
Energy-Efficient On-Chip Cache Architectures and
Deep Neural Network Accelerators Considering

the Cost of Data Movement

Hongjie Xu

March 3, 2021

i

Acknowledgments

I would first like to thank my thesis advisor Prof. Hidetoshi Onodera. The door to
Prof. Onodera office was always open whenever I ran into a trouble spot or had a question
about my research or writing. Prof. Onodera consistently allowed this thesis to be my
own work, but steered me in the right direction whenever he thought I needed it.

I would like to thank Profs. Takashi Sato, Eiji Oki, and Sadao Kurohashi for valuable
comments that greatly improved the manuscript.

I wish to express my sincere appreciation to my supervisor, Prof. Tohru Ishihara, who
convincingly guided and encouraged me to be professional and do the right thing even
when the road got tough during my master course. Without his persistent help, the goal
of this PhD thesis would not have been realized.

I would also like to thank Shiomi sensei who was involved in the validation survey for
this research project for introducing me to the topic as well for the support on the way.
Without their passionate participation and input, the validation survey could not have been
successfully conducted.

The physical and technical contribution of “WISE Program, Innovation of Advanced
Photonic and Electronic Devices” is truly appreciated. Through the program, I have learned
a lot about research methodology and various interdisciplinary knowledge. Without their
financial support and funding, I would not have been able to graduate in time.

Finally, I must express my very profound gratitude to my parents and to my labmates
for providing me with unfailing support and continuous encouragement throughout my
years of study and through the process of researching and writing this thesis. This
accomplishment would not have been possible without them. Thank you.

Hongjie Xu
in Kyoto

March 3, 2021

ii

iii

Abstract

Energy-Efficient Cache Architectures and Deep Neural Network
Accelerators Considering the Cost of Data Movement

by

Hongjie Xu

Doctor of Philosophy in Informatics

Kyoto University

Professor Hidetoshi Onodera, Chair

In data processing, the cost of data movement often dominates the hardware perfor-
mance. Based on factors that affect the prediction capability of the cost of data movement,
this thesis investigates representative types of processing tasks as general-purpose process-
ing and special-purpose processing such as Deep Neural Network. This thesis discusses
data properties that influence data movement in each processing task. Taking advantage
of the proposed properties, this thesis designs four hardware designs to reduce the cost of
data movement for various processing tasks.

For general-purpose processing which has a completely unpredictable data access
pattern, this thesis proposes an energy-efficient hybrid cache memory system to exploit
the non-linear relationship between the cache miss rate and the cache capacity. As the
cache capacity increases from 0, the cache miss rate decreases rapidly as the capacity rises
because there is no enough space to store all the data that is expected to be accessed in
the near future by CPU. When the cache capacity exceeds a certain capacity, the cache
miss rate decreases at a slower rate. According to the non-linear relationship, a hybrid
2-level on-chip cache architecture is first introduced as a replacement of a normal SRAM
cache architecture to save the energy consumption. This thesis then discusses a method for
finding the best mix of Standard-Cell Memory and SRAM, which minimizes the energy
consumption of the hybrid cache under a cache area constraint. The simulation result

iv

shows a hybrid 2-level cache architecture by our method reduces the energy consumption
by 68% in our case study of an instruction memory subsystem without increasing the die
area.

In Deep Neural Network, which has a large data scale but a regular access pattern, this
thesis introduces hardware properties to describe the precise cost of data movement in each
memory hierarchy. Based on hardware properties, this thesis proposes a DNN accelerator
for large-scale processing with a regular access pattern in DNN and a set of evaluation
metrics that are able to evaluate the number of memory accesses and the required memory
capacity according to a specialized processing dataflow. Proposed metrics are able to
analytically predict the energy, the throughput, and the area of a hardware design without
a detailed implementation. Once the processing dataflow and constraints of hardware
resources are determined, the proposed evaluation metrics quickly quantify expected
hardware benefits, thereby reducing design time.

In a sparse Deep Neural Network, an irregular data access pattern caused by spar-
sity brings great challenges to efficient processing accelerators. Focusing on the index-
matching property in Deep Neural Network, this thesis aims to decompose sparse Deep
Neural Network into easy-to-handle processing tasks to maintain the utilization of process-
ing elements. According to the proposed sparse processing dataflow, this thesis proposes
an efficient hardware accelerator called MOSDA to deal with the irregular data access
pattern in sparse DNN. MOSDA can be effectively applied for operations of convolutional
layers, fully-connected layers, and matrix multiplications. Compared to state-of-the-art
neural network accelerators, MOSDA achieves 1.1× better throughput and 2.1× better
energy efficiency than Eyeriss v2 in sparse Alexnet in our case study.

Focusing on the relationship between the memory capacity and the number of required
memory accesses in Binary Neural Network which has a small data scale and a regular
access pattern, this thesis utilizes a hybrid memory system to reduce energy consump-
tion. According to the proposed processing dataflow, this thesis proposes an efficient
hardware accelerator for small-scale processing with a regular access pattern in BNN
processing. The proposed BNN accelerator can be effectively applied for operations of
convolutional layers, and fully-connected layers. Compared to state-of-the-art binary con-
volutional accelerators, the proposed architecture achieves 1.4× better energy efficiency
than ChewBaccaNN in Alexnet in our case study.

CONTENTS v

Contents

Acknowledgments i

Abstract iii

1 Introduction 1
1.1 Background . 1

1.1.1 Energy-efficient Hardware Design 1
1.1.2 The Cost of Data Movement . 1
1.1.3 Memory Hierarchy Design . 2
1.1.4 Processing Task Classification for Data Movement Evaluation . . 3

1.2 Motivation . 4
1.2.1 Multi-Level Cache Architectures for General-Purpose Processing 4
1.2.2 Hardware Designs for Special Purpose Processing 5

1.3 Thesis Contribution . 7
1.4 Thesis Organization . 8

2 Hybrid Cache Memory for General-Purpose Processing 9
2.1 Introduction . 9
2.2 On-chip Memory System for Ultra Low Energy Computing 11

2.2.1 Related Work . 11
2.2.2 Standard-Cell Memory . 12
2.2.3 Relationship between Miss Rate and Cache Capacity 13
2.2.4 Motivational Example . 13

2.3 Energy-Efficient Hybrid Cache System 14
2.3.1 2-Level Hybrid Cache System 14
2.3.2 Problem Definition . 16

2.4 Verification of Hybrid Cache for 65nm RISC-V Processors 17
2.4.1 Evaluation Setup . 18

vi CONTENTS

2.4.2 Experimental Results . 20
2.4.3 Applicable Range Analysis . 24

2.5 Summary . 27

3 DNN Accelerator Designs for Large-Scale Processing with Regular Access
Pattern 29
3.1 Introduction . 29
3.2 Background . 31

3.2.1 DNN Processing . 31
3.2.2 Data Reuse in DNN . 33
3.2.3 Subtasks in DNN Processing . 34
3.2.4 Motivational Example . 36
3.2.5 Design Space Exploration for DNN Accelerators 38

3.3 DNN Dataflow to Reduce the Cost of Data Movement 39
3.3.1 Properties for the Cost of Data Movement in DNN Processing . . 39
3.3.2 Related Work . 41
3.3.3 Proposed Dataflow . 43

3.4 Experimental Results for the Proposed Dataflow 48
3.5 Analytical Hardware Evaluation Model 54
3.6 Dataflow Comparison . 58

3.6.1 Dataflow for Convolutions . 58
3.6.2 Dataflow for Matrix Multiplications 60

3.7 Hardware Design Evaluation . 62
3.8 Summary . 66

4 Sparse DNN Accelerator for Irregular Data Access Pattern 71
4.1 Introduction . 71
4.2 Background . 72

4.2.1 Sparse DNN Processing . 72
4.2.2 Motivational Example . 73
4.2.3 Processing Dependency in DNN 74
4.2.4 Related Work . 76

4.3 Sparse DNN Processing Dataflow . 77
4.4 MOSDA Architecture Based on Matching Type 79
4.5 Experimental Results . 83
4.6 Summary . 91

CONTENTS vii

5 BNN Accelerator for Small-Scale Processing with Regular Access Pattern 93
5.1 Introduction . 93
5.2 Background . 95

5.2.1 BNN Processing . 95
5.2.2 Motivational Example . 95
5.2.3 Related Work . 97

5.3 Proposed Architecture . 98
5.3.1 Processing Dataflows . 98
5.3.2 Hardware Architecture . 99

5.4 Experimental Results . 101
5.5 Summary . 106

6 Conclusion 107
6.1 Summary of This Thesis . 107
6.2 Future Work . 108

Bibliography 109

Publication List 121

1

Chapter 1

Introduction

1.1 Background

1.1.1 Energy-efficient Hardware Design

1.1.2 The Cost of Data Movement

In Big Data Era, with ever-increasing demands for Internet-of-Things (IoTs) endpoint
devices, energy-efficient System-on-Chips (SoCs) are highly required [1]. Those endpoint
devices, or sometimes called edge devices, are interconnected with each other, enabling
autonomous processing and communication of gathered data from the target. Endpoint
devices employ not only multiple sensors, but also a small processor, which is mainly
used for processing near-sensor data gathered by sensors. Since most endpoint devices are
battery-powered, edge devices with an energy-efficient processor are highly required.

Inside a processor, the energy of data movement between memories is expected to
be two orders of magnitude higher than the energy of double-precision floating-point
operations [2]. As a result, the cost of data movement often dominates the energy
consumption of an entire digital hardware processing system [2, 3]. The cost of data
movement describes the energy consumption of data transmission between memories.
The cost of data movement in a hardware architecture is determined by two factors: the
number of memory accesses and the access energy to memories. In memory designs, the
access cost is directly related to the memory capacity. We can evaluate the cost of data
movement required to execute a processing task, once the target processing task and the
corresponding hardware structure are determined. Considering a specified processing task
such as a Deep Neural Network (DNN) processing, Ref. [4] proposes a property called
data reuse to expose the precise number of memory accesses, which is to describe the

2 Chapter 1. Introduction

number of accesses to the same data during the processing. Based on data reuse, previous
works [5–9] build evaluation models to estimate the cost of data movement. However,
data reuse is difficult to describe another important factor for data movement, which is the
required memory capacity. As a result, data reuse is difficult to help design accelerators
to reduce the cost of data movement.

1.1.3 Memory Hierarchy Design

In order to estimate the cost of data movement, this thesis investigates the memory
architecture at first. In a modern processing architecture, the memory hierarchy separates
a memory system into a hierarchy. The memory hierarchy uses a memory storage layer
based on different access speed to memory data [10]. For the memory hierarchy in
high-performance computers, the highly requested data is stored in a high-speed memory,
allowing a central processing unit (CPU) core for faster access. The traditional memory
hierarchy design is to accelerate operations by exploiting the locality of reference [11]
to reduce the cost of data movement. An on-chip memory hierarchy acts as the buffer
between CPU and main memory, which is used to hold parts of data which are expected
to be accessed by CPU in a near future. As a result, many researchers have designed a
memory architecture for CPU acceleration based on the locality of reference to reduce the
number of accesses to time-consuming memories.

The dynamic energy consumption of a memory is also directly proportional to the
number of memory accesses. If we focus on improving the energy efficiency of a single
access at a memory level with a high number of accesses, we can also expect to reduce
overall energy consumption at a low cost.

The energy of data movement can be deduced from the memory capacity and the
number of memory accesses in a memory hierarchy. However, the target processing task
sometimes makes it difficult to accurately evaluate the number of memory accesses and
the memory capacity in a memory hierarchy. First, an irregular data access pattern makes
it difficult to make an accurate assessment of the required memory accesses. Second, the
data scale of a processing target affects the difficulty of the reduction for data movement
on-chip. If the data scale is small enough that all data can be stored on-chip, we can
reduce the movement for all data during processing. If the data size is too large, there
will be an inability for on-chip memories to keep all data. Therefore we may be forced
to make trade-offs and can only partially reduce the cost of on-chip data movement. This
leads to different hardware processing strategies for small-scale processing and large-scale
processing.

1.1. Background 3

1.1.4 Processing Task Classification for Data Movement Evaluation

If we know precisely the memory capacity and the required number of memory accesses
at each memory level for the target processing, we can estimate the cost of data movement
required accurately and design the energy-efficient hardware. However, the difficulty and
feasibility of predicting the cost of data movement vary in different processing tasks.

The data access pattern determines the feasibility of the evaluation of the cost of data
movement in a target processing task. If the data access pattern is regular and fixed, we
accurately evaluate the cost of data movement. If the data access pattern within the task
is unpredictable, we can hardly make an accurate evaluation for the required number of
memory accesses.

A hardware architecture is considered to handle an unpredictable data access pattern of
processing tasks if it is designed to be a general-purpose processing hardware architecture.
In this case, we are able to obtain performance gains to exploit the locality of reference
which is a statistical property to describe that the processing unit tends to access the same
memory location repetitively in a short time.

If the hardware architecture is designed to execute a particular type of processing task
such as DNN processing, energy-efficient hardware designs could be designed to exploit
a processing property inherent to a regular data access pattern. This thesis proposes DNN
accelerators to exploit data properties in DNN processing. Since the access pattern is
fixed and regular, we can build an evaluation model to accurately calculate the cost of
data movement under different hardware structures. However, due to the large data size of
DNN processing, it is often difficult to design a hardware architecture that stores all data
to reduce the cost of data movement on-chip. Therefore, we need to design an evaluation
model to guide us to make the trade-off between the reduction of the on-chip memory
capacity and the reduction of off-chip memory accesses.

Different from dense DNN, sparse DNN has an irregular data access pattern due to
its data sparsity. Previous DNN acceleration structures often need to skip zero-related
operations in order to efficiently exploit the data sparsity to save energy. The unpredictable
zero position leads to an irregular data access pattern. Fortunately, the irregular access
pattern of sparse DNN is not completely unpredictable as in the case of general-purpose
processing. We can decompose a sparse processing task into small tasks with a regular
access pattern by a well-designed processing dataflow. As a result, we can design an
energy-efficient hardware accelerator based on its data movement evaluation model.

Binary Neural Network (BNN) is with a regular access pattern and also a small data
scale. For BNN processing, it is possible to design an energy-efficient memory hierarchy

4 Chapter 1. Introduction

to reduce the cost of data movement, since all data can be stored on-chip [12]. As a
result, we have an opportunity to design an energy-efficient memory hierarchy design that
matches processing properties.

1.2 Motivation

This section introduces motivation in this thesis. Section 1.2.1 introduces motivation
in Chapter 2, which targets data movement reduction in general-purpose processing. The
first part of section 1.2.2 introduces motivation in Chapter 3, which targets data movement
reduction in accelerators in DNN processing. The second part of section 1.2.2 introduces
motivation in Chapter 4, which targets data movement reduction in sparse DNN processing.
The third part of Section 1.2.2 introduces the motivation of Chapter 5, which focuses on
data movement reduction of accelerators in BNN processing.

1.2.1 Multi-Level Cache Architectures for General-Purpose Process-
ing

In general-purpose processing, since there is no way to know what a task to be
processed will be, the data access pattern for processing will be unpredictable. Considering
an irregular data access pattern, employing caches in hardware designs is one of the
most effective approaches to improve both energy efficiency and performance [13–15].
Therefore, a cache architecture is implemented into most commercial processors. The
on-chip cache architecture is a major component in edge processors that dominates the
entire energy consumption and performance. Ref. [3] shows that a memory hierarchy
including caches consumes half of the total energy consumption of embedded processors.
While these nominal on-chip caches significantly improve processing performance, they
also occupy a large portion of chip area [16, 17]. Therefore, achieving cache architectures
with high energy and area efficiency is a must.

A key insight is that the relationship between the cache miss rate and the capacity
is non-linear, which means that when a cache capacity increases, the miss rate usually
drops sharply first and then converges. The implication is that the energy consumption in
an overall memory hierarchy can be reduced by replacing a high-density memory with a
low-density yet more energy-efficient memory under a given area constraint. Replacing
the entire memory with an energy-efficient low-density memory will result in a significant
loss of the cache capacity, which is due to an unacceptable miss rate of the on-chip cache.
Therefore, we consider inserting a small Level 0 (L0) cache between the CPU and the Level

1.2. Motivation 5

1 (L1) cache. Since a small cache has a short critical path, related works utilize the L0
cache to achieve high-speed processing [18–21]. Different from previous works, this thesis
attempts to reduce the overall energy consumption of memory access by implementing
the energy-efficient memory in a small but frequently accessed L0 cache.

1.2.2 Hardware Designs for Special Purpose Processing

In general-purpose processing, it is often difficult to specify the access patterns for each
data. This unpredictability makes it difficult to design an energy-efficient hardware which
reduces the cost of data movement. The data access pattern in a special-purpose processing
task is often explicit. As a representative example of special-purpose processing, the
processing hardware of DNN typically uses massively parallel processing to increase the
throughput of DNN accelerators. Massively parallel data movement poses two challenges
for hardware designs. First, large-scale data movement in DNN processing would pose a
significant energy challenge. In order to adapt to a battery-powered terminal processing
environment, we should utilize data properties to minimize the cost of data movement.
Second, large-scale parallel processing will also bring challenges to the scheduling of
parallel data transmission. It poses a challenge for control logics of cache designs to
decide where each data will be distributed in parallel at which time. As a result, many
DNN accelerators abandon the use of cache designs in favor of scratchpad memories for
data movement in DNN processing [22–35].

Considering the factors that affect the prediction capability for the data movement,
DNN processing tasks can be further classified into several tasks. First, the data access
pattern is considered to determine the feasibility of an evaluation of the cost of data
movement in the target DNN. If the data access pattern is regular and fixed such as dense
DNN processing, the cost of data movement can be accurately evaluated. If the data
access pattern within a parallel processing task is irregular such as sparse DNN, it is hard
to estimate the required number of memory accesses accurately. Second, the data scale of
a processing task is considered to affect the evaluation of the number of memory accesses
and the memory capacity. If the data scale of a target program such as BNN processing is
small enough that all data can be stored on-chip, the memory structure required for data
processing is usually simple and clear. If the data size of a target program is larger than
an on-chip memory storage capability, the data movement is more complex and difficult
to be precisely evaluated. As a result, this thesis divides DNN processing tasks into dense
DNN, sparse DNN, and BNN for a more accurate estimation of data movement.

DNN Accelerator for Large-Scale Processing with Regular Access Pattern

6 Chapter 1. Introduction

A DNN hardware accelerator relies on parallel processing of multiplications and
additions for throughput enhancement. In order to evaluate the precise data movement
during DNN processing, Ref. [27] introduces a detailed concept of data reuse of input
feature maps (ifmaps), weights, and output feature maps (ofmaps). The number of data
reuse is defined as “the number of multiply-and-accumulations (MACs) that use the same
piece of data”. More specifically, the data reuse of an ifmap pixel is defined by the
number of occurrences of the same ifmap pixel in DNN processing. The data reuse of a
weight is defined similarly. The number of data reuse of an ofmap pixel is defined as the
number of product terms in one ofmap pixel in DNN processing [4]. However, since data
reuse describes the number of memory accesses but not the access cost to each memory
hierarchy, it is difficult for data reuse to directly compare the cost of data movement
in different hardware architectures. This thesis proposes properties that can be used to
describe the number of memory accesses and the memory capacity in DNN processing
that can accurately describe the memory hierarchy.

Sparse DNN Accelerator for Irregular Data Access Pattern
The sparsity of weights and ifmaps can be utilized by gating or skipping operations,

thereby improving energy efficiency. In order to further enhance throughput by sparsity,
a complex control logic is usually inevitable according to the irregularity of weights and
ifmaps in sparse DNN. For achieving high Processing Element (PE) utilization, we will
propose a method that aims to directly infer the number of operations from the number of
loaded non-zero ifmap pixels and the number of loaded non-zero weights so that we can
easily arrange weights and ifmap pixels required for massively parallel processing. We
should fetch just the right amount of input data, thereby maximizing PE utilization with a
simple control logic. This thesis focuses on data dependency between ifmaps and weights
to evaluate its impact on the number of required operations for sparse DNN.

BNN Accelerator for Small-Scale Processing with Regular Access Pattern
By reducing a 32-bit floating-point arithmetic to a binary arithmetic, BNNs achieve

significant energy reduction and performance improvements over traditional Convolution
Neural Networks (CNNs). Unlike general-purpose processing, data access patterns in
BNNs are regular. The data scale in BNN is also usually small enough that all data can be
stored on-chip. Therefore, this thesis proposes a hardware design of an energy-efficient
on-chip memory system for data in BNNs.

This thesis adopts the Near-Threshold (NT) memory structure [18], which is more
energy-efficient than SRAM, as one level of an on-chip memory hierarchy to reduce
the overall energy consumption. Considering the area overhead of an NT memory, we
integrate a larger SRAM-based buffer, which is more area-efficient, to store all data for

1.3. Thesis Contribution 7

BNN processing.

1.3 Thesis Contribution

This thesis aims to propose energy-efficient cache architectures and DNN accelerators
by reducing the cost of data movement in various processing tasks. This thesis selects
two representative processing tasks, which consist of general-purpose processing and
DNN processing. This thesis discusses the processing properties that may affect the cost
of data movement in each situation. Considering the cost of the data movement, this
thesis designs four energy-efficient hardware designs to explore the effectiveness of data
processing properties to guide the direction of future hardware designs.

In general-purpose processing, an energy-efficient hybrid cache architecture design is
proposed to exploit the nonlinear relationship between the cache miss rate and the capacity.
The simulation result shows that the Standard-Cell Memory (SCM) based design has an
energy advantage over an SRAM-based design. Using SCM as the L0 cache, a 2-stage
hybrid cache architecture exhibits better energy consumption than a conventional SRAM-
based cache architecture in simulations.

In DNN processing, the data movement between memory and processing elements
consumes most of time, energy, and area. At the same time, the number of operations
in DNN processing is usually much larger than the scale of hardware resources. The key
idea is that a whole processing task can be divided into easy-to-handle small tasks to meet
the hardware sizes. Next, we focus on the small tasks for a fine-grained evaluation of the
cost of data movement. In this thesis, two hardware properties are investigated to describe
the required number of memory accesses and the memory capacity in each memory
hierarchy. Based on the two properties, this thesis proposes a DNN accelerator for large-
scale processing with a regular access pattern in DNN and a new set of hardware metrics to
analytically estimate energy, throughput, and area from processing dataflows. Based on the
analytical evaluation of various processing dataflows and various processing environments,
the proposed evaluation metrics can effectively evaluate processing dataflows without a
hardware implementation. Designers are able to use the proposed evaluation metrics to
significantly reduce hardware design effort.

This thesis also addresses a PE utilization problem in sparse DNN processing and
sparse DNN properties. The key idea is to directly infer the number of operations from
the number of loaded non-zero ifmap pixels and the number of loaded non-zero weights.
This thesis proposes an efficient hardware accelerator called MOSDA for an irregular data
access pattern in sparse DNN. MOSDA does not require complex control logic in sparse

8 Chapter 1. Introduction

DNN processing and speeds up the processing by skipping zero data. According to the
case study, MOSDA outperforms state-of-the-art CNN accelerators in sparse Alexnet.

This thesis further proposes a hybrid memory system with an energy-efficient memory
architecture for small-scale processing with a regular access pattern in BNN processing.
Based on dedicated dataflows for matrix multiplication and convolution, the proposed
hardware achieves energy-efficient processing in DNN processing without crossbar logic
for accumulating partial sums. The proposed architecture outperforms state-of-the-art
DNN accelerators in the case study of this thesis.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents an energy-efficient
cache architecture design based on properties that affect the hardware performance for
general-purpose processing. Chapter 3 discusses properties that determine the cost of
data movement in DNN processing. Based on the proposed properties, this thesis presents
a dense DNN accelerator and an analytical evaluation model. Chapter 4 discusses the
property that helps enhance the utilization of processing elements in sparse DNN process-
ing. This thesis further presents a sparse DNN accelerator handling irregularity. Chapter
5 discusses the memory hierarchy which is efficient for BNN processing. Based on the
proposed memory hierarchy, this thesis presents an energy-efficient BNN accelerator.
Chapter 6 concludes this thesis.

9

Chapter 2

Hybrid Cache Memory for
General-Purpose Processing

2.1 Introduction

In general-purpose processing, the data access pattern in a processing task is random.
However, there is still a statistical feature to describe the cost of data movement. The
principle of locality [11] is a property to describe that a processing unit tends to access
one same memory location repetitively in a short time. The cache design is one of the
most successful techniques to exploit the principle of locality. The hardware cache is
a small memory close to the processor that is used to store recently referenced data or
instructions to reduce the number of accesses to the external memory. CPU accesses the
cache directly. External memory is accessed only when the CPU accesses the cache and
data or instructions do not exist in the cache. The failed attempt to find data in the cache
is called a cache miss.

Fig. 2.1 introduces the relationship between the cache capacity and the miss rate.
When the cache capacity is increased from 0, the cache miss rate decreases rapidly since
there is still no enough space to store all data which is expected to be accessed in the near
future. When the cache capacity comes above a certain capacity, then the cache miss rate
decreases slower [13]. As a result, the relationship between the cache capacity and the
miss rate is non-linear [36, 37].

In a cache design, Level-0 (L0) caches have been proposed to improve perfor-
mance [18–21]. A tiny L0 cache architecture is placed between the Level-1 (L1) cache
and the CPU core. Since a small cache have a better access energy and an operating speed
than a large cache, the performance of the entire system can be improved. Since the CPU
core firstly accesses the L0 cache, the number of accesses for the energy-consuming L1

10 Chapter 2. Hybrid Cache Memory for General-Purpose Processing

Cache Capacity

Miss Rate

1

0

Miss rate hardly changes

Figure 2.1: The relationship between the cache capacity and the miss rate.

cache can be effectively reduced with an acceptable area overhead [20].

The access cost of the L0 cache has a decisive impact on the performance of an
entire memory system. Therefore, we should not only reduce the L0 cache capacity,
but also reduce the access energy of the L0 cache by adopting more energy-efficient
memory macros to replace conventional SRAM-based cache. Recently, the concept of
Near-Threshold Computing (NTC) has been emerged [18]. It downscales the supply
voltage from a nominal to a near-threshold voltage of MOSFETs. The dynamic energy
consumption can be quadratically reduced by a scaling technique. A traditional 6 Transistor
(6T) SRAM has a limitation to reduce energy since 6T-SRAM is hard to work at a near-
threshold voltage. In order to maintain the robustness in the Near-Threshold Voltage
(NTV) environment, memory macros usually use more complex peripheral circuits, or
larger-sized transistors, or auxiliary power supplies for read and write operations [37–42].
Standard-Cell Memory (SCM) is a representative which has low processing speed and
low area density, but inherent energy efficiency. Using SCM-based L0 cache can further
reduce the overall power consumption of the cache architecture. The large area overhead
is one major obstacle that prevents us from applying SCM to on-chip L0 memory. The
result is that the SCM-based design has a lower cache capacity due to lower area density,
and better energy performance with the same area constraint.

This chapter proposes a hybrid cache architecture which employs an energy-efficient
SCM-L0 cache and an area-efficient SRAM-L1 cache. Based on the trade-off between
cache capacity and energy efficiency, this chapter proposes a hybrid cache system with
a filter cache architecture which employs an energy-efficient low-voltage memory and a
conventional 6T-SRAM into the L0 cache and the L1 cache, respectively. Since the CPU
core frequently accesses the energy-efficient L0 cache, the energy consumption can be

2.2. On-chip Memory System for Ultra Low Energy Computing 11

effectively reduced. Since the L1 cache memory consists of 6T-SRAM with high area-
density, it reduces the number of accesses for an energy-consuming off-chip memory.
Compared with existing approaches on hybrid cache designs, the contribution of this
chapter is summarized as follows:

• This chapter proposes a hybrid cache hierarchy where energy-efficient Near-Threshold
memory and area-efficient 6T-SRAM are utilized as the L0 cache and the L1 cache,
respectively.

• This chapter contributes a framework for selecting an appropriate cache architecture
under given design constraints such as time and area constraints.

• For the first time, this chapter proposes an SCM-based L0 filter cache. This chap-
ter shows that the SCM-based L0 cache achieves 68% less energy consumption
compared with the SRAM-based L0 cache at near-threshold supply voltage in the
simulation case of this chapter. Although NT-SCM has a better energy efficiency
than NT-SRAM, NT-SCM is several times larger than NT-SRAM. However, due
to the non-linear relationship between the miss rate and the cache capacity, the
total energy consumption can be efficiently reduced by utilizing NT-SCM as the L0
cache. Applicable environments for the proposed hybrid cache are also analyzed.

The rest of this chapter is organized as follows. Section 2.2 presents a simple motiva-
tional example for the proposed hybrid memory structure. Section 2.3 presents a detailed
architecture of the proposed hybrid cache hierarchy. Section 2.4 analyzes applicable
environments for the proposed hybrid cache. Section 2.5 concludes this chapter.

2.2 On-chip Memory System for Ultra Low Energy Com-
puting

2.2.1 Related Work

Several researchers focus on the low-power design of the L0 cache [18–21]. Ref. [21]
uses a “victim” cache to reduce conflict misses and to further reduce the energy con-
sumption. Its strategy is to insert a fully-associative cache between direct-mapped L1
cache and lower-level cache. In Ref. [20], a 128-byte cache is utilized as a filter cache in
order to reduce the energy consumption at the cost of degrading the performance. Based
on [21] and [20], Ref. [18] proposes a reconfigurable energy-efficient cache architecture

12 Chapter 2. Hybrid Cache Memory for General-Purpose Processing

for a near-threshold operation. The proposed architecture is a multi-way cache where
an NT-SRAM and conventional 6T-SRAMs are utilized for one way and then the other
ways, respectively. By swapping most frequently-accessed codes into a way composed of
NT-SRAM, they obtain the energy reduction and maintain the performance at the same
time.

At the same time, a number of researches on an NT-tolerant memory reduce energy by
scaling a supply voltage down to a sub-threshold voltage [37, 38]. Some designs focus on
improving SRAM read and write stability. A single-ended 6T-SRAM can operate stably
below 200 mV at the cost of the area in comparison with the conventional 6T-SRAM [38].
A threshold-voltage (Vth) optimized SRAM which isolates a read path and a write path
operate stably at a 300 mV supply voltage with an acceptable area overhead [39, 43]. In
addition to enhancing the robustness of SRAM, many researchers also look for alternative
memory structures to SRAM: Spin-Transfer Torque Magnetic Random-Access Memory
(STT-RAM) demonstrates a possibility of replacing SRAM on Last Level Cache (LLC) in
multi-core systems [40]. For convenience, this chapter calls 6T-SRAM and 10T-SRAM
as 6T and 10T in the following, respectively.

2.2.2 Standard-Cell Memory

Nowadays, in order to guarantee a stable operation in the near-threshold region, SCM
has been studied as an alternative to SRAM. SCM, which consists of standard cells only,
operates even in sub-threshold regions [37, 41, 42]. The SCM has a fully digital structure
utilizing latch cells as storage elements. Fully digital structures are implemented in read
and write circuitry.

Inherently, SCM has a better dynamic energy efficiency than SRAM. A bit-line-based
read operation with a strong sense amplifier in SRAM results in a large effective capacitance
on bit-line in each readout/write operation. Since read operation is accompanied by
charging and discharging the bitline in every cycle, SRAM energy consumption is larger
than SCM without a bit-line structure. As a result, SCM exhibits better energy-efficiency
even than 10T-SRAM. However, the SCM area is about 3 × larger than that of full-custom
SRAM [37, 42].

Based on related researches above, this chapter uses a more energy-efficient but less
area-efficient SCM structure than NT-SRAM as the L0 filter cache to reduce the energy
consumption at a cost of slightly increasing a miss rate. This chapter focuses on the
non-linear relationship between the capacity and the miss rate to further reduce the energy
consumption of a total memory system.

2.2. On-chip Memory System for Ultra Low Energy Computing 13

2.2.3 Relationship between Miss Rate and Cache Capacity

An important point for this approach is that the relationship between the cache capacity
and the miss rate is non-linear [36]. Therefore, the energy composition can be reduced
by replacing SRAM with NT-SCM under a fixed area constraint even if the L0 capacity
decreases to one third.

If we simply replace all on-chip memories with NT-SCM, designers suffer from a huge
loss of the cache capacity. As a result, the processor has to access an energy-consuming
off-chip memory more often. As a trade-off, this chapter places a small NT-SCM-based
L0-filter cache between the L1 cache and the CPU. The purpose of the placement is
to divide the on-chip cache architecture into two parts, so that we can optimize them
separately: a) The cache energy efficiency per access from CPU; b) Reduction in the total
amount of off-chip memory accesses.

2.2.4 Motivational Example

A filter cache structure [20] is used as the research target in this motivational example.
To simplify the point of view, we assume that the total energy consumption of a cache
system only consists of the dynamic energy for on-chip caches in the example. All miss
penalties are set at 1 clock cycle to bring data into the on-chip cache.

Fig. 2.2 shows an example of three different memory configurations with a 6T-based
L0 cache, a 10T-based L0 cache, and an SCM-based L0 cache system as (a), (b), and
(c), respectively. The energy consumption per access and corresponding miss rate is also
written in the figure. It should be mentioned all cache systems occupy the same on-chip
area.

Since a 6T-based cache consumes more energy than low-voltage memories, this chapter
replaces 6T with an NT memory in the L0 filter cache. When we replace 6T with a lower-
area-density NT memory, the capacity is decreased, hence, the miss rate increases at the
same time. If we can make good use of the non-linear relationship between capacity and
miss rate, the energy overhead caused by the increase of the miss rate can be less than the
energy reduction caused by implementing the NT-tolerant memory to the L0 cache. Here
is a motivational example to explain the idea. The energy efficiency of the 10T-based
L0 cache is 3 × better than that of the 6T-based L0 cache. At the same time, with the
replacement of 6T with 10T, the L0 cache miss rate is only increased by 2% with the
regress of the cache capacity. As a result, the 10T-based L0 cache has a larger energy
reduction than the 6T-based one on the left in Fig. 2.3. As a result, the 10T-based L0 cache
system achieves 52% less energy consumption than the 6T-based L0 cache. Following the

14 Chapter 2. Hybrid Cache Memory for General-Purpose Processing

CPUCPU

4 MB DRAM4 MB DRAM

CPU

4 MB DRAM

8 kB SRAM 8 kB SRAM1 pJ 2%

0%

8 kB SRAM

2 kB SRAM

(a) (c)(b)

3%

0.1 pJ 0.5 kB SCM

Energy/access Miss rate

1 kB NT-SR A M 5%

8%

Same cache area

0.3 pJ

10 pJ

0.9 pJ

Figure 2.2: Three different cache architecture in the same on-chip area: (a) a 6T-based L0
cache, (b) a 10T-based L0 cache, (c) an SCM-based L0 cache.

same idea, using SCM instead of 10T, the miss rate is only increased by 3% but achieves
3 × more energy reduction than the 10T-based L0 cache. By replacing 10T with SCM,
28% total energy reduction is achieved compared with the 10T-based L0 cache.

2.3 Energy-Efficient Hybrid Cache System

In this section, we propose a hybrid cache structure to reduce the overall power
consumption of the memory system under a given area constraint.

2.3.1 2-Level Hybrid Cache System

A hybrid 2-level on-chip cache system is proposed which is shown in Fig 2.4. Since
the L0 cache has the highest access frequency and dominates the energy efficiency of
the entire memory system, the L0 cache is built up of SCM which shows better energy
efficiency than 10T SRAM. The L1 cache requires a larger capacity than the L0 cache to
limit the energy-consuming off-chip memory access. Therefore, the L1 cache is built up
of 6T-SRAM which shows better area efficiency than SCM. The rest of this chapter is to
find an energy-efficient combination of SCM and 6T-SRAM capacities that minimizes the
energy consumption of the entire cache system under various combinations of constraints.

Minimizing the L0 penalty enables a further energy reduction since it reduces the
number of L1 read cycles and L0 write cycles when the L0 cache misses. Therefore,
this chapter limits L0 cache penalty to 1 by an early restart technology [18], where a
requested code is sent to the L0 cache and CPU simultaneously when the L0 cache misses.

2.3. Energy-Efficient Hybrid Cache System 15

0

3

9
A

cc
e

ss
 E

n
e

rn
g

y
 [

p
J/

a
cc

e
ss

]

-52%

-28%

off chip

L1 cache

L0 cache

6T-SRAM

+6T-SRAM

10T-SRAM

+6T-SRAM

SCM

+6T-SRAM

6

12

15

Figure 2.3: Access energy comparison of an example architecture.

CPU

L0

SCM

L1

SRAM

Off-chip

Memory

Proposed Caching System

Chip

Figure 2.4: Proposed hybrid 2-level cache system consisting of an SCM-based L0 cache.

Since it only requires 1 cycle cache access, it has little penalty on energy consumption.
The optimization of set associativity and block size is beyond the scope of this chapter.
Therefore, this chapter specifies the caches discussed in Tab. 2.1. The associativity of the
L0 cache and the L1 cache is 2-way. The line sizes of the L0 cache and the L1 cache are
16 words/line and 64 words/line, respectively.

Table 2.1: Cache setup for verification in RISC-V processor.
Cache location. Associativity Line size Miss penalty

L0 2-way 16 words 1 clock
L1 2-way 64 words 64 clocks

16 Chapter 2. Hybrid Cache Memory for General-Purpose Processing

2.3.2 Problem Definition

The energy consumption of a cache system can be modeled using the write and the read
energy of a target memory. If a cache hit has occurred in the L0 cache, only read energy
for one L0 cache access is consumed. If a cache miss has occurred for the L0 cache access,
write energy in the L0 cache is consumed to write correct values back to the L0 cache.
Moreover, the cache system accesses the higher-level cache (i.e. L1 cache) to request
corresponding codes, which leads to extra energy overhead. In the same way, the energy
consumption of the entire cache system can be iteratively defined in accordance with miss
results of the L0/L1 cache and the off-chip memory access. The energy consumption per
access of the whole cache system (Etotal) can be expressed as follows:

Etotal = Eread + Ewrite + Eleak, (2.1)

where Eread, Ewrite and Eleak are energy consumption per access of the read energy, the
write energy, and the leakage energy, respectively. Eread is expressed as follows:

Eread = RL0 + RL1 · ML0 · PL0 + Roff · ML0 · ML1 · PL1, (2.2)

where RL0, RL1, Roff , ML0, ML1, PL0 and PL1 are L0 cache read energy per access, L1
cache read energy per access, off-chip memory read energy per access, L0 miss rate, L1
miss rate, L0 miss penalty and L1 miss penalty, respectively. The miss penalty is the
number of extra clock cycles introduced by the cache miss. For example, if the L0 cache
in Fig. 2.4 does not have instruction codes requested by CPU, a miss in the L0 cache
occurs. When the L0 cache copies instruction codes from the higher level cache (i.e., L1
cache) due to the L0 cache miss, CPU suspends its pipeline, which leads to extra clock
cycles introduced by the L0 cache miss. In the same way, the miss penalty for the L1
cache is defined as the number of clock cycles in which the L1 cache copies instruction
codes from the off-chip memory due to the L1 cache miss.

Ewrite is expressed as follows:

Ewrite = WL0 · ML0 · PL0 +WL1 · ML0 · ML1 · PL1, (2.3)

2.4. Verification of Hybrid Cache for 65nm RISC-V Processors 17

where WL0 and WL0 are L0 write energy per access and L1 write energy, respectively.

Eleak = EleakL0 + EleakL1 + Eleakoff, (2.4)

where EleakL0 , EleakL1 , Eleakoff are L0 cache leakage energy consumption per access, L1
cache leakage energy consumption per access and off-chip memory leakage energy con-
sumption per access.

The total access time is shown in Eq. (2.5):

T = (I + ML0 · PL0 + ML1 · PL1)/F ≤ Tconstraint, (2.5)

where I, F and Tconstraint are the total number of instruction cycles, frequency and time
constraint, respectively. Since the access time of NT memory is dominant in the proposed
cache system, this chapter assumes that F is the same as the operating speed of the L0
cache.

We assume that the total area of the cache system can be expressed as Eq. (2.6).

Atotal = AL0 + AL1 ≤ Aconstraint, (2.6)

where Atotal, AL0, AL1 and Aconstraint are the total area of the cache system, L0 cache area,
L1 cache area and area constraint, respectively. This chapter assumes that the area of each
cache is proportional to its capacity.

Under specific combination constraints, this chapter evaluates the energy consumption
of the hybrid 2-level cache system with combined NT memory and 6T-SRAM. We utilize
the analytical performance models Eq. (2.1) (2.5) (2.6) to find an energy-efficient combi-
nation of the L0 cache capacity, its VDD, and the L1 cache capacity. In order to reduce the
leakage energy consumption, the body bias (VBB) is also tuned in this chapter.

2.4 Verification of Hybrid Cache for 65nm RISC-V Pro-
cessors

This section evaluates a multi-level hybrid cache system implemented into a RISC-V
processor [44].

18 Chapter 2. Hybrid Cache Memory for General-Purpose Processing

D

Q
CLKB

WL

BL

WL

BL

WL

BL

WL

BL RBL

RWL

CLKB

(a) (c)(b)

CLK

CLK

Figure 2.5: Candidate cells: (a) Differential 6T-SRAM, (b) 10T-SRAM and (c) Standard-
Cell Memory.

2.4.1 Evaluation Setup

In order to verify the proposed hybrid cache system, a 2-level instruction hybrid cache
memory is designed using a 65-nm process technology as a case study. This chapter selects
a conventional 6T-SRAM, a 10T-SRAM, and an SCM-based L0 cache architecture.

Fig. 2.5 (a) shows a differential 6T-SRAM bit cell. As many papers point out, a stable
operation in readout and write can no longer be guaranteed in the NTV region [39][43][45].
10T-SRAM isolates read and write paths by providing two additional transistors in order
to guarantee a stable operation in the NTV region [43]. 10T makes separate optimization
available through isolating read and write operations. The specific method of isolation is to
add two NMOS transistors in Fig.2.5 (b) dedicated to read operations, which are controlled
by read word and read bit-line respectively to implement a single-ended read. This read
circuity determines the read stability of the 10T cell. Since read and write operations are
separated, we can independently improve the robustness of the write operation regardless
of read operations to make it stable at the NT voltage region.

However, the robustness of read and write are accompanied by penalties of area. Since
the read operation is single-ended, without differential sense amplifiers, 10T cells suffer
from a larger delay. Therefore, the size of the NMOS transistor on the read path must
be increased to mitigate delay penalties caused by the single-ended read operation. As a
result, NT-tolerant 10T has at least 66% area penalty compared to conventional 6T [43].
This chapter considers differential 10T-SRAM as a representative of NT-tolerant SRAMs.
Latch cells depicted in Fig. 2.5 (c) are implemented into SCM. Since SCM employs digital
structures only, it can stably operate in the NTV region. At the same time, SCM consumes
several larger area than SRAM due to its large readout logic.

Tab. 2.2 summarizes the comparison between three types of memory designs. When
the supply voltage is near the threshold voltage, leakage powers of 10T and SCM are

2.4. Verification of Hybrid Cache for 65nm RISC-V Processors 19

Table 2.2: Comparison between 6T-SRAM, 10T-SRAM and SCM.
1 kB mem. 6T-SRAM [15] 10T-SRAM [43] SCM [42]

Basis of results 65 nm model 65 nm AM 65 nm PLS
Supply voltage [V] 0.8 0.4 0.4

Freq. 1.3 GHz 586 kHz 30.6 MHz
Leak [pW/bit] 2.4 2.81 13

Dyn. Energy* [fJ/bit] 101 25.8 10.9
Cell area [µm2/bit] 1.6 2.9 8.0

Energy × Area 161.6 74.8 87.2

*: Average energy consumption (read and write operations).
AM: ASIC measurement. PLS: Post-layout simulation.

greatly increased. The area overhead of 10T and SCM over 6T are 64% and 500%,
respectively. The energy-area product is also listed in the table as a reference here.

To guarantee a stable signal transmission from the CPU core operating in the NTV re-
gion to the nominal-voltage 6T-SRAM, level shifters are implemented into corresponding
data paths. This chapter considers the effect introduced by the level shifter. The evaluation
is based on the level shifter proposed in [46]. The area of one level shifter is evaluated
based on the actual layout in the 65-nm process technology. The result shows that the area
of the level shifter is 6 µm2. Since the supply voltage for the CPU core is tuned depending
on a frequency constraint, this chapter evaluates the energy consumption and the delay of
the level shifter with HSPICE under various voltage conditions. For example, if the input
and the output voltages are 0.4 V and 0.8 V, respectively, the energy consumption and the
delay of the level shifter are 5 fJ and 1.8 ns, respectively. The overhead introduced by
level shifters is added to the performance models presented from Eq. (2.1) to Eq. (2.6).
For example, the area overhead of level shifters implemented into the L1 cache memory
is included in AL1 in (2.6).

As a summary, the following memories are used in the experiments:

• SCM: An SCM proposed in Ref. [42] is used as a representative of SCM. Area,
energy, and operating speed are evaluated through a post-layout gate-level simulation
in the commercial 65-nm process technology. The supply voltage is scaled from
0.4 V to 1.2 V. Body bias is scaled from −0.8 V to 0.4 V.

• 10T-SRAM: A 10T-SRAM model is used [43]. Supply voltage is scaled from 0.4 V
to 1.0 V. Body bias is fixed at 0 V.

• 6T-SRAM: The low power SRAM model in CACTI Ver. 7.0 is used to estimate the

20 Chapter 2. Hybrid Cache Memory for General-Purpose Processing

performance of SRAMs [15]. Supply voltage is fixed at 0.8 V. Body bias is fixed at
0 V.

• Off-chip memory : Main memory mode in CACTI Ver. 7.0 is utilized [15].

Since the energy consumption of 6T-SRAM, 10T SRAM, and SCM are evaluated by
the CACTI model, the ASIC measurement, and the post-layout simulation, respectively,
the delay and the energy consumption caused by the wiring capacity of the data line and
the selector are also included in the simulation of this chapter. In general, the performance
of a memory depends on its capacity. However, Ref. [43] presents measurement results
for a 32 kB capacity only. In order to estimate the delay and the energy consumption of
10T SRAM with various capacities, we utilize the capacity dependency of the 6T CACTI
model [15]. For example, let us consider a case where the capacity of 6T-SRAM is reduced
from 32 kB to 16 kB. Suppose the read energy determined by the 6T CACTI model is
reduced by 28% through the capacity reduction. This chapter assumes that the read energy
of 10T SRAM is also reduced by 28% if its capacity is reduced from 32 kB to 16 kB.

A code tracing log is firstly generated through a Register-Transfer-Level (RTL) simu-
lation for a RISC-V processor running benchmark programs. Note that the processor has
no cache memories in the log generation. Based on the code tracing log, the following
cache activity is calculated assuming that the processor employs the corresponding cache
system:

• The number of cache misses/hits,

• the number of cache read operations, and

• the number of cache write operations.

Combining the cache activity and the physical performance data for 6T-SRAM and NT-
tolerant memories, this chapter evaluates the entire performance (i.e., delay, energy con-
sumption, and area) of the target cache system. Note that this chapter does not consider
the effect of control logic circuits, and a tag memory assuming that the performance
of the NT-tolerant memory and the 6T-SRAM is a dominant source that determines the
performance of the entire cache system.

2.4.2 Experimental Results

This chapter focuses on the environment such as sensor networks where several ded-
icated applications are executed on the chips. Therefore, this chapter utilizes several

2.4. Verification of Hybrid Cache for 65nm RISC-V Processors 21

Phyiscal area of L0 cache [mm]
2

0.1 1

0.1 1

0.1 1

(c)

(a)

Emin

Emin

(b)

Emin
A

ve
ra

g
e

 E
n

e
rg

y
 p

e
r

a
cc

e
ss

 [
p

J]

Total energy L0 cache energy

L1 + main memory energy

5

1

4

0

3

2

2.5

0.5

2

0

1.5

1

1.5

0.3

1.2

0

0.9

0.6

Figure 2.6: Three energy consumption per access of the memory system against the L0
cache capacity of DCT program: (a) Hybrid cache system with 6T-based L0 cache, (b)
Hybrid cache system with 10T-based L0 cache, (c) Hybrid cache system with SCM-based
L0 cache.

commonly used four typical programs for wireless communications, including Discrete
Cosine Transform (DCT), Fast Fourier Transform (FFT), Secure Hash Algorithm 3 (KEC-
CAK), Secure Hash Algorithm (SHA), and a mixed program which executes four programs
sequentially, to evaluate the hybrid cache energy. This chapter refers to the mixed pro-
gram hereafter as MIX. This chapter follows the methodology discussed in Section 2.3.2
to find an energy-efficient hybrid cache solution under different constraints. This chapter
targets to find an energy-efficient hybrid cache system under a given area and frequency
constraint. This chapter adjusts capacities of the L0 cache and the L1 cache to meet the
area constraint. Therefore, by scaling VDD of the NT-L0 cache, this chapter minimizes the
total energy consumption of the cache system under the given time constraint.

The minimum energy point Emin can be found by considering the energy consumption
of the current level cache and the next level cache. If we utilize more energy-efficient

22 Chapter 2. Hybrid Cache Memory for General-Purpose Processing

but low-density memory, the value of Emin should be smaller. At the same time, the
required area to achieve Emin of the NT memory is also larger than Emin of 6T at the same
time. This chapter evaluates the energy consumption in DCT to illustrate the claim in
Fig. 2.6. The capacities of the L1 cache and the off-chip main memory are set as 16 kB
and 4 MB, respectively. When the area of the L0 cache is greater than 0.1 mm2, the miss
rate tends to be convergent. Therefore, when using the 6T-based cache to execute the
program, the capacity of the L0 cache reaches 4 kB when the area is less than 0.1mm2.
The reason is that the 6T’s area density is the largest among the three candidates. The
total energy consumption of the 6T-based cache system reaches Emin which has a value
of 1.07 pJ/access, with the area of 0.1mm2. The 6T-based L0 cache achieves minimum
energy consumption at the same time. Moreover, the 10T-based cache achieves Emin,
which is 0.64 pJ/access. At this moment, the 10T-based L0 cache consumes 0.2 mm2 due
to the relatively worse area density than the 6T cache.

The SCM-based hybrid cache system, which is more energy-efficient but low-density,
achieves the smallest Emin among three candidates. However, where the area constraint
is particularly tight, the SCM-based hybrid cache system can no longer reduce the energy
consumption due to a sharply increased miss rate of the L0 cache. When we use the pro-
posed SCM-based cache system, the SCM-based cache reaches Emin in the area of 0.4 mm2

due to its low area density. However, since SCM has better energy efficiency than both
6T-SRAM and 10T-SRAM, Emin is reduced to 0.48 pJ/access, which indicates the total
energy consumption of the SCM-based cache is 39% of the 6T-based cache system. Also,
compared to two SRAM-based L0 caches, the proposed cache still exhibits smaller energy
consumption when the area constraint is not less than 0.1 mm2.

Figs. 2.7, 2.8 show the energy consumption under loose constraints (Area < 0.4 mm2,
Freq. > 1 MHz) of the proposed cache system when the processor executes benchmarks.
The results are summarized in Tab. 2.4.2. Since the 10T cache has a higher area density
than the 6T one, under the same area constraint, the 10T-based L0 capacity is twice as
large as the SCM-based L0 one. However, because of SCM’s better energy consumption
than 10T SRAM, the total energy of the SCM-based hybrid cache system achieves 4.59 µJ
while the 10T-based cache achieves the 9.26 µJ energy consumption. By applying a body
biasing technique [47], the leakage energy can be reduced at the cost of degrading the
operating speed of the cache system. Up to 1% energy consumption is reduced by the
body biasing technique. This implies that the optimum body bias voltage is around the
zero bias condition. The evaluation results for the rest programs are shown in Fig. 2.8.
The total number of clock cycles required to execute the mixed program is around one
million. In Fig. 2.8, the energy consumption is normalized by the energy of the 6T-based

2.4. Verification of Hybrid Cache for 65nm RISC-V Processors 23

Leakage

On-chip access

L1 cache access

L0 cache access

0.5

0.4

0.3

0.2

0.1

0.0

E
n

e
rg

y,
 n

o
rm

o
li

ze
d

0.6

10T SRAM Based SCM Based SCM Based w/V BB

Figure 2.7: Energy consumption normalized by 6T-based cache system of MIX program
under Area < 0.4 mm2, Freq. > 1 MHz.

Table 2.3: Hybrid cache system parameters of the energy-efficient combination of
MIX program under Area < 0.4 mm2, Freq. > 1 MHz.

Cache Type Energy VDD C f L0 CL1 Freq.
10T-based 9.26 µJ 0.5 V 4 kB 8 kB 3.6 MHz

SCM-based 4.59 µJ 0.4 V 2 kB 8 kB 22 MHz
SCM-based w/ VBB* 4.55 µJ 0.4 V 2 kB 8 kB 4.9 MHz

VDD and VBB are supply voltage and body bias for the L0 cache, respectively.
CL0 and CL1 are the capacities of two caches, respectively
*: VBB is set as −0.7 V.

cache.

For the 2-level SRAM-based cache system, the miss rate is considerably low since
the area efficiency of SRAM is high. The proposed hybrid system, on the other hand,
exploits the high energy-efficiency of SCM and high area-efficiency of SRAM. As a result,
if we target a 0.4 mm2 area constraint, the proposed system achieves 51% better energy
efficiency than the 2-level 10T-based cache system when processing the MIX program.
The proposed cache can achieve 68% less energy consumption than the conventional
6T-based cache system when processing the MIX program.

The proposed SCM-based hybrid cache system achieves further energy reduction
exploiting a trade-off between energy feature and area-density feature of the L0 cache.
Utilizing the non-linear relationship between capacity and miss rate, this chapter replaces
the conventional near-threshold 10T-based L0 cache with a more energy-efficient but low

24 Chapter 2. Hybrid Cache Memory for General-Purpose Processing

10T-SRAM Based

SCM Based

SCM Based w/ VBB

1.0

0.8

0.6

0.4

0.2

0.0
DCT. FFT. KECCAK. SHA.

E
n
e
rg

y
,
n
o
rm

o
li
z
e
d

Figure 2.8: Energy consumption normalized by 6T-based cache system of DCT, FFT,
KECCAK, SHA under Area < 0.4 mm2, Freq. > 1 MHz.

area-density SCM one. As a result, more than half of energy consumption can be reduced.

2.4.3 Applicable Range Analysis

In the previous section, this chapter got the conclusion that the proposed cache system
is more energy-efficient than the 10T-based cache system. However, if area constraints
are too tight, the SCM-based hybrid cache suffers from the energy penalty introduced by
its poor capacity. At the same time, the application such as IoT only requires a moderate
operating speed. Analysis of the relationship between energy consumption and operating
frequency can guide us in practical applications. Therefore, this section will further
analyze the energy consumption of the proposed hybrid cache under different area and
time constraints.

Figure 2.9 shows the energy consumptions of the 2-level caches with 10T-L0 and
SCM-L0 as functions of area constraints. The energy consumption is normalized by the
2-level cache with SRAM-L0 under the same area constraint. Time constraints are not
considered. Note that area constraints “0.1 mm2” and “0.8 mm2” in the X axis of Fig. 2.9,
correspond to the area of SRAM 8 kB and SRAM 64 kB, respectively. Although the
SCM area density is lower than that of the 6T-SRAM, the proposed SCM-based 2-level
hybrid cache system has a large advantage due to its energy efficiency for speed-insensitive
processing.

When an ultra low-energy oriented application is targeted, CPU requires near-threshold
operation where 6T-SRAM cannot operate correctly due to its vulnerability against noise

2.4. Verification of Hybrid Cache for 65nm RISC-V Processors 25

DCT. FFT.

1.6

1.3

1.0

0.7

0.4

0.1

0.91

0.85

0.94

0.88

1.8

1.5

1.2

0.9

0.6

0.3

1.5

0.9

1.2

0.6

0.3

Area constraint [mm]
2

Area constraint [mm]
2

0.1 1

KECCAK. SHA.

0.1 10.1 1

E
n

e
rg

y,
 n

o
rm

o
li

ze
d

E
n

e
rg

y,
 n

o
rm

o
li

ze
d

10T Based SCM Based

0.1 1

Figure 2.9: Normalized energy comparisons among three 2-level caches against 6T-based
cache system under a loose freq. constraint towards the mixed program.

and process variability. Therefore, with a 6T-only configuration for the cache, we cannot
lower the energy consumption of CPU sufficiently even if the performance required for a
target application is very low. Compared to a 10T-based hybrid cache design, although
SCM has a lower area density, in the cases when area constraints are not lower than 0.1 mm2

from the simulation results, the SCM-based 2-level cache has an energy reduction due to
energy feature advantages.

Fig. 2.10 shows evaluation results under a loose area constraint. Note that frequency
constraints are tuned unlike Fig. 2.9. The X axis represents a frequency constraint. The Y
axis is the normalized energy consumption against the 2-level hybrid cache system with
the 6T-based L0 cache under the same area constraint, which is the same as Fig. 2.9.
Area constraints are not considered here. When frequency constraint is tightened, the NT-
tolerant cache system must raise the L0 cache VDD, which leads to the energy overhead.
When the target frequency is higher than 100 MHz, the entire cache system will not work

26 Chapter 2. Hybrid Cache Memory for General-Purpose Processing

DCT. FFT.

Freq. constraint [MHz]

100

Freq. constraint [MHz]

1 10 100

10 100 1 10 100

KECCAK. SHA.

E
n

e
rg

y,
 n

o
rm

o
li

ze
d

E
n

e
rg

y,
 n

o
rm

o
li

ze
d

1 10

8T Based SCM Based SCM Based w/ body bias

0.9

0.8

0.7

0.6

0.5

0.4

0.88

0.82

0.91

0.85

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 2.10: Normalized energy comparisons of 2-level hybrid caches against 6T-based
cache system under a loose area constraint towards the mixed program.

properly because NT-L0 cannot meet the frequency requirement. However, if we relax
the timing constraint, the proposed cache exhibits 64% better energy efficiency than the
2-level 10T-based cache at the best case shown in Fig. 2.10.

The reduction in energy consumption introduced by body bias optimization is no
more than 1% when the target frequency is less than tens of MHz. As described before,
this is because the optimum body bias condition for the SCM is around the zero bias
condition. However, if the frequency constraint becomes more than tens of MHz, the
situation becomes different. In order to boost up the operating speed of the SCM, the
supply voltage is typically boosted up, which leads to an increase of the dynamic energy
consumption. By applying forward body biasing, the supply voltage can be reduced
without violating the frequency constraint. As a result, the energy consumption of the
proposed SCM-based cache can be reduced by up to 26% by applying forward body
biasing.

2.5. Summary 27

In summary, when the area constraint is not less than 0.1mm2 and the frequency
constraint is not more than 100 MHz, SCM-based L0 cache achieves total energy reduction
by a trade-off between energy efficiency improvement but area feature reduction.

The essence of trade-off is to exploit the nonlinear relationship between capacity
and miss rate. When the area constraint is loose, the cache capacity is large enough
hence the descrease of cache capacity will not severely increase the miss rate. In such
a situation, energy reduction is expected with the replacement of a more energy-efficient
but low-capacity SCM-based cache. However, when the area constraint is too small, the
corresponding cache capacity will be small. Therefore, a slight cache capacity reduction
will also lead to a rapid increase in the cache miss rate, making this trade-off no longer
energy-efficient.

2.5 Summary

Based on the non-linear relation between cache miss rate and capacity, a case study
is discussed to show SCM-based design has an energy advantage than 10T-based design.
SCM has a low processing speed, a low area density but an inherent energy efficiency.
Utilizing SCM as the L0 filter cache, the 2-level hybrid cache system exhibits 68% better
energy consumption than a conventional 6T-based cache system in the simulation on
average. When an ultra-low-power oriented application is targeted, the CPU requires
near-threshold operation where 6T cannot operate correctly due to its vulnerability against
noise and process variability. If we utilize 10T for near-threshold operation, due to the
SRAM read operation by a strong sense amplifier, it is still not energy-efficient enough.
In contrast, if the CPU is under a near-threshold operation, the SCM operates very well
with the same supply voltage as the CPU logic. Based on this work, this chapter found
that in an ULP working environment, the energy efficiency of a lower-level cache is far
more important.

28 Chapter 2. Hybrid Cache Memory for General-Purpose Processing

29

Chapter 3

DNN Accelerator Designs for
Large-Scale Processing with Regular
Access Pattern

3.1 Introduction

In recent years, the prediction accuracy of Deep Neural Network (DNN) has been
steadily increasing with the improvement of network structure [48]. As a result, DNN has
been widely used in all aspects of life such as image processing and language modeling.
Therefore, many endpoint terminals integrate Application-Specific Integrated Circuits
(ASICs) to perform local real-time inference [49–51]. However, the high-precision pre-
diction is often accompanied by an increase in computational complexity [52, 53].

In DNN processing, most operations are matrix operations, such as convolutions and
matrix multiplications [2, 54]. In matrix operations, expensive data movement often
dominates the energy consumption of an entire computing architecture [2]. Ref. [4]
proposes a key property called data reuse to expose the number of data movements
in DNN processing, which describes the number of accesses to the same data during the
processing. Based on data reuse, previous works [5–9] build evaluation models to estimate
hardware performance.

Although the data reuse describes the overall attribute of DNN processing, it is not
enough as an evaluation indicator to describe the quantitative difference among the cost
of data movement in different processing dataflows. Because of this, Ref. [55] exhausts
all possible processing dataflows and corresponding hardware implementations to explore
the best one with the least cost of the data movement. On the other hand, the number of
data movements is also important for the cost of data movement. However, the cost of

30 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

one data movement is another important factor, which is difficult to be described by data
reuse.

To point out the importance of the movement cost, this chapter explores the hardware
property that determines the required memory capacity which is the key to the cost of one
data movement. This chapter makes the following contributions:

1. This chapter first explores properties in a processing dataflow that can significantly
affect the required number of memory accesses and the required memory capacities
in a hardware implementation.

2. By improving the reuse strategy, this chapter proposes a convolution processing
dataflow to minimize the number of on-chip memory accesses and the memory
capacity.

3. Based on the properties, this chapter proposes quantitative metrics to evaluate the
cost of data movement in a specialized processing dataflow. Given physical con-
straints such as the limitation of memory bandwidth, and the number of Arithmetic
Logic Units (ALUs), the proposed metrics can estimate energy, throughput, and
area of a specialized processing dataflow without hardware implementation.

4. To verify the effectiveness and flexibility of the proposed metrics, this chapter
makes comparisons between the proposed architecture and a state-of-the-art DNN
accelerator [55] for processing Alexnet [56].

The rest of this chapter is organized as follows. Section 3.2 discusses the motivation
and the design space for DNN processing. Section 3.3 presents a dataflow that fully
utilizes resource reuse in convolutions (CONVs). Section 3.4 shows implementation
examples of the proposed dataflow. Section 3.5 presents quantified metrics to evaluate
the energy, the throughput, and the area for a hardware implementation of a processing
dataflow. Section 3.6 introduces two case studies for convolution and matrix multiplication
which are common in DNN processing. Section 3.7 discusses the simulation results of the
hardware realization to testify the accuracy of the proposed metrics. Section 3.8 concludes
this chapter.

3.2. Background 31

i

i

* =

o

o

…
…

…
…

o
o

w

w

Filters spamfOspamfI

Figure 3.1: One batch of high dimensional convolutions in DNN: Ci×Co×Hw×Ww×Ho×Wo
multiplications are required in total.

3.2 Background

3.2.1 DNN Processing

DNN generates classification results by performing feature extraction from raw input
data. DNN improves model accuracy by a very deep hierarchy of layers in the network.
Among DNN, Convolution Neural Network (CNN) is most commonly applied to a wide
range of applications including image recognition, recommendation systems, natural lan-
guage processing, etc. As primary layers in CNN, CONV layers use a group of weights to
extract high-level features which are called output feature maps (ofmaps) from input fea-
ture maps (ifmaps). Fig. 3.1 introduces a typical convolution in CNN. A traditional CONV
layer in CNNs often has multi-channel 2-dimensional (2D) ifmaps and multi-channel 2D
weights to enhance prediction accuracy [57]. Given the convolution shapes in Tab. 3.1, a
CONV processing with multiple batches can be expressed as:

32 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

Table 3.1: DNN shapes.
Parameters Description

N Ifmap Batch Size
Hi/Wi Ifmap Height / Width

Hw/Ww Weight Height / Width
Ho/Wo Ofmap Height / Width

Ci Ifmap Channel Size
Co Ofmap Channel Size
U Stride Size

O[z][u][x][y] =
Ci∑

k=1

Ww∑
i=1

Hw∑
j=1

(
I[z][k][Ux + i][Uy + j]

×W[u][k][i][j]
)
+ B[u],

1 ≤ z ≤ N, 1 ≤ u ≤ Co, 1 ≤ x ≤ Wo, 1 ≤ y ≤ Ho,

Ho = (Hi − Hw +U)/U, Wo = (Wi − Ww +U)/U,

(3.1)

where O, B, W and I indicate the matrices of ofmaps, biases, weights and ifmaps,
respectively [2]. Eq. (3.1) can describe most primitive operations in DNN processing
such as the depthwise separable convolution [53] and the fully-connected layer (FC) [48].
Therefore, the evaluation target of this chapter is mainly focused on the processing based
on Eq. (3.1).

Other primitive operations in DNN can also be represented by Eq. (3.1). In order to
convert the high-level extraction features from CONV layers into the classification results,
Fully-Connected (FC) layer is used between CONV layer and the output layer [48]. Recent
CNN has developed depthwise separable convolution [53] to diminish CONV channels to
save energy. Pointwise convolution acts as the operations with Hw = Ww = 1 with Eq.
(3.1). In mathematics, the operations in FC layers and Multilayer Perceptron (MLP) [48]
can be represented by Eq. (3.1) with Hi = Wi = Hw = Ww = 1. The depthwise convolution
consists of the 2D CONV processing with multiple ifmap channels and the same number of
ofmap channels. In this case, the accumulation pattern is different from naive convolution
operations. We thus need to utilize another dimension to describe the channel in depthwise

3.2. Background 33

Table 3.2: Relations between CONV and other primitive operations in DNN.
Processing Description

Pointwise Convolution Hw = Ww = 1 with Eq. (3.1)
Depthwise convolution Eq. (3.2)

FC (Matrix Multiplication) Hi = Wi = Hw = Ww = 1 with Eq. (3.1)

convolution which will be represented by the following equation.

O[z][d][x][y] = B[z][d] +
Ww∑
i=1

Hw∑
j=1

I[z][d][Ux + i][Uy + j]

× W[d][i][j],

1 ≤ z ≤ N, 1 ≤ d ≤ D, 1 ≤ x ≤ Wo, 1 ≤ y ≤ Ho,

Ho = (Hi − Hw +U)/U, Wo =(Wi − Ww +U)/U,

(3.2)

The relationship is summarized in Tab. 3.2. Since stride U does not affect the key
characteristics of convolution, we default all U in DNN processing to 1 in the rest of this
chapter.

3.2.2 Data Reuse in DNN

Ref. [4] proposes a key property called data reuse to expose attributes of data movement
in DNN processing, which is to describe the number of accesses to the same data during
the processing. Previous works [24–27, 30] exploit data reuse to design processing
dataflows, which have achieved great success to reduce the number of data movement
in DNN processing. A processing dataflow describes the sequence of data movement in
the memory hierarchy and the sequence of executions in ALUs. Once the dataflow is
determined, the required number of memory accesses and required memory capacity for
each memory component would be determined.

The scale of DNN processing tasks and the shape of DNN processing are quite diverse.
Furthermore, available hardware resources vary dramatically depending on the processing
environment from end-point devices to servers. An exhaustive approach to explore the
best dataflow with the least cost of the data movement from all possible dataflows makes
it difficult to design accelerators in everchanging environments.

To solve this issue, this chapter no longer focuses on overall properties for a total
processing task but properties for the processing task loaded in a processing hardware.
The number of ALUs in a hardware accelerator is often much smaller than the required

34 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

I Reg. W Reg.

ALU Array

O Reg.

Register

I Buf. W Buf. O Buf.

On-chip Buffer

Off-chip Memory

Off-chip Memory

Figure 3.2: A target acceleration architecture:

operations of a total DNN processing task, which means that ALUs are hard to exploit all
data reuse in the whole processing task. This makes it difficult for an overall attribute such
as data reuse to evaluate quantitative differences among accelerators based on different
processing dataflows. Therefore, this chapter focuses on the processing task loaded in the
hardware to evaluate the hardware performance.

As the second part, this chapter explores properties in a processing dataflow that
can significantly affect the cost of data movement in a hardware implementation. The
processing dataflow divides the whole processing task into smaller tasks to fit the scale of
the hardware and processes the tasks one by one [58]. As a result, it is required to consider
the properties in the tasks to infer the cost of data movement.

3.2.3 Subtasks in DNN Processing

In order to compare different dataflows in DNNs, we further clarify essential differences
among processing dataflows. The number of operations for most existing DNN computing
tasks ranges from millions [59] to billions [60]. It is difficult for acceleration hardware to
realize fully parallel processing in such a scale. Therefore, we have to face a situation where
the number of operations that can be processed within an accelerator is much smaller than
the total number of operations. Therefore, the architecture of the target accelerator in this
chapter is introduced in Fig. 3.2. Hardware components in the architecture consist of an

3.2. Background 35

ALU array, registers, on-chip buffers, and off-chip memories. The hardware architecture
may have a different Processing Element (PE) structure such as a systolic ALU array or
a spatial ALU array. An ALU may include a multiplier or multiplier-and-accumulation
(MAC) unit. The ALU array with the registers in Fig. 3.2 corresponds to a single PE or
multiple PEs working in parallel. Each memory hierarchy level consists of memories to
store weights, ifmaps and ofmaps, respectively. The data transmission network between
hardware components may also have different communication bandwidths and different
data transmission techniques such as unicasting, multicasting, or broadcasting.

Under the situation of limited processing resources, it is required to decompose an
entire processing task into subtasks to adapt the number of multipliers in each PE, which
is the same as tiling level in a PE defined in Ref. [7]. Each tiling level has a loop
corresponding to each dimension in the original processing task. The tiling level in a PE
contains the operation space and the associated dataspaces within registers in a PE [7].
One PE usually consists of multiple multipliers and registers. A subtask in a PE refers to
the dimensions of processing that can be processed within data in one PE. Each subtask can
be completed within a PE once data loaded into the registers inside. In DNN processing,
a subtask refers to the processing task in the dimensions of N , Ci, Co, Ho, Hw, Wo, Ww, or
the multi dimensions such as (Ho,Hw) and (Hw,Ww).

Each subtask corresponds to a specific processing hardware implementation. It is the
subtask in the processing dataflow that determines the hardware performance. Therefore,
when we compare different processing dataflows, we should concentrate on the properties
of the subtask.

We use ALU subtasks, register subtasks, buffer subtasks, and memory subtasks to
represent processing tasks in ALUs, registers, on-chip buffer, and off-chip memory, re-
spectively. More specifically, we define an ALU subtask as the processing task that can
be processed in parallel in ALUs. We use a register subtask to indicate the processing
task that can be processed once the registers are fully filled until the next on-chip buffer
access is required. Similarly, a buffer subtask and a memory subtask can be defined. This
chapter describes properties for subtasks in a processing dataflow that affect the hardware.

Based on the properties for subtasks, this chapter proposes quantitative metrics to
evaluate the cost of data movement in a specialized processing dataflow as the second part.
Given physical constraints such as the limitation of memory bandwidth, memory capacity,
and the number of ALUs, the proposed metrics can estimate energy, throughput, and area
of a specialized processing dataflow without hardware implementation. To verify the
effectiveness and flexibility of the proposed metrics, we make comparisons between the
proposed architecture with state-of-the-art DNN accelerators [24, 55] for the processing

36 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

IfmapWeight Product Term Ofmap

Dataflow A Dataflow B

o

× + ×

× + ×

= =

(b)(a)

Step 1

Step 2

12

22

32

42

11

21

31

41

1

2

× + ×

× + ×

11

21

31

41

1

1

1

1

1

2

× + ×

× + ×

× + ×

× + ×

11

21

31

41

1

1

1

1

12

22

32

42

2

2

2

2

× + ×

× + ×

× + ×

× + ×

11

21

31

41

1

1

1

1

12

22

32

42

2

2

2

2

3

4

Step 3

Step 4

12

22

32

42

2

2

2

2

Figure 3.3: Matrix Multiplication with Ci = 2 and Co = 4, N = Hw = Ww = Hi =
Wi = Ho = Wo = 1. Two possible processing dataflows with 2 multipliers are introduced.
Dataflow A is the parallel processing to share ifmap pixels in each step. Dataflow B is the
parallel processing to share ofmap pixels in each step.

in Alexnet [56].

3.2.4 Motivational Example

In this sub-section, we review a matrix multiplication shown in Fig. 3.3. Each ofmap
pixel (o1, o2, o3, and o4) is the sum of two product terms. Based on the definition in
Ref. [27], the data reuse of weights, ifmaps, and ofmaps are 1, 4, and 2, respectively.

Suppose we have 2 multipliers available, two processing dataflows A and B are possible
as shown in Fig. 3.3 (a) and (b). Dataflow A utilizes 2 multipliers to generate product terms
from the same ifmap pixel at the same time. Dataflow A reduces the number of accesses to
an ifmap pixel, thereby exploiting data reuse of ifmaps. Similarly, Dataflow B calculates
two product terms in parallel for one same ofmap pixel. Each step completes multiply and
accumulates for each ofmap. Dataflow B exploits data reuse of ofmaps. However, since

3.2. Background 37

p

p

(b)

(a)

ALU Subtask ALU Subtask ALU Subtask ALU Subtask

Reg. Subtask Reg. Subtask

Buf. Subtask

11

1

21

11

1

12

2

21

1

22

2

1

31

1

32

2

2

41

1

42

2

3 4

31

1

41

2

1

p

p

3

4

32

2

42

p

p

p

p

12

2

22

2

3

4

1 1

2

3

4

Figure 3.4: Hardware Implementations based on two schedulings of dataflow graphs. All
ifmap pixels and weights have been loaded into on-chip buffers. Each step refers to one
set of parallel processing according to two available multipliers. Each rectangle on the
borderline between steps represents a register that can hold one data. The architecture in
(a) refers to a hardware implementation of Dataflow A in Fig. 3.3. The architecture in (b)
refers to a hardware implementation of Dataflow B in Fig. 3.3. Registers for product terms
are reused until they are accumulated into final ofmap pixels.

both dataflows exploit data reuse with 2 multipliers, it is difficult to directly point out which
processing dataflow has smaller energy consumption in the hardware implementation or
smaller required memory capacity.

If we implement the two dataflows separately into hardware, the required hardware
resources and energy consumption can be inferred from the scheduling of the dataflow
graphs. Fig. 3.4 introduces hardware implementations based on the dataflows in Fig. 3.3.
Each step refers to one set of parallel processing by two available multipliers. Each
rectangle on the borderline separating steps represents a register that can hold one data.
For initialization, all required data have been loaded into on-chip buffers. We assume that
ALUs only access registers and the on-chip buffer cannot directly be accessed by ALUs.
We omit accesses to on-chip buffers in Fig. 3.4 since both architectures are designed to
minimize the number of accesses to the on-chip buffer so that the number of accesses to
the on-chip buffer is the same for both implementations.

In order to collect the number of register accesses and the register capacity, we focus
on the properties in the processing task of each step. The architecture in Fig. 3.4 (a) based
on Dataflow A shares the access to one ifmap pixel thus reducing register accesses of

38 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

ifmaps. Although the data reuse of ifmaps is 4 in the total processing task, one ifmap
pixel can only be utilized for two multiplications per register access. The architecture (a)
requires additional registers to store product terms, and access to product-term registers
also brings additional energy overhead. Since the parallel processing of Dataflow B is for
the same ofmap pixel, all product terms generated can be accumulated into the ofmap pixel
immediately. Although the architecture (b) requires two separate accesses to each ifmap
pixel, it requires fewer registers than the architecture (a) since no product-term register is
needed. As a result, the architecture based on Dataflow A has more product-term registers
and suffers from the corresponding energy overhead.

This chapter aims to analytically evaluate the cost of data movement in the overall
hardware implementation based on a specialized processing dataflow without the hardware
implementation nor the loop-based performance evaluation [6–8]. The key idea is to focus
on the cost of data movement in each hardware component, which consists of both the
number of data movement and the cost of one data movement. In the motivational
example, both architectures contain three hardware components as buffers, registers, and
ALUs. Through the properties of each hardware component, we evaluate the number of
memory accesses and the memory capacity to estimate the cost of data movement of each
component in the hardware implementation.

3.2.5 Design Space Exploration for DNN Accelerators

In order to cover the whole design space in DNN dataflow processing, we focus on
the hardware architecture shown in Fig. 3.2. The number of operations for most existing
DNN tasks may exceed billions [60]. In this chapter, the number of operations is defined
as the number of product terms generated from multiplications. Therefore, we have to
face a situation where the number of operations that can be processed within a hardware
is much smaller than the total number of operations. With limited hardware resources, the
decomposition of the entire processing task comes to be a must.

Each subtask describes a small loop in the original processing task. Fig. 3.3 introduces
subtasks for both architectures of Fig. 3.4. An ALU subtask in both dataflows aims to
generate 2 product terms in one step. A register subtask can be scaled from one ALU
subtask to the total processing task for Performance-Power-Area trade-off. To avoid
frequent buffer accesses caused by generated product terms, a register subtask is better not
to be smaller than 2 ALU subtasks in Dataflow A. If the scale of a register subtask is set
too large, there will be a register capacity overhead. As a result, we assume that a register
subtask consists of 2 ALU subtasks in this example. A register subtask in Dataflow B is

3.3. DNN Dataflow to Reduce the Cost of Data Movement 39

also defined as a processing task in 2 steps for a fair comparison. A buffer subtask is the
total processing task.

3.3 DNN Dataflow to Reduce the Cost of Data Movement

3.3.1 Properties for the Cost of Data Movement in DNN Processing

In DNN processing, the cost of data movement dominates the throughput and the en-
ergy consumption of DNN accelerators [2]. Fortunately, for DNN processing, especially
for matrix operations, the data access pattern is usually fixed. Therefore, we can find
quantitative properties to describe the cost of data movement in the whole DNN compu-
tations. If we describe properties to evaluate the cost of data movement determined by
each subtask in a processing dataflow, we can evaluate the overall acceleration hardware.
In this sub-section, we describe properties in each subtask that determine the cost of data
movement.

The cost of data movement in memories is determined by the memory capacity and the
number of memory accesses. In order to evaluate the memory capacity and the number
of memory accesses from the processing dataflow, we describe properties that determine
the number of operations that use the same data in subtasks and the number of product
terms that use the same memory space. In this chapter, the number of operations refers
specifically to the number of multiplications that generate product terms.

We refer the number of operations for one single data in each subtask to local data reuse
(LDR). The concept of LDR is almost the same as the data reuse which is proposed in
Ref. [27]. The difference is that the data reuse aims to describe the overall processing
task while LDR only focuses on a subtask. More specifically, LDR of an ifmap pixel in
an ALU subtask is defined as the number of operations that one ifmap pixel generates
in an ALU subtask. LDR of the weight is defined similarly. LDR of an ofmap pixel in
an ALU subtask is defined as the number of product terms for the same ofmap pixel in
an ALU subtask. LDR of an ifmap pixel in a register subtask is defined as the number
of operations that one ifmap pixel generates in a register subtask. LDR of the weight is
defined similarly. LDR of an ofmap pixel in a register subtask is defined as the number
of product terms for the same ofmap pixel in a register subtask. Local data reuse aims
to describe the property that affects the number of required data in one subtask, which
determines the required memory capacity.

Basically, the number of memory accesses can also be evaluated based on LDR. We
are able to evaluate the number of register accesses combining the LDR in an ALU subtask

40 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

Table 3.3: Hardware properties of two architectures in Fig. 3.4

Subtask Num. of Ops Property Dataflow A Dataflow B
W I O W I O

ALU 2 LDR 1 2 1 1 1 2

Register 4 LDR 1 4 1 1 2 2
LSR 1 4 2 1 4 2

Buffer 8 LDR 1 4 2 1 4 2
Reg. Capacity 4 1 4 4 2 2
Reg. Access 8 4 8 8 8 4

Buf. Capacity 8 2 4 8 2 4
Buf. Access 8 2 4 8 2 4

and the total number of operations. However, in a well-designed processing dataflow, the
total number of accesses to on-chip buffers can be further reduced by keeping some data
within registers to be shared among several register subtasks. The number of accesses to
off-chip memories can also be reduced similarly. Therefore, it is necessary to introduce the
property describing data reuse among subtasks to evaluate memory accesses. We define
the number of operations for one same data until the data is removed from the current
memory as local space reuse (LSR). LSR of an ifmap pixel in a register subtask is defined
as the number of operations that one ifmap pixel generates until the ifmap pixel is removed
from the current register. LSR of a weight and an ofmap pixel is defined similarly. Local
space reuse aims to describe the property of data utilization among multiple subtasks
within the memory.

Hardware properties for both Dataflows A and B are summarized in Tab. 3.3. One
ALU subtask in Dataflow A generates 2 product terms. One ifmap pixel is shared by
two multiplications in an ALU subtask. The data sharing does not exist in weights nor
ofmap pixels in an ALU subtask. As a result, LDR of weights, ifmaps, and ofmaps in each
ALU subtask of Dataflow A are 1, 2, and 1, respectively. Similarly, one ALU subtask in
Dataflow B generates 2 product terms. Two product terms can be merged into one same
ofmap pixel, while ifmaps or weights are not shareable. As a result, LDR of weights,
ifmaps, and ofmaps in each ALU subtask of Dataflow B are 1, 1, and 2, respectively.

A register subtask is a combination of two ALU subtasks for both dataflows. In
Dataflow A, despite LDR in one register subtask, an ofmap pixel stored in a register can
be further shared by two different register subtasks, which means that ofmap LSR is twice
larger than ofmap LDR while other LSRs are the same as LDRs. For example, without
on-chip buffer accesses, the register storing p1 in the first register subtask can be utilized
again in the next register subtask. Similarly, the properties in a register subtask of Dataflow

3.3. DNN Dataflow to Reduce the Cost of Data Movement 41

B can be inferred once we notice that ifmap pixels can be shared by two different register
subtasks in Dataflow B.

A buffer subtask corresponds to the total processing task for both dataflows. This
means that a buffer subtask generates 8 product terms. An ifmap pixel in a buffer subtask
is shared by 4 multiplications, while weights still cannot be shared.

In order to estimate the cost of data movement without hardware implementation, we
evaluate the memory capacity and the memory access according to LSR and LDR in
each subtask. Tab. 3.3 also introduces the memory capacity and the number of memory
accesses in both dataflows, which will be explained next.

The register capacity can be estimated according to the number of operations in a
register subtask and LDR. For example, in Dataflow A, the number of operations is 4 in a
register subtask. Since weight LDR is 1 in a register subtask, there are 4 weights required
to be stored in registers to process a register subtask. Similarly, other capacities can also
be evaluated by LDR and the number of operations in a buffer subtask.

We are able to evaluate the number of register accesses according to LDR in an ALU
subtask and the total number of operations. The total number of operations is 8. Once
we notice that weight LDR of an ALU subtask in Dataflow A is 1, we can infer the total
number of accesses to weight registers is 8 since each operation in an ALU subtask requires
one access to the weight register. We further infer the total number of accesses to ifmap
registers and ofmap registers through LDR in an ALU subtask. Similarly, the total number
of accesses to on-chip buffers can be evaluated by LSR in registers and the total number
of operations. According to the properties introduced in Tab. 3.3, we are able to evaluate
the overall cost of data movement, thereby evaluating power, performance, and area.

3.3.2 Related Work

Many previous studies have done a lot of work [22, 24–33] on off-chip access mini-
mization focusing on CONV data reuse and partial sum (psum) accumulations. MEC [33]
is a novel GPU-based processing method that utilizes data reuse. However, a GPU-based
design is difficult to reduce the buffer capacity exploiting space reuse. Fig. 3.5 introduces
two representative CNN acceleration ASICs. WM, IM, and PM in the figure refer to the
on-chip buffers for weights, ifmaps, and psums, respectively. Eyeriss [27] in Fig. 3.5 (a)
introduces a row-stationary (RS) processing dataflow. Each Processing Element (PE) has
its own independent WM, IM, PM. Each PE computes psums between a weight row and
an input row. The weight row is shared among PEs horizontally, the input row is shared
diagonally and psums are accumulated vertically. In an ideal situation, RS dataflow can

42 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

make full use of ifmap pixel and weight reuse to bring minimized off-chip memory access
and high throughput. In order to adapt to different CONV shapes, PEs in RS are designed
as computing units that work independently to maintain flexibility. As a result, each PE
stores a small number of inputs locally for data reuse in the near future, even if adjacent
PEs utilize the same set of inputs. The redundant buffer design leads to energy loss in
on-chip buffers.

Considering the redundant ifmap and weight accesses, DSIP architecture [55] in
Fig. 3.5 (b) calculates multiplications required by an ifmap pixel as quickly as possible. A
single ifmap pixel broadcasts to all PEs, multiplied by all required weights and temporarily
stored at registers in the PE array. The psum corresponding to the weight of the same row
will be temporarily stored in PM in the PE. When the result of the next ifmap pixel arrives,
it unicasts to the neighboring PE for accumulation. By using ifmap more efficiently, DSIP
achieves better energy performance than Eyeriss. However, since the space reuse capability
of psum in DSIP is limited to the same row, the space reuse capability among rows is
ignored. As a result, it brings Hw times larger PM capacity than the case fully considered
the space reuse. Furthermore, since weight size in a single CONV is usually small, in
order to enhance throughput, DSIP expands its structure to multiple ofmap channels to
further improve the utilization of ifmaps [55]. However, this kind of parallel computation
among ofmap channels cannot effectively use the space reuse capability among ifmap
channels we discussed above. In the worst case, DSIP will request an extra Hw × Co ×
larger PM capacity than the case that considers the space reuse, which leads to an energy
overhead.

Both previous approaches aim to reduce the number of memory accesses by exploiting
the data reuse, while the effect of the dataflow on on-chip memory capacity is rarely
discussed. Since the capacity of the memory itself has a significant impact on the energy
of single memory access, we can further improve energy efficiency by exploiting the space
reuse in CONV to reduce memory capacity.

Several evaluation models are available to describe hardware performance. Accel-
ergy [5] proposes a hardware configuration language to describe the processing architec-
ture and relies on automated design exploration tools to calculate the energy. Interstellar [6]
also uses a domain-specific language and presents an evaluation framework. Timeloop [7],
Maestro [8] and Interstellar [6] utilize a loop-based method to systematically analyze the
performance of DNN accelerators. DNN-chip predictor [9] proposes a fast analytical
model under the fixed hardware settings such as the fixed memory capacity. However,
previous works is less efficient to estimate required memory capacities according to the
given dataflow. For example, DNN-chip predictor needs to traverse all possible scenarios

3.3. DNN Dataflow to Reduce the Cost of Data Movement 43

IM

PM

(a) Eyeriss Architecture

(b) DSIP Architecture

IM

WM PM

PE0 PE1 PE2 PE3

I P

P

PE0 PE1

PE2 PE3

WMW

I

P

P

W Row 1

W Row 2

I Row 1

I Row 2 I Row 3

P

Figure 3.5: Previous Works: (a) Eyeriss Architecture [27] computes psums with the same
row of weights in each PE, and accumulates psums by passing results to upper nearby
PEs. (b) DSIP architecture[55] broadcasts ifmap pixel to all PEs and accumulates psums
by passing results to next PEs.

possible to find an efficient memory capacity combination for one dataflow. Once the
memory hierarchy becomes complex, it will be difficult for previous works to quickly and
efficiently predict the best candidate dataflow.

In the next section, this chapter utilizes proposed LDR and LSR to design an energy-
efficient CNN accelerator by analyzing LDR and LSR in the hardware architecture of the
state-of-the-art accelerator DSIP [55].

3.3.3 Proposed Dataflow

This section proposes the CNN accelerator that takes full advantage of LDR and LSR.
In order to take into account both the local data reuse and the local space reuse

capabilities, the energy-efficient 2D CONV dataflow must take into account both the
horizontal and vertical reuse of weight, and also the horizontal and vertical reuse of
ifmaps. Fig. 3.6 (a) introduces an example of the ifmap access pattern of DSIP when the
weight size is 2 × 2 with two ofmap channels. Previous CNN accelerators aim to exploit
the ifmap data reuse in CONV. Hence, DSIP dataflow is to process operations between

44 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

one single ifmap pixel and all weights among two different ofmap channels in parallel.
All weights are combined into one weight group (WG) and one ifmap pixel is one ifmap
group (IG). Once the data are loaded into registers, DSIP dataflow fetches all weights in
one WG and 1 ifmap pixel in one IG to fulfill all 8 multipliers per clock cycle. At the first
clock cycle, the ifmap pixel a is sent to all multipliers to exploit the data reuse of ifmaps.
After the first clock cycle, b, c, and d will be processed one by one until all ifmap pixels
are processed in the DSIP dataflow. As shown in Fig. 3.6, (IG0 / WG0), (IG1 / WG0),
(IG2 / WG0) and (IG3 / WG0) are processed sequentially. One DSIP drawback is that
the local space reuse is not available in the ALU subtask, since psums among different
ofmap channels can not be accumulated. This forces the DSIP accelerator must reserve
enough on-chip storage space to store the intermediate psums avoiding expensive off-chip
memory accesses.

To solve this issue, the proposed dataflow tries to exploit both the local data reuse and
the local space reuse at the same time within the ALU subtask. The proposed dataflow
accesses ifmap pixels concurrently from multi rows in Fig. 3.6 (b). The weights in one
ofmap channel are combined into one WG and two ifmap pixels are combined into one
IG. At the first clock cycle, ifmap pixels a and e are multicasted to weights in 2D CONV
to exploit the data reuse in multiplications once accessed. At the next clock, b and f

are processed. This ensures that several product items can be accumulated into psums
in a single clock cycle. Compared to DSIP dataflow, the proposed dataflow reduces the
number of psum register accesses and the required psum register capacity. When the
accumulation within 2D CONV is finished, the proposed dataflow processes 2D CONVs
one ifmap channel by one ifmap channel, thereby reducing the required memory space for
psums. The processing among ofmap channels is left at the end since there is no space
reuse available. By considering both local space reuse and local data reuse, the proposed
dataflow is able to reduce the number of memory accesses while reducing the required
memory capacity.

More specifically, Algorithm 1 introduces the convolution processing dataflow based
on DSIP [55]. The fifth row introduces the range of an ALU subtask. The fourth and fifth
rows introduce the range of a register subtask. The third, fourth, and fifth rows introduce
the range of a buffer subtask. The second, third, fourth, and fifth rows introduce the range
of a memory subtask. DSIP ALU subtask is to process operations between one ifmap pixel
and all HwWw weights inside 2D CONV in parallel. In actual convolution processing,
since the number of weights varies, it is difficult to make full use of all ALUs if weights in
only one channel are loaded. Therefore, the ALU subtask processes weights from multiple
β ofmap channels in one single cycle. The parameter β is scaled from 1 to Co in order

3.3. DNN Dataflow to Reduce the Cost of Data Movement 45

1

4

Weight Ofmap Channel 1

Ifmap

5

Weight Ofmap Channel 2

6

87

2

3

(b)

(a)

1

4

Weight Ofmap Channel 1

Ifmap

5

Weight Ofmap Channel 2

6

87

2

3
b c

o

e hg

pm n

k li j

da

f

b c

o

e hg

pm n

k li j

da

f

*

*

 Mul Array

1 2 3 4

b
f

a
e

WG 0

WG 1

IG
 0

IG
 1

Multiplications in one PE

Process Timeline

IG 1
WG 1

IG 0
WG 1

IG 1
WG 0

IG 0
WG 0

Input Data

5 6 7 8

 c

g
IG

 2

...

..
.

..
.

 Mul Array

1 2 3 4

b a

WG 0

IG
 0

IG
 1

Multiplications in one PE

Process Timeline

IG 10
WG 0

IG 9
WG 0

IG 1
WG 0

IG 0
WG 0

Input Data

5 6 7 8

c
IG

 2

...

..
.

..
.

Figure 3.6: The ifmap data reuse capability and the ofmap space reuse capability in (a)
DSIP and (b) the proposed dataflow. DSIP fetches one ifmap pixel and processes the pixel
among ofmap channels. Although the ifmap data reuse is maximized, psums with no
space reuse capability are generated. The proposed work fetches ifmap pixels in the same
column, generates psums which can be added immediately thus saving memory capacity.

to improve ALU utilization. The parameter β also affects the number of operations in
a buffer subtask. In order to make full use of on-chip buffers, the processing dataflow
scales γ from 1 to Wo to adjust the capacity of the on-chip buffer, which is shown in the
fourth row. The number of ALUs is HwWwβ. According to data loading from registers to
ALU arrays, LDR for ifmaps is enhanced to HwWwβ in a register subtask. Weight LDR
is γ in a register subtask. At the same time, the product terms in a register subtask can
be accumulated for Ww ×. DSIP dataflow exploits LDR of ifmaps in an ALU subtask.
In DSIP, however, LDR of ofmaps and weights are not well utilized. This forces the
accelerator to reserve enough on-chip buffer for product terms and weights for avoiding
expensive off-chip memory accesses.

The proposed dataflow aims to reduce the on-chip memory capacity for ofmaps and
weights. Algorithm 2 explains the details of the proposed convolution dataflow. The
fifth row introduces the range of an ALU subtask. The fourth and fifth rows introduce the
range of a register subtask. The third, fourth, and fifth rows introduce the range of a buffer
subtask. The second, third, fourth, and fifth rows introduce the range of a memory subtask.
The dataflow accesses ifmap pixels concurrently on γ columns and δ rows as shown in
the fifth row. Ifmap pixels are multicasted to all weights in one channel to ensure LDR of

46 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

Algorithm 1 Processing dataflow based on DSIP [55]
Require: W , I
Ensure: O

1: Initialization;
2: for x1 ∈ [1 : Wo/γ] do
3: for k∈[1 : Ci], u1 ∈ [1 : Co/β], y ∈ [1 : Ho] do
4: for x2 ∈ [1 : γ] do
5: for u2 ∈ [1 : β], i ∈ [1 : Ww], j ∈ [1 : Hw] in parallel do
6: O[u1u2][x1x2][y]+ = I[k][x1x2 + i][y + j] × W[u1u2][k][i][j];
7: end for
8: end for
9: end for

10: end for
11: Return O

Algorithm 2 Processing dataflow for convolution.
Require: W , I
Ensure: O

1: Initialization;
2: for k1 ∈ [1 : Ci/α], u1 ∈ [1 : Co/β] do
3: for k2 ∈ [1 : α], u2 ∈ [1 : β], y1 ∈ [1 : Ho/δ] do
4: for x1 ∈ [1 : Wo/γ] do
5: for x2 ∈ [1 : γ], y2 ∈ [1 : δ], i ∈ [1 : Ww], j ∈ [1 : Hw] in parallel do
6: O[u1u2][x1x2][y1y2]+ = I[k1k2][x1x2 + i][y1y2 + j] ×

W[u1u2][k1k2][i][j];
7: end for
8: end for
9: end for

10: end for
11: Return O

ifmaps in ALUs. Similarly, in order to maintain ALU utilization, the dataflow is able to
process ifmap pixels from δ rows and γ columns in an ALU subtask. In a register subtask,
the dataflow finishes all operations to increase LDR for ifmaps, weights, and ofmaps. LDR
of ofmaps is increased within a buffer subtask. As a result, all product terms are merged
into final ofmap pixels without sending partial sums to the off-chip memory. Furthermore,
the dataflow stores data among α ifmap channels and β ofmap channels on-chip to adopt
the size of the on-chip buffer.

In ALU subtasks and register subtasks, the processing proposed dataflow improves
LDR for ifmaps, weights, and ofmaps. Although the on-chip buffer in the proposal has
better LDR for weights and ofmaps, it suffers a large ifmap buffer capacity overhead. The
proposed dataflow could perform well if the cost of data movement for ifmap pixels does

3.3. DNN Dataflow to Reduce the Cost of Data Movement 47

CNN Accelerator

Maximize Data Reuse On-chip

On-chip Input

Buffer

On-chip

Weight Buffer

PE Array:

, , Reg.

Maximize Data

Reuse

On-chip

PsumBuffer

Off-chip Memory Interface

Off-chip

Memory

Figure 3.7: Accelerator architecture: Parallel MACs are processed in the proposed CNN
accelerator. On-chip buffers for weight and ifmap store the data, waiting for data reuse
in multiplications. The PE array contains multiple multipliers, adders and registers to
accumulate psums as much as possible. Calculated ofmap pixels are sent directly to the
off-chip memory through the off-chip memory interface. The PM stores psums which
cannot be accumulated into the ofmap pixels in time.

not come to be dominant.

The proposed architecture shown in Fig. 3.7 aims to reduce the required on-chip buffer
capacity while also limiting the number of accesses to the on-chip buffer according to data
reuse. In order to implement the proposed dataflow in 2D CONV, a potential choice is to
use Hw × Ww × Ho PEs for parallel calculations thus no more PM is required in order to
maximize the utilization of ofmap LDR and LSR. By psum accumulations for Wo clock
cycles, ofmap LDR and LSR are exploited at the same time. However, the ifmap height
Ho is sometimes too large to be implemented in the hardware design and sometimes too
small to fully utilize available multipliers in the PE array. As a compromise, the proposed
architecture chooses a value n which can be scaled from 1 to Ho to exploit the LSR in 2D
CONV. Therefore, the PM is utilized to store psums among ifmap channels which cannot
be quickly accumulated into ofmap pixels due to PE scale issues.

Fig. 3.8 introduces the basic proposed PE array with n set to 1. When n is 1, all psums
in one clock cycle correspond to different ofmap spaces. At this time, psums which require
accumulations are temporarily stored in the register array. When the next ifmap pixel is
calculated, adders accumulate the current psums into the psum registers. If accumulation
results require the pixel of next ifmap rows, the PE array sends the results to PM. When
the access of ifmap comes to the next row, the previous psums stored in PM is re-read to
be accumulated into final ofmap pixels.

Fig. 3.9 introduces the proposed PE array with n set to 2. When n is equal to 2, we can
utilize the reuse capability under one clock cycle, add related psum and send it to psum
register. Psums which are calculated into final results are sent directly to off-chip memory.

48 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

IM

WM11

WM12

WM21

WM22 Output

PM

Figure 3.8: PE array architecture: Reduce the capacity of the PM and psum registers
by adding psums as soon as possible. The weight size is assumed to be 2 × 2. IM, OM
capacity is equal to the input width. All weights are stored in WM.

Table 3.4: Parameters for Comparison.
a Filter Height / Width
b Ifmap Height / Width
N Ofmap Channel

Na2 PE amount

This reduces both the number of accesses to PM and the required capacity of PM.
Through the simultaneous reuse of LDR and LSR, the proposed dataflow achieves the

same or even higher throughput with less memory capacity and memory accesses. In
the next section, this chapter compares and analyzes quantitatively the similarities and
differences between the proposed architecture and DSIP architecture under 2D CONV
conditions.

3.4 Experimental Results for the Proposed Dataflow

In this section, we compare the hardware designs based on the proposed dataflow with
the DSIP dataflow to verify the efficiency of the evaluation based on LDR and LSR. Since
both ALU subtasks are restricted in one ifmap channel, we set the comparison environment
to the convolution operation with a single-ifmap channel, and multi-ofmap channels for
simplicity. The detailed convolution shapes are listed in Tab. 3.4.

Tab. 3.5 introduces the register requirements for the convolution with N ofmap channels
with an ifmap size of b2 with a weight size of a2. The memory requirements for DSIP

3.4. Experimental Results for the Proposed Dataflow 49

IM21

WM11

WM12

WM21

WM22

IM11

Output

PM

Output

Figure 3.9: PE array architecture with n equal to 2. The weight size is assumed to be
2 × 2. Most psums are able to be accumulated into final ofmap pixels in register arrays.
This reduces both PM access and PM capacity requirement.

in the N = 1 case have been summarized in Ref. [25], which describes the details for the
processing dataflow in DSIP. We extend it to the case of N > 1 here. DSIP is committed
to calculating all relevant multiplications for one pixel of an ifmap once. In the case of
N ofmap channels, DSIP requires Na2 PEs. The required sizes of weight registers and
psum registers are proportional to the number of PE. Therefore, Na2 weight registers and
psum registers are required. An ifmap register directly broadcasts the pixel to all PEs, thus
no register is required. Considering the number of register accesses, DSIP and proposed
architecture both use weight stationary architecture, thus the number of visits to the weight
register is equivalent to the order of processing time b2. In the evaluation of this chapter,
we set n = N to guarantee that the number of ALUs in DSIP is the same as the one in
the proposal. As a result, the proposed one utilizes the vertical reuse capability in 2D
CONV to merge a vertical psums into one for psum registers. This is consistent with the
conclusion in Section 3.3.3 that the proposed architecture requires less psum registers.

50 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

Table 3.5: Minimum register requirement for the acceleration dataflow. Order of process-
ing time for both architecture is b2.

Architecture PE Order of Reg. Size Order of Reg. Access
Filter Psum Filter Psum

DSIP [55] Na2 Na2 Na2 b2 Na2b2

This work Na2 a2 a2 + aN b2 Nab2

Table 3.6: Minimum buffer requirement for the acceleration dataflow.

Architecture Order of Buf. Size Order of Buf. Access
Ifmap Filter Psum Ifmap Filter Psum

DSIP [55] b Na2 Na2b Nb2 Na2 Nab2

This work Nb a2 a2b Nb2 Na2 ab2

Tab. 3.6 introduces the on-chip buffer requirements. DSIP calculates in parallel among
ofmap channels, while this work calculates in parallel inside a single ofmap channel. For
ifmap pixels, this work requires an extra N × larger IM to perform parallel calculations
due to ifmap LDR issue. However, the parallel computation among ofmap channel does
not have any possible data reuse, so DSIP needs N × larger WM and PM. Considering
the number of × the buffer is accessed, since LDR that DSIP can utilize is the horizontal
accumulation of weight, it needs to access the PM Nab2 times.

To prove the superiority of the proposed structure, we compare the energy consumption
of the proposed work with the state-of-the-art accelerator DSIP [55] in Register-Transfer
Level (RTL) simulation. We collect energy consumption for multiplication-accumulate
calculations (MACs) and registers from a standard cell library in 65-nm process technolo-
gies. The energy consumption of on-chip buffer and off-chip memory access is collected
from the SRAM model in CACTI Ver. 7.0 [15] under 65nm process with 1.2V. Tab. 3.7
summarizes energy measured in 1.2V supply voltage. All candidates are built in 16-bit
fixed-point representation. Code tracing logs are generated to record activities through
the RTL simulation for both accelerators running benchmarks. We simulate the energy
consumption through the activities introduced in Eq. (3.3).

E =EMAC ∗ CMAC + EREG ∗ CREG

+ EBUF ∗ CBUF + EOFF ∗ COFF
(3.3)

where E , EMAC, EREG, EBUF, and EOFF are the total energy, the energy of single MAC
process, single access to registers, single access to on-chip buffers and single access to
off-chip memories, respectively. CMAC, CREG, CBUF, and COFF are the total access count

3.4. Experimental Results for the Proposed Dataflow 51

Table 3.7: Related Energy Consumption in Convolution Operations.
Component Energy

16-bit Register Access* (EREG) 0.18 pJ
16-bit Multiply Operation (EMAC) 0.21 pJ

16-bit On-chip Buffer Access* (EBUF) 1 kB 2.04 pJ
8 kB 6.63 pJ

16-bit 8MB Off-chip SRAM Access (EOFF) 104.45 pJ
*: Average energy consumption (read and write operations).

of MAC processes, registers, on-chip buffers and off-chip memories, respectively.

Based on Eq. (3.3) and Tables 3.5, 3.6 and 3.7, we simulate the energy consumption
of DSIP and the work in this chapter. The number of ofmap channels is set to 30.

Based on the RTL simulation for both dataflows, Fig. 3.10 introduces the buffer capacity
requirement to minimize the off-chip memory access when processing convolution layers
in Alexnet. The proposed dataflow requires to store data for all processing tasks in all
ifmap channels and at least one ofmap channel. Therefore, there is a capacity overhead
to store ifmaps in the on-chip buffer. Similarly, DSIP dataflow requires to store data in
all ofmap channels and at least one ifmap channel, which leads to a capacity overhead of
ofmaps. The minimum buffer requirement of the proposed work is 2.56× smaller than
the buffer requirement for DSIP, since the number of ofmap channels is larger than the
number of ifmap channels in Alexnet CONV layers.

Fig. 3.11 introduces the energy consumption of DSIP and the proposed work with 64
multipliers when processing convolution layers in Alexnet. The proposed work achieves
2.71× energy reduction by limiting the memory space to store psums. At the same time,
the proposed architecture guarantees that most psums can be accumulated into final ofmap
pixels without access to on-chip memories. By considering LDR and LSR, the proposed
architecture considers both the required buffer capacity and the number of buffer accesses.
Furthermore, the proposed architecture reduces both the required buffer capacity and the
required energy consumption.

Fig. 3.12 introduces the energy consumption of DSIP and the proposed work with
various PE amounts. The proposed work achieves 1.64× energy reduction by removing
the unnecessary PM space. When N is more than 1, the energy consumption of on-chip
memories comes to be at least N× smaller than DSIP. This architecture guarantees that
most psums can be accumulated into the final ofmap pixel without access to the PM.
Therefore, this work dramatically reduced the access of the PM to ab2 times. Energy
consumption of off-chip memory does not change since both architectures reduce off-chip
memory accesses.

52 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

Figure 3.10: On-chip buffer requirements to minimize off-chip memory access for CONV
processing tasks in Alexnet.

Fig. 3.13 introduces the energy consumption of the proposed architecture and DSIP
with various ifmap sizes. Since the change of ifmap size b2 does not change the propor-
tional relationship of LDR or LSR in the convolution operation, the ifmap size does not
affect the proportional relationship of the energy consumption between two structures.
Fig. 3.14 introduces the energy consumption of the proposed architecture and DSIP with
various weight sizes. It proves that the rates of reuse are directly proportional to the weight
size.

In order to further prove the scalability and energy consumption superiority of the
structure in this chapter in a practical environment, we design the proposed accelerator
using the hardware description language with different numbers of multipliers. We still
choose Alexnet [56] as the CNN evaluation model because of its variable weights, ifmap
size and channels. In the experiment, a batch of 4 images is processed. The performance of
the proposed architecture is introduced in Tab. 3.8. Although DSIP theoretically optimizes
read access to the ifmap pixel, it ignores the potential LDR and LSR in the ofmap pixel.
For 2D CONV under a single channel, we theoretically need only 4.2 kB on-chip buffers
to maximize the reuse. For resource reuse among channels, however, we set the capacity
of the on-chip buffer to 60.4 kB for reducing the number of off-chip accesses to the same
level of DSIP one. We achieve 2.30× less on-chip buffer and 2.18× energy reduction while
obtaining similar throughput. Since the proposed structure can exploit the reuse among
ifmap channels, this architecture can easily be extended to a large PE scale which is no
larger than Ho × Wo × Hw × Ww × Ci. Following the same dataflow, we also designed a
larger-scale architecture and compares the performance with Eyeriss v2 [27]. The results
show that we can get 7.45× on-chip buffer reduction and 4.67× energy reduction against

3.4. Experimental Results for the Proposed Dataflow 53

CONV1 CONV2 CONV3 CONV4 CONV5
0

5

10

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o

n

ALU

RegisterProposal

DSIP

Buffer

Figure 3.11: Verification for the proposed metrics with CONV processing tasks in Alexnet.
All X axises consist of five CONV layers in Alexnet. Y axises refer to the normalized
energy consumption. Energy consumption is normalized by the simulation result of the
proposed work in CONV1.

Table 3.8: Accelerator Performances for Alexnet.
Architecture DSIP [55] This Eyeriss2 [27] This

Number of PEs 64 72 384 432
Frequency [MHZ] 250 250 200 200

Throughput [GMACS] 11.7 13.9 61.8 73.8
On-chip Memory [kB] 139.6 60.7 492* 66.0

Power [mW] 93.4 42.9 450 96.4
On-chip memory consists of all buffers and registers.
*: Memory capacity is normalized in 16 bit.

Eyeriss v2.

Based on the analysis of LDR and LSR in subtasks, this chapter designed a dataflow
that is more energy-efficient than the state-of-the-art CNN processing dataflow [55]. with
the analysis based on the hardware implementations, the evaluation results of accelerators
are consistent with those based on LDR and LSR. Therefore, the evaluation considering
both LDR and LSR can help us design more energy-efficient DNN accelerators without
detailed hardware implementations.

Furthermore, it is necessary to establish an analytical model that can predict a better
dataflow and the memory capacity requirement at the same time. Based on the proposed
hardware properties, this chapter first builds an analytical evaluation model that can
estimate the dataflow performance and the corresponding memory capacity requirement
for each dataflow. In the next section, we utilize local data reuse and local space reuse to
establish hardware metrics of power, performance, and area.

54 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

1 5 10 20 25
N

30
0

1

2

3

4

5

6

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o

n Off-chip memory

PEs

Register

Buffer

This work

DSIP

Figure 3.12: Energy comparison between DSIP and proposal with PE amount Na2. Energy
is normalized by DSIP energy consumption with N == 1. The ifmap size b2 is set to
1002. The weight size a2 is set to 52.

3.5 Analytical Hardware Evaluation Model

We further propose analytical metrics for energy, time, and area of a corresponding
hardware implementation according to local data reuse and local space reuse of subtasks
in a given processing dataflow.

In an actual hardware implementation, the cost of memory with respect to area and
energy differs depending on the type of the memory, the capacity of the memory, as well
as its manufacturing process. We introduce parameters kEnergy, kTime, and kArea, which
represent an energy of one memory access, an access time to a memory, and the area
of one memory macro, respectively. Furthermore, we use parameter y for identifying a
particular subtask in the memory hierarchy consisting of “registers”, “on-chip buffers”,
and “off-chip memories”. We use parameter x to represent a category of stored data which
includes “weight”, “ifmap”, and “ofmap”.

Analytical Evaluation for Energy

In DNN accelerators, data movement dominates the energy consumption of an entire
architecture. Therefore, we evaluate energy metric focusing only on memories and ALUs
instead of an entire hardware. The energy consumption is thus expressed as a sum of
energy consumption in memories and ALUs including each memory for different data

3.5. Analytical Hardware Evaluation Model 55

10 50 100 150 200
0

100

200

300

400

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o

n Off-chip memory

PEs

Register

Buffer

Ifmap

This work

DSIP

Figure 3.13: Energy comparison between DSIP and proposal with variable I, normalized
by DSIP energy consumption with the ifmap size b2 set to 102. N is set to 10. The weight
size a2 is set to 52.

types x and different subtasks y, which is expressed as:

E = EALU +
∑

x∈{W,I,O}

∑
y∈{Reg,Buf,Off}

Ey
x, (3.4)

where E, EALU and Ey
x are the energy metric of the entire hardware, the energy consumption

of ALUs, and the consumed energy of a memory for data type x in memory level y,
respectively.

For an ALU array, the energy consumption can be derived from the total number of
operations Nall in the whole DNN processing and the energy per operation. The energy per
operation is defined as kALU

Energy. Therefore, the energy consumption of ALUs is expressed
as:

EALU = kALU
EnergyNall. (3.5)

For memories, the energy consumption is derived from the number of accesses and the
energy per access. In order to facilitate formulas to represent the number of memory
accesses, we define levels of processing at ALUs, registers, on-chip buffers, and off-chip
memory as Level 0 (L0), Level 1 (L1), and Level 2 (L2), and Level 3 (L3), respectively.
In the following, we use parameters Dy

x and Sy
x which represent LDR and LSR of data

type x at subtask y, respectively. With those parameters, we can evaluate the number of
L3 accesses by dividing the total number of operations Nall by L2 LSR S2

x . Similarly, the

56 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

3 5 7 11
0

1

2

3

4

5

6

7

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o

n Off-chip Memory

PEs

Register

Buffer

Weight

This work

DSIP

Figure 3.14: Energy comparison between DSIP and proposal with variable W , normalized
by DSIP energy consumption with weight size 32. The ifmap size b2 is set to 1002. N is
set to 10.

number of L2 accesses can be calculated by similar methods. For the register case, we
evaluate the number of L1 accesses by dividing the total number of operations Nall by
L0 LDR D0

x , since L0 ALUs have no memory to reuse data. For simplicity of notation,
we define that ALU LSR is the same as ALU LDR. Therefore, the number of accesses to
every memory level y can be evaluated by dividing the total number of operations Nall by
LSR Sy−1

x .

The energy per access to memories can be designed with different hardware structures.
For example, the energy per access to an on-chip memory is determined by its required
capacity while the energy per access to an off-chip memory is constant regardless of the
dataflow implemented in the hardware. The energy per access to an on-chip memory
Ey

xaccess can be roughly estimated by the square root of its capacity
√

Cy
x [15], where Cy

x

represents the capacity of memory x in memory level y. Therefore, the energy consumption
of on-chip memory x in level y can be expressed as:

Ey
x =

Nall

Sy−1
x

× Ey
xaccess, Ey

xaccess = ky
Energy

√
Cy

x, (3.6)

where Ey
x , and Ey

xaccess are the energy consumption of a memory for data type x in memory
level y, and the energy consumption per access to a memory for data type x in memory
level y, respectively.

3.5. Analytical Hardware Evaluation Model 57

The energy consumption of off-chip memory x can be expressed as:

EOff
x =

Nall

SBuf
x

× kOff
Energy, (3.7)

where EOff
x , and kOff

Energy are the energy consumption of an off-chip memory for data type
x, and the energy parameter for one access to an off-chip memory, respectively.

The memory capacity is affected by the number of operations and LDR in each subtask.
We introduce parameter Ny which represents the number of operations in a subtask at level
y. The required number of data can be inferred from the number of operations in a subtask
Ny divided by LDR Dy

x in each subtask. Therefore, the memory capacity can be expressed
as:

Cy
x =

Ny

Dy
x
. (3.8)

Analytical Evaluation for Time
In DNN processing, the throughput is affected by the processing time consumed in an

ALU array and the data transfer time among memories. The processing time of an ALU
array is inferred by the total number of operations Nall and the number of operations in an
ALU subtask NALU that can be processed in one clock cycle. Therefore, the total transfer
time is the sum of the transfer time between off-chip memories and on-chip buffers and
the time between on-chip buffers and registers.

We use parameter kALU
Time that represents one clock cycle including data accessing

time and either of multiply and multiply-add operations. The number of data that can be
transferred in parallel between on-chip buffers and registers is determined by the bandwidth
of data transfer network between on-chip buffers and registers, which is represented by
the parameter BBuf . We assume that multiple clock cycles are required for on-chip buffer
access and the time required for on-chip buffer access is represented by the parameter
kBuf

Time. In the data transfer of a register subtask, even if the number of data to be transferred
is less than the bandwidth, one access time for buffer access is still required. Therefore,
we use the ceiling function ⌈ ⌉ to represent the transfer time of register subtasks. Similarly,
the bandwidth of off-chip memories is represented by the parameter BOff . Combining
processing time in ALUs and transfer time in memories, we refer the time metric as:

T = kALU
Time

Nall

NALU +
∑

x∈{W,I,O}

∑
y∈{Buf,Off}

ky
TimeN

all

Ny−1

⌈
Ny−1

BySy−1
x

⌉
, (3.9)

58 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

where T is the metric of the time consumption.
Analytical Evaluation for Area
The capacity of a memory roughly determines the area of a memory. We utilize

memory capacity in Eq.(3.10) and the area parameter of memories ky
Area to estimate a

memory area. Besides the area consumed by memories, the area consumption of ALUs
should also be considered. We utilize the number of operations in ALU subtask NALU and
the area parameter of ALUs kALU

Area to represent the area of ALU arrays. Therefore, for the
processing hardware, its on-chip area metric can be expressed as:

A = AALU +
∑

x∈{W,I,O}

∑
y∈{Reg,Buf}

Ay
x,

AALU = kALU
Area NALU, Ay

x = ky
AreaC

y
x,

(3.10)

where A, AALU, and Ay
x, are the total area of the whole processing architecture, the area of

the ALU array, and the area of data type x in memory level y, respectively.
In the following sections, we utilize the proposed metrics to evaluate the proposed

accelerator and a state-of-the-art accelerator [55] for various processing tasks to verify the
accuracy and the flexibility of the proposed hardware metrics.

3.6 Dataflow Comparison

According to LDR and LSR in each subtask, we are able to compare time, energy, and
area of a hardware implementation. In this section, we investigate subtasks in different
processing dataflows and describe LDR and LSR in subtasks of the processing dataflows
based on the proposed accelerator and state-of-the-art accelerators [24, 55]. The processing
for biases is omitted here for simplicity.

3.6.1 Dataflow for Convolutions

We take the proposed accelerator and the DSIP accelerator [55] that handle con-
volution operations as examples. Evaluation metrics based on LDR and LSR make it
possible to investigate different Performance-Power-Area trade-off characteristics of the
two dataflows.

The detailed algorithms have been discussed in Section 3.3.3. Tabs. 3.9 and 3.10
introduce LDR and LSR in both dataflows when processing different convolutions. In
ALU subtasks and register subtasks, the processing proposed dataflow improves LDR for

3.6. Dataflow Comparison 59

Table 3.9: Hardware properties in the proposed processing dataflow for convolution.
Subtask Ny Type Dy

x Sy
x

ALU HwWwγδ
W γδ γδ
I HwWw HwWw
O HwWw HwWw

Reg HwWwWoδ
W Woδ HoWo
I HwWw HwWw
O HwWw HwWw

Buf HwWwHoWoαβ
W HoWo HoWo
I HwWwβ HwWwβ
O HwWwα CiHwWw

Off CiCoHwWwHoWo

W HoWo HoWo
I CoHwWw CoHwWw
O CiHwWw CiHwWw

Table 3.10: Hardware properties in the processing dataflow based on DSIP.
Subtask Ny Type Dy

x Sy
x

ALU HwWwβ
W 1 1
I HwWwβ HwWwβ
O 1 1

Reg HwWwβγ
W γ Hoγ
I HwWwβ HwWwβ
O Ww HwWw

Buf CiHwWwHoβγ
W Hoγ HoWo
I HwWwβ HwWwβ
O CiHwWw CiHwWw

Off CiCoHwWwHoWo

W HoWo HoWo
I CoHwWw CoHwWw
O CiHwWw CiHwWw

ifmaps, weights, and ofmaps, while DSIP LDR for ifmaps is better than the proposal LDR.
Considering the on-chip buffer, although the on-chip buffer in the proposal has better LDR
for weights and ofmaps, it suffers a larger ifmap buffer capacity than DSIP. According to
evaluation metrics, the DSIP processing dataflow is better when the cost of data movement
for ifmap pixels comes to be dominant, while the proposed dataflow could be better in
other cases.

If the bandwidth between on-chip buffers and registers is limited, the transfer time of
ifmap pixels is dominant in the proposed dataflow while the transfer time of weights is
dominant in the DSIP dataflow. If the bandwidth between off-chip memories and on-chip
buffers is limited, similar discussion can be held.

60 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

Algorithm 3 Processing dataflow based on TPU [24]
Require: W , I
Ensure: O

1: Initialization;
2: for k1 ∈ [1 : Ci/α] do
3: for u1 ∈ [1 : Co/β], y1 ∈ [1 : Ho/δ] do
4: for k2 ∈ [1 : α], u2 ∈ [1 : β], y2 ∈ [1 : γ] in parallel do
5: O[u1u2][y1y2]+ = I[k1k2][y1y2] × W[u1u2][k1k2];
6: end for
7: end for
8: end for
9: Return O

Table 3.11: Hardware properties in the processing dataflow based on TPU.
Subtask Ny Type Dy

x Sy
x

ALU αβδ
W δ δ
I β β
O α α

Buf CoHoα
W Ho Ho
I Co Co
O α Ci

Off CiCoHo

W Ho Ho
I Co Co
O Ci Ci

3.6.2 Dataflow for Matrix Multiplications

Tensor Processing Unit (TPU) is a general-purpose accelerator that has the ability
to realize many kinds of processing dataflows [4, 28, 61]. Algorithm 3 introduces a
processing dataflow which can be realized by TPU [24]. The fourth row introduces the
range of an ALU subtask. The third and fourth rows introduce the range of a buffer
subtask. The second, third, and fourth rows introduce the range of a memory subtask. An
ALU subtask consists of multiple ifmap pixels from δ columns and α ifmap channels and
multiple weights from α ifmap channels and β ofmap channels. Hardware properties of
the TPU dataflow are summarized in Tab. 3.11. The number of ALUs is αβδ. According
to the high scalability of an ALU subtask, the dataflow can change the processing range
to meet the shape of the matrix.

Another example of a processing dataflow for the matrix multiplication is listed
in Algorithm 4 which is taken from the proposed dataflow. Hardware properties of
Algorithm 4 are listed in Tab. 3.12. In order to exploit LDR within an ALU subtask,
the fourth row realizes parallel processing with multiple δ ifmap heights. Through a

3.6. Dataflow Comparison 61

Algorithm 4 Processing proposed dataflow for matrix multiplications
Require: W , I
Ensure: O

1: Initialization;
2: for k1 ∈ [1 : Ci/α], u1 ∈ [1 : Co/β] do
3: for k2 ∈ [1 : α], u2 ∈ [1 : β], y1 ∈ [1 : Ho/δ] do
4: for y2 ∈ [1 : δ] in parallel do
5: O[u1u2][y1y2]+ = I[k1k2][y1y2] × W[u1u2][k1k2];
6: end for
7: end for
8: end for
9: Return O

Table 3.12: Hardware properties in the processing dataflow for matrix multiplications.
Subtask Ny Type Dy

x Sy
x

ALU δ
W δ δ
I 1 1
O 1 1

Buf Hoαβ
W Ho Ho
I β β
O α Ci

Off CiCoHo

W Ho Ho
I Co Co
O Ci Ci

processing loop within the on-chip buffer, the architecture increases LDR of ifmaps and
ofmaps. The dataflow has scalable α ifmap channels and β ofmap channels to adopt the
size of an on-chip buffer. The proposed dataflow requires less on-chip buffer for product
terms than TPU, while TPU has better scalability to adapt most processing tasks.

From Tabs. 3.11 and 3.12, we can find out which dataflow is better when processing
different matrix multiplications. According to evaluation metrics, the TPU processing
dataflow is better to meet most processing tasks since it has three scalable parameters to
exploit LDR of all kinds of data in an ALU subtask. The proposed dataflow only has one
scalable parameter γ to exploit weight LDR in an ALU subtask.

Once the processing task is decided, the proposed evaluation metrics are able to
evaluate the processing dataflow without hardware implementation.

62 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

Table 3.13: Energy and area of related hardware components.
Component (16-bit) Energy / Access [pJ] Area [µm2]

Multiplexer 0.01 7
Multiplier 0.21 258

Adder 0.03 31

On-chip SRAM 512 B 1.43* 18801
8 kB 6.63* 256901

Off-chip SRAM 8 MB 104.45* −
*: Average energy consumption of read and write.

3.7 Hardware Design Evaluation

The evaluation metrics can predict the number of accesses and access costs of various
hardware components in actual DNN processing. We verify the accuracy of the metrics in
terms of processing time, energy consumption, and area, by comparing them with results
from RTL simulations.

Evaluation Setup
We collect energy and area for logics and registers from a standard cell library in a

65-nm process technology. The energy consumption of one access to an on-chip buffer
and an off-chip memory is collected from the SRAM model in CACTI Ver. 7.0 [15] under
a 65-nm process with a 1.2 V supply voltage. Tab. 3.13 summarizes energy consumption.
All candidates are built in a 16-bit fixed-point representation, since the number of bits in
a word is set to 16 bits in a case study. According to Tab. 3.13, we utilize the sum of one
multiplier energy and one adder energy to represent one ALU energy. We utilize the access
energy of 512 B SRAM to represent the register access cost. We utilize the access energy
of 8 kB SRAM to represent the on-chip buffer access cost. We utilize the access energy
of 8 MB SRAM to represent the off-chip memory access cost. Therefore, we set energy
parameters kALU

Energy, kReg
Energy, kBuf

Energy, and kOff
Energy to 240 fJ, 5.6 fJ/word, 1.6 fJ/word, and

104 pJ, respectively. Similarly, we set area parameters kALU
Area , kReg

Area, and kBuf
Area to 289 µm2,

4.59 µm2/bit, and 3.92 µm2/bit, respectively. We define the time required to read data
from registers, make computations in ALUs and write-back registers for the time of one
clock cycle, which is represented by kALU

Time. A 200 MHz clock cycle is assumed. We
assume that two clock cycles are required for one access to on-chip buffers and 6 clock
cycles for one access to off-chip memories. We thus set time parameters kALU

Time, kBuf
Time, and

kOff
Time to 5 ns, 10 ns, and 30 ns, respectively.

In the RTL simulation, we model each hardware consisting of multipliers, adders,
registers, on-chip buffers as well as an Network-on-Chip (NoC) between registers and

3.7. Hardware Design Evaluation 63

ALUs and an NoC between on-chip buffers and registers. For the NoC which is capable
of all-to-all data transfer, a hierarchical mesh network (HM-NoC) in Ref. [27] is assumed.
We evaluate the energy and area of the HM-NoC based on the number of multiplexers
required for a specified bandwidth based on an HM-NoC model [27]. From the code
tracing log of the RTL simulation and the physical data in Tab. 3.13, we evaluate the
energy consumption of the target accelerator as,

E =EMUL × NMUL + EADD × NADD

+ EReg_NoC × NReg_NoC + EBuf_NoC × NBuf_NoC

+ EREG × NREG + EBUF × NBUF + EOFF × NOFF,

(3.11)

where E is the total consumed energy, EMUL and EADD are the energy of single multiplier
process and single adder process, respectively. EReg_NoC, EBuf_NoC, EREG, EBUF, and EOFF

represent the energy of single access to each of the following components: the register-
ALU NoC, the buffer-register NoC, registers, on-chip buffers, and off-chip memories.
NMUL, NADD, NReg_NoC, NBuf_NoC, NREG, NBUF, and NOFF are the total number of access to
the following components: multipliers, adders, the register-ALU NoC, the buffer-register
NoC, registers, on-chip buffers, and off-chip memories.

The area of on-chip logics including NoCs, ALUs, buffers, and registers is evaluated
through required hardware resources from RTL simulation under a 65-nm process tech-
nology with a 1.2 V supply voltage. On-chip SRAM area is collected from the SRAM
model in CACTI Ver. 7.0 [15].

Experimental Results

For the evaluation of the proposed evaluation metrics in different tasks, we have
estimated the energy, the processing time, and the area of the accelerators based on the
dataflows of the proposed dataflow, DSIP [55], and TPU [24] for all layers in Alexnet [56].
Fig. 3.15 shows the results of the evaluation metrics for the three dataflows. The RTL
simulation results of the proposed dataflow are also introduced in the figure. The available
buffer capacity is fixed to 256 kB for all dataflows. The number of ALUs available is fixed
to 256 for all dataflows. The on-chip bandwidth between buffers and registers is set to 128
bytes/access. The off-chip bandwidth between off-chip memories and on-chip buffers is
set to 4 bytes/access. We scale α, β, γ, and δ to adapt the different shapes of layers.

First, we compare the difference in performance evaluation between the evaluation
metrics and the RTL simulation, taking the proposed dataflow as an example. A com-
parison of other dataflows results in a similar result, and thereby omitted in Fig. 3.15 for

64 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

clarity. The estimated performance by the evaluation metrics basically meets the results
of the RTL simulations. The discrepancy in energy consumption is 6.9% on average for
each DNN processing in Alexnet. There are three sources for the deviation. First, the
end of cycles of each subtask leads to energy loss in the actual hardware implementation,
which is not considered in the evaluation metrics. Second, NoCs are not considered in
the evaluation metrics. Third, the access cost of ofmaps is different from the cost of
ifmaps and weights. The data movement of ifmaps and weights usually requires read
access to memories, while the movement of ofmaps requires both read and write accesses.
The time metric provides almost identical results with the cycle-base RTL simulation
since the metric calculates the number of clock cycles correctly once the dataflow begins.
Differences from RTL simulation exist only in the initialization of the processing which
consumes negligible clock cycles in the whole processing. The discrepancy in area is
1.7% on average for each DNN processing in Alexnet. A main source of the deviation is
the area of NoCs that is not considered in the metric.

Fig. 3.15 also explains Performance-Power-Area analysis based on the evaluation
metrics for each layer in Alexnet. The proposed dataflow shows the best energy efficiency
among all layers in Alexnet, which achieves 1.2 × energy reduction and 1.2 × time
reduction than the DSIP dataflow when processing CONV layers. However, the DSIP
dataflow achieves 1.8 × area reduction than the proposed dataflow. The reason is that the
proposed dataflow requires to store all ifmap pixels on-chip to reduce off-chip memory
access. For the processing in FC layers, the energy consumption in the TPU dataflow and
that in the proposed dataflow are almost the same, since the off-chip memory accesses
dominates the overall energy consumption.

Fig. 3.16 introduces results based on the evaluation metrics with the proposed dataflow
and the DSIP dataflow under different numbers of ALUs when processing CONV3 layer
in Alexnet. RTL simulation results of both dataflows are also shown in the figure. The
available buffer capacity is fixed to 256 kB for both dataflows. The number of ALUs
available is ranged from 16 to 2048. The on-chip bandwidth between buffers and registers
is set to 128 bytes/access. The off-chip bandwidth between off-chip memories and on-chip
buffers is set to 4 bytes/access.

Proposed evaluation metrics are able to predict hardware performance well. Discrep-
ancies in energy consumption are 5.4% and 1.8% on average with different numbers of
ALUs for the proposed dataflow and the DSIP dataflow, respectively. The time metric
provides the identical results with the cycle-based RTL simulations. The discrepancy in
the area is 1.0% and 1.3% on average for the proposed dataflow and the DSIP dataflow,
respectively.

3.7. Hardware Design Evaluation 65

The results of both dataflows are basically consistent with the discussion which an-
alyzes different Performance-Power-Area trade-offs due to dataflow differences. The
number of ALUs has a smaller effect on the energy consumption of the proposed dataflow
than that of the DSIP dataflow. The reason is that parameter β in the DSIP dataflow affects
both the number of ALUs and the on-chip buffer capacity. As a result, if there are less
than 256 multipliers, the DSIP dataflow suffers from more off-chip memory accesses with
smaller on-chip buffers. On the other hand, the consumed energy of the proposed dataflow
does not vary much with respect to the number of ALUs, since LDR and LSR of ifmaps
and ofmaps are not affected by the number of ALUs. The processing time decreases as
the number of ALUs increases for both dataflows. The area consumption of the DSIP
dataflow is smaller than that in the proposed dataflow when the number of ALUs is smaller
than 256. The reason is that a smaller on-chip buffer capacity leads to area reduction in
the DSIP dataflow.

We are able to utilize the evaluation metrics to explore the best Performance-Power-
Area trade-off under hardware constraints. We next show the results of a trade-off analysis,
taking the proposed dataflow and CONV3 layer in Alexnet as an example. We examine
the effects of on-chip buffer capacity, on-chip buffer bandwidth, and off-chip memory
bandwidth. Default values for the number of ALUs, the bandwidth of on-chip buffers, the
bandwidth of off-chip memories are 256, 128 bytes/access, and 4 bytes/access, respectively.

Fig. 3.17 shows the evaluation metrics as functions of the on-chip buffer capacity. In
order to adopt different capacity limitations, the proposed dataflow scales α and β. The
decrease of α and β reduces the access cost to on-chip buffers, while increases the number
of off-chip memory accesses. Therefore, the capacity increase of on-chip buffers leads to
energy reduction, time reduction and area increase. If we consider a Performance-Power-
Area trade-off, the on-chip buffer capacity of 256 kB leads to the minimum product of
energy, time, and area. Fig. 3.18 explains the effect of on-chip buffer bandwidth on the
processing time. The increase in the bandwidth leads to a decrease in the processing time.
However, when the on-chip bandwidth is larger than 128 bytes/access, the data transfer
time between on-chip buffers and registers can no longer be reduced since all required
data can be transferred by one buffer access. It is appropriate to design hardware with
the on-chip buffer bandwidth of 128 bytes/access. Fig. 3.19 shows the processing time as
functions of off-chip memory bandwidth. As expected, the off-chip memory bandwidth
directly affects the processing time. It is thus requested to make the off-chip memory
bandwidth as large as possible.

The key idea in this chapter is to decompose the entire hardware into several inde-

66 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

pendent hardware components and analyze subtasks in each hardware component. This
chapter proposes the evaluation metrics based on the local data reuse and the local space
reuse in each subtask. Proposed evaluation metrics are dedicated to quantitatively evaluate
the cost of data movement under various processing conditions. Simulation results show
the good accuracy of the evaluation metrics when processing Alexnet. According to the
proposed metrics, we can easily select better processing dataflow under target hardware
constraints without complicated hardware verification.

3.8 Summary

In DNN processing, the data movement among memories and processing elements
consumes most of time, energy, and area. At the same time, the number of operations
in DNN processing is usually much larger than the number of hardware resources. This
chapter proposes two hardware properties, local data reuse and local space reuse to de-
scribe the quantitative cost of data movement in each memory hierarchy. Based on the
properties, this chapter proposes a new set of hardware metrics to analytically estimate
energy, throughput, and area from the processing dataflow. This chapter proposes an
efficient CNN processing dataflow with a small on-chip memory requirement. Further-
more, according to the analytical evaluation of various processing dataflows and various
processing environments, the proposed evaluation metrics effectively evaluate the process-
ing dataflow without hardware implementation. Designers are able to use the evaluation
metrics to greatly reduce the workload of hardware.

3.8. Summary 67

N
o

rm
a

liz
e

d
 E

n
e

rg
y

N
o

rm
a

liz
e

d
 A

re
a

Layers in Alexnet

CONV1 CONV2 CONV3 CONV4 CONV5 FC1 FC2 FC3

100

101

Proposal

Proposal Sim.

DSIP

TPU

N
o

rm
a

liz
e

d
 T

im
e

Layers in Alexnet

Layers in Alexnet

CONV1 CONV2 CONV3 CONV4 CONV5 FC1 FC2 FC3

100

101

Proposal

Proposal Sim.

DSIP

TPU

CONV1 CONV2 CONV3 CONV4 CONV5 FC1 FC2 FC3

100

101

Proposal

Proposal Sim.

DSIP

TPU

Figure 3.15: Verification for the proposed metrics with various processing tasks in Alexnet.
All X axises consist of five CONV layers in Alexnet. Y axises refer to energy consumption,
time consumption and area consumption, respectively. All consumption is normalized by
the evaluation metric result of the proposed dataflow in CONV1.

68 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

N
o

rm
a

liz
e

d
 E

n
e

rg
y

N
o

rm
a

liz
e

d
 A

re
a

Num. of ALUs

16 32 64 128 256 512 1024 2048

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Proposal

Proposal Sim.

DSIP

DSIP Sim.

N
o

rm
a

liz
e

d
 T

im
e

16 32 64 128 256 512 1024 2048

0.4

0.6

0.8

1.0

1.2

1.4

1.6 Proposal

Proposal Sim.

DSIP

DSIP Sim.

16 32 64 128 256 512 1024 2048

1.0

1.5

2.0

2.5

3.0

Proposal

Proposal Sim.

DSIP

DSIP Sim.

Num. of ALUs

Num. of ALUs

Figure 3.16: Verification for the accuracy of proposed metrics with a different numbers of
ALUs. The target processing task is CONV3 layer in Alexnet. X axis shows the number
of ALUs available. Y axises refer to energy consumption, time consumption and area
consumption, respectively. All consumption is normalized by the evaluation metric result
with 16 available ALUs of the proposed dataflow.

3.8. Summary 69

N
o
rm

a
liz

e
d
 E

n
e
rg

y
N

o
rm

a
liz

e
d
 A

re
a

On-chip Buffer Capacity [kB]

128 256 512 1024 2048 4096

2

4

6

8

10

12

14

N

o
rm

a
liz

e
d
 T

im
e

On-chip Buffer Capacity [kB]

On-chip Buffer Capacity [kB]

128 256 512 1024 2048 4096

0.5

0.6

0.7

0.8

0.9

1.0

128 256 512 1024 2048 4096

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.17: Estimated performance for CONV 3 layer in Alexnet under different buffer
capacity constraints. X axis shows the on-chip buffer capacity available. Y axises
refer to energy consumption, time consumption and area consumption, respectively. All
consumption is normalized by the evaluation metric result with 128 kB available buffer
capacity.

70 Chapter 3. DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern

On-chip Bandwidth [Byte]

N
o
rm

a
liz

e
d
 T

im
e

4 8 16 32 64 128 256 512

0.2

0.4

0.6

0.8

1.0

Figure 3.18: Estimated performance for CONV 3 layer in Alexnet under different on-
chip bandwidths between buffers and registers. The X axis shows the off-chip bandwidth
between off-chip memories and on-chip buffers. The Y axis refers to the processing time.
The processing time is normalized by the processing time with an on-chip bandwidth of 4
bytes/access.

Off-chip Bandwidth [Byte]

N
o

rm
a

liz
e

d
 T

im
e

2 4 8 16 32 64 128 256

0.2

0.4

0.6

0.8

1.0

Figure 3.19: Estimated performance for CONV 3 layer in Alexnet under different off-
chip bandwidths between off-chip memories and buffers. The X axis shows the off-chip
bandwidth between off-chip memories and on-chip buffers. The Y axis refers to the
processing time. The processing time is normalized by the processing time with an
off-chip bandwidth of 2 bytes/access.

71

Chapter 4

Sparse DNN Accelerator for Irregular
Data Access Pattern

4.1 Introduction

In order to adopt limited computing resources of endpoint devices, many studies utilize
pruning techniques to reduce the total amount of parameters in DNNs [61–65]. Since DNN
processing often uses Rectified Linear Unit (ReLU), this means that many pixels in feature
maps are also be zeroed. As a result, the matrices involved in DNN processing are often
sparse [66]. Focusing on the sparsity of DNN processing, previous hardware accelerators
transmit only non-zero data to the Processing Elements (PEs), thereby translating the
sparsity into energy reduction of the data movement [23, 27, 67]. Once non-zero data are
loaded into PEs, hardware implementations are expected to fulfill data into all available
Arithmetic Logic Units (ALUs) by index matching [34]. Index matching is to match
the coordinate of the weight and the coordinate of the input feature map (ifmap) pixel
for each operation to determine whether there is a meaningful operation that produces a
non-zero product term. However, the irregular distribution of non-zero data leads to a
large matching overhead in parallel processing since accelerators have to match multiple
coordinates in parallel [68].

Index matching does not affect parallel-processing performance in dense DNN, since
all processing dependencies between ifmaps and weights are clear at the design time. In
sparse DNN, index matching becomes critical to decide the parallel-processing hardware
complexity due to the data irregularity. The index matching comes to be complicated in
the parallel processing task, which should check all loaded weight coordinates and ifmap
pixel coordinates with each other to find out meaningful operations that lead to non-zero
products. For example, Eyeriss v2 [27] enhances throughput by utilizing multiple scratch-

72 Chapter 4. Sparse DNN Accelerator for Irregular Data Access Pattern

pad memories with a pipeline architecture inside PEs to detect meaningful operations.
Fetching just right amount of input data with a simple logic to guarantee high PE uti-
lization is important, since the number of non-zero products is unknown in sparse DNN
processing. In order to detect meaningful operations quickly in sparse DNN processing,
it is required to find out the property to help us understand how many meaningful opera-
tions are among ifmap pixels and weights, thereby guiding us to design a simple sparse
processing architecture. This chapter views meaningful operations as multiplications that
both corresponding ifmap pixels and weights are non-zeros.

To address the challenge of high PE utilization, the third target in this thesis makes the
following contributions:

1. This chapter first describes the property called matching type for index matching
in DNN processing, which helps to predict the number of meaningful operations
efficiently, thereby enhancing PE utilization in sparse DNN processing. This chap-
ter utilizes PE utilization to refer to the average ratio of multipliers that process
meaningful operations in the PE.

2. Based on the proposed property, this chapter first introduces a sparse DNN accel-
erator called Memory Optimized Sparse DNN Accelerator (MOSDA). This chapter
makes a hardware evaluation of the proposed sparse accelerator to compare with
state-of-the-art DNN accelerators in both dense and sparse DNN processing.

The rest of this chapter is organized as follows. Section 4.2 discusses the motivation
and processing properties in sparse DNN processing. Section 4.3 introduces the proposed
DNN processing dataflow. Section 4.4 introduces the hardware realization of the proposed
processing dataflow. Section 4.5 discusses the simulation results to show the superiority
of the proposed hardware realization. Section 4.6 concludes this chapter.

4.2 Background

4.2.1 Sparse DNN Processing

The sparsity of weights and ifmaps can be utilized by gating or skipping operations,
thereby improving energy efficiency. In order to further enhance throughput by sparsity,
a complex control logic is usually inevitable according to the irregularity of weights and
ifmaps in sparse DNN. For achieving high PE utilization, this chapter proposes a method
that aims to directly infer the number of operations from the number of loaded non-zero

4.2. Background 73

IfmapWeight Product Term Ofmap

Dataflow A Dataflow B

o

× + ×

× + ×

= =

(B)

× + ×

× + ×

× + ×

× + ×

(A)

Step 1

Step 2

0

0 0 0

0

0 0

00
Step 1 Step 2

Figure 4.1: Sparse Matrix Multiplication with Ci = Co = 2, N = Hw = Ww = Hi = Wi =
Ho = Wo = 1. Two possible processing dataflows with 2 multipliers are introduced.

ifmap pixels and the number of loaded non-zero weights so that we can easily arrange
weights and ifmap pixels required for massively parallel processing. We fetch just the
right amount of input data, thereby maximizing PE utilization with a simple control logic.
We focus on the data dependency between ifmaps and weights to evaluate its impact on
the number of required operations for sparse DNN.

4.2.2 Motivational Example

In this sub-section, we review a sparse matrix multiplication shown in Fig. 4.1. The
shape of the matrix multiplication is Ci = Co = 2. Suppose we have only 2 multipliers
available, two possible processing dataflows, Dataflow A and Dataflow B, are shown in
Fig. 4.1 (A) and (B), respectively. Dataflow A uses 2 multipliers to generate product terms
to the same output feature map (ofmap) pixel in each step. Dataflow B uses 2 multipliers
to generate product terms from the same ifmap pixel in each step. According to the
definition given in Ref. [4], Dataflow A is an ifmap-stationary dataflow. Dataflow B is an
ofmap-stationary dataflow. Both dataflows require two steps to complete the processing
when matrices are dense.

For a sparse matrix operation shown in Fig. 4.1, all required data have been loaded into
the on-chip buffer, and each buffer can only hold one data for initialization. We observe
that the number of multiplications processed in a single step in different dataflows is not
the same.

Dataflow A performs two multiplications which have the same Co coordinate in parallel.
In the first step, one multiplication is required since the non-zero ifmap pixel i2 should
multiply with one non-zero weight w12, while there are two non-zero weights available.
In the second step, one multiplication is required since the non-zero ifmap pixel i2 should

74 Chapter 4. Sparse DNN Accelerator for Irregular Data Access Pattern

(b) a-a
Allmul�plies with one .

...

(c) s-s(a) o-o
One s mul�ply with all s.

1

2

n

1

2

n

1

2

m

1

2

n

1

2

m

1

2

n

...

Some s mul�ply with some s.

Figure 4.2: Three types of processing dependency. Type (a): one w is processed with one
i. Type (b): all ws are processed with all i. Type (c): The processing dependency between
ws and is is diverse.

multiply with one non-zero weight w22. In Dataflow A, it is difficult to infer the number of
multiplications required until we fetch non-zero data into multipliers. It is hard to fulfill
all multipliers without additional control logic in Dataflow A.

Dataflow B performs two multiplications which share the Ci coordinate. Since i1 is
zero, there is no required operation in the first step of dataflow B. As a result, the first step
can be skipped once we notice i1 is zero. In the second step, two multiplications between
one ifmap pixel i2 and two weights w12, w22 are processed.

In Dataflow B, we can easily infer the number of operations required by the non-
zero ifmap amount times non-zero weight amount. As a result, Dataflow B requires less
hardware control effort to maximize PE utilization in the case study.

Rather than discussing the overall processing properties of the processing task, this
chapter focuses on the processing dependency of the subtask loaded on the hardware. In
the next sub-section, we will discuss the impact of processing dependency in subtasks on
inferencing the number of operations.

4.2.3 Processing Dependency in DNN

In dense DNN processing, it is simple to infer the number of operations required
since the processing dependency between ifmaps and weights is clear at the design time.
In sparse DNN, inferring the number of operations becomes critical for the processing
speed and the hardware complexity. From the perspective of parallel processing hardware
design, the processing dependency can be divided into three categories.

Type (a) [o − o] in Fig. 4.2 refers that one ifmap pixel should be processed with only
one weight in the processing task. If there are x non-zero ifmap pixels and y non-zero
weights in sparse processing task, we can only infer that there are at most x or y operations

4.2. Background 75

required to be processed in the task. Therefore, a [o − o] sparse processing task requires
a complex hardware effort to maximize PE utilization.

Type (b) [a − a] in Fig. 4.2 refers that all n ifmap pixels should be processed with all
m weights in the processing task. If there are x non-zero ifmap pixels and y non-zero
weights, we can easily infer that there are xy operations required to be processed in the
task. As a result, the number of operations can be easily inferred if the sparse processing
task follows [a − a] type.

Type (c) [s − s] in Fig. 4.2 describes all the other cases of the processing dependency.
Type [s − s] refers that there are some ifmap pixels required to be multiplied with some
weights in the processing task. The number of operations required for one ifmap pixel (or
one weight) varies. As a result, in a sparse [s − s] processing task, it is difficult to infer
the overall required operations just by the number of non-zero data. Therefore, a [s − s]
sparse processing task requires dedicated hardware to maximize PE utilization.

We refer the processing dependency of weights and ifmap pixels in a certain processing
task as matching type. In Dataflow A of Fig. 4.1, each ifmap pixel multiplies with only
the matched weight in each subtask, which means that the matching type in the subtask of
Dataflow A is [o − o]. In Dataflow B of Fig. 4.1, all ifmap pixels are multiplied with all
weights in each subtask which means the matching type in the subtask of Dataflow B is
[a − a]. Therefore, the hardware implementation of Dataflow A requires special hardware
to maximize PE utilization without redundant data movement. On the other hand, the
processing with [s-s] matching type can be found, for example, in the parallel processing
with 4 multipliers. The parallel processing task of all four multiplications simultaneously
in Fig. 4.1 belongs to the [s-s] matching type, which could lead to a complex index
matching effort.

In [a − a] matching type, the number of required operations in the processing task can
be simply expressed by the number of non-zero ifmap pixels times the number of non-zero
weights regardless of sparsity. Therefore, we are able to fetch just the right amount of
input data to enhance PE utilization with a simple control logic. As a result, keeping the
matching type of the PE subtask being [a − a] is the key to enhance PE utilization.

If we generalize the discussion from matrix multiplications to operations in DNN,
matching types in different subtasks are summarized in Tab. 4.1. For convolution op-
erations, the matching type of the corner ifmap pixels changes according to the chosen
padding type. Since the central ifmap pixels usually dominate in number, we utilize
matching type of the central ifmap pixels to represent the matching type of all ifmap
pixels. Therefore, we view the matching type of convolution between ifmap pixels and
weights as [a − a]. Available [a − a] matching type refers to simple hardware workloads

76 Chapter 4. Sparse DNN Accelerator for Irregular Data Access Pattern

Table 4.1: Matching types of typical subtasks in DNN.
Subtask Processing Matching Type

Direction in Weights-to-Ifmap Pixels
N [a − a]
Ci [o − o]
Co [a − a]
Hw [a − a]
Ww [a − a]
Ho [a − a]
Wo [a − a]
D [o − o]

(Ho,Hw) [a − a]
(Ci,Co) [s − s]

to process the subtask in parallel. In actual hardware accelerators, the chosen subtask for
PEs is usually the combination of multi dimensions to maintain the throughput of the ac-
celerators. In the case where the subtask contains both [a − a] subtask and [o − o] subtask,
the matching type would be [s − s]. Once the subtask for DNN processing is determined,
the matching type of the target subtask is fixed and will not change with sparsity.

4.2.4 Related Work

Tab. 4.2 introduces several typical state-of-the-art DNN accelerators. Different accel-
erators utilize different subtask processing strategies. This also leads to a difference in
data-fetching strategies. The subtask adapted by Eyeriss v2 [27] loads data into registers
in a PE as much as possible. Although this increases the theoretically available data reuse
in PE subtask, it also makes its control logic complicated due to its [s − s] matching type
which requires a multi-stage pipeline architecture for each PE to enhance PE utilization.
EIE [23], and Cnvlutin [28] have the processing dimension of (Ci,Co) in a PE, which
leads to the [s − s] matching type. OuterSPACE [34] utilizes outer product to replace
the conventional inner product sequence to process matrix multiplications while keeping
the matching type as [a − a] in (Co,Ho) processing dimension. As a result, OuterSPACE
achieves fast and efficient data scheduling. However, Outer SPACE can only handle matrix
multiplication, but not other processing targets, such as convolution. In the next section,
this chapter proposes a sparse DNN processing dataflow that fully considers the process-
ing properties based on the dataflow in Chapter 3 derived for dense DNN processing.
The proposed sparse processing dataflow shows efficiency when facing different process-
ing targets, which are convolutions (CONVs), fully-connected layers (FCs), and Matrix

4.3. Sparse DNN Processing Dataflow 77

Table 4.2: Processing dimension of subtasks in typical accelerators.

Accelerator Target Subtask Processing Matching
Direction Type

Eyeriss v2 [27] Sparse CNN (Co,Ci,Ho, [s − s]
Wo,Hw,Ww,D)

EIE [23] Sparse FC (Ci,Co) [s − s]
Cnvlutin [28] Sparse CONV (Ci,Co) [s − s]

OuterSPACE [34] Sparse Matrix (Co,Ho) [a − a]

Multiplications, from the experiment result.

4.3 Sparse DNN Processing Dataflow

In this section, this chapter proposes a sparse DNN processing dataflow based on the
matching type discussed in the previous section. The key idea of the proposed dataflow is
to ensure that the matching type of the subtasks loaded into PEs is always [a − a].

One batch of the convolution operation requires Ci × Co × Ho × Wo × Hw × Ww

multiplications in total. Additions of the same order of magnitude are also required for
multiplication results. As shown in Fig. 3.1, each ofmap pixel contains Ci×Hw×Ww product
terms, each product term needs to occupy one memory space in sequential processing. If
we utilize fully parallel processing, we are able to merge Ci × Hw × Ww product terms
into one partial sum (psum) before accessing the memory to reduce the memory capacity
required by the accelerator. The previous work refers to the processing property as space
reuse. Hence, this chapter notices that there are three processing properties that affect the
hardware performance in DNN processing, which are the data reuse, the space reuse and
the matching type.

In order to exploit three processing properties, Fig. 4.3 introduces two requirements
for the sparse DNN processing dataflow. First, the processing dataflow for sparse DNN
processing should guarantee all subtasks in the PE should be with the matching type [a−a].
Second, in order to further reduce the data movement in the hardware implementation for
the dataflow, data reuse and space reuse should also be exploited as much as possible to
reduce the number of memory accesses and memory capacity.

The dataflow in Chapter 3 for dense DNN processing satisfies both two requirements.
In the dataflow, the subtask stored in the PE is 2D CONV, where matching type is [a − a].
In each clock cycle, the registers fetch multiple ifmap pixels in the same column to multiply
with all weights in 2D CONV to exploit data reuse of ifmaps and weights. If we keep the
subtask scope within 2D CONV, there are also product terms in the subtask that can be

78 Chapter 4. Sparse DNN Accelerator for Irregular Data Access Pattern

On-chip Ifmap

Buffer

On-chip

Weight Buffer

PE Array

ALU & Reg.

Off-chip

Memory

On-chip

Ofmap Buffer

gurantee matching

type is a-a

exploit data reuse and space reuse

Figure 4.3: Requirements of sparse DNN processing dataflow. First, processing dataflow
should guarantee the matching type of the subtask in the PE is [a − a] for sparse DNN
processing. Second, the dataflow should exploit data reuse and space reuse as much as
possible.

accumulated. In other words, there is also space reuse available in 2D CONV. Therefore,
related product terms are added to reduce the required capacity of the on-chip memories.

This chapter first introduces a sparse DNN processing dataflow as an expansion of
the dense dataflow in Chapter 3. The proposed sparse processing dataflow does parallel
processing within the (Co,Ho,Wo,Hw,Ww) dimensions to guarantee the matching type as
[a − a] in the PE. Under the target dimension, we further scale the processing range in the
(Co,Ho,Wo) dimensions to match various sizes of processing tasks with a fixed number of
multipliers inside a PE. The processing dataflow guarantees that the subtask in the PE is
always [a − a] matching type.

Fig. 4.4 introduces a processing example in one PE with 8 multipliers following
the proposed processing dataflow. The target convolution consists of three 3 × 3 weight
matrices for 3 different ofmap channels and a 4×4 ifmap matrix. Different ofmap channels
contain different number of non-zero weights a, b, c, and d. First, all non-zero weights,
ifmap pixels and the index coordinates in 2D CONV are stored in the COO format [69].
In addition, we store the ofmap channel coordinates I, II, and III in the weight register.
The 8 multipliers are arranged as 2×4, where each set of 4 multipliers in the same row
shares the same weight and each set of 2 multipliers in the same column shares the same
ifmap pixel. Two weights are combined into one weight group (WG) and four ifmap
pixels are combined into one ifmap group (IG). Once the data are loaded into registers,

4.4. MOSDA Architecture Based on Matching Type 79

MOSDA fetches two weights in one WG and 4 non-zero ifmap pixels in one IG to fulfill
all 8 multipliers per clock cycle. We adopt ifmap stationary here to exploit data reuse and
space reuse. As shown in the right bottom of Fig. 4.4, (WG0 / IG0), (WG1 / IG0), (WG0
/ IG1), and (WG1 / IG1) are processed sequentially.

When the product term is generated, we also compute the index information of the
product term in the COO format. The ofmap channel of the product term is the same as
the ofmap channel of the weight. Product terms in the same row share the same ofmap
channel coordinate. We add product terms according to indexes of product terms in the
spatial addition stage. By utilizing indexes of product terms, the spatial addition part
shown in the right bottom of Fig. 4.4 merges product terms with the same indexes through
a crossbar. For example, since there are two product terms that have the same index (1,1)
in the first step (WG0 / IG0), two product terms are merged into one under the spatial
addition stage. We store psum results from the spatial addition stage into registers and
wait for the temporal addition. Psum results stored in registers are not always necessary
for the following accumulation. For example, corner product terms with the index (−1,1)
in Fig. 4.4 is unnecessary because the index coordinates are out of the range of the output
matrix. In order to avoid the energy loss by useless multiplications, the registers at the
beginning of the temporal addition stage shield the useless product terms. The temporal
addition part shown in the right above of Fig. 4.4 aims to further accumulate psums that
can be accumulated between different clocks according to crossbars and the psum register.

Through the proposed dataflow, MOSDA can utilize the potential data reuse and space
reuse of 2D CONV while ensuring the matching type as [a − a]. Therefore, the method
can ensure the PE utilization while reducing the required memory access and memory
capacity.

We first propose a DNN hardware evaluation model by local data reuse and local
space reuse. We further propose MOSDA exploiting the matching type for sparse DNN
processing.

4.4 MOSDA Architecture Based on Matching Type

Architecture Overview
A MOSDA architecture overview is shown in Fig. 4.5. All ifmap pixels and weights

are stored in the off-chip memory. On-chip buffers store data which can be accessed in
the near future to exploit data reuse and space reuse.

MOSDA architecture can be scaled across a number of dimensions. Table 4.3 intro-
duces key parameters of MOSDA in this chapter. MOSDA consists of 16 PEs, each with

80 Chapter 4. Sparse DNN Accelerator for Irregular Data Access Pattern

a

b

c

P
ro

c
e

s
s

T
im

e
lin

e

Weight Output Channel 1

Mul Array

2 3

7

0 00

0

Ifmap Input Channel 1

0

Weight Output Channel 2

0 6

5 00 0

01

4

0

00

0 00

0

0

0

0

0 0

0

0

0

Weight Output Channel 3

d

00

0 00

0

0

0,0 0,1 0,2

1 2 3

1,1

2,2 3,1

4

5 6

3,2

7 Data

Index

0,0 1,1 2,0

a b c Data

Index

Data

Index

0,1

d Data

Index

On-chip

COO Format

0,0 0,1 0,2

1 2 3

1,1

2,2 3,1

4

5 6

3,2

7

2
,0c

0
,1d

0
,0a

1
,1b

IG 0

IG 1

W
G

 0

W
G

 1

IG
 0

W
G

 0
IG

 0
W

G
 1

Off-chip Data Multiplications in a PE

IG
 1

W
G

 0
IG

 1
W

G
 1

Temporal Additions

+

Spatial Additions

8x8

crossbar
+

P Reg.

P
ro

c
e

s
s

T
im

e
lin

e

Index of Products

Merged

1,1

0,0

-1,1

1,0 8x8

crossbar
+

8x8

crossbar
+

8x8

crossbar
+

1,2 1,3 2,2

0,1 0,2 1,1

-1,2 -1,3 0,2

1,1 1,2 2,1

3,3 4,2 4,3

2,2 3,1 3,2

1,3 2,2 2,3

3,2 4,1 4,2

0,0

-1,1

1,0

1,2 1,3 2,2

0,1 0,2 1,1

-1,2 -1,3 0,2

1,1 1,2 2,1

3,3 4,2 4,3

2,2 3,1 3,2

1,3 2,2 2,3

3,2 4,1 4,2

crossbar

crossbar

+ P Reg.
crossbar

crossbar

+ P Reg.
crossbar

crossbar

+ P Reg.

I
II
I

I
I

I I I

III

Channel

Channel

I

I

III

I

I

I

III

I

Channel Index Index Channel

I

I

III

I

I

I

III

I

Figure 4.4: The subtasks loaded into the registers always belong to [a − a] matching type.
Only non-zero ifmap pixels and weights are loaded into a PE.

a 16 multiplier array. 16 multipliers in one PE can be arranged as 16 rows × 1 column
for processing of FC layers or 2 rows × 8 columns for other cases. Each row shares the
same weight, and each column shares the same ifmap pixel. We store ifmap pixels and
weights in 8 bit. Product terms generated by multiplications are accumulated in 24 bit.
When the accumulation is finished, 24-bit psums are converted back to 8-bit ofmap pixels
and sent off-chip without coordinate information. We do not use the COO format to store
data in the off-chip memory, since MOSDA is also intended for dense DNN processing.
Memories carry an 8-bit overhead to encode the coordinate information for each value,
which are able to process operations with 16 × 16 matrix in parallel. In the setup, if the
sparsity is less than 50%, the data stored under the COO format will take more storage
space than the data stored without the COO format. All data are transmitted in the COO
format on-chip in this chapter.

Parallel Processing in one PE
We exploit data reuse and space reuse, thereby reducing the cost of data movement

within the PE. We utilize a three-stage pipeline architecture to reduce the critical path of
the PE.

The main function of the first stage in the pipeline is parallel data fetching and mul-
tiplications. In order to exploit the data reuse and space reuse as much as possible, the
dataflow further processes DNN ifmap channel by ifmap channel in the Ci dimension as

4.4. MOSDA Architecture Based on Matching Type 81

DNN Accelerator

U�lize UDR and USR in rest loops with buffers

On-chip Ifmap

Buffer

On-chip

Weight Buffer

PE Array:

, , Reg.

U�lize UDR and

USR for L0 & L1

loop with reg.

On-chip

Psum Buffer

Off-chip Memory Interface

Off-chip

Memory

Figure 4.5: MOSDA architecture overview. The subtasks loaded into the registers always
belong to [a − a] matching type. All PEs share one global buffer for all kinds of data.

Table 4.3: MOSDA Design Parameters.
MOSDA Parameter Value

PEs 16
Global Buffer 192 KB
PE Parameter Value
Multipliers 16

Multiplier Width 8 bits
Accumulation Width 24 bits

Weight FIFO in one PE 32x16 bits
Ifmap FIFO in one PE 64x16 bits

Psum Register in one PE 64x32 bits

an outer loop. In order to guarantee the matching type as [a-a], the dataflow processes the
task ofmap channel by ofmap channel in the Co dimension as an inner loop. If non-zero
data inside one channel is not enough to fulfill multipliers, MOSDA will fetch data from
multiple ofmap channels into one PE to maintain high PE utilization. Fig. 4.4 is a case
study that loads data for 3 ofmap channels, since the number of operations is less than the
number of multipliers within one ofmap channel. This ensures that PE utilization is not
degraded because enough data is loaded into the PE.

The data transmission logic is introduced in Fig. 4.5. For parallel processing of FC
layers, 16 multipliers are configured into 16 × 1. All 16 multipliers share the same ifmap
pixel, and each multiplier has a unique weight. For parallel processing of other cases such
as convolutions, multipliers are configured into 2 × 8. 2 multipliers in one same column
share the same ifmap pixel, and 8 multipliers in one same row share the same weight.
Once multiplications are finished, MOSDA requires a crossbar logic to transmit psums
from multipliers to spatial adders.

If the number of non-zero weights in 2D CONV is too small, the required memory

82 Chapter 4. Sparse DNN Accelerator for Irregular Data Access Pattern

bandwidth of the ifmap buffer will be large at every clock cycle. In order to balance the
on-chip memory bandwidth of weights and ifmap pixels, if there are too few non-zero
weights under a single channel, MOSDA scales parallel processing range of the ofmap
channel to multiple ofmap channels to balance memory bandwidth requirement while
maximizing the PE utilization.

One of the key issues in sparse DNN processing architecture is high area/power
overhead of accumulation due to irregular output data [35, 70]. In this chapter, we reduce
the psum overhead by reducing psum register access by reserving a spatial redundant
addition network. Fig. 4.5 introduces the psum accumulation logic in MOSDA, which is
decomposed into a spatial addition stage and a temporal accumulation stage. The spatial
addition stage aims to merge possible product terms into one psum within one clock cycle.
We compare the indexes of all product terms with each other in the spatial addition stage,
and merge corresponding product terms with the same index. The temporal accumulation
stage further accumulates psums among different clock cycles. Both stages are controlled
by coordinate information in index logics.

We merge the psums corresponding to the same ofmap pixel under the same step
through a spatial addition network, thereby reducing the required psum register accesses.
Due to the irregular output issue, a 16 × 16 crossbar is required between 16 product terms
and 16 adders.

In the next temporal accumulation stage, we write merged psums into psum registers
according to the coordinate index. Through the coordinate from the spatial addition stage,
first we read the corresponding psums in the registers. Next, we add the read psums to
the psums from the spatial addition stage and store them in psum registers. Once all the
operations in the current ofmap channel have been completed, we write the psums back
to the global buffer. Considering the worst case, we need to write 16 psums into 64 psum
registers at the same time. Although this will cause a large area overhead, it ensures the
MOSDA processing speed.

In order to limit register accesses by generated psums, we make the spatial addition and
send psum results to psum registers. Considering the space reuse existed under different
clock cycles, we continue to do the temporal accumulation for product terms stored in
psum registers to reduce the required accesses to the global buffer.

Data Transmission among PEs
Due to the scale limitation of the all-to-all transmission network, the psum register

capacity cannot be too large, thus limiting exploiting the data reuse in a single PE. We
ensure that psum results of different PEs do not need to undergo further accumulation
operations since they belong to different ofmap channels. The number of ALUs for a

4.5. Experimental Results 83

Table 4.4: MOSDA Specifications.
Technology 65nm SOTB
Core Area 2mm × 6mm

Gate Count (Logic Only) 3066k gates (NAND-2)
On-chip Memory 192 KB SRAM + 6 KB Register
Clock Frequency 200 MHz
Peak Throughput 153.6 GOPS

Filter Size All
Ifmap Size All

Processing Type CONV, and FC (Matrix Multiplication)

single PE is limited by its crossbar structure and cannot be large. MOSDA can increase
the number of PEs for achieving higher throughput. As the number of PEs increases,
throughput and power consumption will increase linearly. We use 16 PEs in this chapter
as a case study. Different PEs are responsible for processing calculation tasks of different
ofmap channels, thereby improving overall processing speed. Please note that a single PE
may be responsible for multiple ofmap channels if the number of operations corresponding
to a single ofmap channel is small compared to the number of multipliers in a PE, which
ensures to maintain high PE utilization.

The global buffer provides the required non-zero weights and ifmap pixels to each PE
sequentially. After data fetching finishes, PEs do processing in parallel. Once processing
tasks in PEs are completed, each PE sequentially restores their respective psum results
back to the global buffer.

MOSDA is able to switch the data transmission mode from sparse mode to dense mode
to save energy overhead due to coordinate information. When MOSDA is initialized,
information such as the size of the processing task and whether it is sparse is stored in the
on-chip logic control. In the dense mode, MOSDA no longer activates the COO format
converter or stores the coordinate information of ifmap pixels and weights in the global
buffer.

4.5 Experimental Results

In this section, we verify the efficiency of MOSDA with 16 PEs by post-layout cycle-
accurate gate-level simulations under a 65-nm Silicon-on-Thin-Box (SOTB) process with
a 1.2 V supply voltage. The bandwidth between the global buffer and PEs transmit 48
words once for weights and ifmap pixels, or 24 words once for psums. The specifications
are summarized in Tab. 4.4. The peak throughput of MOSDA is defined as the total

84 Chapter 4. Sparse DNN Accelerator for Irregular Data Access Pattern

throughput of processing elements, which consists of 256 multipliers and 512 adders in
total. Tab. 4.5 summarizes the energy of major logic components in a 1.2 V supply
voltage. All energy values except for on-chip SRAM are based on the average values for
one operation during overall post-layout simulations. All hardware components are built
in the fixed-point representation. More specifically, the energy of multipliers is collected
by one multiplier, which has 8-bit inputs and one 16-bit output. The energy of adders
is collected by one 16-bit adder for psum accumulations. The energy of the crossbars is
evaluated by transmitting one 16-bit data through crossbars. The energy consumption of
the access to the global buffer is collected from SRAM model in CACTI Ver. 7.0 [15]
under a 65-nm process with a 1.2 V supply voltage.

MOSDA logic part is evaluated from the post-layout simulations. In order to verify the
validity of the energy analysis through simulations and make a fair comparison with other
state-of-the-art accelerators, we further evaluate synthesized MOSDA with sparse Alexnet.
We did a gate-level simulation using NC-verilog to generate Value Change Dump (VCD)
file. We further convert VCD to toggle information, which is dumped to Switching Activity
Interchange Format (SAIF). Finally, the energy consumption is estimated from the number
of toggles. The data transmission Network-on-Chip (NoC) consists of transmission logics
between weight FIFO and multipliers, logics between ifmap FIFO and multipliers, and a
crossbar between multipliers and spatial adders. The area consumed by the crossbar is
85% of the total NoC area. The area of the psum register consists of both register cells
and the crossbars to fetch data into registers. The energy and area of MOSDA buffer
part are collected from CACTI model. Based on the code tracing logs, we calculate the
access activities of the global buffer. Combining the activities and the physical SRAM
data in Tab. 4.5, this chapter simulates the energy consumption of the overall MOSDA
performance.

MOSDA core area is 12 mm2, which consists of a 192 KB on-chip SRAM buffer
and the 16 PEs. The overall logic gate count is 3066k NAND-2 gates. Fig. 4.6 (A)
introduces the area breakdown in MOSDA. The global buffer accounts for 46.6% of the
total core area. The control logic for data transmission between the global buffer and
PEs consumes 3.7% of the total core area. The COO format convertor is included in
the area breakdown of the control logic. The PE composed of multipliers and registers
accounts for 49.7% of the total core area. Fig. 4.6 (B) introduces the reason for PE area
overhead. In order to ensure all generated product-terms stored in registers in time, the
psum register inside the PE requires 16 read-write ports, which consume 42.8% of the
PE area. The accumulation overhead is the cost to handle the irregular output of sparse
DNN processing. Simultaneously, the NoC (Crossbars) requires 22.1% of the PE area and

4.5. Experimental Results 85

Table 4.5: Related energy consumption in convolution operations.
Component Energy / Access [pJ]

8-bit Multiplier (EMUL) 0.14
24-bit Adder (EADD) 0.02

16×16 Crossbar (ENoC) 0.07
8-bit Register (EREG) 0.09*

On-chip SRAM (EBUF) 8 kB 3.31*
*: Average energy consumption of read and write.

PEs: 49.7%
Global Buffer: 46.6%

CTRL: 3.7%

(A)

Psum Register: 42.8%

NoC: 22.1%

Index: 16.7%

Ifmap FIFO: 8.0%

Weight FIFO: 5.4%

ALU: 3.8%

CTRL: 1.2%

(B)

Figure 4.6: (A) MOSDA area breakdown. (B) Area breakdown in one PE.

the index logic requires 16.7%. Both parts require a complex data transmission logic to
handle the unpredictable product terms generated from multipliers.

We simulate the energy consumption of MOSDA under various benchmarks including
convolution layers, FC layers, and matrix multiplications. The benchmarks are introduced
in Tab. 4.6, which consist of convolution layers and FC layers in Alexnet [56], sparse
Alexnet [65], MobileNet [53] with width multiplier of 1.0 and input size of 224 × 224,
corresponding sparse Mobilenet with data from ImageNet dataset [71], and two matrix
multiplications by multiplying with itself in SNAP [72]. The stride U of conv1 in Alexnet
is 4. As a result, the matching type between weights and ifmap pixels in conv1 comes to
be [s − s] since not all weights are required to multiply with all ifmap pixels. To solve
this issue, Fig. 4.7 introduces a decomposition method to convert the CONV into multiple
smaller CONVs. Small CONVs are all [a − a] matching types except the corner data.
According to the decomposition method, we are able to process convolution layer with
stride more than 1 with [a − a] matching type.

Tab. 4.6 also introduces the average PE utilization in various benchmarks. PE uti-
lization is the average ratio of multipliers that handle meaningful multiplications when
PE is required to process operations. Note that the active rate of multipliers under data
transmission time among memories is not taken into account. The key idea of MOSDA
is to keep the matching type in the PE subtask always as [a − a]. The corner data in

86 Chapter 4. Sparse DNN Accelerator for Irregular Data Access Pattern

Ofmap

1×1+2×2+3×3 3×1+4×2+5×3* =
Weight

1 2 3

Ifmap

1 2 3 4 5

* =
Weight

1 3

Ifmap

1 3 5

* =
Weight

2

Ifmap

2 4

Ofmap

1×1+3×3 3×1+5×3

Ofmap

2×2 4×2

(a)

(b)

Figure 4.7: Decomposition method of 1-dimensional convolution when stride is larger
than 1: In a case study, sizes of the ifmap pixel, the weight and the stride are 5, 3, and
2, respectively. When the stride is 2, the matching type will be [s − s]. Therefore, the
convolution is decomposed into two smaller convolutions (a) and (b) with matching types
almost [a − a].

Table 4.6: Multiplier array utilization of MOSDA benchmarked with Alexnet, and Mobil-
Net that has batch size of 1 and matrix multiplications.

Target Non-zero Non-zero Non-zero Off-chip Memory Average Mul
Weight Weight Ratio Ifmap Ratio Access [MB/feature] Utilization

CONV Layers 1-5 in Alexnet [56] 2.2 M - - 10.0 99.33%
FC Layers 1-3 in Alexnet [56] 58.6 M - - 58.7 99.84%

CONV Layers 1-5 in Sparse Alexnet [65] 0.2 M 7.7% 69.8% 4.3 90.01%
FC Layers 1-3 in Sparse Alexnet [65] 5.9 M 10.1% 57.1% 5.9 99.96%
CONV Layers 1-27 in MobileNet [53] 4.1 MB - - 5.0 99.05%

FC Layer 1 in MobileNet [53] 1.0 MB - - 1 97.71%
CONV Layers 1-27 in Sparse MobileNet [73] 0.4 MB 10.0% 47.7% 0.5 92.34%

FC Layer 1 in Sparse MobileNet [73] 0.1 MB 10.0% 49.8% 0.1 99.4%
Wiki-Vote [72] 103.7 KB 0.2% 0.2% 1.5 99.99%
Facebook [72] 88.2 KB 0.5% 0.5% 1.2 99.99%

convolution processing does not have the matching type [a-a], which is the main reason
for the PE utilization loss. As a result, the PE utilization of FC layer in Alexnet and matrix
multiplications are as high as 99.96% and 99.99%, respectively. In CONV processing,
although we assume that the matching type in convolution processing is [a− a], the actual
situation is that the corner data of the ifmaps in the convolution operation does not need
to be multiplied by all weights. Therefore, this assumption led to a slight decrease of
PE utilization in the sparse convolution processing, but still maintained at 90.01% and
92.34% for sparse Alexnet and sparse MobileNet, respectively.

Following the matching type of [a − a], MOSDA keeps PEs always busy without
redundant data fetching. Fig. 4.8 (a) shows the throughput comparison between MOSDA
architecture from the dense mode to the sparse mode and a state-of-the-art dense processing
architecture from Chapter 3. Benchmarks include Alexnet and Matrix Multiplications.
The time consumption consists of processing time by multipliers, and data transmission
time from the global buffer to registers in PEs. In order to make a fair comparison, both
architectures consist of the same number of multipliers and the same on-chip bandwidth

4.5. Experimental Results 87

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

(b)

(a)

conv1

399

73.0

113.7K

20.8K

2.9
1.3

0.5
0.3

10− 1

100

101

102

103

104

105

1.1
2.7

99.9K
18.3K

conv2 conv3 conv4 conv5 fc1 fc2 fc3 Wiki Facebook

conv1 conv2 conv3 conv4 conv5 fc1 fc2 fc3 Wiki Facebook

N
o

rm
a

liz
e

d
 T

im
e

 C
o

n
s
u

m
p

ti
o

n

10− 1

100

101

102

103

104

205

37.5

54.5K

10.0K

5.71.9

0.3 0.5

Dense Architecture in Chapter 3

Dense Mode of MOSDA

Sparse Mode of MOSDA

Dense Architecture in Chapter 3

Dense Mode of MOSDA

Sparse Mode of MOSDA

Figure 4.8: (a) Normalized time consumption in dense and sparse benchmarks including
Alexnet and Matrix Multiplications. (b) Normalized energy consumption in dense and
sparse benchmarks including Alexnet and Matrix Multiplications.

between the global buffer and PEs. Meanwhile, the sparse mode achieves 7.0×, 11.4×,
and 265.9× less time consumption than the dense mode in Alexnet conv3, Alexnet FC1
and Wiki-Vote Matrix Multiplication, respectively. The processing time is dramatically
decreased with high PE utilization. Among all layers in dense Alexnet, data transmission
between the global buffer and PEs consumes 38.1% of the on-chip time consumption. As
we expected in sparse Alexnet, data transmission between the global buffer and PEs comes
to be 62.2% of the on-chip time consumption, which infers that the time consumed by data
transmission between the global buffer and PEs is hard to be reduced despite matching
types inside the PE. The sparse mode achieves 5.3× better overall time reduction against
the dense mode when processing Alexnet. The throughput of MOSDA dense mode is the

88 Chapter 4. Sparse DNN Accelerator for Irregular Data Access Pattern

(a)

73.1

59.5

74.3

63.1

148.6

105.8

26.9

22.1

54.1

36.8

27.1

21.8

Dense Architecture in Chapter 3

Dense Mode of MOSDA

Sparse Mode of MOSDA

2dw 2pw 3dw 3pw 4dw 4pw 13dw 13pw 14dw 14pw fc

Dense Architecture in Chapter 3

Dense Mode of MOSDA

Sparse Mode of MOSDA

2dw 2pw 3dw 3pw 4dw 4pw 13dw 13pw 14dw 14pw fc

64.2 65.2

130.4

(b)

0

20

40

60

80

100

120

120

N
o

rm
a

liz
e

d
 T

im
e

 C
o

n
s
u

m
p

ti
o

n

0

10

20

30

40

50

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

Figure 4.9: (a) Normalized time consumption in dense and sparse benchmarks including
typical layers in MobileNet. (b) Normalized energy consumption in dense and sparse
benchmarks including typical layers in MobileNet.

same as the architecture in Chapter 3, since the number of multipliers and the on-chip
bandwidth is set to be the same.

Fig. 4.8 (b) introduces the energy efficiency under various benchmarks. By considering
sparsity, energy consumption is also reduced. The sparse mode achieves 2.6×, 11.2×, and
285.1× less energy consumption than the dense mode in Alexnet CONV3, Alexnet FC1,
and Wiki-Vote Matrix Multiplication, respectively. Through the matching type [a − a],
MOSDA avoids redundant data movement from the global buffer to PEs. According to
the post-layout simulation, the sparse mode’s energy efficiency is 1507.8 inferences/J for
sparse Alexnet. The sparse mode achieves 2.4× better overall energy reduction against the
dense mode, which is 624.1 inferences/J. Fig. 4.10 shows the on-chip energy breakdown

4.5. Experimental Results 89

Global Buffer: 30.9%

Psum Register: 32.6%

Weight FIFO: 5.1%

NoC: 9.3%

Index: 7.3%

ALU: 2.3%

Ifmap FIFO: 7.8%

CTRL: 3.7%

Leakage: 1.0%

Figure 4.10: On-chip energy breakdown in sparse Alexnet.

Table 4.7: Comparison with the state-of-the-art DNN accelerators.
EIE [23] OuterSPACE [34] Eyeriss v2 [27] This Work

Matching Type [s − s] [a − a] [s − s] [a − a]
Technology [nm] 28 40 65 65

Core Area 63.8mm2 9mm2 2695k (NAND-2) 3066k (NAND-2)
On-chip SRAM [KB] 162 112 246 192

Mul Num. 256 32 384 256
Core Frequency 1200 MHz 744 MHz 200 MHz 200 MHz

Bit Precision 4 32 8 8
Support FC Layer Yes Yes Yes Yes

Support CONV Layer No No Yes Yes
Sparse Model Alexnet Alexnet ResNet-50 MobileNet v2

Throughput [Inference/sec] - - 278.7 315.3 493.1 2764.4
Energy Efficiency [Inference/J] - - 664.6 1422.3 839.9 5574.6

when processing all layers in sparse Alexnet. 42.6% of the energy is consumed in
the access to the psum register due to its complex read-write logic. The global buffer
consumes 30.9% of the energy. Crossbars to transmit data inside the PE lead to 9.3%
energy overhead. The control logic including the COO format convertor consumes 3.7%
of the overall energy consumption. Leakage in MOSDA consumes 1.0% of the overall
energy consumption. As a cost to ensure [a − a] matching type, reuse among ifmap
channels is hard to be utilized by PEs, which brings an additional number of global buffer
accesses. Comparing with the architecture in Chapter 3, MOSDA requires additional
on-chip memory to store the coordinate information and the crossbar overhead for the
irregular data access pattern. Therefore, the dense mode of MOSDA suffers 1.4× larger
energy overhead than the architecture in Chapter 3 in Alexnet.

Fig. 4.9 (a) shows MOSDA throughput enhancement from the dense mode to the sparse
mode in several layers in MobileNet. The sparse mode achieves 1.2×, 1.2× and 1.5× less
time consumption than the dense mode in MobileNet pointwise conv layer 2, pointwise
conv layer 13, and pointwise conv layer 14, respectively. The data transmission time

90 Chapter 4. Sparse DNN Accelerator for Irregular Data Access Pattern

between the global buffer and PEs dominates the time consumption. Among all layers in
dense MobileNet, data transmission between the global buffer and PEs consumes 83.0%
of the on-chip time consumption. In sparse MobileNet, data transmission between the
global buffer and PEs comes to be 95.5% of the on-chip time consumption. The sparse
mode achieves 1.3× better overall time reduction against the dense mode when processing
MobileNet.

Fig. 4.9 (b) introduces the energy efficiency of the sparse mode under various bench-
marks. By considering data reuse and space reuse, energy consumption has also been
reduced. The sparse mode achieves 1.2×, 1.2× and 1.4× less energy consumption than the
dense mode in MobileNet pointwise conv layer 2, pointwise conv layer 13, and pointwise
conv layer 14, respectively. The sparse mode’s energy efficiency is 5173.9 inferences/J
for sparse MobileNet, which achieves 1.2× better overall energy reduction against the
dense mode as 4206.4 inferences/J when processing dense MobileNet. The dense mode
of MOSDA suffers 1.1× larger energy overhead than the architecture in Chapter 3 in
MobileNet.

Three state-of-the-art DNN accelerators [23, 27, 34] are compared with MOSDA in
Tab. 4.7. EIE [23] and OuterSPACE [34] are specialized accelerators designed for FC
layers and matrix multiplications. Eyeriss v2 [27] is an energy-efficient sparse CNN ac-
celerator which is able to process both FC layers and CONV layers. In order to exploit
more data reuse with PEs, Eyeriss v2 has the [s − s] matching type in its scratchpad
memories in each PE. The evaluation results on several sparse neural networks are in-
troduced in Tab. 4.7. Based on the gate-level simulation of sparse Alexnet, the average
throughput of MOSDA based [a−a] dataflow when processing the sparse Alexnet is 315.3
inferences/second on average, which achieves 1.1× better improvement with 256 multi-
pliers than the [s − s] dataflow with 384 multipliers. That is because the matching type
[a − a] allows MOSDA to skip zero data more efficiently, thereby enhancing throughput.
Similarly, although MOSDA suffers from a large accumulation overhead, it still achieves
1507.8 inferences/J, which has 2.1× better energy efficiency than the [s − s] processing
dataflow in sparse Alexnet. The reason is divided into two parts. First, MOSDA does
not store many weights within registers in each PE, which reduces the access energy to
each register. Second, [a − a] processing dataflow guarantees all loaded data in registers
generate meaningful results, thereby reducing the number of data movement. We further
utilize sparse Resnet-50 [74] and sparse MobileNet v2 [75] with width multiplier of 1.0
and input size of 224 × 224 with data from ImageNet dataset to prove the effectiveness of
MOSDA. According to post-layout simulations, MOSDA achieves 493.1 inferences/second
and 839.9 inferences/second when processing Resnet-50 and MobileNet v2, respectively.

4.6. Summary 91

MOSDA achieves 2764.4 inferences/J and 5574.6 inferences/J when processing Resnet-50
and MobileNet v2, respectively.

This chapter mainly focuses on the sparsity within one frame, which is also called spa-
tial sparsity. Besides the spatial sparsity, there is also temporal sparsity among frames [76].
If data rarely change over time, data is regarded as temporarily sparse. A large number
of data movement is able to be reduced by utilizing temporal sparsity. MOSDA is also
available for the temporal sparsity since the matching type over frames is also [a-a].

4.6 Summary

This chapter proposes the processing property for sparse DNN as the matching type
for the PE utilization issue due to the irregular data access pattern. Focusing on three
processing properties as the date reuse, the space reuse and the matching type, this chapter
proposes an efficient sparse DNN hardware accelerator called MOSDA, which speeds up
the processing by skipping zero data without complex control logic in the sparse DNN
processing. According to a case study, MOSDA outperforms the state-of-the-art CNN
accelerator with 1.1× time reduction and 2.1× energy reduction in sparse Alexnet.

92 Chapter 4. Sparse DNN Accelerator for Irregular Data Access Pattern

93

Chapter 5

BNN Accelerator for Small-Scale
Processing with Regular Access Pattern

5.1 Introduction

Several studies have explored DNN models that reduce the energy and time consump-
tion according to reducing the amount of operations [2, 68]. BNN is one typical model
among them [77]. In a BNN, all weights, input feature map (ifmap) pixels, and output
feature map (ofmap) pixels are represented by +1 or -1 pixels. Compared to a tradi-
tional 16-bit or 32-bit data representation, BNN significantly reduces the computational
effort required for prediction, thus reducing the energy consumption and time required
for data movement. By transforming floating-point operations into binary calculations,
many studies have designed a series of hardware accelerators for BNN inference using
XNOR-popcount instead of a traditional Multiply-and-Accumulate operation [12, 78–83].

Unlike general-purpose processing, the data access pattern in BNNs is regular and can
be quantitatively described by DNN properties proposed in previous chapters. Moreover,
the data scale required for BNNs is usually small enough that all data can be stored on-
chip to reduce the cost of data movement [78, 79]. In this chapter, we propose a hardware
design with an energy-efficient memory system for BNNs.

Several studies have designed a Processing-in-Memory (PIM) based BNN acceler-
ators [78, 82]. By tightly coupling compute units and storage units, PIM-based BNN
accelerators can achieve great advantages in terms of low energy and high throughput.
However, due to the tight coupling, it is difficult to handle various computational tasks
efficiently with one PIM accelerator. For scalability, several works exploit dataflow pro-
cessing to ensure that a BNN accelerator is capable of handling different data processing
tasks [12, 79–83]. In order to maintain the versatility of the accelerators, BNN acceler-

94 Chapter 5. BNN Accelerator for Small-Scale Processing with Regular Access Pattern

ators use a crossbar structure for on-chip data transmission. However, due to the energy
consumption and area overhead proportional to the squared size of a crossbar structure,
previous BNN accelerators are difficult to support massively parallel computation to in-
crease the throughput as the PIM-based one. Therefore, one challenge of BNN accelerators
is to design a processor that can handle multiple computational tasks without a crossbar
architecture for data transmission.

Expensive data movements often dominate the energy consumption of the entire com-
puting architecture for DNN processing [2]. Therefore, the memory system is a major
component in edge BNN processors that dominate their entire energy consumption and
performance. Ref. [12] shows that a memory hierarchy consumes more than 90% of the
total energy consumption. Therefore, another challenge is to design the energy-efficient
on-chip memory hierarchy for BNN exploiting reuse in matrix operations, since all data
for BNN processing can be stored on-chip.

Based on the two challenges above, this thesis makes the following contributions as
the fourth part,

1. This chapter designs a two-level on-chip memory system to reduce the energy
consumption of a BNN accelerator. Unlike previous accelerators that use a single
global buffer, this chapter explores the number of levels in memory hierarchy that
are energy-efficient for matrix multiplication and convolution, respectively.

2. Based on the trade-off between memory capacity and energy efficiency, this chapter
proposes a hybrid memory system that employs an energy-efficient low-voltage
memory and a conventional 6T-SRAM into the L1 on-chip buffer and the L2 buffer,
respectively. Since processing elements frequently access the energy-efficient L1
buffer, the energy consumption can be effectively reduced. Since the L2 buffer
consists of 6T-SRAM with high area-density, it reduces the area requirement of
on-chip memories.

3. This chapter proposes BNN dataflows for convolutions (CONVs) and fully-connected
layers (FCs), respectively, to avoid crossbar structures. Without a crossbar structure,
the proposed structure can significantly reduce the amount of logics required, while
reducing the amount of energy required.

The rest of this chapter is organized as follows. Section 5.2 introduces BNN processing
and presents a motivational example for the proposed hybrid memory structure. Section
5.3 presents a detailed architecture of the proposed hybrid memory system. Section 5.4
analyzes experimental results. Section 5.5 concludes this chapter.

5.2. Background 95

5.2 Background

5.2.1 BNN Processing

Given convolution shapes in Tab. 3.1, the operation of a binary convolutional layer can
be expressed by:

O[z][u][x][y] = bin−1,1

(Ci∑
k=1

Ww∑
i=1

Hw∑
j=1

(
I[z][k][Ux + i][Uy + j]

×W[u][k][i][j]
)
+ B[u]

)
,

1 ≤ z ≤ N, 1 ≤ u ≤ Co, 1 ≤ x ≤ Wo, 1 ≤ y ≤ Ho,

Ho = (Hi − Hw +U)/U, Wo = (Wi − Ww +U)/U,

(5.1)

where weights, ifmap pixels, and ofmap pixels are represented in binary form: W ∈
{−1, 1}Ci×Co×Hw×Ww , I ∈ {−1, 1}N×Ci×Hi×Wi , and O ∈ {−1, 1}N×Co×Ho×Wo . B is a full-
precision bias. The binarization (bin−1,1) is a behavior of a signum function, which
converts data less than zero to -1 and data greater than or equal to zero to 1.

If we convert the expression {-1,1} to {0,1} and incorporate the addition of bias into
the binarization, we can further reduce the area and energy consumption of the operation
by replacing a traditional multiplication with the XNOR operation. As a result, we can
simplify the operation cost by expressing a convolution in BNN as follows.

O[z][u][x][y] =
Ci∑

k=1

Ww∑
i=1

Hw∑
j=1

(
I[z][k][Ux + i][Uy + j]

⊗W[u][k][i][j]
)
,

(5.2)

where ⊗ is the XNOR operation.

5.2.2 Motivational Example

Comparing with SRAM-based memory, an important fact about hybrid memory sys-
tems is to exploit the non-linear relationship between memory capacity and the number
of memory accesses which is discussed in Chapter 2. Assuming that only the memory
capacity decreases while other parameters such as readout energy and write speed remain

96 Chapter 5. BNN Accelerator for Small-Scale Processing with Regular Access Pattern

ALUALU

8 kB SRAM8 kB SRAM

2 kB SRAM

(a) (b)

300

512 B SCM

Energy/Access #Access to

Memory

500

2000

 1 pJ

0.5 pJ

0.1 pJ

Same buffer area

L1 Bu�er

L2 Bu�er

Figure 5.1: Two different memory architecture in the same on-chip area: (a) an SRAM-
based memory system, (b) a hybrid memory system.

constant, the number of memory accesses usually increases slowly. Thus, replacing area-
efficient SRAM with energy-efficient SCM with a fixed-area constraint can reduce the
energy consumption.

For unpredictable general-purpose processing, a smaller L0 cache can be added to a
hybrid memory hierarchy to reduce overall energy consumption for the proposed memory
architecture in Chapter 2. In order to reduce the cost of data movement in BNN, we still use
the concept of a hybrid multi-level memory hierarchy. Unlike Chapter 2, the data access
pattern in BNN is fixed and explicit, and the small data scale allows us to use an on-chip
memory hierarchy to store all data. In this chapter, we will design an energy-efficient
memory hierarchy based on processing properties.

We design a 2-level memory architecture for BNN processing. The 2-level architecture
does not only take advantage of the access efficiency of a small-capacity memory, but also
to reduce the cost of data movement by using reuse in multiple steps.

Fig. 5.1 shows an example of two different memory configurations with SRAM-based
memory and SCM-based memory in (a) and (b), respectively. The energy consumption
per access and a corresponding number of memory accesses are written in the figure. It
should be mentioned that we assume all memory systems occupy the same on-chip area.

Since an SRAM-based memory consumes more energy consumption than an SCM-
based memory, we replace SRAM with SCM in the L1 buffer. When we replace SRAM
with lower-area density SCM, the capacity is decreased, hence, the number of required
memory accesses increases at the same time. If we can make good use of the relationship
between memory capacity and the number of memory accesses, the energy overhead
caused by the additional number of memory accesses can be less than the energy reduction
caused by implementing the SCM memory to the L1 buffer. Here is a motivational example
to explain the idea. The energy efficiency of the SCM L1 buffer is 3 × better than that
of the SRAM L1 buffer with the same capacity. Due to low area density, the SCM buffer

5.2. Background 97

0

0.5

N
o

rm
a
liz

e
d
 A

c
c
e

s
s
 E

n
e
rg

y

-46%
L1 Buffer

L2 Buffer

SRAM

+SRAM

SCM

+SRAM

1.0

Figure 5.2: The normalized energy result of an example architecture.

next to the Arithmetic Logic Unit (ALU) suffers from 4 × less capacity than SRAM one.
Therefore, the access cost to the 2 kB SRAM-L1 buffer is 5 × more energy consuming
than the access cost to the 512 B SCM-L1 buffer. With the replacement of SRAM with
SCM, the number of L2 buffer accesses is increased by 200 × with the regress of the L1
buffer capacity.

As a result, Fig. 5.2 introduces that the SCM L1 buffer has a larger energy reduction
than the SRAM one on the left of the figure. The hybrid memory system achieves 46%
less energy consumption than the SRAM-based memory system.

5.2.3 Related Work

Several accelerators are proposed to enhance BNN processing efficiency. Previous
works such as Brein [78] and Ref. [82] design PIM-based accelerators. PIM-based BNN
accelerators have great energy improvement and throughput enhancement. However, in
the face of complex and changing processing tasks, PIM is limited by its fixed processing
architecture. On the other hand, previous works propose dataflow processing architectures
that exploit data reuse [12, 80, 83]. Most previous studies have used SRAM as on-chip
primary memories [12]. Some studies have noted the energy consumption advantages of
SCM [80, 83]. They replace all SRAMs with SCMs in anticipation of energy reduction.
However, SCM-based accelerators usually result in a large area overhead due to the low
area efficiency of SCM macros. Based on the previous works above, this chapter proposes
a hybrid memory architecture that consists of a more energy-efficient but area-consuming

98 Chapter 5. BNN Accelerator for Small-Scale Processing with Regular Access Pattern

SCM as L1 buffer and an area-efficient SRAM as L2 buffer. The key focus is to utilize
data reuse in two steps in order to reduce the cost of data movement.

5.3 Proposed Architecture

In this section, we first propose two dataflows for matrix multiplication and convolution
respectively. The proposed dataflows guarantee a simple logic to control data movement
of weights and ifmap pixels. Furthermore, this chapter proposes a BNN accelerator with
a hybrid 2-level on-chip buffer system.

5.3.1 Processing Dataflows

In order to avoid a complex logic for the data transmission of ifmaps and weights,
processing dataflows for matrix multiplication and convolution should follow two require-
ments. First, both dataflows follow the matching type [a − a], which makes sure that all
loaded weights multiply with all loaded ifmap pixels in ALUs. According to this, all logics
for the transmission of ifmaps and weights can be shared when processing convolution
tasks and matrix multiplication tasks. Second, in order to further reduce the cost of data
movement in the hardware implementation for the dataflow, data reuse should also be
exploited as much as possible to reduce the number of memory accesses and memory
capacity.

Algorithm 5 introduces the DNN processing dataflow which satisfies both two re-
quirements. The fifth row introduces the range of an ALU subtask inside one Processing
Element (PE). The fourth and fifth rows introduce the range of the subtask among all PEs.
The third, fourth, and fifth rows introduce the range of the L1 buffer subtask. The second,
third, fourth, and fifth rows introduce the range of the L2 subtask. The dataflow accesses
ifmap pixels concurrently on δ2 rows as shown in the fifth row. Similarly, in order to
maintain ALU utilization among PEs, the dataflow is able to process ifmap pixels from γ
columns and δ1 rows within ALUs. Parallel processing among ofmap channels is disabled
for convolution in order to avoid the capacity overhead caused by partial sums. Ifmap pix-
els are multicasted to all weights in one channel to ensure LDR within 2D CONV among
PEs. The dataflow finishes operations to increase reuse among ifmap channels within the
L1 buffer as shown in the second row for both convolutions and matrix multiplications.
Therefore, both operations utilize the same logics to accumulate partial sums. In the end,
the rest of data reuse is utilized with the L2 buffer.

5.3. Proposed Architecture 99

Algorithm 5 Processing dataflow for convolutions and matrix multiplications. In convo-
lutions, β1 and β2 are set to 1.
Require: W , I
Ensure: O

1: Initialization;
2: for u1 ∈ [1 : Co/β1/β2], x1 ∈ [1 : Wo/γ], y1 ∈ [1 : Ho/δ1/δ2] do
3: for k ∈ [1 : Ci] do
4: for u2 ∈ [1 : β1], x2 ∈ [1 : γ], y2 ∈ [1 : δ1] in parallel do
5: for u3 ∈ [1 : β2], y3 ∈ [1 : δ2], i ∈ [1 : Ww], j ∈ [1 : Hw] in parallel do
6: O[u1u2u3][x1x2][y1y2y3]+ = I[k][x1x2+i][y1y2y3+ j]×W[u1u2u3][k][i][j];
7: end for
8: end for
9: end for

10: end for
11: Return O

5.3.2 Hardware Architecture

The architecture overview is shown in Fig. 5.3. The L2 buffer should have enough
capacity to store all the data for ifmaps, weight, and offmaps. The L1 buffers store data
which can be accessed in a near future to exploit the local data reuse and the local space
reuse. The L1 capacity is determined by the trade-off consideration on the amount of
the reuse and the amount of L1 and L2 access energy. From our evaluation results, the
capacity of the L2 SRAM buffer is chosen to be 192 kB. At the same time, 3 kB L1
buffers are designed to store data within 2D CONV. In the case of multiple PEs, SCM
buffers sequentially supply each PE with required weights, ifmaps, and partial sum (psum)
results. The architecture sequentially stores psum results from PEs back into an ofmap
buffer after all operations in PEs have been executed. According to Algorithm 5, the
number of PEs can be scaled from 1 to γδ1. The architecture contains 30 PEs to enhance
the throughput for BNN processing in a case study. The PE selector transmit data once γ
and δ1 are determined by target convolution shapes. Ifmap pixels and weights have a 1-bit
representation, while psums have a 8-bit fixed-pointed representation. The ifmap register,
the weight register, and the ofmap register are 256 bit, 256 bit, and 2048 bit, respectively.

Multiplier Configuration

In order to exploit data reuse and space reuse as much as possible, the dataflow further
processes convolution ifmap channel by ifmap channel in the Ci dimension as an inner
loop as shown in the third row of Algorithm 5. The convolution is processed within one 2D
CONV, while the matrix multiplication is processed among multiple ofmap channels and
multiple batches. Please note that the FC layer is a special case of matrix multiplications.

100 Chapter 5. BNN Accelerator for Small-Scale Processing with Regular Access Pattern

Matrix

Multiplication

Accumulation

Psum Register

XNOR XNOR

XNOR

Convolution

Accumulation

L2 SRAM

Buffer
Accumulation Selector

Ifmap Register

L1 SCM

Weight Buffer
Weight

Register

...

...

...

...

...XNOR

... ...

Figure 5.3: The architecture overview. The processing task within one clock cycle in one
PE always belong to [a − a] matching type.

63 XNOR multipliers are arranged in one PE to maintain ALU utilization. The data
transmission to multipliers and the PE selector are controlled by a control logic. The
control logic of multipliers is prepared for 8 different situations as matrix multiplications
and convolutions with a weight size 1x1, 2x2, 3x3, 5x5, 7x7, 9x9, and 11x11. As an
example, for parallel processing of CONV layers with a weight size 3x3, 63 XNOR-based
multipliers are configured into 9 × 7. 7 multipliers in one same column share the same
weight, and 9 multipliers in one same row share the same ifmap. For parallel processing
of CONV layers with a weight size 5x5, 63 XNOR-based multipliers are configured into
25 × 2. 2 multipliers in one same column share the same weight, and 25 multipliers in one
same row share the same ifmap. The power supply of remaining 13 multipliers are turned
off to reduce energy consumption. For parallel processing of FC layers, 63 XNOR-based
multipliers are configured into 9 × 7. 7 multipliers in one same column share the same
ifmap pixel, and 9 multipliers in one same row share the same weight.

Accumulation Configuration

We realize the psum accumulation with an addition network. Accumulations inside one
PE for convolution and matrix multiplication are realized with different addition networks.
Fig. 5.3 introduces a psum accumulation logic, which is decomposed into a convolution
accumulation logic and a datapath for matrix-multiplication results. An accumulation
selector is utilized to choose a required accumulation logic for matrix multiplications and
different weight sizes in convolutions.

Fig. 5.4 introduces the accumulation logic inside one PE for convolution with weight
size as 2x2. Ifmap pixels with the coordinate of (2, 1) and (1, 1) are sent in parallel from

5.4. Experimental Results 101

Ifmap

Register21

Output

Output

Psum

Register

Ifmap

Register11

Weight

Register22

Weight

Register21

Weight

Register12

Weight

Register11

Figure 5.4: PE array architecture with fetched ifmap pixels equal to 2. The weight size is
assumed to be 2 × 2.

ifmap register files 21 and 11. All weights inside 2D CONV are store in registers waiting
for multiplications. We exploit local space reuse in 2D CONV within one clock cycle,
add related psums and send it to psum register files. Psums which are calculated into final
results are sent directly to L1 ofmap buffer. This reduces both the number of accesses and
the required psum-register capacity.

5.4 Experimental Results

In this section, we verify the efficiency with 30 PEs by pre-layout cycle-accurate gate-
level simulations under a 65-nm Silicon-on-Thin-Box (SOTB) process with a 1.2 V supply
voltage. The bandwidth between L2 buffer and L1 buffer transmits 1890 bits once for
weights, ifmap pixels, and psums. The bandwidth between L1 buffers and one PE transmits
315 bits once for weights, ifmap pixels, and psums. The specifications are summarized
in Tab. 5.1. The peak throughput is defined as the total throughput of XNOR multipliers.

102 Chapter 5. BNN Accelerator for Small-Scale Processing with Regular Access Pattern

Table 5.1: Hardware Specifications.
Technology 65nm SOTB

Gate Count (Logic Only) 230k gates (NAND-2)
On-chip Memory 192 kB SRAM + 11 kB SCM
Clock Frequency 200 MHz
Peak Throughput 0.4 TOPS

Filter Size 12, 22, 32, 52, 72, 92, 112

Ifmap Size All
Processing Type CONV and FC (Matrix Multiplication)

Tab. 5.2 summarizes the energy of major logic components in a 1.2 V supply voltage. All
energy values except for on-chip SRAM are based on average values for one operation
during overall simulations. The energy consumption of the access to an L2 SRAM buffer
is collected from SRAM model in CACTI Ver. 7.0 [15] under a 65-nm process with a
1.2 V supply voltage.

The PE array and SCM-based L1 buffer are evaluated from pre-layout simulations.
In order to verify the validity of the energy analysis through simulations and make a fair
comparison with other state-of-the-art accelerators, we did a gate-level simulation using
NC-verilog to generate Value Change Dump (VCD) file. We further convert VCD to
toggle information, which is dumped to Switching Activity Interchange Format (SAIF).
Finally, the energy consumption is estimated from the number of toggles. The energy and
area of L2 SRAM buffer part are collected from CACTI model. Based on code tracing
logs, we calculate access activities of SRAM-based L2 buffer. Combining activities and
physical SRAM data in Tab. 5.2, this chapter simulates the energy consumption of the
overall performance.

The overall logic gate count is 230k NAND-2 gates. Fig. 5.5 introduces the area
breakdown. The L2 SRAM buffer accounts for 82.1% of the total core area. The L1 SCM
buffers consisting of an ifmap buffer, a weight buffer, and an ofmap buffer account for
11.3%. The control logic for data transmission of buffers consumes 1.9% of the total core
area. The psum register files in 30 PEs account for 2.3%. The weight register files account
for 1.3%. The ifmap register files in 30 PEs account for 1.1%.

This chapter simulates the energy consumption of the proposed architecture and an
SRAM-based architecture under various benchmarks including convolution layers and
FC layers from pre-layout simulations. The SRAM-based architecture has the same
architecture as the proposed one while its L1 buffers are made of SRAM. According to
the high area density of SRAM, the capacity of each L1 SRAM buffer is as high as 12 kB
which can exploit data reuse among ifmap channels. The increase of SRAM L1 capacity

5.4. Experimental Results 103

Table 5.2: Related energy consumption in convolution operations.
Component Energy / Access [pJ]

1-bit XNOR Multiplier 0.002
8-bit Adder 0.01

1-bit Register 0.01*
3 kB SCM 0.09*

192 kB SRAM 1.27*
*: Average energy consumption of read and write.

L2 SRAM Buffer: 82.1%

L1 SCM Buffer: 11.3%

Psum Register: 2.3%

Weight Register: 1.3%

Ifmap Register: 1.1%
CTRL: 1.9%

ALU: 0.1%

Figure 5.5: Area breakdown.

leads to the reduction in the number of L2 accesses, but also the energy overhead for the
L1 access cost.

The benchmark consists of convolution layers and FC layers in Alexnet [56] and
Mobilenet [53]. Fig. 5.6 introduces the energy efficiency of two architectures, which the
X axis is the layer number in Alexnet. Through the matching type [a − a], the proposed
architecture avoids crossbar logics for data transmission of ifmap pixels and weights. The
left-hand bars show the BNN accelerator with an SRAM-based design. The right-hand
bars show a BNN accelerator with a proposed hybrid memory system, where L1 buffers

Table 5.3: Comparison with state-of-the-art BNN accelerators.
XNOROBIN [12] VLSIC2020 [82] ChewBaccaNN [83] This Work

Process 65nm 10nm 28nm 65nm
Maturity Layout Silicon Layout Pre-layout
Voltage 1.2V 0.37V 0.4V 1.2V

#Muls (XNOR) 1792 131072 112 1890
Kernel Support 1-7 2 1,3,5,7 1,2,3,5,7,9,11

Frequency 476 MHz 13 MHz 154 MHz 200 MHz
Memory 430 kbit SRAM 161 kB 8T Register 153 kB SCM 192 kB SRAM + 11 kB SCM

Area 368k NAND-2 (0.54 mm2) 0.39 mm2 0.7 mm2 230k NAND-2
Power 32 mW 5.6 mW 0.7 mW 8 mW

Throughput 0.7 TOPS 3.4 TOPS 0.028 TOPS 0.4 TOPS
Throughput/Power 22 TOPS/W 617 TOPS/W 28 TOPS/W 38 TOPS/W

104 Chapter 5. BNN Accelerator for Small-Scale Processing with Regular Access Pattern

conv1 conv2 conv3 conv4 conv5 fc1 fc2 fc3
0

1

2

3

4

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o

n

Layer in Alexnet

Hybrid one

SRAM-based one

ALUs

Register

L1 Buffer

L2 Buffer

Figure 5.6: Normalized energy consumption for an SRAM-based architecture and a hybrid
memory architecture when processing Alexnet.

and registers are made of SCM, which has only one-third of the effective capacity than
SRAM one due to SCM low area density. The hybrid memory-based energy efficiency is
1.2 × higher than that of SRAM architecture among CONV layers in Alexnet.

The energy reduction is mainly due to an energy advantage of SCM, and the energy
overhead of the increased number of memory accesses due to the capacity reduction is
not significant. According to the capacity decrease of SCM L1 buffer, the hybrid memory
architecture has 15.2% energy overhead of the increased number of L2 buffer accesses for
the whole accelerator. Results for all layers when processing Alexnet show that the overall
energy efficiency of the accelerator with the hybrid memory system is 1.3 × more efficient
than the SRAM-based architecture.

Fig. 5.8 shows the on-chip energy breakdown of the hybrid-memory architecture when
processing CONV layers in Alexnet. 40.8% of the energy is consumed in the access
to registers inside PEs. The L1 SCM buffers consume 16.3% of the energy. The L2
SRAM buffers consume 30.2% of the energy. Fig. 5.7 introduces the energy efficiency
in Mobilenet. By considering data reuse and space reuse, energy consumption has also
been reduced. The hybrid architecture achieves 1.2× less energy consumption than the
SRAM-based architecture in MobileNet.

Three state-of-the-art DNN accelerators [23, 27, 34] are further compared with the pro-
posed architecture in Tab. 5.3. XNOROBIN [12] and ChewBaccaNN [83] are specialized
accelerators designed for BNN processing. Ref. [82] is an energy-efficient Processing-in-

5.4. Experimental Results 105

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ALUs

Register

L1 Buffer

L2 Buffer

SRAM-based one

hybrid one

0

2

4

6

8

10

12
N

o
rm

a
liz

e
d

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Layer in MobileNet

Figure 5.7: Normalized energy consumption for an SRAM-based architecture and a hybrid
memory architecture when processing Mobilenet.

L2 SRAM Buffer: 30.2%

Psum Register: 23.3%

Ifmap Register: 9.9%

ALU: 7.0%

Weight Register: 7.6%

CTRL: 5.8%

L1 SCM Buffer: 16.3%

Figure 5.8: On-chip energy breakdown for all layers in Alexnet.

Memory BNN accelerator which is able to process convolution with kernel size equal to 2.
The evaluation results on Alexnets are introduced in Tab. 5.3. The proposed architecture
has a large throughput disadvantage compared to a PIM accelerator in Ref. [82]. The
performance advantage of the PIM accelerator comes at the cost of their inability to han-
dle multiple tasks. The proposed architecture achieves energy efficiency as 38 TOPS/W,
which has 1.7× and 1.4× better energy efficiency than XNOROBIN and ChewBaccaNN,
respectively. The reason is divided into two parts. First, the proposed architecture avoids
crossbar architecture which guarantees the scalability and the efficiency of the accelera-
tion architecture. Second, the hybrid memory system balance the area overhead of storing
all data on-chip and the energy overhead to SRAM, thereby reducing the cost of data

106 Chapter 5. BNN Accelerator for Small-Scale Processing with Regular Access Pattern

movement.

5.5 Summary

Focusing on the relationship between the memory capacity and the number of required
memory accesses, this chapter proposes a hybrid memory system to reduce on-chip data
movement for BNN processing. According to the specialized dataflows for matrix mul-
tiplication and convolution, the proposed hardware achieves energy-efficient processing
without a crossbar logic in DNN processing. According to a case study, the proposed
architecture outperforms the state-of-the-art CNN accelerator with 1.4× energy efficiency
in binary Alexnet.

107

Chapter 6

Conclusion

6.1 Summary of This Thesis

In data processing, the cost of data movement often dominates the hardware perfor-
mance. The cost of data movement in memories is determined by the memory capacity
and the number of memory accesses in the memory hierarchy. This thesis chooses rep-
resentative types of processing tasks as general-purpose processing and DNN processing.
This thesis discusses data properties that determine the data movement in each processing
task. This thesis designs four hardware designs to reduce the cost of data movement in
different data processing tasks.

In general-purpose processing, based on the non-linear relation between cache miss
rate and capacity, a hybrid cache design is discussed to show SCM-based design has the
energy advantage over SRAM-based design. SCM has a low processing speed, a low
area density but inherent energy efficiency. The key idea is to utilize SCM rather than
6T-SRAM as the L0 cache exploiting the non-linear relationship. The 2-level hybrid
cache architecture exhibits 68% smaller energy consumption than the conventional 6T-
based cache architecture in the simulation. When an ultra-low-power oriented application
is targeted, the CPU requires near-threshold operation where 6T-SRAM cannot operate
correctly due to its vulnerability against noise and process variability. If we utilize 10T
SRAM for near-threshold operation, due to the SRAM read operation by a strong sense
amplifier, it is still not energy-efficient enough. In contrast, if the CPU is under the
near-threshold region, SCM operates well with the same supply voltage as the CPU logic.

In DNN processing, the data movement among memories and processing elements
consumes most of time, energy, and area. At the same time, the number of operations
in DNN processing is usually much larger than the number of hardware resources. The
whole processing task should be divided into subtasks for fine-grained quantitative evalu-

108 Chapter 6. Conclusion

ation. By defining reuse in each subtask, it becomes possible to calculate the cost of data
movement. This thesis proposes two hardware properties, local data reuse, and local space
reuse to describe the cost of data movement in the memory hierarchy. Based on properties,
this thesis proposes a CNN processing dataflow and a new set of hardware metrics to an-
alytically estimate energy, throughput, and area from the processing dataflow. According
to the analytical evaluation of various processing dataflows and various processing en-
vironments, the proposed evaluation metrics effectively evaluate the processing dataflow
without hardware implementation. Designers are able to use the evaluation metrics to
greatly reduce the workload of hardware designs.

This thesis proposes a processing property as the matching type for the PE utilization
issue in a sparse DNN processing. The key idea is to keep loaded processing tasks within
ALUs as [a-a] matching type in order to directly infer the number of operations from the
number of loaded non-zero ifmap pixels and the number of loaded non-zero weights. As a
result, this thesis can easily arrange weights and ifmap pixels required for massively parallel
processing. Focusing on processing properties, this thesis proposes an efficient sparse-
DNN hardware accelerator called MOSDA, which speeds up processing by skipping zero
data without a complex control logic in a sparse DNN processing. According to a case
study, MOSDA outperforms state-of-the-art CNN accelerators with 1.1× time reduction
and 2.1× energy reduction in sparse Alexnet.

This thesis further proposes a hybrid memory system for BNN processing. According
to specialized dataflows for matrix multiplication and convolution, the proposed hardware
achieves energy-efficient memory architecture for BNN processing. According to a case
study, the proposed architecture outperforms a state-of-the-art binary CNN accelerator
with 1.4× energy efficiency in binary Alexnet.

6.2 Future Work

In large-scale parallel processing, the energy for data transmission can be even more
significant. As an example, the logic for on-chip data transmission consumes 62% of
the total time consumption, 41% of the total energy consumption, and 29% of the total
area for sparse Alexnet in MOSDA. If the parallel scale of a hardware is larger, the
cost of data transmission will account for more. Therefore, finding data properties that
reasonably describe the consumption of data transmission will help us a lot when designing
accelerators.

The discussion in this thesis works well towards matrix operations between weights
and ifmaps. However, emerging DNN processing tasks bring more challenges to parallel

6.2. Future Work 109

processing architectures. In recent years, DNN processing has seen the emergence of
new operations such as a transformer [84] which contains four different sets of input
data. In the encoder of the transformer, the data is first passed through a module called
“self-attention” to obtain a feature map. In the self-attention module, each word has
three different weights: Query Weight, Key Weight, and Value Weight. The transformer
multiplies ifmaps with three different weights into different intermediate matrices and
concatenates result matrices. This thesis proposes three processing properties which are
local data reuse, local space reuse, and matching type. Those properties target processing
tasks with one main operation which is either matrix multiplication or convolution. When
faced with a processing task where there are multiple primary operations, the parallel data
movement may become more complex. Existing processing properties should be extended
to support new DNN operations such as the transformer in the future work.

110 Chapter 6. Conclusion

BIBLIOGRAPHY 111

Bibliography

[1] E. F. Nakamura, A. A. F. Loureiro, and A. C. Frery, “Information Fusion for Wireless
Sensor Networks: Methods, Models, and Classifications,” ACM Computing Surveys,
vol. 39, no. 9, pp. 33–43, 2007.

[2] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient Processing of Deep Neural
Networks: A Tutorial and Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp.
2295–2329, Dec 2017.

[3] S. Mittal, “A Survey of Architectural Techniques for Improving Cache Power Effi-
ciency,” Sustainable Computing: Informatics and Systems, vol. 4, no. 1, pp. 33–43,
Nov 2013.

[4] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-Efficient Recon-
figurable Accelerator for Deep Convolutional Neural Networks,” IEEE Journal of
Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan 2017.

[5] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An Architecture-Level Energy
Estimation Methodology for Accelerator Designs,” in 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2019, pp. 1–8.

[6] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using Halide’s
Scheduling Language to Analyze DNN Accelerators,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 369383. [Online]. Available:
https://doi.org/10.1145/3373376.3378514

[7] A. Parashar, P. Raina, Y. Shao, Y. Chen, V. A. Ying, A. Mukkara, R. Venkatesan,
B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A Systematic Approach
to DNN Accelerator Evaluation,” in 2019 IEEE International Symposium on

https://doi.org/10.1145/3373376.3378514

112 BIBLIOGRAPHY

Performance Analysis of Systems and Software (ISPASS). Los Alamitos, CA,
USA: IEEE Computer Society, mar 2019, pp. 304–315. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ISPASS.2019.00042

[8] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Krishna,
“Understanding Reuse, Performance, and Hardware Cost of DNN Dataflow:
A Data-Centric Approach,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. New York, NY,
USA: Association for Computing Machinery, 2019, p. 754768. [Online]. Available:
https://doi.org/10.1145/3352460.3358252

[9] Y. Zhao, C. Li, Y. Wang, P. Xu, Y. Zhang, and Y. Lin, “DNN-Chip Predictor: An
Analytical Performance Predictor for DNN Accelerators with Various Dataflows and
Hardware Architectures,” in ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 1593–1597.

[10] T. Wing and Z. Benjamin, Computer Hardware/Software Architecture. Prentice
Hall, 1986.

[11] S. William., Computer Organization and Architecture : Designing for Performance
(8th Ed.). Upper Saddle River, NJ: Prentice Hall, 2010.

[12] A. Al Bahou, G. Karunaratne, R. Andri, L. Cavigelli, and L. Benini, “XNORBIN: A
95 TOp/s/W Hardware Accelerator for Ninary Convolutional Neural Networks,” in
2018 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS), 2018,
pp. 1–3.

[13] J. L. Hennessy, D. A. Patterson, K. Asanovi, J. D. Bakos, R. P. Colwell, A. Bhat-
tacharjee, T. M. Conte, J. Duato, D. Franklin, D. Goldberg, N. P. Jouppi, S. Li,
N. Muralimanohar, G. D. Peterson, T. M. Pinkston, P. Ranganathan, D. A. Wood,
C. Young, and A. Zaky, Computer Architecture: a Quantitative Approach. Cam-
bridge, MA : Morgan Kaufmann Publishers, 2019.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 Programs:
Characterization and Methodological Considerations,” in Proceedings 22nd Annual
International Symposium on Computer Architecture, 1995, pp. 24–36.

[15] S. J. E. Wilton and N. Jouppi, “CACTI: an Enhanced Cache Access and Cycle Time
Model,” Journal of Solid State Circuits, vol. 31, no. 5, pp. 677–688, May 1996.

https://doi.ieeecomputersociety.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1145/3352460.3358252

BIBLIOGRAPHY 113

[16] D. Nagle, R. Uhlig, T. M. Mudge, and S. Sechrest, “Optimal Allocation of On-
Chip Memory for Multiple-API Operating Systems,” in ISCA ’94 Proceedings of the
21st Annual International Symposium on Computer Architecture. IEEE, 1994, pp.
358–369.

[17] J. M. Mulder, N. T. Quach, and M. J. Flynn, “An Area Model for On-Chip Memories
and its Application,” Journal of Solid State Circuits, vol. 26, no. 2, pp. 98–106, Feb
1991.

[18] R. G. Dreslinski, G. K. Chen, T. Mudge, D. Blaauw, D. Sylvester, and K. Flautner,
“Reconfigurable Energy Efficient Near-Threshold Cache Architectures.” in Interna-
tional Symposium on Microarchitecture. IEEE, Nov 2008, pp. 459–470.

[19] J. Lee and S. Kim, “Filter Data Cache: An Energy-Efficient Small L0 Data Cache
Architecture Driven by Miss Cost Reduction,” IEEE Transactions on Computers,
vol. 64, pp. 1–1, 01 2014.

[20] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The Filter Cache: An Energy Effi-
cient Memory Structure,” in MICRO 30 Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture. IEEE, 1997, pp. 184–193.

[21] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of A
Small Fully-Associative Cache and Prefetch Buffers,” in ISCA ’90 Proceedings of
the 17th annual international symposium on Computer Architecture. IEEE, 1990,
pp. 364–373.

[22] J. L. et al, “UNPU: A 50.6TOPS/W Unified Deep Neural Network Accelerator with
1b-to-16b Fully-Variable Weight Bit-Precision,” 2018 IEEE International Solid -
State Circuits Conference - (ISSCC), pp. 218–220, 2018.

[23] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“EIE: Efficient Inference Engine on Compressed Deep Neural Network,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA),
June 2016, pp. 243–254.

[24] N. P. J. et al, “In-datacenter Performance Analysis of A Tensor Processing Unit,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), June 2017, pp. 1–12.

114 BIBLIOGRAPHY

[25] J. Jo, S. Kim, and I. Park, “Energy-Efficient Convolution Architecture Based on
Rescheduled Dataflow,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 65, no. 12, pp. 4196–4207, Dec 2018.

[26] B. Moons and M. Verhelst, “An Energy-Efficient Precision-Scalable ConvNet Pro-
cessor in 40-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp.
903–914, April 2017.

[27] Y. Chen, T. Yang, J. Emer, and V. Sze, “Eyeriss v2: A Flexible Accelerator for
Emerging Deep Neural Networks on Mobile Devices,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 292–308, 2019.

[28] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos,
“Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA),
June 2016, pp. 1–13.

[29] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam,
“ShiDianNao: Shifting Vision Processing Closer to the Sensor,” in 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA), June 2015,
pp. 92–104.

[30] A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, “An Architecture to Accelerate
Convolution in Deep Neural Networks,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 65, no. 4, pp. 1349–1362, April 2018.

[31] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H. Yoo, “1.93TOPS/W scalable
deep learning/inference processor with tetra-parallel MIMD architecture for big-data
applications,” in 2015 IEEE International Solid-State Circuits Conference - (ISSCC)
Digest of Technical Papers, Feb 2015, pp. 1–3.

[32] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, L. Liu, and S. Wei, “A 1.06-to-5.09
TOPS/W reconfigurable hybrid-neural-network processor for deep learning applica-
tions,” 2017 Symposium on VLSI Circuits, pp. C26–C27, 2017.

[33] M. Cho and D. Brand, “MEC: Memory-Efficient Convolution for Deep Neural Net-
work,” CoRR, vol. abs/1706.06873, 2017.

[34] S. P. et al, “A 7.3 M Output Non-Zeros/J Sparse Matrix-Matrix Multiplication
Accelerator using Memory Reconfiguration in 40 nm,” in 2019 Symposium on VLSI
Technology, June 2019, pp. C150–C151.

BIBLIOGRAPHY 115

[35] Z. Yuan, Y. Liu, J. Yue, Y. Yang, J. Wang, X. Feng, J. Zhao, X. Li, and H. Yang,
“STICKER: An Energy-Efficient Multi-Sparsity Compatible Accelerator for Convo-
lutional Neural Networks in 65-nm CMOS,” IEEE Journal of Solid-State Circuits,
vol. 55, no. 2, pp. 465–477, 2020.

[36] H. Mizuno and K. Ishibashi, “A Separated Bit-Line Unified Cache: Conciliating
Small On-Chip Cache Die-Area and Low Miss Ratio.” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 7, pp. 139 – 144, Mar 1999.

[37] H. Xu, J. Shiomi, T. Ishihara, and H. Onodera, “Maximizing Energy Efficiency
of on-Chip Caches Exploiting Hybrid Memory Structure,” in 2018 28th Interna-
tional Symposium on Power and Timing Modeling, Optimization and Simulation
(PATMOS). IEEE, July 2018, pp. 237–242.

[38] B. Zhai, D. Blaauw, D. Sylvester, and S. Hanson, “A Sub-200mV 6T SRAM in 0.13
µm CMOS,” in 2006 IEEE International Solid State Circuits Conference (ISSCC),
03 2007, pp. 332 – 606.

[39] G. Chen, D. Sylvester, D. Blaauw, and T. Mudge, “Yield-driven Near-threshold
SRAM Design,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 18, pp. 1590 – 1598, 12 2010.

[40] Z. Sun, X. Bi, H. Li, W.-F. Wong, and X. Zhu, “STT-RAM Cache Hierarchy With
Multiretention MTJ Designs,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, pp. 1281–1293, 2014.

[41] A. Teman, D. Rossi, P. Meinerzhagen, L. Benini, and A. Burg, “Power, Area, and
Performance Optimization of Standard Cell Memory Arrays Through Controlled
Placement,” ACM Transactions on Design Automation of Electronic Systems, vol. 21,
pp. 1–25, 05 2016.

[42] J. Shiomi, T. Ishihara, and H. Onodera, “Area-Efficient Fully Digital Memory Using
Minimum Height Standard Cells for Near-Threshold Voltage Computing,” Integra-
tion, the VLSI Journal, 07 2017.

[43] B. Calhoun and A. Chandrakasan, “A 256kb Sub-threshold SRAM in 65nm CMOS.”
in 2006 IEEE International Solid State Circuits Conference (ISSCC). IEEE, Feb
2006, pp. 2592–2601.

116 BIBLIOGRAPHY

[44] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Flamanda,
F. K. Grkaynak, and L. Benini, “Near-Threshold RISC-V Core with DSP Exten-
sions for Scalable IoT Endpoint Devices,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 10, pp. 2700–2713, Oct 2017.

[45] K. Shin, W. Choi, and J. Park, “Half-Select Free and Bit-Line Sharing 9T SRAM
for Reliable Supply Voltage Scaling,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. PP, pp. 1–13, 04 2017.

[46] S. Nakamura and K. Usami, “Level Converter Design for Ultra-low Voltage Op-
eration in FDSOI Devices,” in The 29th International Technical Conference on
Circuits/Systems, Computers and Communications, 2014, pp. 93–96.

[47] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D. A. Antoniadis, A. P. Chan-
drakasan, and V. De, “Adaptive Body Bias for Reducing Impacts of Die-to-Die and
Within-Die Parameter Variations on Microprocessor Frequency and Leakage,” IEEE
Journal of Solid-State Circuits, vol. 37, no. 11, pp. 1396–1402, 2002.

[48] L. Yann, B. Yoshua, and H. Geoffrey, “Deep Learning,” Nature, vol. 521, no. 1, pp.
436–444, May 2015.

[49] K. Vissers, “Versal: The Xilinx Adaptive Compute Acceleration Platform (ACAP),”
in Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’19. New York, NY, USA: ACM, 2019, pp.
83–83.

[50] Intel. (2019) Neural Compute Stick 2. [Online]. Available: https://software.intel.
com/en-us/articles/OpenVINO-RelNotes

[51] Google. (2019) Edge TPU. [Online]. Available: https://cloud.google.com/edge-tpu/

[52] D. Silver, A. Huang, C. Maddison, and et al, “Mastering the Game of Go with Deep
Neural Networks and Tree Search,” Nature, vol. 529, no. 484, p. 484489, Jan 2016.

[53] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications,” CoRR, vol. abs/1704.04861, 2017.

[54] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,” in 2015 IEEE

https://software.intel.com/en-us/articles/OpenVINO-RelNotes
https://software.intel.com/en-us/articles/OpenVINO-RelNotes
https://cloud.google.com/edge-tpu/

BIBLIOGRAPHY 117

Conference on Computer Vision and Pattern Recognition (CVPR), June 2015, pp.
1–9.

[55] J. Jo, S. Cha, D. Rho, and I. Park, “DSIP: A Scalable Inference Accelerator for
Convolutional Neural Networks,” IEEE Journal of Solid-State Circuits, vol. 53,
no. 2, pp. 605–618, Feb 2018.

[56] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Advances in Neural Information Processing
Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.
Curran Associates, Inc., 2012, pp. 1097–1105.

[57] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale
Image Recognition,” arXiv 1409.1556, 09 2014.

[58] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-Based
Accelerator Design for Deep Convolutional Neural Networks,” in Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
ser. FPGA ’15. New York, NY, USA: Association for Computing Machinery,
2015, p. 161170. [Online]. Available: https://doi.org/10.1145/2684746.2689060

[59] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning Applied
to Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
Nov 1998.

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-
nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, pp. 770–778.

[61] S. Han, J. Pool, J. Tran, and W. Dally, “Learning Both Weights and Connections for
Efficient Neural Network,” in Advances in Neural Information Processing Systems
28. Curran Associates, Inc., 2015, pp. 1135–1143.

[62] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and <0.5MB
Model Size,” 2016.

[63] S. Anwar, K. Hwang, and W. Sung, “Structured Pruning of Deep Convolutional
Neural Networks,” J. Emerg. Technol. Comput. Syst., vol. 13, no. 3, Feb. 2017.

https://doi.org/10.1145/2684746.2689060

118 BIBLIOGRAPHY

[64] T. Yang, Y. Chen, and V. Sze, “Designing Energy-Efficient Convolutional Neural
Networks Using Energy-Aware Pruning,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 6071–6079.

[65] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang, “A Systematic
DNN Weight Pruning Framework Using Alternating Direction Method of Multipli-
ers,” in Computer Vision – ECCV 2018. Cham: Springer International Publishing,
2018, pp. 191–207.

[66] G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating Deep Convolutional Net-
works using low-precision and sparsity,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 2861–2865.

[67] O. Moreira, A. Yousefzadeh, F. Chersi, A. Kapoor, R. . Zwartenkot, P. Qiao, G. Cin-
serin, M. A. Khoei, M. Lindwer, and J. Tapson, “NeuronFlow: A Hybrid Neuro-
morphic Dataflow Processor Architecture for AI Workloads,” in 2020 2nd IEEE
International Conference on Artificial Intelligence Circuits and Systems (AICAS),
2020, pp. 01–05.

[68] B. L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model Compression and Hardware
Acceleration for Neural Networks: A Comprehensive Survey,” Proceedings of the
IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[69] Y. Saad, “SPARSKIT: A Basic Tool Kit for Sparse Natrix Computations - Version
2,” 1994.

[70] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,
S. W. Keckler, and W. J. Dally, “SCNN: An Accelerator for Compressed-Sparse
Convolutional Neural Networks,” SIGARCH Comput. Archit. News, vol. 45, no. 2,
p. 2740, Jun. 2017. [Online]. Available: https://doi.org/10.1145/3140659.3080254

[71] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, pp. 211–252, 2015.

[72] J. Leskovec and R. Sosič, “SNAP: A General-Purpose Network Analysis and Graph-
Mining Library,” ACM Transactions on Intelligent Systems and Technology (TIST),
vol. 8, no. 1, p. 1, 2016.

https://doi.org/10.1145/3140659.3080254

BIBLIOGRAPHY 119

[73] M. Zhu and S. Gupta, “To Prune, or Not to Prune: Exploring the Efficiency of
Pruning for Model Compression,” ArXiv, vol. abs/1710.01878, 2018.

[74] T. Gale, E. Elsen, and S. Hooker, “The State of Sparsity in Deep
Neural Networks,” CoRR, vol. abs/1902.09574, 2019. [Online]. Available:
http://arxiv.org/abs/1902.09574

[75] E. Elsen, M. Dukhan, T. Gale, and K. Simonyan, “Fast Sparse ConvNets,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los
Alamitos, CA, USA: IEEE Computer Society, jun 2020, pp. 14 617–14 626. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.01464

[76] A. Yousefzadeh, M. A. Khoei, S. Hosseini, P. Holanda, S. Leroux, O. Moreira,
J. Tapson, B. Dhoedt, P. Simoens, T. Serrano-Gotarredona, and B. Linares-Barranco,
“Asynchronous Spiking Neurons, the Natural Key to Exploit Temporal Sparsity,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 4, pp. 668–678, 2019.

[77] M. Courbariaux and Y. Bengio, “BinaryNet: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1,” CoRR, vol. abs/1602.02830,
2016. [Online]. Available: http://arxiv.org/abs/1602.02830

[78] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara, S. Takamaeda-
Yamazaki, M. Ikebe, T. Asai, T. Kuroda, and M. Motomura, “BRein Memory:
A Single-Chip Binary/Ternary Reconfigurable in-Memory Deep Neural Network
Accelerator Achieving 1.4 TOPS at 0.6 W,” IEEE Journal of Solid-State Circuits,
vol. 53, no. 4, pp. 983–994, 2018.

[79] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst, “BinarEye: An
Always-On Energy-Accuracy-Scalable Binary CNN Processor With All Memory On
Chip in 28nm CMOS,” 2018.

[80] F. Conti, P. D. Schiavone, and L. Benini, “XNOR Neural Engine: A Hardware
Accelerator IP for 21.6-fJ/op Binary Neural Network Inference,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp.
2940–2951, 2018.

[81] J. Yue, R. Liu, W. Sun, Z. Yuan, Z. Wang, Y. Tu, Y. Chen, A. Ren, Y. Wang, M. Chang,
X. Li, H. Yang, and Y. Liu, “A 65nm 0.39-to-140.3TOPS/W 1-to-12b Unified Neural
Network Processor Using Block-Circulant-Enabled Transpose-Domain Acceleration

http://arxiv.org/abs/1902.09574
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.01464
http://arxiv.org/abs/1602.02830

120 BIBLIOGRAPHY

with 8.1 Œ Higher TOPS/mm2and 6T HBST-TRAM-Based 2D Data-Reuse Archi-
tecture,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC),
2019, pp. 138–140.

[82] P. C. Knag, G. K. Chen, H. E. Sumbul, R. Kumar, M. A. Anders, H. Kaul, S. K.
Hsu, A. Agarwal, M. Kar, S. Kim, and R. K. Krishnamurthy, “A 617 TOPS/W All
Digital Binary Neural Network Accelerator in 10nm FinFET CMOS,” in 2020 IEEE
Symposium on VLSI Circuits, 2020, pp. 1–2.

[83] R. Andri, G. Karunaratne, L. Cavigelli, and L. Benini, “ChewBaccaNN: A Flexible
223 TOPS/W BNN Accelerator,” 2020.

[84] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention Is All You Need,” CoRR, vol. abs/1706.03762, 2017.
[Online]. Available: http://arxiv.org/abs/1706.03762

http://arxiv.org/abs/1706.03762

BIBLIOGRAPHY 121

Publication List

Journal

1. Hongjie Xu, Jun Shiomi, and Hidetoshi Onodera, “Evaluation Metrics for the Cost
of Data Movement in Deep Neural Network Acceleration," IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, (under
review).

2. Hongjie Xu, Jun Shiomi, and Hidetoshi Onodera, “MOSDA: On-chip Memory
Optimized Sparse Deep Neural Network Accelerator with Efficient Index Matching,"
IEEE Open Journal of Circuits and Systems, 2020, in press http://dx.doi.org/
10.1109/OJCAS.2020.3035402

3. Hongjie Xu, Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “On-Chip Cache
Architecture Exploiting Hybrid Memory Structures for Near-Threshold Comput-
ing," IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. E102-A, no.12, pp. 1741–1750, Dec. 2019.

International Conference

1. Hongjie Xu, Jun Shiomi, and Hidetoshi Onodera, “On-chip Memory Optimized
CNN Accelerator with Efficient Partial-sum Accumulation," Proceedings of the
30th edition of the ACM Great Lakes Symposium on VLSI, Sep. 2020, pp. 21–26.

2. Hongjie Xu, Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “Maximizing En-
ergy Efficiency of On-Chip Caches Exploiting Hybrid Memory Structure," Proceed-
ings of the International Workshop on Power And Timing Modeling, Optimization
and Simulation, Jul. 2018, pp. 237–242.

3. Hongjie Xu, Jun Shiomi, Tohru Ishihara, and Hidetoshi Onodera, “A Hybrid
Caching System Using SRAM and Standard-Cell Memory for Energy-Efficient

http://dx.doi.org/10.1109/OJCAS.2020.3035402
http://dx.doi.org/10.1109/OJCAS.2020.3035402

122 BIBLIOGRAPHY

Near-Threshold Circuits," in Workshop on Synthesis And System Integration of Mixed
Information technologies, Mar. 2018, pp. 56–61.

	Acknowledgments
	Abstract
	Introduction
	Background
	Energy-efficient Hardware Design
	The Cost of Data Movement
	Memory Hierarchy Design
	Processing Task Classification for Data Movement Evaluation

	Motivation
	Multi-Level Cache Architectures for General-Purpose Processing
	Hardware Designs for Special Purpose Processing

	Thesis Contribution
	Thesis Organization

	Hybrid Cache Memory for General-Purpose Processing
	Introduction
	On-chip Memory System for Ultra Low Energy Computing
	Related Work
	Standard-Cell Memory
	Relationship between Miss Rate and Cache Capacity
	Motivational Example

	Energy-Efficient Hybrid Cache System
	2-Level Hybrid Cache System
	Problem Definition

	Verification of Hybrid Cache for 65nm RISC-V Processors
	Evaluation Setup
	Experimental Results
	Applicable Range Analysis

	Summary

	DNN Accelerator Designs for Large-Scale Processing with Regular Access Pattern
	Introduction
	Background
	DNN Processing
	Data Reuse in DNN
	Subtasks in DNN Processing
	Motivational Example
	Design Space Exploration for DNN Accelerators

	DNN Dataflow to Reduce the Cost of Data Movement
	Properties for the Cost of Data Movement in DNN Processing
	Related Work
	Proposed Dataflow

	Experimental Results for the Proposed Dataflow
	Analytical Hardware Evaluation Model
	Dataflow Comparison
	Dataflow for Convolutions
	Dataflow for Matrix Multiplications

	Hardware Design Evaluation
	Summary

	Sparse DNN Accelerator for Irregular Data Access Pattern
	Introduction
	Background
	Sparse DNN Processing
	Motivational Example
	Processing Dependency in DNN
	Related Work

	Sparse DNN Processing Dataflow
	MOSDA Architecture Based on Matching Type
	Experimental Results
	Summary

	BNN Accelerator for Small-Scale Processing with Regular Access Pattern
	Introduction
	Background
	BNN Processing
	Motivational Example
	Related Work

	Proposed Architecture
	Processing Dataflows
	Hardware Architecture

	Experimental Results
	Summary

	Conclusion
	Summary of This Thesis
	Future Work

	Bibliography
	Publication List

