

H with a left-to-right ordering π, and vertices indexed in SDFS ordering and

canonical representation SR(K) of K are illustrated in Figure 3.2(a)–(c).

The next lemma states that the sequence representation of an ordered graph

K is a concatenation of

(i) A sequence of the size of the root-subgraphs of K in the left-to-right order-

ing and

(ii) The sequence representation of all root-subgraphs of K following the left-to-

right ordering.

Lemma 3.8. Let K be an ordered graph with n ≥ 1 vertices and ∆ ≥ 0 self-loops.

For integers d = degK(rK) and i ∈ [1, d], let Ki denote the i-th root-subgraph of

K in the left-to-right ordering. Then, it holds that:

SR(K) = (s(K1), . . . , s(Kd))⊕ SR(K1)⊕ · · · ⊕ SR(Kd).
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Proof. We know that in SDFS ordering, the root vertex is indexed by one, and the

siblings of a vertex are indexed consecutively. This implies that the subsequence

of the first d entries of SR(K) is equal to (s(K1), . . . , s(Kd)). Furthermore, for an

integer i = 2 (resp., i ∈ [3, d + 1]), the SDFS ordering assigns the index to the

descendants of the i-th vertex consecutively and greater than the indices of the

children (resp., descendants) of the (i−1)-th vertex. From this, it follows that for

an integer i = 2 (resp., i ∈ [3, d+1]), the entries of SR(K(i)) appear consecutively

after the entries of the sequence s(K1), . . . , s(Kd) (resp., SR(K(i−1))) in SR(K).

This implies that for an integer i ∈ [1, d], the subsequence of SR(K) consisting of

n(Ki)− 1 consecutive entries starting from d+
∑

1≤h≤i−1 n(Kh)− (i− 1) + 1 is

actually SR(Ki). Hence, it follows that SR(K) = (s(K1), . . . , s(Kd))⊕ SR(K1)⊕
· · · ⊕ SR(Kd).

For the ordered graph K in Figure 3.2(c), SR(K) = ((4, 1), (2, 0), (4, 2), (1, 0),

(1, 1), (1, 0), (1, 0), (2, 0), (1, 1), (1, 0)) and degK(rK) = 3. This implies that K has

three root-subgraphs K1, K2 and K3 following the left-to-right ordering. From

Figure 3.2(c), we have (s(K1), s(K2), s(K3)) = ((4, 1), (2, 0), (4, 2)), SR(K1) =

((1, 0), (1, 1), (1, 0)), SR(K2) = ((1, 0)), and SR(K3) = ((2, 0), (1, 1), (1, 0)). Thus,

we see that SR(K) = (s(K1), s(K2), s(K3))⊕ SR(K1)⊕ SR(K2)⊕ SR(K3).

We rephrase the recursion in Lemma 3.8 for a sequence of pairs in the following

paragraph and claim that this recursion is a sufficient condition for a sequence

of pairs to be the sequence representation of some ordered graph. We prove this

claim in Theorem 3.2.

Let n ≥ 1 and ∆ ≥ 0 be two integers and M = ((a1, b1), (a2, b2), . . . , (an−1, bn−1))

be a sequence of pairs of integers with ai ≥ 1 and bi ≥ 0, integer i ∈ [1, n − 2].

We say that the sequence M is (n,∆)-admissible if either n = 1 or

(i) there exists an integer d ∈ [1, n − 1] such that n − 1 =
∑

1≤i≤d ai with

∆ ≥
∑

1≤i≤d bi and

(ii) for each integer i ∈ [1, d], the subsequence of M consisting of ai− 1 consecu-

tive entries starting from d+
∑

1≤h≤i−1 ah− (i− 1) + 1 is (ai, bi)-admissible.

Theorem 3.2. Let n ≥ 1 and ∆ ≥ 0 be two integers and M = ((a1, b1), (a2, b2), . . . ,

(an−1, bn−1)) be a sequence of pairs of integers with ai ≥ 1 and bi ≥ 0, integer

i ∈ [1, n− 2].

(i) Sequence M is the sequence representation SR(K) of some ordered graph K

with n vertices and ∆ self-loops if and only if M is (n,∆)-admissible.

(ii) Whether M is admissible or not can be tested in O(n) time.
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                 (1,0),(1,1),(1,0),(1,0),(1,0)) 

Figure 3.2. (a) A rooted graph H ∈ H(11, 3); (b) an ordered graph K of H

with left-to-right ordering π on siblings; (c) the ordered graph K of H with SDFS

vertex indexing and SR(K); and (d) the canonical representation of H and the

ordered graph with sequence representation equal to the canonical representation

of H.

(iii) When M is (n,∆)-admissible, the ordered graph K with SR(K) = M can

be constructed in O(n) time.

Proof. For sequence M with an integer d ∈ [1, n−1] such that n−1 =
∑

1≤i≤d ai

and ∆ ≥
∑

1≤i≤d bi, let Mi denote the subsequence of M consisting of ai − 1

consecutive entries starting from d+
∑

1≤h≤i−1 ah − (i− 1) + 1. For an ordered

graph K and integer i ∈ [1,degK(rK)], let Ki denote the i-th root-subgraph of

K in the left-to-right ordering.

(i) The if-part: Suppose that M = SR(K) for some ordered graph K with n

vertices and ∆ self-loops. If n = 1, then M is (1,∆)-admissible by the definition

of admissibility. Let us assume that n ≥ 2. Then, for d = degK(rK), it holds

that n − 1 =
∑

1≤i≤d n(Ki) and ∆ ≥
∑

1≤i≤d s(Ki). Further, by Lemma 3.8

for each integer i ∈ [1, d], the subsequence Mi of M is equal to SR(Ki). Thus,
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by recursively using Lemma 3.8 for SR(Ki), i ∈ [1, d], we see that the sequence

representation SR(Ki) is (n(Ki), s(Ki))-admissible. Hence, it follows that the

sequence representation SR(K) is (n,∆)-admissible.

The only-if part: We prove the converse of (i) by induction on n.

For n = 1, M is (1,∆)-admissible by the definition of admissibility. Note

that M is an empty sequence in this case. Let K be an ordered graph with

n = 1 vertices and ∆ self-loops. Then, SR(K) is an empty sequence, and hence,

M = SR(K).

Suppose that the converse of (i) holds for any positive integer `. We show

that the converse holds for the integer ` + 1. Let M be (` + 1,∆)-admissible.

Then, by the definition of admissibility, there exists an integer d ∈ [1, `] such that

` =
∑

1≤i≤d ai and ∆ ≥
∑

1≤i≤d bi. This implies that for an integer i ∈ [1, d],

we have ai ≤ `. Further, for each integer i ∈ [1, d], the subsequence Mi is

(ai, bi)-admissible by the admissibility of M . This and the inductive hypothesis

that the converse of (i) holds for any integer ` ≥ 1 imply that for each integer

i ∈ [1, d], there exists an ordered graph H with ai vertices and bi self-loops such

that Mi = SR(H). Let K denote the ordered graph with ` + 1 vertices, ∆ self-

loops, degK(rK) = d, ∆−
∑

1≤i≤d bi self-loops on the root rK , and the i-th root

subgraph Ki of K be the ordered subgraph H such that Mi = SR(H). Then, it

immediately follows that

SR(K) = (s(K1), . . . , s(Kd))⊕M1 ⊕M2 ⊕ . . .⊕Md.

This means that M = SR(K) holds, since ((a1, b1), . . . , (ad, bd)) = (s(K1), . . . ,

s(Kd)), showing that the converse holds for the integer `+ 1.

Hence, by mathematical induction, the converse of (i) holds for any inte-

ger n ≥ 1.

(ii) We prove this result by induction on n.

For n = 1, the sequence M is an empty sequence and is (1,∆)-admissible

by the definition of admissibility. Therefore, it takes constant O(1) time to test

admissibility in this case.

Suppose that for n = `, ` ≥ 1, the admissibility of sequence M can be tested

in O(`) time. We show that the statement (ii) holds for n = `+1. To show if M is

(`+1,∆)-admissible, we need to find an integer d ∈ [1, `] such that ` =
∑

1≤i≤d ai

and ∆ ≥
∑

1≤i≤d bi. Such an integer d can be identified in O(d) time. Suppose

that such an integer d exists for M . Then, for each integer i ∈ [1, d], we next

need to test if the subsequence Mi is (ai, bi)-admissible. Note that the size of

the sequence Mi is ai − 1, i ∈ [1, d]. By ` =
∑

1≤i≤d ai, it holds that ai ≤ `,

i ∈ [1, d]. This and the inductive hypothesis imply that for an integer i ∈ [1, d],
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the admissibility of the sequence Mi can be tested in O(ai) time. Thus, the time

testing admissibility of M is O(d+
∑

1≤i≤d ai) = O(d+`) = O(`+1), since d ≤ `.
Hence, by mathematical induction, the admissibility of a sequence M of size

n− 1, n ≥ 1 can be tested in O(n) time.

(iii) We prove the claim in (iii) by induction on n.

For n = 1, M is (1,∆)-admissible and is the sequence representation of the

ordered graph K with only one vertex and ∆ self-loops. This implies that K can

be constructed in O(1) time.

Suppose that for n = `, ` ≥ 1, the statement (iii) holds. We show that

the statement (iii) holds for n = ` + 1. Let M be an (` + 1,∆)-admissible

sequence. Then, there exists an integer d ∈ [1, `], such that ` =
∑

1≤i≤d ai and

∆ ≥
∑

1≤i≤d bi. By (i), there exists an ordered graph K with n vertices and ∆

self-loops such that SR(K) = M . Thus, it holds that degK(rK) = d. Further,

by Lemma 3.8, for each integer i ∈ [1, d], the i-th root-subgraph Ki of K has

ai vertices and bi self-loops. Observe that such an integer d exists uniquely due

to the admissibility of M . This implies that degK(rK) can be obtained in O(d)

time.

By SR(K) = M and Lemma 3.8, for each integer i ∈ [1, d], it holds that

SR(Ki) = Mi. Recall that the size of SR(Ki) is n(Ki) − 1, which is equal to

ai − 1, i ∈ [1, d]. Further, by ` =
∑

1≤i≤d ai, it follows that ai ≤ `, i ∈ [1, d].

Thus, by the inductive hypothesis for an integer i ∈ [1, d], the subgraph Ki can

be constructed from Mi in O(ai) time. Since d +
∑

1≤i≤d ai = d + ` and d ≤ `,

K can be constructed in O(`+ 1) time from M .

Hence, by mathematical induction, for integers n ≥ 1 and ∆ ≥ 0 and an

(n,∆)-admissible sequence M , the ordered graph K with SR(K) = M can be

constructed by M in O(n) time.

Let M = ((a1, b1), (a2, b2), . . . , (an−1, bn−1)) be an (n,∆)-admissible sequence.

Then, there exists an integer d ∈ [1, n − 1] such that n − 1 =
∑

1≤i≤d ai. Fur-

thermore, by Theorem 3.2(i), there exists an ordered graph K with n vertices

and ∆ self-loops such that degK(rK) = d and SR(K) = M . Note that such

an integer d and ordered graph K are unique. We call the integer d the root-

degree of M and denote it by d(M). Moreover, for each integer i ∈ [1, d(M)],

the subsequence of M consisting of ai − 1 consecutive entries starting from

d(M) +
∑

1≤h≤i−1 ah − (i− 1) + 1 is equal to the sequence representation of the

i-th root-subgraph of M . For an integer i ∈ [1, d(M)], we call such a subsequence

of M the i-th root-subsequence of M and denote it by M(i).

By Theorem 3.2(i), it follows that an ordered graph K with n ≥ 1 vertices

and ∆ ≥ 0 self-loops can be completely determined by SR(K). Thus, we define
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a canonical representation of a rooted graph H ∈ H(n,∆) as follows. For a

rooted graph H ∈ H(n,∆), we define the canonical representation to be an

(n,∆)-admissible sequence M such that M is lexicographically maximum among

all (n,∆)-admissible sequences that are the sequence representation of ordered

graphs of H.

In Figure 3.2(d), we show the canonical representation M of the rooted graph

H ∈ H(11, 3) illustrated in Figure 3.2(a). Further, we show the ordered graph L

such that SR(L) = M .

To generate all rooted graphs in H(n,∆), it is enough to generate the canoni-

cal representation of each rooted graph H ∈ H(n,∆) by Theorem 3.2(i). For two

integers n ≥ 1 and ∆ ≥ 0, let M(n,∆) denote the set of all (n,∆)-admissible

sequences that are canonical representation of graphs in H(n,∆). Note that the

empty sequence is the only sequence in M(1,∆). In the next lemma, we give a

characterization of sequences in M(n,∆).

Lemma 3.9. Let n ≥ 2 and ∆ ≥ 0 be two integers. Let M = ((a1, b1), (a2, b2), . . . ,

(an−1, bn−1)) be a sequence of integer pairs with an integer d ∈ [1, n−1] such that

n−1 =
∑

1≤i≤d ai. For an integer i ∈ [1, d], let M(i) denote the subsequence of M

consisting of ai−1 consecutive entries starting from d+
∑

1≤h≤i−1 ah − (i− 1) + 1.

Then, M ∈M(n,∆) if and only if the following hold:

(i) ai ≥ 1,∀i ∈ [1, d],
∑

1≤i≤d ai = n− 1 and ai ≥ ai+1,∀i ∈ [1, d− 1];

(ii) bi ≥ 0, ∀i ∈ [1, d],
∑

1≤i≤d bi ≤ ∆ and for each integer i ∈ [1, d− 1] such that

ai = ai+1, it holds that bi ≥ bi+1; and

(iii) M(i) ∈ M(ai, bi),∀i ∈ [1, d], and for each integer i ∈ [1, d − 1] such that

ai = ai+1 and bi = bi+1, it holds that M(i) �M(i+ 1).

Proof. The if part: Let M ∈ M(n,∆). Then, by the definition of admissibility,

it holds that d = d(M). Let H denote the ordered graph with n vertices and ∆

self-loops such that SR(H) = M .

(i) By the admissibility ofM , we have ai ≥ 1, ∀i ∈ [1,d(M)],
∑

1≤i≤d(M) ai = n− 1.

Furthermore, M is the canonical representation of H, and therefore, for

the sequence representation ((s1, s
′
1), (s2, s

′
2), . . . , (sn−1, s

′
n−1)) of any ordered

graph of H, it holds that (a1, . . . , ad(M)) � (s1, . . . , sd(M)). This eventually

implies that ai ≥ ai+1,∀i ∈ [1, d− 1].

(ii) By the admissibility ofM , it holds that bi ≥ 0,∀i ∈ [1, d(M)],
∑

1≤i≤d(M) bi ≤
∆. Moreover, for the sequence representation ((s1, s

′
1), (s2, s

′
2), . . . , (sn−1, s

′
n−1))

of any ordered graph of H such that si = ai,∀i ∈ [1, d(M)], it holds that
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(b1, . . . , bd(M)) � (s′1, . . . , s
′
d(M)) since M is the canonical representation of

H. This implies that for each integer i ∈ [1,d(M)− 1] such that ai = ai+1,

it holds that bi ≥ bi+1.

(iii) We first prove that for each integer i ∈ [1,d(M)], it holds that M(i) ∈
M(ai, bi).

For an integer i ∈ [1, d(M)], let Hi denote the i-th root-subgraph of H follow-

ing the left-to-right ordering. Then, by Lemma 3.8 for each integer i ∈ [1, d(M)],

it holds that SR(Hi) = M(i).

Suppose on the contrary that there exists an integer i ∈ [1, d(M)] such

M(i) /∈ M(ai, bi). This means that there exists an ordered graph L that is

rooted isomorphic to Hi, and SR(L) �M(i) holds. Let M ′ denote the sequence

obtained from M by replacing the subsequence Mi with SR(L). Clearly, M ′ is

(n,∆)-admissible, and M ′ � M holds by the construction of M ′. Let H ′ de-

note the ordered graph obtained by replacing Hi with L in H and preserving the

ordering of the children of each vertex in L. Then, we see that H ′ is rooted iso-

morphic to H, and SR(H ′) = M ′. This contradicts the fact that M is a sequence

inM(n,∆). Hence, for each integer i ∈ [1, d(M)], it holds that M(i) ∈M(ai, bi).

Recall that M is the canonical representation of H. This implies that for the

sequence representation ((s1, s
′
1), (s2, s

′
2), . . . , (sn−1, s

′
n−1)) of any ordered graph

ofH such that (si, s
′
i) = (ai, bi),∀i ∈ [1, d(M)], it holds that ((ad(M)+1, bd(M)+1), . . . ,

(an−1, bn−1)) � ((sd(M)+1, s
′
d(M)+1), . . . , (sn−1, s

′
n−1)). This implies that for each

integer i ∈ [1,d(M)−1] such that ai = ai+1 and bi = bi+1, we have M(i) � M(i+

1).

The only-if part: Let M satisfy (i), (ii), and (iii). We show that M ∈ M(n,∆).

To prove this, we show that M is a canonical representation of some graph

in H(n,∆).

By (i) and (ii), we have ai ≥ 1, bi ≥ 0, ∀i ∈ [1, d], n − 1 =
∑

1≤i≤d ai and

∆ ≥
∑

1≤i≤d bi. Furthermore, for each integer i ∈ [1, d], the sequence Mi is

(ai, bi)-admissible, since M(i) ∈M(ai, bi) by (iii). This implies that M is (n,∆)-

admissible.

By Theorem 3.2(i), there exists a unique ordered graph K = (H,π) such that

SR(K) = M for some H ∈ H(n,∆). This implies that degK(rK) = d, and for

each integer i ∈ [1, d], the i-th root subgraph of K has ai vertices and bi self-

loops. This implies that any ordered graph L that is rooted isomorphic to K has

x vertices and y self-loops such that (x, y) = (ai, bi) for some i ∈ [1, d].

The condition ai ≥ ai+1,∀i ∈ [1, d−1] in (i) implies that for the sequence rep-

resentation S = ((s1, s
′
1), (s2, s

′
2), . . . , (sn−1, s

′
n−1)) of any ordered graph that is
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rooted isomorphic to K, it holds that M � S since (a1, . . . , ad) � (s1, . . . , sd). For

the condition for each integer i ∈ [1, d− 1] such that ai = ai+1, it holds that bi ≥
bi+1 in (ii) implies that for the sequence representation S = ((s1, s

′
1), (s2, s

′
2), . . . ,

(sn−1, s
′
n−1)) of any ordered graph that is rooted isomorphic to K such that

si = ai, ∀i ∈ [1, d], it holds that M � S since (b1, . . . , bd) � (s′1, . . . , s
′
d). Finally,

for the condition for each integer i ∈ [1, d− 1] such that ai = ai+1 and bi = bi+1,

it holds that M(i) � M(i + 1) in (iii) implies that for the sequence representa-

tion S = ((s1, s
′
1), (s2, s

′
2), . . . , (sn−1, s

′
n−1)) of any ordered graph that is rooted

isomorphic to K and (si, s
′
i) = (ai, bi),∀i ∈ [1, d], it holds that M � S since

((ad+1, bd+1), . . . , (an−1, bn−1)) � ((sd+1, s
′
d+1), . . . , (sn−1, s

′
n−1)). This eventu-

ally implies that M is the canonical representation of H from which it follows

that M ∈M(n,∆).

We next give the structure of the sequences that are lexicographically mini-

mum and maximum among all sequences in M(n,∆).

Lemma 3.10. Let n ≥ 2 and ∆ ≥ 0 be two integers.

(i) The sequences N = ((1, 0), (1, 0), . . . , (1, 0)) and M = ((n − 1,∆), (n −
2,∆), . . . , (1,∆)) each of length n − 1 are lexicographically minimum and

maximum among all sequences in M(n,∆), respectively.

(ii) Whether a sequence in M(n,∆) is lexicographically minimum or maximum

among all sequences in M(n,∆) can be tested in O(n).

Proof. (i) It is easy to observe that the sequence N is (n,∆)-admissible. Fur-

thermore, for two integers i ≥ 2 and j ≥ 0, the ranges of the first and the second

entries in any sequence in M(i, j) are [1, i − 1] and [0, j], respectively. This im-

plies that the sequence N is lexicographically minimum among all the sequences

in M(n,∆). Moreover, the sequence ((1,∆)) is admissible and lexicographically

maximum among all the sequences in M(2,∆). From this, it follows that the

sequence ((2,∆), (1,∆)) is admissible and lexicographically maximum among all

the sequences in M(3,∆). Thus, by using this inductive argument, we can con-

clude that the sequence M is admissible and lexicographically maximum among

all the sequences in M(n,∆).

(ii) We know that a sequence S in M(n,∆) is of length n− 1, and therefore, by

using a for-loop of size n−1 and (i), we can test if S is lexicographically minimum

or maximum among all sequences in M(n,∆) in O(n) time.

Let S(n,∆) and L(n,∆) denote the lexicographically minimum and maximum

sequences among all sequences in M(n,∆), respectively.



32 Chapter 3. ENUMERATING TREE-LIKE GRAPHS

For a sequence M ∈ M(n,∆) such that M 6= S(n,∆), we define the prede-

cessor P(M) of M to be the sequence that is lexicographically maximum among

all sequences that are lexicographically smaller than M , i.e., there does not exist

a sequence N ∈M(n,∆) \ {P(M)} such that M � N � P(M) holds.

For a sequence M ∈ M(n,∆), we next give the structure of the predecessor

P(M), if it exists, of M .

Theorem 3.3. Let n ≥ 2 and ∆ ≥ 0 be two integers and M = ((a1, b1), (a2, b2), . . . ,

(an−1, bn−1)) be a sequence in M(n,∆). Let d denote the root-degree of M .

Then, for the predecessor P(M) = ((x1, y1), (x2, y2), . . . , (xn−1, yn−1)), if it ex-

ists, we have

(a) If ai = 1 and bi = 0, ∀i ∈ [1, d], then P(M) does not exist.

(b) If ai 6= 1 for some i ∈ [1, d], bj = 0 and M(j) = S(aj , bj), ∀j ∈ [1, d]. Then,

for the largest integer k ∈ [1, d] such that ak 6= 1, it holds that d(P(M)) =

k − 1 + d(ak + d − k)/(ak − 1)e, y1 = ∆, yi = 0,∀i ∈ [2,d(P(M))], xi =

ai,∀i ∈ [1, k− 1], xi = ak − 1,∀i ∈ [k, d(P(M))− 1], xd(P(M)) = ak + d− k−
b(ak + d− k)/(ak − 1)c(ak − 1), and P(M)(i) = L(xi, yi), ∀i ∈ [1,d(P(M))].

(c) If bi 6= 0 for some i ∈ [1, d], M(j) = S(aj , bj), ∀j ∈ [1, d]. For the largest

integer k ∈ [1, d] such that bk 6= 0, let p , max{i ≤ d | ak = ak+i},
q , p + 1 if bk = 1, and q , b(∆ −

∑
1≤i≤k−1 bi)/(bk − 1)c if bk ≥ 2 and

t , min{q, p + 1}. Then, it holds that d(P(M)) = d, xi = ai,∀i ∈ [1, d],

yi = bi, ∀i ∈ [1, k − 1], yk = bk − 1; for k 6= d, we have yk+i = bk − 1, ∀i ∈
[1, t − 1], yk+t = (∆ −

∑
1≤i≤k−1 bi) − t(bk − 1), yi = 0, ∀i ∈ [k + t + 1, d],

and P(M)(i) = L(xi, yi), ∀i ∈ [1, d].

(d) Otherwise if ai 6= 1, bj 6= 0, M(`) 6= S(a`, b`), for some i, j, ` ∈ [1, d]. For

the largest integer k ∈ [1, d] such that M(k) 6= S(ak, bk), let p , max{i ≤
d | ak = ak+i and bk = bk+1}. Then, it holds that d(P(M)) = d, (xi, yi) =

(ai, bi), ∀i ∈ [1, d], P(M)(i) = M(i), ∀i ∈ [1, k− 1], P(M)(k+ i) = P(M(k)),

∀i ∈ [0, p], and P(M)(i) = L(ai, bi), ∀i ∈ [k + p+ 1, d].

Proof. (a) If ai = 1 and bi = 0, ∀i ∈ [1, d], then it holds that d = n− 1. Thus, by

Lemma 3.10(i), it holds that M = S(n,∆), and therefore, P(M) does not exist.

(b) If ai 6= 1 for some i ∈ [1, d], bj = 0 and M(j) = S(aj , bj), ∀j ∈ [1, d], then M is

lexicographically minimum among all those sequences ((c1, c
′
1), . . . , (cn−1, c

′
n−1)) ∈

M(n,∆) for which it holds that ci = ai, ∀i ∈ [1, d]. Further, ai 6= 1 for

some i ∈ [1, d] implies that P(M) exists. By the definition of a predecessor,

observe that P(M) is lexicographically maximum among all those sequences
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S = ((s1, s
′
1), . . . , (sn−1, s

′
n−1)) ∈ M(n,∆) for which it holds that si = xi, ∀i ∈

[1, d(P(M))]. This implies that for each such sequence S, it holds that either

(y1, y2, . . . , yd(P(M))) � (s′1, s
′
2, . . . , s

′
d(P(M))) or yi = s′i and P(M)(i) � S(i),∀i ∈

[1, d(P(M))]. The former implies that y1 = ∆, yi = 0, ∀i ∈ [2,d(P(M))],

while the latter implies that P(M)(i) = L(xi, yi), ∀i ∈ [1,d(P(M))]. Further,

the sequence (x1, . . . , xd(P(M))) satisfies Lemma 3.9(i), and there does not exist

a sequence L that satisfies Lemma 3.9(i) such that (x1, . . . , xd(P(M))) ≺ L ≺
(a1, . . . , ad) holds by the definition of P(M). This and the definition of k im-

ply that xi = ai, ∀i ∈ [1, k − 1]; the sequence (xk, xk+1, . . . , xd(P(M))) is a non-

decreasing sequence, and there there does not exist a sequence Z = (z1, . . . , zt)

such that zi ∈ [1, ak− 1], ∀i ∈ [1, t] and
∑

1≤i≤t zi =
∑

k≤j≤d aj for which it holds

that (xk, . . . , xd(P(M))) ≺ Z ≺ (ak, . . . , ad) holds. This eventually implies that

d(P(M)) = k− 1 + d
∑

k≤i≤d ai/(ak − 1)e, xi = ak − 1, ∀i ∈ [k,d(P(M))− 1], and

xd(P(M)) =
∑

k≤i≤d ai−b
∑

k≤i≤d ai/(ak−1)c(ak−1). Thus, by the definition of k,

we have
∑

k≤i≤d ai = ak +d−k, and therefore, we have the required result. (c) If

bi 6= 0 for some i ∈ [1, d] and M(j) = S(aj , bj), ∀j ∈ [1, d], then M is lexicograph-

ically minimum among all those sequences ((c1, c
′
1), . . . , (cn−1, c

′
n−1)) ∈ M(n,∆)

for which it holds that (ci, c
′
i) = (ai, bi), ∀i ∈ [1, d]. Since bi 6= 0 for some i ∈ [1, d],

therefore P(M) exists and is lexicographically maximum among all those se-

quences ((s1, s
′
1), . . . , (sn−1, s

′
n−1)) ∈ M(n,∆) for which it holds that (si, s

′
i) =

(ai, yi), ∀i ∈ [1,d(P(M))]. This implies that xi = ai,∀i ∈ [1, d(P(M))], and there-

fore, we have d(P(M)) = d. Furthermore, (y1, y2, . . . , yd) � (s′1, s
′
2, . . . , s

′
d) and

P(M)(i) � S(i), ∀i ∈ [1, d]. This implies that for each integer i ∈ [1, d], it holds

that P(M)(i) = L(ai, yi), and the sequence (y1, y2, . . . , yd) is lexicographically

minimum among all those sequences that satisfy Lemma 3.9(ii) and are lexico-

graphically smaller than (b1, b2, . . . , bd). This and the definition of k imply that

yi = bi,∀i ∈ [1, k−1]; by Lemma 3.9(ii), the sequence (yk, yk+1, . . . , yk+p) is a non-

decreasing sequence, and there does not exist a sequence Z = (zk, zk+1, . . . , zk+p)

such that zi ∈ [0, bk−1] and
∑

k≤i≤k+p zi = min{(p+1)(bk−1),∆−
∑

1≤i≤k−1 bi}
for which it holds that (yk, yk+1 . . . , xk+p) ≺ Z ≺ (bk, bk+1, . . . , bk+p). This even-

tually implies that yk = bk−1 and for k 6= d yk+i = bk−1,∀i ∈ [1, t−1]. This and

the minimality of (y1, y2, . . . , yd) imply that yk+t = (∆−
∑

1≤i≤k−1 bi)− t(bk− 1)

and yi = 0, ∀i ∈ [k + t+ 1, d].

(d) The conditions of this case imply that M is not the lexicographically mini-

mum among all those sequences ((c1, c
′
1), . . . , (cn−1, c

′
n−1)) ∈ M(n,∆) for which

it holds that (ci, c
′
i) = (ai, bi), ∀i ∈ [1, d]. This implies that for P(M), it holds

that d(P(M)) = d and (xi, yi) = (ai, bi),∀i ∈ [1, d], and there does not exist

a sequence S = ((s1, s
′
1), . . . , (sn−1, s

′
n−1)) ∈ M(n,∆) for which it holds that
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(si, s
′
i) = (ai, bi),∀i ∈ [1, d] and ((x1, y1), . . . , (xn−1, yn−1)) ≺ S ≺ M . This im-

plies that for each such sequence S, it holds that P(M)(1) ⊕ P(M)(2) ⊕ · · · ⊕
P(M)(d) � S(1) ⊕ S(2) ⊕ · · · ⊕ S(d). This and the definition of k imply that

P(M)(i) = M(i), ∀i ∈ [1, k − 1]. Furthermore, by Lemma 3.9(iii) and the defi-

nition of p, it holds that P(M)(i) � P(M)(i + 1), ∀i ∈ [k, k + p − 1], and there

does not exist a sequence S = ((s1, s
′
1), . . . , (sn−1, s

′
n−1)) ∈ M(n,∆) such that

(si, s
′
i) = (ai, bi),∀i ∈ [1, d] and S(i) � S(i+1), ∀i ∈ [k, k+p−1] for which it holds

that P(M)(k)⊕P(M)(k+1)⊕· · ·⊕P(M)(K+1) ≺ S(k)⊕S(k+1)⊕· · ·⊕S(k+

p+1) ≺M(k)⊕M(k+1)⊕· · ·⊕M(k+p+1). Since M(k) 6= S(ak, bk), therefore

P(M)(k) is a lexicographically minimum sequence inM(ak, bk) for which it holds

that P(M)(k) ≺ M(k). This implies that P(M)(k + i) = P(M(k)),∀i ∈ [0, p].

Further, by the minimality of P(M), P(M)(i) = L(ai, bi), ∀i ∈ [k + p+ 1, d].

Finally, one can easily verify that the sequence ((x1, y1), . . . , (xn−1, yn−1))

obtained in each of the above cases satisfies Lemma 3.9(i)–(iii) by construction,

and hence, ((x1, y1), . . . , (xn−1, yn−1)) is an element of M(n,∆) that is P(M),

which completes the proof.

Lemma 3.11. Let n ≥ 2 and ∆ ≥ 0 be two integers and M be a sequence in

M(n,∆). Then, the predecessor P(M), if it exits, can be computed in O(n) time

and O(n) space.

The proof of Lemma 3.11 follows from Algorithm 2 and Lemma 3.12.

We next present Algorithm 2 to compute the predecessor based on Theo-

rem 3.3. In this algorithm, for a sequence M ∈ M(n,∆) with root-degree d and

integer i ∈ [1, d], the variable M [i] stores the i-th root-subsequence M(i) of M ,

and the variable P[M ] stores the predecessor, if it exists, of M .

Algorithm 2 Computing the Predecessor of an Admissible Sequence

Input: Two integers n ≥ 2 and ∆ ≥ 0 and an (n,∆)-admissible sequence

M = ((a1, b1), . . . , (an−1, bn−1)).

Output: The predecessor of M if it exists; The predecessor of M does not

exist otherwise.

1: d := The root-degree of M ;

2: if If ai = 1 and bi = 0, ∀i ∈ [1, d] then

3: Output The predecessor of M does not exist /* Theorem 3.3(a) */

4: else/* The predecessor of M exists by Theorem 3.3*/

5: P[M ] := ((x1, y1), . . . , (xn−1, yn−1))

6: if ai 6= 1 for some i ∈ [1, d], bj = 0 and M [j] = S(aj , bj), ∀j ∈ [1, d] then

/* Theorem 3.3(b) */

7: k := max{i | ai 6= 1}; h := k−1+d(ak+d−k)/(ak−1)e; /* The root-degree
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d(P (M)) of P (M) */

8: y1 := ∆; yi := 0,∀i ∈ [2, h]; xi := ai, ∀i ∈ [1, k − 1];

xi := ak−1, ∀i ∈ [k, h−1]; xh := ak+d−k−b(ak+d−k)/(ak−1)c(ak−1);

P[M ][i] = L(xi, yi), ∀i ∈ [1, h]

9: else if bi 6= 0 for some i ∈ [1, d] and M [j] = S(aj , bj), ∀j ∈ [1, d] then

/* Theorem 3.3(c) */

10: k := max{i | bi 6= 0}; p := max{i ≤ d | ak = ak+i}; q := p+ 1 if bk = 1;

q := b(∆−
∑

1≤i≤k−1 bi)/(bk − 1)c if bk ≥ 2; t := min{q, p+ 1};
11: xi := ai, ∀i ∈ [1, d]; yi := bi,∀i ∈ [1, k − 1]; yk := bk − 1;

12: if k 6= d then

13: yk+i := bk − 1,∀i ∈ [1, t− 1]; yk+t := (∆−
∑

1≤i≤k−1 bi)− t(bk − 1);

yi = 0,∀i ∈ [k + t+ 1, d]

14: end if ;

15: P[M ][i] := L(xi, yi), ∀i ∈ [1, d]

16: else/* If ai 6= 1, bj 6= 0 and M [`] 6= S(a`, b`), for some i, j, ` ∈ [1, d] */

/* Theorem 3.3(d) */

17: k := max{i |M [i] 6= S(ai, bi)};
18: p := max{i ≤ d | ak = ak+i and bk = bk+1};

(xi, yi) := (ai, bi), ∀i ∈ [1, d]; P[M ][i] := M [i], ∀i ∈ [1, k − 1];

19: P[M ][k] := Algorithm 1(ak, bk,M [k]);

20: P[M ][k + i] := P[M ][k],∀i ∈ [1, p]; P[M ][i] := L(ai, bi), ∀i ∈ [k + p+ 1, d]

21: end if ;

22: Output P[M ] as the predecessor of M ;

23: end if.

Lemma 3.12. For two integers n ≥ 2 and ∆ ≥ 0 and an (n,∆)-admissible

sequence M , Algorithm 2 outputs the predecessor P(M), if it exits, in O(n) time

and O(n) space.

Proof. Correctness: The correctness of Algorithm 2 immediately follows from

Theorem 3.3.

Complexity analysis: By the definition of the root-degree, we can compute d at

Line 1 in O(n) time.

We can test if ai 6= 1 and bj 6= 0 hold for some i, j ∈ [1, d] in O(n) time.

Similarly, we can test if M(j) = S(aj , bj), for some j ∈ [1, d] in O(n) time, since

the length of M(j) is aj − 1, and
∑

1≤i≤d ai = n − 1. Hence, we can test the

conditions at Lines 2, 6, 9, and 16 in O(n + n) = O(n) time. This implies that

we can check if the predecessor of M exists in O(n) time. We next discuss the

time complexity of computing the predecessor in each of the cases at Lines 6, 9,

and 16.
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When the conditions at Line 6 hold, then k and h can be computed in O(n)

time, since k ≤ d and h ≤ d + 1. This implies that ((x1, y1), . . . , (xh, yh)) can

be computed in O(n) time. Furthermore, we can compute L(xi, yi),∀i ∈ [1, h] in

O(xi) time by Lemma 3.10(i). Recall that for P[M ], it holds that
∑

1≤i≤d xi =

n− 1. Thus, P[M ] can be computed in O(n) time.

When the conditions at Line 9 hold, then k, p, q, and t can be computed in

O(n) time by there definitions. Thus, ((x1, y1), . . . , (xd, yd)) can be computed

from Line 11 to Line 14 in O(n) time. Furthermore, L(xi, yi),∀i ∈ [1, d] can be

computed at Line 15 in O(n) time, as discussed above. This implies that P[M ]

can be computed in O(n) time in this case.

Finally, when the conditions at Line 16 hold, then once again, we can compute

k in O(n) time, since
∑

1≤i≤d ai = n − 1. Further, p can be computed in O(n)

time by the definition of p. However, P[M ][k] can be obtained by recursively

running Algorithm 1 on ak, bk and M [k]. Note that this operation is repeated at

most the length of the sequence P[M [k]], which is ak − 1 in this case, and hence,

P[M ][k] can be computed in O(n) time. Once again, the computation at Line 20

can be done in O(n) time since it holds that
∑

1≤i≤d ai = n − 1. Hence, P[M ]

can be computed in O(n) time .

Observe that the O(n) space is sufficient to store P[M ], if it exists, which

completes the proof.

Note that we can generate all rooted graphs in H(n,∆) by generating their

canonical representation by repeatedly using Algorithm 2 starting from the lex-

icographically maximum sequence L(n,∆) in M(n,∆) in O(n) time per graph

and O(n) space in total.

Theorem 3.4. Let n ≥ 2 and ∆ ≥ 0 be two integers. Then, all mutually

non-isomorphic graphs with n vertices, ∆ self-loops, and a tree skeleton can be

generated in O(n) time per graph and O(n) space in total.

Proof. A tree can be viewed as a rooted tree by considering its centroid as the

root [41]. We know that when n is odd, then there are only trees with unicen-

troids; however, when n is even, then there are trees with unicentroids.

By the definition of a unicentroid, all mutually non-isomorphic graphs with

n vertices, ∆ self-loops, and a tree skeleton with a unicentroid can be enumer-

ated by generating all graphs H in H(n,∆) such that each root subgraph of H

has at most b(n − 1)/2c number of vertices, i.e., by generating all sequences

M = ((a1, b1), . . . , (an−1, bn−1)) ∈ M(n,∆) such that ai ∈ [1, b(n − 1)/2c],
∀i ∈ [1, d(P(M))]. Let S denote the sequence that is lexicographically maximum

among all those sequences in M(n,∆) that represent a tree with a unicentroid.
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When n is even, then it holds that S = ((b(n−1)/2c,∆), (b(n−1)/2c, 0), (1, 0))⊕
L(b(n − 1)/2c,∆) ⊕ L(b(n − 1)/2c, 0) ⊕ L(1, 0). Recall that L(1, 0) is an empty

sequence, and therefore, we have S = ((b(n− 1)/2c,∆), (b(n− 1)/2c, 0), (1, 0))⊕
L(b(n− 1)/2c,∆)⊕L(b(n− 1)/2c, 0). However, when n is odd, then it holds that

S = ((b(n − 1)/2c,∆), (b(n − 1)/2c, 0)) ⊕ L(b(n − 1)/2c,∆) ⊕ L(b(n − 1)/2c, 0).

Hence, we can generate all sequences in M(n,∆) that represent a graph H ∈
H(n,∆) such that the skeleton of H has a unicentroid by repeatedly using Theo-

rem 3.3 starting from the sequence S. This implies that we can generate all such

sequences in O(n) time per sequence and O(n) space by using Algorithm 2.

When n is even, then all mutually non-isomorphic graphs with n vertices, ∆

self-loops, and a tree skeleton with a bicentroid can be enumerated by generating

all sequences M = ((a1, b1), . . . , (an−1, bn−1)) ∈ M(n,∆) such that the root-

degree d(M) = 2, a1 = a2 = n/2 and b1 + b2 = ∆ with b1 ≥ b2. In such a case,

the sequences ((n/2,∆), (n/2, 0))⊕L(n/2,∆)⊕L(n/2, 0) and ((n/2, d∆/2e), (n/2,
b∆/2c))⊕L(n/2, d∆/2e)⊕L(n/2, b∆/2c) are lexicographically maximum and min-

imum, respectively, among all those sequences inM(n,∆) that represent a graph

with a bicentroid. Let M = ((a1, b1), . . . , (an−1, bn−1)) ∈M(n,∆) be a sequence

that represents a graph H ∈ H(n,∆) such that the skeleton of H has a bicen-

troid and M 6= ((n/2, d∆/2e), (n/2, b∆/2c)) ⊕ L(n/2, d∆/2e) ⊕ L(n/2, b∆/2c).
When M(i) = S(aj , bj), ∀i ∈ {1, 2}, then it holds that P(M) = ((a1, b1 −
1), (a2, b2 + 1)) ⊕ L(a1, b1 − 1) ⊕ (a2, b2 + 1). However, in the case otherwise,

i.e., when M(i) 6= S(aj , bj), for some i ∈ {1, 2}, then P(M) can be generated by

using Theorem 3.3(d). Clearly, in both of these cases, P(M) can be generated in

O(n) time and O(n) space. This eventually implies that all sequences that rep-

resent a graph in H(n,∆) with a bicentroid can be generated in O(n) time per

sequence and O(n) space by repeatedly computing the predecessor of sequences

M as described above starting from ((n/2,∆), (n/2, 0)) ⊕ L(n/2,∆) ⊕ L(n/2, 0)

until M = ((n/2, d∆/2e), (n/2, b∆/2c))⊕ L(n/2, d∆/2e)⊕ L(n/2, b∆/2c).
Hence, we can generate all non-isomorphic graphs with n vertices, ∆ self-

loops, and a tree skeleton with a unicentroid or bicentroid in O(n) time per

graph and O(n) space in total, which completes that proof.

3.4 Results and Application

We computed all graphs with n vertices, ∆ self-loops, and a tree skeleton for

different values of n and ∆ to test the efficiency of our algorithm, and the re-

sults are listed in Table 3.1. These experiments were performed on a PC with an

Intel Core i7-500 processor, running at 2.70 GHz, 16 GB of memory, and Win-
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dows 10. From the experimental results, it is evident that the proposed method

is computationally efficient.

Table 3.1. Experimental results of the enumeration method.

(n,∆) # Generated Graphs Time (sec.)

(5, 9) 856 0.278

(5, 10) 1186 0.213

(5, 30) 50,596 4.354

(6, 9) 4270 0.992

(6, 10) 6333 1.571

(6, 30) 619,431 141.334

(7, 9) 20,548 5.084

(7, 10) 32,337 7.047

(8, 9) 95,357 17.444

(8, 10) 159,058 31.755

(9, 9) 429,496 88.899

(9, 10) 756,045 185.823

(10, 9) 1,882,764 528.286

(10, 10) 3,488,567 914.806

(17, 2) 25,939,679 3911.33

(18, 0) 123,867 34.189

(20, 0) 823,065 334.357

(22, 0) 5,623,756 1807.53

(24, 0) 39,299,897 8042.88

Observe that a graph with a tree skeleton, ∆ self-loops, and no multiple

edges has cycle rank ∆. Therefore, the class of such graphs contains all polymer

topologies of cycle rank ∆ with a tree skeleton. However, it is a natural question

to search for a relationship between the number n of vertices and the number

∆ of self-loops such that there exists a polymer topology with a tree skeleton, n

vertices, and cycle rank ∆. Clearly, for n = 1 and ∆ ≥ 2, there exists exactly one

polymer topology with a tree skeleton, n vertices, and ∆ self-loops. Let P(n,∆)

denote a maximal set of mutually non-isomorphic polymer topologies with a tree

skeleton, n vertices, ∆ self-loops, and no multiple edges. Recall that, we proved

a necessary condition on ∆ to have a polymer topology with a tree skeleton and

n vertices in Lemma 2.7. By this lemma, if n ≥ 1 and ∆ ≥
⌈
n
2

⌉
+ 1, then it holds

that P(n,∆) 6= ∅. Let G(n,∆) denote a maximal set of mutually non-isomorphic

graphs with a tree skeleton, n vertices, and ∆ self-loops. For an integer r ≥ 1,
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let P(r) denote a maximal set of mutually non-isomorphic polymer topologies

with a tree skeleton, n vertices, and r self-loops. By Lemma 2.7, it holds that

P(r) =
⋃

n∈Z+:dn2 e+1≤r

P(n, r) ⊆
⋃

n∈Z+:dn2 e+1≤r

G(n, r) (3.4.2)

Thus, by using Equation (3.4.2) and identifying the degree of each vertex

in the graphs in G(n, r) from their canonical representations, we can compute

all polymer topologies in P(r). We applied our method to generate all polymer

topologies in P(r) for rank r = 2, 3, . . . , 9, and the results are listed in Table 3.2.

Table 3.2. The number of polymer topologies with a tree skeleton, r self-loops,

and no multiple edges.

Rank r

n 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1

2 1 1 2 2 3 3 4 4

3 – 1 2 4 6 9 12 16

4 – 1 3 6 13 21 35 51

5 – – 2 7 18 40 77 136

6 – – 1 6 23 61 147 300

7 – – – 3 20 76 223 559

8 – – – 1 14 74 288 868

9 – – – – 5 54 291 1128

10 – – – – 2 29 241 1212

11 – – – – – 10 145 1057

12 – – – – – 2 68 733

13 – – – – – – 19 390

14 – – – – – – 4 151

15 – – – – – – – 38

16 – – – – – – – 6

Total 2 4 11 30 105 308 1555 6650

3.5 Concluding Remarks

We proposed an efficient method to enumerate all mutually non-isomorphic graphs

with a tree skeleton, a given number of vertices, and the number of self-loops.
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The idea of this method is to generate rooted graphs with n vertices and ∆

self-loops by generating their canonical representation. We defined the canoni-

cal representation of a rooted graphs H with n vertices and ∆ self-loops based

on the ordered graphs of H. The proposed method generates all graphs with a

tree skeleton, n vertices, and ∆ self-loops in O(n) time per tree and O(n) space

in total. As an application, we can generate all polymer topologies with a tree

skeleton, self-loops, no multiple edges, and a given cycle rank.

An interesting future research direction is to design a method that can directly

count and enumerate all mutually non-isomorphic polymer topologies with a given

cycle rank.



4 Some Theoretical Results

Related to Pairwise Compatibility

Graphs

4.1 Introduction

The pairwise compatibility tree construction problem (PCTCP) asks to find ev-

idence to show if the given graph G is a PCG or not. When a graph G is

a PCG, then there exists at least one tuple (T,w, dmin, dmax) such that G =

PCG(T,w, dmin, dmax), in which case the tuple will be an evidence for G to be

PCG. Thus, to show if a graph G is not a PCG, we need to prove that there does

not exist a tuple (T,w, dmin, dmax) such that G = PCG(T,w, dmin, dmax), where

there is an infinite search space of an edge weight function w and two reals dmin

and dmax. Therefore it is a challenging task to construct an evidence with a finite

size to verify that G is not a PCG.

The aim of this chapter is three-fold. First, we proposed two LP formulations

to solve the PCTCP. To see if a given graph G with n vertices is a PCG or not, we

try to construct a tuple (T,w, dmin, dmax) such that G = PCG(T,w, dmin, dmax).

For this, we fix a tuple (G,T, σ, λ) of a tree T , a bijection σ between the vertices

of G and the leaves of T , and a coloring λ on the set of non-adjacent vertex

pairs in G to a color set {0, 1}, where each non-adjacent vertex pair {u, v} in G

colored with λ(uv) = 0 (resp., λ(uv) = 1) is restricted to have a distance between

the corresponding leaves σ(u) and σ(v) in T smaller than dmin (resp., larger

than dmax). For each tuple (G,T, σ, λ), we formulate a linear programming (LP)

formulation, LP(G,T, σ, λ) with m+ 2 variables, where m is the number of edges

in T , and O(n2) constraints such that LP(G,T, σ, λ) is feasible if and only if:

(i) There exists a weight function w and two real numbers dmin, dmax ∈ R+ such

that for each edge uv in G it holds that the distance between σ(u) and σ(v)

in T is in the closed interval [dmin, dmax]; and

(ii) For each pair u, v of non-adjacent vertices in G it holds that the distance

between σ(u) and σ(v) in T is strictly less than dmin if λ(uv) = 0 and strictly

greater than dmax otherwise (λ(uv) = 1).

41



42 Chapter 4. THEORETICAL RESULTS RELATED TO PCGS

Instead of searching for infinitely many reals w, dmin, and dmax until G =

PCG(T,w, dmin, dmax) holds, it suffices to solve this single LP(G,T, σ, λ). Note

that there is no such set of reals w, dmin, and dmax if LP(G,T, σ, λ) is infeasible.

However, due to numerical errors, the infeasibility of LP(G,T, σ, λ) cannot be

directly employed as an evidence for NPCGs. For this, we propose another LP

formulation, DLP(G,T, σ, λ) with O(n2) variables and m+3 constraints such that

DLP(G,T, σ, λ) is feasible if and only if the LP(G,T, σ, λ) is infeasible. Thus the

solution to a feasible DLP(G,T, σ, λ) can play as a role of an evidence of NPCGs.

Second, we propose a sufficient condition for a graph G to be a PCG of a given

witness tree T by using a new integer linear programming (ILP) formulation.

Third, we study and characterize all tuples (G,T, σ, λ) for n = 4 for which

LP(G,T, σ, λ) is infeasible. Based on these theoretical results, we propose a

method to enumerate PCGs with a given number of vertices in Chapter 5.

The rest of the chapter is organized as follows: Section 4.2 reviews some no-

tions related to graph theory and results related to PCGs. Section 4.3 describes

the LP formulations to solve the PCTCP. Section 4.4 explains a sufficient con-

dition for a graph to be PCG. We characterize tuples (G,T, σ, λ) for n = 4 in

Section 4.5. Section 4.6 makes some concluding remarks.

4.2 Preliminaries

This section introduces some basic notions related to graph theory and reviews

some known results on PCGs.

4.2.1 Basic Notions

Let R and R+ denote the sets of all real numbers and non-negative real numbers,

respectively.

Let A be a non-empty finite set and h be an integer with 0 ≤ h ≤ |A|. Let
(
A
h

)
denote the family of all subsets S ⊆ A with |S| = h. For a given subset S ⊆ A

and a function f : A → R, let f |S : S → R denote the restriction of f on S and

R(f, S) denote the range of the function f over S, i.e., R(f, S) = {f(s) | s ∈ S}.
For a non-negative integer k ≤ |A| − 1 and a set K of k distinct integers, a

function λ : A → K is called a k-coloring of A, and let Λk(A) denote the set of

all k-colorings of A.

Throughout Chapter 4 and 5, the term graph stands for a simple undirected

graph. Let G be a graph. An edge joining two vertices u and v in G is denoted by

uv or vu, where uv = vu. The vertex and edge sets of G are denoted by V (G) and

E(G), respectively, and the set of all unordered pairs of non-adjacent vertices in
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t7
t6

t5

t3
t2t1

t8

t4

(a)

t7
t6

t5

t3
t2t1

(b)

Figure 4.1. An example of tree contraction: (a) A tree T with V (T ) = {ti |
1 ≤ i ≤ 8} and E(T ) = {t1t6, t2t6, t3t7, t4t8, t5t8, t6t7, t7t8}; and (b) The tree

contraction T 〈X〉 of T due to X = {t1, t2, t3, t5}.

G is denoted by E(G). For a vertex v in G, a vertex in G adjacent to v is called

a neighbor of v in G, the set of all neighbors of v in G is denoted by NG(v), and

the degree degG(v) of v in G is defined to be |NG(v)|. A pair {u, v} ∈ E(G) is

called false twins in G if NG(v) = NG(u). For a subset X ⊆ V (G), the subgraph

G[X] induced by X is defined to be the subgraph H of G such that V (H) = X

and E(H) = {uv ∈ E(G) | u, v ∈ X}.
Let T be a tree. A vertex of degree one in T is called a leaf in T , and let

L(T ) denote the set of all leaves in T . For a subset X ⊆ L(T ), we define the tree

contraction T 〈X〉 of T due to X to be the tree T ′ such that L(T ′) = X obtained

from T by

(i) removing vertices not contained in any path connecting two vertices in

X; and

(ii) regarding the two edges incident to each vertex of degree 2 as a single edge.

Fig. 4.1 illustrates an example of tree contraction. Let w be a function w :

E(T ) → R+, where we denote w(e) or w(uv) for each edge e = uv ∈ E(T )

by w(u, v) for notational convenience. For any two vertices u, v ∈ V (T ), let

ET (u, v) denote the set of all edges in the path between them in T , and define

the edge-distance (resp., distance) δT (u, v) (resp., dT,w(u, v)) between them to be

|ET (u, v)| (resp.,
∑

e∈ET (u,v)w(e)). Let dmin and dmax denote non-negative reals.

The graph H with V (H) = L(T ) and E(H) = {uv | dmin ≤ dT,w(u, v) ≤ dmax} is

denoted by PCG(T,w, dmin, dmax). A graph G is called a pairwise compatibility

graph (PCG for short) if G is isomorphic to PCG(T,w, dmin, dmax) for some tree T ,

weight w : L(T )→ R+ and reals dmin and dmax, where T is called a witness tree of

G, and we denote by G =PCG(T,w, dmin, dmax) when G is PCG(T,w, dmin, dmax).

We call a NPCG a minimal non-pairwise compatibility graph (MNPCG for short)

if every proper induced subgraph of it is a PCG. We call a tree binary if each

non-leaf vertex is of degree 3. Note that any binary tree with n leaves contains

exactly 2n− 3 edges. It is known that a witness of any PCG G can be chosen as
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a binary tree (see Lemma 4.14 in the next section). For an integer n ≥ 1, let Tn
denote a maximal set of binary trees with n leaves no two of which are mutually

isomorphic. Note that if G = PCG(T,w, dmin, dmax), then we can also choose w,

dmin and dmax so that 0 < dmin < dmax and {0, dmin, dmax} ∩ {dT,w(u, v) | u, v ∈
L(T ), u 6= v} = ∅.

(c) (d)

(a) (b)

v5

v1 v2

v3 v4

v5

v1 v2

v3 v4

t7

t6
t8

σ(v5)

σ(v1) σ(v2)

σ(v3) σ(v4)

t7

t6

σ(v5)

σ(v1)

σ(v3) σ(v4)

Figure 4.2. Examples of a configuration and a subconfiguration: (a) A

graph G with V (G) = {vi | 1 ≤ i ≤ 5} and E(G) = {v1v2, v1v4, v1v5, v2v3,

v2v5, v3v4} represented by thick solid lines; (b) The set E(G) in G with a

2-coloring λ such that R(λ, {v1v3, v4v5}) = {0} represented by dashed lines,

and R(λ, {v2v4, v3v5}) = {1} represented by doted lines; (c) The configuration

(G,T, σ, λ), where T is the tree given in Fig. 4.1(a) and σ is defined as σ(v1) = t2,

σ(v2) = t4, σ(v3) = t1, σ(v4) = t5, σ(v5) = t3; and (d) The subconfiguration

(G[X], T 〈R(σ,X)〉, σ|X , λ|E(G[X])) of (G,T, σ, λ) induced by X = {v1, v3, v4, v5}.

Let n ≥ 1 be an integer. Let Gn denote a maximal set of graphs with n vertices

no two of which are mutually isomorphic. Let G ∈ Gn and T ∈ Tn. Let Σ(G,T )

denote the set of all bijections σ : V (G)→ L(T ). Recall that Λ2(E(G)) denotes

the set of all 2-colorings λ : E(G)→ K of E(G), where K = {0, 1}. As observed

in the previous section, a bijection σ : V (G)→ L(T ) determines a correspondence
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between V (G) and L(T ) and a 2-coloring λ ∈ Λ2(E(G)) introduces a restriction

such that dT,w(σ(u), σ(v)) < dmin (resp., dT,w(σ(u), σ(v)) > dmax) for each pair

uv ∈ E(G) with λ(uv) = 0 (resp., λ(uv) = 1). We call a tuple (G,T, σ, λ) with

G ∈ Gn, T ∈ Tn, σ ∈ Σ(G,T ) and λ ∈ Λ2(E(G)) a configuration. There are

n!2|E(G)| configurations (G,T, σ, λ) for a given pair of G ∈ Gn and T ∈ Tn. A

configuration (G,T, σ, λ) is called plausible if G = PCG(T,w, dmin, dmax) for some

weight w : E(T ) → R+, and reals dmin, dmax ∈ R+ such that dT,w(σ(u), σ(v)) <

dmin (resp., dT,w(σ(u), σ(v)) > dmax) holds for each pair uv ∈ E(G) with λ(uv) =

0 (resp., λ(uv) = 1). Note that a graph G is a PCG if and only if there is a

plausible configuration (G,T, σ, λ) for some tree T , bijection σ and 2-coloring λ.

A subconfiguration of a configuration (G,T, σ, λ) induced by a subset X ( V (G)

is defined to be the configuration (G[X], T 〈R(σ,X)〉, σ|X , λ|E(G[X])). Fig. 4.2

illustrates examples of a configuration and a subconfiguration. An implausible

configuration with no implausible proper subconfiguration is called a minimal

implausible configuration (MIC for short). In particular, we denote an MIC with

k ≥ 4 vertices by MICk. Note that every implausible configuration with four

vertices is an MIC, since we easily see that all configurations with three vertices

are plausible. A configuration (G,T, σ, λ) with no MIC with four vertices is called

an MIC4-free configuration.

Let n ≥ 1 be an integer, G ∈ Gn and T ∈ Tn. Two bijections σ1, σ2 ∈
Σ(G,T ) are called equivalent if there exists an automorphism π of T such that

for vertices u, v, p, q ∈ V (G) with σ1(u) = π(σ2(p)) and σ1(v) = π(σ2(q)) it

holds that uv ∈ E(G) if and only if pq ∈ E(G). Let Σ∗(G,T ) denote a maximal

subset of bijections in Σ(G,T ) no two of which are mutually equivalent. Next

let σ ∈ Σ(G,T ) and λ1, λ2 ∈ Λ2(E(G)). We call 2-colorings λ1 and λ2 equivalent

(with respect to σ) if there exits an automorphism π of T such that for vertices

u, v, p, q ∈ V (G) with σ(u) = π(σ(p)) and σ(v) = π(σ(q)) it holds that uv ∈ E(G)

if and only if pq ∈ E(G) and λ1(uv) = λ2(pq). We call two configurations

(G,T, σ, λ1) and (G,T, σ, λ2) isomorphic if λ1 and λ2 are equivalent with respect

to σ. Let Λ∗2(G,T, σ) denote a maximal set of 2-colorings in Λ2(E(G)) no two of

which are equivalent with respect to σ. Observe that for graph G, tree T , any

two equivalent bijections σ1, σ2 ∈ Σ(G,T ) and 2-coloring λ1 ∈ Λ2(E(G)), the

configuration (G,T, σ1, λ1) is plausible if and only if there exists a 2-coloring λ2 ∈
Λ2(E(G)) such that the configuration (G,T, σ2, λ2) is plausible. Similarly, for

any two equivalent colorings λ1, λ2 ∈ Λ2(G,T, σ), the configuration (G,T, σ, λ1)

is plausible if and only if the configuration (G,T, σ, λ2) is plausible. Therefore to

verify if G is a PCG due to T it suffices to test the plausibility of configurations

(G,T, σ, λ) with σ ∈ Σ∗(G,T ) and λ ∈ Λ∗2(G,T, σ).
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4.2.2 Some Known Results on PCGs

It is known that any induced subgraph of a PCG is also a PCG [23]. In other

words, any graph that contains an NPCG as a subgraph is not a PCG.

Lemma 4.13. Any graph that contains an NPCG as an induced subgraph is an

NPCG.

To find a witness tree of a PCG, we only need to search for binary trees based

on the next observation reported by Calamoneri et al. [20, 22].

Lemma 4.14. Every PCG with n ≥ 1 vertices has a witness tree in the set Tn
of binary trees.

The next lemma due to Calamoneri et al. [23] states a connectivity property

of PCGs.

Lemma 4.15. A graph is a PCG if each of its connected components is a PCG.

Xiao and Nagamochi [65] gave a stronger version of Lemma 4.15 by charac-

terizing PCGs via biconnected components.

Lemma 4.16. A graph is a PCG if and only if each of its biconnected components

is a PCG.

A characterization of PCGs in terms of false twins is given by Calamoneri et

al. [22].

Lemma 4.17. A graph G with false twins u and v is a PCG if and only if the

induced graph G[V (G) \ {u}] is a PCG.

Theorem 4.5 ([32, Theorem 2.8]). Let n and m be positive integers. For an

m × n matrix A ∈ Rm×n and a column vector b ∈ Rm, let x ∈ Rn and y ∈ Rm

be variables. Then exactly one of the following linear systems is feasible

(i) Ax ≤ b; and

(ii) ATy ≥ 0, bTy < 0.

4.3 LPs for Testing Plausibility of Configurations

Let n ≥ 1 be an integer, and (G,T, σ, λ) be a configuration with G ∈ Gn,

T ∈ Tn, σ ∈ Σ(G,T ) and λ ∈ Λ2(G,T, σ). Recall that (G,T, σ, λ) is plau-

sible if and only if there are a weight function w : E(T ) → R+ and reals

dmin, dmax ∈ R+ such that G = PCG(T,w, dmin, dmax) and dT,w(σ(u), σ(v)) <
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dmin (resp., dT,w(σ(u), σ(v)) > dmax) holds for each pair uv ∈ E(G) with λ(uv) =

0 (resp., λ(uv) = 1), where with some adequate scaling on reals we can as-

sume that min{dmin − dT,w(σ(u), σ(v)) | uv ∈ E(G), λ(uv) = 0} ≥ 1 and

min{dT,w(σ(u), σ(v)) − dmax | uv ∈ E(G), λ(uv) = 1} ≥ 1. Then the condition

on plausibility can be expressed as a linear system by regarding w(e), e ∈ E(T ),

dmin and dmax as non-negative variables. Observe that the next LP, LP(G,T, σ, λ)

without an objective function is feasible if and only if (G,T, σ, λ) is plausible.

(a) Linear programming formulation LP(G,T, σ, λ)

variables

w(e) ≥ 0, ∀e ∈ E(T ),

dmin, dmax ≥ 0,

subject to

dmin − dmax ≤ 0, (4.3.1)∑
e∈ET (σ(u),σ(v))

w(e)− dmax ≤ 0, ∀uv ∈ E(G), (4.3.2)

−
∑

e∈ET (σ(u),σ(v))

w(e) + dmin ≤ 0, ∀uv ∈ E(G), (4.3.3)

∑
e∈ET (σ(u),σ(v))

w(e)− dmin ≤ −1, ∀uv ∈ E(G), λ(uv) = 0, (4.3.4)

−
∑

e∈ET (σ(u),σ(v))

w(e) + dmax ≤ −1, ∀uv ∈ E(G), λ(uv) = 1. (4.3.5)

When the LP(G,T, σ, λ) is feasible, any feasible solution to the LP will be an evi-

dence based on which we can easily see that the graph G is a PCG by computing

PCG(T,w, dmin, dmax). However for an NPCG G, no configuration (G,T, σ, λ) is

plausible and the LP(G,T, σ, λ) for any configuration with G is infeasible. To get

an evidence to an NPCG G, we introduce another LP formulation DLP(G,T, σ, λ)

so that it is feasible if and only if (G,T, σ, λ) is implausible. Then we can con-

struct an evidence to an NPCG G by collecting a feasible solution to the feasible

DLP(G,T, σ, λ) over all configurations (G,T, σ, λ), T ∈ Tn, σ ∈ Σ(G,T ) and

λ ∈ Λ2(G,T, σ). The DLP(G,T, σ, λ) is formulated based on the dual of the

LP(G,T, σ, λ) as follows. The feasibility of this LP is discussed in Theorem 4.6.

(b) Linear programming formulation DLP(G,T, σ, λ)
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variables

t ≥ 0,

yuv, zuv ≥ 0, ∀uv ∈ E(G),

y−uv ≥ 0, ∀uv ∈ E(G), λ(uv) = 0,

y+
uv ≥ 0, ∀uv ∈ E(G), λ(uv) = 1,

subject to∑
uv∈E(G):

e∈ET (σ(u),σ(v))

(yuv−zuv)+
∑

uv∈E(G):
e∈ET (σ(u),σ(v)),λ(uv)=0

y−uv−

∑
uv∈E(G):

∀e∈ET (σ(u),σ(v)),λ(uv)=1

y+
uv ≥ 0, e∈E(T ), (4.3.6)

t+
∑

uv∈E(G)

zuv −
∑

uv∈E(G):λ(uv)=0

y−uv ≥ 0, (4.3.7)

− t−
∑

uv∈E(G)

yuv +
∑

uv∈E(G):λ(uv)=1

y+
uv ≥ 0, (4.3.8)

−
∑

uv∈E(G):λ(uv)=0

y−uv −
∑

uv∈E(G):λ(uv)=1

y+
uv ≤ −1. (4.3.9)

Note that testing if x < a holds precisely in a numerical computation with any

precision tolerance is not possible. It is therefore the LHSs of (4.3.4), (4.3.5) and

(4.3.9) are set to be at most −1 which should originally be strictly less than zero.

The LP(G,T, σ, λ) has |E(T )|+ 2 variables and O(|L(T )|2) constraints, while

the DLP(G,T, σ, λ) has O(|L(T )|2) variables and |E(T )|+ 3 constraints.

Theorem 4.6. For a given configuration (G,T, σ, λ), exactly one of the linear

programs LP(G,T, σ, λ) and DLP(G,T, σ, λ) is feasible.

Proof. We apply Theorem 4.5 as follows. Observe that the linear system LP(G,T,

σ, λ) with Eqs. (4.3.1) - (4.3.5) can be expressed as the following form with a

{0,±1}-coefficient matrix A, a {0,−1}-vector b of coefficients and a vector x of

non-negative variables:

Ax ≤ b. (4.3.10)

By Theorem 4.5, it follows that either the linear system in Eq. (4.3.10) is feasible

or the next linear system is feasible

ATy ≥ 0, (4.3.11)

bTy < 0. (4.3.12)
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It can be easily verified that Eqs. (4.3.6) - (4.3.8) in DLP(G,T, σ, λ) are expressed

as Eq. (4.3.11) and Eq. (4.3.9) in DLP(G,T, σ, λ) is expressed as bTy ≤ −1. To

prove the theorem, it suffices to show that the feasibility of the linear system

with Eqs. (4.3.11) and (4.3.12) is equivalent to that of DLP(G,T, σ, λ). We can

modify bTy < 0 into bTy ≤ −1 without changing the feasibility. This is because

for a feasible solution y to Eqs. (4.3.11) and (4.3.12) with bTy = ε ∈ (−1, 0), the

new vector y*= y/(−ε) is also feasible to Eqs. (4.3.11) and bTy ≤ −1.

The LP formulation LP(G,T, σ, λ) (resp., DLP(G,T, σ, λ)) outputs a proof

for the plausibility (resp., implausibility) of the configuration (G,T, σ, λ) if it is

feasible.

4.3.1 Comparison of the Proposed LPs

Calamoneri et al. [23] also introduced an LP formulation that confirms if a given

graph is a PCG or not. The formulations LP(G,T, σ, λ) and DLP(G,T, σ, λ) differ

from the LP formulation due to Calamoneri et al. [23] in the following points:

(1) The input of the LP by Calamoneri et al. [23] is a graph and a tree, while

the input of our LPs is a graph, a tree, a bijection and a 2-coloring.

(2) The feasibility of the LP formulation introduced by Calamoneri et al. [23]

implies that the given graph is a PCG. On the other hand, the feasibility of

the LP(G,T, σ, λ) implies that the configuration (G,T, σ, λ) is plausible, and

hence the graph G is a PCG. However, the infeasibility of the LP introduced

by Calamoneri et al. [23] implies that the given graph is not a PCG. The

infeasibility of LP(G,T, σ, λ) implies that the configuration (G,T, σ, λ) is

implausible, and therefore the graph G is not a PCG due to T with bijection

σ and 2-coloring λ. Additionally, DLP(G,T, σ, λ) is formulated such that it is

feasible if and only if LP(G,T, σ, λ) is infeasible based on Gale’s Theorem 4.5.

(3) If a graph G is a PCG, then the LP formulation by Calamoneri et al. [23]

is feasible and outputs a weight function w, two reals dmin and dmax and a

bijection σ ∈ Σ(G,T ) such that G = PCG(T,w, dmin, dmax). If LP(G,T, σ, λ)

is feasible then a solution w, dmin, dmax to LP(G,T, σ, λ) is such that the

configuration (G,T, σ, λ) is plausible.

(4) For a fixed graph G with n vertices and tree T with n leaves, the LP intro-

duced by Calamoneri et al. [23] has O(n2) + |E(T )|+ 2 variables and O(n4)

constraints. On the other hand, the LP(G,T, σ, λ) (resp. DLP(G,T, σ, λ))

has |E(T )| + 2 (resp. O(n2)) variables and O(n2) (resp. |E(T )| + 3) con-

straints.
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4.4 A Sufficient PCG Condition

Let G ∈ Gn and T ∈ Tn. This section formulates an ILP, ILPsuff that can

be used as a sufficient condition for G to be a PCG with witness tree T . In

other words, the task is to find a bijection σ : V (G) → L(T ), a weight function

w : E(T )→ R+ and reals dmin and dmax such that σ is an isomorphism between

G and PCG(T,w, dmin, dmax). However, to formulate this as an ILP, we fix an

integer α ≥ 1 and restrict the search domains for variables w(e), e ∈ E(T ), dmin

and dmax to non-negative reals bounded from above by α. As in the LP(G,T, σ, λ),

we first prepare variables for a weight function w and reals dmin and dmax, where

w(e) ∈ [0, α], e ∈ E(T ) and two numbers dmin, dmax ∈ [1, α]. Also we need to

introduce variables for a bijection σ ∈ Σ(G,T ) and a 2-coloring λ ∈ Λ2(G,T, σ)

and we use binary variables λ(e) ∈ {0, 1}, e ∈ E(G) to express a 2-coloring

λ : E(G) → {0, 1}. Since G may not be a PCG with witness tree T , our ILP

formulation must be able to express this case too. For this, we introduce a dummy

leaf q to T , consider an extended mapping σ : V (G)→ L(T ) ∪ {q}, and prepare

binary variables σus ∈ {0, 1}, u ∈ V (G) and s ∈ L(T ) ∪ {q}. We formulate an

ILP so that σ gives a bijection from V (G) to L(T ) if and only if G is a PCG with

witness tree T as follows:

(i) σ maps no two vertices to the same leaves in L(T ), whereas two or more

vertices may be mapped to the dummy leaf q;

(ii) For each edge uv in G such that {σ(u), σ(v)} ⊆ L(T ), it holds that dT,w(σ(u),

σ(v)) ∈ [dmin, dmax];

(iii) For each pair uv ∈ E(G) such that {σ(u), σ(v)} ⊆ L(T ), it holds that

dT,w(σ(u), σ(v)) < dmin (resp., dT,w(σ(u), σ(v)) > dmax) if λ(uv) = 0 (resp.,

λ(uv) = 1); and

(iv) Introduce an objective function that minimizes the number of vertices in

V (G) that are mapped by σ to the dummy leaf q. The optimal value becomes

zero if and only if G is a PCG with witness tree T .

ILPsuff(G,T, α) is formulated below.
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Integer linear programming formulation ILPsuff(G,T, α)

variables

w(e) ≥ 0, ∀e ∈ E(T ),

dmin, dmax ≥ 0,

σus ∈ {0, 1}, ∀u ∈ V (G), s ∈ L(T ) ∪ {q},

λ(e) ∈ {0, 1}, ∀e ∈ E(G),

min
∑

u∈V (G)

σuq, (4.4.13)

subject to

1 ≤ dmin ≤ dmax ≤ α, (4.4.14)

w(e) ≤ α, ∀e ∈ E(T ),

(4.4.15)∑
e∈ET (s,t)

w(e) ≥ dmin − (2−σus−σvt)nα, ∀uv ∈ E(G), s, t ∈ L(T ),

(4.4.16)∑
e∈ET (s,t)

w(e) ≤ dmax + (2−σus−σvt)nα, ∀uv ∈ E(G), s, t ∈ L(T ),

(4.4.17)∑
e∈ET (s,t)

w(e) ≤ dmin−1 + (2−σus−σvt+λ(uv))nα, ∀uv ∈ E(G), s, t ∈ L(T ),

(4.4.18)

∑
e∈ET (s,t)

w(e) ≥ dmax+1− (3−σus−σvt−λ(uv))nα, ∀uv ∈ E(G), s, t ∈ L(T ),

(4.4.19)∑
s∈L(T )∪{q}

σvs = 1,∀v ∈ V (G), (4.4.20)

∑
v∈V

σvs ≤ 1, ∀s ∈ L(T ). (4.4.21)

To avoid a possible numerical error in solving ILPs, a margin of 1 is introduced

in conditions (4.4.18) and (4.4.19).

For a graphG with n vertices and a binary tree T with n leaves, ILPsuff(G,T, α)

has O(n2) binary variables, O(n) continuous variables, and O(n4) constraints.

Lemma 4.18. For any two positive integers n and α, a graph G ∈ Gn and a tree

T ∈ Tn, the following statements hold
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(i) ILPsuff(G,T, α) is feasible.

(ii) If the optimal value to ILPsuff(G,T, α) is zero, then G is a PCG with a

witness tree T .

Proof. (i) Let the variables of ILPsuff(G,T, α) take values such that dmin = dmax =

1 and σvq = 1 (v ∈ V (G)) and all the other variables are zero. We see that

Eqs. (4.4.14) and (4.4.15) are satisfied since α ≥ 1. Since σvs = 1 if and only if

s = q, Eqs. (4.4.20) and (4.4.21) are satisfied. In each of Eqs. (4.4.16) - (4.4.19),

the left-hand side is zero, and σus = σvt = λ(uv) = 0 and n, α ≥ 1 mean that

the last term of the right-hand side is at most −2 (≥ −nα) for Eqs. (4.4.16)

and (4.4.18) (resp., at least 2 (≤ nα) for Eqs. (4.4.17) and (4.4.19)). Since

dmin = dmax = 1, we see that Eqs. (4.4.16) to (4.4.19) are satisfied.

(ii) Suppose that the objective value to ILPsuff(G,T, α) is zero; i.e., σuq = 0 for

all vertices u ∈ V (G). Then by Eq. (4.4.20), each u ∈ V (G) has exactly one leaf

s ∈ L(T ) such that σuv = 1. Further, Eq. (4.4.21) implies that the mapping σ is

an injection to the set L(T ). Thus, by using the fact that |V (G)| = |L(T )| it holds

that σ is a bijection between V (G) and L(T ). Let {u, v} be a pair of vertices

in G, which has a unique pair of leaves s, t ∈ L(T ) such that σus = σvt = 1

due to the bijection σ. When uv ∈ E(G), Eqs. (4.4.16) and (4.4.17) imply

dT,w(s, t) ≥ dmin and dT,w(s, t) ≤ dmax, respectively. When uv ∈ E(G) and

λ(uv) = 0 (resp., uv ∈ E(G) and λ(uv) = 1), Eq. (4.4.18) (resp., Eq. (4.4.19))

indicates dT,w(s, t) ≤ dmin − 1 < dmin (resp., dT,w(s, t) ≥ dmax + 1 > dmax).

Therefore we see that G is isomorphic to PCG(T,w, dmin, dmax), as required.

It should be noted that, for a triplet (G,T, α) if the objective value to ILPsuff(G,

T, α) is not equal to zero, then it does not necessarily imply that G is not a PCG.

This is because of the restriction on the search domains of dmin, dmax ∈ [1, α] and

w(e) ∈ [0, α] for each e ∈ E(T ), while G can be a PCG with T as its witness tree

for other values dmin, dmax and w from the original domain [0,∞).

4.5 Characterization of 2-colorings of MIC4s

By the known fact that a graph is a PCG if and only if each of its induced sub-

graphs is a PCG [10], it follows that a configuration is plausible if and only if all of

its subconfigurations are plausible. Thus, the absence of MIC4 subconfigurations

is a necessary condition for a configuration to be plausible. Therefore, we charac-

terize MIC4 configurations so that we can efficiently conclude if a configuration

is MIC4-free or not in our method to enumerate PCGs in Chapter 5.

We computed all non-isomorphic MICs with n = 4, and we have the following

result.
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Lemma 4.19. There are exactly 59 non-isomorphic MICs with four vertices.

Let T ∈ T4. There are two vertices namely s and t in V (T ) which are of

degree 3. Let a and b (resp., c and d) denote the children of the vertex s (resp., t).

With these notations, T is illustrated in Fig. 4.3, and Fig. 4.4 illustrates a maximal

set of 59 MICs. We shows that all MICs with n = 4 can be characterized

s

a

t

b c d

Figure 4.3. The binary tree T with V (T ) = {a, b, c, d, s, t}, L(T ) = {a, b, c, d}
and E(T ) = {as, bs, ct, dt, st}.

compactly with a set of three inequalities on 3-colorings ρ, where a pair of a

graph G and a 2-coloring λ : E(G) → {0, 1} is encoded into a 3-coloring ρ :(
V (G)

2

)
→ {1, 2, 3} so that

ρ(uv) := 2, uv ∈ E(G) and ρ(uv) := 2λ(uv) + 1, uv ∈ E(G).

Just by checking the inequalities, we will easily see if a given configuration is

MIC4-free or not without referring to the list of 59 MICs. In fact, the new char-

acterization can be obtained by inspecting the structure of each of the 59 MICs,

but we here give a direct proof to the characterization based on the definition of

MICs.

For a pair δ = (δ1, δ2) of reals 0 ≤ δ1 ≤ δ2, we define a function fδ : R →
{1, 2, 3} so that

fδ(x) ,


1 if x < δ1,

2 if δ1 ≤ x ≤ δ2,

3 if δ2 < x.

Let T ∈ T4 denote a binary tree with four leaves, where we denote V (T ) =

{a, b, c, d, s, t}, L(T ) = {a, b, c, d} and E(T ) = {as, bs, ct, dt, st}. Let ρ :
(
L(T )

2

)
→

{1, 2, 3} be a 3-coloring, where we denote ρ({u, v}) for u, v ∈ {a, b, c, d} simply

by ρuv. We call a pair (w, δ) of a weight function w : E(T )→ R+ and a pair δ =

(δ1, δ2) of reals 0 ≤ δ1 ≤ δ2 admissible with respect to ρ if for each {u, v} ∈
(
L(T )

2

)
it holds that fδ(dT,w(u, v)) = ρuv. For any admissible pair (w, δ) with respect to ρ,

G = PCG(T,w, δ1, δ2) is a PCG such that ρ(uv) = 2 for each pair uv ∈ E(G) and

ρ(uv) = 1 (resp., ρ(uv) = 3) for each pair uv ∈ E(G) with dT,w(u, v) < δ1 (resp.,

dT,w(u, v) > δ2). On the other hand, evey PCG G = PCG(T,w, dmin, dmax) has
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Figure 4.4. A maximal set of 59 non-isomorphic MICs with four vertices.

Each graph represents an MIC (G,T, I, λ) with four vertices, where we consider

V (G) = L(T ), the heavy lines correspond to the edges in the graph G, while the

heavy dashed and doted lines correspond to the pair of non-adjacent vertices uv

in the graph G such that λ(uv) = 0 and λ(uv) = 1, respectively.
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a pair (w, δ = (dmin, dmax)) admissible with respect to a 3-coloring ρ such that

ρ(uv) = 2, uv ∈ E(G) and ρ(uv) = 1 (resp., ρ(uv) = 3) for each pair uv ∈ E(G)

with dT,w(u, v) < dmin (resp., dT,w(u, v) > dmax).

Lemma 4.20. Let T ∈ T4 with V (T ) = {a, b, c, d, s, t}, L(T ) = {a, b, c, d} and

E(T ) = {as, bs, ct, dt, st}, and ρ :
(
L(T )

2

)
→ {1, 2, 3}. Then there are a weight

function w : E(T ) → R+ and a pair δ = (δ1, δ2) of reals 0 < δ1 < δ2 such that

{dT,w(u, v) | {u, v} ∈
(
L(T )

2

)
} ∩ {0, δ1, δ2} = ∅ and (w, δ) is an admissible pair

with respect to ρ if and only if ρ does not satisfy any of Eqs. (4.5.22) - (4.5.24):

|ρab − ρcd|, |ρad − ρbc| ≤ 1, ρab + ρcd − 2 ≥ ρad + ρbc; (4.5.22)

|ρab − ρcd|, |ρac − ρbd| ≤ 1, ρab + ρcd − 2 ≥ ρac + ρbd; (4.5.23)

|ρac − ρbd|, |ρad − ρbc| ≤ 1, |ρac + ρbd − (ρad + ρbc)| ≥ 2. (4.5.24)

Proof. The if-part: Let ρ satisfy one of Eqs. (4.5.22) - (4.5.24). To derive a

contradiction, we assume that there is a pair (w, δ) that satisfies the condition

in the lemma. Define δ0 := 0 and δ3 := δ2 + 3 max{w(e) | e ∈ E(T )}. Note that

δρab−1 < dT,w(a, b) < δρab holds for ρab and δρad−1 < dT,w(a, d) < δρad holds for

ρad. Analogously with ρcd, ρbc, ρac and ρbd.

First consider the case when ρ satisfies Eq. (4.5.22). Note that δρab−1 +

δρcd−1 < dT,w(a, b)+dT,w(c, d) < δρad+δρbc . From this, we see that min{ρab, ρcd} ≤
max{ρad, ρbc} and {ρab−1, ρcd−1} 6= {ρad, ρbc}. This and |ρab−ρcd|, |ρad−ρbc| ≤ 1

mean that ρab + ρcd − 1 ≤ ρad + ρbc. This contradicts ρab + ρcd − 2 ≥ ρad + ρbc.

Next consider the case when ρ satisfies Eq. (4.5.23). This case can be treated

analogously with the above case by exchanging the role of vertices c and d.

Finally, consider the case when ρ satisfies Eq. (4.5.24). It is easy to observe

that δρad−1 + δρbc−1 < dT,w(a, c) + dT,w(b, d) < δρac + δρbd . This implies that

min{ρad, ρbc} ≤ max{ρac, ρbd} and {ρad − 1, ρbc − 1} 6= {ρac, ρbd}, where the

vertices c and d can exchange their role. Thus, it follows from this fact and

|ρac−ρbd|, |ρad−ρbc| ≤ 1 that ρad+ρbc−1 ≤ ρac+ρbd, and ρac+ρbd−1 ≤ ρad+ρbc.

This contradicts |ρac + ρbd − (ρad + ρbc)| ≥ 2, which completes the if-part.

The only if-part: We prove that, for any 3-coloring ρ :
(
L(T )

2

)
→ {1, 2, 3} that

satisfies none of Eqs. (4.5.22) - (4.5.24), an admissible pair (w, δ) can be chosen.

For this, we will distinguish five different types (C1) - (C5) among all such 3-

colorings ρ, define the weight w of T with four parameters α1, α2, α3 and θ,

and show that (w, δ = (δ1, δ2)) becomes admissible with respect to each type of

3-coloring ρ by choosing adequate values to α1, α2, α3, θ, δ1 and δ2.
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s

a

t

b

d

c

w(s,t)=q

w(a,s)=2+(a1–a2–a3)/2 w(d,t)=2+(–a1–a2+a3)/2

w(b,s)=2+(a1+a2+a3)/2w(b,s)=2+(a1+a2+a3)/2

w(c,t)=2+(–a1+a2–a3)/2w(c,t)=2+(–a1+a2–a3)/2w(c,t)=2+(–a1+a2–a3)/2

4+a1
4–a1

4–a2+q

4+a2+q

4+a3+q

4–a3+q

Figure 4.5. Tree T with V (T ) = {a, b, c, d, s, t}, L(T ) = {a, b, c, d} and

E(T ) = {as, bs, ct, dt, st}, and edge weight function w. For each pair of leaves

{i, j} ⊆ L(T ), the distance dT,w(i, j) between i and j is given along the dashed

line between i and j.

Let α1, α2, α3 be distinct non-zero reals such that −2/3 < αi < 2/3, i =

1, 2, 3, and θ be a non-negative real. With these reals, we set a weight function

w : E(T )→ R+ to be

w(a, s) = 2 + (α1 − α2 − α3)/2, w(b, s) = 2 + (α1 + α2 + α3)/2,

w(c, t) = 2 + (−α1 + α2 − α3)/2, w(d, t) = 2 + (−α1 − α2 + α3)/2,

w(s, t) = θ,

from which we see that

dT,w(a, b) = 4 + α1, dT,w(c, d) = 4− α1, dT,w(a, d) = 4− α2 + θ,

dT,w(b, c) = 4 + α2 + θ, dT,w(a, c) = 4 + α3 + θ, dT,w(b, d) = 4− α3 + θ.

(see Fig. 4.5). Denote

d1 = min{dT,w(a, b), dT,w(c, d)}, d′1 = max{dT,w(a, b), dT,w(c, d)},

d2 = min{dT,w(a, d), dT,w(b, c)}, d′2 = max{dT,w(a, d), dT,w(b, c)},

d3 = min{dT,w(a, c), dT,w(b, d)}, d′3 = max{dT,w(a, c), dT,w(b, d)},

where we have {d1, d
′
1} = {4 + α1, 4 − α1}, {di, d′i} = {4 + αi + θ, 4 − αi + θ},

i = 2, 3. For a pair δ = (δ1, δ2), denote

ρi = fδ(di), ρ
′
i = fδ(d

′
i), i = 1, 2, 3. (4.5.25)

The assumption that a given 3-coloring ρ does not satisfy any of Eqs. (4.5.22)

- (4.5.24) can be stated as the following conditions in terms of ρi, ρ
′
i ∈ {1, 2, 3},
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i = 1, 2, 3:

if (ρ1, ρ
′
1), (ρ2, ρ

′
2) 6= (1, 3) then ρ1 + ρ′1 − 1 ≤ ρ2 + ρ′2; (4.5.26)

if (ρ1, ρ
′
1), (ρ3, ρ

′
3) 6= (1, 3) then ρ1 + ρ′1 − 1 ≤ ρ3 + ρ′3; (4.5.27)

if (ρ2, ρ
′
2), (ρ3, ρ

′
3) 6= (1, 3) then |ρ2 + ρ′2 − (ρ3 + ρ′3)| ≤ 1. (4.5.28)

Let ρ = {ρi, ρ′i ∈ {1, 2, 3} | i = 1, 2, 3} be a 3-coloring that satisfies Eqs. (4.5.26) -

(4.5.28). In what follows, we show that for an adequate choice of (α1, α2, α3, θ, δ1,

δ2), the pair (w, δ) becomes admissible (i.e., (w, δ) actually satisfies Eq. (4.5.25)).

To facilitate this, we classify the 3-colorings ρ = {ρi, ρ′i ∈ {1, 2, 3} | i = 1, 2, 3}
that satisfy Eqs. (4.5.26) - (4.5.28) into the following five types (C1) - (C5) of

disjoint sets of 3-colorings.

(C1) (ρi, ρ
′
i) = (ρj , ρ

′
j) = (1, 3) for some two indices i, j ∈ {1, 2, 3}, and (ρk, ρ

′
k) ∈

{(p, q) | 1 ≤ p ≤ q ≤ 3}, for the index k ∈ {1, 2, 3} \ {i, j}. There are six

such possible 3-colorings;

(C2) (ρi, ρ
′
i) = (1, 3) for exactly one index i ∈ {1, 2, 3} and (ρj , ρ

′
j), (ρk, ρ

′
k) ∈

{(p, q) | 1 ≤ p ≤ q ≤ 3} \ {(1, 3)} and |ρj + ρ′j − (ρk + ρ′k)| ≤ 1 for the indices

{j, k} = {1, 2, 3} \ {i}. There are nine 3-colorings of this type;

(C3) (ρ1, ρ
′
1), (ρ2, ρ

′
2), (ρ3, ρ

′
3) ∈ {(p, q) | 1 ≤ p ≤ q ≤ 3} \ {(1, 3)} and |ρi + ρ′i −

(ρj + ρ′j)| ≤ 1 for each pair {i, j} ⊆ {1, 2, 3}. There are 13 such 3-colorings;

(C4) (ρi, ρ
′
i) = (1, 3) holds for exactly one index i ∈ {1, 2, 3}, and the pairs (ρj , ρ

′
j)

and (ρk, ρ
′
k) for the indices {j, k} = {1, 2, 3}\{i} do not satisfy the condition

of (C2); i.e., it holds that |ρj + ρ′j − (ρk + ρ′k)| ≥ 2. Let (ρ2, ρ
′
2) = (1, 3),

where by Eq. (4.5.27) we only need to consider the case ρ1 +ρ′1 +2 ≤ ρ3 +ρ′3.

There are six possible such 3-colorings; and

(C5) (ρi, ρ
′
i) 6= (1, 3) for all indices i ∈ {1, 2, 3}, and the pairs (ρ1, ρ

′
1), (ρ2, ρ

′
2), (ρ3, ρ

′
3)

do not satisfy the condition of (C3); i.e., there exists a pair of indices

{i, j} ⊆ {1, 2, 3} such that |ρi + ρ′i − (ρj + ρ′j)| ≥ 2 holds. Assume that

|ρ1 + ρ′1 − (ρi + ρ′i)| ≥ 2 for some i ∈ {2, 3}, implying ρ1 + ρ′1 + 2 ≤ ρi + ρ′i,

and hence ρ1 +ρ′1 +1 ≤ ρj +ρ′j for j ∈ {2, 3}\{i} by |ρ2 +ρ′2−(ρ3 +ρ′3)| ≤ 1.

There are 13 such 3-colorings.

For a 3-coloring ρ = {ρi, ρ′i ∈ {1, 2, 3} | i = 1, 2, 3} of types (C1) - (C3),

we first set θ = 0, which implies that {d1, d2, d3} = {4 + min{α1,−α1}, 4 +

min{α2,−α2}, 4 + min{α3,−α3}} by the definition of w and di, d
′
i, i = 1, 2, 3.

This means that for any choice of three distinct indices i, j, k ∈ {1, 2, 3}, we can
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attain a total ordering di < dj < dk < d′k < d′j < d′i, as illustrated in Fig. 4.6(a),

by adjusting the values of α1, α2 and α3.

For type (C1), we choose δ = (δ1, δ2) with dj < δ1 < δ2 < d′j so that it holds

(ρi = fδ(di), ρ
′
i = fδ(d

′
i)) = (ρj = fδ(dj), ρ

′
i = fδ(d

′
j)) = (1, 3). Now we see that

six different choices of δ = (δ1, δ2) among all such δ can attain all possible values

(p, q) with 1 ≤ p ≤ q ≤ 3 for (ρk = fδ(dk), ρ
′
k = fδ(d

′
k)), as illustrated in Fig. 4.6.

For type (C2), we choose δ = (δ1, δ2) with δ1 < δ2 such that di < δ1 < dj

or d′j < δ2 < d′i to attain (ρi = fδ(di), ρ
′
i = fδ(d

′
i)) = (1, 3). Then, we see that

nine different choices of δ = (δ1, δ2) can attain all possible values (p, q) with

1 ≤ p ≤ q ≤ 3 for (ρk = fδ(dk), ρ
′
k = fδ(d

′
k)) and (ρj = fδ(dj), ρ

′
j = fδ(d

′
j)) of

type (C2) (see Fig. 4.6).

For type (C3), we choose δ = (δ1, δ2) with δ1 < δ2 such that δ1 < di or

δ2 > d′i to attain (ρi = fδ(di), ρ
′
i = fδ(d

′
i)), (ρk = fδ(dk), ρ

′
k = fδ(d

′
k)) and

(ρj = fδ(dj), ρ
′
j = fδ(d

′
j)). Then we can verify that there are thirteen different

choices of δ = (δ1, δ2) that attain all possible values (p, q) with 1 ≤ p ≤ q ≤ 3

for (ρi = fδ(di), ρ
′
i = fδ(d

′
i)), (ρk = fδ(dk), ρ

′
k = fδ(d

′
k)) and (ρj = fδ(dj), ρ

′
j =

fδ(d
′
j)) of type (C3) (see Fig. 4.6).

Consider the type (C4). By choosing values α1 = 0.1, α2 = 0.6, α3 = 0.2,

and θ = 0.4, We can attain a total ordering d2 < d1 < d′1 < d3 < d′3 < d′2, as

illustrated in Fig. 4.6(b). Then we choose δ = (δ1, δ2) with d2 < δ1 < δ2 < d′2 to

attain (ρ1 = fδ(d1), ρ′1 = fδ(d
′
1)) and (ρ3 = fδ(d3), ρ′3 = fδ(d

′
3)). From Fig. 4.7(a),

we see that six different choices of δ = (δ1, δ2) can attain all such (p, q) with

1 ≤ p ≤ q ≤ 3 for (ρ1 = fδ(d1), ρ′1 = fδ(d
′
1)) and (ρ3 = fδ(d3), ρ′3 = fδ(d

′
3)).

Finally consider the type (C5). By setting values α1 = 0.1, θ = 0.4 and

{α2, α3} = {0.2, 0.3}, we can attain a total ordering d1 < d′1 < di < dj < d′j < d′i.

We choose δ = (δ1, δ2) with δ1 < δ2 such that d′1 < δ1 < di, d1 < δ1 < d′1 or

δ1 < d1 to attain (ρi = fδ(di), ρ
′
i = fδ(d

′
i)) and (ρj = fδ(dj), ρ

′
j = fδ(d

′
j)). From

Fig. 4.7(b), we see that thirteen different choices of δ = (δ1, δ2) can attain (p, q)

with 1 ≤ p ≤ q ≤ 3 for (ρi = fδ(di), ρ
′
i = fδ(d

′
i)) and (ρj = fδ(dj), ρ

′
j = fδ(d

′
j)).

Hence for each 3-coloring ρ = {ρi, ρ′i ∈ {1, 2, 3} | i = 1, 2, 3} that satisfies

Eqs. (4.5.26) - (4.5.28) we have demonstrated that a weight function w and a pair

of non-negative real values δ = (δ1, δ2) exist such that Eq. (4.5.25) is satisfied,

which completes the proof.
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Figure 4.6. An illustration of possible choices for δ = (δ1, δ2) over the interval

[0,∞) that can attain all possible values for ρ for each of the types (C1) to (C3).

Each such δ = (δ1, δ2) is depicted as a line segment with left and right arrowheads

joining points δ1 and δ2, with the respective value of ρ given as a 6-tuple on the

left-hand side, subdivided by type (C1) to (C3). It is taken without loss of

generality that di < d′i < dj < d′j < dk < d′k.
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Figure 4.7. An illustration of possible choices for δ that can attain all possible

values of ρ for each of types (C4) and (C5) not already included in types (C1)-

(C3). Each such δ = (δ1, δ2) is depicted as a line segment with left and right

arrowheads joining points δ1 and δ2. For each choice of δ the resulting assignment

of ρ is given as a 6-tuple on the left-hand side. (a) Possible choices for δ for

type (C4); (b) Possible choices for δ for type (C5).

We remark that Lemma 4.19 can be deduced from Lemma 4.20 by doing some

case analysis.
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4.6 Concluding Remarks

For a given configuration, we proposed two LP formulations exactly one of them is

feasible to confirm if a given graph is a PCG or not due to the given configuration.

We proposed a sufficient condition to efficiently test if a given graph is PCG by

using an ILP formulation. The aim of this ILP formulation is to construct a

plausible configuration and weight bounded above by a given positive integer. We

computed all MICs with four vertices and found that there are exactly 59 MIC4s.

Furthermore, we gave a characterization of MIC4 configurations in terms of a

system of linear equations which can be used to efficiently test if a configuration

is an MIC4-free.

We have proposed a sufficient condition expressed as the optimal value of the

objective function of a certain ILP for a graph G to be a PCG with a witness tree

T . If the sufficient condition is satisfied, this eliminates the need to further check

all possible exponentially many configurations for the graph G and the tree T .

However, a negative answer is inconclusive, and therefore it would be of interest

to derive an efficiently verifiable necessary and sufficient condition that G is a

PCG with a witness tree T .

Another interesting direction for future research is to characterize MICs on

k ≥ 5 vertices, and use them to test if a given configuration is an MICk-free

configuration.





5 A Method to Enumerate

Pairwise Compatibility Graphs

5.1 Introduction

A graph is called a pairwise compatibility graph (PCG) if there exists an edge-

weighted tree and a one-to-one correspondence between the leaves of the tree

and the vertices of the graph, such that there is an edge between two vertices

in the graph if and only if the distance between their corresponding vertices in

the tree is within a given interval. Recall that for a graph with n ≥ 1 vertices,

a configuration is defined to be a tuple that consists of the graph, a tree with

n leaves, a correspondence between the vertices in the graph and the leaves in

the tree, and a bi-partition of all pairs of non-adjacent vertices in the graph. A

configuration is plausible if there exist a weight function and a closed interval

such that the tree in the configuration is a witness of the graph, and one bi-

partition class contains the pairs of non-adjacent vertices in the graph whose

distance in the tree is to the left of the interval, and the other bi-partition class

to the right. Observe that to show that a graph with n ≥ 1 vertices is not a PCG

it is necessary to exclude all configurations with the graph and real valued weight

functions. This leads to the following three difficulties in enumerating all PCGs

with a given number of vertices:

(i) Large number of configurations: Although the numbers of graphs, trees, cor-

respondences, and bi-partitions are finite, the total number of configurations

increases exponentially with the increase in n. For instance, when n is 7, 8

and 9 there are approximately 2×1011, 4×1014, and 3×1018 configurations,

respectively.

(ii) Infinite search space: There exists an infinite space of possible assignments

of weights that needs to be excluded to confirm that a graph is not a PCG

for a fixed configuration.

(iii) Finite size evidence: When a graph is a PCG then its witness tree is evidence

to this. However, when a graph is not a PCG, then due to the infinite search

space of edge weights it is a challenging task to construct finite size evidence

63
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that shows that a given graph is not a PCG.

These difficulties eventually necessitate a non-trivial method that can efficiently

handle the problem of large number of configurations, infinite search space, and

construction of finite size evidence to prove that a graph is not a PCG.

In this chapter, we propose a method to enumerate all PCGs with a given

number of vertices. Our method consists of two main phases: (I) Graph screen-

ing; and (II) Constructing evidence based on linear programming (LP). The aim

of (I) is to remove some graphs for which we do not need to further inspect con-

figurations, to handle the difficulty (i), the large number of configurations. To

achieve this, in phase (I) we use three methods: (I-1) Removing some graphs; (I-

2) A PCG generator; and (I-2) Constructing plausible configurations. In (I-1), we

eliminate some graphs G that can be checked to see if G is a PCG or not directly

based on some observations. In (I-2), we heuristically generate all PCGs for a

given weighted tree taking into account the tree symmetries to avoid repeatedly

generating the same PCGs. In (I-3), we try to construct a plausible configuration

with weights bounded from above, using a system of linear inequalities.

In phase (II), for each graph that is left after phase (I), we construct finite

size evidence whether the graph is a PCG or not. Recall that a large number

of configurations poses a difficulty, and therefore we only consider those configu-

rations that satisfy a certain necessary condition to be plausible, i.e., MIC4-free

configurations. In this phase, we propose two branch-and-bound algorithms to

generate all MIC4-free configurations. Then to handle difficulties (ii) and (iii), we

test each of the enumerated essential configurations by means of solving a linear

program which is feasible if and only if the given configuration is plausible. As

a definite proof to the infeasibility of the linear program, we use another linear

program which is feasible if and only if the first one is not. Thus, we get finite

size evidence as proof that the graph is a PCG or not. By using this method, we

enumerated all PCGs with eight and nine vertices.

The rest of the chapter is organized as follows: We give a detailed explanation

of our 2-phase PCG enumeration method in Section 5.2. In Section 5.2.1, we

discuss phase (I) of our method and propose a PCG generator. In Section 5.2.2,

we discuss phase (II) of our enumeration method where we propose a branch-and-

bound algorithm to generate MIC4-free configurations. In Section 5.3, we propose

another branch-and-bound algorithm to enumerate MIC4-free configurations that

we use in phase (II). We discuss experimental results for enumerating PCGs

with eight and nine vertices in Sections 5.2.3 and 5.3.1, respectively. Concluding

remarks and future directions are given in Section 5.4.
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5.2 A PCG Enumeration Method

We propose a PCG enumeration method to generate all PCGs with a given

number of vertices. This is a 2-phase method, graphs screening phase and con-

structing evidence phase which are discussed in detail in Sections 5.2.1 and 5.2.2,

respectively.

5.2.1 Phase I: Graph Screening

In this section, we describe phase (I) of our enumeration method, where in order

to reduce our computational effort, we try to collect as many as possible graphs

that are PCGs. This phase consists of three sub-phases: (I-1) Removal of graphs;

(I-2) A PCG generator; and (I-3) Constructing plausible configurations which are

explained below.

Phase I-1: Removal of Graphs

Assuming that all PCGs in Gt with t < n are known, the first phase decreases

the number of graphs Gn by eliminating graphs G that can be checked to see if

G is a PCG or not directly based on some observations such as Lemma 4.16. Let

G′n := Gn. Then this phase executes the following three types of procedures:

(i) This step removes from G′n all graphs G ∈ Gn such that G contains an

MNPCG as a proper induced subgraph, where such a graph is an NPCG by

Lemma 4.13.

(ii) This step removes from G′n all non-biconnected graphs, since we easily see

that any non-biconnected graph G is a PCG if and only if each of the bicon-

nected components is a PCG by Lemma 4.16.

(iii) In this step, we remove graphs with false twins from G′n based on Lemma 4.17,

where we know that a graph G with a pair of false twins u and v is a PCG

if and only if the induced subgraph G[V (G) \ {u}] is a PCG.

Phase I-2: PCG Generator

We present a PCG generator to heuristically generate as many as possible PCGs

with n ≥ 3 vertices for which a given binary tree T is a witness tree and re-

move them from G′n. This PCG generator is based on two main ideas which are

discussed below.

First, to avoid the repeated generation of the same PCGs, for a given binary

tree T with n leaves, we assign edge-weights w by restricting the weights of some
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leaf-edges that can be mapped to each other under some tree automorphism.

More precisely, for two leaf-edges e and e′ incident with leaves u and u′, respec-

tively, such that there exists an automorphism that maps u′ to u, we add the

constraint w(e′) ≤ w(e).

The second idea is to efficiently generate all PCGs with a fixed witness tree

and weight assignment. By Calamoneri et al. [22], it is sufficient to consider

positive integer weights w instead of real. Thus we have the following observation.

Observation 1. For each PCG(T,w, dmin, dmax) with positive integer valued w,

it holds that PCG(T,w, dmin, dmax) = PCG(T,w, x − 0.5, y + 0.5) such that x =

min{dT,w(a, b) | a, b ∈ L(T ), dmin ≤ dT,w(a, b) ≤ dmax} and y = max{dT,w(a, b) |
a, b ∈ L(T ), dmin ≤ dT,w(a, b) ≤ dmax}.

From Observation 1, it follows that for a binary tree T and a positive in-

teger valued weight assignment w, it is sufficient to use only a finite number

of pairs (dmin, dmax) to generate all PCGs with witness tree T and weight w as

PCG(T,w, dmin, dmax). Thus, in our PCG generator, based on Observation 1 we

generate all PCGs with witness tree T and a positive integer weight assignment

w by fixing x and y from the set {dT,w(a, b) | a, b ∈ L(T )}.
For a tree T ∈ Tn and a leaf-edge e = uv ∈ E(T ) with leaf u, we define

equivalent edge class C(e;T ) to be the set of leaf-edges such that for each u′v′ ∈
C(e;T ) with leaf u′ there exists an automorphism ψ of T such that ψ(u′) = u

holds. We next give the main steps of our PCG generator to generate PCGs for

each tree T ∈ Tn:

(i) Randomly assign weights from a closed interval to the non-leaf-edges;

(ii) For each leaf-edge e ∈ E(T ) and a given subset S ⊆ C(e;T ), randomly

assign weight w in a closed interval to e such that w(e′) ≤ w(e) holds for

each e′ ∈ S; and

(iii) For each pair of integers x, y ∈ {dT,w(a, b) | a, b ∈ L(T )} with x ≤ y, con-

struct the PCG graph PCG(T,w, x− 0.5, y+ 0.5). Observe that the number

of edges in PCG(T,w, x − 0.5, y + 0.5) is equal to the size of {a, b ∈ L(T ) |
dT,w(a, b) ∈ [x, y]}, that is known before the generation of PCG(T,w, x −
0.5, y+0.5). By using this observation, we do not generate PCGs of m edges

if we know that we have already enumerated all PCGs with m edges in G′n
to avoid the generation of unnecessary PCGs.

We give an algorithmic description of our generator in Algorithm 3.
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Algorithm 3 PCG Generator Based on Tree Symmetries

Input: A subset G′ ⊆ Gn with n ≥ 3 vertices, a set Tn where the edge set of each

tree in Tn is {e1, e2, . . . , e2n−3} and ei, i ∈ [1, n] are the leaf-edges, a family of

sets {S(ei;T ) ⊆ C(ei;T ) | i ∈ [1, n] and T ∈ Tn}, positive integers c, c′, ` and

`′, and an upper bound τ > 0 on CPU time.

Output: Find PCGs from G′ within an execution time ≤ τ .

1: Assume that each graph in G′ has vertex set {1, 2, . . . , n};
2: G[m] := {G ∈ G′ | |E(G)| = m} for all m ∈ [0,

(
n
2

)
];

3: Candidate[m] := |G[m]| for all m ∈ [0,
(
n
2

)
];

4: while Elapsed time < τ do

5: Randomly select weight wi ∈ [c, c′], i ∈ [n+ 1, 2n− 3] of the non-leaf-edges;

6: for all tree T ∈ Tn do

7: Randomly select weight wi ∈ [`, `′] of the leaf-edge ei such that wi′ ≤ wi
for each ei′ ∈ S(e;T );

8: Compute dT,w(a, b) for all pairs {a, b} with 1 ≤ a < b ≤ n;

9: Let d1 < d2 < · · · < dk denote all distinct values in

{dT,w(a, b) | 1 ≤ a < b ≤ n};
10: pi := |{{a, b} | 1 ≤ a < b ≤ n, dT,w(a, b) = di}| for each i = 1, 2, . . . , k;

/* k ≤ p1 + p2 + · · ·+ pk =
(
n
2

)
*/

11: for each pair {u, v} with 1 ≤ u < v ≤ n, let [{u, v}] := i if dT,w(a, b) = di;

12: q[0] := 0;

13: for all i := 1, 2, . . . , k do

14: q[i] := q[i− 1] + pi;

15: dmin := di − 1/2;

16: for all j := i, i+ 1, . . . , k do

17: dmax := dj + 1/2;

18: m := q[j]− q[i− 1]; /* m will be the number of edges in a PCG */

19: if Candidate[m] ≥ 1 then

20: Construct PCG G := (T,w, dmin, dmax) by setting

V (G) := {1, 2, . . . , n} and E(G) := {{u, v} | i ≤ [{u, v}] ≤ j};
21: if G ∈ G[m] then

22: G[m] := G[m] \ {G}; Candidate[m] := Candidate[m]− 1

23: end if

24: end if

25: end for

26: end for

27: end for

28: end while.
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Phase I-3: Constructing Plausible Configuration

For a graph and a tree, in phase (I-3) we try to calculate an edge weight as-

signment and two reals bounded above by some value, such that the graph is

isomorphic to the PCG due to the tree, weight assignment and interval bounded

by reals. In other words, we try to construct a configuration with the given graph

and tree such that the graph is a PCG due to the configuration, i.e., the con-

figuration is plausible. More precisely, for a graph G ∈ G′n, a tree T and a real

α ≥ 0, we construct a PCG(T,w, dmin, dmax) with w, dmin, dmax bounded above

by α, and try to confirm if there exist a bijection σ between vertex set of G and

the leaf set of T and a 2-coloring λ over the set of non-adjacent pairs in G such

that:

(i) For each edge in G it holds that the distance between their corresponding

leaves under σ is in the interval [dmin, dmax]; and

(ii) The pairs of leaves corresponding to the pairs of non-adjacent vertices under

σ with color 0 have distance strictly less than dmin and the others have

distance strictly greater than dmax.

To achieve this, for G,T , and α, we use the linear program, ILPsuff(G,T, α)

discussed in Section 4.4. Recall that in addition to a weight w, real numbers dmin

and dmax that are bounded above by α, ILPsuff(G,T, α) tries to find a mapping

σ and a 2-coloring λ that satisfy (i) and (ii). By Lemma 4.18, the mapping σ is

an isomorphism between G and PCG(T,w, dmin, dmax) if the objective value of

ILPsuff(G,T, α) is 0, and hence we get a configuration (G,T, σ, λ) due to which G

is a PCG, and therefore we remove G from the set G′n. However, if the objective

value of ILPsuff(G,T, α) is greater than 0, then we cannot draw any conclusion

as to whether G is a PCG or not, and therefore we further investigate G.

5.2.2 Phase II: Constructing Evidence Based on LP

In this section, we give details on phase (II), namely, how to prove that a graph is

a PCG if it has not been so detected by the methods in phase (I), and construct-

ing finite evidence if it is not a PCG by using essential configurations. This phase

consists of three sub-phases: (II-1) Removing equivalent bijections; (II-2) Enu-

merating essential configurations; and (II-3) Solving configuration-based linear

programs (LPs), which are explained in detail below.
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Phase II-1: Removing Equivalent Bijections

Let G∗n denote the set G′n of graphs left after Phase I. For each pair of a graph

G ∈ G∗n and a tree T ∈ Tn, this phase generates all bijections σ ∈ Σ(G,T ) and

constructs a maximal set Σ∗(G,T ) by discarding bijections equivalent to one of

the currently stored bijections in Σ(G,T ).

Recall that two bijections σ1, σ2 ∈ Σ(G,T ) are equivalent if there exists an au-

tomorphism π of T such that for vertices u, v, p, q ∈ V (G) with σ1(u) = π(σ2(p))

and σ1(v) = π(σ2(q)) it holds that uv ∈ E(G) if and only if pq ∈ E(G). To test

if two bijections are equivalent, for a graph G, tree T , and bijection σ, let Eσ(G)

is defined to be the set

Eσ(G) , {σ(u)σ(v) | uv ∈ E(G)}.

We define the T-edge extended graph H(G,T, σ) to be the vertex colored graph ob-

tained by adding the edges σ(u)σ(v), for all uv ∈ E(G), in T , i.e., V (H(G,T, σ)) =

V (T ) and E(H(G,T, σ)) = E(T ) ∪ Eσ(G), with a 2-vertex coloring π on V (T )

such that π(v) = 0 (resp., 1), if v ∈ L(T ) (resp., otherwise). An example of

the graph (H(G,T, σ), π) is given in Fig. 5.1. Thus for any σ1, σ2 ∈ Σ(G,T ), it

holds that σ1 is equivalent to σ2 if and only if the graphs (H(G,T, σ1), π) and

(H(G,T, σ2), π) are isomorphic.

σ(v5)

σ(v1) σ(v2)

σ(v3) σ(v4)

t7

t6 t8

Figure 5.1. An example of the T -edge extended graph (H(G,T, σ), π), where

G, T and σ are given in Fig. 4.2. The edges in E(T ) and Eσ(G) are illustrated

by thin lines and thick lines, respectively. The 2-vertex coloring π is illustrated

by representing values 0 and 1 by hallow and filled circles, respectively.

Phase II-2: Generating MIC4-free Configurations

We present a branch-and-bound algorithm that computes the set Λ4free of all 2-

colorings λ : E(G)→ {0, 1} such that (G,T, σ, λ) is MIC4-free for a graph G ∈ Gn
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with n ≥ 4, a tree T ∈ Tn and a bijection and σ ∈ Σ∗(G,T ). We call such a

2-coloring λ an MIC4-free coloring. Since G, T , and σ are fixed, we assume for

simplicity that L(T ) = V (G) in this subsection.

There are exactly 2|E(G)| 2-colorings λ : E(G) → {0, 1}. We generate each

of these 2-colorings by assigning a color from {0, 1} to each vertex pair in E(G),

where we call an assignment λY : Y → {0, 1} of colors to a subset Y of E(G) a

partial coloring. To search all the 2|E(G)| 2-colorings in a recursive fashion, we

start with a partial coloring λY with Y := ∅ such that none of the vertex pairs

in E(G) is assigned a color from {0, 1}; select a vertex pair uv ∈ E(G) \ Y to

which no color is assigned yet; and generate two partial colorings λY ′ such that

Y ′ := Y ∪ {uv} and λY ′(ab) = λY (ab), ab ∈ Y by assigning color 0 or 1 to the

pair uv.

We bound the branching process if the current partial coloring λY cannot be

extended to an MIC4-free coloring λ. That is, there exists a set X ⊆ V (G) of

four vertices such that for each pair uv ∈
(
X
2

)
either uv ∈ E(G) or the value

for the partial coloring λY (uv) is fixed, and a 3-coloring ρ :
(
X
2

)
→ {1, 2, 3} such

that ρ(uv) = 2 if uv ∈ E(G) and ρ(uv) = 2λY (uv) + 1 otherwise, where by

Lemma 4.20 there does not exist an admissible pair with respect to ρ for the tree

contraction T 〈X〉 of T .

To execute the branching operation systematically, we fix an arbitrary index-

ing v1, v2, . . . , vn of the vertices in G. The aim of introducing the indexing is that

given a vertex pair vivj ∈ E(G), i < j, after assigning a color to the vertex pair

vivj , we want to uniquely select the next vertex pair to which no color is assigned

yet by advancing the indices i and j while preserving i < j, that is, the next pair

to be considered is either vi+1vj if 1 ≤ i < j − 1 or v1vj+1 if i = j − 1. Then, we

are also able to uniquely determine the subset Si,j ⊆
({v1,v2,...,vj}

2

)
of vertex pairs

that have been already considered as follows:

(i) For each pair of indices p, q with 1 ≤ p < q ≤ j−1, it holds that vpvq ∈ Si,j ; and

(ii) Index i is the smallest index such that vi+1vj /∈ Si,j ,
where Y = Si,j ∩ E(G).

Observe that for any pair of indices i, j with i < j the following recursion holds

by the definition of the set Si,j

Si,j =

Si−1,j ∪ {vivj} if 1 < i ≤ j − 1,

Sj−2,j−1 ∪ {v1vj} if i = 1.
(5.2.1)

To use Eq. (5.2.1) for a pair of indices i, j, i < j and (i, j) 6= (1, 2), and the

set Y = Si,j∩E(G), we store a partial coloring λY as a set F = {(p, q;λY (vpvq)) |
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. . . . . . . . . . . .

v1 vi vk vj-1 vj vn
. . .

vivjÎE(G)
(i,j;2)

vivjÏE(G)
(i,j;k), kÎ{0,1}

. . . . . . . . . . . .

v1 vi vk vj-1 vj vn
. . . . . . . . . . . . . . .

v1 vi vk vj-1 vj vn
. . .

Figure 5.2. An illustration of the recursive relation given in Eq. (5.2.2) for an

internal node Ψ(F, i, j) when i < j− 1. The dashed line between vi and vj shows

that the pair (i, j) is being considered. A partial coloring is stored in the set F for

each vertex pair vpvq ∈ Si,j , indicated by solid lines connecting pairs of vertices.

vpvq ∈ Y } ∪ {(p, q; 2) | vpvq ∈ E(G)} of triplets, and define the set

Ψ(F, i, j) , {λ ∈ Λ4free | (p, q;λ(vpvq)) ∈ F, ∀vpvq ∈ Si,j ∩ E(G)}

of all possible MIC4-free colorings that can be extended from the partial coloring

λY stored in F .

Then, we propose a branch-and-bound algorithm to generate the set Λ4free.

Note that Ψ(F, i, j) defines one node in our branch-and-bound algorithm.

- Root node: We let F = {(i, j; 2) | vivj ∈ E(G)} and it holds that Λ4free =

Ψ(F, 1, 2);

- Internal node: For any 1 ≤ i < j ≤ n, (i, j) 6= (1, 2) and a set F of triplets

that stores a partial coloring λY over the set Y = Si,j ∩ E(G), Ψ(F, i, j) is

an internal node. Observe that we have the following relations:

Ψ(F, i, j) =



Ψ(F, i+ 1, j) if i < j − 1 and vi+1vj ∈ E(G),

Ψ(F, 1, j + 1) if i = j − 1 and v1vj+1 ∈ E(G),⋃
`=0,1 Ψ(F ∪ {(i, j; `)}, i+ 1, j) if i < j − 1 and vi+1vj ∈ E(G),⋃
`=0,1 Ψ(F ∪ {(i, j; `)}, 1, j + 1) if i = j − 1 and v1vj+1 ∈ E(G).

(5.2.2)

It is evident from Eq. (5.2.2) that the set F which stores a partial coloring

is maintained during the recursive branching process. An illustration of the

recursion when i < j − 1 is given in Fig. 5.2.

- Bounding operation: An internal node Ψ(F, i, j) with j ≥ 4 is pruned if

the current partial coloring cannot be extended to an MIC4-free coloring,

i.e., Ψ(F, i, j) = ∅. To perform the bounding operation, for each subset
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{vh, vk, vi, vj} ⊆ V (G) with 1 ≤ h < k ≤ i− 1 we select four vertices a, b, c,

and d such that {a, b, c, d} = {vh, vk, vi, vj} and the pairs of vertices {a, b}
and {c, d} are siblings in the tree contraction T 〈{a, b, c, d}〉, i.e., it holds that

δT (a, b) + δT (c, d) < δT (a, c) + δT (b, d).

Then we check the existence of an admissible pair for the 3-coloring ρ :({a,b,c,d}
2

)
→ {1, 2, 3} such that for each {vr, vs} ∈

({a,b,c,d}
2

)
with (r, s; k) ∈ F

it holds that ρ(vrvs) = k if vrvs ∈ E(G), and ρ(vrvs) = 2k+ 1 otherwise. By

Lemma 4.20, if such a 3-coloring ρ satisfies any of Eqs. (4.5.22) - (4.5.24),

then there does not exist an admissible pair with respect to ρ for the tree

contraction T 〈{a, b, c, d}〉 of T , and hence such an internal node Ψ(F, i, j) is

pruned.

- Leaf node: When (i, j) = (1, n+ 1), then the set F stores a coloring λE(G),

and we are at a leaf node.

Finally, from Λ4free, we get all MIC4-free configurations with G,T , and σ. An

algorithmic overview of this method is given in Algorithms 4–6. The input of

Algorithm 4 is a graph G, a tree T and a bijection σ, and the output is the set

of all MIC4-free colorings. In this algorithm, we initialize a coloring λ which is

then extended in Algorithm 5 with the recursive procedure explained in Eq 5.2.2.

Finally, in Algorithm 6, we perform the bounding operation to check if the current

coloring is MIC4-free coloring or not.

Algorithm 4 Generating MIC4-free Edge-colorings

Input: /* Global information: G ∈ G∗n with vertex set V (G) = {v1, v2, . . . , vn},
T ∈ Tn, σ ∈ Σ∗(G,T ), edge-distance δT between leaves in T , the current

partial edge-coloring λ : {ij | 1 ≤ i < j ≤ n} → {0, 1, 2, 3}, where λ(ij)

means λ(vivj) for vivj ∈
(
V (G)

2

)
and the current set Λmic4free of mic4free

edge-colorings */

Output: The set of all MIC4-free edge-colorings in Λ(G,T, σ) (possibly contain-

ing equivalent edge-colorings).

1: Λmic4free := ∅;
2: for all i = 1, 2, . . . , n− 1 do

3: for all j = i+ 1, i+ 2, . . . , n do

4: δT [ij] := |ET (σ(vi), σ(vj))|;
5: if vivj ∈ E(G) then

6: λ[ij] := 2

7: else

8: λ[ij] := 0
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9: end if

10: end for

11: end for;

12: Generate(1, 2);

13: Output Λmic4free.

Algorithm 5 Generating Extended MIC4-free Edge-colorings Generate(j, k)

Input: /* Global information: G ∈ G∗n with vertex set V (G) = {v1, v2, . . . , vn},
edge-distance δT between leaves in T , the current partial edge-coloring λ :

{ij | 1 ≤ i < j ≤ n} → {0, 1, 2, 3}, and the current set Λmic4free of mic4free

edge-colorings */

Integers j and k with 1 ≤ j < k ≤ n.

Output: The set of all mic4free edge-colorings λ′ ∈ Λ(G,T, σ) that can be ex-

tended from the current partial edge-coloring λ.

1: if j = n− 1 and k = n then

2: Λmic4free := Λmic4free ∪ {λ} for the current edge-coloring λ; return

3: else

4: if j ≤ k − 2 then

5: j := j + 1

6: else/* j = k − 1 and k ≤ n− 1 */

7: j := 1; k := k + 1

8: end if ;

9: if λ(jk) = 2 then

10: if Plausibility(j, k) = mic4free then

11: Generate(j, k)

12: end if

13: else

14: for all color a ∈ {1, 3} do

15: λ(jk) := a;

16: if Plausibility(j, k) = mic4free then

17: Generate(j, k)

18: end if

19: end for

20: end if

21: end if.

Algorithm 6 Plausibility Test Plausibility(j, k)

Input: /* Global information: G ∈ G∗n with vertex set V (G) = {v1, v2, . . . , vn},
edge-distance δT between leaves in T , the current partial edge-coloring λ :
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{ij | 1 ≤ i < j ≤ n} → {0, 1, 2, 3} */

Integers j and k with 1 ≤ j < k ≤ n.

Output: Message mic4free if k ≤ 3 or G[vh, vi, vj , vk] is MIC4-free for all h and

i with 1 ≤ h < i ≤ j − 1; and message implausible otherwise.

1: A := mic4free;

2: if k ≥ 4 then

3: for all h := 1, 2, . . . , j − 2 do

4: for all i := h+ 1, h+ 2, . . . , j − 1 do

5: X := {h, i}; Y := {j, k};
6: if δT (hj) + δT (ik) < δT (hi) + δT (jk) then

7: X := {h, j}; Y := {i, k}
8: end if ;

9: if δT (hk) + δT (ij) < δT (hi) + δT (jk) then

10: X := {h, k}; Y := {i, j}
11: end if ;

12: Let i1, i2, i3, i4 denote the indices X = {i1, i2} and Y = {i3, i4}
(choose any of the 2× 2× 2 combinations);

13: if |λ(i1i2)− λ(i3i4)| ≤ 1 then

14: if |λ(i1i3)− λ(i2i4)| ≤ 1 and

λ(i1i2) + λ(i3i4)− 2 ≥ λ(i1i3) + λ(i2i4) then

15: A := implausible

16: end if ;

17: if |λ(i1i4)− λ(i2i3)| ≤ 1 and

λ(i1i2) + λ(i3i4)− 2 ≥ λ(i1i4) + λ(i2i3) then

18: A := implausible

19: end if

20: end if ;

21: if |λ(i1i3)− λ(i2i4)| ≤ 1, |λ(i1i4)− λ(i2i3)| ≤ 1 and

|(λ(i1i3) + λ(i2i4))− (λ(i1i4) + λ(i2i3))| ≥ 2 then

22: A := implausible

23: end if

24: end for

25: end for

26: end if ;

27: Output A.
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Phase II-3: Configuration-based LPs

We use linear programming formulations discussed in Section 4.3 to handle the

difficulty of the infinite search space, and the construction of finite size evidence.

For an MIC4-free configuration (G,T, σ, λ), obtained in phase (II-2), we solve the

formulation LP(G,T, σ, λ) given in Section 4.3. The formulation has a solution

w, dmin and dmax if and only if the configuration is plausible. Note that instead

of trying all possible real weights to confirm if a graph is a PCG or not due to

the given configuration, it suffices to solve this single formulation. Finally, to get

a definite proof for the implausibility of a configuration (G,T, σ, λ), we use the

formulation, DLP(G,T, σ, λ) introduced in Section 4.3 . Recall that the linear

program DLP(G,T, σ, λ) admits a solution if and only if LP(G,T, σ, λ) does not,

by Theorem 4.6. Hence, the solution of DLP(G,T, σ, λ) will serve as a finite size

evidence to show that G is not a PCG due to (G,T, σ, λ).

5.2.3 Experimental Results and Comparison for Eight Vertices

We present the computational results of the proposed method to enumerate all

PCGs with eight vertices. To show the computation efficiency of our proposed

method, we also enumerated PCGs with eight vertices by method due to Azam

et al. [3]. We provide a computation comparison of the method due to Azam

et al. [3] and our proposed method for enumerating PCGs with eight vertices.

To avoid any numerical errors in our experiments, we solved LP and DLP as

ILPs by using the IBM ILOG CPLEX 12.8 solver. There are 12346 graphs with

eight vertices, i.e., |G8| = 12346. We store graphs in a canonical form for easy

comparison between graphs. Canonical forms were obtained by the NAUTY [47]

software. There are four trees T1, T2, T3 and T4 in T8. The edge sets of these

trees are listed in Table 5.1 by representing an edge jk as j-k, where we take

V (Ti) = {1, 2, . . . , 14}, i = 1, 2, 3, 4. In the rest of this section, we first discuss

the experimental results of our proposed method.

Table 5.1. Edge sets of the four trees in T8 with vertex set {1, 2, . . . , 14}

i Edge sets of the tree Ti

1 1-9, 2-9, 3-10, 4-11, 5-12, 6-13, 7-14, 8-14, 9-10, 10-11, 11-12, 12-13, 13-14

2 1-9, 2-9, 3-10, 4-10, 5-11, 6-11, 7-12, 8-12, 9-13, 10-13, 11-14, 12-14, 13-14

3 1-9, 2-9, 3-10, 4-10, 5-12, 6-13, 7-14, 8-14, 9-11, 10-11, 11-12, 12-13, 13-14

4 1-9, 2-9, 3-11, 4-10, 5-10, 6-12, 7-14, 8-14, 9-11, 10-12, 11-13, 12-13, 13-14
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Graph Screening Phase

Let G′ := G8. The graph screening phase was executed on a PC with Intel

Core i7-500 processor, running at 2.70GHz, 16GB of memory and Windows 10.

Note that in this phase we only removed some PCGs, since all graphs with at

most seven vertices are known to be PCGs [20]. By removing the graphs with

false twins from the set G′, we are left with 8047 graphs. From these graphs we

removed the non-biconnected graphs. After this step, we have 4959 remaining

graphs. The running time of each of these steps is less than one minute. Then,

from these graphs we eliminated 4846 PCGs in 3.5 hours by using the PCG

generator by randomly selecting weights for edges from the interval [1, 50], i.e.,

we are left with 13 graphs for each of which and each tree in T8 we solved ILPsuff

by setting α = 300. The maximum, average, and minimum execution times of

ILPsuff in this experiment are 123, 28 and 1 second, respectively. By this step, six

out of 13 graphs are identified as PCGs. Thus, by the application of the graph

screening phase on G′, 12339 graphs out of 12346 graphs are identified as PCGs,

i.e., |G∗8 | = 7.

Constructing Evidence Based on LP

We computed non-equivalent bijections and MIC4-free configurations on a PC

with Intel(R) Xeon(R) E5-1600v3 processor, running at 3.00GHz, 64GB of mem-

ory and Windows 7. For a graph G ∈ G∗8 and a tree T ∈ T8, the maximum,

average, and minimum computation times to compute the set Σ∗(G,T ) are 619,

515, and 490 seconds, respectively.

After finding non-equivalent bijections for each of the graphs in G∗8 , we applied

the proposed branch-and-bound algorithm to generate all MIC4-free colorings

with graphs in G∗8 . There are three graphs in G∗8 which have no MIC4-free color-

ings, and therefore they are NPCGs. The remaining four graphs have two, five,

eight, and nine MIC4-free colorings. For each G ∈ G∗8 and T ∈ T8 the proposed

branch-and-bound algorithm computed all MIC4-free colorings in less than one

second.

For each MIC4-free configuration with a graph in G∗8 , ILP and DILP are

solved. The solver solved these ILPs for all MIC4-free configurations with a

graph in G∗8 in less than one second. The solutions to DILPs are given at

http://www-or.amp.i.kyoto-u.ac.jp/~azam/8computational_evidence.zip.

The experimental results reveal that all of the graphs in G∗8 are NPCGs. Note that

these seven NPCGs are MNPCGs, since all graphs with at most seven vertices

are PCGs [20]. These seven NPCGs are illustrated in Fig 5.3, where the graphs in

Fig 5.3(a) and (b) have already been shown to be NPCGs in [10] and [27], respec-
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tively, while the remaining are the newly discovered MNPCGs. We summarize

these findings in the following theorem.

Theorem 5.7. There are exactly seven graphs with eight vertices which are

NPCGs.

A proof of Theorem 5.7 can be deduced form the solutions to DILPs for

MIC4-free configurations with graphs from G∗8 .

(a)

(d)

(c)

(f)

(b)

(e)

(g)

Figure 5.3. The seven NPCGs with eight vertices: (a) The NPCG given in [10];

(b) The NPCG given in [27]; and (c)-(g) The five NPCGs discovered by the

proposed method.

Next we present a comparison of the computational results of the method due

to Azam et al. [3] and the proposed method.

Computational Comparison

We compared the computational efficiency of each step of the method due to

Azam et al. [3] and our improved method for enumerating PCGs with eight
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Table 5.2. Computation comparison between the enumeration method by Azam

et al. [3] and the proposed method for eight vertices

Steps

# graphs left [Time (min.)]

The Method by Proposed

Azam et al. [3] Method

Number of graphs with eight vertices 12346

Removing graphs with false twins 12346 [ N.A. ] 8047 [< 1]

Removing non-biconnected graphs 7123 [< 1] 4959 [< 1]

Using PCG generator 7 [ 460 ] 13 [ 210 ]

Using ILPsuff 7 [ N.A. ] 7 [ 12 ]

Subtotal for graph screening 7 [ 460 ] 7 [ 222 ]

Computing non-equivalent bijections [ 231 ]

PCG/NPCG evidence construction [ 32229 ] [< 1 ]

Proven MNPCG 7

Total time [ 32920 ] [ 453 ]

N.A. denotes that the corresponding step is not included in the method.

vertices in Table 5.2. For each step, we list the output in terms of graphs and

computation time in minutes in Table 5.2. The experiments for both methods

are performed in the same computation environment. For the steps which are

not available in the method due Azam et al. [3], we show the output of the

previous step and write N.A. for computation time. Both methods took less than

one minute to remove non-biconnected graphs. Seven and 13 graphs left after

using PCG generator for 460 and 210 minutes for the method due Azam et al. [3]

and proposed method, respectively. Note that after the graph screening phase

both methods obtained a set G∗8 with seven graphs. The method due to Azam

et al. [3] took 460 minutes to obtain a set G∗8 , while the proposed method took

224 minutes to obtain a set G∗8 . The step of computing non-equivalent bijections

for each graph in G∗8 is common in both methods and took 231 minutes for each

method. The method due to Azam et al. [3] and the proposed method took 32229

minutes and less than 1 minute, respectively, to construct evidence whether each

of the graphs in G∗8 is PCGs or not. Both methods proved that all graphs in G∗8
are NPCGs. The method due to Azam et al. [3] and the proposed method took

32920 and 453 minutes, respectively, to enumerate all PCGs with eight vertices.

Hence it is evident from the computational results that the proposed method is

efficient as compared to the method due to Azam et al. [3].
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5.3 Enumerating Feasible Pairs

Recall that phase (II-1) in Section 5.2.2 involves computation of equivalent bijec-

tion. However, the number of bijections increases exponentially with the increase

in the number n of vertices in the underlying graphs. Therefore we propose a

new branch-and-bound algorithm that for a given graph generates all pairs of

trees and 2-colorings that correspond to MIC4-free configurations with a fixed

bijection, since we can fix a bijection without loss of generality due to the vertex

labeling of the graph and tree. We call such a pair of tree and 2-coloring a feasible

pair. We later replace phases (II-1) and (II-2) with this new algorithm.

Following is an intuitive description of our branch-and-bound algorithm. We

examine all pairs in a recursive manner, starting with a binary tree with two

leaves and a 2-coloring where no color has been assigned to non-adjacent pairs.

If each of the non-adjacent pairs that are leaves in the current tree have been

assigned a color, then we extend the current tree by adding a new vertex z

subdividing each edge xy, together with a new leaf ` adjacent to z. Otherwise,

we choose one of the non-adjacent pairs that has not been assigned a color, and

extend the current 2-coloring into two colorings that have color 0 or 1 for this

uncolored pair. We name the above operations the tree extension operation and

the coloring extension operation, respectively.

If the current pair of tree and 2-coloring cannot be extended to a feasible

pair, then we bound the current branch . Recall that a necessary condition for a

current pair of a tree and a 2-coloring to be extendable is given by the presence of

an MIC4 subconfiguration. To efficiently test whether an MIC4 subconfiguration

exists, we use a characterization given in Lemma 4.20.

To perform our algorithm systematically, we fix the vertex set of a graph

G with n vertices to be {v1, v2, . . . , vn}. Then, fixing the identity bijection, we

generate feasible pairs that correspond to MIC4-free configurations. As the root

of our branching procedure, we start with X = {v1, v2}, the unique tree with a

single edge {v1v2} and a 2-coloring that is currently not defined on any pair of

non-adjacent vertices that are in X. Next, we discuss the tree extension and the

coloring extension operations in more detail below.

Tree extension operation

Assume that all pairs of non-adjacent vertices that are in X with |X| = k are

colored. Then we perform the tree extension operation for each edge xy in the

current tree in increasing order of the label of y, by adding a new degree-three

vertex z = vn+k−2+1 that subdivides the edge xy, and a new leaf ` = vk+1 incident

to z. Note that at any stage of the algorithm it holds that X = {v1, v2, . . . , vk}
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(a) (b)

x y x yz

ℓ

Figure 5.4. An illustration of the tree extension operation: (a) A tree T ; and

(b) The extended tree T ′ of T obtained by adding a new vertex z and a new leaf

` by subdividing edge xy ∈ E(T ).

for some k ∈ [2, n]. As a result of the tree extension operation on the current tree,

we get a unique tree with leaf set X ∪ {vk+1}. We call such a tree an extended

tree of the current tree. An illustration of the tree extension operation is given

in Fig. 5.4. With the following lemma, we argue that our branching procedure

generates all trees that have the leaf set V (G).

Lemma 5.21. For any binary tree T with |L(T )| ≥ 3 there exists a tree H with

L(H) ( L(T ) and |L(T )| = |L(H)|+ 1 such that T is an extended tree of H.

Proof. Let z` ∈ E(T ) be a leaf-edge such that z and ` are non-leaf and leaf

vertices, respectively. There always exists such an edge z` since |L(T )| ≥ 3.

Let x and y denote the neighbors of z other than `. Then by applying the

tree extension operation on the tree H such that V (H) = V (T ) \ {z, `} and

E(H) = (E(T )\{z`, yz, xz})∪{xy}, we get T , from which the claim follows.

Coloring extension operation

Notice that, for an integer k ∈ [2, n], due to the systematic selection of vertices

it follows that the set of uncolored pairs are vjvk, j ≤ k − 1. After assigning a

color to the vertex pair vjvk, j < k, we consider the next pair uv to color to be

the pair vj+1vk if j < k − 1 and v1vk+1 otherwise (if j = k − 1). For any pair

j, k with j < k, we define Aj,k to be the set consisting of all those pairs that are

already considered for coloring. Thus it holds that vcvd ∈ Aj,k for all c, d such

that c < d ≤ k− 1, and j is the smallest integer for which we have vj+1vk ∈ Aj,k.
This implies that for any pair j, k with j < k, we can uniquely determine the set

of colored vertex pairs as the set of the pairs of non-adjacent vertices that are

in Aj,k.

Subproblem and recursion

Let k ∈ [2, n] be an integer. We formalize a subproblem and recursive relations

for our algorithm to enumerate MIC4-free configurations. For a pair of integers

j and k with j < k and the set Y = E(G) ∩ Aj,k of colored pairs, we represent

a 2-coloring λ : Y → {0, 1} by a set C = {(c, d;λ(vcvd)) | vcvd ∈ Y } ∪ {(c, d; 2) |
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j < k – 1,

vjvk Ï E(G),
E and C  

(a) (b)

h = 0 h = 1

j := j + 1

  

…a = 2 a = n + k – 2

j = k – 1,

vjvk Ï E(G),
E and C  

j := 1, 

k := k + 1

 

a = 3

h = 0 h = 1 h = 0 h = 1 h = 0 h = 1

Figure 5.5. An illustration of the branching procedure for a subproblem

S(E;C, j, k) with vjvk ∈ E(G), edge set E and coloring C: (a) Two branches ob-

tained when j < k− 1 by applying the coloring extension operation; and (b) The

branches obtained when j = k − 1 by applying the tree extension and coloring

extension operations for each edge xva ∈ E, a ∈ [2, k] ∪ [n+ 1, n+ k − 2].

vcvd ∈ E(G)}). Thus, we represent a pair (T, λ) of a tree T with edge set E and

a current coloring λ by the pair (E,C) of sets. Finally, we define a subproblem

S(E;C, i, j) to be the set of all possible feasible pairs that can be extended from

the current pair (E,C). Observe that S({v1, v2}; ∅, 1, 2) is the required set of all

feasible pairs of trees and 2-colorings. Furthermore, for j < k with k ∈ [3, n],

z = vn+k+2−1 and ` = vk+1, we have the following recursion

S(E;C, j, k)=



S(E;C, j+1, k), j<k−1, vjvk∈E(G),⋃
xva∈E

S((E\{xva})∪{xz, vaz, `z};C, 1, k+1), j=k−1, vjvk∈E(G),⋃
h=0,1

S(E;C∪{(j, k;h)}, j+1, k), j<k−1, vjvk∈E(G),⋃
xva∈E,
h=0,1

S((E\{xva})∪{xz, vaz, `z};C∪{(j, k;h)}, 1, k+1), j=k−1, vjvk∈E(G).

(5.3.3)

An illustration of the recursion for the case when vjvk ∈ E(G) in Eq. (5.3.3) is

given in Fig. 5.5(a)-(b).

Bounding procedure

Let k ≥ 4 be an integer. We bound a subproblem S(P ;C, j, k) if the current pair

of tree T and coloring λ cannot be extended to a feasible pair. To perform this

bounding operation, we need to check if there exists a subset Z ⊆ {v1, v2, . . . , vk}
of size 4 such that for each pair of non-adjacent vertices that are in Z, the
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current coloring λ is defined and the configuration induced by Z is implausible.

To efficiently verify this, we use a characterization of MIC4 given in Lemma 4.20.

However, to use this method, for each subset Z = {vh, vk, vi, vj} such that h < i ≤
j−1, we need to find two pairs of vertices in Z such that each pair has a common

neighbor in the tree contraction T 〈Z〉. For this purpose we use Lemma 5.22.

Lemma 5.22. Let T be a tree with |L(T )| ≥ 4 and Z ⊆ L(T ) be with |Z| = 4.

Let a1, b1, a2, b2 ∈ Z be such that the vertex sets of PT (a1, b1) and PT (a2, b2) are

disjoint. Then for each i = 1, 2, the vertices ai and bi have a common neighbor

in T 〈Z〉.

Proof. Since PT (a1, b1) and PT (a2, b2) are disjoint, there exist two unique non-

leaf vertices c, d ∈ V (T ) such that c ∈ V (PT (a1, b1)), d ∈ V (PT (a2, b2)) and

V (PT (c, d)) ( V (PT (a1, b2)). Then to obtain the tree contraction T 〈Z〉, we first

remove those vertices in T that are not contained in any path connecting two

vertices in Z. That is, we recursively remove all leaves from L(T ) \ Z. This

implies that all non-leaf vertices in V (T ) except c and d are of degree 2 after

the removal of all leaves. Thus, by removing all those vertices of degree 2 to get

T 〈Z〉, we can see that c is the common neighbor of a1, b1 and d is the common

neighbor of a2, b2, from which the claim follows.

We give an algorithmic description of our branch-and-bound algorithm in Al-

gorithms 7-12. In these algorithms, for an integer k ∈ [2, n], X = {v1, v2, . . . , vk}
and T ∈ T (X), we use

- ninner: the number of internal vertices in the current partial tree T ;

- p[]: p[i] stores the index j of the parent vj of a vertex vi ∈ X \ {v1} in the

current tree T ;

- lca[, ]: lca[i, j] stores the index h of the least common ancestor vh of two

vertices vi, vj ∈ X in the current rooted tree T , where lca[i, j] = 0 if the

least common ancestor of vertices vi, vj ∈ V (G) has not been computed;

- visit[]: visit[i] stores the index i of a vertex vi, where we initialize visit[i] := 0,

1 ≤ i ≤ 2n− 2;

- λ[, ]: λ is a function {(i, j) | 1 ≤ i < j ≤ n} → {0, 1, 2, 3}, where λ[i, j] = 2

means that vivj ∈ E(G) and λ[i, j] = 0 means that vivj 6∈ E(G) and no

color is assigned to vivj , λ[i, j] = 1 (resp., 3) means that vivj 6∈ E(G) and

dT,w(vi, vj) < dmin (resp., dT,w(vi, vj) > dmax) holds.
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The input of Algorithm 7 is a graph G with n vertices and the output of Algo-

rithm 7 is the set Γ of all feasible pairs (T, λ). In this algorithm we initialize

visit[i], i ∈ [1, n − 1] and lca[i, j], i ∈ [1, n − 1] and j ∈ [i + 1, n] that will be

used in Algorithm 10, 11 and 12 to test if two paths are disjoint or intersecting.

Then, we initialize a 4-coloring λ[i, j], i ∈ [1, n − 1] and j ∈ [i + 1, n] such that

λ[i, j] = 2 if vivj ∈ E(G) and λ[i, j] = 0 otherwise. We next initialize the current

set Γ and current partial tree with two vertices v1 and v2. Finally, we perform

the tree extension and coloring extension operations on the current partial tree

and coloring.

Algorithm 7 Generating Feasible Pairs

Input: /* Global information: G = (V (G) = {v1, v2, . . . , vn}, E(G)) ∈ Gn,

ninner, the current tree p[] = Tk ∈ T ({v1, . . . , vk}), the current partial edge-

coloring λ[, ], and the current set Γ of feasible pairs. */

Output: The set of all feasible pairs for G.

1: for all i = 1, 2, . . . , n− 1 do

2: visit[i] := i;

3: for all j = i+ 1, i+ 2, . . . , n do

4: lca[i, j] := 0;

5: if vivj ∈ E(G) then

6: λ[i, j] := 2

7: else

8: λ[i, j] := 0

9: end if

10: end for

11: end for;

12: Γ := ∅; p[2] := 1; ninner := 0;

13: Generate(1, 2, 0);

14: Output Γ.

In Algorithm 8, we perform the tree extension and the coloring extension

operations if the current pair of tree and coloring can be extended to a feasible

pair. This algorithm also adds the newly generated feasible pair in the set Γ.

From lines 1-3 and 28-37, Algorithm 8 performs the tree extension operation

when j = k − 1 followed by the coloring extension operation for the cases when

vjvk ∈ E(G) and otherwise. At line 4, we test if the current pair (p, λ) can be

extended to a feasible pair or not by using Algorithm 8. From line 7-15, we get

a 2-coloring λ′ : E(G)→ {0, 1} such that (p, λ′) is feasible. From lines 18-27, we

perform coloring extension operation when j < k− 1. Recall that in this case we
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only extend the coloring but not the current tree. From lines 20-21, the coloring

extension operation is performed when vjvk ∈ E(G), while from lines 22-26, the

coloring extension operation is performed for vjvk 6∈ E(G).

Algorithm 8 Generating Extended Pairs Generate(j, k, add)

Input: /* Global information: G = (V (G) = {v1, v2, . . . , vn}, E(G)) ∈ Gn,

ninner, the current tree p[] = Tk ∈ T ({v1, . . . , vk}), the current partial edge-

coloring λ[, ], and the current set Γ of feasible pairs. */

Integers j and k with 1 ≤ j < k ≤ n, and an integer add ∈ {0}∪{2, 3, . . . , k−
1} ∪ {n+ 1, . . . , n+ ninner}.

Output: If add ≥ 2 then a new inner vertex in the current tree is created as

the parent of the vertex vadd. Then add a new edge color c ∈ {1, 3} to

the vertex pair {vj , vk} (if vjvk 6∈ E(G)). Test whether there is an MIC4

subconfiguration containing {vj , vk} or not. If a new MIC4 subconfiguration

is created, then return. Otherwise return the set of all feasible pairs (T ′, λ′)

such that T ′ and λ′ can be extended from the current subtree p and partial

edge-coloring λ.

1: if add ≥ 2 /* Enlarge Tk */ then

2: ninner := ninner + 1; p[n+ ninner] := p[add]; p[add] := p[k] := n+ ninner

3: end if ;

4: if Test(j, k) = implausible then

5: return

6: end if ;

7: if j = n− 1 and k = n then

8: /* Getting a 2-coloring over {0, 1} color set */

9: for all i = 1, 2, . . . , n− 1 do

10: for all ` = i+ 1, i+ 2, . . . , n do

11: if viv` ∈ E(G) then

12: λ′[i, `] := (λ[i, `]− 1)/2

13: end if

14: end for

15: end for;

16: Γ := Γ ∪ {(p, λ′)} for the current tree p and edge-coloring λ; return

17: else

18: if j ≤ k − 2 then

19: j := j + 1;

20: if λ[j, k] = 2 then

21: Generate(j, k, 0)

22: else
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23: for all color c ∈ {1, 3} do

24: λ[j, k] := c; Generate(j, k, 0)

25: end for

26: end if

27: else

28: j := 1; k := k + 1;

29: for each vertex a ∈ {2, 3, . . . , k− 1} ∪ {n+ 1, n+ 2, . . . , n+ ninner} do

30: if λ[j, k] = 2 then

31: Generate(j, k, a)

32: else

33: for all color c ∈ {1, 3} do

34: λ[j, k] := c; Generate(j, k, a)

35: end for

36: end if

37: end for

38: end if

39: end if.

In Algorithm 9, we test if the current pair of tree and coloring can be extended

to a feasible pair or not by testing the inequalities in the characterization of

MIC4 given in Lemma 4.20. In fact here we perform bounding operation of

our branch-and-bound algorithm. Thus, from lines 3-13, the algorithm finds the

vertex pairs that are leaves with common parents in the tree contraction of the

current tree due to {vh, vi, vj , vk}. This is done by testing if the paths are disjoint

or intersecting using Algorithm 10. From line 14-29, we test the inequalities given

in Lemma 4.20.

Algorithm 9 Testing Plausibility Test(j, k)

Input: /* Global information: G = (V (G) = {v1, v2, . . . , vn}, E(G)), the current

tree p[] = Tk ∈ T ({v1, . . . , vk}), and the current partial edge-coloring λ[, ]. */

Integers j and k with 1 ≤ j < k ≤ n.

Output: mic4free if k ≤ 3 or G[vh, vi, vj , vk] in the current tree Tk is MIC4-free

for all h and i with 1 ≤ h < i ≤ j − 1; implausible otherwise.

1: A := mic4free;

2: if k ≥ 4 then

3: for all h := 1, 2, . . . , j − 2 do

4: for all i := h+ 1, h+ 2, . . . , j − 1 do

5: if Disjoint(h, i, j, k) = disjoint then

6: X := {h, i}; Y := {j, k}
7: else
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8: if Disjoint(h, k, i, j) = disjoint then

9: X := {h, k}; Y := {i, j}
10: else

11: X := {h, j}; Y := {i, k}
12: end if

13: end if ;

14: Let i1, i2, i3, i4 denote the indices X = {i1, i2} and Y = {i3, i4};
/* choose any of the 2× 2× 2 combinations */

15: if |λ[i1, i2]− λ[i3, i4]| ≤ 1 then

16: if |λ[i1, i3]− λ[i2, i4]| ≤ 1 and

λ[i1, i2] + λ[i3, i4]− 2 ≥ λ[i1, i3] + λ[i2, i4] then

17: A := implausible

18: end if ;

19: if |λ[i1, i4]− λ[i2, i3]| ≤ 1 and

λ[i1, i2] + λ[i3, i4]− 2 ≥ λ[i1, i4] + λ[i2, i3] then

20: A := implausible

21: end if

22: end if ;

23: if |λ[i1, i3]− λ[i2, i4]| ≤ 1, |λ[i1, i4]− λ[i2, i3]| ≤ 1 and

|λ[i1, i3] + λ[i2, i4]− λ[i1, i4]− λ[i2, i3]| ≥ 2 then

24: A := implausible

25: end if

26: end for

27: end for

28: end if ;

29: Output A.

In Algorithm 10, we test if the paths between leaf vertices vh, vi and va, vb,

h < i and a < b are disjoint or intersecting in the current partial tree. For this at

line 1, we compute the least common ancestor of vh and vi by Algorithm 11 and

mark the vertices vj on the path between va and vb with an integer z ∈ {a, b}
by using Algorithm 7. Then from lines 3-9, we start from the leaf vx := vh and

set vx := p[vx] if the mark of vx is neither a nor b and in the other case, i.e.,

when the mark of vx is a or b then output that the paths intersect. We repeat

this process of setting vx := p[vx] until vx is the least common ancestor of vh

and vi and the paths are disjoint. Similarly, from lines 10-17, we repeat the same

process starting from vx := vi.
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Algorithm 10 Testing Disjointness of Two Paths Disjoint(h, i, a, b)

Input: /* Global information: G = (V (G) = {v1, v2, . . . , vn}, E(G)) ∈ Gn, the

current tree p[] = Tk ∈ T ({v1, . . . , vk}), visit[] */

Four vertices vh, vi, va, vb ∈ {v1, v2, . . . , vk} ⊆ V (G) with h < i and a < b.

Output: intersect if the paths between vh, vi and va, vb in the current tree Tk

intersect; disjoint otherwise.

1: ` :=LCA(h, i); LcaTrace(a, b);

2: A := disjoint; x := h;

3: while x 6= ` and A = disjoint do

4: if visit[x] = a or visit[x] = b then

5: A := intersect

6: else

7: x := p[x]

8: end if

9: end while;

10: x := i;

11: while x 6= ` and A = disjoint do

12: if visit[x] = a or visit[x] = b then

13: A := intersect

14: else

15: x := p[x]

16: end if

17: end while;

18: Output A.

In Algorithm 11, we compute the least common ancestor of two leaf vertices

vi and vj with i < j in the current tree if it has not been computed yet. From

lines 2-5, we start with the vertex vi by setting vx := vi and mark all vertices on

the path between vi and v1 except v1 by the integer i. Then from lines 6-13, we

start with the vertex vj by setting vx := vj and advance by vx := p[vx] if vx is not

marked with i. We find the first vertex vx on the path between vj and v1 with

mark i starting from vj and return vx as the least common ancestor of vi and vj .

Algorithm 11 LCA(i, j): Finding Least Common Ancestor

Input: /* Global information: the current tree p[] = Tk ∈ T ({v1, . . . , vk}), the

current partial coloring lca[], visit[] */

Two vertices vi, vj ∈ {v1, v2, . . . , vk} ⊆ V (G), i < j.

Output: The least common ancestor lca[i, j] of vi and vj in the current rooted

tree Tk ∈ T ({v1, v2, . . . , vk}).
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1: if lca[i, j] = 0 then

2: x := i;

3: while x 6= 1 do

4: visit[x] := i; x := p[x]

5: end while;

6: x := j;

7: while lca[i, j] = 0 do

8: if visit[x] = i then

9: lca[i, j] := x

10: else

11: x := p[x]

12: end if

13: end while

14: end if ;

15: Output lca[i, j].

In Algorithm 12, for two leaves vi and vj with i < j in the currrent tree we

mark the vertices on the path between vi and vj with an integer z ∈ {i, j} by

computing the least common ancestor of vi and vj . From lines 1-4, we start with

the vertex vi by setting vx := vi and mark all vertices on the path between vi

and v1 except v1 by the integer i. From lines 5-17, we start with the vertex vj

by setting vx := vj and mark the vertex vx by j and set vx := p[vx] if vx is not

marked by i. Once we reach at the first vertex vx that has been marked i, then

we output vx as the least common ancestor of vi and vj and mark all vertices on

the path between p[vx] and v1 by zero.

Algorithm 12 LcaTrace(i, j): Finding Least Common Ancestor

Input: /* Global information: G = (V (G) = {v1, v2, . . . , vn}, E(G)) ∈ Gn, the

current tree p[] = Tk ∈ T ({v1, . . . , vk}), visit[] */

Two vertices vi, vj ∈ {v1, v2, . . . , vk} ⊆ V (G), i < j.

Output: The least common ancestor lca[i, j] after marking the vertices vx be-

tween vi and vj with visit[x] ∈ {i, j} in the current rooted tree Tk ∈ T ({v1, v2,

. . . , vk}).
1: x := i;

2: while x 6= 1 do

3: visit[x] := i; x := p[x]

4: end while;

5: flag := 1; x := j;

6: while x 6= 1 do

7: if visit[x] 6= i then
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8: visit[x] := j

9: else

10: if visit[x] = i and flag = 1 then

11: lca[i, j] := x; flag := 0

12: else

13: visit[x] := 0

14: end if

15: end if ;

16: x := p[x]

17: end while;

18: Output lca[i, j].

5.3.1 Experimental Results for Nine Vertices

By incorporating the algorithm for generating feasible pairs in phase (II), instead

of using phases (II-1) and (II-2), we generated PCGs with nine vertices. For

our experiments, we used a PC with specifications Intel(R) Xeon(R) E5-1600v3

processor running at 3.00GHz, 64GB of memory, and Windows 7. We used the

IBM ILOG CPLEX 12.8 solver and find integer solutions for linear programs LP

and DLP to avoid numerical errors generated by the solver while solving these

formulations.

From [2], we obtained 261,080 connected graphs for n = 9 each of which are

non-isomorphic. There are six binary trees in T9 that are easy to generate. The

edge sets of each of these six trees T1, T2, T3, T4, T5 and T6 are listed in Table 5.3

with V (Ti) = {1, 2, . . . , 16}, i ∈ [1, 6] and representing an edge jk as j-k.

For an easy comparison of the PCG generated by the PCG generator, we used

canonical representation of graphs obtained by NAUTY [47]. Recall that by [23]

and [65] a graph is not an MNPCG if it (a) is not biconnected; (b) has two non-

adjacent vertices that have the same neighbors; or (c) is a supergraph of some

known MNPCG. Therefore we first removed all such graphs from the 261,080

graphs before phase (I-2).

We generated PCGs with our PCG generator in phase (I-2) for 10 days. As

a result 7,108 graphs were left for which we used phase (I-3). We performed

phase (I-3) in two steps. In the first step we fixed α = 300 and time out to

60 secs. for the CPLEX solver. Thus in 18 days, we were able to confirm 4,603

graphs to be PCGs. In the second step, we fixed α = 300 and time out to

300 secs. for the solver and confirmed another 583 graphs to be PCGs in 14 days.

Therefore, 1,922 graphs were left after phase (1) for which we apply phase (II)

to get definite proofs.
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Table 5.3. Edge sets of the six trees in T9 with vertex set {1, 2, . . . , 16}

i Edge set of the tree Ti

1 1-10, 2-10, 3-11, 4-11, 5-12, 6-13, 7-14, 8-15, 9-16, 10-12, 11-13, 12-14, 13-15,

14-16, 15-16

2 1-10, 2-10, 3-13, 4-11, 5-11, 6-12, 7-12, 8-14, 9-16, 10-13, 11-14, 12-15, 13-14,

14-16, 15-16

3 1-10, 2-10, 3-11, 4-11, 5-12, 6-12, 7-13, 8-13, 9-16, 10-14, 11-14, 12-15, 13-15,

14-16, 15-16

4 1-10, 2-10, 3-11, 4-12, 5-12, 6-13, 7-14, 8-15, 9-15, 10-11, 11-13, 12-14, 13-16,

14-16, 15-16

5 1-10, 2-10, 3-11, 4-11, 5-12, 6-12, 7-14, 8-15, 9-15, 10-13, 11-13, 12-14, 13-16,

14-16, 15-16

6 1-10, 2-10, 3-11, 4-11, 5-12, 6-12, 7-13, 8-14, 9-15, 10-13, 11-13, 12-15, 13-16,

14-16, 15-16

Table 5.4. Summary of experimental results for graphs with nine vertices

Steps
# input # graphs with

# MNPCGs Time
graphs no decision

Preprocessing and

using PCG generator 261,080 7,108 0 10 days

Solving ILPsuff for 60 secs. 7,108 2,505 0 18 days

Solving ILPsuff for 300 secs. 2,505 1,922 0 14 days

Getting definite proof 1,922 0 1,494 46 days

The computation of phase (II) completed in 46 days and this phase confirmed

428 graphs to be PCGs. Therefore as a conclusion, we found that there are

1,494 graphs with n = 9 that are MNPCGs in 88 days. We show fifteen of these

MNPCGs in Fig. 5.6. A summary of these experiments is given in Table 5.4. We

summarize our results in Theorem 5.8.

Theorem 5.8. For nine vertices, there are exactly 4, 35, 152, 289, 371, 337,

192, 85, 23, 5 and 1 MNPCGs with 16, 17, . . . , 25, and 27 edges, respectively, and

no MNPCG with β edges β /∈ [16, 25] ∪ {27}.

As a computational proof of Theorem 5.8, we provide the solution of the

formulation DLP(G,T, I, λ) for each MIC4-free configuration (G,T, I, λ) at

https://www-or.amp.i.kyoto-u.ac.jp/~azam/MNPCG_9.
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Figure 5.6. Fifteen MNPCGs with nine vertices discovered by our proposed

method.
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5.4 Concluding Remarks

We proposed a 2-phase method to enumerate PCGs with a given number of ver-

tices. In phase (I), we dealt with the difficulty of a large number of configurations

by developing a PCG generator using tree automorphisms and then construct-

ing plausible configurations to prove a graph to be a PCG. In phase (II), we

designed a branch-and-bound algorithm to enumerate all MIC4-free configura-

tions and used LP formulations to handle the difficulty of infinite search space of

weights and the construction of finite evidence. By using this method we proved

that there are exactly seven and 1,494 MNPCGs with eight and nine vertices,

respectively.

The wheel graph with n ≥ 9 vertices is one of the sparsest graphs that is

known to be an MNPCG [10] and is verified by our algorithm. It is interesting

to investigate the minimum and maximum number of edges in an MNPCG with

n vertices.

The illustrations of the MNPCGs in Fig. 5.6 that are discovered through this

work, as well as those shown by Azam et al. [3] with eight vertices, Durocher

et al. [27] and Baiocchi et al. [10] indicate that MNPCGs tend to be symmet-

ric. Therefore it is natural to discover a relationship between the symmetry and

membership of a graph in the class of PCG graphs.

By [2], there are 11,716,571 connected graphs with 10 vertices. Thus to gen-

erate all MNPCGs with 10 vertices efficiently, it would be interesting to further

improve our method.



6 Conclusion

We focused on the enumeration of tree-like graphs with a given cycle rank, self-

loops, and no multi-edges; and pairwise compatibility graphs (PCGs) with a given

number of vertices.

Instead of traditional algorithm paradigms, we proposed a dynamic program-

ming based method to count all tree-like graphs. We characterized the tree-like

graphs in terms of canonical representation, which is then used to propose a

method to generate all such graphs. Experimental results reveal that the pro-

posed methods can count and generate the required graphs efficiently. As an

application to our methods, we proved bounds on the number of tree-like poly-

mer topologies and generated such topologies.

We proposed LP formulations to confirm if a graph is a PCG or not by

providing finite-sized evidence. Furthermore, we characterized the configurations

associated with a graph in terms of linear inequalities that gives us a necessary

condition for a graph to be PCG with the given configuration. Based on these

mathematical properties, we proposed a method to enumerate all PCGs with a

given number of vertices. By using this method, we proved that there are exactly

seven and 1,494 minimal non-PCGs with eight and nine vertices, respectively.

We hope that the results obtained in this study will be useful in future re-

search and development in combinatorial mathematics, computational chemistry,

bioinformatics, and other related fields.
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