
Doctoral Dissertation

Orthogonal transformation based algorithms for singular

value decomposition

Guidance

Professor Yoshimasa NAKAMURA

Sho ARAKI

Department of Applied Mathematics and Physics

Graduate School of Informatics

Kyoto University

K
Y
O
T

O
UNIVER

S
IT
Y

F
O

U
N
DED

1
8

9
7

KYOTO JAPAN

February 2021

Abstract

Fast and accurate computation of matrix singular value decomposition is a major prob-
lem in the computer and computational sciences. The orthogonal transformation based
algorithms, the OQDS algorithm and the Jacobi algorithm, attract attention as ro-
bust singular value decomposition algorithms. We introduce some applications for each
algorithm, and propose new implementations of the OQDS algorithm and the Jacobi
algorithms.

We discuss two applications and their implementations of the OQDS algorithm. One
is the narrow band reduction approach and the other one is a combination method with
the DQDS algorithm for obtaining column vectors of bidiagonal matrices. The narrow
band reduction intends to improve the cache efficiency of the preliminary reduction. We
formulate the OQDS algorithm for lower tridiagonal matrices and design a shift strategy
and convergence criteria in order to compute the lower tridiagonal matrix produced as
a result of the preliminary reduction. The combination method of the OQDS algorithm
and the DQDS algorithm for obtaining column space of bidiagonal matrices is another
application of the OQDS algorithm. We formulate the OQDS algorithm for computing
singular vectors of bidiagonal matrices corresponding to the singular values obtained by
the DQDS algorithm.

We also discuss about an implementation of the Jacobi algorithm as another or-
thogonal transformation based algorithm. An appropriate formulation of the Givens
transformation with the fused multiply-add (FMA) instruction improve the speed and
the accuracy both of the two-sided and the one-sided Jacobi algorithms. In addition,
a selection of the rotation angle of the Givens rotation based on the knowledge of the
OQDS algorithm gives a sorting feature of singular values to the Jacobi algorithm.

Through the results of numerical experiments, we show some advantages of the or-
thogonal transformation based algorithms, the OQDS algorithm and the Jacobi algo-
rithm, in terms of the speed and the accuracy for the applications and consider an
intrinsic relationship between the OQDS algorithm and the Jacobi algorithm.

Contents

1 Introduction 1

2 Singular value decomposition 4

3 Narrow Band Reduction Approach for Singular Value Decomposition
with the OQDS Algorithm for Lower Tridiagonal Matrices 5
3.1 OQDS algorithm . 6

3.1.1 Implicit Cholesky decomposition 6
3.2 Improvements of cash efficiency of Householder reduction 9

3.2.1 Basic Householder method . 10
3.2.2 Dongarra’s algorithm . 11
3.2.3 Narrow band reduction approach 11

3.3 OQDS algorithm for lower tridiagonal matrices 13
3.4 Shift strategy . 14

3.4.1 Gerschgorin shift . 14
3.4.2 Algebraic shift . 15
3.4.3 A method for obtaining the trace of inverse of pentadiagonal ma-

trices and generalized Newton shift 15
3.4.4 Laguerre shift . 18
3.4.5 Kato-Temple shift . 18

3.5 Convergence criteria . 19
3.5.1 Deflation and splitting . 19
3.5.2 1-norm convergence criteria . 22
3.5.3 2-norm convergence criteria . 23

3.6 Numerical experiments . 24
3.7 Discussion about the narrow band approach of singular value decomposi-

tion with the extended OQDS algorithm 25

4 Column Space Computation Method by Using the Combination of
DQDS and OQDS Algorithms 26
4.1 DQDS algorithm for computing singular values 26

4.1.1 Convergence acceleration with origin shift 28
4.1.2 Convergence criteria of the DQDS algorithm 32

4.2 OQDS algorithm for computing singular vectors 33
4.2.1 LU and UL steps . 35
4.2.2 Shift strategy for the OQDS algorithm 36

4.3 Convergence criteria of the OQDS algorithm 37
4.4 Proposed method for computing column space by using the combination

of DQDS and OQDS algorithms . 38
4.5 Numerical experiment . 38
4.6 Discussion about the column space computation method by using the

combination of DQDS and OQDS algorithms 39

5 Singular value decomposition using the two-sided Jacobi algorithm 39
5.1 Outline of two-sided Jacobi algorithm . 40
5.2 Ordering strategy and convergence criterion 42
5.3 Implementation method using the arctangent function 43

5.3.1 Conventional implementation . 43
5.3.2 Fused multiply-add operaion . 44
5.3.3 Proposed implementation . 44

5.4 Implementation method by Rutishauser 45
5.5 Implementation method using the Givens rotation 46
5.6 Comparing the number of operations . 46
5.7 Implementation technique for a summation 47
5.8 Introducing sort feature to the two-sided Jacobi algorithm 47
5.9 Correction of c1, s1, c2, or s2 . 48

5.9.1 False position method . 48
5.9.2 Secant method . 49
5.9.3 Correction method . 50

5.10 Numerical experiments . 52
5.11 Discussion about the proposed implementation of two-sided Jacobi algo-

rithm . 52

6 Singular value decomposition using the one-sided Jacobi method 56
6.1 Outline of the one-sided Jacobi method 57
6.2 Conventional implementation for the one-sided Jacobi method 57
6.3 Proposed Implementation . 58

6.3.1 Computation with high accuracy in cos θ and sin θ 59
6.3.2 Approximate computation of the norm of vectors 60
6.3.3 Accurate computation of the norm of vectors 61

6.4 Numerical experiments . 62
6.5 Discussion about singular value decomposition using the one-sided Jacobi

algorithm . 65

7 Conclusion 68

1 Introduction

Fast and accurate computation of matrix singular value decomposition is a major prob-
lem in computer and computational science. For various types of problems, various meth-
ods have been proposed. Especially, if we want to obtain both of singular values and
singular vectors with single thread computation, the QR algorithm[1] is the most fa-
mous and successful solver and a fine tuned implementation of the algorithm is provided
by LAPACK[2]. On the other hand, there are some disadvantages of the QR algorithm
reported such as inaccuracy for ill-conditioned matrices and cache inefficiency of the
pre-process of the algorithm[3, 4].

In this thesis, we focus on the following two orthogonal transformations based solvers
for singular value decomposition, the orthogonal quotient-difference algorithm with shift
(OQDS algorithm)[5] and the Jacobi algorithm[6].

In order to overcome the inaccuracy of the QR algorithm for an ill-conditioned ma-
trix, the quotient-difference algorithm (QD algorithm) by Rutishauser[7, 8] was reevalu-
ated by Parlett and his coworkers[9, 10] in 1990’. The QD algorithm performs more ac-
curate singular value computation for the ill-conditioned matrix than the QR algorithm.
Differential quotient-difference algorithm with shift (DQDS algorithm)[10] is a practical
implementation of the QD algorithm, which introduces suitable formulation for numeri-
cal computation and acceleration with an origin shift. Although the DQDS algorithm is
widely used as the subroutine of the singular value computation solver xBDSQR provided
in LAPACK, there is a disadvantage related to the preliminary reduction in common
with the QR algorithm. In the xBDSQR routine, which uses the QR algorithm or the
DQDS algorithm as its subroutines depending on whether the user requires the singular
vectors or not, the input is bidiagonal matrix which is preliminary reduced from the
original general real matrix with the Householder transformation. The QR algorithm
and the DQDS algorithm perform fast and accurate singular value decomposition for
the bidiagonal matrix however, the preliminary reduction has a higher computational
complexity than that of the algorithms and therefore accounts the majority of the to-
tal computation time of singular value decomposition of general matrices. Householder
bidiagonalization is often used as the preliminary reduction and its conventional imple-
mentation consists of an iteration of BLAS level 2 xGEMV (vector-matrix multiplication)
routine. However, xGEMV routine requires data transfer from the main memory to cache
for every vector multiplications and the latency is a strong bottleneck of the Householder
bidiagonalization.

To reduce the data transfer, the narrow band reduction approach by using BLAS level
2.5 (two vectors-matrix multiplication) is proposed[11]. In the iteration of the House-
holder reductions, we can approximately cut in half of the data transfer by performing
xGEMM (matrix-matrix multiplication) routine for two each vectors instead of xGEMV for
each vectors. In this case, we obtain a lower tridiagonal matrix as the result of the reduc-
tion. Consequently, if we can compute the singular values of the lower tridiagonal matrix
within a reasonable cost, it is expected that the total computation time for computing
singular values of the original general real matrix is shortened.

1

The OQDS algorithm[5] is a variant of the QD algorithm and has capability for com-
puting singular values and vectors of a lower tridiagonal matrix. The OQDS algorithm
fully consists of orthogonal transformations and therefore is expected to perform accu-
rate computation, however, there has been no practical implementation of the OQDS
algorithm.

In this thesis, we propose a practical implementation of the OQDS algorithm for the
lower tridiagonal matrix. For the practical implementation, we propose a formulation
of Givens transformation and generalized Givens transformation, both of them are or-
thogonal transformations, which are the main components of the OQDS algorithm with
considering loss of trailing digits and cancellation of significant digits. In addition, we
propose a shift strategy which accelerates the convergence of the OQDS algorithm with
estimating the minimum value of the singular values of the lower tridiagonal matrix.
In order to estimate the minimum singular value, we propose a method for obtaining
the trace of the inverse of a pentadiagonal matrix and then, compute the value of the
generalized Newton shift of the lower tridiagonal matrix with the trace value. After
sharpening the shift value with the Kato-Temple shift[12], we adopt the shift value to
our shift strategy as an algebraic shift. Our shift strategy also contains the Gerschgorin
shift[13] and the Laguerre[14] shift which are used in the DQDS algorithm. Then, we
design convergence criteria based on Weyl’s monotonicity theorem[15, 16] and apply the
criteria for performing the deflation and splitting operations which terminate the OQDS
algorithm. We perform some numerical experiments to confirm the implementation of
the OQDS algorithm computes singular values of the lower tridiagonal matrices within a
reasonable cost and reduces the total computation time of singular values computation
of general real matrices.

We also focus on the capability of the OQDS algorithm for computing singular vec-
tors likewise the QR algorithm. The orthogonal transformations consists of the OQDS
algorithm keep column and row spaces of the original matrix so that the singular vectors
are spontaneously obtained if we record the sequence of the transformations. However,
for the lower tridiagonal matrix, the OQDS algorithm requires more number of itera-
tions than that for the bidiagonal matrix because there are more off-diagonal entries to
be converged through the iteration. The large number of iterations does not only slow
down the convergence speed but also worsen the accuracy since the accumulation of the
rounding error inevitable for numerical computation becomes large. The nonnegative
off-diagonal entries also harden the estimation of the lower bound of the singular values
which is required for the shift strategy and limit the effect. As a result, it is not fair
to compare the accuracy of the singular values and vectors obtained by the OQDS al-
gorithm for lower tridiagonal matrix to that even by the QR algorithm for bidiagonal
matrix.

Then, we let the target matrix back to the bidiagonal matrix, propose a column space
computation method for bidiagonal matrix with a combination of the OQDS algorithm
and the DQDS algorithm. The application of the column space computation method is
narrower than that of the general singular value decomposition but the Sakurai-Sugiura
method[17], a parallel solver for polynomial eigenvalue problem, utilizes the column space

2

computation method as its subroutine therefore, it is expected that we can compute the
non-linear eigenvalues and eigenvectors faster and more accurate if the combination
method achieves a higher performance than the original OQDS algorithm. The main
idea of the proposed combination method is that we compute the singular values of
given bidiagonal matrix with the fast and accurate DQDS algorithm and then compute
column vectors with the OQDS algorithm base on the obtained singular values. In or-
der to implement this idea, we propose a new formulation of the OQDS algorithm for
bidiagonal matrix accelerated with externally obtained singular values. The formulation
also intends to suppress numerical errors. We also propose shift strategies for both of the
OQDS algorithm and the DQDS algorithm. As the shift strategy of the DQDS algorithm,
we adopt the generalized Rutishauser bound[18], the Johnson bound[19] and the Collatz
inequality[20] based bound for estimating method of the minimum of the singular values
in addition to the previously introduced method in the OQDS algorithm for the lower
tridiagonal matrix. On the other hand, we also adopt the generalized Rutishauser bound
and the Collatz inequality based bound which are not suitable for the lower tridiagonal
matrix to the OQDS algorithm for bidiagonal matrix. Then, we perform a numerical ex-
periment to confirm the effectiveness of the combination method of the DQDS algorithm
and the OQDS algorithm.

Our proposed applications of the OQDS algorithm perform fast computation for
each target problems. On the other hand, a high accuracy realized by the fully orthog-
onal transformation based formulation, which is the primary advantage of the OQDS
algorithm, does not contribute to the accuracy of the entire algorithm because the pre-
liminary Householder reduction may produce numerical error before applying the OQDS
algorithm. Because of the reduction error, the accuracy of the entire algorithm hits the
ceiling in accuracy no matter how the OQDS algorithm achieves. Then, we seek an ap-
plication of the OQDS algorithm independent of the preliminary reduction. In fact, the
OQDS algorithm for a general triangular matrix can be interpreted as a variant of Jacobi
algorithm. Based on the interpretation, we try to improve the Jacobi algorithm with the
knowledge we have acquired through the studies about the OQDS algorithm.

The Jacobi algorithm is a classical solver of singular value decomposition problem
proposed by Jacobi before the growth of the electrical computer. In this thesis, we discuss
two implementations of the Jacobi algorithm. One is the one-sided Jacobi algorithm
and the other is the two-sided Jacobi algorithm. The two-sided Jacobi algorithm is a
prototype of the Jacobi algorithm and is straightforwardly formulated as applying the
Givens transformation from both side of the given general triangular matrix.

We propose an accurate computation method of the Givens transformation us-
ing fused multiply-add (FMA) instruction[21] in the formulation. The false position
method[22] and the secant method[23] are used to correct the rotation angle of the
Givens transformation. In addition to the accurate implementation method of the Givens
transformation, we integrate a sorting feature of the singular values of the result matrix
into the two-sided Jacobi algorithm. By introducing a selection method of the rotation
angle of the Givens transformation based on the knowledge we have acquired through the
studies of the OQDS algorithm, the Jacobi algorithm sorts singular values in descend-

3

ing order as the OQDS algorithm does while the conventional implementation generally
gives singular values of the matrix in an irregular order. The selection of the rotation
angle of the Givens transformation also accelerates the convergence of the two-sided
Jacobi algorithm. As a result of these improvements, the numerical experiment shows
that the two-sided Jacobi algorithm gets a higher performance than the conventional
implementation in terms both of speed and accuracy.

According to the success of the two-sided Jacobi algorithm, we introduce the same
improvements to the one-sided Jacobi algorithm. The one-sided Jacobi algorithm is more
famous than the two-sided Jacobi algorithm, and and has been actively discussed not
only in serial computation environment but in parallel computation environment[24]. The
main difference from the two-sided Jacobi algorithm is multiplying the Givens rotation
from only one side of the matrix as the name represents.

In addition to the accurate computation method of the Givens transformation which
is introduced to the two-sided Jacobi algorithm, we propose an accurate computation
method of vector norm used in the generation of Jacobi pairs which represent the it-
eration of the one-sided Jacobi algorithm. Then, our proposed implementation of the
one-sided Jacobi algorithm shows a higher performance than the conventional imple-
mentation reported in [25] in a numerical experiment.

This thesis is organized as follows. Section 2 introduces the basic theory of the sin-
gular value decomposition and its representative application. In Section 3, we introduce
the OQDS algorithm for lower tridiagonal matrix and its implementation techniques. A
numerical result of the OQDS algorithm is also reported in this section. Section 4 expati-
ates upon the combination method of the OQDS algorithm and the DQDS algorithm for
computing column space and demonstrates a numerical result of the method. Sections
5 and 6 describes the implementation details of the two-sided Jacobi algorithm and the
one-sided Jacobi algorithm respectively. These sections also include numerical results of
the algorithms. Then, the last section concludes whole of our studies.

2 Singular value decomposition

Singular value decomposition is one of fundamental factorizations in the domain of linear
algebra. For a real or complex m×n matrix A, singular value decomposition is formulated
as follows:

A = UΣV ∗ (1)

with m × m unitary matrix U , m × n rectangular diagonal matrix with non-negative
real diagonal entries Σ and n × n unitary matrix V . If A is real matrix, U and V are
real orthogonal matrices and satisfies V ∗ = V >. The column vectors of U are called left
singular vectors and the column vectors of V are called right singular vectors as well.
Though this form of factorization is not unique in general, Σ can be uniquely determined
for A by sorting Σii in descending order. U and V are not unique even in the case because
the column vectors corresponding to multiple roots Σii = Σjj are exchangeable.

4

When the matrix A is factorized as (1),

AA∗ = UΣV ∗V Σ∗U∗ = U(ΣΣ∗)U∗ (2)

A∗A = V Σ∗U∗UΣV ∗ = V (Σ∗Σ)V ∗ (3)

are hold. Each (2) and (3) is the form of eigenvalue decomposition of positive semi-
definite matrix AA∗ and A∗A with the U and V composed of the eigenvectors of AA∗ and
A∗A, respectively. Singular value decomposition can be interpreted as a generalization
of eigenvalue decomposition in this sense.

Singular value decomposition is applied to many practical problems such as signal
processing, low-rank matrix approximation and data mining. For example, let Σ′ be an
n′×n′(n′ < m,n) matrix which picks the elements σ11 to σn′n′ from an m×n matrix Σ
then,

B = U ′Σ′V ∗′

gives an approximation of the matrix A.

3 Narrow Band Reduction Approach for Singular Value
Decomposition with the OQDS Algorithm for Lower Tridi-
agonal Matrices

The QR algorithm and its related algorithms for singular value decomposition are rarely
performed above general matrices but often bidiagonal matrices which are reduced from
the given general matrices because the iterations of the algorithms have too high compu-
tational complexity to be applied to general dense matrices. In addition, the number of
the iterations is larger than that of the reduced bidiagonal matrices and worsen accuracy
because of cumulative effect of rounding error. Therefore, it is popular that the general
matrix given is reduced into bidiagonal matrix and then, apply QR algorithm for the
bidiagonal matrix. The two step computation makes it possible not only to reduce the
number of the iteration but to enhance the precision of estimating lower bound of the
singular values which is required to the shift method introduced the following subsec-
tion. On the other hand, bidiagonalization has a higher computational complexity than
the QR algorithm and makes the computation time dominant among the whole of the
computation. A narrow band reduction approach is an attempt to reduce the computa-
tion time of the dominant part[26]. By introducing the narrow band reduction instead of
bidiagonalization, the reduction part is implemented as multiplication of matrix and vec-
tor which receives benefit of cache. In this approach, the latter part of the computation
requires singular solver for narrow band matrix. We introduce the OQDS algorithm as
the singular solver part and discuss the implementation details of the OQDS algorithm
in this section.

For simplicity, it is noted that all matrix appears in this section are supposed to be
real and input matrix is reduced into n× n square matrix.

5

3.1 OQDS algorithm

Classical OQDS algorithm is proposed by von Matt[5] as a modified and specialized
form of the implicit Cholesky-LR algorithm for bidiagonal matrices. In this subsection,
we explain the behavior and defect of the Cholesky-LR algorithm for lower triangular
matrix.

Let

L =



α1 0 0

β1 α2
. . .

...

γ1 β2 α3
. . .

...
...

. . .
. . .

. . . 0
. . . γn−2 βn−1 αn


(4)

be an n × n lower triangular matrix. One step of the Cholesky-LR algorithm [27] with
the shift τ2 transforms the lower triangular matrix L into the upper triangular matrix
U by

L>L− τ2I = U>U. (5)

Then, we set L′ := U>. In this operation, the value of τ must be smaller than the
minimum singular value of L to keep the positive definiteness of L>L − σ2I. It is not
obvious how to obtain τ , but we explain the estimation method of the value in the
following subsection. This procedure is called Cholesky-LR transformation.

By repeating the Cholesky-LR transformation iteratively, the diagonal elements of
the matrix L converge to the singular values of the matrix L and the non-diagonal
elements get into zero. The method for computing singular value by this iteration is
called the Cholesky-LR algorithm.

However, it is known that the Cholesky decomposition shown in the algorithm is
numerically unstable; the Cholesky decomposition may collapse by zero divide regard-
less of the shift value τ . For resolving this problem, we introduce the implicit Cholesky
decomposition [5]. The implicit Cholesky decomposition is designed by using the gen-
eralized Givens transformation which can be performed numerically stably. The OQDS
algorithm is formulated as the iteration of the implicit Cholesky-LR transformations and
only composed of the orthogonal transformations what its name implies.

3.1.1 Implicit Cholesky decomposition

The implicit Cholesky decomposition computes an upper triangular matrix U from L
and τ by an orthogonal transformation

Q

[
L
0

]
=

[
U
τI

]
, (6)

where Q is a 2n × 2n orthogonal matrix. It is readily verified that, for the same L
and τ , the same U is obtained by (6) as by the Cholesky-LR transformation (5). The

6

orthogonal matrix Q is given by superposition of the Givens and the generalized Givens
transformations on R2.

Definition 3.1 (Generalized Givens transformation [5]). Let τ be a real number. The
transformation on R2

G

[
x1
x2

]
=

[
r
τ

]
(7)

by a 2× 2 orthogonal matrix G is called the generalized Givens transformation if

r = ±
√
x21 + x22 − τ2

and

σ2 < x21 + x22.

Such a matrix G is uniquely determined by

G =

[
c s
−s c

]
, (8)

[
c
s

]
=

1

x21 + x22

[
x1 x2
x2 −x1

] [
r
τ

]
. (9)

It should be noted that the generalized Givens transformation is equal to the ordinary
Givens transformation if τ = 0. The procedure of the generalized Givens transformation
is shown in Algorithm 1. The first step of the implicit Cholesky decomposition is a series
of three orthogonal transformations:

G1



α1

β1 α2

γ1 β2
. . .

γ2
. . .
. . .

0
0

. . .

0



=



α̃1

β1 α2

γ1 β2
. . .

γ2
. . .
. . .

τ
0

. . .

0



, (10)

7

Algorithm 1 Generalized Givens transformation (rotg2(x1, x2, τ, c, s))

scale := max (|x1| , |x2|)
if scale = 0 then
c := 1
s := 0

else
x1 := x1/scale
x2 := x2/scale
t := τ/scale
norm2 := x21 + x22
r :=

√
norm2− t2

c := (x1 × r + x2 × t) /norm2
s := (x2 × r − x1 × t) /norm2
x1 := scale× r
x2 := τ

end if

G2



α̃1

β1 α2

γ1 β2
. . .

γ2
. . .
. . .

τ
0

. . .

0



=



˜̃α1 β̃1 0
0 α̃2

γ1 β2
. . .

γ2
. . .
. . .

τ
0

. . .

0



, (11)

and then

Gn



˜̃α1 β̃1 0
0 α̃2
... β̃2

. . .

0 γ̃2
. . .

∗ . . .

τ
0

. . .

0



=



α̌1 β̌1 γ̌1
0 α̃2
... β̃2

. . .

γ̃2
. . .

0
. . .

τ
0

. . .

0



. (12)

8

In the first column, the first transformation (10) by G1 generates the lower diagonal
element τ . From the second (11) to the nth (12) by G2, . . . Gn vanish β1, γ1, . . . , respec-
tively. Here, G1 is the generalized Givens transformation for the first and the (n+ 1)th
rows and G2, . . . , Gn are ordinary Givens transformations for the first and the second
rows, the first and the third rows, respectively. After the G1, G2, . . . , Gn transforma-
tions, we obtain the first column of the matrix on the right hand side of equation (6).
Applying similar operations for second to nth columns successively, we obtain the up-
per triangular matrix U in the equation (6) and let the next L be U> to continue the
algorithm. The operations are numerically stable because all operations are formulated
as the generalized Givens transformation.

Algorithm 2 summarizes the above procedures. The subroutines “rotg” and “rot”
appeared in the Algorithm 2 are basic BLAS routines. If we call the “rotg(x1, x2, c, s)”,
the rotation angle of the Givens transformation is stored in the arguments c and s with
cos and sin forms. The subroutine “rot(x1, x2, c, s)” applies the Givens transformation
defined by the arguments c and s.

Algorithm 2 Implicit Cholesky Decomposition for an n× n lower triangular matrix L
(icds(L))

U := 0
for i = 1 to n do
α̌i := αi
rotg2(α̌i, 0, τ, c, s)

*eliminate subdiagonal element
rotg(α̌i, βi, c, s)
rot(β̌i, βi, c, s)

...

*eliminate nth non-diagonal element
rotg(α̌i, γi, c, s)
rot(β̌i, βi, c, s)
...

end for
return Ľ

3.2 Improvements of cash efficiency of Householder reduction

The QR algorithm is successful solver for singular value problem of general matrices but
requires bidiagonalization before application. The bidiagonalization part has not only
high computational complexity but also cache inefficiency because of its formulation

9

mainly using the multiplication among vector and vector. For this reason, we reduce
the dense matrices into tridiagonal matrices which is formulated as the iterations of
cache-efficient matrix-matrix multiplication. Figure 1 shows the flow of representative
xGESVD singular solver routine using Householder bidiagonalization and QR algorithm
in LAPACK [2]. In the next subsection, we introduce the well-known basic Householder

Figure 1: Flow of xGESVD singularsolver for matrix.

tridiagonalization method. The tridiagonalization method is also introduced as the bidi-
agonalization step of singular solver of positive definite matrix.

3.2.1 Basic Householder method

Algorithm 3 shows the basic tridiagonalization method [1, 28] using the Householder
transformation. It should be noted that SIGN(x) means a sign of x. Like the following
figure 2, the vector d(k) shown in this algorithm consists of N − k elements located in
k+ 1 to N -th row in k-th column and let C(k) be a submatrix which has (k+ 1, k+ 1)th
element as upper left corner. In the computation for k-th step, we generate a reflection

Figure 2: Matrix at the k-th step of the Householder method.

operator vector u(k) and compute p(k) and q(k) by multiplying C(k) and u(k). Then, we
update C(k) by using u(k) and q(k). This update is called “rank-2 update” since this
operation is adding two rank 1 matrices to C(k). This k-th step operation corresponds
to the following Householder similarity transformation

C(k) := (H(k))
−1
C(k)H(k)

10

where

H(k) = I − α(k)u(k)u(k)>.

In the Householder method, matrix-vector multiplications and rank-2 updates cost
2
3N

3 operations and occupy almost all operations in this method. However, this method
is cache inefficient because these operations require O(n2) memory access for O(n2)
operations if the size of C(k) is n.

Algorithm 3 Householder method

for k = 1, N − 2 do

σ(k) =
√

d(k)>d(k)

u(k) =
(
d
(k)
1 − SIGN(d

(k)
1)σ(k), d

(k)
2 , . . . , d

(k)
N−k

)
α(k) = 2/

∥∥u(k)
∥∥
2

p(k) = α(k)C(k)u(k)

β(k) = α(k)u(k)>p(k)/2
q(k) = p(k) − β(k)u(k)

C(k) := C(k) − u(k)q(k)> − q(k)u(k)>

end for

3.2.2 Dongarra’s algorithm

To resolve the cache inefficiency in the rank-2 update, Dongarra proposes multi-step
algorithm in [3, 4]. Algorithm 4 shows this algorithm. In this algorithm, (X)i means the
vector which is composed of i-th column of matrix X and [A|B] means a matrix formed
by putting matrix A and B side by side. For easy explanation, we assume that N is a
multiple of L.

We don’t apply the rank-2 updates for each step but the rank-2L update which all
at once operates L step similarity transformation

C(K×L) := (H(K×L))
−1
. . . (H((K−1)×L+1))

−1 × C((K−1)×L) ×H((K−1)×L+1) . . . H(K×L).

This operation is one of matrix operator which has high rate of cache reuse. However,
there are still many matrix-vector multiplications in this algorithm which has low cache
reuse rate. Narrow-band reduction approach proposed by T. Imamura is one of solutions
for this problem.

3.2.3 Narrow band reduction approach

To improve the cache efficiency caused by matrix-vector multiplication, T. Imamura ap-
plies a BLAS Level 2.5 (L2.5) matrix-narrow band matrix multiplication method instead

11

Algorithm 4 Dongarra’s algorithm

for K = 1, N/L do
U ((K−1)×L) = φ,Q((K−1)×L) = φ
for k = (K − 1)× L+ 1,K × L do

d(k) := d(k) − U (k−1)(Q(k−1)>)k−(K−1)×L −Q(k−1)(U (k−1)>)k−(K−1)×L

σ(k) =
√

d(k)>d(k)

u(k) =
(
d
(k)
1 − SIGN(d

(k)
1)σ(k), d

(k)
2 , . . . , d

(k)
N−k

)
α(k) = 2/

∥∥u(k)
∥∥
2

p(k) = α(k)
(
C(k) − U (k−1)Q(k−1)> −Q(k−1)U (k−1)>

)
u(k)

β(k) = α(k)u(k)>p(k)/2
q(k) = p(k) − β(k)u(k)

U (k) =
[
U (k−1)|u(k)

]
Q(k) =

[
Q(k−1)|q(k)

]
end for
C(k) := C(K−1)×L − U (K×L)Q(K×L)> −Q(K×L)U (K×L)>

end for

of BLAS Level 2 (L2) matrix-vector multiplication. Algorithm 5 shows narrow band re-
duction algorithm with BLAS L2.5. This algorithm is originally proposed as first step of
multi-step tridiagonalization method by Bischof, and Wu, et al.[29, 30].

The algorithm is composed of the computation for K = 1 to K = N/L − 1 step.
Figure 3 shows the definition of block vector D(K) and matrix C(K) in the K-th step. The

Figure 3: Matrix at the K-th step of the narrow band reduction method.

flow of each step is similar to the classical Householder method which is introduced in
the former subsection but the vectors in the Householder method are exchanged to block
vectors (or matrices of L bandwidth) and scalars are exchanged to L×L matrices. For K-
th step processing, we first look at the block vector D(K) and obtain a block Householder

reflector I−U (K)α(K)U (K)T which transforms D(K) to a block vector which has an upper
triangular matrix as the first block and zero matrices as the latter matrices as shown
as figure block. The U (K) and α(K) are obtained easily by QR decomposition and WY-

12

Algorithm 5 Narrow band reduction algorithm

for K = 1, N/L− 1 do
*Generate block Householder reflector
Obtain a block Householder reflector I − U (K)α(K)U (K)> transforms D(K) into a
matrix which has upper triangular matrix as the first block and zero matrix as
second and latter blocks.

P (K) = C(K)U (K)α(K)

β(K) = α(K)U (K)>P (K)>/2
Q(K) = P (K) − U (K)β(K)

C(k) := C(K) − U (K)Q(K)> −Q(K)U (K)>

end for

representation [31]. We next generate block vectors P (K) and Q(K) by multiplication
U (K) to the matrix C(K) Then, we update the C(K) by U (K) and Q(K). The above
operations are equivalent to the following block Householder transformation

C(K) :=
(
H̃(K)

)−1
C(K)H̃(K)

with the block Householder reflector

H̃(K) := I − U (K)α(K)C(K)>.

Then, we complete the K-th block band reduction.
On these operations, matrix-vector multiplications and rank-2L updates occupy al-

most all of computation. We can compute these operations with BLAS L2.5 (computation
among L×L matrices) then the cache reuse rate become higher if we set the bandwidth
L larger. However, we get narrow band matrix instead of tridiagonal matrix if we use
the narrow band reduction method therefore we cannot apply conventional tridiagonal
eigen/singular solver directly and we have to adopt a solver for band matrices.

T. Imamura applies the divide and conquer method to the narrow band eigenvalue
problem then get a higher performance than classical tridiagonalization and divide and
conquer method. T. Imamura also reported that we get maximum performance if we
reduce full-matrix to pentadiagonal matrix. However, the divide and conquer method
on LAPACK may collapse and return error code for some ill-conditioned matrices. In
this dissertation, we consider the other method to compute the singular value of positive
definite pentadiagonal matrices. To solve the singular value problem, we introduce the
OQDS algorithm for lower tridiagonal matrix which Cholesky-decomposed from the
positive definite pentadiagonal matrix.

3.3 OQDS algorithm for lower tridiagonal matrices

The differential quotient difference with shifts algorithm (DQDS algorithm) is well-
known method for singular value computation of tridiagonal (or decomposed bidiagonal)

13

matrices proposed by Fernando and Parlett and the algorithm indicates high performance
regarding both speed and precision. However, it is hard to adapt the DQDS algorithm to
narrow band matrices because the algorithm is highly specialized for bidiagonal matrices.
Then, we try to adapt the OQDS algorithm to lower tridiagonal matrices. The OQDS
algorithm proposed by von Matt has expandability for general triangular matrices as in-
troduced in Subsection 3.1. Comparing with the DQDS algorithm as bidiagonal singular
solver, OQDS algorithm has no practical advantage against the DQDS algorithm but
theoretically, it is expected to perform high precision computation for general triangular
matrices.

In this section, we introduce the shift strategy and convergence criteria required for
the application of OQDS algorithm for lower tridiagonal matrices.

3.4 Shift strategy

In the implicit Cholesky decomposition described in Section 3.1.1, proper choice of the
shift value τ significantly accelerates convergence of the OQDS algorithm, same as other
LR-based algorithms. The shift value τ must be smaller than the minimum singular
value of the matrix L to keep the positive-definiteness of U>U while each singular
value σ1, σ2, . . . , σn−1, σn decreases to

√
σ12 − τ2,

√
σ22 − τ2, . . . ,

√
σn2 − τ2 by shift τ .

Besides, it is reported that LR-based algorithms converge in proportion to the value
of σn−1/σn then we can accelerate the convergence if we can estimate accurate lower
bound of minimum singular value and reduce the value of σn by the shift. The reduction
of the number of iterations until convergence not only makes the algorithm faster but
also more accurate by the reduction of rounding error accumulates. Estimation method
of lower bound of minimum singular value for lower tridiagonal matrices is not discussed
actively while many strategies proposed for bidiagonal matrices that is applied to DQDS
algorithm. Therefore, we propose a method to estimate the lower bound of the minimum
singular value of the lower tridiagonal matrix L or the minimum eigenvalue of L>L.

In this section, we first introduce the classical Gerschgorin shift and next discuss the
Algebraic shift for lower tridiagonal matrices.

3.4.1 Gerschgorin shift

Gerschgorin shift is a simple estimation method of lower bound of minimum eigenvalue
based on the following theorem.

Theorem 3.1 (Gerschgorin [13]). For an n× n matrix A = (aij), let us define

Ri :=
∑
k 6=i
|aik|. (13)

Then, for any eigenvalue λ of A, there exists an integer i such as

|λ− aii| ≤ Ri. (14)

14

If the matrix A is positive-definite symmetric, min (aii −Ri) gives a lower bound of
the eigenvalues since all the eigenvalues of A are positive real number.

The Gerschgorin shift has the following two advantages;

� Low computational complexity

– We just compute the summation of absolute of diagonal and nondiagonal
elements.

� Tolerance to round off error

– No recursion formula exists in Gerschgorin shift.

Because of the advantages, the Gerschgorin shift fits diagonal dominant matrices such
as bidiagonal and lower tridiagonal matrices. Algorithm 6 summarize the computation
of Gerschgorin shift of L>L.

3.4.2 Algebraic shift

The Gerschgorin shift has low computational complexity therefore computes a lower
bound fast but for the matrices whose diagonal elements are not dominant such as
the lower tridiagonal matrices, the Gerschgorin shift cannot return sharp shift value.
On a preliminary experiment, we cannot compute singular values of large scale lower
tridiagonal matrices by the OQDS algorithm if we only use the Gerschgorin shift. To
resolve the problem, we apply Algebraic shift proposed by T. Yamashita et al. in [35].
Algebraic shift is composed of three shift; the generalized Newton, Laguerre and Kato-
Temple shift obtained by the trace value of inverse matrix and it is reported by T.
Yamashita that for bidiagonal matrices, the shift returns extremely sharp lower bound.
In this subsection, we consider the application of the Algebraic shift to lower tridiagonal
matrices. In the first, we introduce the method of obtaining trace value of pentadiagonal
matrices and the Generalized Newton shift simply obtained by the trace.

3.4.3 A method for obtaining the trace of inverse of pentadiagonal matrices
and generalized Newton shift

For a positive-definite symmetric matrix A and an arbitrary positive integer p, the value

of (tr(A−p))
−1/p

is a lower bound of the eigenvalues of A. The lower bound is known as
Generalized Newton shift.

Then, finding the value of tr((L>L)
−p

), we get a lower bound of singular values

of L. We consider a differential method of computing the value of tr((L>L)
−p

) in this
subsection.

15

Algorithm 6 Gerschgorin shift (gerschgorin(L))

τ := α2
n−1 + β2n−2 + γ2n−3 − |αn−3γn−3| − |βn−3γn−3 + αn−2βn−2|

if τ ≤ 0 then
return 0

end if
tmp := α2

n−2 + β2n−3 + γ2n−4 − |αn−4γn−4| − |βn−4γn−4 + αn−3βn−3| −
|βn−3γn−3 + αn−2βn−2|
if tmp ≤ 0 then

return 0
else if tmp < τ then
τ := tmp

end if
for i = N - 2 to 3 do
tmp := α2

i+β
2
i−1+γ2i−2−|αi−2γi−2|−|βi−1γi−1 + αiβi|−|βi−2γi−2 + αi−1βi−1|−|αiγi|

if tmp ≤ 0 then
return 0

else if tmp < τ then
τ := tmp

end if
end for
tmp := α2

2 + β21 − |α1β1| − |β1γ1 + α2β2| − |α2γ2|
if tmp ≤ 0 then

return 0
else if tmp < τ then
τ := tmp

end if
tmp := α2

1 − |α1β1| − |α1γ1|
if tmp ≤ 0 then

return 0
else if tmp < τ then
τ := tmp

end if

16

Let L̄ be an n× n lower tridiagonal matrix,

L̄ =


ᾱ1

β̄1 ᾱ2

γ̄1 β̄2 ᾱ3

. . .
. . .

. . .

γ̄n−2 β̄n−1 ᾱn

 (15)

determined from L with shift s by

L̄L̄> = LL> − sI. (16)

The relationships among elements are given by

ᾱ2
i + β̄2i−1 + γ̄2i−2 = α2

i + β2i−1 + γ2i−2 − s, (17)

β̄i−2γ̄i−2 + ᾱi−1β̄i−1 = βi−2γi−2 + αi−1βi−1, (18)

ᾱi−2γ̄i−2 = αi−2γi−2. (19)

Differentiating equations (17)–(19) with respect to s, we obtain

2ᾱiᾱ
′
i + 2β̄i−1β̄

′
i−1 + 2γ̄i−2γ̄

′
i−2 = −1, (20)

β̄′i−2γ̄i−2 + β̄i−2γ̄
′
i−2 + ᾱ′i−1β̄i−1 + ᾱi−1β̄

′
i−1 = 0, (21)

ᾱ′i−2γ̄i−2 + ᾱi−2γ̄
′
i−2 = 0. (22)

Note that the αi, βi, γi are independent of s but the ᾱi, β̄i, γ̄i are not. Differentiating
once more, we get

2ᾱ′2i + 2ᾱiᾱ
′′
i + 2β̄′2i−1 + 2β̄i−1β̄

′′
i−1 + 2γ̄′2i−2 + 2γ̄i−2γ̄

′′
i−2 = 0, (23)

ᾱ′′i−2γ̄i−2 + 2ᾱ′i−2γ̄
′
i−2 + ᾱi−2γ̄

′′
i−2 = 0, (24)

β̄′′i−2γ̄i−2 + 2β̄′i−2γ̄
′
i−2 + β̄i−2γ̄

′′
i−2 + ᾱ′′i−1β̄i−1 + 2ᾱ′i−1β̄

′
i−1 + ᾱi−1β̄

′′
i−1 = 0. (25)

Let us write the eigenvalues of the matrix LL> by λ1, λ2, · · · , λn. Then, the characteristic
polynomial of the matrix L̄L̄>

f (s) = det(LL> − sI)

= (λ1 − s)(λ2 − s) · · · (λn − s), (26)

17

since the matrix L is triangle, it is expressed by

f(s) = ᾱ1ᾱ2 · · · ᾱn. (27)

Let us define

g(s) := −f
′(s)

f(s)
= −2

ᾱ′1
ᾱ1
− 2

ᾱ′2
ᾱ2
− · · · − 2

ᾱ′n
ᾱn
, (28)

h(s) := g′(s)

= −2
ᾱ′′1ᾱ1 − ᾱ′21

ᾱ2
1

− · · · − 2
ᾱ′′nᾱn − ᾱ′2n

ᾱ2
n

(29)

so that g(0) = tr((L>L)
−1

) and h(0) = tr((L>L)
−2

). Each ᾱi tends to αi as s → 0.
Hence, we can calculate the value of ᾱ′i, β̄

′
i, γ̄
′
i, ᾱ

′′
i , β̄

′′
i , γ̄′′i at s = 0 from αi, βi, γi by

using (20)–(25), and then g(0) and h(0) by (28) and (29). It is clear by the definition
of g(0) and h(0) that the values are always nonnegative without numerical error (in
infinite-precision arithmetic).

3.4.4 Laguerre shift

If we already have the value of tr((LL>)
−1

) and tr((LL>)
−2

), we could improve the
sharpness of the shift by O(1) operation. Laguerre shift is one of the methods to improve
the shift value.

Theorem 3.2 (Laguerre [14]). For an n× n positive-definite symmetric pentadiagonal
matrix B = LL>, let θ be the following value:

θ :=
n

tr (B−1) +

√
(n− 1)

(
n tr (B−2)− tr (B−1)2

) .
Then, the θ is a lower bound of the eigenvalues of B which is greater than Tr(B−1)

−1

and Tr(B−2)
−1/2

.

If the value n tr
(
B−2

)
− tr

(
B−1

)2
is negative, Laguerre shift is useless. In that case,

we adopt the generalized Newton shift.

3.4.5 Kato-Temple shift

There is another lower bound estimation method, Kato-temple shift.

Theorem 3.3 (Kato-Temple [12]). For an n×n symmetric matrix An, let An−1 denote
the submatrix of An obtained by deleting the last row and column. For any lower bound

18

λ∗ of the eigenvalues of An−1, and for any x ∈ Rn, ‖x‖ = 1, let ρ = x>Ax. Then, if
ρ < λ∗ , the value

ρ− ‖Anx− ρx‖
2

λ∗ − ρ
≤ λmin (An)

gives a lower bound of the eigenvalues of An.

We choose x = (0, . . . , 0, 1)>. The method requires λ∗ which is a lower bound for
the submatrix An−1, but the generalized Newton method enables us to find the lower
bound of An−1 in computation of the lower bound of An. Consequently, we obtain one
more improved shift value by O(1) operation.

The procedure of the proposed shift composed by the generalized Newton, Laguerre
and Kato-Temple is shown in Algorithm 7. We adopt the largest value of them.

Then, one step of the OQDS algorithm works as Algorithm 8.

3.5 Convergence criteria

We can stop the OQDS algorithm where the non-diagonal elements of matrices L become
so small but it requires many iterations to converge all non-diagonal elements into zero.
So many iterations not only decelerate the algorithm but also reduce the precision of
obtained singular value. Therefore, we stop the algorithm in an appropriate number of
iteration. In this section, we introduce deflation and splitting for the OQDS algorithm
and design convergence criteria for these operations.

3.5.1 Deflation and splitting

Deflation and splitting are familiar stopping method for QD-based algorithms. Deflation
is an operation isolating sufficiently converged σn from matrix L and restarting the
OQDS algorithm for Ln−1 submatrix of L as the following figure 4. Splitting is an

Figure 4: deflation

operation separating matrix L to submatrices L(1) and L(2) as the figure 5 below where
corresponding off-diagonal elements converges sufficiently. Through these operations,
not only we can stop the algorithm adequately but also accelerates the algorithm by
effective shift and parallel computing for split matrices. However, it is nontrivial how
to assess a series of matrices generated by the iterative process of the OQDS algorithm

19

Algorithm 7 Algebraic shift for lower tridiagonal matrix L (algshift(L))

α′1 := −1/(2α1), β
′
1 := −α′1β1/α1, γ

′
1 := −α′1γ1/α1

α′2 := (−β1β′1 − 0.5)/α2, β
′
2 := −(γ′1β1 + γ1γ

′
1 + α′2β2)/α2

α′3 := −(1 + 2× γ1γ′1 + 2β2β
′
2)/(2α3)

α′′1 := −α′1
2/α1, β

′′
1 := −(α′′1β1 + 2α′1β

′
1)/α1, γ

′′
1 := −(α′′1γ1 + 2α′1γ

′
1)/α1

α′′2 := −(β′1
2 + β1β

′′
1 + α′2

2)/α2, β
′′
2 := −(γ′′1β1 + 2γ′1β

′
1 + γ1β

′′
1 + α′′2β2 + 2α′2β

′
2)/α2

α′′3 := −(γ′1
2 + γ1γ

′′
1 + β′2

2 + β2β
′′
2 + α′3

2)/α3

for i = 4 to N do
γ′i−2 := −α′i−2γi−2/αi−2
β′i−1 := −(β′i−2γi−2 + βi−2γ

′
i−2 + α′i−1βi−1)/αi−1

α′i := −(1 + 2βi−1β
′
i−1 + 2γi−2γ

′
i−2)/(2αi)

γ′′i−2 := −(α′′i−2γi−2 + 2α′i−2γ
′
i−2)/αi−2

β′′i−1 := −(β′′i−2γi−2 + 2β′i−2γ
′
i−2

+βi−2γ
′′
i−2 + α′′i−1βi−1 + 2α′i−1β

′
i−1)/αi−1

α′′i := −(α′i
2 + β′i−1

2 + βi−1β
′′
i−1 + γ′i−2

2 + γi−2γ
′′
i−2)/αi

end for
tr1 := 0
for i = 1 to N − 1 do
tr1 := tr1− (2α′i/αi)

end for
tr2 := 0
for i = 1 to N − 1 do
tr2 := tr2− 2(α′′i αi − α′i

2)/α2
i

end for
λ∗ := 1/sqrt(tr2)
tmp := n× tr2− tr12
if tmp > 0 then
λ∗ := max(λ∗, n/(tr1 +

√
(n− 1)× tmp))

end if
tr1 := tr1− (2α′N/αN)

tr2 := tr2− 2(α′′NαN − α′N
2)/α2

N

τ := 1/sqrt(tr2)
x := (0, . . . , 0, 1)>

ρ := x>Ln−1x
if ρ < λ∗ then
τ := max(τ, ρ− ‖Anx− ρx‖2/ (λ∗ − ρ))

end if
tmp := n× tr2− tr12
if tmp > 0 then
τ := max(τ, n/(tr1 +

√
(n− 1)× tmp))

end if
return τ

20

Algorithm 8 oqds step(oqds(L, T))

flag := 0
if flag = 0 then
τ := algshift(L)

else if flag := 1 then
τ := gerschgorin(L)

else
τ := 0

end if
if τ2 + T 2 = T 2 then
Ľ := icds(L, 0)
L := Ľ

else
Ľ := icds(L, τ)
if α̌ 6= α̌ then
flag := flag + 1

else
T :=

√
T 2 + τ2

L := Ľ
end if

end if

Figure 5: splitting

21

converges sufficiently. In the next subsection, we consider the situation that we can
perform the deflation or splitting properly where the values of off-diagonal and second
off-diagonal elements of lower tridiagonal matrices are so small. Specifically, we estimate
the perturbation of eigenvalues of L>L and LL> by Weyl’s theorem.

3.5.2 1-norm convergence criteria

Let us write

L̂ := L− βkek+1ek
>

which is the matrix equal to L except for zero at (k + 1, k)-entry. Then

L>L = L̂>L̂+ E1, (30)

LL> = L̂L̂> + E2 (31)

hold, where the perturbation matrices

E1 := β2ekek
> + αk+1βk

(
eke
>
k+1 + ek+1e

>
k

)
+ βkγk−1

(
ek−1e

>
k + eke

>
k−1

)
, (32)

E2 := β2ek+1ek+1
> + αkβk

(
ek−1e

>
k + eke

>
k−1

)
+ βkγk

(
ek+1e

>
k + eke

>
k+1

)
. (33)

Theorem 3.4 (Weyl’s monotonicity theorem [15, 16]). For an n × n positive-definite
matrix A, let λi (A) denote the ith largest eigenvalue of A. Then, there exist reals ui and
vi such that

λi

(
L>L

)
= λi

(
L̂>L̂

)
+ ui ‖E1‖p , (34)

λi

(
LL>

)
= λi

(
L̂L̂>

)
+ vi ‖E2‖p (35)

where |ui| ≤ 1, |vi| ≤ 1.

From the definitions (32) and (33) of E1 and E2, we have

‖E1‖1 = ‖E1‖∞ = |βk| (|αk+1|+ |βk|+ |γk−1|) , (36)

‖E2‖1 = ‖E2‖∞ = |βk| (|αk|+ |βk|+ |γk|) . (37)

By Weyl’s monotonicity theorem, we thus get the numerical deflation or splitting crite-
rion to neglect a off-diagonal element βk:

T + |βk| (|βk|+ min (|αk+1|+ |γk−1| , |αk|+ |γk|)) ' T, (38)

where ‘'’ means that the left-hand side and the right-hand side are numerically equal
and T is the square summation of shift values previously applied. We assume that βk is
so small and negligible provided that (38) holds numerically.

22

Similarly, we get the numerical criterion for neglecting a second off-diagonal element
γk. On the setting of

L̂ := L− γkek+2ek
>,

the perturbation matrices are given by

E′1 := γ2ekek
> + αk+2γk

(
ek+2e

>
k + eke

>
k+2

)
+ βk+1γk

(
ek+1e

>
k + eke

>
k+1

)
,

E′2 := γ2ek+2ek+2
> + αkγk

(
ek−2e

>
k + eke

>
k−2

)
+ βkγk

(
ek−1e

>
k + eke

>
k−1

)
.

Then, by evaluating the 1- and ∞-norms of these matrices, we obtain the criterion for
neglecting a second off-diagonal element γk as follows:

T + |γk| (|γk|+ min (|αk+2|+ |βk+1| , |αk|+ |βk|)) ' T. (39)

For the matrices in iteration, we perform deflation and splitting as follows:

1. If βn−1 and γn−2 in the last row satisfy the criteria (38) and (39), then we deflate
the matrix by deleting the last row and column.

2. If βk−1, γk−1 and γk−2 satisfy the criteria (38) and (39), then we split the matrix
into two submatrices formed by rows and columns 1 to k−1 and k to n, respectively.

3.5.3 2-norm convergence criteria

In the previous subsection, we design convergence criteria by estimating the perturbation
of equation (34) and (35) with 1-norm. Although the choice of norm dimension p is
arbitrary, we can assess the convergence more sharply if we obtain 2-norm of perturbation
matrices E1 and E2. In other words, we can perform deflation and splitting faster with
2-norm convergence criteria. 2-norm of a matrix is equal to the maximum absolute of
eigenvalues, however, E1 and E2 are three-by-three matrices and we generally have to
solve complicated formula to obtain the eigenvalues. Moreover, there are no formula
to obtain eigenvalues for larger matrices if we consider the algorithm for wider band
matrices. However, in case of 32, characteristic polynomial of E1 is

f(E1) = x3 − x2β2k − x(β2kγ
2
k−1 + β2kα

2
k+1)

hence we can factorize and reduce the cubic characteristic polynomial to quadratic poly-
nomial as follows

f(E1) = x(x2 − xβ2k + (β2kγ
2
k−1 + β2kα

2
k+1)).

Then, we obtain the following 2-norm convergence criterion

T +
1

2
|βk|

(
|βk|+

√
β2k + min(4α2

k+1 + 4γ2k−1, 4α
2
k + 4γ2k)

)
' T. (40)

23

Similarly, for E2, we obtain the criterion

T +
1

2
|γk|

(
|γk|+

√
γ2k + min(4α2

k+2 + 4β2k+1, 4α
2
k + 4β2k)

)
' T. (41)

By using these 2-norm criteria, the OQDS algorithm may not run faster because 2-norm
criteria require square root computation though the criteria allow to perform deflation
and splitting faster.

3.6 Numerical experiments

We perform some numerical experiments in order to confirm that the proposed singular
solver with narrow band reduction approach performs faster computation than conven-
tional method. In other word, if the decrease of computation time of tridiagonalization
compared with conventional bidiagonalization surpasses the increase of singular value
computation time of OQDS algorithm for lower tridiagonal matrices compared with
that of DQDS algorithm for bidiagonal matrices, it can be said that the goal is achieved.

The numerical experiments were performed on a Linux PC with Intel Core i7 920
(Nehalem) 2.66GHz and DDR3-1066 12GB memory. Each program is compiled by Intel
C/C++ compiler with -fast and -mkl option.

We apply the classical Householder reduction method to bidiagonalization while ap-
ply the narrow band reduction method to lower tridiagonalization, respectively. The
dgebd2 subroutine on LAPACK is used for bidiagonalization and hand coding reduc-
tion program with BLAS L2.5 is used for lower tridiagonalization. Table 1 show the
computation time of each algorithm. The first row shows the size of matrices. The sec-
ond and the third rows show the computation time taken by the classical Householder
bidiagonalization and the block Householder lower tridiagonalization, respectively.

Table 1: Computation time of preprocessing [sec.]
matrix size 2000 4000 6000 8000 10000

bidiagonalization 9.554 78.877 261.779 637.437 1209.908
lower tridiagonalization (proposed) 3.991 33.514 110.846 267.367 518.655

We compare the time of singular value computation by DQDS for bidiagonal matrices
and OQDS for lower tridiagonal matrices. It should be noted that: The DQDS algorithm
were applied to random bidiagonal matrices and the proposed OQDS algorithm for
lower tridiagonal matrices were applied to random lower tridiagonal matrix. We adopt
the DBDSQR routine on LAPACK as DQDS algorithm while the OQDS is our hand
coding program with 1-norm convergence criteria. Table 2 shows the computation time
of each algorithm. The first row shows the size of matrices. The second and the third
rows show the computation time of preprocessing taken by the classical Householder
bidiagonalization for the DQDS and by the block Householder lower tridiagonalization
for the extended OQDS algorithm.

24

Table 2: Computation time of singular value computation [sec.]
matrix size 2000 4000 6000 8000 10000

DQDS 0.191 0.633 1.364 2.424 3.698
extended OQDS 1.146 4.119 8.641 15.166 22.312

We perform more experiments for larger matrices to confirm the scalability of pro-
posed OQDS algorithm for lower tridiagonal matrices. The first row in Table 3 shows
the size of matrices. The second row shows the computation time taken by proposed
OQDS algorithm for lower tridiagonal matrices.

Table 3: Computation time of singular value computation (larger size) [sec.]
matrix size 20000 40000 60000 80000 100000

DQDS 12.469 42.563 97.847 167.703 247.550
extended OQDS 84.974 316.973 703.159 1266.273 1862.898

3.7 Discussion about the narrow band approach of singular value de-
composition with the extended OQDS algorithm

The first experiment (Table 1) shows a significant effectiveness of the proposed method:
the computation time for the narrow band reduction takes less time than half of the
classical Householder reduction for matrices of the same size. The result suggests that
the bottlenecks of the Householder reduction exist in matrix-vector multiplications of the
Householder transformation and rank-2 updates. Then the performance can be improved
by introducing the narrow band reduction method. In addition to less computational
complexity of the narrow band reduction, we can apply cache efficient BLAS level 2.5
matrix-vectors operations instead of BLAS level 2 matrix-vector operations. The method
demonstrates remarkably high performance even the block bandwidth L = 2. In the
lower tridiagonalization, we compute the multiplication among matrix and two vectors
simultaneously therefore we reduce the number of DRAM access which consumes a vast
amount of time. As a result, we can perform the tridiagonalization in the time of less
than 50 percent of bidiagonalization.

On the next experiment (Table 2, 3), the proposed OQDS algorithm costs a longer
time to compute singular values of lower tridiagonal matrices than that by the DQDS al-
gorithm to compute singular values of bidiagonal matrices. However, the preprocessing
has the computational complexity O(n3) for matrix size n while singular value com-
putation has O(n2) complexity. Therefore a vast amount of the computation time is
consumed by the preprocessing. In fact, for the same size of matrix, the preprocessing
requires much longer time than singular value computation (Table 1). For this reason,
the total time for computing singular values of full matrices by the proposed method is

25

significantly shorter than for conventional Householder bidiagonalization plus the DQDS
algorithm.

Moreover, we confirm the scalability of the proposed OQDS algorithm for larger
matrices by the experiment in Table 3. The computation time of table are then in
proportion to the square of matrix size n. It shows that we can apply the method to
larger problems.

On the other hand, we found some disadvantages of the approach. The first is that
the computational accuracy is limited to that of Householder tridiagonalization. Our
attempt to improve the accuracy of the OQDS algorithm does not contribute to total
accuracy containing tridiagonalization and singular value computation. Moreover, it is
difficult to compare the accuracy of the computed singular values because there is no test
matrix of the tridiagonal form. Therefore, we could not perform a control experiment for
the two algorithms of different input form, including preliminary reduction, in order to
find the bottleneck of the accuracy. The another disadvantage is the number of iterations
of the OQDS algorithm. The increase of the iteration is within expectation since input
matrix has more non-zero entries, however, the larger band width does not only harden
the estimation of lower bound of minimum singular values but also depresses the success
rate of shift operation. Generalized Givens transformation introduced in Section 3.1.1
might produce negative diagonal entry even if the shift value τ satisfies τ < min(σi). By
this problem, however precise we estimate the lower bound of minimum singular value,
the acceleration by the shift strategy is limited to the availability of the generalized
Givens transformation.

For those reasons, we gave up more improve of this approach and fumbled for other
application of the OQDS algorithm focusing its ability to compute singular vectors.

4 Column Space Computation Method by Using the Com-
bination of DQDS and OQDS Algorithms

The propose an combination method of DQDS and OQDS algorithms which compute
column space of bidiagonal matrix. The method is an applications of OQDS algorithm
focusing its ability to compute singular vectors. The target matrix is bidiagonal as same
as DQDS algorithm, and utilize the computational stability instead of the expandability
to band matrix which introduced the above section. In this method, DQDS algorithm is
used for computing singular values and OQDS algorithm is used for singular vectors.

4.1 DQDS algorithm for computing singular values

We introduce the outline of DQDS algorithm before the proposed method.

26

Algorithm 9 DQDS algorithm

1: d1 := q1 − s;
2: for k := 1, 2, · · · , n− 1 do
3: q̂k := dk + ek;
4: if SAFMIN × q̂k < qk+1 and SAFMIN × qk+1 < q̂k then
5: êk := (qk+1/q̂k) ek;
6: dk+1 := (qk+1/q̂k) dk − s;
7: else
8: êk := (ek/q̂k) qk+1;
9: dk+1 := (dk/q̂k) qk+1 − s;

10: end if
11: end for
12: q̂n := dn;

Let B be an n× n bidiagonal matrix:

B =


√
q1
√
e1
√
q2

. . .

. . .
√
en−1√
qn

 . (42)

In the single iteration of DQDS algorithm, the bidiagonal matrix B is transformed into
the n× n upper bidiagonal matrix,

B̂ =


√
q̂1
√
ê1
√
q̂2

. . .

. . .
√
ên−1√
q̂n

 . (43)

Algorithm 9 shows the operation sequence of DQDS algorithm. Here, a variable s means
a shift value. Let Σ be a diagonal matrix arranged in descending order of singular values.
After the repetition of the above operation in the DQDS algorithm, B̂ converges into
a diagonal matrix D. Then Σkk =

√
Dkk + S (k = 1, · · · , n), where S is the sum of

the value of shift s, is satisfied. Similar to OQDS algorithm, DQDS algorithm is also
accelerated its convergence by introducing the shift.

In DQDS algorithm, all variable must be non-negative to keep the positive definite-
ness of original matrix. If dk = 0, then imply dk+1 < 0 because s > 0 and the DQDS
algorithm lose the constraint. On the other hand, in the case that the last diagonal entry
q̂n = dn = 0, one iteration in the DQDS algorithm can be terminated correctly. Con-
sequently, the value of shift s can be set to not only less than the minimum eigenvalue
λmin

(
B>B

)
in B>B but also equal to the minimum eigenvalue.

The variable dk in the DQDS algorithm can be formulated to the form of f × g + h
which is optimized as the fused multiply-add operation and provides high precision
computation. DQDS algorithm achieves high accuracy by the introducing of the form.

27

When DQDS algorithm is terminated, the diagonal elements are arranged in de-
scending order of the singular values. Considering its feature, in the case that q1 < qn,
elements in B are replaced as follows:

Br =


√
qn
√
en−1
√
qn−1

. . .

. . .
√
e1√
q1

 . (44)

Even with this replacement, singular values of Br are equal to that of B. Thus, after the
replacement that B ← Br, DQDS algorithm is adopted to Br.

In a singular value computation with shift, the summation of shift values is added
to the obtained diagonal elements. The strategy to give the value of shift is expressed
in Section 4.1.1. Let s(i) set the value of shift s in the i-th iteration. The summation of
the shift values S is computed as follows:

S =

i0∑
i=1

s(i). (45)

In Equation (45), a tiny value may be added to a large value. In this case, loss of trailing
digits occurs. To avoid this problem, we introduce the double-double arithmetic[33],
which expresses one number using two double precision floating point numbers.

4.1.1 Convergence acceleration with origin shift

We introduce shift strategy which accelerate the convergence of DQDS algorithm likewise
the case of OQDS algorithm for lower tridiagonal matrices introduced in Section 3.4. As
shown above, shift value must be less than or equal to the minimum of eigenvalues of B.

Let s be an arbitrary positive number. The DQDS algorithm can be formulated as
Equation (46), which consists only of dk.

d1 = q1 − s,

dk = qk
dk−1

(dk−1 + ek−1)
− s, (k = 2, · · · , n). (46)

In the context of dk, the following operation is repeated for s.

1. If dk ≤ 0(k = 1, . . . , n), s′ ← max(dk + s, 0).

2. If s′ is equal to s in floating-point computation, s′ ← 0, dk ← 0.

3. After the above operation, if dn ≥ 0, then we end the repetition.

4. Moreover, in order to prevent s from becoming too small, s← max(s′, 0.75s)

5. Recomputation eq.(46) using the above s.

28

Even if s might not be a lower bound of λmin

(
B>B

)
, by repeating the above operation

multiple times, s is almost always transformed into positive number, which satisfies a
lower bound of λmin

(
B>B

)
. We can utilize the above technique not only in Equation

(46) but also in the DQDS algorithm.
The design of the shift strategy, which gives the value of shift s in the DQDS algorithm

is widely discussed and becomes too complicated to explain in this dissertation. In this
section, we do not explain the aggressive shift [34] which is implemented in the DLASQ

routine of LAPACK [2], but our proposed shift strategy.
In our proposed shift strategy, the combination of the following estimation methods

of lower bound of the minimum eigenvalue.

� Generalized Rutishauser bound [18]

� Maximum value of Laguerre bound [5], Newton bound, generalized Newton bound [35]

� A bound based on the Collatz inequality [20]

� Johnson bound [19]

We introduce mathematical definitions and the combination of them.
The generalized Rutishauser bound is expressed as following. Let s set to λmin

(
F>F

)
,

where

F =

[√
qn−1

√
en−1

0
√
qn

]
. (47)

λmin

(
F>F

)
is an upper bound of λmin

(
B>B

)
. Through appropriate update procedure

introduced in Section 4.1.1, s becomes a positive number and a tight lower bound of
λmin

(
B>B

)
. In the generalized Rutishauser bound, only in the case that dk > 0 (k =

1, . . . , n − 1) and dn < 0, s is adopted as the lower bound of λmin

(
B>B

)
. Of course,

if dk > 0 (k = 1, . . . , n − 1) and dn ≥ 0, λmin

(
F>F

)
can be regarded as the suitable

amount of shift. When k satisfies dk ≤ 0 (k = 1, . . . , n− 1), the other bounds is used as
the value of shift.

Using

a = tr

((
BB>

)−1)
, (48)

and

b = tr

((
BB>

)−2)
, (49)

the Laguerre bound, the Newton bound, and the generalized Newton bound are defined
as follows:

� Laguerre bound

L =
n

a+
√

(n− 1) (nb− a2)
(50)

29

� Newton bound

N = a−1 (51)

� Generalized Newton bound

GN = b−
1
2 (52)

Here, a and b are computed by the recurrence formula(53) and (54) [35].

a =
n∑
k=1

fk, (53)
f1 =

1

q1
,

fk =
1

qk
+
ek−1
qk

fk−1, k = 2, · · · , n,

b =

n∑
k=1

gk, (54){
g1 = f21 ,

gk = f2k +
ek−1
qk

(
gk−1 + f2k−1

)
, k = 2, · · · , n.

In theoretical,

N ≤ GN ≤ L, (55)

is always satisfied but in a numerical computation, Equation (55) may not be satisfied
because of rounding error. Therefore, we adopt X = max (N,GN,L) as the lower bound.

In the Collatz inequality, if all elements in an n × n matrix A are positive number
and v is a vector, which consists of n positive elements, then,

λmax(A) ≤ max
k

(Av)k
vk

. (56)

If all elements in B are positive number and K is defined as follows,

K =


√
q1

−√e1
√
q2

. . .
. . .

−√en−1
√
qn

 , (57)

the lower bound of λmin

(
B>B

)
is obtained using the following inequality:

min
k

vk(
(K>K)

−1
v
)
k

≤ λmin

(
K>K

)
= λmin

(
B>B

)
, (58)

30

since all elements of
(
K>K

)−1
are positive number. v is generated by using the inverse

iteration method [36]:

x =
(
K>K

)−1
(1, 1, · · · , 1)>, (59)

v =
x

maxk xk
. (60)

Moreover,

1

maxk xk
≤ λmin

(
K>K

)
= λmin

(
B>B

)
, (61)

can be adopted as another lower bound.
Johnson bound is the lower bound based on the following theorem. Let us set C =(

B> +B
)
/2.

λmin (C) ≤
√
λmin (B>B), (62)

is satisfied. Therefore, through adopting Gerschgorin bound [13] to C, the lower bound
λmin

(
B>B

)
is obtained.

In our proposed shift strategy, at fast, the generalized Rutishauser bound is com-
puted. When the positive lower bound of λmin

(
B>B

)
can be obtained, the proposed shift

strategy is terminated and the value of shift s sets to the lower bound. Otherwise, the
Laguerre bound, the Newton bound, and the generalized Newton bound are computed.
When

Z < 2×X, (63)

is satisfied, X is adopted as the value of shift s. Here, Z means the upper bound of
λmin

(
B>B

)
. Z is defined as Z = min (z1, z2, z3):

� By using the small matrix F ,

z1 = λmin

(
F>F

)
. (64)

� By using the approximate amount gk for Z,

z2 =
1√

maxnk=1 gk
. (65)

� The upper bound is obtained by using an optimization problem [37]. If, using a
and b, an integer number m is determined within m− 1 < a2/b ≤ m, then,

z3 =
m

a+
√

(mb− a2) / (m− 1)
, (66)

is the value for Z.

When Equation (63) is not satisfied, s is computed by using the bound based on the
Collatz inequality. However, in the case that the value of shift s is not a positive number,
the value of shift s is reset by using the Johnson bound.

31

Algorithm 10 DQD method

1: d1 := q1;
2: if d1 + S = S then
3: d1 := 0;
4: end if
5: for k := 1, 2, · · · , n− 1 do
6: q̂k := dk + ek;
7: if q̂k = 0 then
8: êk := 0, dk+1 := qk+1;
9: else if SAFMIN × q̂k < qk+1 and SAFMIN × qk+1 < q̂k then

10: êk := (qk+1/q̂k) ek;
11: dk+1 := (qk+1/q̂k) dk;
12: else
13: êk := (ek/q̂k) qk+1;
14: dk+1 := (dk/q̂k) qk+1;
15: end if
16: if dk+1 + S = S then
17: dk+1 := 0;
18: end if
19: end for
20: q̂n := dn;

4.1.2 Convergence criteria of the DQDS algorithm

There are three methods as convergence criteria.
In the first method, when the element ek (k = 1, . . . , n − 1) is extremely smaller

than the sum of the value of shift S in Equation (45), the ek can be regarded as 0. In
DQDS algorithm, if ek is equal to 0, the split operation [34] occurs and the given matrix is
divided to two matrices. Moreover, when the element en−1 is sufficiently smaller than the
element S+qn, the dimension size decreases by one. Thus, by checking ek(k = 1, . . . , n−1)
and en−1, the DQDS algorithm is terminated. However, only by using the first method,
the number of iterations increases and rounding error accumulates.

In the second method, when the element dk is extremely smaller than the sum of the
value of shift S, the dk can be regarded as 0. By using the algorithm 9 and dk = 0, qn
becomes 0. Then, if qn = 0, then ên−1 = 0. Thus, the confirmation that dk is extremely
smaller than the sum of the value of shift S leads to convergence. Algorithm 10 shows
the DQD method [10, 34], which is based on the DQDS algorithm without shift , with
the second convergence method.

In the third method, we use the following recurrence relation,

d1 = q1,

dk = qk
dk−1

(dk−1 + ek−1)
, k = 2, · · · , n, (67)

32

where the dk in Equation (67) completely matches the dk in the DQD algorithm. When
the element ek−1 is extremely smaller than the element dk−1, ek−1 can be regarded as
0. However, in implementation of iteration in the DQD algorithm, it is not efficient in
terms of computation time. We notice q̂k = dk + ek. If ek ≤ εdk = ε (q̂k − ek), then ek−1
can be regarded as 0. Thus, we check,

ek ≤
ε

(1 + ε)
q̂k, (68)

where ε is extremely smaller than 1. Instead of eq.(68), for checking whether ek is suffi-
ciently small or not, we should use ek ≤ εq̂k. When ek is extremely small, êk is sufficiently
small. Therefore, the given matrix can be divided.

4.2 OQDS algorithm for computing singular vectors

In singular value computation, DQDS algorithm and OQDS algorithm are mathemati-
cally equivalent. OQDS algorithm is theoretically suitable to compute of singular values
with high accuracy in terms of relative errors but contains square root computation
which worsen the accuracy of the algorithm. On the other hand, in the DQDS algo-
rithm, square root computation is eliminated by variable transformation. The square
root elimination gives DQDS algorithm an advantage against OQDS algorithm in terms
of computation speed. However, the DQDS algorithm cannot compute singular vectors
because the variable transformation in the formulation of DQDS algorithm destroys the
correspondence between the variables and singular vectors. Thus, in this thesis, we use
the OQDS algorithm to compute singular vectors.

Let L(i) be an n× n lower bidiagonal matrix,

L(i) =


α
(i)
1

β
(i)
1 α

(i)
2

. . .
. . .

β
(i)
n−1 α

(i)
n

 , (69)

and U (i) be an n× n upper bidiagonal matrix,

U (i) =


γ
(i)
1 ζ

(i)
1

γ
(i)
2

. . .

. . . ζ
(i)
n−1
γ
(i)
n

 , (70)

respectively.
In the OQDS algorithm, the following three operations are repeated for L(i) and U (i).

1. Compute a shift τ (i) satisfying:

0 ≤ τ (i) ≤ σmin

(
L(i)

)
. (71)

33

2. LU step

P (i)

[
L(i)

t(i)In

]
=

[
U (i)

t(i+1)In

]
, (72)

t(i+1) =

√(
t(i)
)2

+
(
τ (i)
)2

(73)

3. UL step [
In O

O
(
Q(i)

)>] [U (i)

t(i+1)In

]
Q(i)

=

[
L(i+1)

t(i+1)In

]
. (74)

The lower half of the matrix is trivial. Thus, only U (i)Q(i) = L(i+1) should be
considered.

P (i) andQ(i) are a 2n×2n orthogonal matrix and an n×n orthogonal matrix, respectively.
P (i) is computed by using the Givens rotation and the generalized Givens rotation [5].
Q(i) consists of the Givens rotation. t(i0)In expresses a diagonal matrix having the same
value. Let Σ be a diagonal matrix arranged in descending order of singular values. When
L(i0) and t(i0)In converge to a diagonal matrix E and tIn, if the split operation dose not

occurs, Σkk =
√
E2
kk + t2 (k = 1, · · · , n). To obtain right singular vectors, an orthogonal

matrix V is computed with V = Q(0) · · ·Q(i0−1). Using the Givens rotation, we add
tIn to E = L(i0). Then, L(i0) and tIn become Σ and the zero matrix, respectively.
The orthogonal matrix U , which consists of left singular vectors, are not required in the
Sakurai-Sugiura method. Thus, in this paper, we do not introduce P (i), which is adopted
to compute U .

The summation of the value of shift is computed with

t(i+1) =

√(
t(i)
)2

+
(
τ (i)
)2
. (75)

To avoid loss of trailing digits, the double-double arithmetic should be adopted like the
DQDS algorithm.

When the OQDS algorithm is terminated, if the split operation dose not occurs,
the diagonal elements of E are arranged in descending order. Thus, in the case that

α
(i)
1 < α

(i)
n , by using the matrix Y ,

Y =


0 1

...
...

1 0

 , (76)

and U (i) ← Y L(i)Y , all elements are rearranged in reverse order. L(i) and U (i) are an
n× n lower bidiagonal matrix and an n× n upper bidiagonal matrix, respectively.

34

Algorithm 11 The LU step in the case of the value of shift τ (i) > 0

1: ρ
(i)
1 :=

√
α
(i)
1 − τ (i)

√
α
(i)
1 + τ (i);

2: for k := 1, 2, · · · , n− 1 do

3: γ
(i)
k :=

√(
ρ
(i)
k

)2
+
(
β
(i)
k

)2
, ζ

(i)
k :=

β
(i)
k

γ
(i)
k

α
(i)
k+1;

4: ρ
(i)
k+1 :=

√
ρ
(i)
k

γ
(i)
k

α
(i)
k+1 − τ (i)

√
ρ
(i)
k

γ
(i)
k

α
(i)
k+1 + τ (i);

5: end for
6: γ

(i)
n := ρ

(i)
n ;

4.2.1 LU and UL steps

The LU step is an operation that compose L(i) to U (i).

ρ
(i)
1

β
(i)
1 α

(i)
2

β
(i)
2

. . .

. . .

t(i)

t(i)

. . .


O1−−→



ρ
(i)
1

β
(i)
1 α

(i)
2

β
(i)
2

. . .

. . .√(
t(i)
)2

+
(
u(i)
)2

t(i)

. . .



O2−−→



γ
(i)
1 ζ

(i)
1

ρ
(i)
2

β
(i)
2

. . .

. . .√(
t(i)
)2

+
(
u(i)
)2

t(i)

. . .


O3−−→ (77)

Algorithm 11 shows the LU step with the value of shift u(i) and elements of L(i) and U (i).

In the computation of ρ
(i)
k+1, the fused multiply-add operation can be adopted effectively.

Algorithm 12 shows the LU step in the case that τ (i) = 0.

35

Algorithm 12 The LU step in the case of the value of shift τ (i) = 0

1: ρ
(i)
1 := α

(i)
1 ;

2: for k := 1, 2, · · · , n− 1 do

3: γ
(i)
k :=

√(
ρ
(i)
k

)2
+
(
β
(i)
k

)2
;

4: if γ
(i)
k = 0 then

5: ζ
(i)
k := 0, ρ

(i)
k+1 := α

(i)
k+1;

6: else
7: ζ

(i)
k :=

(
β
(i)
k /γ

(i)
k

)
α
(i)
k+1;

8: ρ
(i)
k+1 :=

(
ρ
(i)
k /γ

(i)
k

)
α
(i)
k+1;

9: end if
10: end for
11: γ

(i)
n := ρ

(i)
n ;

The UL step is an operation that composes U (i) to L(i+1) as following:

γ
(i)
1 ζ

(i)
1

γ
(i)
2 ζ

(i)
2
. . .

. . .

. . .

t(i)

t(i)

. . .
. . .


→



α
(i+1)
1

β
(i+1)
1 η

(i+1)
2 ζ

(i)
2
. . .

. . .

. . .

t(i)

t(i)

. . .
. . .


(78)

The eq.(78) can be carried out using the Givens rotation from the right hand side.
Algorithm 13 shows the UL step with elements of U (i) and L(i+1).

In the OQDS algorithm, the Givens rotation is adopted to the LU and UL steps.
Usually, in implementation, the Givens rotation can be computed by using DROTG, which
is a level-1 routine in BLAS [38]. However, the Givens rotation with high precision,
which is required from the OQDS algorithm, should be performed by using DLARTG in
LAPACK.

4.2.2 Shift strategy for the OQDS algorithm

In the OQDS algorithm, the value of shift u(i) is computed using the follows:

1. generalized Rutishauser bound

2. a bound based on the Collatz inequality

36

Algorithm 13 UL step

1: η
(i)
1 := γ

(i)
1 ;

2: for k := 1, 2, · · · , n− 1 do

3: α
(i+1)
k :=

√(
η
(i)
k

)2
+
(
ζ
(i)
k

)2
;

4: if α
(i+1)
k = 0 then

5: β
(i+1)
k := 0, η

(i)
k+1 := γ

(i)
k+1;

6: else
7: β

(i+1)
k :=

(
ζ
(i)
k /α

(i+1)
k

)
γ
(i)
k+1;

8: η
(i)
k+1 :=

(
η
(i)
k /α

(i+1)
k

)
γ
(i)
k+1;

9: end if
10: end for
11: α

(i)
n := η

(i)
n ;

3. Johnson bound

Unlike the shift strategy for the DQDS algorithm in Section 4.1.1, no square root compu-
tation is required in the bound based on the Collatz inequality. Since the bound based on
the Collatz inequality can be computed at high speed, the Laguerre bound, the Newton
bound, and the generalized Newton bound that estimate the lower bound more roughly
than Collatz method can be excluded. The strategy of the combination of the lower
bounds in the OQDS algorithm is the same as that in the DQDS algorithm.

4.3 Convergence criteria of the OQDS algorithm

The first convergence criteria of the DQDS algorithm in Section 4.1.2 can be used as
convergence methods of the OQDS algorithm through variable transformation.

In terms of the 2-norm, the third convergence criteria of the DQDS algorithm in
Section 4.1.2 is defined. In the OQDS algorithm, in terms of the 1-norm, the convergence
criteria are redefined as follows. If, in the following recurrence relation,

µ1 = α
(i)
1 ,

µk = α
(i)
k

µk−1(
µk−1 + β

(i)
k−1

) , k = 2, · · · , n, (79)

β
(i)
k−1 is extremely smaller than µk−1, then β

(i)
k−1 can be regarded as 0. As a result of

preliminary experiment, the convergence criteria in terms of the 1-norm gives more
accurate judgement than that of 2-norm. Thus, we use 1-norm convergence criteria in
the subsequent experiments.

37

4.4 Proposed method for computing column space by using the com-
bination of DQDS and OQDS algorithms

In this section, we propose a fast computation method of column space of the upper
bidiagonal matrix. The DQDS algorithm is known as a fast computation method only
for singular values. Thus, the DQDS algorithm is adopted to investigate the distribution
of all singular values. From the distribution of singular values, the numerical rank is
determined. After excluding the number K of singular values, which are very close to 0,
from the size n of the matrix, the numerical rank is defined as n−K. If the split opera-
tion dose not occurs, the diagonal elements of E computed in the OQDS algorithm are
arranged in descending order. Here, if off-diagonal elements do not become completely 0
in iterations, the OQDS algorithm may compute some right singular vectors correspond-
ing to from the smallest singular value to K-th singular value. The OQDS algorithm can
compute the null space of the lower bidiagonal matrix L(0) as K right singular vectors.
In the OQDS algorithm, the computation cost of the null space is cheaper than that
of all right singular vectors. While singular vectors corresponding to the null space are
computed, the row space can be obtained as the complementary space of the null space.
Here, the row space in the lower bidiagonal matrix L(0) is equal to the column space in

the upper bidiagonal matrix
(
L(0)

)>
. Therefore, the column space is obtained from the

complementary space of K vectors corresponding to from the smallest singular value to
K-th singular value in V = Q(0) · · ·Q(i0−1) of L(0). In other words, the column space is
obtained from the first n−K-th vectors in V . Finally, singular values computed in the
OQDS algorithm should be compared with that computed in the DQDS algorithm.

4.5 Numerical experiment

In order to confirm the effectiveness of the proposed method, we compare the orthogonal-
ity of the computed row space and the computation time in the conventional method. As
a conventional method, we compute all right singular vectors with the OQDS algorithm
and compare with that in the proposed method. Table 4 describes the experimental
environment.

Table 4: Experimental Environment

CPU Intel(R) Core(TM) CPU i3-7100 @ 3.90GHz
RAM 4 GB
OS Ubuntu 16.04.3 LTS
Compiler gcc version 5.4.0, gfortran version 5.4.0
Options -O3 -mtune=native -march=native -Wall -fopenmp
Software Intel Math Kernel Library 2018

38

We use the following bidiagonal matrix for the comparison:

σi :=

√
ε

i−1
n−1 , i = 1, · · · , n− t0 (80)

σi :=

√
ε2

i−1
n−1 , i = n− t0 + 1, · · · , n (81)

where σi means the value of singular-value. ε is set to 2.22044604925031 × 10−16 as
the machine epsilon of double precision (binary64) floating-point number defined in
IEEE 754 and t0 is set to 20. The dimension n of the matrix is 128. For this matrix,
we can obtain the number K of singular values, which are very close to 0, from the
result computed with the DQDS algorithm. From the relative gap σ̂i+1/σ̂i, where σ̂i is
computed as singular values with the DQDS algorithm, K is found to be t0. Table 5
shows orthogonality ||V >V − I||F of the computed row space and the computation time.

Table 5: Orthogonality and Computation Time

Conventional method Proposed method

Orthogonality 1.23× 10−14 4.76× 10−15

Computation Time 5.27× 10−4 1.03× 10−4

4.6 Discussion about the column space computation method by using
the combination of DQDS and OQDS algorithms

We proposed the method computing column vector of bidiagonal matrices by using the
combination of DQDS and OQDS algorithms. As the result of the numerical experiment,
our proposed combination method gives half digit more accurate orthogonality than con-
ventional method in four times shorter computation time. On the other hand, the use
case of this method, subroutine of Sakurai-Sugiura method, is very limited compared
with general singular value decomposition. Because of the disadvantage of the conver-
gence speed of OQDS algorithm, it is hard to surpass the performance of conventional
singular value computation algorithm in general purpose.

Then, we focus the capability of OQDS algorithm for band matrices again and fumble
for general singular value decomposition algorithm which does not requires preliminary
reduction.

5 Singular value decomposition using the two-sided Jacobi
algorithm

Jacobi algorithm is classical, iterative matrix diagonalization method originally proposed
by Jacobi before the advent of computer science. The iteration of the Jacobi algorithm
is very simple; eliminating non-diagonal element of matrix with Givens rotation one by

39

one. By repeating the rotation until the matrix becomes almost diagonal, we obtain the
singular values of original matrix as the diagonal elements of rotated matrix because
Givens rotation keeps the singular values.

The Jacobi algorithm can be interpreted as the application of OQDS algorithm for
general triangular matrix if eliminate non-diagonal elements in an appropriate order. In
this section, we discuss the improvements of the Jacobi algorithm from the perspective
of the derivative of OQDS algorithm. The Jacobi algorithm is roughly divided into two
types; one-sided Jacobi algorithm and two-sided Jacobi algorithm. We first discuss the
two-sided Jacobi algorithm that is more intuitive and then, discuss the one-sided Jacobi
algorithm.

5.1 Outline of two-sided Jacobi algorithm

Let J (i), K(i), N (i), and M (i) be the products of rotation matrices. Let R(i) and L(i) be
real upper and lower triangular matrices, respectively. In a singular value decomposition
using the two-sided Jacobi algorithm, the transformations described as Equations (82)
and (83) are repeatedly computed.

K(i)R(i)J (i) = L(i), (82)

N (i)L(i)M (i) = R(i+1), i = 0, 1, · · · . (83)

By these iterative computations, both R(i) and L(i) converge into a diagonal matrices
consist of the singular values of original triangular matrix. In the case of convergence,
the left singular vector U and right singular vector V can be computed as follows:

U =
(
K(0)

)> (
N (0)

)> (
K(1)

)> (
N (1)

)>
· · ·
(
K(m−1)

)> (
N (m−1)

)>
, (84)

V =J (0)M (0)J (1)M (1) · · · J (m−1)M (m−1), (85)

where m denotes the iteration number in the case of convergence. Then, U , Σ := R(m)

and V satisfy UΣV = R(0). The matrix multiplication in Equations (84) and (85) is
accomplished using Givens rotations.

Figure 6 shows the storing method of R(i) and L(i) as a single upper triangular
matrix. By using the storing method of Figure 6, memory allocation is not required for
R(i) and L(i) as separate matrices in each iteration. In other words, R(i) and L(i) can be
computed using the same memory area.

As shown in Equation (88), Rj,k is converted to 0 by using the rotation matrices P

40

R(i)

(
L(i)

)⊤

Figure 6: Space sharing of the upper triangular matrix

and Q. I denotes an identity matrix here.

P =



I 0 · · · · · · 0

0 c1 · · · s1
...

...
... I

...
...

... −s1 · · · c1 0
0 · · · · · · 0 I


, (86)

Q =



I 0 · · · · · · 0

0 c2 · · · −s2
...

...
... I

...
...

... s2 · · · c2 0
0 · · · · · · 0 I


, (87)

P ×



. . . · · · · · · · · · · · ·
... Rj,j · · · Rj,k

...
...

...
. . .

...
...

... 0 · · · Rk,k
...

· · · · · · · · · · · · . . .


×Q

=



. . . · · · · · · · · · · · ·
... R̂j,j · · · 0

...
...

...
. . .

...
...

... 0 · · · R̂k,k
...

· · · · · · · · · · · · . . .


. (88)

Repeating transformations of Equation (88), R(i) can be transformed to lower triangular
matrix L(i). Because P and Q are rotation matrices, θ1 and θ2 satisfy c1 = cos θ1,

41

s1 = sin θ1, c2 = cos θ2, and s2 = sin θ2. Hereafter, we will discuss only those element
parts whose values change.[

c1 s1
−s1 c1

] [
Rj,j Rj,k

0 Rk,k

] [
c2 −s2
s2 c2

]
=

[
R̂j,j 0

0 R̂k,k

]
. (89)

To compute L(i) from R(i), the transformation of Equation (89) is repeated many times.
In the iterative procedures, an ordering strategy for erasing off-diagonal elements, as
explained in Section 5.2, is adopted. We also use same procedure to obtain R(i+1) from
L(i).

The detail of the computation of c1, s1, c2, s2, R̂j,j , and R̂k,k from Rj,j , Rj,k and Rk,k
is explained in Sections 5.3, 5.4, and 5.5.

5.2 Ordering strategy and convergence criterion

In the iteration of the Jacobi algorithm, the off-diagonal elements in an upper triangular
matrix R(i) are reduced to 0. By the operation, some non-zero elements appear in the
lower triangular part and that part is set as the off-diagonal elements of lower triangular
matrix L(i).

The details are described as follows:

� If
∣∣∣R(0)

1,1

∣∣∣ ≥ ∣∣∣R(0)
n,n

∣∣∣, we use the following strategy.

The off-diagonal elements are reduced to 0 in the following order of elements:
(1, 2), (1, 3), · · · , (1, n), (2, 3), (2, 4), · · · , (n− 2, n), (n− 1, n). Subsequently, the off-
diagonal elements in the lower triangular matrix L(i) are reduced to 0 in the follow-
ing order of elements: (2, 1), (3, 1), · · · , (n, 1), (3, 2), (4, 2), · · · , (n, n− 2), (n, n− 1).

� If
∣∣∣R(0)

1,1

∣∣∣ < ∣∣∣R(0)
n,n

∣∣∣, we use the following strategy.

The off-diagonal elements are reduced to 0 in the following order of elements: (n−
1, n), (n−2, n), · · · , (1, n), (n−2, n−1), (n−3, n−1), · · · , (1, 3), (1, 2). Subsequently,
the off-diagonal elements in the lower triangular matrix L(i) are reduced to 0 in
the following order of elements: (n, n− 1), (n, n− 2), · · · , (n, 1), (n− 1, n− 2), (n−
1, n− 3), · · · , (3, 1), (2, 1).

In other words, eliminate off-diagonal elements in the order of column prior static travel-
ing from top left edge if the absolute value of the top left edge is larger than another edge,
otherwise row prior static traveling from bottom right edge. The conditional instruction
means that larger edge of diagonal element and its subsidiary off-diagonal elements are
processed at first in order to help sorting of diagonal elements which introduced in
Section 5.8.

In practical, we must stop the iteration along with an appropriate convergence criteria
where the off-diagonal elements are sufficiently small but not exact 0. The proposed
algorithm treat the element Rj,k as 0 if Equation (90) is satisfied,

|Rj,k| ≤ ε
√
|Rj,j | ×

√
|Rk,k|. (90)

42

Once all the off-diagonal elements converge to 0, the iteration is terminated.

5.3 Implementation method using the arctangent function

Unlike in the one-sided Jacobi algorithm, the singular value decomposition using the
two-sided Jacobi algorithm requires many operations to calculate c1, s1, c2, and s2.

5.3.1 Conventional implementation

We introduce the Upper-triangular, Left transformation first (UL) algorithm and the
Upper-triangular, Right transformation first (UR) algorithm for computing c1, s1, c2,
and s2 as a conventional method [25]. If (Rj,j −Rk,k) (Rj,j +Rk,k) is greater than or
equal to 0, the UL algorithm should be adopted as follows.

θ1 =
1

2
tan−1

(
2Rk,k

(Rj,j −Rk,k) (Rj,j +Rk,k) /Rj,k +Rj,k

)
, (91)

θ2 = tan−1

Rj,k +Rk,k tan (θ1)

Rj,j

 . (92)

Here, −π
4 ≤ θ1 ≤ π

4 and −π
2 ≤ θ2 ≤ π

2 . Conversely, if (Rj,j −Rk,k) (Rj,j +Rk,k) is
negative, the UR algorithm should be adopted as follows.

θ2 =
1

2
tan−1

(
2Rj,j

(Rj,j −Rk,k) (Rj,j +Rk,k) /Rj,k −Rj,k

)
, (93)

θ1 = tan−1

Rj,j tan (θ2)−Rj,k

Rk,k

 . (94)

Here, −π
2 ≤ θ1 ≤

π
2 and −π

4 ≤ θ2 ≤
π
4 . Then, we compute c1, s1, c2, and s2.

c1 = cos θ1, s1 = sin θ1, (95)

c2 = cos θ2, s2 = sin θ2. (96)

Then, the computed c1, s1, c2, and s2 are substituted in Equations (97) and (98);

u = c1 + c2, (97)

R̂j,j = Rj,j +
s2
u
×Rj,k, R̂k,k = Rk,k −

s1
u
×Rj,k. (98)

For the double underlined part of the equations, FMA operation can be adopted. The
operation reduces the error of the final result by performing a product–sum operation
in one instruction without rounding up the integration in the middle and is important
for the achievement of high accuracy.

43

5.3.2 Fused multiply-add operaion

Before the proposal of the implementation of the two-sided Jacobi algorithm, we intro-
duce a brief summary of the FMA operation. The FMA is defined in IEEE 754, performs
floating point multiply and add written as follows:

a← a+ (b× c)

in one step, with a single rounding while the conventional floating point number operation
requires two steps and two roundings[21]. It means that the FMA operation is fast and
more accurate than the conventional floating point number operation. Our proposed
implementation described in the following section intends to utilize the FMA operation
in the calculation of the Givens transformation.

5.3.3 Proposed implementation

In numerical computations, performing such a large number of operations introduces nu-
merous errors into the variables under computation. Therefore, we propose to implement
a method using the arctangent function. In the proposed implementation, the number
of operations for computing c1, s1, c2, and s2 is decreased by using the intermediate
variables α and β.

Let

α = tan−1
(

Rj,k
Rj,j −Rk,k

)
, (99)

β = tan−1
(
−Rj,k

Rj,j +Rk,k

)
, (100)

then c1, s1, c2, and s2 are computed using tan−1, θ1, and θ2 as follows:

θ1 =
1

2
(α+ β) , θ2 =

1

2
(α− β) , (101)

c1 = cos θ1, s1 = sin θ1, (102)

c2 = cos θ2, s2 = sin θ2, (103)

where −π
2 ≤ θ1 ≤ π

2 and −π
2 ≤ θ2 ≤ π

2 . Then, the computed c1, s1, c2, and s2 are
substituted in Equations (97) and (98); We define the above computation method as the
faster version of the proposed implementation. The FMA operation can be adopted in
the double underlined part of the equations.

In order to reduce the error of the decomposition ||A−UΣV >||F, we use the accurate

44

version of the proposed implementation as follows:

α = tan−1
(

Rj,k
Rj,j −Rk,k

)
, (104)

β = tan−1
(
−Rj,k

Rj,j +Rk,k

)
, (105)

θ1 =
1

2
(α+ β) , θ2 =

1

2
(α− β) , (106)

v1 = cos θ1, w1 = sin θ1, (107)

v2 = cos θ2, w2 = sin θ2. (108)

We compute c1 and s1 using the Givens rotation for x ← v1 and y ← w1 and compute
c2 and s2 using the Givens rotation for x ← v2 and y ← w2 in Section 5.5. Finally,
Equations (97) and (98)can be computed.

5.4 Implementation method by Rutishauser

Integrating the implementation method proposed by Rutishauser [39] with the two-
sided Jacobi algorithm for singular value decomposition, the FMA, which can achieve
high accuracy, prevents the introduction of errors in c1, s1, c2, and s2.

In addition, t1 and t2 are decided as follows:

γ1 =
Rj,j −Rk,k

Rj,k
, t1 =

1

γ1 + SIGN

(√
1 + (γ1)

2, γ1

) , (109)

γ2 = −
Rj,j +Rk,k

Rj,k
, t2 =

1

γ2 + SIGN

(√
1 + (γ2)

2, γ2

) , (110)

where the function SIGN(A,B) returns the value of A with the sign of B. Subsequently,
using t1 and t2,

v̂1 = 1− t1 × t2, ŵ1 = t1 + t2, (111)

and

v̂2 = 1 + t1 × t2, ŵ2 = t1 − t2, (112)

are computed. We compute c1 and s1 using the Givens rotation for x← v̂1 and y ← ŵ1

and compute c2 and s2 using the Givens rotation for x ← v̂2 and y ← ŵ2 as described
in Section 5.5. Finally, Equations (97) and (98) can be computed

45

5.5 Implementation method using the Givens rotation

Consider the Givens rotation denoted as follows:

cos θ =
x√

x2 + y2
, sin θ =

y√
x2 + y2

. (113)

Here, we executed Algorithm 14 to compute cos θ, sin θ, and
√
x2 + y2. To avoid overflow

and underflow, the Givens rotation should be implemented as Algorithm 14. If
√
x2 + y2

is not required,
√
x2 + y2 ← r × f and

√
x2 + y2 ← r × g are not computed.

Algorithm 14 Implementation of the Givens rotation

1: if x = 0 and y = 0 then
2: c← 1
3: s← 0
4:

√
x2 + y2 ← 0

5: else
6: f ← |x|
7: g ← |y|
8: if f ≥ g then
9: v ← y/f

10: r ←
√

1 + v2

11: c← SIGN(1/r, x)
12: s← v/r
13:

√
x2 + y2 ← r × f

14: else
15: u← x/g
16: r ←

√
1 + u2

17: c← u/r
18: s← SIGN(1/r, y)
19:

√
x2 + y2 ← r × g

20: end if
21: end if

The FMA can be adopted in the double-underlined part of lines 10 and 16 of Algo-
rithm 14.

Algorithm 15 was executed to compute c1, s1, c2, and s2. Here, the function SIGN(A,B)
returns the value of A with the sign of B. Subsequently, Equations (97) and (98) are
computed.

5.6 Comparing the number of operations

Table 6 summarizes the comparison of the number of operations for computing c1, s1,
c2, and s2 using the method explained the former sections.

46

Table 6: Comparing the number of operations

conventional
tan−1

fast
tan−1

accurate
tan−1

Rutishauser Givens

add/sub 4 5 5 7 5

multiply 3 2 2 0 2

division 5 4 10 12 11

FMA 3 2 4 8 10

sqrt 0 0 2 4 4

tan−1 2 2 2 0 0

cos 2 2 2 0 0

sin 2 2 2 0 0

5.7 Implementation technique for a summation

If |x0| is considerably greater than |xi|(i = 1, · · · , q), the method based on Tq =
∑q

i=1 xi
and Sq = x0 + Tq is appropriate to compute Sq =

∑q
i=0 xi. The computation process is

adopted in Equation (98).

5.8 Introducing sort feature to the two-sided Jacobi algorithm

Unlike OQDS or DQDS algorithm, the elements of the obtained diagonal matrix of the
general Jacobi algorithm are in an irregular order. However, in the convergence process
of OQDS and DQDS algorithm, we found that the diagonal elements are sorted in the
early stage and then, off-diagonal elements get smaller along with the corresponding
diagonal element. We assume the sorting feature accelerates the convergence of LR-
based singular value decomposition algorithm, and then try to introduce the feature to
the Jacobi algorithm similar to OQDS algorithm.

From Equation (90), if both diagonal elements of 2 × 2 matrix are large, the non-
diagonal elements are considered to be converging even if they are somewhat large. Thus,
when the large diagonal elements are collected in the upper left corner, the singular values
in the diagonal elements converge from the upper left to the lower right. As a result, it is
possible to separate the entries that converge at the beginning from those that converge
later. Table 7 summarizes the selection of the angle of Givens rotation that collect large
diagonal elements to upper left and smaller elements to lower right.

In the case
∣∣∣R(0)

1,1

∣∣∣ ≥ ∣∣∣R(0)
n,n

∣∣∣, if
∣∣∣R̂j,j∣∣∣ < ∣∣∣R̂k,k∣∣∣ and s1 > 0 are satisfied, we set c1 ← s1

and s1 ← −c1, which means θ1 ← θ1− π
2 , and, if

∣∣∣R̂j,j∣∣∣ < ∣∣∣R̂k,k∣∣∣ and s1 ≤ 0 are satisfied,

we set c1 ← −s1 and s1 ← c1, which means θ1 ← θ1+ π
2 . If

∣∣∣R̂j,j∣∣∣ < ∣∣∣R̂k,k∣∣∣ and s2 > 0 are

satisfied, we set c2 ← s2 and s2 ← −c2, which means θ2 ← θ2− π
2 , and, if

∣∣∣R̂j,j∣∣∣ < ∣∣∣R̂k,k∣∣∣
and s2 ≤ 0 are satisfied, we set c2 ← −s2 and s2 ← c2, which means θ2 ← θ2 + π

2 . If π
2 is

subtracted from or added to both θ1 and θ2, we set R̂j,j ← R̂k,k, R̂k,k ← R̂j,j . Otherwise,

47

Table 7: Case list for function of sorting
cases setting∣∣∣R(0)

1,1

∣∣∣ ≥ ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂j,j∣∣∣ < ∣∣∣R̂k,k∣∣∣ s1 > 0 c1 ← s1 and s1 ← −c1∣∣∣R(0)
1,1

∣∣∣ ≥ ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂j,j∣∣∣ < ∣∣∣R̂k,k∣∣∣ s1 ≤ 0 c1 ← −s1 and s1 ← c1∣∣∣R(0)
1,1

∣∣∣ ≥ ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂j,j∣∣∣ < ∣∣∣R̂k,k∣∣∣ s2 > 0 c2 ← s2 and s2 ← −c2∣∣∣R(0)
1,1

∣∣∣ ≥ ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂j,j∣∣∣ < ∣∣∣R̂k,k∣∣∣ s2 ≤ 0 c2 ← −s2 and s2 ← c2∣∣∣R(0)
1,1

∣∣∣ < ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂j,j∣∣∣ ≥ ∣∣∣R̂k,k∣∣∣ s1 > 0 c1 ← s1 and s1 ← −c1∣∣∣R(0)
1,1

∣∣∣ < ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂j,j∣∣∣ ≥ ∣∣∣R̂k,k∣∣∣ s1 ≤ 0 c1 ← −s1 and s1 ← c1∣∣∣R(0)
1,1

∣∣∣ < ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂j,j∣∣∣ ≥ ∣∣∣R̂k,k∣∣∣ s2 > 0 c2 ← s2 and s2 ← −c2∣∣∣R(0)
1,1

∣∣∣ < ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂j,j∣∣∣ ≥ ∣∣∣R̂k,k∣∣∣ s2 ≤ 0 c2 ← −s2 and s2 ← c2

we set R̂j,j ← −R̂k,k, R̂k,k ← −R̂j,j .
In the case

∣∣∣R(0)
1,1

∣∣∣ < ∣∣∣R(0)
n,n

∣∣∣, if
∣∣∣R̂j,j∣∣∣ ≥ ∣∣∣R̂k,k∣∣∣ and s1 > 0 are satisfied, we set c1 ← s1

and s1 ← −c1, which means θ1 ← θ1− π
2 , and, if

∣∣∣R̂j,j∣∣∣ ≥ ∣∣∣R̂k,k∣∣∣ and s1 ≤ 0 are satisfied,

we set c1 ← −s1 and s1 ← c1, which means θ1 ← θ1+ π
2 . If

∣∣∣R̂j,j∣∣∣ ≥ ∣∣∣R̂k,k∣∣∣ and s2 > 0 are

satisfied, we set c2 ← s2 and s2 ← −c2, which means θ2 ← θ2− π
2 , and, if

∣∣∣R̂j,j∣∣∣ ≥ ∣∣∣R̂k,k∣∣∣
and s2 ≤ 0 are satisfied, we set c2 ← −s2 and s2 ← c2, which means θ2 ← θ2 + π

2 . If π
2 is

subtracted from or added to both θ1 and θ2, we set R̂j,j ← R̂k,k, R̂k,k ← R̂j,j . Otherwise,

we set R̂j,j ← −R̂k,k, R̂k,k ← −R̂j,j .
By introducing the selection, the two-sided Jacobi algorithm get sorting feature of

singular values in descending order. Notably, c1 and c2 are kept nonnegative.

5.9 Correction of c1, s1, c2, or s2

In order to achieve a higher accuracy for the Rutishauser’s implementation method[39],
we correct the values of c1, s1, c2, or s2 by using root finding method for the constraints
of trigonometric function.

Let c̃, s̃, ĉ, and ŝ be four variables that represent c1 and c2, s1 and s2, correction
result for c1 and c2, and correction result for s1 and s2, respectively.

5.9.1 False position method

False position method is a classical root finding method depicted in Figure 7. As the
initial setting, x1 and x2 have different values. The sign of f(x1) is set to be different
from that of f(x2). In the false position method, xM given by Equation (114) is set as

48

x1

x2xM

x

f(x)

0

Figure 7: False position method

the next position to compute the real root x in f(x) = 0. One has the following:

xM =
x1 × f(x2)− x2 × f(x1)

f(x2)− f(x1)
. (114)

Here, if the sign of f(x1) is the same as that of f(xM), then x1 ← xM . Otherwise, if
the sign of f(x2) is the same as that of f(xM), then x2 ← xM . Figure 7 represents the
example case that xM is set as the next value of x1.

5.9.2 Secant method

Secant method is also used for the correction. The method is depicted in Figure 8. In

x

f(x)

0 x0x1x2

Figure 8: Secant method

secant method, x the real root of f(x) = 0 is given by the the following recurrence
formula:

xn+1 = xn − f(xn)× xn − xn−1
f(xn)− f(xn−1)

=
xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)
. (115)

49

From the initial setting x0 and x1, the sequence of x2, x3, · · · converges to the real root
x, as the point sequence is computed in order. Let n = 2 then Equation (115) is equal
to Equation (114).

5.9.3 Correction method

Theoretically, for c = cos θ and s = sin θ obtained by the computation for the angle of
Givens rotation, c2 + s2 = 1 is always satisfied. However, floating point number opera-
tion of finite length may produces rounding error and breaks the constraint. Correction
method for c and s is introduced to minimize the rounding error by using root finding
methods for the trigonometric constraint.

Assuming that s is correct, c̃ is calculated as follows:

c̃2 + s2 = 1. (116)

On the other hand, assuming that c is correct, s̃ is computed as follows:

c2 + s̃2 = 1. (117)

Equations (116) and (117) can be appropriately used by introducing c = cos θ and
s = sin θ. For the case where −π

4 ≤ θ ≤ π
4 , Equation (116) is used, whereas Equation

(117) is adopted if π
4 < θ ≤ π

2 or −π
2 ≤ θ < −π

4 . For the singular value decomposition
using the two-sided Jacobi algorithm, c ≥ 0 is satisfied. Then, we can assume that
−π

2 ≤ θ ≤
π
2 .

When both the nonlinear single equation f(x) = 0 and initial numbers x0 and x1 are
given, then x2, which is the result of one iteration of the secant method, is equal to xM
achieved using the false position method. One has the following relation:

x2 =
x0f(x1)− x1f(x0)

f(x1)− f(x0)
, (118)

In the case where −π
4 ≤ θ ≤ π

4 , c̃ is recomputed using Equation (116). The case
where −π

4 ≤ θ ≤ π
4 can be considered as c ≥ |s|. To compute c̃, the initial numbers are

set to x0 = 1 and x1 = c. When f(x) = x2 + s2 − 1,

c̃ =
(c2 + s2 − 1)− cs2

(c2 + s2 − 1)− s2
= 1− s× s

1 + c
, (119)

is obtained, where c̃ is more appropriate for satisfying f(x) = x2 + s2 − 1. The Givens
rotation for vectors x and y is defined as follows:

x← c̃x + sy, y← −sx + c̃y. (120)

50

When not using c but c̃, Equations (97) and (98) can be written as

z1 =
s

1 + c
, (121)

x← (1− s× z1) x + sy = s

(
−z1x + y

)
+ x, (122)

y← −sx + (1− s× z1) y = −s
(
z1y + x

)
+ y. (123)

The case wherein π
4 < θ ≤ π

2 can be regarded as c < |s| and s ≥ 0. To compute s̃,
the initial numbers are set to x0 = 1 and x1 = s. When f(x) = c2 + x2 − 1,

s̃ =
(c2 + s2 − 1)− sc2

(c2 + s2 − 1)− (c2)
= 1− c× c

1 + s
, (124)

is obtained, where s̃ is more appropriate for satisfying f(x) = c2 + x2 − 1. When not
using s but s̃, the Givens rotation for vectors x and y is defined as follows:

z2 =
c

1 + s
, (125)

x← cx + (1− c× z2) y = c

(
−z2y + x

)
+ y, (126)

y← − (1− c× z2) x + cy = c

(
z2x + y

)
− x. (127)

The case where −π
2 ≤ θ < −

π
4 can be regarded as equivalent to c < |s| and s ≤ 0. To

compute s̃, the initial numbers are set to x0 = −1 and x1 = s. When f(x) = c2 +x2− 1,

s̃ =
−(c2 + s2 − 1)− sc2

(c2 + s2 − 1)− (c2)
= −1 + c× c

1− s
, (128)

is obtained, where s̃ is more appropriate for satisfying f(x) = c2 + x2 − 1. When not
using s but s̃, the Givens rotation for vectors x and y is defined as follows:

z3 =
c

1− s
, (129)

x← cx + (−1 + c× z3) y = c

(
z3y + x

)
− y, (130)

y← − (−1 + c× z3) x + cy = c

(
−z3x + y

)
+ x. (131)

Notably, the FMA can be adopted in the double underlined part.

51

5.10 Numerical experiments

In order to confirm the two-sided Jacobi algorithm (arctan and Rutishauser versions)
has a shorter computation time and a higher accuracy than those of the one-sided Ja-
cobi algorithm implemented in LAPACK [2], We perform numerical experiments. The
experimental environment is mentioned in Table 8. We used the following eight matrices

Table 8: Experimental environment

CPU Intel(R) Xeon(R) Silver 4116 @ 2.10 GHz
(2 CPUs)

RAM 192 GB
OS Ubuntu 20.04.1 LTS
Compiler gfortran 9.3.0
Options -O3 -mtune=native -march=native
Software Lapack 3.9.0
Precision single precision

for the comparison:

� A1 (dimension size: 500× 500, an upper triangular matrix)

� A2 (dimension size: 1000× 1000, an upper triangular matrix)

� A3 (dimension size: 1500× 1500, an upper triangular matrix)

� A4 (dimension size: 2000× 2000, an upper triangular matrix)

and

� A5 (dimension size: 500× 500, an upper triangular matrix)

� A6 (dimension size: 1000× 1000, an upper triangular matrix)

� A7 (dimension size: 1500× 1500, an upper triangular matrix)

� A8 (dimension size: 2000× 2000, an upper triangular matrix)

For A1, A2, A3, and A4, all the elements are set to random numbers ∈ [0, 1] generated
using a uniform random number generator. For A5, A6, A7, and A8, all the elements are
set to 1. The results are shown in Table 9, Table 10 and Table 11.

5.11 Discussion about the proposed implementation of two-sided Ja-
cobi algorithm

The results shown in Table 9, without the incorporation of our implementation technique
which is introduced in Section 5.7, 5.8, and 5.9, represents that the proposed method
achieved better performance than the proposed method in terms of the computation

52

Table 9: Comparison of Jacobi SVD algorithms (without the incorporation of our im-
plementation technique)

One-sided
Jacobi

Two-sided Jacobi
Conventional
(tan−1)

Two-sided Jacobi
Proposed
(faster, tan−1)

A1

||U>U − I||F 1.91 ∗ 10−4 1.11 ∗ 10−4 1.12 ∗ 10−4

||V >V − I||F 8.20 ∗ 10−5 1.03 ∗ 10−4 1.03 ∗ 10−4

||A− UΣV >||F 6.33 ∗ 10−4 5.72 ∗ 10−4 5.69 ∗ 10−4

Computation time[s] 1.140 0.882 0.741
A2

||U>U − I||F 5.51 ∗ 10−4 3.18 ∗ 10−4 3.21 ∗ 10−4

||V >V − I||F 1.78 ∗ 10−4 2.87 ∗ 10−4 2.95 ∗ 10−4

||A− UΣV >||F 2.54 ∗ 10−3 2.27 ∗ 10−3 2.53 ∗ 10−3

Computation time[s] 10.246 8.160 6.358
A3

||U>U − I||F 1.00 ∗ 10−3 6.25 ∗ 10−4 6.11 ∗ 10−4

||V >V − I||F 2.81 ∗ 10−4 5.62 ∗ 10−4 5.54 ∗ 10−4

||A− UΣV >||F 4.12 ∗ 10−3 4.34 ∗ 10−3 4.96 ∗ 10−3

Computation time[s] 38.645 35.668 28.868
A4

||U>U − I||F 1.50 ∗ 10−3 9.70 ∗ 10−4 9.64 ∗ 10−4

||V >V − I||F 3.91 ∗ 10−4 9.20 ∗ 10−4 9.11 ∗ 10−4

||A− UΣV >||F 6.77 ∗ 10−3 7.13 ∗ 10−3 7.15 ∗ 10−3

Computation time[s] 92.253 133.499 113.791
A5

||U>U − I||F 2.01 ∗ 10−4 1.47 ∗ 10−4 1.50 ∗ 10−4

||V >V − I||F 9.40 ∗ 10−5 1.66 ∗ 10−4 1.68 ∗ 10−4

||A− UΣV >||F 9.22 ∗ 10−4 7.34 ∗ 10−4 9.32 ∗ 10−4

Computation time[s] 0.989 0.993 0.922
A6

||U>U − I||F 5.29 ∗ 10−4 4.67 ∗ 10−4 4.71 ∗ 10−4

||V >V − I||F 2.18 ∗ 10−4 5.18 ∗ 10−4 5.25 ∗ 10−4

||A− UΣV >||F 2.03 ∗ 10−3 2.56 ∗ 10−3 2.80 ∗ 10−3

Computation time[s] 8.402 8.556 8.253
A7

||U>U − I||F 1.00 ∗ 10−3 9.38 ∗ 10−4 9.30 ∗ 10−4

||V >V − I||F 3.84 ∗ 10−4 1.05 ∗ 10−3 1.04 ∗ 10−3

||A− UΣV >||F 3.46 ∗ 10−3 4.31 ∗ 10−3 4.94 ∗ 10−3

Computation time[s] 30.260 39.966 39.056
A8

||U>U − I||F 1.59 ∗ 10−3 1.54 ∗ 10−3 1.54 ∗ 10−3

||V >V − I||F 5.20 ∗ 10−4 1.69 ∗ 10−3 1.70 ∗ 10−3

||A− UΣV >||F 5.95 ∗ 10−3 7.51 ∗ 10−3 7.15 ∗ 10−3

Computation time[s] 78.082 154.763 150.870

53

Table 10: Comparison of Jacobi SVD algorithms (with the incorporation of our imple-
mentation technique)

One-sided
Jacobi

Two-sided
Jacobi
Conventional
(tan−1)

Two-sided
Jacobi
Proposed
(faster,tan−1)

Two-sided
Jacobi
Proposed
(accurate,tan−1)

A1

||U>U − I||F 1.91 ∗ 10−4 4.36 ∗ 10−5 4.30 ∗ 10−5 4.33 ∗ 10−5

||V >V − I||F 8.20 ∗ 10−5 4.32 ∗ 10−5 4.32 ∗ 10−5 4.31 ∗ 10−5

||A− UΣV >||F 6.33 ∗ 10−4 3.74 ∗ 10−4 3.69 ∗ 10−4 3.70 ∗ 10−4

Computation time[s] 1.140 0.819 0.712 0.698
A2

||U>U − I||F 5.51 ∗ 10−4 8.90 ∗ 10−5 8.87 ∗ 10−5 8.92 ∗ 10−5

||V >V − I||F 1.78 ∗ 10−4 8.65 ∗ 10−5 8.65 ∗ 10−5 8.65 ∗ 10−5

||A− UΣV >||F 2.54 ∗ 10−3 1.07 ∗ 10−3 1.06 ∗ 10−3 1.08 ∗ 10−3

Computation time[s] 10.246 6.325 6.191 6.030
A3

||U>U − I||F 1.00 ∗ 10−3 1.41 ∗ 10−4 1.40 ∗ 10−4 1.41 ∗ 10−4

||V >V − I||F 2.81 ∗ 10−4 1.30 ∗ 10−4 1.30 ∗ 10−4 1.30 ∗ 10−4

||A− UΣV >||F 4.12 ∗ 10−3 2.02 ∗ 10−3 2.04 ∗ 10−3 2.07 ∗ 10−3

Computation time[s] 38.645 28.324 27.150 26.822
A4

||U>U − I||F 1.50 ∗ 10−3 1.96 ∗ 10−4 1.96 ∗ 10−4 1.96 ∗ 10−4

||V >V − I||F 3.91 ∗ 10−4 1.73 ∗ 10−4 1.73 ∗ 10−4 1.74 ∗ 10−4

||A− UΣV >||F 6.77 ∗ 10−3 3.16 ∗ 10−3 3.18 ∗ 10−3 3.08 ∗ 10−3

Computation time[s] 92.253 104.210 102.440 99.877
A5

||U>U − I||F 2.01 ∗ 10−4 4.48 ∗ 10−5 4.45 ∗ 10−5 4.51 ∗ 10−5

||V >V − I||F 9.40 ∗ 10−5 4.51 ∗ 10−5 4.47 ∗ 10−5 4.48 ∗ 10−5

||A− UΣV >||F 9.22 ∗ 10−4 5.52 ∗ 10−4 5.87 ∗ 10−4 5.55 ∗ 10−4

Computation time[s] 0.989 0.789 0.757 0.737
A6

||U>U − I||F 5.29 ∗ 10−4 9.12 ∗ 10−5 9.11 ∗ 10−5 9.18 ∗ 10−5

||V >V − I||F 2.18 ∗ 10−4 9.13 ∗ 10−5 9.15 ∗ 10−5 9.16 ∗ 10−5

||A− UΣV >||F 2.03 ∗ 10−3 1.77 ∗ 10−3 1.74 ∗ 10−3 1.72 ∗ 10−3

Computation time[s] 8.402 6.533 6.469 6.224
A7

||U>U − I||F 1.00 ∗ 10−3 1.39 ∗ 10−4 1.39 ∗ 10−4 1.39 ∗ 10−4

||V >V − I||F 3.84 ∗ 10−4 1.38 ∗ 10−4 1.38 ∗ 10−4 1.38 ∗ 10−4

||A− UΣV >||F 3.46 ∗ 10−3 3.52 ∗ 10−3 3.93 ∗ 10−3 3.51 ∗ 10−3

Computation time[s] 30.260 29.807 29.257 28.888
A8

||U>U − I||F 1.59 ∗ 10−3 1.86 ∗ 10−4 1.85 ∗ 10−4 1.85 ∗ 10−4

||V >V − I||F 5.20 ∗ 10−4 1.84 ∗ 10−4 1.84 ∗ 10−4 1.84 ∗ 10−4

||A− UΣV >||F 5.95 ∗ 10−3 5.91 ∗ 10−3 5.88 ∗ 10−3 5.59 ∗ 10−3

Computation time[s] 78.082 111.501 110.080 108.564

54

Table 11: Comparison of Jacobi SVD algorithms (with the incorporation of our imple-
mentation technique)

Two-sided
Jacobi
Proposed
Rutishauser

Two-sided
Jacobi
Proposed
Givens rotation

A1

||U>U − I||F 4.32 ∗ 10−5 4.34 ∗ 10−5

||V >V − I||F 4.30 ∗ 10−5 4.33 ∗ 10−5

||A− UΣV >||F 3.77 ∗ 10−4 3.60 ∗ 10−4

Computation time[s] 0.683 0.694
A2

||U>U − I||F 8.93 ∗ 10−5 8.86 ∗ 10−5

||V >V − I||F 8.59 ∗ 10−5 8.61 ∗ 10−5

||A− UΣV >||F 1.07 ∗ 10−3 1.06 ∗ 10−3

Computation time[s] 6.032 6.265
A3

||U>U − I||F 1.39 ∗ 10−4 1.40 ∗ 10−4

||V >V − I||F 1.29 ∗ 10−4 1.29 ∗ 10−4

||A− UΣV >||F 2.01 ∗ 10−3 2.11 ∗ 10−3

Computation time[s] 27.387 28.528
A4

||U>U − I||F 1.95 ∗ 10−4 1.95 ∗ 10−4

||V >V − I||F 1.71 ∗ 10−4 1.72 ∗ 10−4

||A− UΣV >||F 3.17 ∗ 10−3 3.14 ∗ 10−3

Computation time[s] 104.007 104.847
A5

||U>U − I||F 4.52 ∗ 10−5 4.48 ∗ 10−5

||V >V − I||F 4.52 ∗ 10−5 4.51 ∗ 10−5

||A− UΣV >||F 5.71 ∗ 10−4 5.72 ∗ 10−4

Computation time[s] 0.721 0.747
A6

||U>U − I||F 9.16 ∗ 10−5 9.16 ∗ 10−5

||V >V − I||F 9.14 ∗ 10−5 9.13 ∗ 10−5

||A− UΣV >||F 1.77 ∗ 10−3 1.77 ∗ 10−3

Computation time[s] 6.250 6.226
A7

||U>U − I||F 1.39 ∗ 10−4 1.39 ∗ 10−4

||V >V − I||F 1.38 ∗ 10−4 1.38 ∗ 10−4

||A− UΣV >||F 3.52 ∗ 10−3 3.40 ∗ 10−3

Computation time[s] 28.822 28.928
A8

||U>U − I||F 1.85 ∗ 10−4 1.86 ∗ 10−4

||V >V − I||F 1.84 ∗ 10−4 1.84 ∗ 10−4

||A− UΣV >||F 5.06 ∗ 10−3 4.96 ∗ 10−3

Computation time[s] 108.220 109.734

55

speed. Furthermore, if we do not incorporate our implementation technique in Section
5.7, 5.8, and 5.9, the performance of the two-sided Jacobi algorithm is not better than
that of the one-sided Jacobi algorithm implemented in LAPACK [2] in terms of compu-
tation time and accuracy.

The results shown in Table 10 and Table 11, made with the incorporation of our
implementation technique in Section 5.7, 5.8, and 5.9 in Table 10 and Table 11, represents
that the two-sided Jacobi algorithm (Givens rotation) has a shorter computation time
and a higher accuracy than those of the one-sided Jacobi algorithm implemented in
LAPACK for both the 500×500, 1000×1000, and 1500×1500 upper triangular matrices
whose elements are generated using a uniform random number generator and also, for
the 500 × 500, 1000 × 1000, and the 1500 × 1500 upper triangular matrix whose all
elements are 1. The accuracy of the implemented two-sided Jacobi algorithm, which is
applied using the arctangent function, the implementation procedure by Rutishauser, or
Givens rotation, is higher than that of the one-sided Jacobi algorithm, for small matrices.
Particularly, the orthogonality in the implemented two-sided Jacobi algorithm is better
than that of the one-sided Jacobi algorithm. The smaller is the matrix size, the higher
is the accuracy of the implemented two-sided Jacobi algorithm.

In test matrices A4 and A8, each of whose dimension size is 2000× 2000, the compu-
tation time of the implemented two-sided Jacobi algorithm is slightly longer than that
of the one-sided Jacobi algorithm. In the other test matrices, the computation time of
the implemented two-sided Jacobi algorithm is shorter than that of the one-sided Jacobi
algorithm.

The applications such as singular spectrum analysis requires only 100 × 100 or less
dimensions of target matrices so that the proposed two-sided Jacobi algorithm is more
suitable than the one-sided Jacobi algorithm. However, better performance for more
larger matrices is desired then, we try to improve the one-sided Jacobi algorithm using
the knowledge of the implementation of the two-sided Jacobi algorithm.

6 Singular value decomposition using the one-sided Jacobi
method

The one-sided Jacobi algorithm is more popular algorithm than the two-sided Jacobi
algorithm, and the difference is that the rotation matrices are multiplied only to right
side of the target matrix while multiplied to both side in the two-sided Jacobi algorithm.
We introduce the outline of the one-sided Jacobi algorithm and improvements of the
implementation in this section.

56

6.1 Outline of the one-sided Jacobi method

Let A and Ji be m×n real matrix and the following Jacobi rotation of the n×n matrix,
respectively.

Ji =



I 0 · · · · · · 0

0 cos θi · · · − sin θi
...

...
... I

...
...

... sin θi · · · cos θi 0
0 · · · · · · 0 I


From the right side of the matrix A, the rotations of Ji(i = 1, · · ·) is effected so that
the converged matrix B satisfies the column orthogonality B>B = D (D is the diagonal
matrix).

AJ1J2 · · · → B

Then, the norm of the column vector bj(j = 1, · · · , n) of the jth column of the matrix
B is the singular value σj(j = 1, · · · , n) of the matrix A. If V = J1J2 · · · , V is a
matrix of the right singular vectors. For a column vector bj with a positive value σj for
j = 1, · · · , n, if we divide a column vector bj by the positive value σj , then each jth
column vector of B is the jth left singular vector of the matrix A.

6.2 Conventional implementation for the one-sided Jacobi method

Algorithm 16 shows a pseudo code of the one-sided Jacobi algorithm[32]. It requires
an m× n (m ≥ n) real matrix A and a convergence-judgment threshold tol and ensures
Σ, U , and V . The terms Σ, U , and V denote the matrices whose elements are singular
values, left singular vectors, and right singular vectors in A, respectively. Generally, tol is
set to tol =

√
mε, where ε denotes a machine epsilon, which is adopted in xGESVJ routine

implemented in LAPACK, considering the error in the inner-product computation.
The algorithm comprises a double loop with the main part. The outer loop repeats

until the result of the inner loop converges. The inner loop performs through a sub-
script pairs, which is given using a subroutine jacobi pairs. This generates a pair that
contains at least one pair of all the integers from 1 to n. Thus, pairs contains at least
n(n − 1)/2 entries. As an example, we introduce the pairs obtained in the simplest
subroutine jacobi pairs,

pairs =(1, 2), (1, 3), · · · , (1, n), (2, 3), (2, 4), · · · , (2, n), · · · ,
(n− 2, n− 1), (n− 2, n), (n− 1, n). (132)

As of the two-sided Jacobi algorithm introduced in Section 5, correction of trigono-
metric values with false position method and secant method, and the FMA instruction
improve the accuracy of Givens rotation.

57

6.3 Proposed Implementation

Six improvements have been made in the proposed implementation.
The first improvement is to avoid fatal bugs that could create an infinite loop. In

the implementations using the Givens rotation, rounding errors may occur during or-
thogonalization while computing the pair of two vectors (aj ,ak). Therefore, when there
is no effect of improving orthogonality in the pair of two vectors (aj ,ak), even upon
performing orthogonalization, an infinite loop occurs. To avoid this infinite loop, the
orthogonalization computation should be terminated when the orthogonality in all the
pair becomes invariant.

As the second improvement, the De Rijk method [6] is adopted. In the subroutine
jacobi pairs of alg.16, the construction of pair is arbitrary and can be freely designed.
The De Rijk method suggests an appropriate way to construct pair. As the subroutine
jacobi pairs, the proposed implementation swaps aj with the longest one of ak(k =
i, · · · , n). Thus, we can save the computation cost and increase the speed.

As the third improvement, the orthogonalization computation should be minimized.
In the algorithm 16, the same computation is performed for all the vectors including those
that possess sufficient orthogonality. In this case, it is not only redundant to orthogo-
nalize vectors that previously have sufficient orthogonality but the effect of rounding
errors increases by extra orthogonalization. Therefore, vector aj , which is orthogonal to
all the other vectors in the previous iteration, is excluded from the orthogonalization
computation. This exclusion can increase accuracy and speed.

The fourth improvement is to avoid overflow and underflow while computing x and
y in algorithm 16. In the proposed implementation, lines 6 and 7 in algorithm 16 are
properly scaled with the norm of the vectors.

The fifth improvement is also to avoid overflow and underflow. The computation for
g may occurs overflow or underflow. To avoid this, ĝ and wj = aj × tj is introduced,
where tj is define as follows:

ρj ≡

SAFMIN
√
β̂j,j < SAFMIN√

β̂j,j otherwise

tj ≡
1

ρj

wj ≡ aj × tj

Here,
√
β̂j,j , which is described in 6.3.2, is the estimated norm of aj . Introducing this,

the norm wj becomes almost equal to 1. SAFMIN means such a safe minimum value that

1/SAFMIN does not overflow. Using the upper wj , we can compute ĝ =
(
a>j ak

)
× tj =

w>j ak, which is adopted in 6.3.1.
The sixth improvement is to compute an accurate norm of a vector under the condi-

tion that the approximation of norm is known. That is described in 6.3.3.

58

6.3.1 Computation with high accuracy in cos θ and sin θ

The Jacobi rotation matrix makes the off-diagonal components zero as follows:

J1

(
a>j aj a>j ak
a>j ak a>k ak

)
J2 =

(
β̂j,j 0

0 β̂k,k

)
, (133)

where,

J1 =

(
cos θ sin θ
− sin θ cos θ

)
, (134)

J2 =

(
cos θ − sin θ
sin θ cos θ

)
. (135)

The values of cos θ and sin θ in Equations (134) and (135) are computed in the conven-
tional implementation as follows:

x =a>j aj , (136)

y =a>k ak, (137)

f =
1

2
(x− y) , (138)

g =a>j ak, (139)

t =
g(

f + sign
(√

g2 + f2, f
)) , (140)

r =
√

1 + t2, (141)

cos θ =
1

r
, (142)

sin θ =
t

r
, (143)

β̂j,j =a>j aj + t× a>j ak, (144)

β̂k,k =a>k ak − t× a>j ak. (145)

59

In the proposed implementation, instead of f and g, we use f̂ and ĝ to avoid divergence.
The following equations are adopted to compute f̂ and ĝ:

δj = sj × tj , (146)

δk = sk × tj , (147)

f̂ =
1

2

(√
a>j aj −

√
a>k ak

)
×
(√

a>j aj × tj +
√

a>k ak × tj
)
, (148)

=
1

2
(sj − sk) (δj + δk) , (149)

ĝ =
(
a>j ak

)
× tj = w>j ak, (150)

t =
ĝ(

f̂ + sign

(√
ĝ2 + f̂2, f̂

)) , (151)

r =
√

1 + t2, (152)

cos θ =
1

r
, (153)

sin θ =
t

r
, (154)

β̂j,j =s2j + t× ĝ/tj , (155)

β̂k,k =s2k − t× ĝ/tj , (156)

where sj and sk denote the norm of aj and the norm of ak, respectively. The FMA in-
struction can be adopted in the double underlined part of these equations. For computing√
ĝ2 + f̂2, we employ xLARTG implemented in LAPACK.

6.3.2 Approximate computation of the norm of vectors√
β̂j,j and

√
β̂k,k represent the approximated norm of âj and the approximated norm of

âk, respectively. √
β̂j,j ≈ ||âj ||2, (157)√
β̂k,k ≈ ||âk||2, (158)

where

âj = cos θaj + sin θak, (159)

âk = − sin θaj + cos θak. (160)

60

√
β̂j,j and

√
β̂k,k are computed as follows,√

β̂j,j =
√
s2j + t× (ĝ/tj), (161)

= sj ×
√

1 + t× (ĝ/ (sj × δj)), (162)√
β̂k,k =

√
s2k − t× (ĝ/tj), (163)

= sk ×
√

1− t× (ĝ/ (sk × δk)), (164)

where sj and sk denote the norm of aj and the norm of ak, respectively. The FMA instruc-
tion can be adopted in the double underlined part of these equations. If 1− t× (ĝ/ (sk × δk))

is not positive, we must use xNRM2 implemented in LAPACK for computing the norm of
the vector ak.

6.3.3 Accurate computation of the norm of vectors

Let x be the vector whose norm you compute.

x = (x1, x2, . . . , xm) . (165)

Under the condition that the approximation of the norm α is known, the underflow and
overflow can be avoided by using the following computation.

||x||2 = α×
√(x1

α

)2
+
(x2
α

)2
+ · · ·+

(xm
α

)2
(166)

Concretely, the implementation is as follows.

β ≡

{
SAFMIN α < SAFMIN

α otherwise
, (167)

γ ≡ 1

β
, (168)

`0 = 0, (169)

`1 = `0 + (γx1)
2, (170)

`2 = `1 + (γx2)
2, · · · , (171)

`m = `m−1 + (γxm)2, (172)

||x||2 = β ×
√
`m. (173)

The FMA instruction can be adopted in the double underlined part of these equations.

61

6.4 Numerical experiments

We evaluate the proposed implementation to see if it had a higher accuracy than those
of the QR algorithm, the OQDS algorithm introduced in Section 4, and xGESVJ imple-
mented in LAPACK-3.9.0, which is a routine for the one-sided Jacobi algorithm. Because
the test matrices are upper triangular, the Householder transformation is adopted as a
preprocessing method for the QR and OQDS algorithm.

Table 12 summarizes the experimental environment.

Table 12: Experimental Environment
CPU Intel(R) Core(TM) i7-9700 CPU 3.00GHz
OS Ubuntu 20.04.1 LTS

RAM 16GB
Cache 12MB Intel(R) Smart Cache

Compiler gfortran 9.3.0
Options -O3 -mtune=native -march=native
Software Lapack-3.9.0
Precision single precision

We use four real random upper triangular matrices, whose dimensions are 500×500,
1000× 1000, 1500× 1500, and 2000× 2000, respectively. The following Frobenius norms
are used to evaluate the computation errors:

||A− UΣV >||F, (174)

||U>U − I||F, (175)

||V >V − I||F. (176)

It should be noted that the Jacobi algorithm is not suited for the input matrices.
The Jacobi algorithm is originally designed for diagonal dominant matrices therefore,
the input matrices which have nonnegative values in their every entries are unfavorable
assumptions for the Jacobi algorithm. For this reason, we should compare the relative
performance between the conventional one-sided Jacobi algorithm and the proposed one-
sided Jacobi algorithm. The results for the computation time of the QR and the OQDS
algorithms are just references.

Figure 9 shows the performance results. From figure 9(a), it is shown that the pro-
posed implementation is faster than xGESVJ. Despite the computation cost in the Givens
rotation with high accuracy is higher than that in the Jacobi rotation in xGESVJ, the
proposed implementation achieves a higher computation speed with the reduction of
redundant computation. From figure 9(b) and (c), it is evident that ||A−UΣV >||F and
||U>U − I||F in the proposed implementation is the highest among all the implemen-
tations. It is caused that the QR and OQDS methods are affected by rounding errors
due to preprocessing via the Householder transformation; the Givens rotation of the
proposed implementation with high accuracy is better than that of xGESVJ. Especially,
from figure 9(c), we can see that the orthogonality of left singular vectors in the proposed

62

Table 13: Comparison of SVD algorithms

QR OQDS
One-sided
Jacobi
Conventional

One-sided
Jacobi
Proposed

A1

||U>U − I||F 5.03 ∗ 10−5 3.14 ∗ 10−5 1.92 ∗ 10−4 1.85 ∗ 10−5

||V >V − I||F 4.79 ∗ 10−5 3.07 ∗ 10−5 8.62 ∗ 10−5 4.15 ∗ 10−5

||A− UΣV >||F 4.27 ∗ 10−4 3.40 ∗ 10−4 6.85 ∗ 10−4 2.77 ∗ 10−4

Computation time[s] 0.22 0.196 0.947 0.787
A2

||U>U − I||F 9.79 ∗ 10−5 6.14 ∗ 10−5 5.84 ∗ 10−4 3.79 ∗ 10−5

||V >V − I||F 9.63 ∗ 10−5 6.35 ∗ 10−5 1.75 ∗ 10−4 8.31 ∗ 10−5

||A− UΣV >||F 1.11 ∗ 10−3 8.72 ∗ 10−4 2.93 ∗ 10−3 7.67 ∗ 10−4

Computation time[s] 1.915 1.708 8.088 7.477
A3

||U>U − I||F 1.54 ∗ 10−4 9.25 ∗ 10−5 1.03 ∗ 10−3 5.72 ∗ 10−5

||V >V − I||F 1.42 ∗ 10−4 9.42 ∗ 10−5 2.82 ∗ 10−4 1.25 ∗ 10−4

||A− UΣV >||F 2.15 ∗ 10−3 1.56 ∗ 10−3 4.67 ∗ 10−3 1.48 ∗ 10−3

Computation time[s] 7.292 5.755 30.652 27.8
A4

||U>U − I||F 2.05 ∗ 10−4 1.23 ∗ 10−4 1.53 ∗ 10−3 7.75 ∗ 10−5

||V >V − I||F 1.93 ∗ 10−4 1.27 ∗ 10−4 3.88 ∗ 10−4 1.68 ∗ 10−4

||A− UΣV >||F 3.39 ∗ 10−3 2.38 ∗ 10−3 7.02 ∗ 10−3 2.15 ∗ 10−3

Computation time[s] 26.213 14.11 73.345 70.558

63

(a) Computation time (s)

(b) ||A− UΣV >||F

(c) ||U>U − I||F

(d) ||V >V − I||F

Figure 9: Comparison

64

implementation is approximately 10 times more accurate than that in xGESVJ. Table 13
shows the comparison in ||V >V − I||F. From figure 9(d), we say that ||V >V − I||F in
the proposed implementation is smaller than that in the QR method and xGESVJ. From
table 13, ||V >V − I||F in the proposed implementation is slightly larger than that in the
OQDS method but not considerably different.

6.5 Discussion about singular value decomposition using the one-sided
Jacobi algorithm

We introduce six improvements to the one-sided Jacobi algorithm in this section. In
the implementation, accurate Givens rotation and the FMA instruction were adopted.
We also resolved the problem that overflow and underflow may occur in the conven-
tional method[32] with careful implementation. Because the Givens rotation with high
accuracy requires considerable computation time, we reduced redundant computation
to speed up the operation. As a result of the numerical experiments, the proposed one-
sided Jacobi algorithm has a higher performance than the conventional implementation
provided in LAPACK in terms of speed and accuracy as shown in Figure 9. Especially,
the improvement for the accuracy is notable; in terms of decomposition, the proposed
implementation consistently improves the performance left singular vectors and right
singular vectors. Also compared with the QR and the OQDS algorithms, the proposed
one-sided Jacobi algorithm gives a higher orthogonality of left singular vectors despite of
unfavorable assumption. It is expected that the application which requires only left sin-
gular vectors, such as Sakurai–Sugiura method[17] prefers the proposed one-sided Jacobi
algorithm to the QR or the OQDS algorithms. On the other hand, if the input matrix
is small such as the target of singular spectrum analysis, the one-sided Jacobi algorithm
might be a best choice among the algorithms because of the high accuracy.

65

Algorithm 15 Implementation method using the Givens rotation

1: f1 ← Rj,j −Rk,k
2: f1 ← f1+SIGN

(√
f21 +R2

j,k, f1

)
The Givens rotation is adopted in the underlined

part
3: if f1 ≥ 0 then
4: g1 ← Rj,k
5: else
6: g1 ← −Rj,k
7: f1 ← −f1
8: end if
9: f2 ← Rj,j +Rk,k

10: f2 ← f2+SIGN

(√
f22 +R2

j,k, f2

)
The Givens rotation is adopted in the underlined

part
11: if f2 ≥ 0 then
12: g2 ← −Rj,k
13: else
14: g2 ← Rj,k
15: f2 ← −f2
16: end if
17: if f1 ≥ f2 then
18: t1 ← g1/f1
19: ĉ1 ← −t1 × g2 + f2

20: ŝ1 ← t1 × f2 + g2

21: ĉ2 ← t1 × g2 + f2

22: ŝ2 ← t1 × f2 − g2
23: else
24: t2 ← g2/f2
25: ĉ1 ← −g1 × t2 + f1

26: ŝ1 ← f1 × t2 + g1

27: ĉ2 ← g1 × t2 + f1

28: ŝ2 ← −f1 × t2 + g1

29: end if
30: Compute c1 and s1 using the Givens rotation for x← ĉ1 and y ← ŝ1
31: Compute c2 and s2 using the Givens rotation for x← ĉ2 and y ← ŝ2

66

Algorithm 16 Pseudo code of the one-sided Jacobi method

Require: A = [a1 a2 · · · an], tol
Ensure: (U,Σ, V)
1: V := [v1 v2 · · · vn] := In,n
2: repeat
3: maxt := 0
4: pairs := jacobi pairs()
5: for (j, k) in pairs do
6: x := a>j aj
7: y := a>k ak
8: g := a>j ak
9: τ := |g|/

√
x× y

10: maxt := max(maxt, τ)
11: if τ > tol then
12: Computation of Jacobi rotation
13: f := (x− y)/2

14: t := g/
(
f + sign

(√
g2 + f2, f

))
15: r :=

√
1 + t2

16: cos θ := 1/r
17: sin θ := t/r
18: Effect of Jacobi rotation
19: q := aj
20: aj := cos θq + sin θak
21: ak := − sin θq + cos θak
22: Effect of Jacobi rotation
23: q := vj
24: vj := cos θq + sin θvk
25: vk := − sin θq + cos θvk
26: end if
27: end for
28: until maxt > tol
29: for j = 1 to n do
30: σj := ||aj ||2
31: end for
32: Σ := diag(σ1, σ2, · · · , σn)
33: U := AΣ−1

67

7 Conclusion

In this thesis, we discussed about the implementation details and applications of the
OQDS algorithm and the Jacobi algorithm.

The narrow band reduction approach was introduced as the first application of the
OQDS algorithm in Section 3 to utilize the expandability of the OQDS algorithm for
the lower triangular matrices. This approach intends to reduce the total computation
time of singular value computation with the block Householder reduction that reduces
an input matrix to a lower triangular matrix faster than the conventional Householder
bidiagonalization. We formulated the OQDS algorithm for the lower tridiagonal matrix
obtained as the result of the BLAS level 2.5 Householder reduction algorithm which
approximately cuts in half of data transfer between the main memory and cache by
computing two vectors-matrix multiplication simultaneously. A new shift strategy con-
sists of the Gerschgoriin shift, the algebraic shit, the Laguerre shift and the Kato-Temple
shift accelerates the convergence of the OQDS algorithm. In addition, we designed the
convergence criteria to terminate the OQDS algorithm. If the criteria are satisfied, we
can treat the elements as zero without any effect to the obtained singular values and
perform deflation and splitting operations for the target matrix. By introducing these
improvements, the OQDS algorithm got a practical performance for computing singular
values of lower tridiagonal matrices. The numerical experiment shows that the OQDS
algorithm for lower tridiagonal matrices performs a faster computation of singular val-
ues of real symmetric matrices than the DQDS algorithm does for bidiagonal matrices
in terms of total computation time of preliminary reduction and diagonalization as in
Section 3.6.

On the other hand, the narrow band reduction approach could not utilize the accu-
racy of the OQDS algorithm because of the increase of the number of iterations caused
by the expansion for lower tridiagonal matrices. However, since the high accuracy of
orthogonal transformation based formulation of the OQDS algorithm is a great strength
so we proposed an application of the OQDS algorithm for bidiagonal matrix utilizing the
accuracy of singular values and singular vectors. The column space computation method
using the combination of the OQDS algorithm and the DQDS algorithm was introduced
in Section 4. The main idea of the method is that we compute singular values by the
DQDS algorithm which is extremely fast in exchange for the capability of computing
singular vectors and then, compute the column vectors of the target matrix by the OQDS
algorithm corresponding to the singular values given by the DQDS algorithm. For the
DQDS algorithm, we explained the formulation and introduced shift strategy suitable
for bidiagonal matrix. The shift strategy consists of the generalized Rutishauser bound,
the Laguerre method and the Newton method based bound, the Collatz inequality based
bound and the Johnson bound as described in Section 4.1.1. As the convergence criteria
of the DQDS algorithm, we adopt the criteria which adds one convergence condition
based on a recurrence relation of the relative values of diagonal and off-diagonal ele-
ments to the conventional convergence criteria. For the OQDS algorithm, we formulated
the sequence of operations obtaining singular vectors for bidiagonal matrices and pro-

68

pose the shift strategy and convergence criteria. We added the generalized Rutishauser
bound, the Collatz inequality based bound and the Johnson bound which are suitable
for estimating the minimum singular value of bidiagonal matrix to the shift strategy
designed for the OQDS algorithm in Section 3. The detail of the shift strategy is de-
scribed in Section 4.2.2. The convergence criteria for the OQDS algorithm for bidiagonal
matrix is based on Weyl’s monotonicity theorem as same as that of the OQDS algorithm
for lower tridiagonal matrices. Section 4.5 describes the numerical experiments of the
column space computation method. Our numerical experiments show that the proposed
method performs faster and more accurate computation than that of the conventional
implementation of the OQDS algorithm[5]. The column space computation method can
be used as the subroutine of the Sakurai-Sugiura method[17] which computes eigenvalues
of polynomial eigenvalue problem by a parallel computation.

In the latter part of this thesis, we discussed about the Jacobi algorithm as another
singular value decomposition algorithm based on orthogonal transformation. The two-
sided Jacobi algorithm, an explicit form of the Jacobi algorithm, is explained in Section
5. We carefully implemented the Givens transformation which is the main component of
the two-sided Jacobi algorithm. Five patterns of the implementations were proposed as
the candidate, conventional arctangent calculation, faster and accurate variants of the
arctangent calculation, Rutishauser’s calculation method and the Givens rotation. And
then, we correct the result of each implementation with the false position method and
the secant method in order to achieve a higher accuracy. In addition, in the perspective
of the expansion of OQDS algorithm, a singular value sorting feature similar to that of
the DQDS and OQDS algorithm could be introduced to the two-sided Jacobi algorithm
with an appropriate selection of the angle of Givens rotation. In the implementation
of the two-sided Jacobi algorithm, the FMA instruction that performs a fast and ac-
curate computation that combines multiply and add operation can be applied to the
formulation. The FMA instruction significantly contributes the speed and accuracy of
the two-sided algorithm therefore, the Givens rotation based implementation which con-
tains the most number of the FMA instruction achieved the best performance among the
five implementations. As a result of these improvements, the proposed implementation
of the two-sided Jacobi algorithm achieved a higher and accurate performance than that
of the conventional implementation as the numerical experiments in Section 5.10 show.

In Section 6, we presented the improvements to the one-sided Jacobi algorithm in
order to develop a practical solver for singular value decomposition. We adopted the De
Rijk method to construct the Jacobi pairs and carefully implemented the components
of the algorithm to avoid numerical error. The FMA instruction is also introduced the
formulation. As a result, the one-sided Jacobi algorithm improved its speed and accuracy
compared with the conventional implementation. In general, the computational speed
of the one-sided Jacobi algorithm is inferior to that of the QR algorithm for general
dense matrix and our proposed one-sided Jacobi algorithm is still slower than the QR
algorithm. On the other hand, if the number of non-zero elements of the input matrix is
very small such as the case of a sparse matrix, or the non-zero elements are gathered near
diagonal entries at the initial state of the input matrix, the one-sided Jacobi algorithm

69

is expected to performs faster computation than the QR algorithm. The accuracy of
the one-sided Jacobi algorithm is notably high on the situation which we can tolerate
the slowness. Especially, as the result of the numerical experiments presented in Section
6.4, the accuracy of original matrix restoration and the orthogonality of the column
vectors are the highest among the tested four algorithms despite of the disadvantageous
of input matrix. For the application of singular value decomposition which requires a high
accuracy in a small system such as singular spectrum analysis, the proposed one-sided
Jacobi algorithm might be the most suitable solver.

There are two widely used algorithm for computing singular value decomposition, the
QR algorithm and the divide and conquer algorithm using the Newton method as the
LAPACK subroutines DBDSQR and DBDSDC, respectively. Among the two algorithms,
it is reported that the accuracy of the divide and conquer algorithm gets worse for small
singular values of ill-conditioned matrices[40]. Since, in this thesis, we compared the
performance of two orthogonal transformation based algorithms, the OQDS algorithm
and the Jacobi algorithm, with those of the QR algorithm and the DQDS algorithm
in the context of a robust singular value decomposition algorithm. We improved the
performance of the OQDS algorithm and the Jacobi algorithm compared with each
conventional implementation through the appropriate design. For the OQDS algorithm,
we carefully treat the numerical error in the formulation and accelerate the convergence
with well-designed shift strategy. For the Jacobi algorithm, the sorting feature of singular
values increases the convenience and accelerates the convergence of the algorithm, and
the formulation which utilizes the FMA instruction derives a strong advantage in the
accuracy of the algorithm. Then, for some applications, our proposed algorithms are
prior to the QR algorithm and the DQDS algorithm. Through the fast and accurate
implementation of the OQDS algorithm and the Jacobi algorithm, it is shown that how
the orthogonal transformation contributes the accuracy of the algorithms based on the
transformation. In addition, we discovered an intrinsic relationship between the two
orthogonal transformation based algorithms which have been considered as individually.
As a future work, We would like to find more common features among the algorithms
and make use of them to improve the performance of the algorithm each other.

Acknowledgments

The authors would like to express a sincere gratitude to Professor Yoshimasa Nakamura
for many instructions and encouragements. His sincere gratitude also goes to Professor
Kinji Kimura at University of Fukui for the continuous support of Ph.D study and
research, for his patience, motivation, enthusiasm and immense knowledge. He would also
like to thank Professor Masami Takata at Nara Women’s University and all Nakamura
laboratory members for valuable discussions and comments.

70

References

[1] Golub, G.H. and van Loan, C.F., Matrix Computations, Third edition, Johns Hop-
kins University Press, 1996.

[2] Linear Algebra PACKage, http://www.netlib.org/lapack/, (2019, 12, 19).

[3] Dongarra, J. J., Hammarling, S. J. and Sorenson, D. C., Block reduction of matrices
to condensed forms for eigenvalue computations, Journal of Computational and
Applied Mathematics, Vol. 27, pp. 215–227 (1989).

[4] Dongarra, J. J. and van de Geijn, R. A., Reduction to condensed form for the
eigenvalue problem on distributed architectures, Parallel Computing, Vol.18, No.9,
pp. 973–982 (1992).

[5] von Matt, U., The orthogonal QD algorithm, SIAM J. Sci. Comput., vol.18, Issue:4,
pp.1163–1186 (1997).

[6] De Rijk, A one-sided Jacobi algorithm for computing the singular value decomposi-
tion on a vector computer, SIAM J. Sci. Stat. Comp., 10, pp.359–371 (1998).

[7] Rutishauser, H., Der Quotienten-Differenzen-Algorithms, ZAMP, vol. 5, pp. 233–
251 (1954).

[8] Rutishauser, H., Lectures on Numerical Mathematics, Birkhäuser, Boston, 1990.

[9] Parlett, B. N., The new qd algorithms, Acta Numerica, vol. 4, pp. 459–491 (1995).

[10] Fernando, K. V. and Parlett, B. N., Accurate singular values and differential qd
algorithms, Numerische Mathematik, vol. 67, pp. 191–229 (1994).

[11] Howell, G. W., Demmel, J. W., Fulton, C. T., Hammerling, S. and Marmol, K.,
Cache Efficient Bidiagonalization Using BLAS 2.5 Operators, LAWNs, lawn174,
2006.

[12] Chatelin, F., Valeurs propres de matrices, Masson, Paris, 1988.

[13] Gerschgorin, S., Uber die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad.
Nauk., USSR Otd. Fiz.-Mat. Nauk 7, pp.749–754, (1931).

[14] Parlett, B. N., Laguerre’s method applied to the matrix eigenvalue problem, Math.
Comp., 18, pp. 464–485, (1964).

[15] Parlett, B. N., The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs,
1980.

[16] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1995.

71

[17] Sakurai, T., and Tadano, H.: CIRR: A Rayleigh-Ritz type method with counter
integral for generalized eigenvalue problems, Hokkaido Math. J., Vol. 36, pp. 745–757
(2007).

[18] Aishima, K., Matsuo, T., and Murota, K.: Rigorous proof of cubic convergence for
the dqds algorithm for singular values, Japan J. Indust. Appl. Math. , Vol.25, pp.63–
81 (2008).

[19] Johnson, C. R.: A Gersgorin-type lower bound for the smallest singular value, Lin.
Alg. Appl., Vol. 112, pp. 1–7 (1989).

[20] Collatz, L.: Einschliessungssatz fuer die charakteristischen Zahlen von Matrizen,
Mathemathische Zeitschrift, Vol.48, pp.221-226 (1942).

[21] IEEE Standard for Floating-Point Arithmetic, IEEE Std. 754-2008, 2000.

[22] Conte, S. D., Elementary Numerical Analysis / an algorithmic approach, McGraw-
Hill, 1965.

[23] Strom, C. and Avriel, M., Nonlinear Programming: Analysis and Methods, Prentice
Hall, 1976.

[24] Kudo, S., Yasuda, K. and Yamamoto, Y., Performance of the parallel block Ja-
cobi method with dynamic ordering for the symmetric eigenvalue problem, JSIAM
Letters, 10(2015), pp. 41–44 (2015).

[25] Hari, V., and Zadelj-Martić V., Parallelizing the Kogbetliantz Method: A First At-
tempt. Journal of Numerical Analysis, Industrial and Applied Mathematics (JNA-
IAM), Vol. 2 No 1–2, pp.49–66 (2007).

[26] Imamura, T., Yamada, S. and Machida, M., Narrow-band reduction approach of a
DRSM eigensolver on a multicore-based cluster system, Advances in Parallel Com-
puting, vol.19, Parallel Computing: From Multicores and GPU’s to Petascale, IOS
Press, 2010, pp.91–98.

[27] Rutishauser, H., Uber eine kubisch konvergente Variante der LR-Thransformation,
Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 40, pp. 49–54 (1960).

[28] Wilkinson, J.H. and Reinsch, C. (eds.), Linear Algebra, Springer-Verlag, 1971.

[29] Bischof, C. H., Lang, B., and Sun, X., The SBR toolbox - software for successive
band reduction, ACM TOMS 26(4), pp. 602–616, (2000).

[30] Wu, Y. J., Alpatov, P. A., Bischof, C. H., and Geijn, R. A., A parallel implemen-
tation of symmetric band reduction using PLAPACK, In Proc. Scalable Parallel
Library Conference (1996).

[31] Bischof, C.H. and van Loan, C. F., The WY representation for products of House-
holder matrices, SIAM J. Sci. and Stat. Comput., Vol.8, No. 1, pp. s2-s13 (1987).

72

[32] Demmel, J., and Veselic, K.: Jacobi’s method is more accurate than QR, SIAM J.
Matrix Anal. Appl., Vol. 13, No. 4, pp.1204–1245 (1992).

[33] Hida, Y., Li, X. S., and Bailey, D. H.: Library for Double-Double and Quad-Double
Arithmetic, Proc. 15th Symposium on Computer Algorithmetic, pp.155–162 (2007).

[34] Parlett, B. N., and Marques, O. A.: An Implementation of the dqds Algorithm (Pos-
itive Case), Lin. Alg. Appl, Vol. 309, No. 1-3, pp. 217–259 (2000).

[35] Yamashita, T., Kimura, K., and Yamamoto, Y.: A new subtraction-free formula for
lower bounds of the minimal singular value of an upper bidiagonal matrix, Numerical
Algorithms, Vol. 69, Issue 4, pp. 893–912 (2015).

[36] Demmel, J.: Applied Numerical Linear Algebra, SIAM, Philadelphia (1997).

[37] Yamamoto, Y.: On the optimality and sharpness of Laguerre’s lower bound on the
smallest eigenvalue of a symmetric positive definite matrix, Applications of Mathe-
matics, Vol. 62, Issue 4, pp. 319–331 (2017).

[38] Basic Linear Algebra Subprograms, Netlib. (online), http://netlib.org/blas/

index.html (2018.05.29)

[39] Rutishauser, H.: The Jacobi method for real symmetric matrices, Numerische Math-
ematik, Vol. 9, No. 1, pp.1–10 (1966).

[40] Iwasaki, M. and Nakamura, Y., Positivity of DLV and mDLVs Algorithms for Com-
puting Singular Values, Electronic Transactions on Numerical Analysis.Volume 38,
pp. 184–201 (2011).

73

List of the author’s papers related to this thesis

1. Sho Araki, Hiroki Tanaka, Kinji Kimura and Yoshimasa Nakamura, Implementa-
tion of the orthogonal qd algorithm for lower tridiagonal matrices, in: Proceedings
of The 2013 International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA2013), 2013, pp. 161–167. {Section 3}

2. Sho Araki, Kinji Kimura, Yusaku Yamamoto and Yoshimasa Nakamura, Implemen-
tation details of an extended oqds algorithm for singular values, JSIAM Letters,
7(2015), pp. 9–12. {Section 3}

3. Sho Araki, Hiroki Tanaka, Masami Takata, Kinji Kimura and Yoshimasa Naka-
mura, Fast computation method of column space by using the DQDS method and
the OQDS method, in: Proceedings of 2018 International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA2018), 2018, pp.
333–339. {Section 4}

4. Sho Araki, Masana Aoki, Masami Takata, Kinji Kimura and Yoshimasa Nakamura,
On an implementation of the two-sided Jacobi method, IPSJ Trans. Math. Modeling
Appl. Vol.14, No.1, pp. 12—20 (Jan. 2021). {Section 5}

5. Masami Takata, Sho Araki, Takahiro Miyamae, Kinji Kimura, Yoshimasa Naka-
mura, On an Implementation of the One-Sided Jacobi Method with High Accuracy,
IPSJ Trans. Math. Modeling Appl. to appear. {Section 6}

74

