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Abstract

Various problems in the real world can be formulated as nonlinear optimization

problems. In exchange for their full capability of modeling complicated situations

and diverse objectives, nonlinearity makes it difficult to provide exact or efficient al-

gorithms for solving them. The exactness of algorithms is useful to guarantee the

theoretical properties of their outputs, while the efficiency of solution methods is

particularly crucial in applications to optimal control and estimation theory. In this

thesis, for optimal control, optimal estimation, and optimization, we aim to propose

efficient or exact methods combining numerical and symbolic computation based on

theories of abstract algebra. Since symbolic computation can manipulate mathemat-

ical expressions including indeterminates, it exactly keeps theoretical properties of

mathematical expressions and can deal off-line with variables to be determined on-

line, that is, unknown in advance of the implementation of controllers or estimators.

For a class of finite-horizon optimal control and estimation problems, we propose

symbolic methods that eliminate auxiliary variables in the problems off-line to make

them more tractable. After the variable elimination, the small-sized problems are

efficiently solved on-line by numerical computation. Another class of optimal esti-

mation problems called the Bayesian filtering problems is also tackled by using the

holonomic gradient method, which is a symbolic-numeric method based on the theory

of D-modules, for efficient evaluation of posterior mean and variance of the state.

On the other hand, we also take advantage of the exactness of symbolic computa-

tion to obtain necessary optimality conditions for polynomial optimization problems.

The obtained necessary optimality conditions are satisfied by all local minimizers,

which means that it does not require any constraint qualifications. A limit operation

of a parameter, which is introduced to relax the constraints of the original problems,

is considered algebraically by utilizing the notions of projective space and tangent

cone and exactly performed by symbolic computation. Consequently, we provide an

algorithm for constructing a set of equations satisfied by all optimal solutions, namely,

a necessary optimality condition without any constraint qualifications.
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Notation

Symbols Meanings

Z+ Set of positive integers

Z≥0 Set of integers greater than or equal to zero

R Field of real numbers

K[x]n Set of all n-dimensional vectors consisting of polynomials in
K[x]

K[x]n×m Set of all n×m matrices consisting of polynomials in K[x]

〈F (x)〉 Ideal generated by a set of generators F (x) ⊂ R[x]

F (x) = 0 Set of equations {F1(x) = 0, . . . , Fm(x) = 0}
V(I) Algebraic set defined by ideal I ⊂ R[x]

V(F (x)) Algebraic set defined by ideal 〈F (x)〉
x> Transpose of vector or matrix x

x[s:t] Sequence of symbols {xs, xs+1, . . . , xt} (s ∈ Z≥0, t ∈ Z≥0 ∪
{∞}, s < t)

diag[d1, . . . , dn] Diagonal matrix whose diagonal components are d1, . . . , dn
block-diag[D1, . . . , Dn] Block-diagonal matrix whose diagonal blocks are D1, . . . , Dn

detA Determinant of a matrix A ∈ R[x]m×m

PD(n) Set of all positive definite n× n matrices

vech(A) Half-vectorization of a positive definite matrix A

g(x; a) Function in variable x ∈ Rn having parameter a ∈ Rm

gi(x) i-th component of vector-valued function g(x) : Rn → Rm

∇xg(x) Matrix-valued function whose (i, j) component is ∂gj(x)/∂xi
∂g(x)/∂x Matrix-valued function whose (i, j) component is ∂gi(x)/∂xj
p(x) Probability density function (PDF) of stochastic variable x

p(x | y) PDF of stochastic variable x conditionally on stochastic vari-
able y

E[·] Expectation

f ◦ g composition of set mappings g : U → V and f : V → W

l • f Action of differential operator l ∈ Dn(or Rn) on a sufficiently
smooth function f

1



Notation

2



Chapter 1

Introduction

1.1 Background and Motivation

Optimization problems are the problems of finding a solution under several constraints

that maximizes a certain performance index, minimizes some cost and risk, or even

achieves both objectives simultaneously. In recent years, more and more problems are

formulated as optimization problems because of their capability of describing com-

plicated situations in the real world and considering diverse objectives. Under some

convexity assumptions, there are various theoretical results and solution methods for

optimization problems, which form a branch of optimization theory called convex op-

timization [1, 2]. However, for general nonlinear cases, there still remain many open

problems.

One of the most important applications of optimization theory is optimal control

and estimation theory in the field of systems and control. In the wake of Rudolf

E. Kalman’s great works on the optimal control and estimation theory [3–5] in the

1960s, linear systems theory has been the main subject of systems and control and

intensively studied since the mid-20th century [6,7]. In linear systems theory, systems

are modeled as linear ordinary differential equations (ODEs) in continuous-time cases

or as linear difference equations in discrete-time cases. Hence, we can utilize the

matured theory and tools provided by linear algebra for system analysis and control.

However, if systems have nonlinearity, we can no longer make use of them and have

to rely on other fields of mathematics that are suitable for each particular problem

setting.

The most common approach to deal with nonlinearity in optimization is the ge-

ometric approach [8], where many concepts and arguments such as feasible solutions

and optimality are described as abstract sets of points and their relationships such as

inclusion and disjointness. Although this approach can take quite general situations

3



Chapter 1. Introduction

into account, its results are usually non-constructive and cannot be implemented as

algorithms on computers directly. Hence, to implement a geometric method, it is

necessary to confirm whether or not the problem admits geometric properties re-

quired by the method and to construct a problem-specific algorithm that realizes

the method by computers, both of which may be difficult depending on each specific

problem. Another approach is based on analysis [9], which approximates nonlinearity

pointwise by linear functions or other classes of simple functions such as polynomials.

This approach tends to focus on the local properties of the optimization problems

and usually requires an infinite number of parameters or procedures to achieve opti-

mization. Therefore, we need to cut off it up to a certain finite number to implement

algorithms on computers. In systems and control, the differential geometric approach

pioneered by Alberto Ishidori is one of the most successful geometric and analytic

approaches [10]. However, this approach also tends to yields non-constructive results

or an infinite number of procedures similar to the case of optimization theory.

Recently, mathematical tools based on the theories of abstract algebra have been

utilized to overcome such difficulties [11–20]. The algorithms based on abstract al-

gebra have been intensively studied from the perspective of symbolic computation.

In spite that the notions in abstract algebra are quite abstract, most of them inherit

so to speak finiteness of linear algebra. This property is useful for constructing al-

gorithms and particularly for ensuring that they will eventually terminate. Symbolic

computation, also called computer algebra, is a field of mathematics that studies

algorithms for manipulating mathematical expressions. Since symbolic computation

can manipulate the expressions including variables that have no given values or is

undetermined off-line, in systems theory, it can be used to transfer a part of on-line

computation to off-line, that is, before a controller or estimator is started to operate.

Another advantage of symbolic computation is its exactness; contrary to numerical

computation, which manipulates floating-point numbers, symbolic computation can

manipulate mathematical objects exactly as symbols with no approximation. This

feature enables us to derive new theoretical results by ensuring the theoretical prop-

erties of mathematical expressions processed by symbolic computation. By taking

these advantages, we can push the boundary of solution methods for optimization

problems in the sense of the trade-off between exactness and computational cost.

This thesis aims to propose symbolic-numeric methods for optimal control, opti-

mal estimation, and optimization to provide efficient algorithms for solving compu-

tationally demanding problems by introducing off-line computation and to overcome

4



1.1. Background and Motivation

difficulties in numerical computation. We briefly introduce the backgrounds and mo-

tivation of using symbolic computation in optimal control, optimal estimation, and

optimization.

1.1.1 Optimal Control Theory

The most basic problem in optimal control theory is the linear quadratic regulator

(LQR) problem, which had been completely solved in the paper of R. E. Kalman [3].

In general, optimal control problems are reduced to solving the Hamilton-Jacobi-

Bellman (HJB) equation, which is derived from the study of dynamic programming

pioneered by Richard E. Bellman in the 1950s [21]. The HJB equation is a nonlinear

partial differential equation (PDE) including the minimization of the Hamiltonian

function with respect to input variables, which is closely related to the well-known

minimum principle due to Lev S. Pontryagin [22].

The HJB equation is in general hard to solve. In the LQR, however, by virtue

of linearity of the system and quadratic cost, the minimizing input can be explicitly

described by the costate under certain mild assumptions. The HJB equation is then

reduced to a special type of matrix ODE called the Riccati equation. A number of the

solution methods to the Riccati equation have been studied for both continuous-time

and discrete-time cases [7,23]. However, all of these techniques based on linearity can

only be used locally when a nonlinear system is well approximated by a linear system.

For example, they cannot be used for the systems such as bilinear systems that cannot

be accurately approximated by linear systems. Accordingly, the HJB equation for

nonlinear systems is generally intractable, and thus some additional assumptions and

alternative equations are introduced to make the problem more tractable.

One of such assumptions is that the nonlinear system has the control-affine struc-

ture. In this case, like the linear cases, the minimizing input is explicitly obtained

as a function of the state and costate under mild assumptions. The HJB equation

is then reduced to a set of nonlinear PDEs called the Hamilton-Jacobi (HJ) equa-

tion. The HJ equation is still difficult to solve but admits the symplectic structure,

which is a special geometric structure of its solution space in symplectic geometry. A

lot of methods utilizing the symplectic structure have been proposed such as stable

manifold method [24].

Another substitute of the HJB equation is the Euler-Lagrange equations (ELEs),

which are obtained by considering first-order necessary optimality conditions in the

calculus of variations [23]. The ELEs can be regarded as a two-point boundary value

problem, that is, a set of ODEs accompanied by initial and terminal conditions.

5



Chapter 1. Introduction

This structure is vigorously utilized for many solution methods such as the single

shooting method and backward sweep method [23]. The ELEs are more tractable

than the HJB equation or HJ equation since they are necessary conditions for the

optimality and consist of ODEs and algebraic constraints. Hence, the ELEs tend to

be studied in the context of nonlinear model predictive control (NMPC), where the

finite-horizon optimal control problem (FHOCP) needs to be solved recursively [25].

However, particularly for nonlinear systems and cost functions, the ELEs are still

difficult to solve enough rapidly. If we can simplify the structure of the ELEs by

symbolic computation off-line, the on-line computation to solve the ELEs would be

reduced.

1.1.2 Optimal Estimation Theory

The basis of optimal estimation theory is the Bayesian estimation, where an optimal

estimate is computed from the posterior probability density function (PDF) under a

certain optimal criterion [23,26,27]. The main advantage of the Bayesian estimation

compared to the maximum likelihood estimation is that it makes use of the prior

distribution that represents our prior knowledge of the estimated stochastic variables

and the model generating them. In the context of the state estimation for dynamical

systems, the prior knowledge on the estimated state can be obtained literally from

the prior estimate, whence the Bayesian estimation is suitable for estimating the state

of dynamical systems.

One of the Bayesian approaches to the state estimation problems is the Bayesian

filter. This approach is pioneered, in the field of systems theory, by R. E. Kalman in

his paper proposing the most popular filtering algorithm called Kalman filter (KF) [4].

The Kalman filter can be regarded as a realization of the Bayesian filter for linear

systems with Gaussian noise. The linearity of systems ensures that all the related

distributions are Gaussian, which makes various probability theoretic operations such

as marginalizations and expectations drastically tractable.

However, the Bayesian filter for nonlinear systems is hard to realize as an algo-

rithm. One of the most critical obstacles is that the PDF of the state is no longer

Gaussian even when the noise is assumed to be Gaussian. Hence, how to approx-

imate the state PDF has been the main interest of nonlinear filtering theory. The

most popular extension of the KF to nonlinear cases is the extended KF (EKF) [26].

This method uses the linear approximation of state and observation equations at the

previous estimate, and thus the derived Gaussian is just a local approximation of

the original non-Gaussian distribution. In another extension called the unscented

6



1.1. Background and Motivation

KF (UKF) [28], the approximation of non-Gaussian distributions is performed more

accurately by the unscented transformation. The unscented transformation can be

regarded as a particular Gauss-Hermite quadrature rule [29], which leads to other

versions of Gauss-Hermite filter (GHF) [29] or quadrature KF (QKF) [30]. Another

approximation approach, which does not rely on Gaussian, is provided by the Monte

Carlo method. The particle filter (PF), proposed independently by Kitagawa [31,32]

and Gordon [33], approximates non-Gaussian distributions by a finite number of sam-

ples. By using the Monte Carlo approximation, we can approximate non-Gaussian

distributions arbitrarily accurately and easily perform marginalizations and expecta-

tions though the computational cost increases as we use more and more samples.

As mentioned above, it can be said that the most problematic point in the Bayesian

filter for nonlinear systems is integrations of nonlinear functions, which are accom-

panied by several probabilistic operations such as marginalizations and expectations

and have to be performed within a short interval of sampling times. To overcome

this difficulty, symbolic computation would be used for performing such burdensome

computations off-line.

In the Bayesian filter, the current estimate is computed on the basis of the previous

estimate, in other words, the estimate of the previous step is fixed when estimating

the current state. However, we can estimate the past estimates again by using the

observed outputs up to the current time step, which often provides more accurate

estimates and is called smoothing in signal processing [27]. This consideration leads

to the finite-horizon optimal estimation problem (FHOEP), where a finite number of

successive states, including the current and past states, are simultaneously estimated

by using the same number of successive observed outputs. The FHOEP can also be

understood in the context of the Bayesian filtering problem [26] by considering the

PDF of the initial state on the horizon as the prior knowledge. As with the FHOCP,

the FHOEP can also be solved recursively, which yields moving horizon estimation

(MHE). Moreover, if the maximization of the joint posterior density is selected as

the optimality criterion, the FHOEP shares a similar structure with the FHOCP as

a nonlinear optimization problem. It is worth exploiting this similar structure to find

an efficient algorithm for solving the FHOEP with the analogy to that for solving the

FHOCP.

1.1.3 Optimization Theory

For solving the FHOCP and FHOEP, we consider first-order necessary conditions for

optimality, called the Karush-Kuhn-Tucker (KKT) conditions, instead of the opti-

7



Chapter 1. Introduction

mization problems themselves. The KKT conditions, which were obtained indepen-

dently by William Karush in 1939 [34] and Harold W. Kuhn and Albert W. Tucker

in 1951 [35], have been a significant tool in optimization theory. One reason for the

KKT conditions to be so popular is that they can be described as relatively simple

equalities and inequalities. This feature is particularly suitable for optimization al-

gorithms since we can easily check whether they are satisfied or not at a given point

and solve the equalities and inequalities to find optimal solutions.

In the linear quadratic cases, namely, the LQR problems in optimal control and

the FHOEPs of linear systems with Gaussian noise, the KKT conditions are also

sufficient for optimality. Moreover, the uniqueness of the optimal solution can also be

guaranteed in those cases. Hence, solving the KKT conditions is exactly equivalent

to solving the original optimization problems [8].

For nonlinear optimization problems, however, any of such preferable properties

no longer hold in general. In particular, there are problems where the KKT condi-

tions are not even necessary optimality conditions, that is, there are some optimal

solutions violating the KKT conditions. For avoiding such situations, additional

conditions to guarantee the KKT conditions to be necessary optimality conditions,

namely, constraint qualifications (CQs) have been studied. Various CQs such as the

linear independence CQ (LICQ), Mangasarian-Fromovitz CQ (MFCQ), Abadie CQ

(ACQ), and Guignard CQ (GCQ) have been proposed [2, 36]. In particular, it is

known that the GCQ holds if and only if the KKT conditions are necessary optimal-

ity conditions [37]. Although various necessary optimality conditions without CQs

have also been obtained [2,8,38], most of them are described in a geometric or analytic

way, which are not suitable for solving nonlinear optimization problems numerically.

Hence, it is still worth exploring the necessary optimality conditions without CQs in

an algebraic way.

1.2 Overview of symbolic methods for control, es-

timation, and optimization

Symbolic computation, especially as a tool for abstract algebras, has been drastically

developed since the invention of an algorithm for manipulating polynomial equa-

tions called the Buchberger algorithm, which is proposed by Bruno Buchberger in

the 1960s [39, 40]. For a given set of polynomials, this algorithm computes a finite

set of polynomials called a Gröbner basis, which enjoys good properties for symbolic

computation. By using Gröbner bases, various mathematical objects such as ideals

8



1.2. Overview of symbolic methods for control, estimation, and optimization

and modules in ring theory, which are too complicated to calculate by hand, have

become computable concretely in a symbolic manner. As symbolic computation does

not involve any approximations and can be performed while including unknown pa-

rameters , there have been vigorously applied to systems theory and optimization

theory.

One of the most popular applications of Gröbner bases lies in so-called elimina-

tion theory, which explores systematic for polynomial equations methods to eliminate

variables from simultaneous polynomial equations like Gaussian elimination for simul-

taneous linear equations. An early application of elimination theory to optimization

can be seen in for example [41], where a first-order necessary optimality conditions

such as KKT conditions and Fritz-John (FJ) conditions are transformed into a sort

of triangular form that is suitable to find solutions by using Gröbner bases. Safey El

Din [13] proposed a symbolic algorithm for finding the global supremum of a poly-

nomial, where all generalized critical values are computed by elimination theory and

then the supremum of them is identified. In systems and control, Walter et al. [42]

utilized elimination theory to compute switching surfaces for time-optimal control.

Ohtsuka [17] proposed a recursive elimination algorithm for FHOCPs of discrete-time

rational systems, which decouples the ELEs of an FHOCP into a finite number of

sets of polynomial equations by using elimination theory. Menini and Tornambe [18]

characterized all the embeddings of a polynomial system as an elimination ideal for

constructing high-gain observers. Such tools from elimination theory, especially those

used in [17], are also used in Chapters 3 and 4 of this thesis.

In algebraic geometry, the mathematics of polynomials and its zeros, various geo-

metric notions are associated with algebraic notions and can also be manipulated by

the symbolic computation of Gröbner bases. In fact, variable elimination from poly-

nomial equations, which is introduced above, is also interpreted as projection of their

solution set. This interpretation is used in [17] to keep the property of mathematical

expressions to be necessary optimality conditions during symbolic computation. In

Chapter 6, two geometric notions of a tangent cone and projective space are manip-

ulated to perform a limit operation exactly by symbolic computation.

Gröbner bases have also been used for computing a module, which is a generaliza-

tion of the notion of vector space. In [43], for continuous-time polynomial systems, a

class of stabilizing state feedback laws are characterized by using the syzygy module.

Yuno and Ohtsuka [44] proposed algorithms to construct two types of static output-

feedback laws characterized by modules over a ring, one of which renders a given

algebraic set invariant and the other realize a given vector field on a given algebraic

9
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set. Moreover, in [45], they derived a constructive sufficient condition for the exis-

tence of a dynamic state-feedback compensator that renders a given semi-algebraic

set invariant and is constructed by symbolic computation of modules. On the other

hand, in optimization theory, the holonomic gradient descent, which is a variation of

gradient descent based on the theory of D-modules in algebraic analysis, is proposed

by Nakayama et al. [46] for estimating parameters of a certain probability density

function. Its generalized version called the holonomic gradient method (HGM) is

also proposed for efficient evaluation of normalizing constants in statistics, and its

general problem setting would allow us to use it for various purposes of control and

estimation theory. In Chapter 5, we use the HGM to exactly perform the Bayesian

filter for nonlinear systems.

1.3 Outline and contribution

This thesis proposes several symbolic-numeric methods for control, estimation, and

optimization. Chapter 2 introduces some preliminaries on optimization theory and

optimal control and estimation theory. Chapters 3 and 4 propose a symbolic compu-

tation method called a recursive elimination method for two types of problems: the

FHOCP with terminal constraints and the FHOEP. Chapter 5 proposes an efficient

Bayesian filtering method by utilizing symbolic computation on the ring of differential

operators. In Chapter 6, we derive a necessary optimality condition for polynomial

optimization problems, which can be described as polynomial equations and does not

require any CQ. Chapter 7 concludes this thesis and discusses the future work. Some

basic notations used in this thesis are included in Appendix A, and Appendix B gives

the proofs of auxiliary lemmas and theorems appeared in Chapters 3 and 6. In the

remaining part of this section, we briefly introduce the contributions of each chapter.

Chapter 2 — Preliminaries This chapter is devoted to introducing the basics of

optimization theory and optimal control and estimation theory, which are used in the

following chapters. First, we define the fundamental concepts of optimization theory

and introduce some basic theorems in Section 2.1. These concepts and theorems are

not only the basis of all the problems discussed in this thesis but also the main subject

of Chapter 6. Next, in Section 2.2, the FHOCP and its extended version with terminal

constraints are formulated, which is the problem considered in Chapter 3. Finally,

we formulate two types of optimal estimation problems in Section 2.3. The first

one is the FHOEP, which is the dual concept of the FHOCP in estimation theory

10
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and considered in Chapter 4. The second one is the Bayesian filtering problem, a

probabilistic method for state estimation. This problem is considered in Chapter 5

Chapter 3 – Recursive elimination method for finite-horizon optimal con-

trol problems with terminal constraints This chapter proposes a recursive

elimination method for FHOCPs with terminal constraints under the assumption

that all the functions that appeared in the problems are rational or algebraic func-

tions. This method decouples the ELEs into sets of algebraic equations, where each

equation set involves only the variables at a single time step. This decoupling is

performed by symbolic computation with the concept of elimination ideals, a mathe-

matical tool from commutative algebra. The structure of decoupled equation sets is

especially suitable for MPC since the initial optimal input can be computed from the

equation set involving the initial state and input. Moreover, we provide sufficient con-

ditions such that the decoupled equation sets locally give a unique optimal feedback

control law at each time step. Two numerical examples are provided to illustrate the

proposed method and sufficient conditions.

Chapter 4 – Recursive elimination method for moving horizon estimation

This chapter proposes a recursive elimination method for FHOEPs of discrete-time

nonlinear systems with non-Gaussian noise. FHOEPs are formulated as joint maxi-

mum a posteriori (MAP) estimation problems of the state trajectory on the horizon.

By utilizing elimination ideals, we eliminate the past state variables from the first-

order necessary optimality conditions of the joint MAP estimation problems. By

virtue of the recursive structure of FHOEPs, this variable elimination is performed

recursively over the discrete-time steps from the oldest time step to the current. Con-

sequently, we obtain an implicit function representation of the state estimate as the

function of observed outputs over the horizon. MHE is performed by solving the

implicit function representation repeatedly. Numerical examples show the efficiency

of the proposed method.

Chapter 5 – Bayesian state estimation via the holonomic gradient method

This chapter proposes a symbolic-numeric solution method for Bayesian filtering prob-

lems of nonlinear stochastic systems. In this method, though the posterior PDFs of

the state are approximated by Gaussian distributions, their mean and variance are

computed exactly in the sense that there is no approximation in the one-step estima-

tion process. The current mean and variance are considered as the functions of the

11
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previous mean and variance and observed output, and partial differential equations

(PDEs) satisfied by the functions are computed off-line by symbolic computation. In

the on-line part, the solution of the derived PDEs is efficiently evaluated for given

previous estimates and observed output at every sampling time by using the HGM.

A numerical example is provided to show the efficiency of the proposed method com-

pared to the EKF, UKF, and PF.

Chapter 6 – Limit operation in projective space for constructing necessary

optimality condition of polynomial optimization problem This chapter pro-

poses a necessary optimality condition for optimization problems of polynomial func-

tions with constraints described by polynomial equations. The proposed condition

is more general than the KKT conditions in the sense that it does not require any

constraint qualifications. An algorithm to derive the condition is also proposed by

using symbolic computation nevertheless the condition itself is based on the penalty

function method, which is a classical numerical solution method for constrained op-

timization problems. Hence, the output of the algorithm is a set of polynomial equa-

tions, which is more suitable for computers to find candidates of optimal solutions

than other geometric necessary conditions. Two illustrative examples are provided to

clarify the methodology and to demonstrate the cases where some local minimizers

do not satisfy the KKT conditions.
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Chapter 2

Preliminaries

In this chapter, we introduce the basics of optimization theory, optimal control prob-

lem, and optimal estimation problem, which will be used in the following chapters.

This chapter is organized as follows. Section 2.1 provides a basic introduction of

optimization problem particularly focusing on the concept of optimality conditions,

which is discussed in Chapter 6. Section 2.2 is devoted to formulate the finite-horizon

optimal control problem (FHOCP) and FHOCP with terminal constraints, which is

considered in Chapter 3. In Section 2.3, the optimal estimation problem is formulated

in two ways: the finite-horizon optimal estimation problem (FHOEP), which is the

subject of Chapter 4, and the Bayesian filtering problem considered in Chapter 5.

2.1 Optimization problem

Consider the following optimization problem:

min
x
f(x)

s. t. g(x) = 0,
(2.1)

where x ∈ Rn is the decision variable and f : Rn → R and g : Rn → Rm are the cost

function and the equality constraint function, respectively. Note that for an inequality

constraint h(x) ≤ 0, we can reformulate it as an equality constraint g̃(x, s) = 0 by

introducing a slack variable s ∈ R as follows:

g̃(x, s) = h(x) + s2 = 0. (2.2)

Hence, the inequality constraints can be also considered in the setting of optimization

problem (2.1). For the details of reformulation (2.2), see [8, 47,48].

In what follows, several basic definitions are introduced along the line of [2, 8].
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Definition 2.1 (Feasible point and set). The point x ∈ Rn is said to be feasible for

the optimization problem (2.1) if g(x) = 0 holds. The feasible set X is defined as the

subset of all the points that satisfy the constraints, that is,

X := {x ∈ Rn | g(x) = 0}.

Definition 2.2 (Tangent cone). The tangent cone of X at x ∈ X is defined by

T (x) :=

{
d ∈ Rn | ∃{xk} ⊂ X , tk ↓ 0 s. t. xk → x and

xk − x
tk

→ d

}
.

Remark 2.1. The tangent cone defined above is slightly different from the tangent

cone in algebraic geometry defined in subsection A.2.4. We use the former only in

this section and use the latter in Chapter 6.

Definition 2.3 (Linearized tangent cone). The linearized tangent cone of X at x̃ ∈ X
is defined by

L(x̃) :=

{
d ∈ Rn | ∂g(x̃)

∂x
d = 0

}
.

Definition 2.4 (Dual of cone). The dual cone C ′ of a cone C is defined by

C ′ :=
{
d ∈ Rn | d>x ≥ 0 ∀x ∈ C

}
.

Definition 2.5 (Local minimizer). The feasible point x∗ ∈ X is said to be a local

minimizer if, for a neighborhood N 3 x∗,

f(x∗) ≤ f(x) ∀x ∈ N ∩ X

holds. The value of the cost function f(x∗) is said to be a local minimum.

Definition 2.6 (Global minimizer). The feasible point x̂ ∈ X is said to be a global

minimizer if

f(x̂) ≤ f(x) ∀x ∈ X

The value f(x̂) is said to be the global minimum.

In solving the optimization problem (2.1), necessary optimality conditions are

useful both from theoretic and algorithmic viewpoints. Let us begin with the following

classical result.
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Theorem 2.1 (Fritz John conditions). Let x∗ be a local minimizer of optimization

problem (2.1). Assume that functions f and g are continuously differentiable. Then,

there exists a scalar λ0 and a vector λ ∈ Rm such that λ0 and all the components of

λ are not all zero and

λ0
∂f

∂x
(x∗) + λ>

∂g

∂x
(x∗) = 0 (2.3)

holds.

When λ0 = 0 in FJ conditions, the first term in the left-hand side of (2.3) vanish,

which means that FJ conditions lose all the information of the cost function f(x).

λ0 can be chosen not to be zero if the local minimizer x∗ satisfy certain additional

conditions. Such conditions, which guarantee the existence of non-zero λ0 at a local

minimizer x∗, are called constraint qualifications (CQs).

Definition 2.7 (Linear independence constraint qualification). For a feasible point

x ∈ X , we say the linearly independence constraint qualification (LICQ) holds at x if

all the row vectors of ∂g/∂x are linearly independent at x.

Definition 2.8 (Guignard constraint qualification). For a feasible point x ∈ X , we

say the Guignard constraint qualification (GCQ) holds at x if L′(x) = T ′(x) holds.

Theorem 2.2 (Karush-Kuhn-Tucker conditions). Let x∗ be a local minimizer of

the optimization problem (2.1). Assume that functions f and g are continuously

differentiable and that a CQ holds at the point x∗. Then, there exists a non-zero

vector λ ∈ Rm such that
∂f

∂x
(x∗) + λ>

∂g

∂x
(x∗) = 0 (2.4)

holds. The vector λ is known as the Lagrange multiplier corresponding to the con-

straint g(x) = 0.

Theorem 2.3. For the local minimizer x∗, there exists the Lagrange multiplier λ if

and only if the GCQ holds at x∗, that is, the GCQ is the necessary and sufficient

condition for the KKT conditions to be necessary optimality conditions.

The FJ and KKT conditions are described as equations. By introducing the

penalty function, we can obtain another necessary optimality condition, which does

not require any CQs but is much less conservative than the FJ conditions.

Definition 2.9 (Penalty function). The penalty function P (x; r) for the optimization

problem (2.1) is defined as follows:

P (x; r) := f(x) + rg>(x)g(x), (2.5)

where r ∈ [0,∞) is a penalty parameter.
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Theorem 2.4. Let r[0:∞] be a monotonically increasing sequence such that rk →∞
as k →∞ and x̂k be a global minimizer of the penalty function P (x; rk). Then, every

convergence point of the sequence x̂[0:∞] is a global minimizer of the optimization

problem (2.1).

2.2 Optimal control problem

Consider the discrete-time nonlinear system

xk+1 = fk(xk, uk), (2.6)

where k ∈ Z+ denotes the discrete time step, xk ∈ Rn and uk ∈ Rm are the state

and input, respectively, and fk : Rn × Rm → Rn is some given nonlinear function.

For this system, the finite-horizon optimal control problem (FHOCP) is defined as

follows:

min
u[0:N−1]

φ(xN) +
N−1∑
k=0

Lk(xk, uk)

s. t. xk+1 = fk(xk, uk) for k = 1, . . . , N − 1,

x0 = x̄,

(2.7)

where N ∈ Z+ is the length of the horizon, x̄ ∈ Rn is a given initial state, and

functions φ : Rn → R and Lk : Rn ×Rm → R are the terminal cost and stage cost,

respectively. The KKT conditions for the FHOCP inherit its recursive structure over

k; the KKT conditions are derived as follows:

xk+1 = ∇pHk(xk, uk, pk+1), (2.8)

pk = ∇xHk(xk, uk, pk+1), (2.9)

0 = ∇uHk(xk, uk, pk+1), (2.10)

pN = ∇xφ(xN), (2.11)

where Hk(xk, uk, pk+1) := Lk(xk, uk) + p>k+1fk(xk, uk) is called the Hamiltonian of the

FHOCP (2.7). The KKT conditions (2.8)–(2.11) are also called the Euler-Lagrange

equations (ELEs). The FHOCP, as an optimization problem, satisfies the LICQ at

any feasible point, and thus the KKT conditions or the ELEs are necessary optimality

conditions.

The FHOCP is often solved as the subproblem of nonlinear model predictive

control (NMPC), where the FHOCP is solved at every sampling time and only the
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initial optimal input is used as the actual input of the system. To guarantee the

stability of NMPC, terminal constraints are often imposed to the FHOCP, that is,

min
u[0:N−1]

φ(xN) +
N−1∑
k=0

Lk(xk, uk)

s. t. xk+1 = fk(xk, uk) for k = 0, . . . , N − 1,

x0 = x̄,

ψ(xN) = 0,

(2.12)

where ψ : Rn → Rd is the terminal constraint function. For the FHOCP with terminal

constraints, the ELEs are almost the same as the normal FHOCP; only (2.11) is

replaced by

pN = ∇xφ(xN) +∇xψ(xN)ν, (2.13)

where ν ∈ Rd is the Lagrange multiplier corresponding to the terminal constraints.

Note that in the case with terminal constraints the LICQ may not hold, which means

the ELEs (2.8)–(2.10) and (2.13) do not serve necessary optimality conditions for the

FHOCP with terminal constraints (2.12).

2.3 Optimal estimation problem

Consider the discrete-time nonlinear stochastic system

xk+1 = fk(xk, uk) + wk, (2.14)

yk = hk(xk) + vk, (2.15)

where symbols k, xk, uk, and fk are the same as those in (2.6), while yk denotes the

output of the system, wk and vk denote the system and observation noises, respec-

tively, and hk : Rn → Rl is some given nonlinear function. The distributions of the

noises wk and vk are given as their probability density functions (PDFs) denoted by

pw(wk) and pv(vk), respectively. Throughout this thesis, the inputs are regarded as

a time-varying parameter that does not depend on either the state or output in the

context of the state estimation

In practical situations, what we can actually observe is only the sequence of the

outputs, while many of the control methods require the current state. Hence, we

have to estimate the current state from the observed output sequence. This leads

us to formulate the optimal estimation problem, where an estimator is designed to

minimize or maximize some performance index for a given output sequence. In this
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thesis, we consider two types of optimal estimation problems: the modal trajectory

estimation and the Bayesian filtering.

2.3.1 Finite-horizon optimal estimation problem

For the stochastic system, consider the following optimization problem:

max
x[0:N ]

p(x[0:N ] | y[0:N ])

s. t. xk+1 = fk(xk, uk) + wk for k = 1, . . . , N − 1,

yk = hk(xk) + vk,

wk ∼ pw(wk),

vk ∼ pv(vk),

x0 ∼ p0(x0)

(2.16)

where N ∈ N denotes the length of the horizon, p0(x0) is the PDF of the initial state

on the horizon, and p(x[0:N ] | y[0:N ]) denotes the joint PDF of the state trajectory

x[0:N ] conditionally on the observed output sequence y[0:N ]. The PDF p(x[0:N ] | y[0:N ])

is the joint posterior PDF in the Bayesian framework, and thus the optimal solution

of (2.16) is called the joint maximum a posteriori (MAP) estimate. In this thesis,

problem (2.16) is also referred to as an FHOEP as the counterpart of the FHOCP in

the state estimation. The solution is also called the modal trajectory especially in the

state estimation theory of dynamical systems [26].

In this problem setting, the constrained optimization problem (2.16) can be re-

formulated as an unconstrained optimization problem. First, according to the Bayes’

rule, the conditional joint PDF can be written as

p(x[0:N ] | y[0:N ]) =
p(x[0:N ], y[0:N ])

p(y[0:N ])
.

The denominator on the right-hand side is the joint PDF of the output sequence y[0:N ]

marginalized over all state trajectories and thus is independent of x[0:N ]. Therefore,

the maximization (2.16) is equivalent to another maximization:

max
x[0:N ]

p(x[0:N ], y[0:N ]). (2.17)

The state trajectory x[0:N ] is Markovian due to the constraint of the state equa-

tion (2.14), and similarly, the output yk at a time step k only depends on the state

xk at the same time step due to the observation equation (2.15). Therefore, the
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joint PDF p(x[0:N ], y[0:N ]) can be rewritten as the product of the transition PDFs

p(xk | xk−1), observation PDFs p(yk | xk), and PDF of the initial state p0(x0):

p(x[0:N ], y[0:N ]) = p(y0 | x0)p(x0)
N∏
k=1

p(yk | xk)p(xk | xk−1). (2.18)

Hence, by taking the logarithms on both sides, maximization (2.17) is reformulated

as minimization of the sum of logarithms:

− ln p(x[0:N ], y[0:N ]) = −{ln p0(x0) + ln p(y0 | x0)}

−
N∑
k=1

{ln p(xk | xk−1) + ln p(yk | xk)} . (2.19)

From the rule of transformation of PDFs, all the conditional PDFs in (2.19) are

rewritten as

p(xk | xk−1) = pw(wk−1)

∣∣∣∣det
∂xk
∂wk−1

∣∣∣∣−1

= pw(wk−1), (2.20)

and similarly,

p(yk | xk) = pv(vk)

∣∣∣∣det
∂yk
∂vk

∣∣∣∣−1

= pv(vk), (2.21)

where the derivatives ∂xk/∂wk−1 and ∂yk/∂xk are both identity matrices owing

to (2.14) and (2.15), and thus the absolute values of their determinants are 1. In

the end, by substituting the state and observation equations into (2.20) and (2.21),

respectively, and then substituting these equations into the objective function (2.19),

the joint MAP estimation problem (2.16) is reformulated as the following uncon-

strained nonlinear optimization problem:

min
x[0:N ]

−
{

ln p0(x0) + ln pv (y0 − h0(x0))
}

−
N∑
k=1

{
ln pw (xk − fk−1(xk−1, uk−1)) + ln pv (yk − hk(xk))

}
. (2.22)

2.3.2 Bayesian filtering

In this subsection, we introduce another type of optimal estimation problem called

the Bayesian filtering problem. Let us consider the conditional PDF p(xk | y[0:k]),

that is, the PDF of the current state xk conditionally on the sequence of observed

outputs y[0:k]. This conditional PDF, which is particularly called the posterior PDF

in Bayesian framework, has all the statistic information of the current state. The
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optimal estimator is thus designed so that it minimizes the Bayes’ risk, which is

defined by the posterior PDF and a loss function that describes what is optimal.

By virtue of the recursive structure of dynamical systems, the posterior PDF

p(xk+1 | y[0:k+1]) can be computed from p(xk | y[0:k]) recursively as follows:

p(xk+1 | y[0:k]) =

∫
Rn

p(xk+1 | xk)p(xk | y[0:k])dxk, (2.23)

p(xk+1 | y[0:k+1]) =
p(yk+1 | xk+1)p(xk+1 | y[0:k])∫

Rn p(yk+1 | xk+1)p(xk+1 | y[0:k])dxk+1

, (2.24)

where the PDFs p(xk+1 | xk) and p(yk+1 | xk+1) are obtained from (2.20) and (2.21),

respectively. To obtain a point estimate from the posterior PDF, we consider the

minimization of the Bayes’ risk

E
[
R(xk, x̂k) | y[0:k]

]
:=

∫
Rn

R(xk, x̂k)p(xk | y[0:k])dxk, (2.25)

where x̂k ∈ Rn denotes the estimate of the true state xk, and

R(xk, x̂k) : R2n → R

is the loss function, which describes the criterion of optimality.

In the end, the one-step estimation in the Bayesian filtering problem can be de-

scribed as follows.

min
x̂k

E
[
R(xk, x̂k) | y[0:k]

]
s. t. xk = fk−1(xk−1, uk−1) + wk−1,

yk = hk(xk) + vk,

xk−1 ∼ p(xk−1 | y[0:k−1]),

(2.26)

Note that this problem setting only involves the variables at current and previous time

steps explicitly and depends on the past outputs y[0:k−1] only through the previous

posterior PDF p(xk−1 | y[0:k−1]). Therefore, for the simplicity of notations, we omit

the past outputs and denote the current variables by the plain symbols, e.g. xk by x,

and denote the previous variables by the plain symbols with superscript −, e.g. xk−1

by x−.

There are many choices for the loss function R(xk, x̂k): the zero-one loss func-

tion, absolute error, squared error, and so on. In particular, the squared error

R(xk, x̂k) = ‖xk − x̂k‖2 is the most popular one, which yields the minimum mean

squared error (MMSE) estimate. For a large class of loss functions and posterior

PDFs, the conditional mean x̂k = E[xk | y[0:k]] is identical to the MMSE estimate,

i.e., the optimal solution of problem (2.26) with the squared-error loss function, as

stated in the following theorems.
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Theorem 2.5. [26] For the quadratic loss function R(xk, x̂k) = (xk− x̂k)>Q(xk− x̂k),
where Q is a positive semidefinite matrix, the conditional mean is the MMSE estimate

regardless of the posterior PDF p(xk | y[0:k]).

Theorem 2.6. [27] The conditional mean is the MMSE estimate if the posterior PDF

is symmetric with respect to the conditional mean and the loss function is symmetric

and convex.

Throughout this thesis, we fix the loss function as the squared error and focus on

the computation of the MMSE estimate, i.e., the conditional mean.
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Chapter 3

Recursive Elimination Method for
Finite-Horizon Optimal Control
Problems with Terminal
Constraints

3.1 Introduction

Finite-horizon optimal control problems (FHOCPs) are one of the most important

problems in systems and control and have been studied not only as problems in-

teresting by themselves but also as the subproblems of nonlinear model predictive

control (NMPC). In particular, the FHOCPs with terminal constraints are useful to

guarantee the asymptotic stability of the origin or other subsets of the state space

in NMPC [49]. The FHOCPs with terminal constraints can be solved analytically

under strong assumptions [23,50] such as the linearity of the system, quadratic form

of the cost function, and so on. However, in general, the FHOCPs cannot be solved

analytically and are computationally demanding even when solved numerically.

By assuming certain algebraic properties of FHOCPs, we can apply mathematical

tools from computer algebra to these problems. Computer algebra provides various

concepts and algorithms of symbolic computation, which can be utilized to reduce

the computational burdens of numerical solution methods. Fotiou et al. [51] formu-

lated polynomial FHOCPs, whose nonlinearity is described in terms of polynomial

functions, as parametric optimization problems on the initial state and solved the

Karush-Kuhn-Tucker (KKT) conditions efficiently by introducing the concept of zero-

dimensional ideals in commutative algebra. They also proposed a method to solve

the parametric optimization problems by applying cylindrical algebraic decomposi-

tion (CAD), where the global optimal solution can be obtained if it exists. Iwane
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et al. [52] combined CAD with dynamic programming and proposed a method to

compute the value function and optimal control law at each time instant by using

CAD. In contrast to these related approaches, in this chapter, we consider rational

FHOCPs, where all nonlinearity is described by rational or algebraic functions. Ra-

tional FHOCPs with terminal constraints can formulate a wider range of optimal

control problems than polynomial FHOCPs can.

Ohtsuka [17] proposed a method to decouple the Euler-Lagrange equations (ELEs)

into finite number of sets of algebraic equations by using the concept of elimination

ideals in commutative algebra. Each equation set involves only the variables at a

single time instant, and this structure saves the computational cost to solve them nu-

merically. Ohtsuka also provided sufficient conditions for the existence and uniqueness

of optimal feedback laws in the form of algebraic functions. These sufficient condi-

tions guarantee the properties of optimal solutions not only for the given initial state

but also for the other initial states in some neighborhood of the given one. Moreover,

by utilizing the concept of zero-dimensional ideals, it is shown that the unique opti-

mal feedback law can be characterized as a point of an algebraic set in the algebraic

closure of the rational functions in the state.

In the case with terminal constraints, the Lagrange multipliers associated with

terminal constraints are introduced as additional variables. These additional variables

are intrinsic to the problem; in contrast to state or costate variables, they cannot be

explicitly expressed by the initial state and inputs. The sufficient conditions proposed

in [17], which do not consider any terminal constraints or corresponding Lagrange

multipliers, cannot be applied to problems with terminal constraints. We therefore

extend the sufficient conditions to guarantee the existence of the Lagrange multipliers

by using results from sensitivity analysis.

In this chapter, first, we introduce a recursive elimination method for solving

FHOCPs with terminal constraints where all nonlinear functions are rational or alge-

braic functions. Next, we provide sufficient conditions for optimality of the problems.

These conditions are less conservative than the classical sufficient conditions [23,50].

Moreover, by applying the concept of zero-dimensional ideals to the outputs of the

recursive elimination method, we characterize the optimal feedback laws in the form

of algebraic functions.
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3.2 Problem Formulation

Consider the FHOCP with terminal constraints (2.12). We rewrite the statement of

the problem here for convenience;

min
u[0:N−1]

φ(xN) +
N−1∑
k=0

Lk(xk, uk) (3.1)

s. t. xk+1 = fk(xk, uk), for k = 0, . . . , N − 1 (3.2)

x0 = x̄, (3.3)

ψ(xN) = 0, (3.4)

where N ∈ Z+ denotes an optimization horizon of the problem, xk ∈ Rn and uk ∈ Rm

denote the state and input of a dynamical system at each time step k = 0, . . . , N ,

and x̄ denotes a given initial state. The scalar-valued functions φ : Rn → R and

Lk : Rn ×Rm → R denote the terminal cost and stage costs, respectively, and their

sum is the cost function that will be minimized. Each equation (3.2) is a state

equation of the system and consists of a vector-valued function fk : Rn × Rm →
Rn. Equation (3.4) defines the set of terminal constraints, and ψ : Rn → Rl is a

vector-valued function. We assume that the components of fk, ∇xLk, and ∇uLk are

rational functions and that the components of ψ and ∇xφ are algebraic functions.

The definition of algebraic functions is as follows.

Definition 3.1. An analytic function ρ : U → R defined on an open set U ⊂ Rn is

said to be an algebraic function if a nonzero polynomial Φ(y, Y ) ∈ R[y, Y ] exists such

that Φ(y, ρ(y)) = 0 holds for all y ∈ U . The polynomial Φ(y, Y ) can be regarded as

an element of R(y)[Y ] instead of R[y, Y ], and ρ(y) is a root of Φ(y, Y ) ∈ R(y)[Y ].

Therefore, ρ(y) is an element of R(y). Note that each component of the derivative

∂ρ(y)/∂y is also an algebraic function.

Remark 3.1. Note that for the stage cost Lk(xk, uk) only its derivatives are assumed

to be rational functions. Hence, the stage cost can include, for example, a logarithmic

function, which itself is not a rational function but its derivative is.

Our algebraic approach is based on the ELEs. To simplify their description, we

first define the discrete-time Hamiltonian at time step k as

Hk(xk, uk, pk+1) := Lk(xk, uk) + p>k+1fk(xk, uk), (3.5)
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where pk ∈ Rn (k = 0, . . . , N) denote the costates. By using the discrete-time

Hamiltonian, the ELEs corresponding to FHOCP (3.1)–(3.4) for k = 0, . . . , N − 1

can be described as follows:

xk+1 = fk(xk, uk), (3.6)

pk = ∇xHk(xk, uk, pk+1), (3.7)

∇uHk(xk, uk, pk+1) = 0, (3.8)

pN = ∇xφ(xN) +∇xψ(xN)ν, (3.9)

ψ(xN) = 0, (3.10)

where ν ∈ Rl denotes a vector consisting of the Lagrange multipliers associated with

the terminal constraints. If a constraint qualification (CQ) such as the linear indepen-

dence constraint qualification (Definition 2.7) holds for terminal constraint (3.4), the

ELEs are the necessary optimality conditions of the FHOCP for local optimality [25].

We assume that a CQ for the terminal constraint holds for all the feasible point and

there exists at least one optimal solution that satisfies the ELEs. The solutions of

the ELEs can be then regarded as candidates of the optimal solutions.

To apply mathematical tools from algebraic geometry to the ELEs, they have to

be converted into algebraic equations. Equations (3.6)–(3.8) are converted in [17],

and equation (3.9) can be readily converted in the same manner as described in [17].

For the completeness of this thesis, we purposely show the conversion of (3.6)–(3.9).

First, we rewrite rational functions in (3.6)–(3.8) as follows:

fk(xk, uk) = D−1
xk (xk, uk)nxk(xk, uk), (3.11)

∇xHk(xk, uk, px+1) = D−1
pk (xk, uk)npk(xk, uk, pk+1), (3.12)

∇uHk(xk, uk, px+1) = D−1
uk (xk, uk)nuk(xk, uk, pk+1), (3.13)

where nxk ∈ R[xk, uk]
n, npk ∈ R[xk, uk, pk+1]n, and nuk ∈ R[xk, uk, pk+1]m are the

vectors of polynomials consisting of the numerators of fk, ∇xHk, and ∇uHk, respec-

tively, and Dxk ∈ R[xk, uk]
n×n, Dpk ∈ R[xk, uk]

n×n, and Duk ∈ R[xk, uk]
m×m are

diagonal matrices of polynomials whose diagonal components are the denominators

of fk, ∇xHk, and∇uHk, respectively. To prevent all the denominators from vanishing,

we additionally consider the algebraic equations

1− zkdk(xk, uk) = 0, (3.14)

where dk ∈ R is an additional scalar variable and

d := (detDxk)(detDpk)(detDuk)
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is a polynomial. Since all the matrices Dxk, Dpk, and Duk are diagonal, their determi-

nants can be obtained just by computing the products of their diagonal components.

Note that if (3.14) has a solution, all of detDxk, detDpk, and detDuk are not zero,

which means any denominator in (3.6)–(3.8) does not vanish at the solution; in other

words, all the denominators do not vanish as long as (3.14) holds.

Next, since the right-hand side of (3.9) is a vector of algebraic functions, there

exists a vector of polynomials ρN(xN , ν, pN) ∈ R[xN , ν, pN ]n such that

ρN(xN , ν,∇xφ+∇xψν) = 0

holds for all ν ∈ Rl and all xN in the domains of ∇xφ and ∇xψ. Finally, equa-

tion (3.10) remains to be converted. For each component ψi ∈ R(xN) of ψ, a poly-

nomial Ψi(xN , zi) ∈ R[xn, zi] exists that satisfies Ψi(xN , ψi(xN)) = 0 for all points in

the domain of ψi. The polynomial Ψi can be written in the following form.

Ψi(xN , zi) = zαi
i dψi(xN , zi) + ρψi(xN),

where αi is the minimum degree of zi in Ψi − ρψi, and dψi and ρψi are appropriate

nonzero polynomials. If zi = ψi(xN) = 0 holds, then Ψi(xN , ψ(xN)) = 0 also holds

from the definition of Ψi and, consequently,

ρψi(xN) = 0. (3.15)

Note that equation (3.15) is a necessary condition for the terminal constraint ψi(xN) =

0 to hold. Therefore, we recast equation (3.10) into the form ρψ(xN) = 0 where

R[xN ]l 3 ρψ(xN) := [ρψ1(xN) · · · ρψl(xN)]> by allowing some invalid solutions to

appear.

Now, we obtain the following set of algebraic equations from the ELEs.

Dxk(xk, uk)xk+1 − nxk(xk, uk) = 0, (3.16)

Dpk(xk, uk)pk − npk(xk, uk, pk+1) = 0, (3.17)

nuk(xk, uk, pk+1) = 0, (3.18)

ρN(xN , ν, pN) = 0, (3.19)

ρψ(xN) = 0, (3.20)

1− zkdk(xk, uk) = 0. (3.21)

Equations (3.16)–(3.20) correspond to equations (3.6)–(3.10), and equation (3.21)

means that all denominators in the ELEs must not vanish.
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Even though equations (3.16)–(3.21) are algebraic equations, it is still difficult to

solve them; one of the difficulties is that most of them depend on the variables at dif-

ferent time steps. To get rid of this inconvenient structure, we decouple (3.16)–(3.21)

into sets of algebraic equations, where each equation set involves only the variables

at a single time step and the Lagrange multiplier associated with the terminal con-

straint. Note that we have to ensure that the decoupled equations are satisfied by

the optimal solutions, that is, the decoupled equations are necessary optimality con-

ditions. This decoupling can be done by utilizing the mathematics of polynomials,

i.e., commutative algebra and algebraic geometry.

3.3 Recursive Elimination Method for FHOCPs

with terminal constraints

In this section, we introduce the recursive elimination method for decoupling the set

of algebraic equations (3.16)–(3.21). Each decoupled set involves the variables at time

step k, i.e., xk, uk, and pk and the Lagrange multiplier ν, so that they can be solved

independently when xk is specified. Ohtsuka proposed such a method for rational

FHOCP without terminal constraints and demonstrated its efficiency [17]. Here, we

extend it to deal with the FHOCP with terminal constraints.

For the FHOCP with terminal constraints, the recursive elimination method is

derived as Algorithm 1, which yields Theorem 3.1 and Corollary 3.1.

Theorem 3.1. Denote the optimal solution of FHOCP (3.1)–(3.4) by x̂[0:N ], û[0:N−1],

p̂[0:N ], and ν̂. Then, for the ideals Jk (k = 0, . . . , N) in Algorithm 1, the following

Algorithm 1 Recursive Elimination Method for FHOCP with Terminal Constraints

Input: Algebraic equations (3.16)–(3.21) for FHOCP with terminal constraints
Output: Sets of algebraic equations Fk = 0 (k = 0, . . . , N)
1: Let FN be set of polynomials consisting of left-hand sides of (3.19) and (3.20),

and let JN := 〈FN〉 ⊂ R[xN , ν, pN ], k := N − 1
2: while k ≥ 0 do
3: Īk := 〈Dxkxk+1 − nxk, Dpkpk − npk, nuk, 1− zkdk, Fk+1〉
4: Jk := Īk ∩R[xk, uk, pk, ν]
5: Let Fk be generators of ideal Jk, that is, Jk = 〈Fk〉
6: k ← k − 1
7: end while
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statements hold.

(x̂N , ν̂, p̂N) ∈ V(JN), (3.22)

(x̂k, ûk, p̂k, ν̂) ∈ V(Jk) (k = 0, . . . , N − 1). (3.23)

That is,

FN(x̂N , ν̂, p̂N) = 0, (3.24)

Fk(x̂k, ûk, p̂k, ν̂) = 0 (k = 0, . . . , N − 1). (3.25)

Proof. The proof is by induction. First, at k = N , the ideal JN is generated by the

left-hand sides of equations (3.19) and (3.20); thus, statement (3.22) holds. Suppose

that (x̂k, p̂k, ûk, ν̂) ∈ V(Jk) at time step k. From the definition of Īk−1, we have

(x̂k−1, p̂k−1, ûk−1, ẑk−1, x̂k, p̂k, ûk, ν̂) ∈ V(Īk−1) (3.26)

where ẑk−1 = 1/d̄(x̂k−1, ûk−1). By projecting V(Īk−1) onto the (xk−1, pk−1, uk−1, ν)-

space and by applying Lemma A.2,

(x̂k−1, p̂k−1, ûk−1ν̂) ∈ π(xk−1,pk−1,uk−1,ν)(V(Īk−1)) ⊂ V(Jk−1) (3.27)

is obtained, and the proof is completed by induction.

Corollary 3.1. Denote the optimal solution of FHOCP (3.1)–(3.4) by x̂[0:N ], û[0:N−1],

p̂[0:N ], and ν̂, and define ideals Ik, Kk, and Wk and their generators GI
k, G

K
k , and GW

k

as

Ik = 〈GI
k〉 := Jk ∩R[xk, pk],

Kk = 〈GK
k 〉 := Jk ∩R[xk, uk],

Wk = 〈GW
k 〉 := Jk ∩R[xk, ν].

Then, the following statements hold.

(x̂k, p̂k) ∈ V(Ik), (x̂k, ûk) ∈ V(Kk), (x̂k, ν̂) ∈ V(Wk).

Proof. Corollary follows readily from Theorem 3.1 and Lemma A.2.

Theorem 3.1 shows that all sets of polynomials Fk must vanish at the optimal

solutions; that is, the solutions of equations Fk = 0 can be regarded as candidates

of the optimal solutions. Moreover, Corollary 3.1 shows that generators of ideal Kk

vanish at the optimal values x̂k and ûk, and thus it indicates that the set of equations
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GK
k (xk, uk) = 0 is an implicit representation of the optimal feedback control law at

time step k. Unlike the case without terminal constraints, we have to determine the

value of an additional variable ν, that is, the Lagrange multiplier associated with

the terminal constraint. The value of ν can be determined only when the value of

the initial state x0 = x̄ is given, and thus ν can be implicitly represented by x0.

In Algorithm 1, ν is transferred from the polynomial set FN to F0, and we obtain

the implicit representation of ν by x0 as the set of algebraic equations GW
0 = 0 in

Corollary 3.1.

By solving the algebraic equations GK
k (x̃k, uk) = 0 for a given state value x̃k, we

can obtain the candidate values of the optimal input ûk; they include the local optimal

solutions if exist. In the following discussion, a candidate of the optimal value ŷ of

variable y is denoted by ỹ. When equations GK
k (x̃k, uk) = 0 have solutions ũak and ũbk,

they may yield two different values of the next candidate state x̃ak+1 and x̃bk+1 from

the state equation (3.2). These candidate state values in turn yields two different

sets of equations GK
k+1(x̃ak+1, uk+1) = 0 and GK

k+1(x̃bk+1, uk+1) = 0, which may have

different sets of candidate values of ũk+1. Consequently, the sequence of candidate

inputs ũ[0:N−1] so to speak branches out at the moment of solving GK
k (x̃k, uk) = 0

for every k = 0, . . . , N − 1. Therefore, a tree structure is suitable for expressing the

candidate values, where its root is associated with the given initial value x̃0 = x̄ and

each of its nodes is associated with a pair of candidate input ũk and corresponding

next state x̃k+1.

Moreover, we can compute the value of the stage cost corresponding to a specific

pair of candidates x̃k and ũk, and we can obtain a candidate value of the cost function

corresponding to a sequence of candidate inputs by accumulating the candidate stage

costs and the terminal cost. Eventually, each leaf of the tree has the candidate value

of the cost function corresponding to the sequence of candidate inputs associated with

its ancestors. Therefore, the global optimal solution, if it exists, can be obtained by

finding the leaf having the minimum value of the cost function and collecting the

candidate inputs associated with its ancestors.

In the following discussion, Tx̄ denotes the tree associated with a given initial state

x̄, and for a node v ∈ Tx̄, l(v), x(v), and u(v) denote the accumulated stage cost,

candidate state, and candidate input associated with the node, respectively. The

procedure described in the previous paragraphs is then summarized as Algorithm 2.

In this algorithm, the function CalcCands computes ũk and x̃k+1 from x(v) for a

given node v, and if the third argument k does not equal N−1, the function calls itself

recursively. Therefore, by feeding the algorithm with the sequence of ideals K[0:N−1],
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Algorithm 2 Recursive Computation of Candidate Values

Input: Sequence of ideals K[0:N−1], node v, time instance k
Output: Tree that has node v as its root
1: function CalcCands(K[0:N−1], v, k)

2: Let Ũ be V(GK
k (x(v), uk)), where 〈GK

k 〉 = Kk ∈ K[0:N−1]

3: for each ũk ∈ Ũ do
4: if ∀i ∈ {1, . . . , n}, d̄(x(v), ũk) 6= 0 then
5: x̃k+1 := fk(x(v), ũk)
6: Add new node v′ as child of v
7: x(v′)← x̃k+1

8: u(v′)← ũk
9: if k 6= N − 1 then

10: l(v′)← l(v) + Lk(x(v), ũk)
11: CalcCands(K[0:N−1], v

′, k + 1)
12: else
13: l(v′)← l(v) + Lk(x(v), ũN−1) + φ(x̃N)
14: end if
15: end if
16: end for
17: return Tree that has root v
18: end function

a root vroot such that x(vroot) = x̄, and the time instance k = 0, the algorithm yields

Tx̄ if the total number of candidate values is finite.

Note that the sequences of candidate inputs obtained by Algorithm 2 may include

invalid solutions that do not satisfy the ELEs. Moreover, the solutions of the ELEs

may include the one that is not locally optimal. Therefore, in the next section, we

utilize the second-order sufficient conditions for local optimality to find locally optimal

solutions from the candidates.

3.4 Sufficient Conditions for Optimality

Here, we introduce the second-order sufficient conditions for guaranteeing the local

optimality of the solutions obtained by the recursive elimination method. These

conditions are based on the sufficient conditions for local optimality in nonlinear pro-

gramming [53], and their applicable range is wider than those of well-known sufficient

conditions in FHOCPs with terminal constraints in [23,50]. Moreover, the presented

sufficient conditions also guarantee the uniqueness of the optimal solution in some

neighborhood of a given initial state.
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First, to simplify the notation, we introduce an auxiliary notation a[s:t](x[s:t]) that

denotes the sequence of the values {as(xs), . . . , at(xt)} for a sequence of functions

a[s:t](x) and a sequence of points x[s:t] having the same length. Moreover, we also

introduce the matrix-valued functions:

Zab(Sk+1, k) :=
∂2Hk

∂a∂b
+

(
∂fk
∂a

)>
Sk+1

∂fk
∂b

, (3.28)

where Sk are n × n matrices for k = 0, . . . , N , symbols a and b can be replaced

by symbols x and u, and ∂/∂a denotes the derivative with respect to the symbol

replacing a. For example,

Zux(Sk+1, k) =
∂2Hk

∂u∂x
+

(
∂fk
∂u

)>
Sk+1

∂fk
∂x

. (3.29)

Using these matrix-valued functions, we make the following assumption in order to

state the sufficient conditions.

Assumption 3.1. Sequences of states x̂[0:N ], inputs û[0:N−1], p̂[k:N ], and ν̂ exist

that satisfy ELEs (3.6)–(3.10), and the following matrix inequalities hold for k =

0, . . . , N − 1.

Zuu(Sk+1, k) > 0, (3.30)

where matrices Sk ∈ Rn×n in the function Zuu are determined by the recurrence

formula:

Sk =Zxx(Sk+1, k)− Z>ux(Sk+1, k)Z−1
uu (Sk+1, k)Zux(Sk+1, k) (3.31)

and the boundary condition:

SN =
∂2φ

∂x2
+ ν>

∂2ψ

∂x2
. (3.32)

In this assumption, the arguments of the partial derivatives of Hk, fk, φ, and ψ are

parts of sequences x̂[0:N ], û[0:N−1], and p̂[0:N ] and ν̂.

From the viewpoint of nonlinear programming, it can be shown that ELEs (3.6)–

(3.10) and matrix inequalities (3.30) are sufficient conditions for local optimality; this

is a straightforward consequence of Lemma B.1 in Section B.1. On the basis of the

sufficient conditions for local optimality, the existence and uniqueness of local optimal

feedback laws can then be stated as the following theorem.
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Theorem 3.2. Suppose that Assumption 3.1 holds and that terminal constraint (3.4)

satisfies the linear independence constraint qualification (LICQ). Then, for the se-

quences û[0:N−1] and p̂[0:N ] and the vector ν̂ whose existence is assumed in Assump-

tion 3.1, unique sequences of differentiable functions u∗[0:N−1](x[0:N−1]), p
∗
[0:N ](x[0:N ]),

and ν∗[0:N ](x[0:N ]) exist that are defined on some neighborhood of x̂k, and they satisfy

u∗k(x̂k) = ûk, p
∗
k(x̂k) = p̂k, and ν∗k(x̂k) = ν̂. Furthermore, some neighborhood of the

given initial state x̂0 = x̄ exists such that, for any initial state xCL0 in the neighbor-

hood, the closed-loop trajectory xCL[0:N ] generated by the state equation (3.2) and the

feedback law u∗k(x
CL
k ), the sequence of costates given by p∗k

(
xCLk

)
, and the Lagrange

multipliers given by ν∗k(xCLk ) satisfy the ELEs and inequalities (3.30). In other words,

the set of differentiable functions u∗[0:N−1](x
CL
[0:N−1]), p

∗
[0:N ](x

CL
[0:N ]), and ν∗[0:N ](x

CL
[0:N ]) gives

a local optimal solution for xCL0 in some neighborhood of x̄.

Proof. For l = 0, . . . , N − 1, the subsequences x̂[l:N ], û[l:N−1], p̂[l:N ], and ν̂ satisfy

the ELEs and inequalities (3.30). From Lemma B.1 in Section B.1, a unique set of

differentiable functions x
[l+1:N ]
l (xl), u

[l:N−1]
l (xl), p

[l:N ]
l (xl), and ν l(xl) exists that satisfy

xkl (x̂l) = x̂k, ukl (x̂l) = ûk, pkl (x̂l) = p̂k, ν l(xl) = ν̂, the ELEs, and inequalities (3.30)

for any xl in some neighborhood of x̂l. We define xll(xl) := xl; then, the uniqueness

of these functions implies that

xkl1(x
l1
l (xl)) = xkl2(x

l2
l (xl)), (3.33)

ukl1(x
l1
l (xl)) = ukl2(x

l2
l (xl)), (3.34)

pkl1(x
l1
l (xl)) = pkl2(x

l2
l (xl)), (3.35)

ν l1(x
l1
l (xl)) = ν l2(x

l2
l (xl)), (3.36)

hold for any l1, l2 ∈ {l, . . . , k} and for any xl in some neighborhood of x̂l.

Now, let us define u∗k(xk) := ukk(xk) and fCLk (xk) := fk (xk, u
∗
k(xk)) for k =

0, . . . , N − 1. Since xk+1
k (xk) maps x̂k onto x̂k+1 and

x̂k+1 = fk (x̂k, u
∗
k(x̂k)) = fCLk (x̂k),

the uniqueness of xk+1
k (xk) implies xk+1

k (xk) = fCLk (xk) for k = 0, . . . , N − 1 and for

any xk in some neighborhood of x̂k. Accordingly, we obtain the following equations

for k = 0, . . . , N − 1 and for any x0 in some neighborhood of x̂0 = x̄.

xk0(x0) = xkk−1 ◦ · · · ◦ x1
0(x0) (3.37)

= fCLk−1 ◦ · · · ◦ fCL0 (x0). (3.38)
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That is, sequence x
[0:N ]
0 (x0) is the closed-loop trajectory given by the sequence of

feedback control laws u∗[0:N−1](x), and thus xCLk = xk0(x0). Similarly, we define

p∗k(xk) := pkk(xk) and ν∗k(xk) := νk(xk); then,

u∗k(x
CL
k ) = ukk(x

k
0(x0)) = uk0(x0), (3.39)

p∗k(x
CL
k ) = pkk(x

k
0(x0)) = pk0(x0), (3.40)

ν∗k(xCLk ) = νk(x
k
0(x0)) = ν0(x0), (3.41)

hold from the definitions of u∗k, p
∗
k, and ν∗k and equations (3.34)–(3.36). Therefore, the

closed-loop trajectory xCL[0:N ] and corresponding inputs u∗k(x
CL
k ), costates p∗k(x

CL
k ), and

Lagrange multiplier ν∗k(xCLk ) are identical to the sequences xk0(x0), uk0(x0), and pk0(x0)

and the Lagrange multiplier ν0(x0), which satisfy the ELEs and inequalities (3.30).

Note that Theorem 3.2 is not a straightforward extension of the result in [17]

because of the existence of an additional variable ν. The result in [17] corresponding

to Theorem 3.2 is based on sufficient conditions for optimality of FHOCPs with-

out constraints, and these conditions cannot be applied to FHOCPs with terminal

constraints. For such constrained FHOCPs, sufficient conditions for optimality have

already been proposed [23,50]. However, they assume that ν is explicitly represented

by each state xk, whence the applicable range of their conditions is limited. We pro-

vide less conservative conditions (Lemma B.1) by getting rid of that assumption and

prove Theorem 3.2 by using the lemma.

We can find local optimal solutions from the sequences of candidate inputs ob-

tained by Algorithm 2 by checking whether each candidate satisfies the ELEs and

inequalities (3.30). The uniqueness and differentiability of the optimal solution in

some neighborhood also enables us to track the optimal solution from that corre-

sponding to one state value to that corresponding to another; we can find a solution

of GK
k (xk, uk) = 0 with xk 6= x̂k from the optimal solutions x̂k and ûk by using nu-

merical computations such as Newton’s method. Moreover, we can characterize the

optimal feedback laws, costates, and Lagrange multiplier in Theorem 3.2 as algebraic

functions of the state by making assumptions on the ideals obtained in Corollary 3.1,

which is the topic of the next section.

3.5 Existence of Algebraic Solutions

When u∗k(xk), p
∗
k(xk), and ν∗k(xk) are algebraic functions of xk, each of their compo-

nents can be regarded as a point in R(xk). Therefore, u∗k(xk) can be characterized as
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a point of the algebraic set in R(xk)
m

defined by polynomials in R(xk)[uk] instead of

R[xk, uk], which leads to the extension Ke
k ⊂ R(xk)[uk] of the ideal Kk ⊂ R[xk, uk];

the same argument applies to p∗k and ν∗k . In particular, if the extension Ke
k is zero-

dimensional, a basis of its radical can be computed [54]. Zero-dimensional radical

ideals have good properties stated in the following lemma [17].

Lemma 3.1. If J ⊂ K(X)[Y ] is a zero-dimensional radical ideal, it has exactly n

generators g1, . . . , gn ∈ K(X)[Y ], and det [∂gi(Y )/∂Yj] 6= 0 for every Y ∈ V(J).

Lemma 3.1 shows that a set of generators g1, . . . , gm exists such that the equations

gi = 0 (i = 1, . . . ,m) form a square system of polynomial equations in the variables

Y whose Jacobian at each Y ∈ V(J) is a nonzero algebraic function of X; that is, the

Jacobian does not vanish in an open and dense subset of X-space. Moreover, under

additional mild assumptions, the Gröbner basis of a zero-dimensional radical ideal

has a good structure for computing the generators in Lemma 3.1, which is known as

the Shape Lemma [55].

Theorem 3.3. Suppose that Assumption 3.1 holds, that the terminal constraint (3.4)

satisfies the linear independence constraint qualification, and that the extensions of

the ideals Ke
k ⊂ R(xk)[uk], I

e
k ⊂ R(xk)[pk], and W e

k ⊂ R(xk)[ν] are zero-dimensional

ideals for k = 0, . . . , N − 1. Then, the optimal feedback laws u∗k(xk), costates p∗k(xk),

and Lagrange multiplier ν∗k(xk), whose existences are guaranteed by Theorem 3.2, are

algebraic functions, and u∗k ∈ V(Ke
k), p

∗
k ∈ V(Iek), and ν∗k ∈ V(W e

k ). Moreover, a set

of generators of each ideal exists that form a square system of polynomial equations,

and its Jacobian matrix is nonsingular for xk in an open and dense subset of some

neighborhood of x̂k.

Proof. Theorem 3.2 shows that the set of u∗k(x̃k), p
∗
k(x̃k), and ν∗k(x̃k) is an optimal

solution for x̃k in some neighborhood of x̂k. Therefore, Corollary 3.1 implies that

(x̃k, u
∗
k(x̃k)) ∈ V(Kk), (x̃k, p

∗
k(x̃k)) ∈ V(Ik), and (x̃k, ν

∗
k(x̃k)) ∈ V(Wk). Since Ke

k at

each time instant k is supposed to be a zero-dimensional ideal, a minimal polynomial

hi(xk, uki) ∈ R(xk)[uki] for each i = 1, . . . ,m exists that vanishes on V(Ke
k). Note

that, from the definition of extensions of ideals, we can choose hi from Kk instead

of Ke
k by multiplying some polynomial in R[xk]. Therefore, (x̃k, u

∗
k(x̃k)) ∈ V(Kk) for

all x̃k in some neighborhood of x̂k implies that hi (xk, u
∗
ki(xk)) = 0 in the neighbor-

hood, and thus, each component u∗ki(xk) is an algebraic function of xk. Moreover,

(xk, u
∗
k(xk)) ∈ V(Kk) implies that every polynomial in Kk vanishes at u∗k ∈ R(xk)

m
,

and thus, all polynomials in Ke
k also vanish at u∗k, which implies u∗k ∈ V(Ke

k).
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Now, Lemma 3.1 guarantees that the radical
√
Ke
k has exactly m generators as√

Ke
k = 〈ḠK

k 〉 such that det
[
∂ḠK

k /∂u
∗
k

]
∈ R(xk) is a nonzero algebraic function of

xk, which implies that ∂ḠK
k (xk, u

∗
k(xk))/∂uk ∈ Rm×m is nonsingular in an open and

dense subset of some neighborhood of x̂k. The same argument can also be applied to

p∗k and ν∗k , thus completing the proof.

Theorem 3.3 shows that we can guarantee the differentiability and nonsingularity

of the algebraic state feedback laws in an open and dense subset of some neighborhood

of x̂k by using the notion of zero-dimensional ideals. When we find u∗k(x̃k) for x̃k in the

neighborhood, nonsingularity helps us to solve equations ḠK
k (x̃k, uk) = 0 numerically

by using, for example, Newton’s method or the continuation method. Moreover,

we can use the minimal polynomials hi(xk, uki) of uki with respect to Ke
k to compute

u∗k(xk). In this case, we can compute u∗ki(x̃k) for x̃k by solving the univariate algebraic

equation hi(x̃k, uki) = 0. Note that the computation of u∗ki(x̃k) can be performed

independently for each i ∈ {1, . . . ,m}.

3.6 Numerical Examples

3.6.1 Illustrative Example

Let us consider the following FHOCP with a terminal constraint.

min
u1,...,uN−1

N−1∑
k=0

1

2
u2
k, (3.42)

subject toxk+1,1 = xk,2

xk+1,2 = −xk,1 +
xk,1uk

1 + xk,1
,

(3.43)

x0 = x̄, (3.44)

xN = 0. (3.45)

For the optimization horizon N = 4, we can obtain the polynomials F4 and F3 as

F4 = {x41, x42, p41 − ν1, p42 − ν2},
F3 = {x32, p32 − ν1, p31x31 − x2

31 − x31, u
2
3 − u3 − x2

31 − x31, · · · }.

Some of the polynomials in F3 and all of the polynomials F2, F1, and F0 are omitted

because of space limitations. The ideals Kk ⊂ R[xk, uk] are obtained from Corol-
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lary 3.1 as

K3 = 〈x32, u3x31 − x2
31 − x31, u

2
3 − x2

31 − u3 − x31〉,
K2 = 〈u2x21 − x2

21 − x21, u
2
2 − x2

21 − u2 − x21〉,
K1 = 〈2u2

1x
2
11 − 3u1x

3
11 + x4

11 + · · · 〉,
K0 = 〈2u2

0x
2
01 − 3u0x

3
01 + x4

01 + · · · 〉.

By using Algorithm 2, we obtain 36 candidate solutions for a given initial state

x̄ = [−2.0, 3.0]>, and four of them satisfy the ELEs.

Figure 3.1 shows the state trajectories T1, T2, T3, and T4 given by these four

sequences. The values of the cost functions corresponding to T1, T2, T3, and T4

are 1.78, 8.50, 8.90, and 2.18. Since the dimension of the input is 1, the matrices

Zuu(Sk+1, k) in inequalities (3.30) are scalars. Table 3.1 shows the corresponding

values of Zuu(Sk+1, k) for each trajectory. All of the values of Zuu for T1 are positive;

hence, the sequence of candidate inputs giving T1 is a locally optimal solution.

The ideals K1 and K0 are generated by only one polynomial in R[xk, uk], and their

extensions are also generated by these polynomials. Therefore, from Lemma A.1, Ke
1

and Ke
0 are zero-dimensional ideals. Moreover, generators of these ideals are both

square-free, which implies that these ideals are also radical. Then, the optimal state

feedback laws can be obtained as the roots of these generators, and we can calculate

the optimal feedback laws explicitly because the degrees of the generators are at most

2. The following algebraic feedback laws are the roots of the generators of Ke
1 and

−2.5 0.0 2.5
x1

−2

0

2

4

x
2

T1

T2

T3

T4

Figure 3.1: State trajectories given by candidate inputs.
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Table 3.1: Values of Zuu(Sk+1, k)

k = 0 k = 1 k = 2 k = 3

T1 3.84 0.892 1.00 1.00
T2 16.0 −15.0 1.00 1.00
T3 −157 −18.6 1.00 1.00
T4 −56.0 1.12 1.00 1.00

T ′1 4.37 0.902 1.00 1.00

Ke
0 and give T1.

u∗0(x0) = x01 + 1, (3.46)

u∗1(x1) =
x11(x2

11 − 1)

2x2
11 + 2x11 + 1

, (3.47)

Note that the other inputs u2 and u3 are uniquely determined from only state equa-

tion (3.43) and terminal constraint (3.45). Note also that these optimal state feedback

laws are calculated without any approximations. Theorem 3.2 guarantees that, for

all x0 in some neighborhood of x̄ = [−2, 3]>, these algebraic feedback laws are also

optimal. Indeed, for an initial state x̄′ = [−2.4, 3.3]> ' x̄, we obtain the trajectory

T ′1 that corresponds to the values of Zuu(Sk+1, k) in Table 3.1, which implies that the

sequence of inputs giving T ′1 is also a locally optimal solution.

3.6.2 Nonlinear Model Predictive Control Application

In practice, FHOCPs are often accompanied by NMPC, in which an FHOCP is solved

repeatedly and only the initial optimal input is utilized as the actual input. By

solving the set of algebraic equations GK
0 (x0, u0) = 0 obtained by Algorithm 1, we

can obtain candidates of the initial optimal input immediately from the given initial

state. Moreover, in the case of NMPC with a short enough sampling period, the state

variation within the sampling interval should be small. Therefore, from Theorem 3.2,

the solution of each FHOCP possibly retains local optimality.

As a practical example, let us examine stabilization of an inverted pendulum by

NMPC. We define the continuous-time equation of motion of the pendulum as

θ̈(t) + θ̇(t)− sin θ(t) = u(t), (3.48)

where t ∈ R+ = [0,∞) denotes continuous time, θ(t) ∈ R denotes the angle sub-

tended by the pendulum and the vertical axis, and u(t) ∈ R denotes the controllable
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external torque. To apply the proposed method, we replace sin θ in (3.48) with

(θ − 7/60θ3)/(1 + 1/20θ2) by using Padé approximation, which often gives a better

approximation of a function than one given by a truncated Taylor series and may still

work outside of the convergence region of the Taylor series [56]. By using the for-

ward difference approximation with a sampling period of ∆t = 0.05, the discrete-time

model can be obtained as
xk+1,1 = xk,1 + xk,2∆t

xk+1,2 = xk,2 +

(
−xk,2 +

xk,1 − 7
60
x3
k,1

1 + 1
20
x2
k,1

+ uk

)
∆t,

(3.49)

where xk,1 and xk,2 denote the angle and angular velocity, respectively, and uk denotes

the controllable external torque. The control objective is to regulate the state to the

origin and reduce control burdens. Hence, the stage costs and terminal constraint are

defined as

Lk(xk, uk) =
1

2
u2
k, ψ(xN) = xN = 0. (3.50)

Since this terminal constraint specifies the terminal state, the terminal cost is omitted

(φ(xN) ≡ 0).

For N = 2, GK
0 consists of only one polynomial:

κ0(x0, u0) = 3(x2
01 + 20)u0 + 1193x3

01 + 117x2
01x02 + 24060x01 + 2340x02. (3.51)

Since κ0(x0, u0) is linear in u0, the root of κ0(x0, u0) as a polynomial of u0 can be

computed symbolically, and this root is an explicit form of the feedback control law

at k = 0. Moreover, under the problem setting of this example, both the scalars

Zuu(S1, 0) and Zuu(S2, 1) in inequalities (3.30) are equal to one irrespective of the

initial state, which means that the obtained feedback control law is locally optimal

for an arbitrary initial state by Theorem 3.2.

Figure 3.2 shows the trajectories of the system (3.48) with the feedback control

law defined by κ0(x(t), u(t)) = 0 and the free response without the control law. Each

arrow in the figure shows the direction that each trajectory goes toward. The initial

state is set to x0 = [1.0 0.0]>. In the controlled case, the state and control input

are sampled and computed with a sampling period of 0.01 time units; the sampling

period of NMPC is smaller than that of the discretization. It is readily seen that the

state of the controlled system is regulated to the origin.
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x1

−10

−5
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x
2

Free response
Controlled by κ0

Figure 3.2: Trajectories of system (3.48) derived from controlled system (solid line)
and its free response (dashed line).

3.7 Summary

We proposed a recursive elimination method for rational FHOCPs with terminal

constraints. By applying the concept of elimination ideals from commutative algebra,

the method decouples the ELEs into sets of algebraic equations, where each equation

set involves the Lagrange multiplier associated with the terminal constraint and the

variables at a single time instant. We also proposed an algorithm to solve the sets

of algebraic equations and obtain candidates of local optimal solutions. Sufficient

conditions for optimality are provided, which guarantee not only the optimality but

also the uniqueness of the optimal solution in some neighborhood of the given initial

state. By checking whether the presented sufficient conditions are satisfied or not for

each candidate, we can select local optimal solutions from the candidates. Moreover,

we also provided sufficient conditions for the existence of the optimal solutions in the

form of algebraic functions of the states. By utilizing the concept of zero-dimensional

ideals and some additional assumptions, we can guarantee the nonsingularity of the

optimal solutions in some neighborhood, which is a useful property for numerical

computations. In the future, we plan to establish sufficient conditions for optimality

using only the information at the initial time instant, i.e., the value of the initial

state, which is suitable for model predictive control.
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Chapter 4

Recursive Elimination Method for
Moving Horizon Estimation

4.1 Introduction

After the great success of the Kalman filter (KF) [4,5] in both theoretical and practi-

cal aspects, the study of optimal filtering has been developed to consider the problem

setting of nonlinear systems with non-Gaussian noise, which is one of the most im-

portant problem settings in control engineering [57–59].

The most popular result in the optimal filtering theory for nonlinear systems is the

extended Kalman filter (EKF) [26], which uses linear approximations to extend the

concept of the KF to nonlinear cases. Its algorithm is simple and analogous to that

of the KF, which not only makes it easy for us to imagine how the EKF works but

also leads to a small computational cost. However, the use of linear approximations

in its algorithm limits the accuracy of the EKF so that it can have surprisingly

bad performance in some practical applications with nonlinear systems and non-

Gaussian noise [60]. Another extension of the KF is the unscented Kalman filter

(UKF) [28]. This filtering method uses the unscented transformation to approximate

the distribution distorted by nonlinear systems with the Gaussian distribution whose

mean and covariance are the same as those of the distorted one. Therefore, the UKF

often provides more accurate estimates than the EKF (see, e.g., [61]). However, both

EKF and UKF require the assumption that the system and measurement noises are

Gaussian.

In some applications, such an assumption does not hold. Chen and Hu [62] have

proposed a new Kalman-like filtering method for nonlinear systems, which does not

require any statistical information of noise but only its bounds. They constructed an

upper bound of estimation error by using a Taylor series approximation and computed
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the gain of the filter that minimizes the upper bound. In some numerical examples,

this new filtering method outperformed the EKF, UKF, and cubature KF (CKF)

with inaccurate covariances of system and measurement noises. It is often difficult

to certify that the noises are Gaussian, and this method is promising for such cases.

However, the bounds of noise are sometimes unavailable when, for example, the noise

has an impulsive character that produces deviations of high amplitude with short

durations more often than the Gaussian distribution does [63]. It is known that

radar and sonar noise [64] and disturbances caused by air turbulence [65] have the

impulsive character, which has motivated several researchers to model such impulsive

noise by using non-Gaussian distributions [63, 64, 66, 67]. With this in mind, it is

still important to study optimal filtering methods for nonlinear systems with non-

Gaussian noise even if we assume that their statistical properties or distributions are

known.

As a popular approach for nonlinear filtering with non-Gaussian noise, the particle

filter (PF) was first proposed by Kitagawa [31,32] and Gordon et al. [33]. This filter

uses the Monte Carlo method to approximate the posterior distribution of the state,

and thus Gaussian assumptions for noise distributions are not required. Although

the PF with enough particles yields more accurate estimates than those derived from

the EKF and UKF, it usually has a high computational cost, which can reach an

unacceptable level for real-time purposes.

Another promising approach is called moving horizon estimation (MHE). In MHE,

an estimation of the finite length of state trajectory is performed at every sampling

time by using the same length of measurement sequence, and the length of the es-

timated state trajectory is called the horizon. While the EKF, UKF, and other

Kalman-like filters estimate the current state by using the fixed previous estimate,

MHE reoptimizes the past estimates on the horizon and estimates the current state

by using those reoptimized past estimates. Indeed, it has been reported that this re-

optimization property improves the current state estimate in some examples [68]. The

estimation problem at each sampling time is formulated as a nonlinear optimization

problem, which is usually computationally demanding to solve while the sampling

interval is limited. Therefore, it is important to reduce its computational time.

In most of the efficient algorithms for MHE [69–72], the objective function mini-

mized in each optimization problem is assumed to be quadratic, which is equivalent

to the Gaussian assumption for noise distributions. For non-Gaussian cases, sev-

eral methods have been developed to approximate the distributions of non-Gaussian

noise by using simple distributions such as Gaussian or uniform distributions [25].
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Monin [57] proposed an MHE algorithm for non-Gaussian cases by approximating the

non-Gaussian distributions with the Gaussian mixture defined by the Max operator.

Although these approximating methods can deal with a wide range of non-Gaussian

noise, the computational complexity grows combinatorially with increasing the num-

ber of simple distributions used in the approximation. Hence, it gets more difficult

to reduce the computational time for solving each optimization problem when we

consider non-Gaussian cases.

To tackle such difficulties of MHE with nonlinear systems and non-Gaussian noise,

we fucus on the similarity of the MHE procedure to model predictive control (MPC)

in nonlinear control theory. Indeed, if we choose the joint maximum a posteriori

(MAP) estimation as the optimality criterion, the derived optimization problem has a

structure similar to that of an optimal control problem with a fixed horizon [23,25,73].

Hence, the same technique as introduced in Chapter 3 would also be applied to solving

the joint MAP estimation.

Specifically, the analogy between MHE and MPC has led us to propose a recursive

elimination method for optimal filtering problems. In the joint MAP estimation,

the state trajectory on the horizon is computed to maximize the joint probability

density of all the states conditionally on the measurements. However, in the MHE

procedure, only the estimate of the current state is used as a solution for the filtering

problem at each time step, which means there is no need to compute the other past

estimates. Hence, by using the off-line variable elimination technique in the joint

MAP estimation, we can eliminate the past state variables from the filtering problem

to reduce the on-line computational time.

The rest of this chapter is organized as follows. In Section 4.2, we formulate the

problems dealt with in this chapter, derive the stationary conditions, and convert

them into algebraic equations by introducing additional variables. Section 4.3 is de-

voted to introducing a recursive elimination method for optimal filtering problems. In

Section 4.4, an MHE algorithm that uses the implicit function representation derived

from the recursive elimination is proposed. In Section 4.5, a numerical example is pro-

vided to compare the proposed MHE algorithm with other state estimation methods

and show the efficiency of the proposed method. Section 4.6 summarize this chapter.
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4.2 Problem Formulation

Consider the finite-horizon optimal estimation problem (FHOEP) (2.16).

x∗[0:N ] := arg max
x[0:N ]

p(x[0:N ] | y[0:N ]) (4.1)

s. t. xk = fk−1(xk−1, uk−1) + wk−1, (4.2)

yk = hk(xk) + vk, (4.3)

wk ∼ pw(wk), (4.4)

vk ∼ pv(vk), (4.5)

x0 ∼ p0(x0, µ), (4.6)

where µ ∈ Rl, which is not included in (2.16), is a vector of parameters that de-

scribes the time evolution of the PDF of the initial state on the horizon; in the MHE

context, this PDF corresponds to the so-called arrival cost [69]. In this problem,

although functions fk, hk, pw, and pv are assumed to be given, p0 is what we have

to choose. Typically, p0 is chosen as Gaussian with the mean of the past estimate,

which corresponds to the quadratic arrival cost [69,71]. In this case, µ is a parameter

denoting the past estimate. For a more reasonable design method, we can take into

account the state equation (4.2) and the PDF of system noise (4.4); p0 can be defined

as

p0(x0, µ) := pw(x0 − f0(µ1, µ2)),

where µ =
[
µ>1 µ>2

]> ∈ Rn+m is the parameter representing the state and input at

N + 1 real-time steps ago. This would be a better choice than the typical one if a

Gaussian distribution cannot approximate the PDF of system noise pw.

As stated in Section 2.3, FHOEP (4.1)–(4.6) can be reformulated into an uncon-

strained nonlinear optimization problem

min
x[0:N ]

−
{

ln p0(x0, µ) + ln pv (y0 − h0(x0))
}

−
N∑
k=1

{
ln pw (xk − fk−1(xk−1, uk−1)) + ln pv (yk − hk(xk))

}
. (4.7)

By differentiating the objective function with respect to the state trajectory, the
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stationary conditions for the minimization problem (4.7) can be obtained as follows:

− 1

p0

∂p0

∂x0

+
1

pv

∂pv
∂v0

∣∣∣∣
v0=y0−h0

∂h0

∂x0

+
1

pw

∂pw
∂w0

∣∣∣∣
w0=x1−f0

∂f0

∂x0

= 0, (4.8)

− 1

pw

∂pw
∂wk−1

∣∣∣∣
wk−1=xk−fk−1

+
1

pv

∂pv
∂vk

∣∣∣∣
vk=yk−hk

∂hk
∂xk

+
1

pw

∂pw
∂wk

∣∣∣∣
wk=xk+1−fk

∂fk
∂xk

= 0 (k = 1, . . . , N − 1),

(4.9)

− 1

pw

∂pw
∂wN−1

∣∣∣∣
wN−1=xN−fN−1

+
1

pv

∂pv
∂vN

∣∣∣∣
vN=yN−hN

∂hN
∂xN

= 0, (4.10)

where the arguments of all functions are omitted for simplicity. We assume that

the unconstrained problem (4.7) has at least one local minimizer x∗[0:N ] ∈ Rn×(N+1)

with a finite minimum value of the cost function, and thus (4.8)–(4.10) are neces-

sary conditions for optimality. Note that when the parameter µ and the histories

of inputs u[0:N−1] and measurements y[0:N ] are given, (4.8)–(4.10) can be viewed as a

two-point boundary value problem for the sequence of tuples (xk, xk−1) (k = 1, . . . , N)

because (4.8) and (4.10) can be regarded as the initial and the terminal conditions,

respectively.

Now, we assume that functions fk : Rn × Rm → Rp and hk : Rn → Rp in the

state and observation equations (4.2) and (4.3), respectively, are vectors of rational

functions. In addition, we also assume that the derivatives of logarithms

∂

∂wk
{log pw(wk)} =

1

pw(wk)

∂pw
∂wk

(wk),

∂

∂vk
{log pv(vk)} =

1

pv(vk)

∂pv
∂vk

(vk),

∂

∂x0

{log p0(x0, µ)} =
1

p0(x0, µ)

∂p0

∂x0

(x0, µ)

(4.11)

are described by rational functions. Under these assumptions, all the left-hand sides

of (4.8) and (4.10) consist of rational functions.

Remark 4.1. The assumption that the derivatives (4.11) consist of rational functions

is not so restrictive. For example, if pw is described as an exponential of a rational

function g,

pw(wk) = exp(g(wk)),

then its logarithm g and its derivative of the logarithm ∂g/∂wk are both rational

functions. Moreover, even if pw itself is a rational function g, its derivative of the

logarithm ∂(log g)/∂wk = (∂g/∂wk)/g is a rational function though its logarithm

log g is not.
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Remark 4.2. Although the unconstrained problem (4.7) is considered in this chap-

ter, equality and inequality constraints can be taken into account if they consist of

rational functions. In this case, the stationary conditions (4.8)–(4.10) are replaced

by the Karush-Kuhn-Tucker (KKT) conditions, and thus we can apply the follow-

ing discussions and algorithms by using some minor modifications to deal with the

Lagrange multipliers associated with the additional constraints. Note, however, that

a global minimizer of the constrained optimization problem may no longer be inter-

preted as a MAP estimation, that is, a maximizer of the conditional joint PDF (4.1).

This is because, for example, a state constraint can destroy the independence of the

noise sequence w[0:∞], which we assume throughout this chapter (see [74] for details).

As an example of constraints that are compatible with the MAP estimation inter-

pretation, inequality constraints independent of the state such as box constraints

wi < wk,i < wi (i = 1, . . . , n) can be considered for either or both w and v.

To apply the algebraic geometry techniques used in [17] and Chapter 3, we next

convert these equations into algebraic equations. This conversion can be performed

for each time step k by canceling the denominators of the n equations at the time

step; first, let us select (4.8), which consists of an n-dimensional vector-valued rational

function and can be rewritten as follows:

D−1
0 (x0, x1, µ, u0, y0)n0 (x0, x1, µ, u0, y0) = 0, (4.12)

where n0 is a vector of polynomials whose i-th component n0,i is the numerator of

the left-hand side of the i-th equation in (4.8) and D0 is a diagonal matrix-valued

function whose i-th diagonal element is the denominator polynomial corresponding

to n0,i. It is obvious that the solution of (4.8) satisfies a set of n algebraic equations

n0 (x0, x1, µ, u0, y0) = 0. (4.13)

To prevent all denominators from vanishing, consider an algebraic equation

1− d0 detD0 (x0, x1, µ, u0, y0) = 0, (4.14)

where d0 ∈ R is an additional scalar variable. Note that if (4.14) has a solution,

the value of detD0 is given as detD0 = 1/d0 6= 0, which means any denominator

included in (4.8) does not vanish at the solution; in other words, all the denominators

do not vanish as long as (4.14) holds. Consequently, (4.8) is equivalent to (n + 1)

algebraic equations, namely, (4.13) and (4.14). Note that if detD0 is strictly positive

or negative on its domain, (4.14) always has a solution and can be omitted.
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The process of the conversion from (4.8) to the algebraic equations (4.13) and (4.14)

can also be performed for (4.9) and (4.10) in the same way. In the following discussion,

we denote a vector of polynomials [n>0 1− d0 detD0]> by F0 and derive the vectors

of polynomials Fk (k = 1, . . . , N − 1) and FN from (4.9) and (4.10), respectively, in

the same way. In the end, all equations (4.8)–(4.10) can be equivalently converted

into the following equations:

F0(x0, x1;µ, u0, y0, d0) = 0, (4.15)

Fk(x[k−1:k+1];uk−1, uk, yk, dk) = 0

(k = 1, . . . , N − 1), (4.16)

FN(xN−1, xN ;uN−1, yN , dN) = 0. (4.17)

Equations (4.15)–(4.17) are still necessary optimality conditions because they are

equivalent to the original stationary conditions (4.8)–(4.10). By solving these equa-

tions for given parameter µ and histories of inputs u[0:N−1] and outputs y[0:N ], we can

obtain the candidates of the optimal solution of the MAP estimation problem (4.1)–

(4.6). However, it is still difficult and time-consuming to solve (4.15)–(4.17) because

they include all the state variables on the horizon and are coupled by these variables.

Recall that, in the MHE procedure, just the terminal estimate x∗N is used as the esti-

mate of the current state, which means we do not need to compute the past estimates

x∗[0:N−1] on-line. By using algebraic geometry techniques, we can eliminate the past

estimates from (4.15)–(4.17) off-line without any approximation and obtain equations

only in the terminal state xN and other parameters µ, u[0:N−1], and y[0:N ], which leads

to a reduction of the computational cost.

4.3 Recursive Elimination Method for FHOEPs

If the state and observation equations (4.2)–(4.3) are linear and the PDFs of wk and

vk are Gaussian, (4.15)–(4.17) (which are exactly the same as (4.8)–(4.10) in linear

cases) are explicitly solvable and have a unique solution, which corresponds to the

KF [75]. On the other hand, in nonlinear cases, these equations are no longer explicitly

solvable, and we have to rely on numerical methods such as Newton’s method to solve

them. Generally speaking, nonlinear equations become harder to solve as the number

of variables increases, which means decreasing the number of variables can reduce

the computational cost for solving the equations; indeed, in the numerical examples

introduced in [17] and Chapter 3, computational costs are reduced by decreasing the

numbers of variables. Elimination theory [76] in algebraic geometry is one of the

47



Chapter 4. Recursive Elimination Method for Moving Horizon Estimation

most powerful tools to decrease the number of variables, and it can eliminate some

of the variables from nonlinear equations symbolically. It is also shown by several

numerical examples in [17] and Chapter 3 that this off-line variable elimination leads

to a reduction of the on-line computational cost.

In MHE, as mentioned before, we only need to compute the terminal estimate x∗N ,

and the other estimates x∗[0:N−1] are introduced just for connecting x∗N to the past mea-

surements y[0:N−1]. Therefore, by eliminating the estimates x∗[0:N−1] from (4.15)–(4.17),

we can reduce the on-line computational cost to solve the MAP estimation prob-

lem (4.1). In this section, we introduce the recursive elimination method for (4.15)–

(4.17).

By using elimination ideals introduced in Section A.2, we can eliminate the vari-

ables x[0:N−1] from (4.15)–(4.17). However, it is known that the computational com-

plexity of a Gröbner basis is, in the worst case, doubly exponential in the number of

variables [77, 78]. Therefore, the number of variables that are handled at the same

time during the elimination process needs to be reduced. Now, recall that each set

of equations at time step k in (4.16) includes only the state at the time step xk and

its neighbors xk−1 and xk+1. This adjacently coupled structure of (4.16) allows us to

perform the elimination process recursively as Algorithm 3.

Remark 4.3. Due to the expensive computational complexity of a Gröbner basis,

the complexity of Algorithm 3 mainly results from the computations of elimination

ideals and can be quite high. However, computation of each elimination ideal Jk from

Ik in Algorithm 3 involves much fewer variables than in all equations (4.15)–(4.17),

which means that using Algorithm 3 is more efficient than directly eliminating the

state history x[0:N−1] from the whole set of equations (4.15)–(4.17) all at once.

Algorithm 3 Recursive Elimination Method for Joint MAP Filtering Problem

Input: Algebraic equations (4.15)–(4.17) for joint MAP estimation
Output: Algebraic equations GN(xN , dN ;µ, u[0:N−1], y[0:N ]) = 0
1: Let J0 be ideal generated by set of polynomials F0 ⊂ R[x0, x1, µ, u0, y0, d0], k := 1
2: while k < N do
3: Ik := Jk−1 + 〈Fk〉 ⊂ R[x[k−1:k+1], µ, u[0:k−1], y[0:k], d[k−1:k]]
4: Jk := Ik ∩R[xk, xk+1, µ, u[0:k−1], y[0:k], dk]
5: k ← k + 1
6: end while
7: IN := JN−1 + 〈FN〉 ⊂ R[xN−1, xN , µ, u[0:N−1], y[0:N ], d[N−1:N ]]
8: JN := IN ∩R[xN , µ, u[0:N−1], y[0:N ], dN ]
9: Let GN be a set of generators of JN , that is, JN = 〈GN〉
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From Lemma A.2, we can derive a relationship between the algebraic set defined

by JN in Algorithm 3 and the solution set of (4.15)–(4.17); by letting

GN(xN ;µ, u[0:N−1], y[0:N ], dN) ⊂ R[xN , µ, u[0:N−1], y[0:N ], dN ]

be a set of generators of JN , this relationship is stated as follows.

Lemma 4.1. Let sequence x∗[0:N ] be the joint MAP trajectory with respect to a certain

parameter µ̄ and histories of inputs ū[0:N−1] and measurements ȳ[0:N ]. Moreover, let

d̄[0:N ] be a sequence that satisfies (4.15)–(4.17) with x∗[0:N ], µ̄, ū[0:N−1], and ȳ[0:N ].

Then, x∗N , µ̄, ū[0:N−1], ȳ[0:N ], and d̄N satisfy

GN(x∗N ; µ̄, ū[0:N−1], ȳ[0:N ], d̄N) = 0. (4.18)

This lemma states that, for any given µ̄, ū[0:N−1], and ȳ[0:N ], (4.18) can be con-

sidered as a necessary condition for optimality of xN . This means that, roughly

speaking, (4.18) can be viewed as an implicit function representation of the optimal

estimate x∗N as a function of the parameter µ and the histories of inputs u[0:N−1] and

measurements y[0:N ].

4.4 Application to Moving Horizon Estimation

In the following discussion in this chapter, symbol j denotes a real-time step, and

k denotes a time step over the horizon of the joint MAP estimation problem (4.1)–

(4.6). Furthermore, the estimate at time step k over the horizon at real-time step j

is denoted by x∗k;j if necessary.

If we have µ = µ(j) and the histories of inputs u[0:N−1];j and outputs y[0:N ];j at real-

time step j, we can obtain a candidate of the optimal estimate x∗N ;j by substituting

those data into (4.18) and then solving it. In general, (4.18) is nonlinear in xN and dN

and has more than one solution, which means the obtained candidate is not necessarily

optimal. However, finding the global estimate is extremely difficult and, even when

possible, computationally demanding. Therefore, we need to find a better solution

in a certain sense by considering the trade-off between optimality and computational

cost.

One approach is solving (4.18) with several initial guesses that are different from

each other. These initial guesses would yield several candidates for the optimal esti-

mate, and then we can choose the best one. Note that, in general, the indeterminates

of (4.18) are xN and dN , which means we have to give initial guesses not only for xN
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but also for dN . If we have an initial guess xinit, then the corresponding initial guess

dinit can be given from (4.14) at k = N as

dinit = 1/ detDN(x∗N ;j−1, xinit, uN−1, yN), (4.19)

where x∗N ;j−1 is the optimal estimate at the previous real-time step. To determine

which candidate is better, we compare the value of the PDF of xN conditionally on

xN−1 and yN , which is obtained as follows:

p(xN | xN−1, yN) =
p(xN , yN | xN−1)

p(yN)

=
p(yN | xN)p(xN | xN−1)

p(yN)
∝ p(yN | xN)p(xN | xN−1). (4.20)

When xN−1 = x∗N−1, xN maximizing the PDF (4.20) among the solutions of GN = 0

is the optimal estimate x∗N . In MHE, the previous optimal estimate x∗N ;j−1 can be

regarded as a good estimate of x∗N−1;j. Therefore, we can approximate p(xN ;j | xN−1;j)

in (4.20) by p(xN ;j | xN ;j−1). In the end, by taking the logarithm, we can determine

the optimal solution by computing and comparing the values of the following function:

log p(xN ;j | xN−1;j, yN ;j) ∼= log pv (yN ;j − hN(xN ;j))

+ log pw (xN ;j − fN−1(xN ;j−1, uN−1;j)) + c, (4.21)

where c is a constant derived from p(yN) and then neglected in the comparison.

Finally, the algorithm to perform MHE using the derived equation GN = 0 is sum-

marized as Algorithm 4.

Remark 4.4. The stability of Algorithm 4, in the sense that the error between the

estimate and the true state at each time step is finite, is quite difficult to inves-

tigate because we consider nonlinear systems and non-Gaussian noise and do not

assume the boundedness of noise. In particular, the boundedness of noise is usually

assumed to guarantee the stability and convergence of algorithms for MHE [69–72].

This boundedness can be taken into account in Algorithm 4 by a slight modification

of the candidate evaluation (lines 6–9). The estimates of noise can be computed

from a candidate x̃, the previous estimate, and the observed output via the state

equation (4.2) and observation equation (4.3). The candidate yielding invalid noise

estimates can then be discarded. Although this modification would be useful to guar-

antee the stability or convergence of Algorithm 4, the proof is still part of our future

work.
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Algorithm 4 Moving Horizon Estimation Using Implicit Function Representation

Input: Equation GN(xN ;µ, u[0:N−1], y[0:N ], dN) = 0, parameter µ(j) as function of
real-time step j, histories of inputs u[0:N−1];j and y[0:N ];j, and set of initial guesses
Xinit

Output: Optimal estimate x∗N ;j at real-time step j
1: lmax ← −∞
2: for each xinit ∈ Xinit do
3: Compute initial guess dinit from equation (4.19)
4: Compute solution x̃ and d̃ of GN = 0 with initial guess xinit and dinit by

substituting µ(j), u[0:N−1];j, and y[0:N ];j

5: Compute value of PDF l(x̃) of x̃ by substituting (4.21)
6: if l(x̃) > lmax then
7: lmax ← l(x̃)
8: x∗N ;j ← x̃
9: end if

10: end for
11: return x∗N ;j

4.5 Numerical Example

A numerical example is provided to show the efficiency of the proposed method.

Algorithm 3 is implemented using Maple on a PC (Intel Core i7-8550U 1.80 GHz,

RAM: 8 GB), and Algorithm 4 and other algorithms such as the UKF, and PF are

implemented using Python on the same PC.

Consider the following one-dimensional nonlinear system:

xj+1 =
1

100
x2
j + uj + wj, (4.22)

yj = xj + vj. (4.23)

The system disturbance wj is sampled from a Gaussian distribution N (0, 3), while

the measurement noise vj is sampled from the standard Cauchy distribution, whose

PDF is defined as

pv (vj) =
1

π
(
1 + v2

j

) . (4.24)

The Cauchy distribution is a heavy-tailed distribution and does not have a mean

and variance. It is known that such heavy-tailed distributions can model impulsive

noise such as atmospheric and underwater acoustic noise, which are the dominant

sources of the noise observed in radar and sonar applications [64]. Hence, the state

estimator for dynamic systems with Cauchy noise has been intensively studied these

days [63, 67]. Note that the denominator in the PDF (4.24) never vanishes for any
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value of vj, which means we can omit all equations (4.14) in this case. The input uj

is defined as a function of j:

uj = cos (0.6j) ,

while it is treated as a symbol uj during the off-line variable elimination. Figure 4.1

shows a realization of the state trajectory of the system and its output sequence.

Several impulsive deviations can be observed in the output sequence (especially at

j = 23) due to the Cauchy distribution.

The proposed method is applied to this estimation problem with the settings as

follows. The length of the horizon is set to N = 1, and we define the PDF of the initial

state as the Gaussian N (µ, 3), where the value of µ is given as the previous estimate

x∗j−1 = x∗1;j−1. Algorithm 3 yields G1(x1, µ, u0, y0, y1) consisting of a polynomial of

degree 16. The computational time for this off-line variable elimination is 38.7 s. By

substituting the measurements y0;j and y1;j, input u0;j = cos (0.6 (j − 1)), and the

parameter µ(j) = x∗j−1 into the equation G1 = 0, we can obtain a candidate of the

current estimate x∗j for an initial guess. The set of initial guesses Xinit in Algorithm 4
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(a) State trajectory.
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(b) Output.

Figure 4.1: Example of state trajectory of system (4.22) and its outputs derived
from (4.23).
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is defined as

Xinit :=
{
x∗j−1, x

∗
j−1 ± 2, x∗j−1 ± 4, x∗j−1 ± 6

}
.

Remark 4.5. Due to the high computational cost of symbolic computation in Al-

gorithm 3, the length of the horizon for this example is limited to N = 1. The

computational cost of a Gröbner basis highly and complicatedly depends on the in-

put polynomials and the order of variables used in the computation [76]. Hence, an

order of variables that can reduce the computational cost of Algorithm 3 or a class

of problems to which the algorithm can be efficiently applied could be investigated in

future work.

On the other hand, for comparison, we also performed the UKF and PF to solve

the same state estimation problem. The UKF requires the variance of observation

noise, which cannot be defined for the Cauchy distribution. We used several different

variances of 1, 100, and 10,000 for the UKF to show how the variance affects its

performance. The parameter κ of the UKF is set to 0, which, after several trials with

different κ, turned out not to affect the performance in this example. For the PF, the

number of particles is set to 80, which shows the same performance as the proposed

method in the root mean squared error (RMSE). Although the EKF is also one of

the most popular methods, to which the proposed method is compared, it is omitted

in this example because the system (4.22) has no linear term, which yields an inac-

curate linear-approximation model in the EKF and results in large estimation errors.

Moreover, to show how the off-line variable elimination by Algorithm 3 contributes

to the performance of the proposed method, we also perform MHE by solving the

stationary conditions (4.8)–(4.10) directly. Since the stationary conditions contain

indeterminates of x0 and x1, a pair of initial guesses are needed to solve (4.8)–(4.10).

We use the Cartesian product Xinit×Xinit for the set of initial guesses, obtain several

optimal estimate candidates from those initial guesses, and select the best one with

the same criterion as that of the proposed method. Hereafter, this method of solving

the stationary conditions directly is referred to as the naive MHE method.

For 300 realizations of the system (4.22)–(4.23), state estimation is carried out

by using the four methods mentioned before: the proposed method, naive MHE,

UKF, and PF. Figure 4.2 shows the RMSEs between the true state and the estimates

averaged for all realizations at each time step. It can be seen that the proposed

method, PF, and the naive MHE method have almost the same performance and

outperform the UKFs. Although, as can be seen in Fig. 4.2a, the RMSEs of UKFs

become smaller as the measurement variance increases, they cannot reach the RMSEs
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(a) RMSEs derived from proposed method (solid) and UKF with
measurement variance of 1 (thin, dotted), 100 (medium, dotted),
and 10,000 (thick, dotted).
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(b) RMSEs derived from proposed method (solid), PF (dashed),
naive MHE method (dash-dotted), and UKF with measurement
variance of 10,000 (dotted).

Figure 4.2: Comparison of RMSEs for proposed method, UKF, PF, and naive MHE
method.

of the other three methods, which is indicated in Fig. 4.3. This figure shows the

estimated trajectories that were derived from the proposed method, PF, naive MHE

method, and UKF with a measurement variance of 10,000 for the same realization as
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Figure 4.3: Estimated trajectories for certain realization (thick, solid) derived from
proposed method (thin, solid), PF (dashed), naive MHE method (dash-dotted), and
UKF with measurement variance of 10,000 (dotted).

in Fig. 4.1. All methods except for the UKF yield almost the same trajectories that

are close to the realized one, while the trajectory derived from the UKF depicts a

sinusoidal curve. This is because the UKF ignores all measurements due to the quite

large measurement variance, which indicates that the performance of UKF cannot be

improved by increasing the measurement variance further.

To show the efficiency of the proposed method, we next compare the computa-

tional times for each method. Figure 4.4 shows the boxplots of computational times

for all time steps and realizations. Although the UKF is fastest, its performance in

RMSE is much worse than those of other methods as mentioned above. On the other

hand, the slowest is the naive MHE method, whose median of computational times

is about six times larger than that of the PF. The proposed method is almost 30%

faster than the PF when comparing the median of computational times in spite of

their comparable RMSEs, which shows the efficiency of the proposed method.

Remark 4.6. Note that the PF is performed on a single thread in this example

and thus can be accelerated by exploiting the parallel computation. Note also that

lines 3–5 of Algorithm 4 can also be parallelized over all initial guesses in Xinit, which

will result in further acceleration of the proposed method.

Remark 4.7. The maximum computational time for the proposed method is about

0.03 s, which must be shorter than the period of measurements to execute Algorithm 4

in real time. Although this maximum may be undesirable for some applications, it

can be shortened by limiting the number of iterations in the numerical algorithm to

solve the equation GN = 0 (line 4 of Algorithm 4).
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Figure 4.4: Computational times for proposed method, PF, UKF, and naive MHE
method. Edges of whiskers are set to 0.5th and 99.5th percentiles.

4.6 Summary

In this chapter, we proposed a recursive elimination method for the joint MAP esti-

mation of a class of nonlinear systems, where the stationary conditions are written as

equations consisting of rational functions. First, the estimation problem is reformu-

lated as an unconstrained nonlinear optimization problem, and then the stationary

conditions are derived. Next, the stationary conditions are converted into algebraic

equations by introducing additional variables to deal with rational functions in those

conditions. By applying the concept of elimination ideals from commutative algebra,

the proposed method eliminates the past state variables from the algebraic equations

and obtains an implicit function representation of the optimal estimate as a func-

tion of several parameters including the measurement sequence. An MHE algorithm

using this implicit representation is proposed, whose efficiency compared to other

estimation methods including the particle filter is shown in a numerical example.

In the field of state estimation, some properties of the estimation error such as the

convergence to zero for noise-free cases and the stability for bounded-noise cases are

often investigated. For future work, the proof of such convergence and stability will

be considered. For another direction of further studies, new numerical algorithms ori-

ented to solve the implicit function representation derived from the proposed method

can be investigated.
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Chapter 5

State Estimation via Holonomic
Gradient Method

5.1 Introduction

In the framework of moving horizon estimation, the optimality of estimates is consid-

ered only over a finite horizon, in other words, the optimal solution is optimal only

for the outputs observed over the horizon and may not be optimal for all the past

observed outputs. To take into account all the past outputs, we need to solve the

Bayesian filtering problem, where all the information of the past outputs is involved

in the probability density function (PDF) of the state conditionally on them and used

to compute the optimal estimate.

In the Bayesian estimation framework, the posterior distribution is estimated in-

stead of a point estimate. The Bayesian estimate yields much more information (e.g.,

the confidence of the estimate, derived as the variance of the posterior distribution)

than the point estimate does, which can be used to control a system, for example.

Because the posterior distribution is a function on the state space, however, rather

than a point in that space, finding the distribution is equivalent to finding a func-

tional that maps the previous posterior distribution to the current one, which is often

impossible and computationally demanding even when possible.

The EKF and UKF overcome this difficulty by approximating the following four

PDFs by Gaussian PDFs: (i) the posterior PDF of the previous state p(x−), (ii) the

prior PDF of the current state p(x | u), (iii) the predictive PDF of the output p(y | u),

and (iv) the posterior PDF of the current state p(x | u, y); here, x− and x denote the

previous and current states, respectively, u denotes a known input, and y denotes the

observed output. Because a Gaussian distribution is completely described by its mean

and variance, with the approximations for p(x−) and p(x | u, y), the computation of
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the posterior PDF can be reduced to evaluating a finite number of functions that

map u, y, and the mean and variance of x− to those of x. Moreover, with the other

approximations for p(x | u) and p(y | u), those functions can be explicitly obtained

by composition of simple arithmetic operations.

Note that the substantial simplification from the computation of a functional to

that of the functions can be achieved with only the approximations for p(x−) and

p(x | u, y). Therefore, if we could evaluate these functions efficiently without the

other two approximations, the filtering problem would be solved more accurately,

considering the nonlinearities of the system dynamics and observation process. The

main obstacle to achieving such evaluation is the integration of nonlinear functions

with parameters accompanied by marginalization and computation of expectations.

In this chapter, we assume that all integrands appearing in the computation of the

posterior PDF are holonomic functions. Roughly speaking, a holonomic function is a

function defined by a set of partial differential equations (PDEs) having certain good

properties (see Definition A.41 for details), and almost all the functions appearing

in systems theory belong to this class of functions. It is interesting that, for any

holonomic function, we can compute a set of PDEs satisfied by its integral instead of

the integral itself. By using this property, for a wide class of nonlinear systems and

non-Gaussian noise, we can obtain a set of PDEs satisfied by the mean and variance of

the posterior PDF as functions of the data, i.e., the mean and variance of the previous

state, known input, and observed output. Note that the PDEs can be computed

symbolically, which means that we can compute them offline. Moreover, the set of

PDEs satisfied by the mean and variance can be converted to a Pfaffian system: a set

of PDEs for a certain vector-valued function that can be solved efficiently. Therefore,

if we compute the PDEs and convert them into a Pfaffian system offline, then we can

efficiently evaluate the mean and variance for any given data online.

5.2 Problem Setting

Consider the following discrete-time system with system and observation noises:

x = f(x−, u) + w, (5.1)

y = h(x) + v, (5.2)

where x−, x ∈ Rn are the previous and current states, respectively, u ∈ Rm is the

known input, and y ∈ Rr is the current output. The functions f : Rn ×Rm → Rn
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and h : Rn → Rr are analytic functions that describe the system dynamics and mea-

surement, respectively. The random vectors w ∈ Rn and v ∈ Rr are the system and

observation noises, respectively, and are assumed to be independent and identically

distributed. We also assume that the PDFs of w and v (denoted respectively by

pw(w) and pv(v)) are given and defined over Rn and Rr, respectively.

In the Bayesian framework, the statistical property of the current state can be

completely described by the posterior PDF, which can be written by the Bayes rule

as

p(x | u, y) =
p(y, x | u)

p(y | u)
, (5.3)

where p(y, x | u) is the joint PDF of the output and state, and p(y | u) is the marginal

PDF of the output. Assuming the posterior PDF of the previous state, denoted by

p(x− | µ−,Σ−), to be Gaussian, the PDFs in equation (5.3) can be written as follows.

p(y, x | u, µ−,Σ−) =

∫
Rn

p(y | x)p(x | x−, u)p(x− | µ−,Σ−)dx−, (5.4)

and

p(y | u, µ−,Σ−) =

∫
Rn

p(y, x | u, µ−,Σ−)dx, (5.5)

where p(x | x−, u) and p(y | x) are the transition and observation PDFs, respectively.

Under our problem setting, the transition and observation PDFs can be described by

using pv and pw:

p(x | x−, u) = pw(x− f(x−, u)), (5.6)

p(y | x) = pv(y − h(x)), (5.7)

where (5.7) and (5.6) derive from the rule of transformation of PDFs [26]. Con-

sequently, the posterior PDF (5.3) can be written as a fraction of integrals (5.4)

and (5.5).

Now, consider the approximation of p(x | u, y, µ−,Σ−) by a certain Gaussian PDF

that has the same mean and variance as those of the original posterior PDF. If we

can compute the first and second moments of p(x | u, y, µ−,Σ−), then we can readily

obtain the approximating Gaussian: the mean is equal to the first moment of the

PDF, and the variance can be derived from the first and second moments. The first

moment of p(x | u, y, µ−,Σ−) is defined as the expectation of x:

E[x] =

∫
Rn

xp(x | u, y, µ−,Σ−)dx =

∫
Rn xp(y, x | u, µ−,Σ−)dx

p(y | u, µ−,Σ−)
, (5.8)
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where the second equality is obtained from (5.3). Similarly, the second moment is

defined as

E
[
xx>

]
=

∫
Rn

(
xx>

)
p(y, x | u, µ−,Σ−)dx

p(y | u, µ−,Σ−)
. (5.9)

The numerators in (5.8) and (5.9) define the following vector- and matrix-valued

functions:

Φ(1) =
[
φ

(1)
1 · · · φ(1)

n

]>
:=

∫
Rn

xp(y, x | u, µ−,Σ−)dx, (5.10)

Φ(2) =
{
φ

(2)
ij

}
:=

∫
Rn

(
xx>

)
p(y, x | u, µ−,Σ−)dx, (5.11)

which map (u, y, µ−,Σ−) ∈ Rm ×Rr ×Rn × PD(n) to Φ(1)(u, y, µ−,Σ−) ∈ Rn and

Φ(2)(u, y, µ−,Σ−) ∈ PD(n), respectively. The output PDF, which is equal to the

denominator of (5.8) and (5.9), can also be regarded as a scalar-valued function:

ψ(u, y, µ−,Σ−) :=

∫
Rn

p(y, x | u, µ−,Σ−)dx. (5.12)

If we can evaluate the functions Φ(1), Φ(2), and ψ for given data u, y, µ−, and Σ−, then

we can compute the first and second moments of the posterior PDF as in (5.8) and

(5.9). The first moment µ is a conditional mean of the current state with respect to the

current measurement, which is known as a minimum variance estimate. Moreover, by

computing the mean µ and variance Σ of the posterior PDF of the current state, we

can use them as parts of the data at the next step. Consequently, the filtering problem

of the system expressed by (5.1) and (5.2) is reduced to the problem of how to evaluate

(n+n(n+1)/2+1) scalar-valued functions φ
(1)
i (i = 1, . . . , n), φ

(2)
ij (i, j ∈ {1, . . . , n}),

and ψ. Throughout this chapter, we make the following assumption.

Assumption 5.1. All integrands in definitions (5.10)–(5.12) are holonomic functions.

5.3 Computation of Linear PDEs

In the previous section, we obtained three functions of the data u, y, µ−, and Σ−,

which can be described by the integrals of multiplications of given functions. In

general, the integral of a nonlinear function does not have a closed form, and thus, we

have to rely on numerical integration algorithms such as the Monte Carlo method to

evaluate the integral. For a certain wide class of functions called holonomic functions,

however, we can efficiently evaluate their integralsby using a symbolic numeric method

called the holonomic gradient method (HGM) [46]. Roughly speaking, a holonomic
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function is characterized by a finite set of linear PDEs and a finite number of boundary

values. This characterization enables us to translate the calculations in holonomic

functions, such as multiplication and integration, to manipulations of differential

operators. By applying this translation, we can explicitly derive the set of linear

PDEs satisfied by the integral of a holonomic function, instead of the integral itself.

An analytic function α(X) can be certified as a holonomic function by finding a

certain type of differential operators; if we can find li ∈ R(X)〈∂i〉 such that li •α = 0

for all i = 1, . . . , n, then it follows from Theorem A.7 that the ideal 〈l1, . . . , ln〉 is

zero-dimensional, which indicates that α is a holonomic function.

Example 5.1. An n-dimensional Gaussian distribution

N (X | µ,Σ) =
1√

(2π)n|Σ|
exp

(
−1

2
(X − µ)>Σ−1(X − µ)

)
is annihilated by the following n differential operators:

[l1 · · · ln]> := ∂X + Σ−1(X − µ).

Because li ∈ R(X)〈∂i〉 for all i = 1, . . . , n, the ideal 〈l1, . . . , ln〉 is zero-dimensional,

so N is a holonomic function of X for fixed µ and Σ. Moreover, by differentiating

N with respect to each component of µ and Σ, we can readily show that N is also a

holonomic function of X, µ, and Σ.

Remark 5.1. The class of holonomic functions contains most kinds of functions

emerging in both theoretical and practical problems of systems theory, including

polynomials, rational functions, trigonometric functions, exponentials, logarithms,

and their sums, products, and compositions under mild assumptions [79].

The most important feature of holonomic functions is the closure property, as

stated in the following theorem.

Theorem 5.1. [80] For holonomic functions α(X) and β(X) in X = [X1 · · · Xn]>,

the following hold.

(i) The product α · β is also a holonomic function.

(ii) Assume that α = α(X1, . . . , Xn) is infinitely differentiable on Rn and rapidly

decreasing with respect to Xn, meaning that

lim
Xn→∞

Xs
n∂

t
nα(X) = 0 (s, t ∈ Z≥0)
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for any [X1 · · · Xn−1]> ∈ Rn−1. Then, the integral∫ ∞
−∞

α(X)dXn (5.13)

is also a holonomic function of [X1 · · · Xn−1]>.

As mentioned before, the integral of a nonlinear function can rarely be derived in

closed form. If the integrand is a holonomic function, however, the zero-dimensional

ideal annihilating the integral can always be algorithmically derived from that an-

nihilating the integrand. We refer to [80] for the theorems introduced below, which

define the multiplication and integration of holonomic functions in terms of holonomic

ideals.

Theorem 5.2. (Multiplication) Let α(X) and β(X) be holonomic functions, which

are solutions of holonomic ideals Iα and Iβ, respectively. By replacing the indetermi-

nates of β and Iβ with Y , define an ideal

Iα⊗β := {a1lα + a2lβ | lα ∈ Iα; lβ ∈ Iβ; a1, a2 ∈ D2n} ⊂ D2n = R[X, Y ]〈∂X , ∂Y 〉.

This ideal can be regarded as an ideal of R[X,Z]〈∂X , ∂Z〉 by applying a coordinate

transformation Z = X − Y . Then, the product α(X)β(X) is a solution of the

restriction of Iα⊗β with respect to Z.

Theorem 5.3. (Integration) Let α(X) be a holonomic function of variables X =

[X1 · · · Xn]>, which is a solution of a holonomic ideal I ⊂ Dn = R[X]〈∂X〉. Moreover,

assume that α is infinitely differentiable on Rn and rapidly decreasing with respect

to Xn. Let Dn−1 be R[X1, . . . , Xn−1]〈∂1, . . . , ∂n−1〉. Then, the integral∫ ∞
−∞

α(X)dXn

is a solution of the holonomic ideal (I + ∂nDn) ∩ Dn−1.

The bases of both ideals for the product and integral can be computed by com-

puting the restriction of the holonomic ideals [81], and the algorithms to compute

them are given in [80]. Consequently, Theorems 5.2 and 5.3, accompanied by the

closure property (Theorem 5.1), guarantee that the multiplication and integration

of holonomic functions can always be performed recursively in terms of holonomic

ideals. The algorithms use Gröbner bases in the Weyl algebra Dn, which are certain

bases of ideals that have good properties and can be computed by many computer

algebra systems (CASs) such as Risa/Asir [82], Macaulay2 [83], and SINGULAR [84].
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As a result, the sets of linear PDEs satisfied by ψ and all the components of Φ(1) and

Φ(2) can be symbolically computed from those satisfied by p(y | x), p(x | x−, u), and

p(x− | µ−,Σ−), as summarized by the following theorem.

Theorem 5.4. Suppose that p(y | x) = pv(y − h(x)) and p(x | x−, u) = pw(x −
f(x−, u)) are both holonomic functions and are solutions of holonomic ideals Io and

Is, respectively. Let I− be the holonomic ideal that annihilates the Gaussian PDF

p(x− | µ−,Σ−) with mean µ− and variance Σ−. Then, all the functions φ
(1)
i (i =

1, . . . , n), φ
(2)
ij (i, j ∈ {1, . . . , n}), and ψ are holonomic. Moreover, if bases of Io, Is,

and I− are given, then a basis of the holonomic ideal annihilating each function φ
(1)
i ,

φ
(2)
ij , and ψ can be computed symbolically from the given bases.

Proof. Because the joint PDF p(y, x | u, µ−,Σ−) is defined by multiplying p(y | x),

p(x | x−, u), and p(x− | µ−,Σ−) and integrating the product over x− ∈ Rn as in (5.4),

Theorems 1 and 2 guarantee that the joint PDF is a holonomic function and anni-

hilated by a certain holonomic ideal I joint. Hence, a basis of I joint can be computed

from those of ideals Io, Is, and I−.

First, for the vector-valued function Φ(1), the i-th component φ
(1)
i is defined by

integrating the product of the joint PDF and xi. Note that xi is a holonomic function

annihilated by a holonomic ideal Ji := 〈∂2
i , xi∂i−1〉. Therefore, φ

(1)
i is also a holonomic

function annihilated by a holonomic ideal, which can be computed from I joint and Ji

for all i = 1, . . . , n. Next, for the matrix-valued function Φ(2), the (i, j)-component

φ
(2)
ij is a holonomic function, and the corresponding holonomic ideal can be computed

from I joint and a holonomic ideal annihilating the function xixj:

Jij :=

{
〈∂3
i , x

2
i∂

2
i − 2, xi∂i − 2〉 (i = j)

〈∂2
i , ∂

2
j , xi∂i − 1, xj∂j − 1〉 (i 6= j)

,

for all i, j ∈ {1, . . . , n}. Finally, the scalar-valued function ψ is obviously a holonomic

function, because it is the integral of a holonomic function (i.e., the joint PDF) over

x ∈ Rn. Thus, the corresponding holonomic ideal can be computed from I joint.

5.4 Pfaffian Systems and Evaluation of Functions

Φ(1), Φ(2), and ψ

Theorem 5.4 guarantees that we can symbolically compute the bases of holonomic

ideals annihilating the functions φ
(1)
i (i = 1, . . . , n), φ

(2)
ij (i, j ∈ {1, . . . , n}), and

ψ. By solving these linear PDEs for certain boundary conditions, we can evaluate
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the functions for any given data u, y, µ−, and Σ−. In general, it is quite difficult

and computationally demanding to solve PDEs even in linear cases. The correspon-

dence between zero-dimensional ideals and holonomic functions, however, also gives

a method to evaluate them efficiently almost everywhere in their domains of defi-

nition, which is named the HGM. In detail, the set of linear PDEs can be reduced

to a nonlinear ordinary differential equation (ODE) for a vector-valued function, of

which a certain component corresponds to the solution of the original PDEs. Once

the ODE is obtained, we can evaluate its solution by numerically integrating it from

a certain initial point to the point at which we want to evaluate the solution, namely,

the holonomic function satisfying the original PDEs.

To introduce the evaluation method for holonomic functions, we first define a

Pfaffian system for a holonomic ideal. In the following discussion, I
(1)
i , I

(2)
ij , and Iψ

denote the holonomic ideals annihilating functions φ
(1)
i , φ

(2)
ij , and ψ, respectively, and

X denotes a vector
[
(µ−)> vech(Σ−)> u> y>

]> ∈ RN , where N = n + n(n + 1)/2 +

m+r. The ideals I
(1)
i , I

(2)
ij , and Iψ are then subsets of the Weyl algebra D = R[X]〈∂〉.

For a holonomic ideal I ⊂ D, a zero-dimensional ideal RI ⊂ R = R(X)〈∂〉 can

be defined by Theorem A.7. Definition A.40 indicates that the quotient ring R/RI
is a finite-dimensional vector space over R(X). Specifically, from the Macaulay’s

theorem A.2, there exists a finite set of multi-index vectors {d0, d1, . . . , ds} ⊂ Zn
≥0,

including d0 = 0, such that {[∂d0 ], [∂d1 ], . . . , [∂ds ]} ⊂ R/I is a basis of R/I.

This theorem indicates that an equivalence class [∂i · ∂dj ] ∈ R/I can be written

as a linear combination of {[∂d0 ], [∂d1 ], . . . , [∂ds ]} over R(X):

[∂i · ∂dj ] =
s∑

k=1

aijk(X)[∂dk ]
(
aijk(X) ∈ R(X)

)
, (5.14)

where i = 1, . . . , n and j = 1, . . . , s. Now, for any solution α of I, consider the actions

of l1, l2 ∈ [l] ∈ R/I on α. By the definition of the equivalence class, there exists l̃ ∈ I
such that l1 = l2 + l̃, so l1 •α = (l2 + l̃) •α = l2 •α+ 0 = l2 •α. Therefore, the action

of the equivalence class [l] on the solution α is well-defined, and we obtain

(∂i · ∂dj) • α =
s∑

k=1

aijk(X)∂dk • α, (5.15)

from (5.14). By letting Ai(X) ∈ R(X)s×s be a matrix-valued function whose (j, k)-

component is aijk(X), the equations defined by (5.15) can be summarized as

∂i •Q(X) = Ai(X)Q(X) (i = 1, . . . , n), (5.16)
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where Q(X) = [∂d0 • α ∂d1 • α · · · ∂ds • α]>. Note that the first component

{Q(X)}1 = ∂d0 • α is equal to α(X), because d0 = 0. The set of first order

PDEs defined by (5.16) is called the Pfaffian system for a vector-valued function

Q(X). For example, because I
(1)
i is holonomic, there exists a set of multi-index vec-

tors {d0, d1, . . . , ds} ⊂ Zn
≥0 so that the Pfaffian system for a vector-valued function

Q
(1)
i (X) =

[
∂d0 • φ(1)

i ∂d1 • φ(1)
i · · · ∂ds • φ(1)

i

]>
can be defined. For I

(2)
ij and Iψ, such

sets of multi-index vectors also exist, and so do the corresponding vector valued-

functions Q
(2)
ij and Qψ.

If the value of function Q is given at a certain starting point X = Xs, then we

can evaluate it at a target point X = Xt by integrating the Pfaffian system (5.16).

Specifically, for a given pair of starting and target points (Xs, Xt), we can define

an injective vector-valued function X(t) : [0, 1] → Rn such that X(0) = Xs and

X(1) = Xt, i.e., a curve from Xs to Xt in Rn. The Pfaffian system is then reduced

to an ODE for the vector-valued function Q(X(t)):

d

dt
Q(X(t)) = [∂1 •Q · · · ∂n •Q]

dX

dt

= [A1 •Q · · · An •Q]
dX

dt
, (5.17)

which can be solved with respect to a given initial condition Q(X(0)) = Q(Xs) by

any numerical integration method such as the Runge-Kutta method. Consequently,

the value α(Xt) is obtained from the first component of Q(Xt) = Q(X(1)).

Note that the integration process to solve a Pfaffian system fails if there exists

t̃ ∈ [0, 1] such that the denominator of an Ai(X(t̃))’s component in the Pfaffian

system vanishes. Strictly speaking, the integration cannot be performed if the curve

X(t) passes through the zero set of the least common multiple of all denominators

appearing in the Ai(X) in the Pfaffian system. This zero set is called the singular

locus of the Pfaffian system. Because the singular locus is a zero set of a certain

polynomial, i.e., a closed subset of RN of measure zero, for any starting point Xs

that is not included in the singular locus, there exists a neighborhood of Xs that

is mutually disjoint from the singular locus. From the connected component of the

neighborhood including Xs, we can choose any point as the target Xt and construct

an integration path X(t). We can compute the defining equations of the singular locus

from Ai(X) (i = 1, . . . , n) and use it to determine one or several starting points for

the integration, as will be shown in subsection 5.5.3. Finally, Algorithm 5 summarizes

the whole algorithm for state estimation using ODE (5.17).
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Algorithm 5 State Estimation Using Pfaffian Systems

Input: Mean µ− and variance Σ− of PDF for previous state, known input u, observed
current output y, Pfaffian systems (5.16) for all functions φ

(1)
i , φ

(2)
ij , and ψ, starting

point Xs

Output: Failure or estimates of mean µ and variance Σ of PDF for current state
1: Compute Q

(1)
i (Xs) (i = 1, . . . , n), Q

(2)
ij (Xs) (i, j ∈ {1, . . . , n}), and Qψ(Xs)

2: Set Xt ←
[
(µ−)> vech(Σ−)> u> y>

]>
3: Define X(t) so that X(0) = Xs and X(1) = Xt (e.g., X(t) := (1− t)Xs + tXt)
4: if ∃t̃ ∈ [0, 1] such that X(t̃) is included in singular locus of Pfaffian systems then
5: return algorithm has failed
6: end if
7: Integrate ODE (5.17) from X(0) = Xs to X(1) = Xt for all functions Q

(1)
i , Q

(2)
ij ,

and Qψ by numerical integration

8: Set φ
(1)
i ←

{
Q

(1)
i (Xt)

}
1

(i = 1, . . . , n), φ
(2)
ij ←

{
Q

(2)
ij (Xt)

}
1

(i, j ∈ {1, . . . , n}),
and ψ ←

{
Qψ(Xt)

}
1

9: return µ =
[
φ

(1)
1 /ψ · · · φ(1)

n /ψ
]>

and Σ =
{
φ

(2)
ij /ψ

}
− µµ>

Remark 5.2. We should emphasize that the outputs of Algorithm 5 are exact in the

sense that if the prior distribution is identical to the Gaussian p(x− | µ−,Σ−), then

the algorithm does not include any approximations except for the discretization in

the numerical integration at line 7. This is the difference from other existing methods

such as the EKF, UKF, and particle filter (PF): in the EKF and UKF, the prediction

and output PDFs are approximated up to the second-order moment, and in the PF,

all the PDFs are approximated by a Monte Carlo method.

5.5 Numerical Example

5.5.1 Problem setting and computation of Pfaffian systems

In this section, we provide a numerical example to show the efficiency of the proposed

method. Consider the following scalar system with Gaussian noises:

x =
4

5
x− + u+ w, (5.18)

y =
2x

1 + x2
+ v, (5.19)

where w and v are noises having a standard Gaussian distribution N (0, 1). We define

the PDF of the previous state x− as

p(x− | µ−,Λ−) =

√
Λ−

2π
exp

(
−1

2
Λ−(x− − µ−)2

)
, (5.20)
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where the parameter Λ− = (Σ−)−1 ∈ R is introduced to obtain a basis of the holo-

nomic ideal I−.

First, we need the holonomic ideals I−, Is, and Io in Theorem 5.4, that is, the

sets of linear PDEs satisfied by the PDFs p(x− | µ−,Λ−), p(x | x−, u), and p(y | x).

By differentiating p(x− | µ−,Λ−) with respect to all the variables x−, µ−, and Λ−, we

obtain the following differential operators:

∂x− + Λ−(x− − µ−), ∂µ− + Λ−(x− − µ−),
2Λ−∂Λ− + 1− Λ−(x− − µ−)2,

(5.21)

which annihilate p(x− | µ−,Λ−) and generate a holonomic ideal I−. On the other

hand, the differential operators annihilating p(x | x−, u) and p(y | x) can be derived

from the differential operators ∂w +w and ∂v + v annihilating the standard Gaussian

PDF, via several changes of variables and differential operators:

w = x− 4

5
x− − u, v = y − 2x

1 + x2
,

∂w = ∂x = −5

4
∂x− = −∂u, ∂v = ∂y = − 1

∂x •
(

2x
1+x2

)∂x.
The ideals Is and Io are then obtained as follows.

Is =
〈
−25∂x− + 20x− 16x− − 20u,

5∂x + 5x− 4x− − 5u, −5∂u + 5x− 4x− − 5u
〉
, (5.22)

Io =
〈
(1 + x2)3∂x + 2(x4 − 1)y − 4x(x2 − 1), (1 + x2)∂y + (1 + x2)y − 2x

〉
. (5.23)

Because both of these ideals are holonomic, Theorem 5.4 guarantees that the

functions Φ(1), Φ(2), and ψ defined in (5.10)–(5.12) are holonomic. For this example,

both Φ(1) and Φ(2) are scalar-valued, so we denote Φ(1) and Φ(2) by φ(1) and φ(2),

respectively, and we omit the subscripts for the holonomic ideals I(1) and I(2) and

vector-valued functions Q(1) and Q(2) that correspond to φ(1) and φ(2), respectively.

To compute the bases of holonomic ideals I(1), I(2), and Iψ, we use Risa/Asir [82]

and its library nk restriction. This library has functions to compute the holonomic

ideals for multiplication and integration (Theorems 5.2 and 5.3), and they can be used

to compute the bases of the holonomic ideals. As an example of a result, the basis of

I(1) consists of 18 differential operators in D4 = R[µ−,Λ−, u, y]〈∂µ− , ∂Λ− , ∂u, ∂y〉.
For simplicity of notation, we denote the vector of variables [µ− Λ− u y]> by

X = [X1 X2 X3 X4]> and fix D4 = R[X]〈∂〉 and R4 = R(X)〈∂〉. The Pfaffian

systems for all ideals I(1), I(2), and Iψ are computed from their bases by using
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the library yang implemented on Risa/Asir. In this example, the set of multi-

index vectors in Theorem A.2 is common for all the ideals, and thus, all the R(X)-

vector spaces R4/I
(1), R4/I

(2), and R4/I
ψ are spanned by the equivalence classes of

{1, ∂2, ∂3, ∂4, ∂2∂3, ∂3∂4, ∂
2
4}. For example, by applying these differential operators to

the function φ(1), we obtain a vector-valued function

Q(1) : R4 3 X 7→[φ(1)(X) ∂2φ
(1)(X) ∂3φ

(1)(X)

∂4φ
(1)(X) ∂2∂3φ

(1)(X) ∂3∂4φ
(1)(X) ∂2

4φ
(1)(X)]> ∈ R7.

This vector-valued function corresponds to Q(X) in the definition of a Pfaffian sys-

tem (5.16). Finally, we have the following three Pfaffian systems:

∂i •Q(1)(X) = A
(1)
i (X)Q(1)(X), (i = 1, . . . , 4), (5.24)

∂i •Q(2)(X) = A
(2)
i (X)Q(2)(X), (i = 1, . . . , 4), (5.25)

∂i •Qψ(X) = Aψi (X)Qψ(X), (i = 1, . . . , 4), (5.26)

which correspond to φ(1), φ(2), and ψ, respectively. All the coefficient matrices A
(1)
i ,

A
(2)
i , and Aψi are matrix-valued functions from R4 to R7×7. All the computations to

obtain the Pfaffian systems from the bases of ideals I−, Is, and Io were performed

on a PC (Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz; RAM: 16 GB) and took less

than 3 seconds in total.

By integrating the Pfaffian systems (5.24)–(5.26) from a certain starting point Xs

to a target point Xt, we can obtain the values of functions φ(1)(Xt), φ
(2)(Xt), and

ψ(Xt) as the first components of the corresponding vectors. Consequently, the mean

µ and variance Σ of the posterior PDF can be obtained as µ = φ(1)(Xt)/ψ(Xt), Σ =

φ(2)(Xt)/ψ(Xt)−µ2. Note that, for this example, Pfaffian system (5.24) has a singular

locus defined by the following equation:

(50X2 + 32)X4 + 25X2X3 + 20X1X2 = 0, (5.27)

when X2 = Λ− > 0. Hence, the terminal points should be selected so that none of

the integration paths intersect the singular locus.

5.5.2 Computation of mean and variance

To show that Algorithm 5 yields the exact mean and variance, we computed the

algorithm for several data inputs. We fixed the starting point asXs = [1.0 1.0 0.0 0.0]>

and selected the target points as Xt = [1.0 1.0 ũ ỹ]>, where ũ and ỹ were each chosen

from {1.0, 1.5, 2.0, 2.5, 3.0} so that the number of target points was 25 in total. The
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integration path was defined as X(t) = (1 − t)Xs + tXt for each target point. The

initial vectors for Q(1), Q(2), and Qψ at Xs and the true values of µ and Σ at the target

points were computed by using Maple. To solve the Pfaffian systems, the Adams-

Bashforth-Moulton predictor-corrector method of order 4 (ABM4) was implemented

in Python, and the Runge-Kutta method (RK4) was used to initialize the first three

steps. Because the evaluation of the coefficients A
(1)
i , A

(2)
i , and Aψi in (5.24)–(5.26)

has a high computational cost, the evaluations were implemented using Cython. Each

integration path was discretized so that the discretization interval ‖X(t+∆t)−X(t)‖
was equal to 0.2. Hence, a target point more distant from the starting point required

a larger number of iterations and more computational time.

For comparison, we also computed µ and Σ by the EKF, UKF, and PF, which

were also implemented in Python. Specifically, the one-step estimations of the EKF,

UKF, and PF were performed for the previous estimate µ− and variance Σ− = (Λ−)−1

by using each pair of the input ũ and measurement ỹ. Figure 5.1 shows the errors

of the means and variances computed by the proposed method, EKF, UKF, and PF

with 1, 000 particles. We can see that the proposed method yielded more accurate

values of the mean and variance than the other methods did.

To show the efficiency of the proposed method, the numerical integrations were

also performed by using Maple with three significant digits, which approximately

corresponds to the accuracy of the proposed method. Table 5.1 compares the com-

putational times of all the methods. The proposed method was faster than the PF

and numerical integration performed by Maple, which indicates its efficiency. Al-

though the EKF and UKF were much faster, the proposed method is still useful for

applications requiring high estimation accuracy with a long time constant.

Proposed EKF UKF PF

−0.5

0.0

0.5

E
rr

or

Mean

Variance

Figure 5.1: Errors of means and variances computed by proposed method, EKF,
UKF, and PF. Each dot corresponds to each target point (i.e., pair of input and
measurement).
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Table 5.1: Minimum, average, and maximum computational times [s] of proposed
method, EKF, UKF, PF, and Maple for all pairs of input and measurement.

Minimum Average Maximum

Proposed 2.6× 10−3 3.9× 10−3 5.5× 10−3

EKF 7.0× 10−5 8.2× 10−5 1.8× 10−4

UKF 2.0× 10−4 2.3× 10−4 4.7× 10−4

PF 9.8× 10−2 1.1× 10−1 1.3× 10−1

Maple 1.6× 10−2 3.1× 10−2 9.4× 10−2

5.5.3 State estimation example

Finally, for the same problem setting as above, we performed a state estimation

procedure by using the proposed method. The singular locus defined by equa-

tion (5.27) divides the Euclidian space R4 into two regions: C+ := {X ∈ R4 |
left-hand side (l.h.s.) of (5.27) > 0} and C− := {X ∈ R4 | l.h.s. of (5.27) < 0}.
Therefore, we chose the starting points as Xs+ = [1.0, 1.0, 0.0, 0.0]> ∈ C+ and

Xs− = [1.0, 1.0,−1.0,−1.0]> ∈ C−, and we used Maple to precompute their cor-

responding initial vectors. The region to which a given X belongs is determined by

substituting it for the l.h.s. of (5.27), and the integration path is defined as in line 3 of

Algorithm 5 by setting Xs = X+(−) and Xt = X. By repeatedly running Algorithm 5,

the mean and variance of the current state is estimated from the previous estimated

mean and variance, the previous input, and the observed current output. Figure 5.2

shows a realization of the system in (5.18) and (5.19) and the mean µ and variance

Σ estimated by the proposed method.

For comparison, the proposed method, EKF, UKF, and PF with 30 particles were

performed for 300 realizations. The number of particles for the PF was determined so

that its computational time was approximately equal to that of the proposed method.

Figure 5.3 shows the root mean square errors (RMSEs) of all the methods averaged

over all realizations at each time step. We can see that the EKF had the largest

RMSE at every time step, and that the proposed method slightly outperformed the

UKF and PF.

As another performance measure besides the RMSE, the negative log-likelihood

(NLL) [85] was used to compare all the methods except for the EKF. The NLL is

defined by using the estimated mean µ and variance Σ in the following way:

NLL(µ,Σ) :=
1

2
log |Σ|+ 1

2
(x− µ)>Σ−1(x− µ) +

n

2
log(2π), (5.28)
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Figure 5.2: Trajectories for realization of system in (5.18) and (5.19)
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Figure 5.3: RMSE for proposed method (solid), PF (dashed), UKF (dotted), and
EKF (dash-dotted)

where x is the true current state. Because the third term in definition (5.28) is a

constant, it has no effect on the comparison and is thus omitted hereafter. Figure 5.4

shows the resulting NLLs. The proposed method obviously outperformed the UKF

and PF. Roughly speaking, the NLL can evaluate the confidence of an estimate via
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the first term in definition (5.28), as well as the error of the estimate in the second

term. Therefore, the proposed method yields a good estimate in the sense of Bayesian

estimation rather than in the sense of point estimation.

Lastly, Fig. 5.5 summarizes the computational times for all the methods. The

range of computational times for the proposed method is much wider than that for

the PF, although the means are approximately the same. This is because the com-

putational time for one-step estimation with the proposed method depends on the

distance between a given starting point Xs and the target point Xt at which we want

to evaluate the mean and variance. Therefore, by preparing more starting points

and corresponding initial vectors scattered in the space of X, the computational time

would be further reduced.

0 20 40 60 80 100
Discrete-time steps

0.50

0.75

1.00

N
L

L

Proposed PF UKF

Figure 5.4: NLL for proposed method (solid), PF (dashed), and UKF (dotted)
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Proposed

PF
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Figure 5.5: Computational times [s] of proposed method, PF, UKF, and EKF. Edges
of whiskers indicate 0.5th and 99.5th percentiles
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5.6 Summary

We have proposed a Bayesian filtering method that exactly computes the mean and

variance of the posterior PDF. By assuming that all the integrands are holonomic

functions, the integrations to compute the posterior PDF can be performed by sym-

bolic computation of PDEs without introducing any approximations. The obtained

PDEs can be converted to a Pfaffian system, i.e., a set of first-order PDEs for a vector-

valued function. The Pfaffian system can be further converted to a set of ODEs by

specifying an integration path; then, the mean and variance can be obtained efficiently

by numerical integration methods such as RK4 and ABM4.

For future work, we will study the choice of integration path by considering the

singular loci of Pfaffian systems. As another direction, rather than approximation of

the posterior PDF by a Gaussian, the higher-order moments of the posterior PDF can

be computed and propagated to the next time step, which will improve the estimation

accuracy.
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Chapter 6

Limit Operation in Projective
Space for Constructing Necessary
Optimality Condition of
Polynomial Optimization Problem

6.1 Introduction

Optimality conditions are fundamental to nonlinear programming (NLP). They the-

oretically play an essential role in the analysis of optimization problems and practi-

cally provide important tools to solve optimization problems. A variety of optimality

conditions have been investigated for optimization problems with both equality and

inequality constraints [2, 8, 86, 87]. Among these, the Karush-Kuhn-Tucker (KKT)

conditions are most popular and have become the basis of many numerical algorithms

for solving NLP problems, such as Newton’s method, the interior point method, and

the augmented Lagrangian method [9,88].

The KKT conditions cannot play the role of necessary optimality conditions on

their own; they need an additional condition on minimizers called a constraint quali-

fication (CQ). For example, the first-order necessary condition for optimality consists

of the KKT conditions and the linear independence CQ (LICQ), where it is assumed

that the gradients of all equality constraints and active inequality constraints are

linearly independent at minimizers. There are various CQs, including the Slater CQ

(SCQ), Mangasarian-Fromovitz CQ (MFCQ), Abadie’s CQ (ACQ), and Guignard’s

CQ (GCQ) [2, 36]. GCQ is in a sense the weakest CQ that ensures the KKT condi-

tions are necessary optimality conditions [37]. In other words, a local minimizer that

violates the GCQ cannot be obtained by solving the KKT conditions.
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Let us give a simple example in which the KKT conditions are no longer necessary

conditions for optimality. Consider an NLP problem that minimizes a cost function

x1+x2 under equality constraints (x1−1)2+x2
2−1 = 0 and (10x1−8)2+(5x2)2−64 = 0.

The feasible set of this problem consists of three points, which are shown along with

the contours of the cost function located at them in Fig. 6.1. Obviously, this problem

−1 0 1 2 3
x1

−2

−1

0

1

2

x
2

Figure 6.1: Feasible set (intersections of solid curves) and contours of cost function
(dashed lines).

has a global minimizer at (x1, x2) = (0, 0). However, at this minimizer, the constraints

violate the GCQ, and hence the minimizer does not satisfy the KKT conditions. For

the following discussion, we say that a minimizer is non-KKT type if it does not

satisfy the KKT conditions. Note that there are many optimization methods based

on the KKT conditions (such as the augmented Lagrangian method) and that none

of them can find non-KKT type minimizers.

As necessary optimality conditions for all local minimizers, including non-KKT

type ones, Andreani et al. [38] proposed the approximate-KKT (AKKT) conditions.

Roughly speaking, these conditions claim that each local minimizer is the convergence

point of a sequence consisting of points that approximately satisfy the KKT condi-

tions. Such optimality conditions described by the existence of a convergent sequence

are called sequential optimality conditions [38] and are the subject of intensive inves-

tigation these days [38, 86, 87, 89]. Although AKKT conditions are especially useful

for giving a termination criterion in numerical optimization algorithms [38, 90], they

are difficult to verify for a given candidate. Indeed, to determine whether the given

candidate can be a minimizer or not, we have to show the existence of a sequence,
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which is more difficult than, for example, showing whether or not the KKT condi-

tions are satisfied at the candidate. From this viewpoint, it is important to develop a

necessary condition described by equations like the KKT conditions but satisfied even

by non-KKT type minimizers.

To find such a new necessary optimality condition, we first consider the quadratic

penalty function method, which is a conventional method to relax a constrained NLP

into an unconstrained one. With this method, if global minimizers of the penalty

function converge to a point as a penalty parameter goes to infinity, the convergence

point is a global minimizer of the original NLP. This convergence property does not

assume any CQ, so the property is valid even for non-KKT type global minimizers.

This is why we select the quadratic penalty function method as the starting point for

finding a new necessary optimality condition. Indeed, it has previously been proven

by using a certain penalty function method that the AKKT conditions are valid for all

minimizers [38]. More precisely, that proof guarantees the existence of a sequence for

each local minimizer that converges to the minimizer and that consists of stationary

points of a certain penalty function. This is the basis of our proposed condition.

The stationary points of a penalty function can be viewed as functions of the

penalty parameter defined by an implicit function representation consisting of the

stationary conditions. This leads us to consider the limit operation of the penalty

parameter to infinity in the stationary conditions. Note that just substituting infinity

for the penalty parameter is meaningless because this ends up neglecting the terms

from the cost function in the stationary conditions. Therefore, we utilize symbolic

computation to perform the limit operation of the penalty parameter precisely. First,

we extend the equations obtained from the stationary conditions defined on a Euclid-

ian space to those defined on a projective space, which can be regarded as a union

of a Euclidian space and its points at infinity. Next, we make some changes of vari-

ables through the projective space and transform the limit operation to infinity into

the limit operation to zero. Finally, we use a tangent cone to precisely perform the

limit operation to zero and to obtain the new necessary condition by using symbolic

computation techniques from algebraic geometry.

Note that the Fritz-John (FJ) conditions [2] are also satisfied by all local minimiz-

ers and described by equations. However, the points that satisfy the FJ conditions

often include an infinite number of points that are neither locally optimal nor even

KKT. In fact, we can make all feasible points satisfy the FJ conditions by replacing

an equality constraint with two inequality constraints or by adding a redundant in-
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equality constraint [91]. In Section 6.5, we show a case where the new condition has

finite solutions even though the FJ conditions have infinite ones.

In this chapter, we consider nonlinear constrained optimization problems (COPs)

defined as
min
x
f(x)

s. t. g(x) = 0,
(6.1)

where x ∈ Rn is a vector of indeterminates, f : Rn → R is a cost function, and

g : Rn → Rm is a vector-valued function describing the constraints. We assume that

functions f and g consist of polynomials to utilize symbolic computation techniques

from algebraic geometry. We also assume that the feasible set

X := {x ∈ Rn | g(x) = 0}

is nonempty throughout this chapter. Note that although formulation (6.1) includes

only equality constraints, it can also handle inequality constraints by introducing slack

variables. Specifically, by introducing a slack variable s ∈ R, an inequality constraint

g̃(x) ≤ 0 is converted into an equality constraint g(x, s) := g̃(x) + s2 = 0. Therefore,

we can solve a COP with the equality constraint g(x, s) = 0 and indeterminates

[x> s]> ∈ Rn+1 instead of the original COP with inequality. It is well-known that

the converted COP is equivalent to the original one in terms of minimizers, and

this conversion technique has been used by many researchers from the 1960s [47]

onward [8,48]. For COPs (6.1), we provide a new necessary optimality condition with

no CQs that is satisfied by all local minimizers.

This chapter is organized as follows. Section 6.2 introduces the quadratic penalty

function method and demonstrates the existence of a stationary point sequence that

converges to each minimizer of the original COP. In Section 6.3, we show how the

limit of a penalty parameter to infinity can be reduced to the limit of an additional

parameter to the origin by utilizing a projective space. This transformation of a

problem enables us to precisely compute the limit points of the trajectories that the

stationary points of a penalty function move along. After that, in Section 6.4, we

propose an algorithm to symbolically obtain the equations holding at the limit points

by means of a tangent cone. In Section 6.5, examples are provided to illustrate the

methodology. We summarize this chapter in Section 6.6 with brief mention of future

work.
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6.2 Penalty Function Method and its Convergence

Property

The quadratic penalty function P (x; r) for COP (6.1) is defined as

P (x; r) := f(x) + rg>(x)g(x), (6.2)

where r ∈ R is a penalty parameter. It is well-known that the convergence points of

the global minimizers of P (x; r), if any, are also the global minimizers of the original

COP [8, 9]. As a more practical property of the quadratic penalty function method,

such convergence property for local minimizers has been also established. Let X∗ be

an isolated compact set of local minimizers of COP (6.1) that corresponds to a certain

local minimum value. It is proven that there exists a sequence of local minimizers of

P (x; r) that converges to a certain point of X∗ [92]. As a straightforward consequence

of this convergence property, if X∗ consists of only one minimizer, the existence of the

sequence converging to the minimizer is guaranteed. However, if this is not the case,

that is, if X∗ consists of non-isolated minimizers, the existence of such a sequence is

not guaranteed for each minimizer of X∗.

As necessary optimality conditions for all minimizers, the AKKT conditions were

proposed in [38]. Roughly speaking, AKKT conditions state that, for any local min-

imizer, there exists a sequence of points converging to the local minimizer, where all

points in the sequence approximately satisfy the KKT conditions. In other words,

the existence of such a sequence is a necessary condition for all minimizers includ-

ing even non-isolated ones. This is proved by using the convergence property of the

Internal-External Penalty method in [92], and the proof gives a viewpoint on such a

sequence not from the KKT conditions but from the penalty function method, which

is the basis of our result.

Let us define a localized penalty function, which is localized to a specific local

minimizer x̂:

P loc(x; r, x̂) := f(x) + ‖x− x̂‖2 + rg>(x)g(x). (6.3)

The reason we call it localized is as follows. For any local minimizer x̂, there exists

a real number ε > 0 such that a minimization problem restricted on a ball Bε(x̂) :=

{x ∈ Rn | ‖x− x̂‖ ≤ ε} ⊂ Rn, as

min
x∈Bε(x̂)

f(x) + ‖x− x̂‖2

s. t. g(x) = 0,
(6.4)
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has a unique local minimizer x = x̂, and P loc(x; r, x̂) is the penalty function for

this minimization problem localized to x̂. By using this localized penalty function,

a necessary optimality condition described by the existence of a stationary point

sequence can be derived as follows.

Theorem 6.1. Let r[1:∞] be a sequence monotonically going to infinity as k does,

x̂ be a minimizer of the original COP (6.1), and P loc(x; r, x̂) be a function defined

as (6.3) with domain of definition Rn. Then, there exists an integer k∗ > 0 such that

there exists a sequence of stationary points x[k∗:∞] satisfying

P loc
x (xk; rk, x̂) = 0 (6.5)

and converging to x̂ as k goes to infinity. In other words, the existence of such a

sequence x[k∗:∞] is a necessary condition for x̂ to be a local minimizer.

For the proof of Theorem 6.1, see Section B.2

Remark 6.1. Since the sequence x[k∗:∞] in Theorem 6.1 is also an infinite sequence,

if we replace its subscripts appropriately, we can assume k∗ = 1 without loss of

generality.

Remark 6.2. Note that although constraint x ∈ Bε(x̂) is imposed in the localized

minimization problem (6.4), this is no longer assumed in Theorem 6.1. Due to the

lacking this constraint, equation (6.5) can have a solution x̃k that does not belong to

Bε(x̂) and hence does not converge to x̂. However, this fact has nothing to do with

the existence of the sequence x[1:∞] introduced in the proof, and Theorem 6.1 still

gives a necessary optimality condition to be satisfied by every local minimizer x̂.

The stationary condition P loc
x (x; r, x̂) = 0 is written as

P loc
x (x; r, x̂) = fx(x) + 2(x− x̂) + rgx(x)g(x) = 0. (6.6)

When we try to use Theorem 6.1 to find a minimizer of COP (6.1), we have to solve

equation (6.6) to find the sequence of stationary points x[1:∞]. However, equation (6.6)

is defined using the minimizer x̂, which we are seeking now. This deadlock can be

avoided by regarding the minimizer x̂ as an additional variable y ∈ Rn, that is,

regarding equation (6.6) as an equation defined on R2n+1:

P loc
x (x; r, y) = fx(x) + 2(x− y) + rgx(x)g(x) = 0, (6.7)

where x = [x1 · · · xn]> and y = [y1 · · · yn]>. By computing the convergence points

of sequences x[1:∞] for all y ∈ Rn and selecting pairs (x∞, y) such that x∞ = y holds,
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we can find candidates of minimizers that satisfy the necessary optimality condition

stated as Theorem 6.1. For all y ∈ Rn admitting the sequences r[1:∞] and x[1:∞] that

satisfy equation (6.7) for every k, symbolic computation enables us to compute a set

of equations satisfied by every limit x∞. The derived equations can be solved without

iteratively increasing the penalty parameter, unlike other numerical algorithms for

the penalty function method.

6.3 Limit Points in Projective Space

In this section, we utilize the concepts of projective space, homogenization, and deho-

mogenization to deal with the limit operation of the penalty parameter symbolically.

When we regard equation (6.7) as an equation defined on R2n+1, the convergence

points of its solutions as r goes to infinity lie in the hyperplane at infinity of R2n+1.

In this section, we fix certain sequences (r[1:∞] and x[1:∞]) such that rk monotoni-

cally goes to infinity as k does, xk converges to a point x∞ ∈ Rn, and all points[
x>k rk

]> ∈ Rn+1 satisfy equation (6.7) for a fixed y ∈ Rn. Moreover, for the follow-

ing discussion, we denote the set consisting of all the components of P loc
x (x; r, y) by

F , that is,

F :=
{[
P loc
x (x; r, y)

]
1
, . . . ,

[
P loc
x (x; r, y)

]
n

}
⊂ R[x, y, r], (6.8)

where
[
P loc
x (x; r, y)

]
i

is the i-th component of P loc
x (x; r, y).

Let us consider a projective space P2n+1 and identify R2n+1 with an open subset,

U0 := {[X0 : · · · : X2n+1] ∈ P2n+1 | X0 6= 0}, (6.9)

by a homeomorphism φ0 : R2n+1 → U0 that sends [x1 · · · xn y1 · · · yn r]> to

[1 : x1 : · · · : xn : y1 : · · · : yn : r]. As mentioned in subsection A.2.2, the other open

subset,

U2n+1 := {[X0 : · · · : X2n+1] ∈ P2n+1 | X2n+1 6= 0}, (6.10)

includes almost all points of the hyperplane at infinity H0 of U0; indeed, all the limit

points we need. This is because the set difference

H0 \ U2n+1 = {[X0 : · · · : X2n+1] ∈ P2n+1 | X0 = X2n+1 = 0}

only includes the points at infinity of U0 where the (2n+ 1)-coordinate, which corre-

sponds to the penalty parameter r, is exactly zero.
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There is also a homeomorphism φ2n+1 : R2n+1 → U2n+1 that sends a point

[ρ ξ1 · · · ξn η1 · · · ηn]> to the equivalent class [ρ : ξ1 : · · · : ξn : η1 : · · · : ηn : 1]. To

construct a mapping from x-y-r space to ξ-η-ρ space, consider two open subsets:

Dr :=
{[
x> y> r

]> ∈ R2n+1 | r 6= 0
}
⊂ R2n+1,

Dρ :=
{[
ρ ξ> η>

]> ∈ R2n+1 | ρ 6= 0
}
⊂ R2n+1,

and the restrictions of φ0 and φ−1
2n+1:

φ0|Dr : Dr 3
[
x> y> r

]> 7→ [1 : x1 : · · · : xn : y1 : · · · : yn : r] ∈ U0 ∩ U2n+1,

φ−1
2n+1|U0∩U2n+1 : U0 ∩ U2n+1 3 [X0 : · · · : X2n+1] 7→

[
X0

X2n+1

· · · X2n

X2n+1

]>
∈ Dρ.

Then, a composite mapping Φ :=
(
φ−1

2n+1|U0∩U2n+1

)
◦ (φ0|Dr) is a homeomorphism

between Dr and Dρ defined by[
x> y> r

]> 7→ [
ρ ξ> η>

]>
= Φ

([
x> y> r

]>)
=

1

r

[
1 x> y>

]>
. (6.11)

Note that both closures Dr and Dρ are equal to R2n+1. Through the homeomorphism

Φ, we obtain the triplet of sequences ρ[1:∞], ξ[1:∞], and η[1:∞] as the image of sequences

r[1:∞] and x[1:∞] under Φ with a fixed y.

The sequences r[1:∞] and x[1:∞] satisfy equation (6.7) for a parameter y, or in

other words, every point [x>k y> rk]
> ∈ R2n+1 belongs to V(F ). This indicates there

exists an equation satisfied by ρ[1:∞], ξ[1:∞], and η[1:∞] for all k = 1, . . . ,∞, and

such equation can be obtained by homogenization and dehomogenization defined in

subsection A.2.3, as explained below. Let us define a set of homogeneous polynomials

F hom ⊂ R[X0, . . . , X2n+1] as

F hom :=
{
fhom ∈ R[X0, . . . , X2n+1] | f ∈ F

}
, (6.12)

where fhom(X0, . . . , X2n+1) is the homogenization of f(x1, . . . , xn, y1, . . . , yn, r) ∈ F

of total degree d, that is,

fhom(X0, . . . , X2n+1) := Xd
0f

(
X1

X0

, . . . ,
X2n+1

X0

)
. (6.13)

Its dehomogenizations for index 2n+ 1 yield the other polynomial set F ⊂ R[ρ, ξ, η]:

F := F hom|X0=ρ,X1=ξ1,...,Xn=ξn,Xn+1=η1,...,X2n=ηn,X2n+1=1. (6.14)

The sequences ρ[1:∞], ξ[1:∞], and η[1:∞] satisfy the algebraic equations

(fhom)deh(ρ, ξ1, . . . , ξn, η1, . . . , ηn) = 0
(
∀(fhom)deh ∈ F

)
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because, for all [x> y> r]> ∈ V(F ) ∩Dr, we have

(fhom)deh ◦ Φ
([
x> y> r

]>)
= (fhom)deh(r−1, r−1x1, . . . , r

−1xn, r
−1y1, . . . , r

−1yn)

= fhom(r−1, r−1x1, . . . , r
−1xn, r

−1y1, . . . , r
−1yn, 1)

= r−df(x1, . . . , xn, y1, . . . , yn, r)

= 0. (6.15)

Now, since the homeomorphism Φ and its inverse Φ−1 are both continuous, the fol-

lowing proposition is trivially obtained.

Proposition 6.1. Let the pair of sequences ρ[1:∞] and ξ[1:∞] be a part of the image

of sequences r[1:∞] and x[1:∞] under the homeomorphism Φ with a fixed y. Then,

ηk
ρk

= y (6.16)

holds for all k. Moreover, for the limit x∞, sequences r[1:∞] and x[1:∞] satisfy

lim
k→∞

rk =∞, (6.17)

lim
k→∞

xk = x∞ (6.18)

if and only if {ρk}∞k=1 and {ξk}∞k=1 satisfy

lim
k→∞

ρk = 0, (6.19)

lim
k→∞

ξk
ρk

= x∞. (6.20)

Proposition 6.1 shows that we can obtain the limit of the sequence limk→∞ xk as

the limit of fractions limk→∞ ξk/ρk. Moreover, from

lim
k→∞

ξk =
(

lim
k→∞

ρk

)(
lim
k→∞

ξk
ρk

)
= 0, lim

k→∞
ηk =

(
lim
k→∞

ρk

)(
lim
k→∞

ηk
ρk

)
= 0,

the points [ρk ξ
>
k η>k ]> ∈ R2n+1 converge to the origin as k →∞, which implies that

V(F) contains the origin as a closed subset of the closure Dρ = R2n+1. This indicates

that, to compute the limit points in ξ-η-ρ space, we need only the local information

about this algebraic set at the origin.

Remark 6.3. Note that Proposition 6.1 and the following discussion also indicate

that V(F) includes the origin if and only if the convergence point x∞ (‖x∞‖ < ∞)

exists. Moreover, Theorem 6.1 guarantees the existence of such a convergence point

if at least one local minimizer exists. Therefore, V(F) includes the origin and thus

all the mathematical tools introduced in subsection A.2.4 can be applied whenever

COP (6.1) has at least one local minimizer.
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Remark 6.4. The whole discussion of this section can be conceptually illustrated as

Fig. 6.2. Let y be fixed, and then η is uniquely determined by ρ and y as in (6.16)

under Φ. Hence, for simplicity, only the variables x, r, ξ, and ρ are illustrated in

Fig. 6.2.

Figure 6.2 shows three spaces: two Euclidean spaces of dimension n+1 represented

by the vertical and horizontal planes and the Euclidean space of dimension n+2 where

the former two spaces are embedded as the linear submanifolds {[X0, . . . , Xn+1] ∈
Rn+2 | X0 = 1} and {[X0, . . . , Xn+1] ∈ Rn+2 | Xn+1 = 1}, respectively. The vertical

plane represents x-r space, while the horizontal one represents ξ-ρ space. As stated

in subsection A.2.2, the set of all lines in Rn+2 passing through the origin ORn+2

is identical to a projective space Pn+1. It is readily seen that for each point of x-

r space (blue circles), there exists a unique point of ξ-ρ space (yellow circles) that

lies in the line in Rn+2 passing through the origin (red lines), or equivalently the

“point” of Pn+1, that the point of x-r space lies in; this correspondence is what the

homeomorphism Φ represents.

The thick blue curve on the vertical plane shows the solution set of F (x, y, r) = 0

with a fixed y, while the thick yellow curve on the horizontal plane shows the solution

set of F(ξ, η, ρ) = 0 with η = yρ (see (6.16)). Recall that every point (xk, rk)

consisting of r[1:∞] and x[1:∞] lies in the blue curve, and every point (ξk, ρk) consisting

Figure 6.2: Illustration of Proposition 6.1
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of ρ[1:∞] and ξ[1:∞] lies in the yellow curve. Therefore, conditions (6.17) and (6.18)

says that the sequence of points (x[1:∞], r[1:∞]) asymptotically approaches to a vertical

line whose x-coordinate is x∞ as k goes to infinity. The corresponding “point” of

Pn+1 (red lines) moves simultaneously and, in the end, reach to the line parallel to

the vertical plane and passing through ORn+2 and Oξ-ρ, the origin of ξ-ρ space. Hence,

the sequence (ξ[1:∞], ρ[1:∞]) on the yellow curve converges to the origin Oξ-ρ, and the

direction the sequence approaches from corresponds to the limit x∞ (conditions (6.19)

and (6.20)).

6.4 Computation of Limit Points and New Neces-

sary Condition for Optimality

To focus on the origin in the algebraic set V(F) ⊂ Dρ = R2n+1, it is useful to consider

a tangent cone C0 (V(F)) ⊂ R2n+1 at the origin. From Lemma A.4, the tangent cone

can be seen as the set of lines that approximates V(F) in a neighborhood of the

origin. Note that the limit of fractions [x>∞ y>]> = limk→∞[ξ>k η>k ]>/ρk can be seen

as the gradient of such a line with respect to ρ at the origin. This consideration leads

us to relate the limit limk→∞[ξ>k η>k ]>/ρk with the gradient of each line in C0(V(F))

at the origin, as stated in the following lemma.

Lemma 6.1. Let r[1:∞] be a sequence monotonically tending to infinity and x[1:∞] be

a sequence such that each pair (xk, rk) satisfies equation (6.7) with a fixed y. Suppose

that x[1:∞] has a convergence point x∞. Then, [1 x>∞ y>]> ∈ C0(V(F)) holds.

Proof. Let us define sequences ρ[1:∞], ξ[1:∞], and η[1:∞] as in Proposition 6.1. From the

preceding discussion of the proposition, all polynomials in F vanish at each triplet

(ρk, ξk, ηk) because its preimage (xk, y, rk) under Φ satisfies equation (6.7). Moreover,

as mentioned in the proposition and the discussion following it,

lim
k→∞

[
ρk ξ

>
k η>k

]>
= 0 ∈ R2n+1

holds if limk→∞ rk = ∞ and limk→∞ xk = x∞ hold. Since algebraic sets are closed,

this convergence implies 0 is an element of V(F) ⊂ R2n+1, and thus we can define the

sequence of secant lines L[1:∞] as those through 0 and the points qk := [ρk ξ
>
k η>k ]>.

Let us parametrize each line Lk by {tvk | vk = qk/ρk, t ∈ R}; then, Proposition 6.1

readily shows that L[1:∞] converges to the line:

L :=
{
tv | v =

[
1 x>∞ y>

]>
, t ∈ R

}
as k →∞. Therefore, from Lemma A.4, [1 x>∞ y>]> ∈ L ⊂ C0(V(F)) holds.
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This lemma shows that the intersection of the tangent cone and a hyperplane

C0(V(F)) ∩
{[
ρ ξ> η>

]> ∈ R2n+1
∣∣∣ ρ = 1

}
includes all the points of the form [1 x>∞ y>]> where x∞ is a limit point, as r goes

to infinity, of the sequences x[1:∞] whose elements satisfy equation (6.7) with a fixed

y. In other words, if we have a set of l polynomials G = {G1, . . . , Gl} ⊂ R[ρ, ξ, η]

defining the tangent cone C0(V(F)), Gi(1, x∞, y) = 0 (i = 1, . . . , l) holds for every

pair of x∞ and y satisfying the assumptions of Lemma 6.1. Moreover, if y = x̂ attains

a minimum of COP (6.1), Theorem 6.1 guarantees the existence of a sequence x[1:∞]

that converges to x∞ = x̂. This implies that every minimizer x̂ satisfies equation

Gi(1, x̂, x̂) = 0 (i = 1, . . . , l). Finally, the whole process to obtain the polynomial set

G := {Gi(1, x, x) ∈ R[x] | Gi ∈ G}

from COP (6.1) can be summarized as Algorithm 6, and by using G, the new necessary

condition for optimality can be stated as Theorem 6.2.

Theorem 6.2. Let G = {G1, . . . ,Gl} ⊂ R[x] be the set of equations obtained by

Algorithm 6. Suppose that x̂ is a minimizer of COP (6.1). Then, x̂ satisfies the

equations

Gi(x̂) = 0 ∀i = 1, . . . , l. (6.21)

Proof. Let x̂ be a minimizer of COP (6.1). For a sequence r[1:∞] monotonically tend-

ing to infinity as k does, Theorem 6.1 guarantees that the existence of a sequence

x[1:∞] converging to x̂ whose elements satisfy equation P loc
x (xk; rk, x̂) = 0 for every

k. Then, Lemma 6.1 indicates that [1 x̂> x̂>]> is a point of C0(V(F)). Now, Let

Algorithm 6 Symbolic Computation of G
Input: COP (6.1)
Output: Set of polynomial G ⊂ R[x]
1: Compute polynomial set F ⊂ R[x, y, r] in (6.8) by differentiating localized penalty

function P loc(x; r, y) = f(x) + ‖x− y‖2 + rg>(x)g(x)
2: Compute F ⊂ R[ρ, ξ, η] by computing homogenization as in equation (6.12) and

dehomogenization as in equation (6.14)
3: Compute set of generators G ⊂ R[ρ, ξ, η] of ideal defining tangent cone C0(V(F))

from polynomial set F , for example, by using Gröbner basis described in
Lemma A.3

4: Define G as G|ρ=1,ξ=x,η=x
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G = {G1, . . . , Gl} ⊂ R[ρ, ξ, η] be a set of generators of an ideal defining C0(V(F)),

that is, C0(V(F)) = V(G) holds. Since [1 x̂> x̂>]> ∈ C0(V(F)),

Gi(x̂) = Gi(1, x̂, x̂) = 0

holds for all i = 1, . . . , l, which completes the proof.

6.5 Numerical Examples

This section is devoted to two numerical examples. The first one demonstrates the

proposed methodology and clarifies the relationships among the penalty function

method, homogenization, and the tangent cone. The second one demonstrates how

the proposed method can find non-KKT type global minimizers.

Example 1 (Illustrative example) Let us consider the following COP:

min
x

1

2
(x2

1 + x2
2)

s. t. (x1 − 5)2 − (x2 − 4)3 = 0,
(6.22)

where x = [x1 x2]> ∈ R2 are indeterminates. Figure 6.3 shows the feasible set and

contours of the cost function. For this problem, the penalty function of the localized

COP (6.4) is obtained as

P loc(x; r, y) =
1

2
(x2

1 +x2
2)+(x1−y1)2 +(x2−y2)2 +r

{
(x1 − 5)2 − (x2 − 4)3

}2
, (6.23)

3 4 5
x1

3.5

4.0

4.5

5.0

5.5

6.0

x
2

Figure 6.3: Feasible set (solid lines) and contours of cost function (dashed lines).
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where r ∈ R is a penalty parameter and y = [y1 y2]> are additional variables rep-

resenting the coordinates of a minimizer. The stationary conditions P loc
x (x; r, y) = 0

are the following polynomial equations:

x1 + 2(x1 − y1) + 4r
(
(x1 − 5)2 − (x2 − 4)3) (x1 − 5) = 0,

x2 + 2(x2 − y2)− 6r
(
(x1 − 5)2 − (x2 − 4)3) (x2 − 4)2 = 0.

(6.24)

Hence, the polynomial set F ⊂ R[x1, x2, y1, y2, r] in Section 6.3 consists of the left-

hand sides of equations (6.24).

By replacing x1, x2, y1, y2, and r with X1/X0, X2/X0, X3/X0, X4/X0, and X5/X0,

respectively, the homogenizations of F are obtained as

X4
0X1 + 2X4

0 (X1 −X3) + 4X5

(
X0(X1 − 5X0)2 − (X2 − 4X0)3

)
(X1 − 5X0), (6.25)

X5
0X2 + 2X5

0 (X2 −X4)− 6X5

(
X0(X1 − 5X0)2 − (X2 − 4X0)3

)
(X2 − 4X0)2, (6.26)

where [X0 : X1 : X2 : X3 : X4 : X5] ∈ P5 is a homogeneous coordinate. The

dehomogenizations of polynomials (6.25) and (6.26), denoted as F in Section 6.4, are

as follows:

ρ4ξ1 + 2ρ4(ξ1 − η1) + 4 (ρ(ξ1 − 5ρ)2 − (ξ2 − 4ρ)3) (ξ1 − 5ρ),
ρ5ξ2 + 2ρ5(ξ2 − η2)− 6 (ρ(ξ1 − 5ρ)2 − (ξ2 − 4ρ)3) (ξ2 − 4ρ)2,

(6.27)

where ρ = X0/X5, ξ1 = X1/X5, ξ2 = X2/X5, η1 = X3/X5, and η2 = X4/X5.

From polynomials (6.27), we obtain G ⊂ R[ρ, ξ1, ξ2, η1, η2], which define the tan-

gent cone C0(V(F)), as a set of five polynomials with total degrees 5, 6, 7, 9, and 10.

By substituting ρ = 1, ξ = η = x to the polynomial set G, we have the polynomial

set G consisting of five polynomials:

3x1x2
2 − 22x1x2 + 48x1 − 10x2, (6.28)

4x1x2
3 − 4x1

3 − 48x1x2
2 − 20x2

3 + 60x1
2

+ 192x1x2 + 240x2
2 − 556x1 − 960x2 + 1780, (6.29)

6x2
5 − 6x1

2x2
2 − 120x2

4 + 48x1
2x2 + 60x1x2

2 + 960x2
3

− 96x1
2 − 480x1x2 − 3990x2

2 + 960x1 + 8880x2 − 8544, (6.30)

72x1x2
3 − 108x1

3 − 864x1x2
2 − 540x2

3

+ 1620x1
2 + 3376x1x2 + 6600x2

2 − 12324x1 − 26480x2 + 48060, (6.31)
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and

108x1
4 − 48x1

2x2
2 − 1620x1

3 + 592x1
2x2

+ 6180x1
2 − 2000x1x2 + 1800x2

2 − 1980x1 − 9600x2. (6.32)

We can obtain three candidates of minimizers (listed in Table 6.1) by solving

equations (6.28)–(6.32). Theorem 6.2 guarantees that these candidates include all

minimizers and, consequently, global minimizers. Figure 6.4 shows the obtained can-

didates and contours of the cost function corresponding to those candidates. In

Fig. 6.4, the contours of the cost function are tangent to the feasible set at the can-

didate points p1 and p2, which are typical situations on the KKT points. In fact, p1

is a global minimizer, and p2 is a local maximizer. On the other hand, at p3, the

contour of the cost function does not seem to be tangent to the feasible set; indeed,

p3 has no Lagrange multipliers, so the KKT conditions do not hold. However, as

shown in Fig. 6.4(c), p3 is obviously a local minimizer because any feasible point in

its neighborhood lies in the area where the value of the cost function is larger than

f(p3).

Table 6.1: Candidates derived from proposed necessary condition and corresponding
values of cost function.

p1 p2 p3

x1 2.95 4.77 5.00
x2 5.62 4.37 4.00

f(pi) 20.1 20.9 20.5

2.5 3.0
x1

5.5

6.0

x
2

p1

(a) Candidate p1

4.5 5.0
x1

4.0

4.5

x
2

p2

(b) Candidate p2

4.5 5.0 5.5
x1

3.5

4.0

4.5

x
2

p3

(c) Candidate p3

Figure 6.4: Candidates (circles) in feasible set (solid lines) and corresponding contours
of cost function (dashed lines). Labels beside each point correspond to labels in
Table 6.1.
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To illustrate Theorem 6.1 and Proposition 6.1, let us fix y to [5 4]>, a minimizer of

COP (6.22). If we substitute y = [5 4]> into equations (6.24), Theorem 6.1 guarantees

the existence of a stationary point sequence (or trajectory for continuously varying

r) that converges to the minimizer, that is, x∞ = y = [5 4]>. Figure 6.5 shows the

solution trajectory of equations (6.24) with y = [5 4]> projected onto the x1-r and x2-

r planes. We can see that the trajectory approaches the minimizer [x1 x2]> = [5 4]>.

However, x2 still has a non-negligible error for r = 1000, which means the common

solution method (where r is fixed to a number assumed to be sufficiently large) ends

up with the wrong solution.

For Proposition 6.1, equation (6.16) shows that[
η1

η2

]
= ρ

[
5
4

]
(6.33)

holds for y = [5 4]>. Substituting equation (6.33) into polynomials (6.27), the al-

gebraic set V(F) is obtained as the solid curves shown in Fig. 6.6. We can regard

the algebraic set V(F) as a trajectory of ξ with respect to ρ, and it is readily ob-

served that the trajectory converges to the origin as ρ → 0, as mentioned in the

discussion following Proposition 6.1. Moreover, the tangent of the trajectory at the

origin (dashed lines in Fig. 6.6) has the gradient [5 4]> at the origin, which is the

consequence of Proposition 6.1 stated as equations (6.19) and (6.20).

3 4 5
x1

0

200

400

600

800

1000

r

r
→
∞

(a) Trajectory of x1 with respect to r

3 4 5
x2

0

200

400

600

800

1000

r

r
→
∞

(b) Trajectory of x2 with respect to r

Figure 6.5: Trajectory of x with respect to r satisfying equation (6.24) for y = [5 4]>,
which is projected onto x1-r and x2-r planes.
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0 2 4
ξ1 ×10−1

0.0
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0.4

0.6
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1.0

ρ
×10−1

ρ
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0

(a) Trajectory of ξ1 with respect to ρ

0.0 0.5 1.0
ξ2 ×10−2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ

×10−3

ρ
→

0

(b) Trajectory of ξ2 with respect to ρ

Figure 6.6: Trajectory satisfying equation (6.27) = 0 (solid lines) and its tangent cone
at origin (dashed lines) for y = [5 4]>, which is projected onto ξ1-ρ and ξ2-ρ planes.

Example 2 (Case with global minimizers violating KKT conditions) Let

us consider the following COP with three indeterminates and a constraint:

min
x

1

2
‖x‖2

s. t. (x2 − x2
1 + 2)2 − (x3 − 1)3 = 0,

(6.34)

where x = [x1 x2 x3]> ∈ R3. The penalty function of the COP is obtained as

1

2
x2

1 +
1

2
x2

2 +
1

2
x2

3 + r
{

(x2 − x2
1 + 2)2 − (x3 − 1)3

}2
.

Figure 6.7 shows the feasible set X of the COP, where all points in the intersection

X ∩{x | x3 = 1} are singular and form a parabola on a plane of x3 = 1. As shown, the

curve of singularities X∩{x | x3 = 1} is like “the bottom of a ravine” and is defined by

equations x3 = 1 and x2 = x2
1−1. The bottom of the ravine lies above the origin, and

thus the feasible point that is closest to the origin would lie on the bottom. In other

words, the global minimizer would be included in the curve of singularities. If this is

the case, these points cannot be KKT points because, for all points in the curve, the

derivatives of the constraint function vanish, whereas those of the cost function do

not vanish, which indicates the nonexistence of Lagrange multipliers. Therefore, the

Lagrange multiplier method or other methods based on KKT conditions or assuming

the existence of Lagrange multipliers cannot find the global minimizers.

For this problem, the proposed method yields a set of 14 polynomials of the highest

degree seven as G. These equations have five solutions p1, · · · ,p5, which are listed in

Table 6.2. As shown in Fig. 6.8, the proposed algorithm yields a set of candidates
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Figure 6.7: Feasible set of COP (6.34). Heat map on x1-x2 plane shows projection of
feasible set, whose color corresponds to x3-coordinate of projected points.

Table 6.2: Candidates derived by proposed algorithm and corresponding values of
cost function.

p1 p2 p3 p4 p5

x1 0.00 0.00 0.00 1.22 −1.22
x2 −1.35 −1.94 −2.00 −0.50 −0.50
x3 1.75 1.16 1.00 1.00 1.00

f(pi) 2.44 2.55 2.50 1.38 1.38

−101

−2
−1

0

1

2

x1
x2

x3

p1
p2

p3p4
p5

p1
p2

p3p4
p5

p1
p2

p3p4
p5

Figure 6.8: Candidates of minimizer obtained by proposed method (cross), KKT
points (open square), and global minimizers (open circle). Labels beside each point
correspond to labels in Table 6.2.

that includes all KKT points (p1 and p2) and some other non-KKT points on the

singular curve (p3, p4, and p5). In Table 6.2, points p4 and p5 attain the minimum

among the candidates, and thus they are the non-KKT type global minimizers.

Note again that there are no Lagrange multipliers corresponding to these global

minimizers. Indeed, the derivative of the corresponding Lagrangian with respect to
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x3 is

x3 − 3λ(x3 − 1)2,

where λ ∈ R is the Lagrange multiplier corresponding to the constraint of COP (6.34).

It is obvious that this derivative cannot be zero if x3 = 1 holds; in other words, when

a point is included in the singular curve X ∩ {x | x3 = 1}.

Remark 6.5. For the first example, the FJ conditions yield the same three points

as in Table 6.1. However, for the second example, the FJ conditions are satisfied

by all the points of X ∩ {x | x3 = 1}, which includes an infinite number of points

neither locally optimal nor KKT. This indicates that the proposed condition is less

conservative and can yield a significantly smaller number of candidates than the FJ

conditions do.

6.6 Summary

We have proposed a new necessary optimality condition for polynomial optimization

problems with polynomial constraints. The proposed necessary condition is satisfied

by all minimizers and thus does not require any constraint qualifications. First,

a sequential optimality condition based on the quadratic penalty function, which

is described by the existence of a certain sequence converging to a minimizer as

the penalty parameter tends to infinity, is introduced. By considering a projective

space, the limit operation of the penalty parameter is symbolically performed as a

computation of the tangent cone at the origin. The set of polynomials, which vanish

at all the points satisfying the sequential optimality condition, is obtained. Two

numerical examples are provided to illustrate the methodology and demonstrate that

the proposed necessary condition can be satisfied even by non-KKT type minimizers.

One direction of further study is to generalize the problem settings. For instance,

the algorithm should be readily applicable to parametric optimization problems. We

will also extend the functions appearing in the problem to include more general func-

tions than polynomials, as long as they can be homogenized in some sense.

It is worth mentioning that, in the proposed algorithm, the iterative computations

for solving stationary conditions and updating the penalty parameter are reduced

to solving the equations defining the tangent cone only once. This reduction can

be applied to any equation with parameters if some convergence property of their

solutions is guaranteed, for instance, as mentioned in Theorem 6.1. Therefore, the

proposed method can be applied to a broader class of problems beyond optimization

problems.
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Chapter 7

Conclusions

7.1 Summary

In this thesis, we proposed symbolic-numeric methods for nonlinear optimal con-

trol, optimal estimation, and optimization. Under some algebraic assumptions on

the problem settings, various mathematical notions and corresponding symbolic algo-

rithms from commutative algebra, algebraic geometry, and the theory of D-modules

are utilized. In Chapters 3 and 4, off-line symbolic algorithms called recursive elim-

ination methods are proposed to derive small-sized problems, and on-line numerical

algorithms are also proposed to solve them. By dealing with the main difficulties such

as coupling of variables off-line by symbolic computation, the on-line computation was

performed efficiently. In Chapter 5, the integrations accompanied by the computation

of posterior mean and variance are carried out off-line by means of partial differential

equations (PDEs). The solution of the resulting PDEs is then efficiently evaluated by

using a symbolic-numeric method called the holonomic gradient method. In Chap-

ter 6, we proposed a derivation algorithm of necessary optimality conditions that are

satisfied by all optimal solutions and do not require any constraint qualifications.

The proposed algorithm is based on the penalty function method, which is a classical

numerical solution method for constrained optimization problems. The procedure of

the penalty function method was first interpreted as a geometric procedure including

limit operation of a parameter, and then it was further interpreted as a symbolic

algorithm by means of algebraic geometry. By the proposed symbolic algorithm, we

can compute the polynomial equations exactly satisfied by all the optimal solutions,

which are less conservative than Fritz John (FJ) conditions as shown in a numerical

example.
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7.2 Discussion and future work

From the following two perspectives, we give suggestions for the future work on the

basis of the results in this thesis.

7.2.1 Theoretical perspective

In Chapters 3 and 4, the outputs of the recursive elimination methods are just neces-

sary optimality conditions. Although sufficient optimality conditions are provided in

Chapter 3, they require derivatives of several functions evaluated on a candidate tra-

jectory, which are computationally demanding to compute. Therefore, in the future,

numerical algorithms that are based on the outputs of recursive elimination methods

and guaranteed to converge to a local optimal solution could be studied.

The theoretically essential part of the method proposed in Chapter 5 is the exact

evaluation of the first and second moments (or equivalently mean and variance) of

the state distribution. The higher-order moments are also holonomic functions of the

data, and thus their evaluations can be carried out similarly to the first and second

ones. Therefore, a direction of future work is to approximate the state distribution

by considering higher-order moments and using more general distributions such as

skew Gaussian distribution or distributions in exponential family, which would yield

more accurate estimates. Another direction is the application to finite-horizon non-

linear stochastic optimal control problems. In these problems, it is also important

to evaluate the mean and variance of the state distribution on the horizon. Hence,

the same techniques as those used in Chapter 5, especially the holonomic gradient

method, would be useful to solve the problems efficiently.

The existing necessary optimality conditions that can be described by equations

and inequalities [93–95] tend to be generalizations of the Karush-Kuhn-Tucker (KKT)

conditions or the FJ conditions and based on the theory of Lagrange multipliers. On

the other hand, the necessary condition proposed in Chapter 6 is based on a necessary

condition derived by the penalty function method and thus free from the existence of

Lagrange multipliers. Moreover, the proposed condition does not use any inequality

or the notion of cones in convex geometry, which is the essential difference from the

existing necessary conditions. Moreover, to the best of the author’s knowledge, only

the FJ conditions are the necessary conditions that can be described by equations and

inequalities and do not require any constraint qualifications. At least, the example

provided in the second paragraph of section 6.5 shows that the proposed condition

is less conservative than the FJ conditions. Hence, exploring necessary optimality
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conditions from the perspective of algebraic geometry would be a promising direction,

and the relationships between the proposed condition and other geometric or KKT-

like conditions should be studied.

7.2.2 Computational perspective

Contrary to geometric and analytic approaches, all the symbolic algorithms intro-

duced and proposed in this thesis are exact and guaranteed to halt in a finite number

of computations. However, the practical computational times of the proposed meth-

ods still suffer from the high computational cost of Gröbner bases, which limits the

class of problems that the proposed methods can be practically applied to. It is re-

mained to clarify a class of problems for which the computations of Gröbner bases

in the proposed methods can be easily performed or avoided. One possibility to

broaden the class of problems is the choice of the term ordering in each computation

of a Gröbner basis. There are still some degrees of freedom for the choice of term

orderings, and it is known that the change of term ordering can often lead to a drastic

reduction of computations [76]. Hence, exploring appropriate term orderings is also

a part of future work. Another possibility is exploiting numerical approximations in

symbolic computation. Numerical algorithms to obtain symbolic outputs have been

studied in recent years [96–99], and many useful notions such as approximate great-

est common divisors [100], homotopy continuation [101], and border bases [102] have

been introduced with the development of their computation algorithms. Although the

exactness of the outputs is no longer guaranteed when we rely on numerical compu-

tation, the advantage of computing the outputs including undetermined parameters

would be still available. These approaches can thus be applied to get rid of the high

computational costs for computing Gröbner bases.

On the other hand, the algorithms in the on-line part introduced in Chapters 3–5

may also suffer from high computational cost or equivalently from the limitations on

computational time. Even though the numerical examples show the efficiency of the

proposed methods in the on-line part, it sometimes declines because the off-line part

may yield large-scale polynomials having many terms and large coefficients, which

induce ineffective computations in the on-line part. For example, when evaluating

a large-scale polynomial having many terms up to a large total degree, it is clearly

inefficient to evaluate each monomial independently since a monomial of a higher

degree may be evaluated as the product of the monomials of lower degrees that

are already evaluated. From this perspective, it could be studied to employ special
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expressions of large-scale polynomials oriented to evaluation such as those derived by

the multivariate Horner scheme [103].
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Appendix A

Mathematical Preliminaries

A.1 Ring theory

This section is devoted to introducing fundamental notions of ring theory for the sake

of completeness. We refer to [54, 76, 104, 106] for most of the following definitions,

propositions, and theorems.

A.1.1 Basic definitions

Definition A.1 (Group). Let G be a set and “+” be a binary operation that as-

sociates each pair of a, b ∈ G with a + b. Then G is called a group if the binary

operation satisfies the following laws:

(i) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ G (associative law);

(ii) there exists 0 ∈ G such that a+ 0 = 0 + a = a for all a ∈ G (neutral element);

(iii) for each a ∈ G, there exists −a ∈ G such that a+(−a) = (−a)+a = 0 (inverse).

A group additionally satisfying the following condition is called an abelian group:

(iv) a+ b = b+ a for all a, b ∈ G (commutative law).

Definition A.2 (Ring). Let R be a set and “+” and “·”, called addition and mul-

tiplication, be binary operations that associate each pair of a, b ∈ R with a + b and

a · b, respectively. Then R is called a ring if the two binary operations satisfy the

following laws:

(i) R is an abelian group under addition;

(ii) (a · b) · c = a · (b · c) for all a, b, c ∈ R (associative law of multiplication);
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(iii) c · (a + b) = c · a + c · b, (a + b) · c = a · c + b · c for all a, b, c ∈ R (distributive

laws);

(iv) there exists 1 ∈ R such that a · 1 = 1 · a = a for all a ∈ R (neutral element of

multiplication).

The neutral element for addition 0 is called zero element or zero of the ring R, while

that for multiplication 1 is called unit element or one of R.

Throughout this thesis, we always abbreviate a · b to ab unless otherwise noted.

Definition A.3 (Commutative and non-commutative ring). A ring R is called a

commutative ring if it additionally satisfies the following law:

(viii) ab = ba for all a, b ∈ R (commutative law of multiplication),

otherwise called a non-commutative ring.

Example A.1 (Zero ring). The ring consisting of a single element is called the zero

ring or trivial ring. Let {0} denotes this ring since the single element must be 0 from

the definition of ring.

Definition A.4 (Field). A commutative ring K, not the zero ring, is called a field if

the set of all non-zero elements in K is a group under multiplication.

Example A.2 (Field of real numbers). The set of real numbers R is a field with its

usual addition and multiplication.

Example A.3 (Field of rational functions). For a field K, the set of all rational

functions

K(X) :=

{
f

g
| f, g ∈ K[X], g 6= 0

}
is a field with its usual addition and multiplication.

Definition A.5 (Ideal). For a ring R, not necessarily commutative, a subset I ⊆ R

is called a left ideal if it satisfies the following conditions:

(i) 0 ∈ I;

(ii) if a, b ∈ I, then a+ b ∈ I;

(iii) if a ∈ I and r ∈ R, then ra ∈ I.

The subset I is instead called a right ideal if condition (iii) is replaced by
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(iii’) if a ∈ I and r ∈ R, then ar ∈ I.

A left ideal that is also a right ideal is called a two-sided ideal or simply ideal. In

particular, all ideals of a commutative ring are two-sided ideals.

Example A.4. For any ring R, the singleton subset {0} ⊂ R is a two-sided ideal,

which is called the zero ideal and denoted by 0.

From the definition of a commutative ring, all ideals of a commutative ring are

two-sided ideals. In this subsection, a left ideal is also referred to as an ideal if it is

a subset of a non-commutative ring.

Definition A.6. For a ring R, let {r1, . . . , rd} be a finite number of elements of R.

Then the ideal generated by r1, . . . , rd is the set of all linear combinations

I = 〈r1, . . . , rd〉 := {a1r1 + · · ·+ adrd | a1, . . . , ad ∈ R}.

A finite set that generates an ideal I is called a basis of I, and each element a basis

is called a generator of I.

Definition A.7 (Noetherian ring). A ring R is called left(right) noetherian if all

left(right) ideals of R are finitely generated. A left noetherian ring that is also a right

noetherian ring is called two-sided noetherian or simply noetherian. In particular, a

commutative ring is always two-sided notherian if it is left noetherian.

Definition A.8 (Equivalence class). [107] A binary relation ∼ on a set S is called

an equivalence relation if it has the following properties:

(i) a ∼ a (reflectivity);

(ii) if a ∼ b, then b ∼ a (symmetry);

(iii) if a ∼ b and b ∼ c, then a ∼ c (transitivity).

For an element a ∈ S, the equivalence class of a under ∼ is defined as subset

[a] := {s ∈ S | a ∼ s}.

Proposition A.1. Let I be an ideal of a ring R. Then a binary relation ∼ on R

defined as

a ∼ b
def
= a− b ∈ I

is an equivalence relation on R and called congruence modulo I.
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Definition A.9 (Quotient ring). Let I be an ideal of a ring R. The set of all the

equivalence classes under congruence modulo I, denoted by R/I, is a ring with the

addition and multiplication defined as

[a] + [b] := [a+ b],

[a][b] := [ab],

and called the quotient ring of R modulo I.

Finally, we define the dimension of a commutative ring and its ideals.

Definition A.10 (Prime ideal). For a commutative ring R, an ideal I ⊂ R is called

prime if

fg ∈ I ⇒ either f ∈ I or g ∈ I
holds for any two elements f, g ∈ R.

Definition A.11 (Krull dimension of commutative ring). The Krull dimension of a

commutative ring R, denoted by dim R, is the supremum of the length of the chains

of prime ideals p0 ( p1 ( · · · ( pn in R.

Definition A.12 (Krull dimension of ideal of commutative ring). For a commutative

ring R, the Krull dimension of an ideal I ⊂ R is the Krull dimension of the quotient

ring R/I.

A.1.2 Polynomial ring

In this subsection, K denotes a field of characteristic zero.

Definition A.13 (Monomial). For variables X := (X1, . . . , Xn) and a tuple of non-

negative integers α := (α1, . . . , αn) ∈ Zn
≥0, a monomial is a product of the form

Xα := Xα1
1 ·Xα2

2 · · ·Xαn
n .

The vector α is called the multi-index of this monomial. The total degree of a mono-

mial Xα, denoted by |α|, is the sum α1 + · · ·+ αn.

Definition A.14 (Polynomial). A polynomial f in variables X with coefficients in

K is a finite linear combination of monomials:

f =
∑
α

aαX
α (aα ∈ K),

where the summation is over a finite subset of Z≥0. The total degree of f is the

maximum of |α| over the finite subset.
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One of the main subjects in algebraic geometry is a commutative ring called a

polynomial ring defined as follows.

Definition A.15 (Polynomial ring). For a field K, K[X1, . . . , Xn] denotes the set of

all polynomials in variables X1, . . . , Xn with coefficients in K. This set is a commu-

tative ring with its usual addition and multiplication, which is called a polynomial

ring in the variables X1, . . . , Xn over K.

In this subsection, X denotes a vector [X1, . . . , Xn]>, and a polynomial ring

K[X1, . . . , Xn] is abbreviated to K[X].

Theorem A.1 (Hilbert’s basis theorem). Let K be a field. The polynomial ring

K[X] is noetherian, that is, all ideals of the ring are finitely generated.

Definition A.16 (Monomial order). A monomial order ≺ on K[X] is a relation on

Zn
≥0, or equivalently on the set of all monomials in K[X], satisfying the following

conditions:

(i) ≺ is a total order on Z≥0;

(ii) if α ≺ β and γ ∈ Z≥0, then α + γ ≺ β + γ;

(iii) 0 ≺ α for all α ∈ Z≥0.

Definition A.17 (Initial ideal). Let I be an ideal of K[X] with I 6= 0 and ≺ be a

monomial order on K[X]. For a polynomial f ∈ K[X], in≺(f) denotes the largest

monomial of f with respect to ≺ and is called the initial monomial. Then the ideal

generated by monomials {in≺(f) | f ∈ I} is called the initial ideal of I and denoted

by in≺(I), that is,

in≺(I) := 〈{in≺(f) | f ∈ I}〉.

Definition A.18 (Gröbner basis). Fix a monomial order ≺ on K[X]. For an ideal I

of K[X], a Gröbner basis with respect to≺ is a basis of I consisting of finite generators

{g1, . . . , gm} ⊂ K[X] such that the initial monomials {in≺(g1), . . . , in≺(gm)} generates

the initial ideal in≺(I) of I.

For an ideal I ⊂ K[X] with I 6= K[X], the quotient ring K[X]/I can be regarded

as a vector space over K with its addition and the scalar multiplication defined as

a[f ] := [af ] (a ∈ K, [f ] ∈ K[X]/I).
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Theorem A.2 (Macaulay’s Theorem). Fix a monomial order ≺ on K[X], let I ⊂
K[X] be an ideal with I 6= K[X], and let in≺(I) be the initial ideal of I with respect

to ≺. Then, the set of monomials {xα | xα /∈ in≺(I)} is a basis of the vector space

K[X]/I over K.

Definition A.19 (Zero-dimensional ideal). An ideal I ⊂ K[X] is called zero-dimensional

if the quotient ring K[X]/I is a finite-dimensional vector space over K, or equivalently

the set of monomials {xα | xα /∈ in≺(I)} is a finite set.

Zero-dimensional ideals are characterized by the following lemma [54].

Lemma A.1. An ideal I ⊂ K[X] is zero-dimensional if and only if a nonzero poly-

nomial hi ∈ K[Xi] exists for each i = 1, . . . , n such that I ∩K[Xi] = 〈hi〉 holds.

The polynomials hi (i = 1, . . . ,m) are called minimal polynomials of Xi with

respect to I and can be computed from generators of I by using Gröbner bases.

Definition A.20 (Radical ideal). For an ideal I ⊂ K[X], the set of polynomials:

√
I := {g ∈ K[X] | ∃s ∈ N s.t. gs ∈ I} (A.1)

is also an ideal called the radical of I. I is called a radical ideal when I =
√
I holds.

Obviously, I(J) = V
(√

I
)

holds.

Definition A.21 (Extension of ideal). For an ideal I ⊂ R[X, Y ] withX = [X1 · · ·Xn]>

and Y = [Y1 · · ·Ym]>, the extension of the ideal I to R(X)[Y ] is the ideal Ie defined

as

Ie := {b1g1 + · · ·+ bsgs | b1, . . . , bs ∈ R(X)[Y ], g1, . . . , gs ∈ I, s ∈ N}. (A.2)

A.2 Algebraic Geometry

This section is devoted to introducing the notions in algebraic geometry. We refer

to [54,76,108] for most of the definitions and lemmas here.

A.2.1 Elimination theory

Definition A.22 (Algebraically closed field). For a fieldK, a nonconstant polynomial

f ∈ K[X] = K[X1] is called irreducible if it has the property that whenever f = gh

for some polynomials g, h ∈ K[X], then either g or h is a constant. The field K is

called algebraically closed if every irreducible polynomial in K[X] is of degree one.
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Example A.5 (Field of complex numbers). The set of complex numbers C is an

algebraically closed field because, from the Fundamental Theorem of Algebra, every

polynomial f ∈ C[X] of degree d can be written as

f(X) = c(X − a1)α1(X − a2)α2 · · · (X − as)αs

where c, a1, . . . , as ∈ C and α1, . . . , αs ∈ Z≥0 are such that a1, . . . , as are pairwise

distinct and α1+· · ·+αs = d, which readily indicates that every irreducible polynomial

in C[X] is of the form c(X − a1).

Definition A.23 (Algebraic closure). For a field K, there exists a unique algebraic

extension K of K that is algebraically closed, which is called the algebraic closure of

K.

For the details of algebraic extensions of fields, see [109].

Definition A.24 (Algebraic set). For an ideal I ⊂ K[X] = K[X1, . . . , Xn], the

algebraic set defined by I is the subset:

V(I) := {X ∈ Kn | f(X) = 0 for all f ∈ I} ⊂ K
n
.

The algebraic set V(I) is also denoted by V(f1, . . . , fm) if I is generated by f1, . . . , fm ∈
K[X].

Definition A.25. For an algebraic set V ⊂ Kn, the set of polynomials:

I(V ) := {f ∈ K[X] | f(X̃) = 0 for all X̃ ∈ V }

is an ideal of K[X]. This ideal is called an ideal of V .

Definition A.26 (Elimination ideal). For an ideal I ⊂ R[X, Y ] withX = [X1 · · · Xn]>

and Y = [Y1 · · · Ym]>, the intersection I ∩R[Y ] ⊂ R[Y ] is also an ideal and is called

the elimination ideal of I with respect to the variable X.

The algebraic sets V(I) and V(I ∩R[Y ]) are related by the following lemma [76].

Lemma A.2. For an ideal I ⊂ R[X, Y ],

πY (V(I)) ⊂ V(I ∩R[Y ])

holds, where πY : Rn ×Rm → Rm defined by (X, Y ) 7→ Y is the projection of V(I)

onto the Y -space, i.e., πY (V(I)) = {Y ∈ Rm | ∃X ∈ Rn s.t. (X, Y ) ∈ V(I)}.
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This lemma explains how the computation of elimination ideals corresponds to

the variable elimination from multivariate algebraic equations; indeed, the algebraic

sets V(I) and V(I ∩R[Y ]) can also be viewed as the root sets of generators of I and

I ∩ R[Y ], respectively. In other words, Lemma A.2 guarantees that, by computing

generators of I ∩R[Y ], we can obtain a set of polynomials involving only the variable

Y , whose roots contain the Y -coordinates of all the roots of generators of I.

A Gröbner basis of the elimination ideal I∩R[Y ] can be computed from generators

of I.

Definition A.27 (Elimination order). A monomial order ≺ on R[X, Y ] is called an

elimination order with respect to X if it has the following property: for a monomial

XαY β with multi-index (α, β) ∈ Zn+m
≥0 with α 6= 0,

(0, β′) ≺ (α, β) or equivalently Y β′ ≺ XαY β

holds for all β′ ∈ Zm
≥0.

Proposition A.2 (Gröbner bases of elimination ideals). Let ≺ be an elimination

order on R[X, Y ] with respect to X. For an ideal I ⊂ R[X, Y ], let G ⊂ R[X, Y ] be

a Gröbner basis for I with respect to ≺. Then, a subset of G that do not involve

any component of X, that is, the intersection G ∩ R[Y ] is a Gröbner basis for the

elimination ideal I ∩R[Y ] with respect to X.

A.2.2 Projective Space

In projective geometry, we define the equivalence class

[L] := {all lines parallel to a given line L ⊂ Rn}

as a point at infinity of Rn. Note that this definition of points at infinity is a straight-

forward extension of the characterization of points in Rn; namely, a point in Rn can

be characterized by a set of all lines, any two of which cross each other at that point.

This definition of points at infinity enables us to integrate Rn and points at infinity

into a projective space Pn, where it is no longer necessary to distinguish points of Rn

from those at infinity.

Definition A.28 (Projective Space). An n-dimensional projective space over R

denoted by Pn is the set of equivalence classes of the equivalence relation ∼ on

Rn+1 \ {0}, where ∼ is defined for x,y ∈ Rn+1 \ {0} as

x ∼ y
def⇐⇒ ∃λ ∈ R \ {0} s.t. x = λy. (A.3)
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An equivalence class p ∈ Pn is also denoted by [X0 : · · · : Xn] with any point

[X0 · · · Xn]> ∈ p, and this representation is called a homogeneous coordinate of p.

From the definition (A.3), it is obvious that for each equivalent class p ∈ Pn, there

exists a unique line passing through the origin of Rn+1 and includes every point in

p. Therefore, we can identify a projective space Pn with the set of all lines in Rn+1

passing through its origin. Note that a projective space is a topological space with the

quotient topology induced from the natural topology of Rn+1 \ {0} by the quotient

mapping Rn+1 \ {0} 3 [X0 · · · Xn]> 7→ p = [X0 : · · · : Xn] ∈ Pn.

To show that a projective space Pn is the union of a Euclidian space Rn and a

set of all points at infinity of Rn, let us consider an open subset U0 defined as

U0 := {[X0 : · · · : Xn] ∈ Pn | X0 6= 0} ⊂ Pn. (A.4)

This open subset can be identified with Rn because there is a homeomorphism φ0 :

Rn → U0 that maps [x1 · · ·xn]> ∈ Rn to [1 : x1 : · · · : xn] ∈ U0; the inverse mapping

φ−1
0 can be defined as

φ−1
0 : U0 3 [X0 : · · · : Xn] = [1 : X1/X0 : · · · : Xn/X0] 7→ [X1/X0 · · · Xn/X0]> ∈ Rn.

For the complement H0 := Pn \ U0, each point [0 : X1 : · · · : Xn] ∈ H0 uniquely

determines a line L through the origin by L = {x = [x1 · · · xn]> ∈ Rn | i ∈
{1, . . . , n}, t ∈ R, xi = tXi}. We can consider the equivalence class consisting of

all lines parallel to L, which defines a point at infinity, and thus there is a bijective

correspondence between all points of H0 and those at infinity of Rn ∼= U0. From this

viewpoint, H0 is called the hyperplane at infinity of U0.

Note that there are many other pairs of subsets that have the same property as

(U0, H0). Indeed, for each i = 1, . . . , n, we can define subsets Ui and Hi as

Ui := {[X0 : · · · : Xn] ∈ Pn | Xi 6= 0}, (A.5)

Hi := Pn \ Ui. (A.6)

For each pair, we can identify Ui with Rn by a homeomorphism φi : Rn → Ui defined

in the same way as U0, and under this identification, Hi can be identified with the

set of all points at infinity of Ui. The set of n pairs {(Ui, φi)}ni=1 can be regarded as

an atlas of the projective space Pn when we treat the space as a manifold, and each

pair (Ui, φi) is called a chart of Pn.

It can be easily shown that the intersection

Ui ∩Hj = {[X0 : · · · : Xn] ∈ Pn | Xi 6= 0, Xj = 0}
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is dense in Hj if and only if i 6= j holds, which indicates each subset Ui contains

almost all points at infinity of the other subsets Uj. This means that, by changing

the chart from Uj to Ui (j 6= i), we can reduce any computations in the hyperplane

at infinity Hj to computations of finite values in Ui ∼= Rn.

A.2.3 Homogenization and Dehomogenization

Definition A.29 (Homogenization of Polynomial). For a real coefficient polynomial

f(x1, . . . , xn) ∈ R[x1, . . . , xn], the homogenization of f is the homogeneous polyno-

mial fhom ∈ R[X0, . . . , Xn] defined as

fhom(X0, . . . , Xn) := Xd
0 · f

(
X1

X0

, . . . ,
Xn

X0

)
, (A.7)

where d is the total degree of f .

Note that a homogenization fhom of degree d is a homogeneous function of degree

d because

fhom(εX0, . . . , εXn) = εdfhom(X0, . . . , Xn)

holds. Therefore, if a homogeneous coordinate of p ∈ Pn satisfies fhom = 0, all

homogeneous coordinates of p also satisfy the same equation, and thus it makes sense

to consider the subset of Pn where fhom vanishes. We also call this subset an algebraic

set defined by fhom and denote it by V(fhom). The relationship between the algebraic

set of the homogenization fhom and that of the original polynomial f is

V(f) = V(fhom) ∩ U0,

which indicates V(fhom) ⊂ Pn is an extension of V(f) ⊂ Rn ∼= U0.

Conversely, we can define a polynomial defined on U0 corresponding to any ho-

mogeneous polynomial defined on Pn, which is called dehomogenization.

Definition A.30 (Dehomogenization of Homogeneous Polynomial). For a homoge-

neous polynomial g(X0, . . . , Xn) ∈ R[X0, . . . , Xn], the dehomogenization of g is a

polynomial gdeh ∈ R[x1, . . . , xn] defined as

gdeh(x1, . . . , xn) := g(1, x1, . . . , xn). (A.8)

Note that we can consider the dehomogenization of g for any index i = 0, . . . , n in the

same way, although for simplicity we do not indicate i explicitly, and i is specified in

accordance with the context.
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It is readily known that there is also the relationship

V(gdeh) = V(g) ∩ U0.

Note that, in general, a homogeneous polynomial f and the homogenization of its

dehomogenization (fdeh)hom may be different from each other. For example, a homo-

geneous polynomial

g(X0, X1, X2) = X3
0X

2
1 +X2

0X
3
2

is different from

(gdeh)hom(X0, X1, X2) = X0X
2
1 +X3

2 .

Remark A.1. Although X0 = 1 is substituted into g in (A.8), this definition is

consistent with the definition of a point in Pn; for any homogeneous coordinate

[X0 : · · · : Xn] of a point p ∈ Pn (where X0 is not necessarily equal to one), we can

obtain the other homogeneous coordinate [1 : X1/X0 : · · · : Xn/X0], which represents

the same point p. From this viewpoint, dehomogenization corresponds to the changes

of variables xi = Xi/X0 for i = 1, . . . , n. Indeed, applying changes of variables

Xi = xiX0 to g(X0, . . . , Xn) of degree d, we obtain

g(X0, . . . , Xn) = Xd
0g

deh(x1, . . . , xn),

which indicates that g = 0 is equivalent to gdeh = 0 unless X0 is equal to zero. This

equation is the same as the definition of homogenization (A.7) except that d is the

total degree of g but not of gdeh.

A.2.4 Tangent Cone

Throughout this subsection, an algebraic set V is assumed to include the origin 0.

The definition of a tangent cone is as follows [76].

Definition A.31 (Tangent Cone). For an algebraic set V = V(f1, . . . , fs) ⊂ Rn, its

tangent cone at 0 ∈ V ⊂ Rn is an algebraic set C0(V ) ⊂ Rn defined as

C0(V ) := V({fmin | f ∈ I(V )}), (A.9)

where fmin denotes the homogeneous component of the lowest degree in f , i.e., the

sum of all the terms of f whose degrees are equal to the lowest degree of f .
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Note that this definition indicates the set of polynomials defining a tangent cone

consists of homogeneous polynomials. As can be seen in the above definition, a

tangent cone is an algebraic set, which means there exists an ideal J = 〈g1, . . . , gt〉 ⊂
R[x1, . . . , xn] that defines the tangent cone. There are various algorithms to compute

generators of J [54, 98, 102, 108], and most of them use a Gröbner basis, which is a

set of generators that has good properties for symbolic computations (see [76] for

details). The following lemma gives us one of the methods to compute generators of

J by using a Gröbner basis with respect to an elimination order [76] for X0.

Lemma A.3 (The Tangent Cone Algorithm [102, 108]). Consider an ideal I ⊂
R[x1, . . . , xn] generated by polynomials f1, . . . , fs and assume the algebraic set V(I) ⊂
Rn includes the origin 0. Let {G1, . . . , Gt} be a Gröbner basis of an ideal generated

by polynomials fhom
1 , . . . , fhom

s with respect to an elimination order for X0. Then,

for the dehomogenizations {Gdeh
1 , . . . , Gdeh

t } ⊂ R[x1, . . . , xn], the following equation

holds:

C0(V(I)) = V
(
(Gdeh

1 )min, . . . , (Gdeh
t )min

)
, (A.10)

where (Gdeh
i )min denotes the homogeneous component of the lowest degree in Gdeh

i .

Although Definition A.31 consists of only algebraic statements, it is also useful to

clarify the characterization of a tangent cone from the geometric viewpoint. Before

that, let us introduce the following definition.

Definition A.32. We say that a sequence of lines L[1:∞] ⊂ Rn through 0 converges

to a line L also through 0 if, for a given parametrization L = {tv ∈ Rn | v ∈ Rn, t ∈
R}, there exist parametrizations of Lk = {tvk ∈ Rn | vk ∈ Rn, t ∈ R} such that

limk→∞ vk = v holds.

By using this definition, we can show the characterization of a tangent cone as

Lemma A.4.

Lemma A.4. A line L ⊂ Rn is called a secant line of an algebraic set V ⊂ Rn if

the intersection of L and V consists of more than two points. Let L∞ ⊂ Rn be a line

through 0 ∈ V . L∞ is then a subset of the tangent cone C0(V ) if and only if there

exists a sequence q[1:∞] ⊂ V \ {0} such that limk→∞ qk = 0 holds and the sequence of

secant lines {Lk ⊂ Rn | 0, qk ∈ Lk ∩ V }∞k=1 converges to the line L∞ as k →∞.

Remark A.2. Note that the notion of tangent cones in algebraic geometry, which

is defined in the above definition, is slight different from the tangent cone in convex

geometry defined in Section 2.1. Specifically, a tangent cone in convex geometry
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consists of all the half-lines that emanates from a certain point while that in algebraic

geometry consists of all the lines that pass through the point. In this section and

Chapter 6, we refer to a tangent cone in algebraic geometry simply as a tangent cone.

A.3 Theory of D-modules

This section is devoted to introducing the notions in the theory of D-modules. Al-

though the main mathematical objects in the theory of D-modules are obviously

modules over the Weyl algebra, namely, D-modules, it is enough for the purpose of

this thesis to introduce the notion of ideals in the Weyl algebra rather than mod-

ules. We refer to [81, 105, 106, 110] for most of the following definitions, lemmas,

propositions, and theorems.

A.3.1 Rings of differential operators

Definition A.33 (Differential operators). For a field K of characteristic zero, let

∂i (i = 1, . . . , n) be a linear mapping of K[X] = K[X1, . . . , Xn] defined on f(X) ∈
K[X] by ∂i • f(X) := ∂f(X)/∂Xi. Furthermore, define the action of a polynomial

a(X) ∈ K[X] on f(X) ∈ K[X] as a linear mapping by the usual multiplication on

K[X], that is, a(X)• f(X) := a(X)f(X). For a multi-index α = [α1 · · · αn]> ∈ Z≥0,

∂α denotes the composition of linear mappings ∂α1
1 • · · · • ∂αn

n . A differential operator

with coefficients in K[X] is a finite sum of the form∑
α

aα(X)∂α (aα(X) ∈ K[X]). (A.11)

Hereafter, K[X]〈∂〉 denotes the set of all differential operators with coefficients in

K[X], where ∂ := [∂1 · · · ∂n]>.

Definition A.34 (Total symbol). The total symbol of a differential operator l =∑
α aα(X)∂α is a polynomial in 2n indeterminates:

Ψ(l) :=
∑
α

aα(X)ξα,

where ξ = [ξ1 · · · ξn]> is a vector of additional indeterminates.

Although a composition of differential operators ∂i • a(X) (a(X) ∈ K[X]) is not

in the form of (A.11), it acts on any polynomial f(X) ∈ K[X] in the same way as a

differential operator a(X)∂i + ∂a(X)/∂Xi since

∂i • (a(X) • f(X)) = a(X)
∂f(X)

∂Xi

+
∂a(X)

∂Xi

f(X) =

(
a(X)∂i +

∂a(X)

∂Xi

)
• f(X)
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holds. Hence, ∂i • a(X) defines the same linear mapping of K[X] as a(X)∂i +

∂a(X)/∂Xi defines, which is in the form of (A.11). We can define a unique expression

of such linear mappings as a differential operator as follows.

Definition A.35 (Canonical form). A differential operator is said to be in canonical

form if it is expressed in the form of (A.11).

Lemma A.5 (Uniqueness of canonical form). The canonical form of a differential

operator is uniquely determined by the linear mapping of K[X] that the differential

operator defines. In other words, a differential operator is the zero mapping as a

linear mapping of K[X] if and only if aα = 0 hold for all α ∈ Z≥0 in its canonical

form.

Example A.6. A linear mapping ∂i • a(X) is uniquely expressed in its canonical

form a(X)∂i + ∂a(X)/∂Xi.

Lemma A.6 (Leibnitz rule). The composition of any two differential operators l1, l2 ∈
K[X]〈∂〉 is also an element of K[X]〈∂〉, that is, l1•l2 can be also expressed in canonical

form. Moreover, its total symbol is given as

Ψ(l1 • l2) =
∑
α∈Z≥0

1

α!

∂|α|Ψ(l1)

∂ξα
∂|α|Ψ(l2)

∂xα
, (A.12)

where α! := α1! · · ·αn!.

From Lemma A.6, the composition of differential operators can be regarded as

a multiplication on K[X]〈∂〉. Moreover, this multiplication is non-commutative ac-

cording to (A.12), and thus K[X]〈∂〉 is a non-commutative ring.

Definition A.36 (Weyl algebra). The set K[X]〈∂〉 is a non-commutative ring with

its usual addition and the multiplication defined by the composition of differential

operators. This non-commutative ring is called the n-dimensional Weyl algebra and

denoted by Dn. We omit the subscript n if it is not necessary to specify its dimension.

All of the definitions and lemmas introduced so far are also valid when the poly-

nomial ring K[X] is replaced with the field of rational functions K(X), and then we

obtain another non-commutative ring of differential operators as follows.

Definition A.37 (Ring of differential operators). Let K(X)〈∂〉 be the set of all

differential operators with coefficients in K(X). This set is a non-commutative ring

with the same addition and multiplication as those of Weyl algebra and denoted by

Rn. We omit the subscript n if it is not necessary to specify its dimension.

112



A.3. Theory of D-modules

Theorem A.3. The Weyl algebra D is left noetherian.

Theorem A.4. The ring of differential operators R is left noetherian.

From the above two theorems, all left ideals of D and R are finitely generated.

For the following discussion, we refer to a left ideal of D or R just as an ideal of D
or R unless otherwise noted.

A.3.2 Ideals of R and holonomic functions

The non-commutative ring R = R(X)〈∂〉 can be associated with a (commutative)

polynomial ring R(X)[ξ] by considering total symbols. Hence, almost all notions in

subsection A.1.2 can be extended to the case of R.

Definition A.38 (Term order on R). For any monomial order ≺ on R(X)[ξ], a term

order on R is defined as

a(X)∂α ≺ b(X)∂β
def
= ξα ≺ ξβ,

where a(X), b(X) ∈ R(X).

Following the terminology of [106, 110], we refer to the order on R defined above

as a term order instead of a monomial order although, in the case of R, it is exactly

the same as a monomial order on the polynomial ring R(X)[ξ].

Definition A.39 (initial term and initial ideal ofR). The initial term of a differential

operator l ∈ R with respect to a term order ≺ is

in≺(l) := aα(X)ξα ∈ R(X)[ξ],

where α is the largest multi-index with respect to ≺. For an ideal of R, its initial

ideal in≺(I) is defined as an ideal of R(X)[ξ] as follows:

in≺(I) := 〈{in≺(l) | l ∈ I}〉 ⊂ R(X)[ξ].

By using term orders and initial ideals defined above, Gröbner bases (Defini-

tion A.18), Macaulay’s theorem (Theorem A.2), and zero-dimensional ideals (Defini-

tion A.19) for the non-commutative ring R can be similarly defined.

Definition A.40 (Zero-dimensional ideal of R). Let I be an ideal in R. We call I

a zero-dimensional ideal in R if the quotient ring R/I is a finite-dimensional vector

space over R(X).
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Lemma A.7. An ideal I ⊂ Rn = R(X)〈∂〉 is zero-dimensional if and only if I ∩
R(X)〈∂i〉 6= {0} (i = 1, . . . , n).

For an ideal I ⊂ Rn and a smooth function f(X) = f(X1, . . . , Xn), we say that

f(X) is a solution of I or that I annihilates f(X) if l • f = 0 holds for all l ∈ I.

Definition A.41 (Holonomic function). Let f(X) be a holomorphic function at a

point X = a ∈ Cn. Then, f(X) is called a holonomic function if there exists a

zero-dimensional ideal of Rn that annihilates f(X).

The domain of definition of a holonomic function can be extended as stated in the

following theorem.

Theorem A.5. Let f(X) be a holonomic function. There exists a polynomial p such

that the function f can be analytically continued to the universal covering space of

Cn \ V(p).

A.3.3 Ideals of D and holonomic ideals

Contrary to the case of R, the definition of Gröbner bases for D is quite complicated.

Definition A.42 (Weight vector and order of differential operator). Let u, v ∈ Rn

be two vectors that satisfy ui + vi ≥ 0 for all i = 1, . . . , n, and the pair (u, v) is called

a weight vector. Let l ∈ D be a differential operator in canonical form:

l =
∑
β

aβ(X)∂β =
∑
(α,β)

aα,βX
α∂β, (A.13)

where aβ(X) =
∑

α aα,βX
α for each β. Then, the (u, v)-order is defined as

ord(u,v)(l) := max
{
u · α + v · β | α, β ∈ Zn

≥0, aα,β 6= 0
}
,

where (·) denotes the inner product.

Definition A.43 (Associated graded ring). For any weight vector (u, v), by rear-

ranging the variables, we can assume that there exists m ∈ {0, . . . , n} such that the

weight vector satisfies {
ui + vi = 0 (1 ≤ i ≤ m)

ui + vi > 0 (m+ 1 ≤ i ≤ n)
.

The associated graded ring gr(u,v)(Dn) of Dn with respect to a weight vector (u, v) is

the non-commutative ring

gr(u,v)(Dn) := Dm[Xm+1, . . . , Xn, ξm+1, . . . , ξn],

where Dm denotes the m-dimensional Weyl algebra in the variables X1, . . . , Xm.
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Example A.7. The associated graded ring gr(u,v)(Dn) is identical to the polynomial

ring in 2n variables R[X, ξ] when ui + vi > 0 holds for all i = 1, . . . , n.

Definition A.44 (Initial form). For a differential operator l ∈ Dn in canonical form

of (A.13), let E be the set of pairs of multi-indices (α, β) such that aα,β 6= 0. The

initial form of l with respect to (u, v) ∈ R2n is defined as

in(u,v)(l) :=
∑

(α,β)∈E
u·α+v·β=m

aα,β
∏

{i|ui+vi>0}

Xαi
i ξ

βi
∏

{i|ui+vi=0}

Xαi
i ∂

βi ∈ gr(u,v)(Dn).

Proposition A.3. For an ideal I ⊂ Dn and a weight vector (u, v) ∈ R2n, the set of

all finite linear combinations of initial forms {in(u,v)(l) | l ∈ I}, denoted by in(u,v)(I),

is an ideal of the associated graded ring gr(u,v)(Dn).

Definition A.45 (Initial ideal of D). For an ideal I ⊂ Dn, the ideal in(u,v)(I) ⊂
gr(u,v)(Dn) defined above is called the initial ideal of I with respect to a weight vector

(u, v) ∈ R2n.

Definition A.46 (Gröbner basis with respect to weight vector). For an ideal I ⊂ Dn
and a weight vector (u, v) ∈ R2n, a finite subset G ⊂ I is a Gröbner basis of I

with respect to (u, v) if it generates I and the initial forms {in(u,v)(g) | g ∈ G} ⊂
gr‘(u, v)(Dn) generates the initial ideal in(u,v)(I) ⊂ gr‘(u, v)(Dn).

In the end, we introduce holonomic ideals, which are the ideals of D corresponding

to the zero-dimensional ideals of R.

Definition A.47 (Holonomic ideal). Let 0 and 1 be two vectors in Rn whose com-

ponents are all 0 and 1, respectively. An ideal I ⊂ Dn is called holonomic if the Krull

dimension of its initial ideal with respect to a weight vector (0,1) is n, that is,

dim in(0,1)(I) = n.

Theorem A.6. For a zero-dimensional ideal I ⊂ R, the intersection I ∩ D is a

holonomic ideal in D.

Theorem A.7. Let I be a holonomic ideal in D, and let RI denote the following set

of differential operators:

RI := {a1l1 + · · ·+ asls | a1, . . . , as ∈ R; l1, . . . , lS ∈ I; s ∈ Z≥0}.

Then, RI is a zero-dimensional ideal in R.
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Appendix B

Proofs of Lemmas and Theorems

B.1 Sufficient optimality conditions for FHOCPs

with terminal constraints

We provide a proof of the following lemma, which is the basis of the sufficient con-

ditions for the existence and uniqueness of local optimal feedback laws, which are

introduced in Section 3.4 of Chapter 3.

Lemma B.1. For FHOCP (3.1)–(3.4), suppose that Assumption 3.1 holds and the

terminal constraint (3.4) satisfies the linear independence constraint qualification.

Then, for the sequences û[0:N−1] and p̂[0:N ] and the vector ν̂ whose existence is assumed

in Assumption 3.1, there exists a unique set of differentiable functions x[0:N ](x0),

u[0:N−1](x0), p[0:N ](x0), and ν [0:N ](x0) that satisfy xk(x̂0) = x̂k, uk(x̂0) = ûk, pk(x̂0) =

p̂k, νk(x̂0) = ν̂, the ELEs, and matrix inequalities (3.30) for all x0 in some neighbor-

hood of x̂0.

Now, let us consider the Lagrangian function of the FHOCP, defined as

J̄ :=φ(xN) + ν>ψ(xN)

+
N−1∑
k=0

[
Hk(xk, uk, pk+1)− p>k+1xk+1

]
. (B.1)

and consider the second-order terms in its Taylor expansion at the point x̂[0:N ],

û[0:N−1], p̂[0:N ], and ν̂:

d2J̄ =
1

2
dx>N

[
∂2φ

∂x2
+ ν̂>

∂2ψ

∂x2

]
dxN

+
1

2

N−1∑
k=0

[
dxk
duk

]> [ ∂2Hk

∂x2
∂2Hk

∂x∂u
∂2Hk

∂u∂x
∂2Hk

∂u2

] [
dxk
duk

]
, (B.2)
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where dxk and duk are infinitesimal changes from x̂k and ûk, respectively. The se-

quence dx[0:N ] is defined by the sequence du[0:N−1] and the following linearized system:

dxk+1 =
∂fk
∂x

dxk +
∂fk
∂u

duk, (B.3)

dx0 = 0, (B.4)

∂ψ

∂x
dxN = 0, (B.5)

where the partial derivatives of fk and ψ in equation (B.3)–(B.5) are evaluated at

x̂[0:N ] and û[0:N−1]. Lemma B.1 can be deduced from a classical result in sensitivity

analysis [53] if a real number α > 0 exists such that

d2J̄ ≥ α

[
N−1∑
k=0

(
‖duk‖2 + ‖dxk+1‖2

)]
(B.6)

holds for any feasible sequences of infinitesimal changes dx[0:N ] and du[0:N−1]. There-

fore, we will prove that the premises in Lemma B.1 imply the positivity of d2J̄ under

constraints (B.3)–(B.5). To do so, we will make a change of variables:

η := ΓNyN , (B.7)

where yN := [du>0 · · · du>N−1 dx>1 · · · dx>N ]> ∈ RN(n+m) and ΓN ∈ RNm×N(n+m) is

defined as

ΓN :=

[
Zuu

[
Om×(N−1)n Om×n

Zux O(N−1)m×n

]]
(B.8)

and Zuu and Zux are

Zuu := block-diag
[
Z0
uu, . . . , Z

N−1
uu

]
∈ RNm×Nm,

Zux := block-diag[Z1
ux, . . . , Z

N−1
ux ] ∈ R(N−1)m×(N−1)n,

for the matrices Zk
uu, Z

k
ux (k = 0, . . . , N − 1) in Assumption 3.1, and Ol1×l2 is the

l1 × l2 zero matrix.

To prove Lemma B.1 by using the change of variables (B.7), we introduce the

following proposition. To simplify the notation, we abbreviate Zab(Sk+1, k) to Zk
ab.

Proposition B.1. Suppose that Assumption 3.1 holds. For any sequence du[0:N−1] ⊂
Rm and sequence dx[0:N ] ⊂ Rn defined by the linearized system (B.3)–(B.5), the

following statement holds.

ΓNyN = 0⇔ yN = 0. (B.9)
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Proof. Sufficiency (⇐) is trivial; thus, we will prove only necessity (⇒). The proof

is by induction for the optimization horizon N . First, for N = 1, the matrix Γ1 is

obtained as

Γ1 =
[
Z0
uu 0

]
, (B.10)

and y1 := [du>0 dx>1 ]>. From the inequality Z0
uu > 0 in Assumption 3.1, Γ1y1 = 0

implies du0 = 0, which also implies dx1 = 0 from the linearized state equation (B.3)

with dx0 = 0.

Next, suppose yN ′ = [du>0 · · · du>N ′−1 dx
>
1 · · · dx>N ′ ]> = 0. Then,

yN ′+1 = [0 · · · 0 duN ′ 0 · · · 0 dxN ′+1]

holds, and thus ΓN ′+1yN ′+1 = 0 implies

ΓN ′+1yN ′+1 =

[
0

ZN ′
uuduN ′

]
= 0. (B.11)

From the inequality Zk
uu > 0 in Assumption 3.1, ZN ′

uuduN ′ = 0 implies duN ′ = 0.

Accordingly, the linearized state equation (B.3) with dxN ′ = 0 also implies dxN ′+1 =

0. Therefore, the proof is completed by induction.

Now, we prove Lemma B.1 using Proposition B.1.

Proof. Consider the following quantity that is identical to zero for any sequence

du[0:N−1] and the sequence dx[0:N ] defined by (B.3)–(B.5):

1

2

N−1∑
k=0

[
dx>k+1Sk+1

(
∂fk
∂x

dxk +
∂fk
∂u

duk − dxk+1

)]
, (B.12)

where the matrices Sk ∈ Rn×n are defined in Assumption 3.1. By completing the

square, the sum of d2J̄ and the quantity (B.12) can be written as a quadratic form:

d2J̄ =
1

2
η>Z−1

uuη

+
1

2

N−1∑
k=0

dx>k

[
Zk
xx −

(
Zk
ux

)> (
Zk
uu

)−1
Zk
ux − Sk

]
dxk

+
1

2
dx>N

[
∂2φ

∂x2
+ ν̂>

∂2ψ

∂x2
− SN

]
dxN

+ dx>0

[
Z0
xx −

(
Z0
ux

)> (
Z0
uu

)−1
Z0
ux

]
dx0, (B.13)

where η = ΓNyN and yN = [du>0 · · · du>N−1 dx
>
1 · · · dx>N ]>. From (3.31) and (3.32), the

second and third terms on the right-hand side of (B.13) vanish, and from (B.4), the

fourth term also vanishes.
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Appendix B. Proofs of Lemmas and Theorems

Now, Assumption 3.1 guarantees that Zuu > 0, which implies the existence of a

real number β > 0 such that

d2J̄ =
1

2
η>Z−1

uuη ≥ β‖η‖2.

From Proposition B.1, a real number γ > 0 exists such that

γ = min‖yN‖=1‖ΓNyN‖2

holds or, equivalently, ‖ΓNyN‖2 ≥ γ‖yN‖2 holds for any yN defined by equations (B.3)–

(B.5). Therefore,

d2J̄ ≥ β‖η‖2 ≥ βγ‖yN‖2 = α

(
N−1∑
k=0

[
‖duk‖2 + ‖dxk+1‖2

])

holds for α := βγ > 0. The theorem thus follows from a classical result of sensitivity

analysis [53], the proof completes.

B.2 Necessary condition derived from the quadratic

penalty function method

In this section, we provide a proof of Theorem 6.1. This proof is a part of the proof

of Theorem 2.1 in [38] and is included here for the completeness of this thesis.

Proof. Let ε be such that the localized minimization problem (6.4) has a unique local

minimizer and r[1:∞] be a sequence of positive real numbers monotonically going to

infinity as k does. Since x̂ is an interior point of Bε, there exists an open subset U ⊂ Bε
including x̂. According to the generally accepted result for the quadratic penalty

function method [8], there exists a global minimizer sequence x[1:∞] ⊂ Bε of the

penalty function (6.3) that converges to the global minimizer x̂ ∈ Bε of the localized

COP (6.4). In particular, there exists a sufficiently large k∗ such that x[k∗:∞] ⊂ U

holds. In the problem settings of Chapter 6, the penalty function (6.3) is continuous,

and thus every xk for all k ≥ k∗ satisfies the stationary condition (6.5).
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[43] L. Menini and A. Tornambè, “Stabilization of polynomial nonlinear systems

by algebraic geometry techniques,” IEEE Transactions on Automatic Control,

vol. 60, no. 9, pp. 2482–2487, 2015.

[44] T. Yuno and T. Ohtsuka, “Lie derivative inclusion with polynomial output

feedback,” Transactions of the Institute of Systems, Control and Information

Engineers, vol. 28, no. 1, pp. 22–31, 2015.

[45] T. Yuno, E. Zerz, and T. Ohtsuka, “Invariance of a class of semi-algebraic sets

for polynomial systems with dynamic compensators,” Automatica, vol. 122,

Article 109243, 2020.

[46] H. Nakayama, K. Nishiyama, M. Noro, K. Ohara, T. Sei, N. Takayama, and

A. Takemura, “Holonomic gradient descent and its application to the Fisher-

Bingham integral,” Advances in Applied Mathematics, vol. 47, no. 3, pp. 639–

658, 2011.

124



Bibliography

[47] S. G. Nash, “SUMT (revisited),” Operations Research, vol. 46, pp. 763–775,

1998.

[48] E. H. Fukuda and M. Fukushima, “A note on the squared slack variables tech-

nique for nonlinear optimization,” Journal of the Operations Research Society

of Japan, vol. 60, no. 3, pp. 262–270, 2017.

[49] P. Scokaert, J. Rawlings, and E. Meadows, “Discrete-time stability with per-

turbations: application to model predictive control,” Automatica, vol. 33, no.

3, pp. 463–470, 1997.

[50] F. L. Lewis, D. L. Vrabie, and V. L. Syrmos, Optimal Control, John Wiley &

Sons, 3rd edition, 2012.

[51] I. A. Fotiou, P. Rostalski, P. A. Parrilo, and M. Morari, “Parametric optimiza-

tion and optimal control using algebraic geometry methods,” International

Journal of Control, vol. 79, no. 11, pp. 1340–1358, 2006.

[52] H. Iwane, A. Kira, and H. Anai, “Construction of explicit optimal value func-

tions by a symbolic-numeric cylindrical algebraic decomposition,” Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial In-

telligence and Lecture Notes in Bioinformatics), vol. 6885 LNCS, pp. 239–250,

2011.

[53] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,

Springer, 2000.

[54] D. A. Cox, J. B. J. Little, and D. O’Shea, Using Algebraic Geometry, Springer-

Verlag, 2nd edition, 2005.

[55] M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Springer-

Verlag, 2000.

[56] P. R. Graves-Morris, “The numerical calculation of Padé approximants,”
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tation, Carnegie Mellon University, 2009.

[79] M. Kauers, “The holonomic toolkit,” C. Schneider and J. Bluemlein eds. Com-

puter Algebra in Quantum Field Theory, Integration, Summation, and Special

Fcuntions, Springer-Verlag, pp. 119–144, 2013.

127



Bibliography

[80] T. Oaku, Y. Shiraki, and N. Takayama, “Algebraic algorithms for D-Modules

and numerical analysis,” Computer Mathematics (Proceedings of ASCM 2003),

vol. 10, pp. 23–39, 2003.

[81] M. Saito, B. Sturmfels, and N. Takayama, Gröbner Deformations of Hyperge-

ometric Differential Equations, Springer-Verlag, 2000.

[82] M. Noro, N. Takayama, H. Nakayama, K. Nishiyama, and K. Ohara,

“Risa/Asir: A computer algebra system,” http://www.math.kobe-u.ac.jp/

Asir/asir-ja.html, 2020.

[83] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research

in algebraic geometry,” http://www.math.uiuc.edu/Macaulay2/, 2020.

[84] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “Singular 4-2-

0 —A computer algebra system for polynomial computations,” http://www.

singular.uni-kl.de, 2020.

[85] M. P. Deisenroth, Efficient Reinforcement Learning Using Gaussian Processes,

KIT Scientific Publishing, 2010.

[86] J. M. Mart́ınez and B. F. Svaiter, “A practical optimality condition without

constraint qualifications for nonlinear programming,” Journal of Optimization

Theory and Applications, vol. 118, pp. 117–133, 2003.

[87] R. Andreani, J. M. Mart́ınez, and B. F. Svaiter, “A new sequential optimality

condition for constrained optimization and algorithmic consequences,” SIAM

Journal on Optimization, vol. 20, no. 6, pp. 3533–3554, 2010.

[88] M. Bierlaire, Optimization: Principles and Algorithms, EPFL Press, 1st edi-

tion, 2015.

[89] R. Andreani, N. S. Fazzio, M. L. Schuverdt, and L. D. Secchin, “A sequential

optimality condition related to the quasi-normality constraint qualification and

its algorithmic consequences,” SIAM Journal on Optimization, vol. 29, no. 1,

pp. 743–766, 2019.

[90] C. Kanzow, D. Steck, and D. Wachsmuth, “An augmented Lagrangian method

for optimization problems in Banach spaces,” SIAM Journal on Control and

Optimization, vol. 56, no. 1, pp. 272–291, 2018.

128



Bibliography

[91] N. Andreasson, A. Evgrafov, and M. Patriksson, An Introduction to Contin-

uous Optimization: Foundations and Fundamental Algorithms, Dover Publica-

tions, 2020.

[92] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Un-

constrained Minimization Techniques, Wiley, 1968.

[93] A. F. Izmailov and M. V. Solodov, “Optimality conditions for irregular

inequality-constrained problems,” SIAM Journal on Control and Optimiza-

tion, vol. 40, no. 4, pp. 1280–1295, 2002.

[94] E. R. Avakov, A. V. Arutyunov, and A. F. Izmailov, “Necessary conditions for

an extremum in a mathematical programming problem,” Proceedings of the

Steklov Institute of Mathematics, vol. 256, no. 1, pp. 2–25, 2007.

[95] O. Brezhneva and A. A. Tret’yakov, “When the Karush-Kuhn-Tucker Theo-

rem Fails: Constraint Qualifications and Higher-Order Optimality Conditions

for Degenerate Optimization Problems,” Journal of Optimization Theory and

Applications, vol. 174, no. 2, pp. 367–387, 2017.

[96] L. Robbiano and J. Abbott, Approximate Commutative Algebra, Springer-

Verlag, 2010.

[97] A. Terui, “GPGCD: An iterative method for calculating approximate GCD of

univariate polynomials,” Theoretical Computer Science, vol. 479, pp. 127–149,

2013.

[98] R. Krone, “Numerical algorithms for dual bases of positive-dimensional ideals,”

Journal of Algebra and its Applications, vol. 12, no. 6, pp. 1–21, 2013.

[99] S. Telen, B. Mourrain, and M. Van Barel, “Truncated normal forms for solving

polynomial systems,” ACM Communications in Computer Algebra, vol. 52,

no. 3, pp. 78–81, 2018.

[100] E. Kaltofen, J. P. May, Z. Yang, and L. Zhi, “Approximate factorization of mul-

tivariate polynomials using singular value decomposition,” Journal of Symbolic

Computation, vol. 43, no. 5, pp. 359–376, 2008.

[101] A. Leykin, “Numerical algebraic geometry,” The Journal of Software for Al-

gebra and Geometry, vol. 3, pp. 5–10, 2011.

129



Bibliography

[102] M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2, Springer-

Verlag, 1st edition, 2005.

[103] J. M. Peña and T. Sauer, “On the multivariate Horner scheme,” SIAM Journal

on Numerical Analysis, vol. 37, no. 4, pp. 1186–1197, 2000.

[104] P. M. Cohn, Introduction to Ring Theory, Springer-Verlag, 2000.

[105] S. C. Coutinho, A Primer of Algebraic D-Modules, Cambridge University Press,

1995.
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