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Preface

This thesis proposes airtime management methods for reducing the media access
control (MAC) delay in densely deployed wireless networks. Moreover, this thesis
also provides performance analysis on these methods focusing on the trade-offs
between MAC delay and other performances.

The delay of a wireless communication system refers to the amount of time
that information travels from the information source to the destination. Reducing
the delay of a wireless communication system is an important topic worth study-
ing. With the fast growth of information technology, there emerge many delay-
sensitive applications, e.g., low-latency video streaming. A low-latency wireless
communication system is considered necessary to provide high-quality delivery
to these delay-sensitive applications.

The studying scope of this thesis is the MAC delay. The MAC delay is a delay
that typically occurs in a communication system in which multiple users share the
wireless channel. It occurs when the amount of wireless resources is insufficient
or when it takes time for wireless resources to be allocated. Note that, the delay
caused by other reasons is beyond the scope of this thesis. For example, the delay
caused by transmitter signal processing, radio propagation, and receiver signal
processing is out of scope. Also, the delay generated by communication overhead
is also out of the scope.

In this thesis, the MAC delay in two types of wireless communication systems
is studied, contention-based system and allocation-based system.

The first topic is related to wireless local area network (WLAN) system that
adopts the contention-based MAC. The latest WLAN standard, i.e., IEEE 802.11ax,
introduces a mechanism for concurrent transmission among co-channel neighbor-
ing cells with low power. This mechanism increases the airtime of the wireless

terminal. This mechanism, however, has the side effect of increasing the packet
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collision rate. In this topic, a method is proposed to reduce this side effect by
utilizing the reinforcement learning algorithm. Specifically, the identifier in the
preamble of the WLAN frame is used to identify the interferer. In doing so, si-
multaneous transmissions among cells that do not cause frame collision are pro-
moted. On the other hand, simultaneous transmissions among cells that can cause
frame collision are suppressed. Furthermore, theoretical performance analysis is
performed based on Markov state transition diagrams. Simulation results show

that the MAC delay among co-channel neighboring cells is significantly reduced.

The second topic focuses on the flow-in-the-middle (FIM) starvation problem
in densely deployed WLANS. It occurs when a transmitter is within the carrier
sense range of two exterior transmitters while the two exterior transmitters are
not within the carrier sense range of each other. Under heavy traffic conditions,
the middle transmitter detects the channel being occupied for a prolonged time
and suffers from extremely low transmission opportunities. In this topic, a new
distributed frequency channel selection method is proposed that does not cause
the starvation problem. Specifically, a contention graph is introduced where the
access point (AP) is a node and the availability of carrier detection is an edge. The
proposed method reduces the number of linear chain topologies on the contention
graph. Furthermore, by proving the existence of the potential function in game
theory, the distributed channel selection method is proved to converge. Finally,
computer simulation shows that the number of APs for which transmission op-
portunities are limited can be significantly reduced with limited sacrifice of the

efficiency of the entire system.

The final topic is related to the cellular communication system that adopts the
allocation-based MAC. In particular, a scenario is considered in which two opera-
tors deploy shared base stations (BSs) to reduce capital investment. In this case, it
is possible to improve the communication quality by appropriately allocating the
user traffic between the existing non-shared BSs and the additional shared BSs.
In order to quantitatively evaluate MAC delay, this thesis introduces an evaluation
metric called cell load. The physical meaning of the cell load is the normalized
airtime of the BS, which is also the expected value of the MAC delay detected by
the user equipments (UEs) when the normalized size data is considered. The cell
load can be calculated from the expected value of the reciprocal of the data rate

of the UEs. In this topic, by assuming that the positional distribution of the BSs
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follows the Poisson point process, the cell load is theoretically analyzed. Specif-
ically, the proportional fair load balancing scheme and the round robin type load
balancing scheme are compared. The main finding is that the former scheme im-
pairs inter-operator resource isolation but can accommodate more traffic such that
the network does not overload. Finally, the correctness of the analysis results was
confirmed by numerical evaluation.

The chapters of this thesis are as follows. Chapter 1 explains the background
and contributions of this thesis. Chapter 2 introduces related technologies to this
work. Chapters 3 to 5 describe the above mentioned topics in detail. Finally,
Chapter 6 concludes this thesis.
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Chapter 1

Introduction

1.1 Background

The telecommunication traffic has been constantly growing in recent years. Ac-
cording to the latest research of Japanese ministry of internal affairs and commu-
nications, the telecommunication traffic in Japan has reached 4.0 Tbit/s, where the
peak traffic is 5.4 Tbit/s and the per-subscriber traffic is 22 kbit/s [1]. Compared
to the former year, these values have increased by 1.3, 1.3, and 1.2 times, respec-
tively [1]. Under this background, the technologies of wireless communication
and wireless networkings have been constantly evolving. The cellular technolo-
gies are switching from 4G to 5G. Meanwhile, Wi—Fi®, defined by a family of
IEEE 802.11 standards, is evolving into the IEEE 802.11ax [2] standard.

In the next generation telecommunication technologies, the low latency wire-
less communications and low latency wireless networkings are important research
topics. The delay (or latency) of a wireless communication system is generally
defined as the amount of time that the information travels from the information

source to the destination !

. Many emerging applications nowadays require ex-
tremely strict delay constraints and high reliability of the wireless communication
system, e.g., online video conference. Most of these applications are not only
bandwidth-hungry but also delay-sensitive [4]. A robust and reliable low-latency
wireless communication system is necessary to support these applications. With

the increasing popularity of delay-sensitive applications, reducing the delay of a

"More specific definitions are given in the literatures, e.g., [3].
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wireless communication system has become an interesting research topic worth
studying. At the time of writing this thesis, the low-latency wireless communica-
tion system is still an open and hot research topic [4].

The studying scope of this thesis is the media access control (MAC) delay,
i.e., the delay due to waiting being granted the access to the physical transmission
medium. In a multi-user wireless communication system, the MAC delay occurs
when the amount of wireless resources is insufficient and when it takes time for
wireless resources to be allocated.

The MAC delay is studied based on the type of multiple access schemes.
Specifically, the MAC delay is categorized into the contention delay and the
scheduling delay in this thesis. The contention delay is further categorized into
the perfect carrier sensing case and the imperfect carrier sensing case. Therefore,

the categories of MAC delay studied in this thesis are as follows.
e Contention delay

— Perfect carrier sensing case

— Imperfect carrier sensing case
e Scheduling delay

The reason of making this categorization is that similar categorization is com-
monly provided in literature. For example, multiple access schemes are catego-
rized into fixed assigned, demand-based assigned, and random access schemes
in [5]. In [6], they are categorized into conflict-free access protocols, Aloha pro-
tocols, and carrier sensing protocols. In [7], they are categorized into distributed,
centralized, and hybrid schemes. Note that, there does not exist the only one way
of categorizing MAC delay or multiple access schemes. Despite there are some
differences in the ways of categorization, the contention-based schemes and the
scheduling-based schemes are two basic multiple access schemes. As presented
in Section 1.2, the causes of MAC delay in these cases are basically different.

Note that, the delay generated in other layers is beyond the scope of this thesis.
For example, the delay generated in transmitter channel coding, signal processing,
transmission, radio propagation, receiver signal processing, and decoding is out
of scope. Also, the delay generated by communication overhead, such as request-
to-send/clear-to-send (RTS/CTS) is out of scope.

2



Section 1.2

1.2 Research Challenges

In this section, the details of the above-mentioned MAC delay is provided. The
research challenges of reducing each type of delay is also discussed.

1.2.1 Contention Delay: Perfect Carrier Sensing Case

‘ To backoff or to transmit?

Signal detect \/
AP 1 <¢----==---- >@® AP2

STA1 @ ® sa2

Figure 1.1: An illustration of the contention delay in perfect carrier sensing case.

This type of delay occurs in the wireless communication system where the
contention-based MAC protocol is implemented, e.g., the IEEE 802.11 wireless
local area network (WLAN). Based on the IEEE 802.11 distributed coordination
function (DCF) [8], access points (APs) and stations (STAs) access the channel
following a contention-based manner. A random backoff procedure is required
before each transmission. Furthermore, during the backoff procedure, the AP or
STA will freeze the backoff procedure as long as it detects any on-going transmis-
sion in the channel as shown in Fig. 1.1. Finally, the retransmission takes place if

packet collisions occur. Overall, the causes of contention delay contains:
e Counting down the backoff counter
e Waiting until the detected transmission finishes
e Retransmissions due to packet collisions

As shown in the simulation in Chapter 3 of this thesis, the MAC delay becomes

severer when as the amount of traffic or the number of APs or STAS increases.
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Regarding this topic, the research challenge is to reduce the MAC delay in a
densely deployed WLANSs. This is an important topic because the deployment of
WLAN devices has been constantly growing since the 2000s [9]. It is predicted
that, globally, total public WLAN hotspots will grow sevenfold from 64.2 million
in 2015 to 432.5 million by 2020 [10]. Mobile offload traffic will increase from
3.9 exabytes/month to 38.1 exabytes/month in the meanwhile [10].

This topic is studied in Chapter 3. To reduce MAC delay in the densely de-
ployed WLANSs, a channel access scheme is proposed to facilitate concurrent
transmissions among co-channel transmitters while reducing retransmissions due
to packet collisions. In other words, a channel access scheme is proposed to en-

hance feasible concurrent transmissions and to suppress the non-feasible ones.

1.2.2 Contention Delay: Imperfect Carrier Sensing Case

AP 2

AP 1 AP 3 AP 1 AP 3

Perfect carrier sensing case Imperfect carrier sensing case

Figure 1.2: An illustration of contention graph.

The previous topic mainly focuses on the small scale wireless networks where
perfect carrier sensing operation is assumed. In large scale wireless networks,
however, the distance between nodes is too far to perform perfect carrier sensing.
In the IEEE 802.11 WLAN, for example, the receiver sensitivity is —82 dBm [8],
1.e., the detection of the signal below this level is not guaranteed. Figure 1.2 shows
an illustration of contention graph of wireless CSMA networks, where the node
represent the AP and the edge represent that two APs detects each other. In this
thesis, the imperfect carrier sensing network refers to the network where not all
the nodes are within the carrier sensing ranges of each other. Related studies have

pointed out that starvation problem [11] may happen in imperfect carrier sensing
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AP 2
Signal detect Signal detect
AP1 @€-=------- r@€---------- AP 3
e >

STA1 @ Do not detect @ sTA3
AP 1 Transmission | | Transmission | — _

» Time
AP 2 Airtime starvation

» Time
AP 3 [ Transmission | S

» Time

Figure 1.3: Flow-in-the-middle starvation problem.

networks.

Figure 1.3 shows an illustration of the flow-in-the-middle (FIM) starvation
problem defined in [11]. Consider three co-channel APs as shown in Fig. 1.3.
The middle AP is within the carrier sense range of two exterior APs while the
two exterior APs are not within the carrier range of each other. Under heavy
traffic conditions, the middle AP detects the channel being occupied for a pro-
longed time and suffers from extremely low transmission opportunities, because
the transmissions of exterior APs might overlap.

Regarding this topic, the research challenge is how to design a distributed
algorithm that guarantees convergence to stable solutions. This is because WLAN
devices operate in an unlicensed band and some APs are deployed by consumers
randomly [9]. A distributed algorithm is necessary since there does not exist a
centralized controller to manage all of the APs.

This topic is studied in Chapter 4. To reduce airtime starvation due to imper-
fect carrier sensing, a channel selection algorithm is proposed to avoid the occur-
rence of imperfect carrier sensing in the same frequency channel. Game theoretic

approach is utilized to study the convergence property of the proposed scheme.

1.2.3 Scheduling Delay

In a scheduling-based wireless communication system, the main cause of MAC

delay is due to the intra-cell radio resource scheduling. Consider a cellular com-
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BS

UE1 ® U3
UE2

Scheduling delay = 2 (Payload / Data rate)

UE1||UE2 UE3

Time

Figure 1.4: An illustration of scheduling delay.

munication model as illustrated in Fig. 1.4, where the base station (BS) schedules
the radio resources to each user equipment (UE) in a round-robin manner. Denote
the downlink traffic load and data rate at location s as w(s) and R(s), respectively.
The normalized airtime to transmit the downlink traffic is given as follows.

_[ow
p_LR(s) ds, (1.1)

where A is the cell area. This normalized time here can also be interpreted as an
expectation of the scheduling delay at the UE [12]. Despite its simplicity, this
equation presents intuitions of reducing scheduling delay. From this equation, the
approaches of reducing the scheduling delay includes: reducing the traffic w(s),

increasing the data rate R(s), and reducing the cell area A by shrinking coverage.

The third topic in this thesis mainly studies reducing scheduling delay from
a traffic offloading perspective, i.e., reducing w(s) in (1.1). This approach is of
particular interests under the background of multi-operator infrastructure sharing

in the next-generation cellular communication system.

The research challenge at here is that: how to split user traffic over the shared
radio access network (RAN) and the non-shared RAN to reduce scheduling delay?
This topic is studied in Chapter 5. To provide theoretical guidelines for multi-
operator RAN sharing and dynamic offloading, a stochastic geometric analysis is

performed that incorporates the cell load equation.
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Media Access Control (MAC) Delay

Contention Delay (IEEE 802.11 WLAN) Scheduling Delay (Cellular)

Perfect Carrier Sensing

Imperfect Carrier Sensing Intra-cell Scheduling

Related Technologies (Chapter 2)

IEEE 802.11ax WLAN
Spatial Reuse

Graph-based CSMA
Throughput Model

Multi-Operator
Infrastructure Sharing

Vs

Chapter 3

Target:
- Reducing contention delay

through spatial reuse
(SR).

Key challenge:
- How to enhance feasible

SR while suppressing

~

Chapter 4

Target:
- Mitigating airtime
starvation due to

Key challenge:
- How to design a

decentralized algorithm

imperfect carrier sensing.

Chapter 5

Target:
- Reducing scheduling

delay through multi-tier
load balancing.

Key challenge:
- How to provide tractable

theoretical analysis?

infeasible ones?

Approach:
- Early identification of

interferes.
- Reinforcement learning.

with guaranteed
convergence?

Approach:
- Potential game-based

channel selection.

Approach:

- Stochastic geometric
analysis incorporating
cell load equation.

Figure 1.5: Chapter overview.

1.3 Outline and Contributions of This Thesis

As categorized above, this thesis focuses on reducing the MAC delay from three
different subtopics separately, i.e., the delay due to resource contention under per-
fect carrier sensing, resource contention under imperfect carrier sensing, and re-
source scheduling. The chapter overview is summarized in Fig. 1.5.

The related technologies are presented in Chapter 2. Preliminary knowledges
and some related works on the similar topics are reviewed in this chapter. Specif-
ically, the IEEE 802.11ax spatial reuse, the graph-based throughput model for
CSMA networks, and the multi-operator infrastructure sharing are presented.

The first subtopic is presented in Chapter 3. It is related to IEEE 802.11ax [2]
WLAN system that adopts the contention-based MAC. In this chapter, a reinforce-
ment learning-based spatial reuse scheme for WLANSs is proposed and analyzed.

In this scheme, when an AP (or an STA) overhears an on-going transmission, it

7
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decodes the information in the frame header to identify the transmitter and decides
whether or not to exploit spatial reuse accordingly. Specifically, it decides whether
to stop receiving the remaining part of the frame and start its own transmission or
to refrain from channel access until the detected transmission finishes. Through
reinforcement learning algorithms, e.g., the repeated update Q-learning (RUQL)
algorithm, the agent learns the optimal decision in the sense of reducing the media
access control layer delay. Moreover, the proposed scheme with the spatial reuse
operation in IEEE 802.11ax is compared, which makes the spatial reuse decision
only based on a binary identification of the detected interferer, i.e., whether it is in
my cell or neighboring cells. The proposed scheme, however, treats different in-
terferers differently for exploiting spatial reuse. From a theoretical perspective, a
theoretical bound on the gains in the value function is derived, i.e., the discounted
sum of delay, due to making non-binary identifications. Simulation evaluations
confirm that the proposed scheme achieves high throughput by reducing the time
of freezing backoff counter while not increasing the time of failed transmissions.

The second subtopic is presented in Chapter 4. Distributed channel selection
schemes are proposed to mitigate the FIM starvation in dense WLANs. The FIM
starvation occurs when the middle transmitter is within the carrier sense range of
two exterior transmitters, while the two exterior transmitters are not within the
carrier sense range of each other. Since an exterior transmitter sends a frame re-
gardless of the other, the middle transmitter has a high probability of detecting
the channel being occupied. Under heavy traffic conditions, the middle transmit-
ter suffers from extremely low transmission opportunities, i.e., airtime starvation.
The basic idea of the proposed schemes is to let each AP select the channel which
has less three-node-chain topologies within its two-hop neighborhood. The pro-
posed schemes are formulated in strategic form games. Payoff functions are de-
signed so that they are proved to be potential games. Therefore, the convergence
is guaranteed when the proposed schemes are conducted in a distributed manner
by using unilateral improvement dynamics. Moreover, evaluations are conducted
through graph-based simulations and the ns-3 simulator. Simulations confirm
that the FIM starvation has been mitigated since the number of three-node-chain
topologies has been significantly reduced. The 5th percentile throughput has been

improved.

The third subtopic is presented in Chapter 5. The infrastructure sharing offers
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great potential for the cost-efficient deployment of the next-generation RANs. By
sharing the usage of RANs, mobile network operators can rapidly develop new
services with substantially reduced expenditures. In such a background, the fol-
lowing problem has become apparent: From an operator’s perspective, how to
split user traffic over the shared RAN and the non-shared RAN to accomplish
load balancing? In order to provide guidelines for multi-operator load balancing,
in this chapter, stochastic geometric analysis is performed that incorporates the
cell load equation. The theoretically conditions on multi-operator traffic density
is derived such that the networks do not overload. It is theoretically proved that
the proportionally fair (PF) load balancing can accommodate more traffics than
the round robin (RR) load balancing. Moreover, an incomplete information load
balancing game is formulated to study the scenario in which multiple operators
do not hope to exchange any private information with other operators, such as the
amount of incoming traffic or base station densities. Simulation results show that,
despite the information is incomplete, the reinforcement learning-based solutions
achieve as good performance as the complete information scenario under certain

traffic conditions.






Chapter 2

Related Technologies

2.1 Spatial Reuse in IEEE 802.11ax WLAN

The significant growth in the number of WLAN devices in recent years [13—15]
has resulted in the common occurrence of overlapping basic service sets (OB-
SSs), 1.e., co-located WLAN cells operating in the same frequency channel. In
dense OBSSs scenario, the throughput degradation becomes a severe problem
because concurrent transmissions among OBSSs were not allowed in previous
IEEE 802.11 standards, e.g., IEEE 802.11n, 11ac. In particular, an AP or an STA
has to defer its channel access when it detects the transmission of any other APs
or STAs.

The IEEE 802.11ax standard has approved a new operation called the OBSS
packet detect (OBSS_PD)-based spatial reuse operation to improve spatial fre-
quency reuse in high-density scenario [2, 13—15]. This operation improves spatial
reuse by allowing concurrent transmissions among OBSSs. As shown in Fig. 2.1,
once an AP or an STA has detected an on-going transmission, it immediately
identifies whether this transmission is in OBSS or not. This identification is done
by checking the basic service set (BSS) color field in the frame header. If the
detected transmission is in OBSS and its interference power is lower than a pre-
defined threshold, i.e., OBSS_PD, the AP or STA stops receiving the remaining
part of the frame and regards the wireless medium as idle, i.e., it is feasible to start

transmission.

This OBSS_PD-based spatial reuse operation, however, has a major challenge.
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The challenge is that comparing the interference power with the predefined thresh-
old OBSS_PD has limited predictive value in determining the success or failure of
concurrent transmissions. In other words, a transmitter cannot guarantee that its
receiver receives its transmission successfully under the interference from OBSS,
even if the interference is less than OBSS_PD. This results in performance degra-
dation since if packet loss occurs, the concurrent transmission would be nonsense
and should not be performed.

There are at least two reasons causing this unreliability of the OBSS_PD-based
spatial reuse operation. First of all, this operation only identifies whether a de-
tected transmission is in my BSS or in OBSS. It, however, treats interferers in
different OBSSs indifferently. Consider the example in Fig. 2.2, where AP O tries
to send a packet to STA 0. OBSS AP 1 is close to STA 0 and OBSS AP 2 is far
from STA 0. In case (a), AP 0 detects the transmission of OBSS AP 1 whose
interference power is /. In case (b), AP 0 detects the transmission of OBSS AP 2
whose interference power is also /. Although the measured interference at AP 0
is identical in cases (a) and (b), the receiver experiences different amounts of in-
terference power. Concurrent transmission with OBSS AP 1 is more likely to fail.
Hence, it is desirable if AP O can identify which interferer is transmitting before
deciding whether or not to transmit concurrently with that interferer. Besides the
first reason, another essential reason is that it is hard to establish an accurate and
universal model of the one-to-one correspondence between interference power
and packet loss probability in the actual wireless channel [16, 17].

2.2 Graph-based CSMA Throughput Model

This section introduces a graph-based throughput model for wireless carrier sense
multiple access (CSMA) network. It is the back-of-the-envelop (BoE) throughput
model proposed in [18].

The throughput model proposed in [19] assumes that all the wireless stations
are within the carrier sensing ranges of each other. This assumption does not
always hold in dense WLANSs, especially when parameters such as transmission
power or carrier sensing threshold are adjusted [20]. The BoE model provides
model of throughput when not all the wireless stations sense each other. This

model has been used to calculate the throughput of WLAN in previous works
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Figure 2.1: The OBSS_PD-based spatial reuse operation in the IEEE 802.11ax.
©2020 IEEE.
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Figure 2.2: An example showing the flaw of the OBSS_PD-based spatial reuse
operation. ©2020 IEEE

such as [9].
The calculation is conducted on the contention graph C := (N, &), where the
node set NV denotes an index set of APs. The set of undirected edges & on the

contention graph denotes the carrier sensing availability of two APs. Specifically,
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an undirected edge ij denotes that AP i and AP j are within the carrier sense range
of each other.

Before introducing the procedure of throughput calculation using the BoE
model, some definitions of terms in the graph theory are given as follows.

Definition 1 (Independent Set). Independent set is defined as a set of nodes, 1S C
N, on the contention graph C, that for any two nodes {i, j} C 1S, ij ¢ &.

Definition 2 (Maximum Independent Set). An maximum independent set, MIS C

N, is an independent set of largest possible number of nodes on a given graph C.

This model ignores packet collisions and assumes saturated traffic conditions,
that is, each transmitter is back-logged with packets. Given the contention graph
C of a certain network, the normalized throughput achieved by node i can be

calculated as follows.

_ sems Liies)

TRnormi - (21)
ZSGMIS 1

The numerator represents the number of MISs in which AP i is included and the

denominator represents the number of the MISs on the whole contention graph.
A normalized throughput of 1 corresponds to the throughput an AP achieves

in isolation of other APs, as if it were the only AP in the whole network. The

actual throughput of AP i can be computed as,
TR; = TRuom; - TRsingle link ;- (2.2)

A typical value of TR 1ink, for example in the case of IEEE 802.11a, is about
30.91 Mbps in the UDP session [18].

Consider the following example whose contention graph is shown in Fig. 2.3.
The independent set on the graph are {1}, {2}, {3}, {4}, {1,4} and {2,4}. Among
them, the maximum independent set are {1,4} and {2,4}. According to (2.1), the
normalized throughput of the four APs are 1/2, 1/2, 0/2 and 2/2. This indicates
that AP 3 will suffer from airtime starvation problem whereas AP 4 achieves near

highest throughput.
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AP 1
AP 3 AP 4

AP 2

Figure 2.3: An example of contention graph with four APs.

2.3 Multi-Operator Infrastructure Sharing

The infrastructure sharing among mobile network operators offers great potential
for cost-efficient deployment and operation of the next-generation RAN [21,22].
Compared to independent deployments of wireless access infrastructure, the inter-
operator infrastructure sharing allows operators to share a part of site components
among each other. Hence, it can rapidly expand the coverage area while sub-
stantially reducing the capital expenditures (CapEx) and operational expenditures
(OpEXx) for operators [23,24]. In the standardization society, two types of architec-
tures are defined in the 3GPP TS 23.251 [25]. Their sharing components are com-
pared in Table 2.1. The multi-operator RAN (MORAN) architecture exploits only
the infrastructure sharing, whereas the multiple operator core network (MOCN)
architecture further exploits the spectrum sharing to avoid under-utilization of the
spectrum. As the frequency spectrum is an extremely limited resource, it is crucial
to make the best utilization of its resources to obtain maximum values and ben-
efits [24,26]. Moreover, intelligent spectrum sharing is also considered to play
important roles in future 6G [27]. To this end, this chapter focuses on studying
the joint infrastructure and spectrum sharing architecture, i.e., MOCN-like archi-
tecture.

Depending on the circumstances, shared RANs are less likely to be used in
a stand-alone manner. They are rather deployed as a complement of the non-
shared RANs for mobile data traffic offloading. For instance, Rebato er al. [28]
studied a hybrid sharing architecture, where data packets are scheduled through
two millimeter-wave (mmWave) carriers with different characteristics: a mmWave
band with exclusive access at 28 GHz and a mmWave band at 73 GHz, where

spectrum is pooled between multiple operators. In such case, dual connectivity
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Table 2.1: Sharing components comparison.

Component MORAN MOCN

Core network Independent Independent
Base station ~ Shared Shared
Carriers Independent Shared

Table 2.2: Previous works on WLANS spatial reuse.

Reference ~ Adaptive CCA? Identifying interferers? Learn-based?

[29-35] No No No
[36—40] Yes No No
[41] Yes Yes No
This work Yes Yes Yes

(DC) plays an important role in aggregating the radio resources at both shared
RANSs and non-shared RANs. DC enables UEs to simultaneously communicate
with a shared BS and an exclusive BS via different radio interfaces. With DC,
UEs can flexibly split the traffic between two BSs for traffic offloading. In such a
case, the DC-based load balancing acts as a key enabler for achieving robust and
low-latency networking [4].

2.4 Literature Review

Several previous works have been performed to improve spatial reuse in dense
WLAN:S. A brief comparison between related works and this work is presented in
Table 2.2.

A category of previous works [29-32] discusses the optimal setting of the clear
channel assessment (CCA) threshold, i.e., OBSS_PD. Recent works [33-35] that
use stochastic geometry approach to study the optimal CCA threshold also belong
to this category. This category of works mainly aims at providing theoretical
insights. They develop theoretical models of achievable throughput and study the
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optimal trade-off between spatial reuse and interference mitigation. The optimal
CCA threshold is usually derived by considering homogeneous network density

or regular topologies.

Another category of works proposes to dynamically adapt CCA threshold to
network conditions. Two survey papers of adaptive CCA methods can be found
in [15,40]. An adaptive CCA method in which an AP adjusts CCA threshold ac-
cording to the packet error rate (PER) is proposed in [42]. Dynamic sensitivity
control (DSC) that adjusts CCA threshold based on the communication distance
also belongs to this category. Evaluations of DSC-like methods are presented
in [36-39]. All these schemes, however, treat interferers in different OBSS in-
terferers indifferently. As shown in Fig. 2.2, more desirable operations can be

achieved by identifying which interferer is transmitting.

Reference [41] is similar to this work in that it proposes to adapt the CCA
threshold to individual OBSS interferer. The scheme in [41], however, is model-
based and requires the prior knowledge of the correspondence between interfer-
ence power and packet loss probability. For example, it assumes that STAs are
aware of the required signal-to-interference ratio (SIR) for successful receptions.
In practice; however, it is often hard to establish an accurate and universal model
of such correspondence [16, 17]. In contrast, the proposed scheme is learning-
based and does not require such prior knowledge. Moreover, the scheme in [41]
requires periodically information reports between the transmitter and the receiver,
which is not supported in the IEEE 802.11ax standard. In contrast, the proposed
scheme only needs modifications on the transmitter side whereas the receiver does
not require any modifications beyond the IEEE 802.11ax standard.

The impact of multi-operator RAN sharing was investigated using the stochas-
tic geometry approach in [21,28,43]. The stochastic geometry is a popular the-
oretical approach. It uses spatial point process models to account for the spatial
randomness of BSs so that tractable theoretical results can be obtained. Kibilda
et al. [43] analyzed the performance of spectrum sharing and RAN sharing in
microwave bands. They conducted theoretical formulations of the coverage prob-
ability and the maximum achievable downlink data rate. They also conducted a
tractable theoretical analysis of cross-operator interference in spectrum sharing
networks, and showed that an uncoordinated use of the shared spectrum leads to

severe performance degradation. In [21, 44, 45], the authors presented stochas-
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tic geometric models of a mmWave channel and analyzed the resource sharing in
mmWave bands. The abovementioned studies laid the foundation for stochastic
geometric analysis of multi-operator resource sharing. Most of these works, how-
ever, ignored the effect of the cell load factor, which is an important measure that
related to the QoS satisfaction of UEs. Although [21] considered the partial load
case, the load of a cell was modeled as the number of active UEs per BS.

The problem of splitting traffic over the DC was investigated in [46-48]. A
data rate optimization problem for DC-enabled downlink traffic splitting was stud-
ied in [46]. Singh et al. [47] proposed a proportional fair-based traffic splitting
scheme for DC networks with non-ideal backhaul links. Wu et al. [48] studied the
optimal uplink traffic offloading scheme based on DC. They optimized the over-
all network radio resource usage by optimizing the BS bandwidth allocation as
well as the traffic scheduling and power allocation. Recently, Wu et al. [49] stud-
ied DC-enabled traffic offloading through small cells that are powered by energy
harvesting. Compared to these studies, our study focuses on load balancing in a
multi-operator scenario. In such a case, the amount of incoming traffic is not fully
observable information as assumed in the above related studies, but a partially

observable information.

A branch of recent studies has resorted to game theory to design rules that can
guarantee fair and reasonable usages of the shared spectrum. Reference [50] stud-
ied a multi-operator transmit power allocation game, where each operator strategi-
cally decided the fraction of the total transmit power budget to be allocated to the
shared and private bands. They showed that, if the network configurations satisfy
certain conditions, the best-response dynamics always converge to the Nash equi-
librium (NE). Reference [51] studied a spectrum partition game, where a common
spectrum pool was partitioned into several orthogonal segments. The partitioned
spectrum segments were then dynamically allocated to the operators based on the
channel conditions. The operators mutually decided the allocation scheme, such
that the Nash bargaining solution was reached. Reference [52] conducted an in-
depth study of the sharing of unlicensed spectrum by strategic operators. Both
of transmit power control and bandwidth partition were discussed in [52]. The
authors formulated a repeated game and design rules for operators to share the
spectrum under time-varying conditions. Most of existing game-based solutions

require either the exchange of traffic information or a central controller, such as
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the spectrum broker. Such entity, however, may not exist in some cases.
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Spatial Reuse for WLANSs with
Early Identification of Interfering
Transmitters

3.1 Introduction

The significant growth in the number of WLANs devices in recent years [13—
15] has resulted in the common occurrence of OBSSs, i.e., co-located WLANS
cells operating in the same frequency channel. In dense OBSSs scenario, the
throughput degradation becomes a severe problem because concurrent transmis-
sions among OBSSs were not allowed in previous IEEE 802.11 standards, e.g.,
IEEE 802.11n, I1lac. In particular, an AP or an STA has to defer its channel
access when it detects the transmission of any other APs or STAs.

To overcome this challenge, in this chapter, the spatial reuse of WLANS is
formulated as a stochastic decision process and a learning-based spatial reuse
scheme is proposed. The proposed scheme has two distinctive features. First, the
proposed scheme utilizes the information in the detected frame header to iden-
tify the interferer and makes decisions accordingly. This solves the problem in
Fig. 2.2 in that the proposed scheme has the freedom of deciding whether or not
to transmit concurrently with a particular interferer, rather than setting a common
threshold to all OBSS interferers. Second, the proposed scheme learns from past

experiences of success or failure in concurrent transmissions. The main merit of
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using learning-based scheme is that it does not assume any prior knowledge of the
correspondence between the interference power and the packet loss probability.
Besides, the proposed scheme does not need additional information report from
the receiver other than acknowledgment (ACK).

Moreover, this chapter theoretically analyzes the performance gains due to
identifying interferers in exploiting spatial reuse. The key idea of the analysis is
to partition the state space of the original decision process. Thereby, this chapter
uses the partitioned decision process to model the spatial reuse operation where
the agent does not identify interferers. By calculating the deviation between the
partitioned decision process and the original decision process, a theoretical bound
on the gains in the value function due to identifying interferers is derived.

The novelty and contributions of this work are as follows:

e A learning-based spatial reuse scheme which utilizes the information in the

detected frame header to identify the interferer and makes decisions accord-

ingly.

e A stochastic decision process and its partition are used to model the spatial
reuse operations where the transmitter does and does not identify interferers,

respectively. Their deviation in Markov environment is further calculated.

e By using this deviation, a theoretical bound on the gains in value function

due to identifying interferers is derived.

The reminder of this chapter is organized as follows. Stochastic decision pro-
cess formulation is presented in Section 3.3. The learning algorithm is presented
in Section 3.4. Section 3.5 theoretically analyzes the gains in the value function
due to identifying interferers in exploiting spatial reuse. Evaluation results are

presented in Section 3.6. Section 3.7 concludes this chapter.

3.2 Preliminaries: Early Identification of Interfer-

ing Transmitters

Before starting to describe the proposed scheme, this section explains how to uti-

lize the information in the detected frame header to identify the interferer. [2]
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In IEEE 802.11ax, the physical (PHY) preamble contains a mandatory high
efficiency signal-A (HE-SIG-A) field. It lasts for 16 us and provides some basic
information about the frame. One important information is the BSS color. It is
a 6-bit numerical identifier of BSSs. An AP and all its associated STAs share
the same BSS color, while co-located co-channel APs use different BSS colors.
Besides the BSS color bits, the HE-SIG-A field also contains information showing
whether the frame is sent in downlink or uplink.

Note that, when an AP or an STA overhears a frame, it always first decodes
the PHY layer preamble. By decoding the BSS color bits in the preamble, it can
make an early identification of which BSS the frame belongs to. Furthermore,
if the detected frame is sent in downlink, the transmitting AP can be uniquely
identified, since there is only one AP in each BSS. Note that, this identification is

done before it starts to receive the remaining part of the frame.

3.3 A Stochastic Decision Process Formulation of Spa-

tial Reuse

In this section, the spatial reuse is formulated in WLANS as a stochastic decision
process. The spatial reuse is focused from a single-agent perspective. In partic-
ular, this chapter considers an AP that is sending packets to an associated STA.
All other interferers are treated as a part of the environment. Note that, although
this chapter considers the AP as the transmitter and the STA as the receiver, it
works in the same manner if the transmitter is an STA. Hereafter, the AP under
consideration is referred to as the agent.

A stochastic decision process is defined as a four-tuple (€2, A, g, R), where Q
denotes the set of states and A(w(¢]) denotes the set of possible actions under state
w[t] € Q. When the agent selects an action a[f] € A(w[t]) at instant ¢, the state
transits to w([r + 1] € Q according to a probability distribution given by ¢;. The
agent receives a stochastic reward R(w(t], w[f + 1], a[¢]) at the same time.

The Markov decision process (MDP) is a special type of stochastic decision
process where the state transitions satisfy the Markov property. Let g(w[¢], w[t +
11, a[t]) denote the probability that the state transits to w[¢ + 1] when the agent

selects an action a[¢] € A(w[t]) at instant ¢.
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Figure 3.1: State transition diagram. ©2020 IEEE

Note that, in practice, the environment is not a stationary MDP due to many
factors, e.g., topology changes, STAs arrivals or departures, the existence of mul-
tiple agents. In these cases, the probability distribution ¢, is time-varying. In
this work, the stationary MDP is assumed for the theoretical analysis presented in
Section VI. The simulation evaluations in Section VII, however, evaluate the pro-
posed scheme in various scenarios including time-varying topology and multiple

agents scenarios.

State

As shown in Fig. 3.1, the state space Q is defined from the union and the Cartesian
product of the MAC state space Qyac, the backoft stage state space Qpg, the
channel state space ()cy, and the data rate state space Qpg.

The MAC state space wmaclt] € Qumac has four possible values, i.e., Qyac ==

{S0,51,52,53}. State S denotes that the agent is ready to contend for channel
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access. State S| denotes the state of backoff, where the agent keeps on sensing
the channel while reducing the backoff counter. State S, denotes the state that the
agent has detected the preamble of a transmission. State S 3 is an absorbing state,

which denotes that the packet has been successfully received.

The backoff stage state wgs[f] € (g5 denotes the current backoff stage, i.e., the
times of consecutive transmission failures at present. In IEEE 802.11 WLANS [8],
the contention window size doubles after a failed transmission and is reset after
a successful transmission. Consider Qps = J = {0, 1,..., Jna}, 1.€., the con-
tention window size does not grow further after Jy,,x times of consecutive trans-

mission failures [8].

The channel state wcy[tf] € Qcy denotes the index of the transmitting interferer
that has been identified by the agent. Note that, the agent keeps on sensing the
channel during the backoff period. If the agent detects a transmission, the agent
immediately identifies the interferer through checking the information in the de-
tected frame header. Note that, if multiple interferers are transmitting preambles
at the same time, there are two possibilities. Either the preamble with the strongest
received power is decoded or any preamble is unable to be successfully decoded,
i.e., preamble error. This depends on whether the SINR requirement for decod-
ing the preamble is met. Note that, the preamble is modulated using the lowest
modulation and coding scheme (MCS), i.e., BPSK. [8]

The channel state space is defined as Qcy = {0} UN = {0,1,2,...,N},
where wcylt] = 0 denotes that the channel is idle or the interferer is unable to be
identified.

The data rate state wpr[f] € Qpr denotes the currently chosen data rate for
transmission. Consider Qpr = K = {1, ..., K}, where K denotes the number of
available MCS.

As shown in Fig. 3.1, the backoff stage state wgg is defined if the MAC state
is So, 81, or §,. The channel state wcy and data rate state wpgr are defined if the
MAC state is §; or S,. In summary, the entire state space € is defined from the

union and the Cartesian product of four spaces as follows:

Q:=({So} X Qps) U({S1,52} X Qps X Qcy X Qpr) U {S3}. (3.1
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Description of State Transitions

The stochastic decision process denotes the entire process of transmitting a packet
as illustrated in Fig. 3.1. When a new packet arrives at the head of the transmission
queue, the state is initialized as wyac[0] = So, wps[0] = 0. When the packet
is successfully received, the state transits to S;. State transition happens when
following events occur: the agent begins contending for the channel access, the
agent detects an on-going transmission, the agent makes a CCA decision, or the

agent transmits.

e When the MAC state is Sy, i.e., when the agent is ready to contend for
channel access, the agent selects a data rate from A(wmac = So) for trans-
mission. Then, the MAC state transits to S ;, the channel state transits to O,

and the data rate state transits to the chosen data rate.

e When the MAC state is § 1, 1.e., during the backoff period, the agent keeps
on carrier sensing while reducing the backoff counter. If the agent detects
the preamble of a transmission, the MAC state transits to S, and the channel
state transits to the index of the detected interferer.

e When the MAC state is S ,, the agent decides whether to wait until the de-
tected transmission ends or to transmit concurrently with the identified in-
terferer i. If the agent chooses to wait, the agent freezes the backoft counter
until the detected transmission ends. After that, the MAC state transits from
S, to §. The channel state wcy is reset to 0. On the other hand, if the agent
chooses to transmit concurrently with interferer i, the MAC state transits
from S, to S, the channel state wcy stays to be the index of the identified
interferer. In this case, the agent also adjusts the data rate for concurrent

transmission. The data rate state transits to the re-selected data rate.

e The agent starts transmission when the backoff counter is reduced to 0. Ac-
cording to the transmission results, the MAC state transits to either S or S 5.
If the transmission has failed, the MAC state transits to S and the backoff
stage wgs[?] transits to min(wgs[t] + 1, Jmax). If the packet is successfully
transmitted, i.e., the agent has received the ACK from the receiver, the MAC

state transits to .S 5.
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The MAC state S; is an absorbing state with zero reward. It indicates that
the packet has been received successfully. The learning episode ends when the
MAC state reaches S5 and there is no further state transition. When a new packet
arrives at the head of the transmission queue, another learning episode begins and

the state is initialized as wyac[0] = S, wrs[0] = 0.

Action

The set of available actions depends on the MAC state. First of all, when the MAC
state is S, i.e., when the agent is ready to contend for channel access, the agent
needs to select a data rate for transmission, i.e., A(wmac = So) = K.

Second, when the MAC state is S ,, i.e., when a transmission is detected, the
agent chooses whether or not to ignore the detected transmission. If the agent
chooses to ignore the detected transmission, i.e., to transmit concurrently with
interferer 7, the agent also adjusts the data rate for concurrent transmission. Hence,
Alwmac = S») = {0} UK, where a = 0 means to wait until the interferer ends its
transmission.

Finally, when the MAC state is S 1, i.e., when the backoff counter has not been
reduced to zero, the only available action is to continue carrier sensing. Denote it
as A(wmac = §1) = {0}

Metric and Reward

The metric this work uses to evaluate a spatial reuse operation is the MAC layer
service time [53] of a packet. Formally, the MAC service time is defined as the
duration from the instant when a packet arrives at the head of the transmission
queue and the agent begins contending for the channel, to the instant when the
agent has received an ACK from the receiver [53]. It comprises four parts. Given
that the agent has successfully transmitted a packet after J times of consecutive
packet transmission failures, where J € N, the MAC service time of a packet

includes:
e the duration of J times of failed transmissions,
e the duration of the successful transmission,
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o the backoft duration before each transmission attempt,
e the duration that the agent freezes its backoff counter.

The MAC service time of a packet is formulated as follows [53]:

J-1 J Y
D= Cj + TJ + E B] + E Fi7 (32)
J=0 j=0 i=1
- Successful - ~
transmission = ~——
J times of failed Backoff Freeze
transmissions countdown

where C;, Ty, B;, Y, and F; are stochastic values. Here, C; denotes the duration of
the unsuccessful transmission in backoff stage j, which includes the duration of
transmitting the header, data, ACK timeout, and DIFS [8]. T, denotes the dura-
tion of the successful transmission, which includes the duration of transmitting the
header, data, ACK, SIFS, and DIFS [8]. B; denotes the backoff countdown dura-
tion in backof stage j. Y denotes the number of times that the agent has freezed its
backoff counter. F; denotes the duration that the agent freezes its backoff counter.

Note that, the MAC service time D of a packet is exactly the duration from the
initial state to the absorbing state as shown in Fig. 3.1. Since this work interests
in reducing the MAC service time, the reward is considered as the negative value
of the MAC service time.

The agent measures the duration of each event and calculates the correspond-
ing reward when state transition happens. In particular, the agent receives a reward
—B; — C; when the transmission failed, i.e., when the MAC state transited from
S, to So. The agent receives a reward —B; — T; when the transmission succeeded,
1.e., when the MAC state transited from S to S3. The agent receives a reward
—F; when it has frozen the backoff counter to wait until the detected transmission

ends, i.e., when a = 0 and the MAC state transits from S, to S;.

3.4 Learning-Based Spatial Reuse Operation

The ultimate goal of the learning algorithm presented in this section is to find the
policy of making spatial reuse decisions such that the maximum discounted sum
of rewards can be achieved. Intuitively speaking, it is desirable that the agent can

learn to transmit concurrently with those OBSS interferers whose interference is
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tolerable at the receiver. On the other hand, the agent is supposed to refrain from
transmitting concurrently with those interferers whose interference is not tolerable
at the receiver. Since the problem have already been formulated as a stochastic
decision process, the reinforcement learning algorithms can be applied to solve

this problem.

3.4.1 Learning Algorithm

A policy 7 is a solution concept of the stochastic decision process. It is a mapping
from the state space Q to the action space A(w[?]). Given a state w, and a policy
m, let V*(wy) denote the expectation of the discounted sum of reward the agent

would receive within one episode, i.e.,

i Y'RI1]
=0

where y € [0, 1) is the discounted factor. Note that, in the considered stochastic

Vi(wo) = E

w[0] = a)()] , (3.3)

decision process, the physical meaning of V" (wy) is the negative discounted value
of the MAC service time, which is supposed to be maximized. The discounted
factor y indicates how important future rewards are to the current state. Generally,
a large vy yields a better outcome after convergence, but it requires longer time
to converge [54]. The v is often set to a value close to one in related studies,
e.g., [54]. In this chapter, it is assumed that y = 0.99.

It is known that the Q-learning (QL) algorithm derives the optimal policy in
a stationary MDP environment [55]. The proposed scheme, however, does not
directly apply the conventional QL as the learning algorithm. The reason is that
the real environment is not always stationary due to many factors, e.g., changes in
communication distance, new interferers arrivals, the existence of multiple agents.

To tackle the non-stationarity, modifications are applied to the QL algorithm.
First, the technique of repeated update Q-learning (RUQL) [56] is incorporated
to solve the policy bias problem of the conventional QL algorithm. As pointed
in [56], the policy bias problem causes performance degradation in noisy non-
stationary environments. The policy bias problem refers to the problem that, those
optimal actions with temporal lower values are executed less often during the

learning process in the conventional QL algorithm. As a result, the values of
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those actions are updated less often. This leads to performance degradation since
the environment may have already changed before the agent learns the optimal
action.

The basic idea of RUQL is to adjust the learning rate in the conventional QL
algorithm so that less-chosen actions have higher learning rate. Let Q(w, a) denote
the state-action value corresponding to state w and action a. Given the current state
w(t], the selected action a[t], the new state w([t + 1], and the associated reward
R[1], the RUQL updates the state-action value Q(w, a) according to the following

expression [56], i.e.,

Q(wltl, alf]) « (1 = z)Qwlrl, alt]) + z, | Rt + y max Q(wlt + 1],a) |, (3.4)

where 7y is the discounted factor and z, is the learning rate at episode n. The

learning rate z, is given as follows [56]:
z,=1-[1- an]m, (3.5)

where @, denotes the learning rate in the conventional QL algorithm and 7, (w(?], a[t])
denotes the probability of choosing action a[¢] at state w[¢] at episode n.

This chapter assumes the e-greedy exploration policy, i.e.,

l—¢, a=argmax, g, Ow,a); (3.6)
&, a # arg Max, .z, Qw,a’), .

m(w,a) = {

where € is a small constant that denotes the exploration rate. Note that, £ con-
trols the trade-off between exploration and exploitation. Given a higher ¢, the
agent explores the action space more aggressively. On the other hand, it cannot
guarantee acceptable run-time performance since non-greedy actions will be taken
frequently [54]. This chapter considers € = 0.1.

Moreover, in non-stationary environment, it is also important that the agent
can respond quickly to environment changes. The learning rate 0 < a < 1 plays
an important role in determining the learning speed of the agent. In fact, there is a
trade-off between the stability and the speed of the learning algorithm [56,57]. If
a is small, the agent cannot respond quickly to the environment changes. If « is
large, the algorithm may not be robust and stable under stationary environment.

This chapter considers that the learning rate « satisfies the following two con-
ditions: 3’ @, = o0 and Y5’ @2 = 0. Specifically, @, = 1000/(1000 + n) in sim-

ulation evaluations, where 7 is the learning episode. It is worth mentioning that,
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if this condition is satisfied, the RUQL guarantees stability, i.e., convergence, in
stationary MDP environment. [56] On the other hand, the agent reset the learning
episode n = 1, if n is large and the agent detects any arrivals of new interfer-
ers or significant changes in the topology. This can be detected by periodically
measuring the received signal strength indicator (RSSI) of neighbors [58].

3.4.2 Transmit Power Restriction

This chapter considers that the transmit power of the agent is restricted when the
agent starts a concurrent transmission. The reason of restricting transmit power is
to protect the on-going transmission in OBSS from being corrupted by the newly
issued concurrent transmission of the agent. Note that, the transmit power restric-
tion is also considered in the OBSS_PD-based spatial reuse operation as shown in
Fig. 2.1 [13-15].

When the agent decides to transmit concurrently with an on-going transmis-

sion, the transmit power of the concurrent transmission is given as follows:

Pre @min
d ) 3.7)

p = min (Pref, 7

where P denotes the maximum possible transmit power of the agent, @, =
—82 dBm [8] denotes the default CCA threshold of legacy devices, and I denotes
the measured interference strength. The intuition of this rule is to adjust the trans-
mit power inversely proportional to the detected interference strength. Note that
if the agent does not detect any on-going transmissions, it transmits with its max-

imum possible transmit power.

3.5 Analysis of Gains Due to Identifying Interferers

As shown in Fig. 2.2, it is desirable if the agent can identify which interferer
is transmitting before deciding whether or not to transmit concurrently with that
interferer. In this section, the concept of state aggregation is introduced. This

concept is used to analyze the gains due to identifying interferers.
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3.5.1 Preliminary: State Partition

First the concept of state partition (or called state aggregation) is introduced. The
state partition is originated as an approximate method to solve the MDP whose
state space is large [59, 60]. The intuition of the state partition is to aggregate
multiple similar states into meta-states to create smaller state space. An illus-
tration of the state partition is given in Fig. 3.2, where 16 states are aggregated
into 4 states. Thereby, the optimal policy derived on the partitioned MDP can be
considered as an approximate solution of the initial MDP. Since the state space is
smaller, the derivation is generally easier.

The definition of state partition is given as follows:

Definition 3. [60] An MDP ¥ = (Q, A, §,R) is an 5-homogenous partition of
MDP ¥ = (Q, A, q,R) if there exists a mapping ¢: Q — Q, such that ¢ is surjec-
tive and for all w € Q and a € A the following conditions hold:

2,

w'eQd

g(w, W', a) — §g(p(w), w”, a)|| <6, (3.8)

W' (W )=w"

R(w',a) — R(w, a)
max | | <9, 3.9
W Pw)=w |R|max

where |R|nax denotes the maximum achievable absolute value of reward.
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The metric 6 € [0, 1] describes how much the partitioned MDP ¥ deviates
from the original Y. In this chapter, ¢ is referred to as the deviation between two
MDPs. The constant |R|,.« 1S @ normalization factor such that | RllRl € [0, 1].

Let 7 denote the optimal policy derived on the partitioned MDP . It induces

a policy on the original MDP ¥ as follows:

7 (w) =7 (dp(w)). (3.10)

The induced policy 7* is an approximate solution of the real optimal policy 7* on
the original MDP Y. It has been shown in [60] that the value functions of 7" and
n* satisfies the following property.

Theorem 3.1. [60] Let ¥ be a 6-homogeneous partition of MDP P, then the

25IVlmx

optimal policy in ¥ induces an -optimal policy in P, i.e., Yw € Q

26|V |max
[V (w) - V¥ (w)| < | 'y , (3.11)

where |V |max is the maximal achievable absolute value of the value function.

3.5.2 Analysis of Gains Due to Identifying Interferers

The main idea of the analysis is that an MDP ¥ = (Q, A, ¢, R) is used to repre-
sent the decision process where the agent identifies interferers and treats different
OBSS interferers differently. On the other hand, its partition ¥ = (Q, A, q, R) is
used to represent the decision process where the agent does not identify interfer-
ers and only distinguishes whether the interference power of the detected OBSS
interferer is above or below the OBSS_PD. Note that, the environment is assumed
to be stationary MDP only in this section. The environment is not assumed to be
stationary MDP in the learning algorithm and in the simulation evaluations. The
illustrations of ¥ and ¥ are shown in Figs. 3.3 and 3.4. For notational simplic-
ity, a vector (wwmac, Was, WcH, Wpr) 1S used to represent the state. Some states are
omitted for illustrative simplicity.

As shown in Figs. 3.3 and 3.4, the original channel state Qcy = {0, 1,..., N}
is partitioned into Qcy = {0, L, H}, where @ = 0 denotes that the channel is idle or
the preamble of the detected frame is unable to be decoded, @ = H denotes that

the agent has detected the transmission of an OBSS interferer whose interference
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power is above the OBSS_PD, and @ = L denotes that the interference is below
the OBSS_PD. Hence, the partitioned state space Q is defined as follows:

Q= (S0} x Qps) ({S 1,52} X Qps X Qe X Qpr) U {S3). (3.12)

Let N and Ny denote the set of interferers whose average interference power
to the agent is below or above the OBSS_PD, respectively. Note that, N and Ny
are two disjoint subsets of N, where N = N. U Ny and N N Ny = 0. Hence,
the mapping ¢y cy : Qey — Qcy that maps the original channel state space to the
partitioned channel state space is given as follows:

0, wcu=0;
docn(wcn) =4 L, wcen € Np; (3.13)
H’ WcH € NHa

where 6 denotes the OBSS_PD. Therefore, the mapping ¢, : Q — Q that maps the
original state space to the partitioned state space is given as follows:

(wmac, was, Po.cu(wcn), Wpr), Wmac € {S1, 52}

w, wwmac € {80, 53}

Po(w) = {

Next, a series of parameters are introduced. They are used to analyze how
much the partitioned MDP ¥ deviates from the original MDP Y, i.e., the deviation
0.

Let 7p; € [0, 1] denote the probability that the backoff counter has been re-
duced to zero and the agent starts transmission in an idle slot time in backoff
stage j. Given the current contention windows size CW, this probability can be
approximately calculated as follows [61]:

2

= 3.14
1+CW, ©.14)

T()j

Let pi € [0, 1] denote the expected packet error probability when the agent
transmits concurrently with interferer i € NV using data rate k € K. Specifically, let
pox € [0, 1] denote the expected packet error probability when the agent transmits
with data rate k € K when channel is idle or the preamble of the detected frame is
unable to be decoded. Hence, the probability that the agent fails a transmission at

backoff stage j is given as follows:

Q((Sl,j, i’ k)a (509 mln(] + 1’ Jmax))a 0) = TojDik» (315)
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Figure 3.3: The MDP V¥ that represents the spatial reuse operation where agent
identifies interferers and treats different OBSS interferers differently. ©2020
IEEE

where i € {0,1,...,N}, j € J, and k € K. On the contrary, the probability that
the agent succeeds in transmitting the packet and reaches the absorbing state is

given as follows:

q((S1, J,i,k),83,0) = 79;(1 = pix), (3.16)

where i € {0,1,...,N}, j € J, and k € K. Let [; denote the expected duration
of the transmission of interferer i € N. Hence, the reward that the agent receives
when it chooses to wait until the transmission of interferer i ends is given as fol-

lows:
R((S2, j,i,k),(S1,J,0,k),0) = —/;, (3.17)

whereie N, je J,and k € K.
On the other hand, in the partitioned MDP, the probability that the agent fails
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Figure 3.4: This partitioned MDP ¥ represents the spatial reuse operation where
agent does not identify interferers and only distinguishes whether the interference
power of the detected OBSS interferer is above or below the OBSS_PD. ©2020
IEEE

or succeeds in a transmission are given as follows:

99((5 1s j’ iv k)’ (SOa mln(.] + 17 Jmax))’ O) = TOjﬁika (318)

Go((S1, J,i,k),S3,0) = 10;(1 = Pu), (3.19)

respectively, where i € {0,L,H}, j € J, and k € K. Here, pox = por while pr;
and py; denote the expected packet error probability when the agent transmits
concurrently with an interferer whose interference power is below or above the
OBSS_PD, respectively. The reward that the agent receives when it chooses to

wait until the detected transmission ends is given as follows:
Ro((S2, j.i,k),(S1,,0,k),0) = I, (3.20)

where i € {L,H}. Here, [, and Iy denote the expected durations of the transmis-
sion of an interferer whose interference power is below or above the OBSS_PD,
respectively.

The following theorem derives the deviation of the considered two MDPs.
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Theorem 3.2. ¥ is a §,-homogenous partition of ¥, where 8y is given as follows:

=
0y = max | max (2 & — Pirxl) , max , 3.21
0 na (2700 [pix — Pl l_ [ Rl )) (3.21)

where i € N, i" = ¢gculi), k € K, and |R|n.x denotes the maximum achievable

absolute value of reward.

Proof. Let us calculate 6y based on (3.8) and (3.9) for every w € Q.

First of all, when wyac = So, the agent selects a data rate and wyac transits
from Sy to §;. This state transition is deterministic and does not depend on the
channel state. The reward associated with this state transition is zero. Hence,
there is no deviation between ¥ and ¥ when wyac = S.

Secondly, when wyac = S| and the agent fails a transmission, wyac transits
from §; to §y. The reward associated with the state transition does not depends
on the channel state. The state transition probability, however, has a deviation

between ¥ and ¥ as follows:

|61((S 1s j’ ia k)’ (SO, mln(] + 1, Jmax))a 0) (3 22)
— qo((S1, J, 1", k), (So, min(j + 1, Jax)), Ol = To; [pix — Pil »

wherei € {0,1,...,N}, i’ = ¢ycu(i), j € J, and k € K. Similarly, when the agent

succeeds in a transmission, the deviation between W and ¥ is given as follows:

|q((Slaja i’ k)aS?nO) - q@((Sla j9 i,’k)aS?nO)'
=70, (1 = pia) = (1 = pei)l = 70 |Pix — Dirkl »

(3.23)

where i € {0,1,...,N}, i’ = ¢gculi), j € J, and k € K. When wyac = S
and the agent detects a transmission of interferer i, wyac transits from §; to S».
The reward associated with this state transition is zero. The deviation of the state

transition probability between P and ¥ is calculated as follows:

Z q((S1, 1,0,k),(S2, j,i,k),0) = Go((S 1, , 0, k), (S2, j, ', k), 0),  (3.24)
i:pcu (=i’
where i € N, 7" = ¢oculi), j € J, and k € K. Since the events of detect-
ing the transmission of interferers are mutually exclusive, the first term is equal
to the second term. Hence, for wyac = S, the deviation between ¥ and ¥ is
270 |pix — Prkl, where i € {0,1,...,N}, 7" = ¢gcu(i), j € J and k € K.
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Thirdly, when wyac = S» and the agent chooses to wait, wyac transits from
S, to §. The state transition probability is deterministic and does not depends on

the channel state. The associated reward, however, has a deviation as follows:

IR((S 2. .1, k), (S 1. 1,0, k), 0) = Re((S 2, . i’ k), (S 1. 1,0, k), 0)| = |1 = I

, (3.25)

wherei € N, i = ¢gcu(i), j € J and k € K.
Finally, note that 7o9 = maxcq 7o; and pox = Pox, the deviation between ¥ and

¥ for every state w €  and action a € A is calculated as (3.21). O

Plugging (3.21) into Theorem 2 and noticing the fact that |V|,.x is bounded by

—"f'jl;*, the following lemma is derived.

Lemma 1. Let V™ denote the optimal value function where the agent identifies
the interferer and treats different OBSS interferers differently. Let V¥~ denote the
optimal value function where the agent does not identify the interferer and only

distinguishes whether the interference power is above or below 6. Then, Yw € Q,

- : 264 R | max
[V (@) - V" (w)| < ﬁ (3.26)

where |R|n.x denotes the maximum achievable absolute value of reward.

It can be seen from this theorem that, identifying interferes is more attractable
if 9y is large. This is more likely to happen if the agent and its associated STA are

apart from each other as shown in Fig. 2.2, where p; may deviate largely from

ﬁi’k-

3.6 Numerical Evaluation

3.6.1 Evaluation Settings

The proposed learning-based spatial reuse scheme is proposed through MATLAB
based simulations. The simulation evaluations are dividend into three scenarios:
single agent and static topology, single agent and time-varying topology, and mul-
tiple agents scenarios. Note that, the AP under consideration is referred to as the

agent.
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Firstly, the simulation to be shown in Figs. 8 to 11 and Fig. 13 evaluate the
proposed scheme in a single agent and static topology scenario. In these simu-
lations, the agent and other OBSS transmitters are randomly placed in a square
region with side length 100 m as shown in Fig. 3.5. The agent and each OBSS
transmitter have one associated receiver. The distance between them is called
communication distance. The agent and each OBSS transmitter are assumed to
have saturated downlink traffic. The number of OBSS transmitters and the com-
munication distance of the agent are stated in each evaluation. Unless otherwise
stated, each OBSS transmitter adopts a fixed OBSS_PD of —82 dBm and the com-
munication distance of each OBSS transmitter is 1 m. In these simulations, 100
different random patterns of locations are generated. Each pattern of locations for
10 s is evaluated. The average of the evaluation results is taken.

Secondly, the simulation to be shown in Fig. 12 evaluate the proposed scheme
in a single agent and time-varying topology scenario. The evaluation conditions
are basically the same as the first scenario, whereas the locations of each OBSS
transmitter changes once a second randomly. This simulation runs for 30s.

Finally, the simulation to be shown in Figs. 14 and 15 evaluate the proposed
scheme in a multiple agents scenario. The evaluation conditions are basically the
same as the first scenario, whereas all the transmitters are non-cooperative and
independent agents. Same as the first scenario, 100 different random patterns
of locations are generated. Each pattern of locations is evaluated for 10s. The
average of the evaluation results is taken.

The simulation program to evaluate the proposed scheme is an event-driven
simulator written in MATLAB. The program mainly attempts to simulate the
MAC layer operation of APs and STAs, including random back-oft procedure.
Note that this kind of simulation model is widely used in related studies such
as [61]. Evaluations parameters are as shown in Table II and III [2,62,63]. The
distance-based path loss model in [64] is considered, where the center frequency
/. 1s 5200 MHz and the path loss coefficient Np; is 30 for indoor residential sce-

nario, i.e.,
PL4g(d) = 201og,,(f.) — 28 + Np log,,(min(d, 1)). (3.27)

It is assumed that a packet will be successfully decoded if the required SINR is
met, where the payload is 4096 B [2].
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Figure 3.5: Evaluation topology. Here, the AP under consideration is referred to
as the agent. ©2020 IEEE

The contention window size updates according to the binary exponential back-
off (BEB) algorithm in the IEEE 802.11 [8]. The contention window size of after

Jj times of consecutive packet loss is given as follows:

CW; =

J

(3.28)

2(CWuin + )=1, j=0,1,...,6;
2(CWpin + 1) =1, j > 6,

where CW i, = 15 is the minimum contention window size.

Several performance comparison benchmarks in the following evaluations.
The benchmark optimal OBSS_PD represents the highest performance under an
exhaustive search of all the integer values of OBSS_PD within [-82 dBm, —62 dBm)].
In other words, the optimal OBSS_PD can be seen as the performance upper bound
of threshold-based CCA policies. In the comparison benchmarks, the rate selec-
tion scheme auto-rate feedback (ARF) [65] is used, which tunes up the data rate
after two consecutive successful transmissions and tunes it down after one unsuc-

cessful transmission.
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Table 3.1: Evaluation parameters.

Parameters Value

Slot time Ous

DIFS 34 us

SIFS 16 us
ACK 44 us
ACK timeout 60 us
Maximum transmit power 21dBm
Noise power —-101dBm
Discount factor y 0.99
Exploration factor & 0.1

Table 3.2: Required SINR and transmission time for IEEE 802.11ax.

Data rate Required SINR  Transmission time (header+ data)
8.6 Mbit/s 1dB 3844 us
17.2 Mbit/s 4dB 1937 us
25.8 Mbit/s 6dB 1302 us
34.4 Mbit/s 9dB 984 us
51.6 Mbit/s 13dB 666 us
68.8 Mbit/s 17dB 508 us
77.4 Mbit/s 18dB 455 us
86 Mbit/s 19dB 412 us
103.2 Mbit/s 24dB 349 us
114.7 Mbit/s 26dB 317 us
129 Mbit/s 29dB 285 us
143.4 Mbit/s 31dB 260 us
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Figure 3.6: Throughput of the agent with the communication distance. ©2020
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3.6.2 Evaluations Results
Throughput

In Figs. 3.6 and 3.7, the throughput of the proposed scheme is evaluated under
different conditions of communication distance and the number of OBSS trans-
mitters.

From Fig. 3.6, it is clear that the comparison benchmark optimal OBSS_PD
outperforms other comparison benchmarks of fixed OBSS_PD under different
conditions of communication distance. The throughput gain of the optimal OBSS_PD
compared to fixed OBSS_PD schemes comes from the ability to adjust the OBSS_PD
according to communication distance. When the communication distance is short,

a high value of OBSS_PD achieves good performance. This is because the re-
ceived signal strength is high and conservative concurrent transmission policy de-

creases transmission opportunities. When the communication distance increases,
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the OBSS_PD value that achieves the highest throughput decreases. This is be-
cause the received signal strength is low and aggressive concurrent transmission

policy increases the possibility of transmission failures.

In Fig. 3.6, the proposed scheme outperforms the comparison benchmark opti-
mal OBSS_PD. This demonstrates the performance gains of identifying interferers
in learning concurrent transmissions under different conditions of communication
distance. Although the optimal OBSS_PD allows to adjust the OBSS_PD to com-
munication distance, it treats different OBSS interferers indifferently.

This work has also conducted one-tail paired 7-test to evaluate the statistical
accuracy of this result. The #-test is a statistic method that is commonly used
to determine if the means of two sets of data are significantly different from
each other [66]. Consider the null hypothesis that the proposed scheme does not
achieve higher throughput than the benchmark optimal OBSS_PD. Given the sim-

ulation data generated from 100 different random patterns of locations, the null

43



Chapter 3

Successful transmission XXX Freeze
Failed transmission sz Backoff countdown £©==<Y
5 T T T T T T T

Average packet service time composition (ms)

¢ & e
1 a ol o
° D 07 O 7 O 7 0 7 O 7
O Q Q Q Q Q
LASANG'Y SR TN = - RPN == LN - -
o° o® o® o o

Figure 3.8: MAC service time composition. ©2020 IEEE

hypothesis is rejected at a p-value of 0.05. In other words, the result that the pro-
posed scheme achieves higher throughput than the optimal OBSS PD is at least
95% confident.

It can also be confirmed in Fig. 3.7 that the optimal OBSS_PD outperforms
other comparison benchmarks of fixed OBSS_PD and the proposed scheme out-
performs the optimal OBSS_PD. This work has also conducted one-tail paired #-
test where the null hypothesis is that the proposed scheme does not achieve higher
throughput than the benchmark optimal OBSS _PD. The #-test shows that the null
hypothesis is rejected at a p-value of 0.05. This demonstrates the performance
gains of interferer identification in facilitating concurrent transmissions under dif-

ferent number of OBSS transmitters.

MAC Service Time Composition

The composition of MAC service time is evaluated in Fig. 3.8. Remember that

the MAC service time is the duration from the instant when the packet arrives
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at the head of the transmission queue to the instant when the agent has received
the ACK from the receiver. As shown in (3.2), the MAC service time comprises
four components: the duration of counting down backoft counter, freezing backoft

counter, failed transmissions, and successful transmission.

The evaluation results in Fig. 3.8 reveal that the proposed scheme reduces the
time of freezing backoff counter compared to the fixed OBSS_PD of —82dBm
while keeping the percentage of failed transmission low. The proposed scheme
achieves the shortest packet service time of less than 0.85 ms. In the comparison
benchmark with —82dBm OBSS_PD, the average packet service time is larger
than 1.9 ms where about 57% of the MAC service time is freezing backofl timer.

This indicates that the wireless channel is under high contention.

From Fig. 3.8, the negative effects of increasing the OBSS_PD for facilitating
concurrent transmissions is confirmed. Note that increasing the OBSS_PD indeed
reduces the time of freezing backoft counter; however, the other three components
also increase. This is because, as the OBSS_PD increases, infeasible concurrent
transmissions are more likely to occur. Transmission failures increase the con-
tention window size and hence increase the backoff countdown duration. Trans-
mission failures result in the agent choosing a slower data rate. Hence, the time

of successful transmission also increases.

Performance Gains Due to Identifying Interferers

Figure 3.9 evaluates the performance gains due to identifying interferers from both

the simulation and the theoretical perspective.

From the simulation perspective, the difference between the packet service
time of the proposed scheme and the optimal OBSS_PD is evaluated. Note that,
this difference corresponds to the gaps in Figs. 3.6 and 3.7.

From the theoretical perspective, the deviation between the partitioned MDP
and the original MDP is calculated. Here is how ¢ is calculated based on (3.21).
Note that, there is no difference in the expected transmission durations of each
interferer according to our considered simulation setting. Hence, dy as 6y =
max;; Toolpix — Pix| 1s calculated. Furthermore, in the optimal OBSS_PD scheme,

the agent searches for the optimal value of OBSS_PD that maximizes throughput.
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Figure 3.9: Performance gains due to identifying interferers. ©2020 IEEE

Hence, § is calculated as follows:
6=n?u%=1gnH§XHMPm—ﬁML (3.29)

Remember that p; denotes the packet error probability when the agent transmits
concurrently with i by using data rate k. The value of p; can be calculated from
the locations and parameters in Tables 3.1 and 3.2.

First, notice from Fig. 3.9 that the deviation ¢ increases as the distance in-
creases. This is because when the communication distance increases, the inter-
ference power measured by the agent is more likely to deviate largely from that
measured by its receiver. As a consequence, comparing the interference power
with the OBSS_PD has limited predictive value in determining the success or fail-
ure of transmissions. Also notice that the theoretical deviation ¢ and the packet
service time difference evaluated through simulations have similar shapes. This
shows that, given node locations and necessary parameters, calculating § provides

a quantitative method of analyzing the gains due to identifying interferers.
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Time-varying Topology

All abovementioned evaluations evaluate the proposed scheme in the static topol-
ogy environment. Figure 3.10 presents the evaluation result of the proposed
scheme under time-varying topology. In this evaluation, the locations of each
OBSS transmitter change once a second. The agent does not reset the learning
algorithm within the evaluation period. Simulation result reveals that the pro-
posed scheme achieves less throughput in the time-varying topology than that in
the static topology in Figs. 3.6 and 3.7. The reason is that the relative distance be-
tween the interferer and the agent may have already changed significantly before
the agent learns the optimal action. Note that, the performance degradation due to
the time-varying environment is in a sense inevitable as long as the learning-based
scheme is utilized.

On the other hand, simulation results also confirm that the proposed scheme
with RUQL algorithm outperforms the conventional QL algorithm in the time-
varying topology. In the RUQL, the value functions of those optimal actions with
temporal lower values are updated more frequently than that in the conventional
QL algorithm. Hence, it can be inferred that the agent learns the optimal action
faster by using RUQL. As a result, the RUQL outperforms the conventional QL
in the time-varying topology.

Impact to Legacy Transmitters

All abovementioned simulations focus on the evaluations of the performance gains
of the proposed scheme. Notice that, there is a concern if the concurrent transmis-
sion of the agent can corrupt on-going transmissions in OBSSs. This evaluation
evaluates the percentage of packets transmitted by the OBSS transmitters that are
corrupted by the transmission of the agent. These packets are defined as failed
transmissions which would be received successfully if the agent is not transmit-
ting. Note that all the OBSS transmitters are assumed to be legacy devices with
a fixed OBSS_PD of —82dBm. The communication distance of each AP is ran-
domly distributed from 1 m to 10 m.

The simulation result in Fig. 3.11 shows that the proposed scheme corrupts ap-
proximately 4% of the packets transmitted by legacy devices. This indicates that,

by applying the transmit power restriction rule (3.7), the agent does not cause seri-
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ous corruptions to legacy devices. Although the comparison benchmark of a fixed
OBSS_PD of —62 dBm causes fewer corruptions to legacy devices, it restricts con-

current transmission power by 20 dB and causes low throughput performance.

Multiple Agents

All abovementioned evaluations evaluate the proposed scheme from a single agent
perspective. Figures. 3.12 and 3.13 evaluate the multiple agents case where there
are multiple agents using the proposed scheme and each agent wishes to maximize
its own value function. The communication distance of each agent is randomly
distributed from 1 m to 10 m.

It is clear that the proposed scheme achieves better performance than com-
parison benchmarks in the multiple agents case. Fig. 3.12 evaluates the system
throughput in multiple agents case, where all the transmitters adopt the same
scheme as shown in the legend. The case where all the APs use the proposed

scheme achieves the highest area throughput. Fig. 3.13 evaluates the packet ser-
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vice time composition in multiple agents case. The case where all the APs use
the proposed scheme achieves the shortest packet service time. The gain of iden-
tifying interfering transmitters is also confirmed in the multiple agents case. Fig-
ure 14 has conducted one-tail paired z-tests. The null hypothesis is that the pro-
posed scheme does not achieve higher throughput than the benchmark optimal
OBSS _PD. The #-tests show that the null hypothesis is rejected at a p-value of
0.05.

Note that there is no obvious performance degradation in the multiple-agent
scenario compared to that in the single-agent case. One reason is that the transmit
power restriction rule (3.7) has alleviated the interactions among agents. When
one agent decides to transmit concurrently with another on-going transmission, it

does not generate strong interference to that on-going transmissions.
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3.6.3 Pratical Implications

The above presented simulation evaluations provide some insights into designing
spatial reuse operation of WLANs. First of all, OBSSs should be avoided as
much as possible, especially when the communication between AP and STA is
large. Since if the communication distance is large, AP does not have an accurate
understanding of the interference at a remote STA by performing carrier sensing.
Second, if the existence of OBSSs is inevitable and the communication distance
between AP and STA is large, it is unreasonable to set a common CCA threshold
to all the OBSS interferers. It is desirable that the AP can treat different interferers

differently for deciding whether or not to exploit spatial reuse.

3.7 Conclusion

In this work, a reinforcement learning-based spatial reuse scheme is proposed.

When the agent overhears an on-going transmission, it utilizes the information
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in the detected frame header to identify the interferer and decides whether or not
to freeze the backoff counter accordingly. The proposed scheme is evaluated un-
der various scenarios through simulations. Specifically, the composition of MAC
layer service time is analyzed. Results show that the proposed scheme reduces
the time of freezing the backoff counter while keeping the number of failed trans-
missions low. This confirms that, on the one hand, the agent learns to transmit
concurrently with those OBSS interferers whose interference is tolerable at the
receiver. On the other hand, the agent learns to refrain from transmitting con-
currently with those interferers whose interference is not tolerable at the receiver.
Moreover, the concept of state partition in MDP is utilized to study the perfor-
mance gains due to making non-binary identifications of interferers on exploiting
spatial reuse in WLANSs. A theoretical bound on the gains in value function due

to identifying interferers is obtained.
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Chapter 4

Potential Game-Based Channel
Selection for Mitigating FIM
Starvation

4.1 Introduction

Providing an efficient way for wireless internet access, IEEE 802.11 [8§] WLAN
APs have been widely deployed by mobile operators as commercial hotspots and
by individuals for residential usages. The deployment of public Wi-Fi® hotspots
has been constantly growing since the 2000s [9], and this trend is predicted to
continue. It is predicted that, globally, total public Wi-Fi® hotspots will grow
sevenfold from 64.2 million in 2015 to 432.5 million by 2020 [10]. Mobile of-
fload traffic will increase from 3.9 exabytes/month to 38.1 exabytes/month in the
meanwhile [10].

The densification of WLANSs and the growth of traffic will no doubt make the
contention among co-located WLAN cells a critical issue. The IEEE 802.11 MAC
supports shared access to the wireless medium through a carrier sense multiple
access with collision avoidance (CSMA/CA) technique. CSMA/CA is known
to suffer from unfairness issue under heavy traffic conditions, i.e., the equity of
media access among neighboring transmitters is not always guaranteed [11, 67,
68]. Certain transmitters even suffer from extremely low transmission opportunity

(i.e., throughput starvation) due to unfair carrier sensing [11,69].
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This chapter focuses on the flow-in-the-middle (FIM) starvation problem de-
fined in [11]. Consider three co-channel transmitters as shown in Fig. 4.1. The
middle transmitter is within the carrier sense range of two exterior transmitters
while the two exterior transmitters are not within the carrier range of each other.
Under heavy traffic conditions, the middle transmitter detects the channel being
occupied for a prolonged time and suffers from extremely low transmission oppor-
tunities, because the transmissions of exterior transmitters might overlap. Similar
phenomenon occurs even if the middle transmitter is operating in a wider channel
bandwidth of 40 or 80 MHz [70].

The contribution of this work is to propose distributed channel selection schemes
to mitigate the FIM starvation problem. The intuition is to reduce the three-node-
chain topologies in the same channel. The proposed channel selection schemes
are formulated in the framework of strategic form game [71], in which each AP is

supposed to distributedly select a channel based on its payoft function.
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The payoft function is designed so that the games are proved to be poten-
tial games, in which the existence of a Nash equilibrium is guaranteed, and thus
unilateral improvement dynamics is guaranteed to converge in a finite number of
steps [72]. Two similar payoft functions with guaranteed convergence are pre-
sented. The physical meaning of the first payoff function is the minus number of
three-node-chain topologies within two-hop neighbors. The other payoff function
has a slightly different physical meaning while it requires less information to be

conducted in a distributed manner.

4.2 Proposed Channel Selection Scheme

4.2.1 Contention Graph

The contention graph [73] is used to model the considered network topology. De-
tails about mapping the network topology to the contention graph can be found in
several previous works, e.g., [9, 18,73-75].

In our contention graph (N, &), N represents the set of APs. An undirected
edge ij € € denotes that AP i detects the transmission from AP j and vice versa.
Note that, here the following assumptions or approximations are made in this

model:

o If AP i detects the transmission from AP j, AP j detects the transmission
from AP i. Note that, this condition is not always guaranteed when APs
have heterogenous transmission power or carrier sense thresholds. Such
case is out of the scope of this work but is studied in [35,76]. The authors
proved this condition is always guaranteed if the carrier sense threshold and

transmission power are jointly adjusted in an inversely proportional manner.

e This work focuses on the the carrier sense between APs. In other words,
this work focuses on the FIM starvation in the downlink traffic scenario.

Fig. 4.2(a) gives an example of contention graph, and Fig. 4.2(b) shows the
subgraph induced by nodes in channel 1. Note that the induced subgraph is con-
structed by selecting all of the nodes operating in channel 1 and the edges con-

necting them.
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Furthermore, N; :={j € N'\{i} | ij € &} denotes the neighbors of AP i on the
graph, a; denotes the frequency channel that AP i is operating on, and ‘A; denotes
the set of available channels for AP i. Define Ay, = [[en, A and A = [[ien A;-
Let N denote the number of APs, and @ = (a;,as,...,ay) € A denote a channel

assignment.

4.2.2 Proposed Channel Selection Scheme

To mitigate the FIM starvation problem, this work proposes to reduce the num-
ber of three-node-chain topologies on the contention graph. A three-node-chain
topology is a topology as shown in Fig. 4.2. Notice that, it is the simplest topology
where the FIM starvation occurs.

Since the middle transmitter is being starved in a three-node-chain topology,
AP i can select the channel to reduce three-node-chain topologies, in which node

i is the middle transmitter. The payoft function is given as follows.

ubi(a) = —fi(ai, ay;). 4.1)

Here, a function f; : A; X Apx, — Ris defined to denote the number of three-node-
chain topologies, where node i is the middle transmitter. For any node i € N,

given its channel g; and the channels of its neighbors ay, = {a; | j € N;}, the
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fila;, ay) is defined as

filai, ay;) = Z Lijkee) Lia=aj) Lta=ar)s 4.2)
{/KICN;

where 1 condition) 18 €qual to 1 if the condition is true, and is equal to O otherwise.

4.2.3 Design of the Payoff Functions for Guaranteed Conver-

gence

Based on the proposed payoff function u0;(a), two payoff functions u1;(a) and
u2;(a) are presented so that the convergence of the channel selection scheme is
guaranteed. Here, ul;(a) and u2;(a) are referred to as the proposed payoff func-
tions 1 and 2, and u0,(a) as the non-potential game (non-PG) payoff. The po-
tential game formulations of schemes with u1,(a) and u2;(a) are given later in
Section 5.4.

Payoff function ul : A — R is proposed as follows.

uli(@) = ~flasan) = ), fiaj ax,). (4.3)
JEN;
Note that u1;(a) consists of two parts: f;, i.e, the number of three-node-chain
topologies whose middle transmitter is node i, and the sum of f; among the neigh-
bors of i. When an AP updates its channel, it not only reduces three-node-chain
topologies whose middle transmitter is itself, but also those whose middle trans-
mitters are its neighbors. In other words, the physical meaning of u1;(a) corre-
sponds to the minus number of three-node-chain topologies within two-hop neigh-
bors node i.
In addition to fi(a;, ay;), define g; : A; X Ay — R to denote the number of
three-node-chain topologies on the contention gfaph where node i is an exterior
transmitter. Here, Nl.(z) = Ujen; Nj \ {i} denotes the set of nodes that are within

two hops of node i, and A, e = ]_[je o A

gia;, GNI_(2>) = Z Z Liikeey Liai=ajt Ligi=a) - 4.4)

JEN; keNj\{i}

Payoff function u2 : A — R is proposed as follows.

ui(a) = —fi(a;, ay,) — gia;, aN,-(Z))' 4.5)
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The physical meaning of u2;(a) is slightly different from that of the ul,(a). It
corresponds to the minus number of three-node-chain topologies where node i is
either a middle transmitter or an exterior transmitter.

For example, given the contention graph and the channel as shown in the
Fig. 4.2 (b), the proposed payoff functions 1 and 2 have different values on Node
8, i.e., ulg(a) # u2g(a). Since fs(a) = 3, and fy(a) = fe(a) = fs(a) = 0,
ulg(a) = —3. On the other hand, gg(a) = 2, thus u2g(a) = —2. Note that the
three-node-chain topology consisted of nodes 4, 5 and 6 are not considered in the
u2g(a).

4.3 Potential Game Formulation

4.3.1 Basic Framework

As a branch of applied mathematics, game theory has been used in a wide va-
riety of study fields, including wireless communications [71]. Potential game is
a special class of game and has been applied to channel allocation problem, re-
ferring to [77] and the references therein. Potential game gives the benefit that
the convergence is always guaranteed when unilateral improvement dynamics are
adopted [72].

In this work, the channel selection is modeled as a strategic form game, G =
N, (ADien> Mi)ien), given simply as (N, (A;), (u;)). N is a finite set of players and
A; 1s the set of strategies for player i € N. Player set N and strategy set (A;) are
identical to the set of AP indexes and channels, respectively. u; : A — R denotes
the payoff function of player i € N. Define a_; € A_;, where A_; := [] jepiy Aj-

The Nash equilibrium (NE) is a solution concept of strategic form game, in
which no player can increase payoff from changing strategies, assuming other

players remain their strategies.

Definition 4 (Nash equilibrium). A strategy profile a* = (aj, a3, ...,ay) = (a;,a’))
is a Nash equilibrium if and only if it satisfies the following inequality for any
ieN, and a; € A,.

uia;, a’y) > ui(a;, aZ)). (4.6)
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Generally, the existence of a NE is not guaranteed in a strategic form game.
The existence of a NE is guaranteed if a strategic form game is a potential game
with a finite strategy space [72].

Definition 5 (Potential game [72]). A strategic form game is a potential game if
there exists a potential function V : A — R satisfying

Mi(a,,', a_;) —ui(a;,a_;) = V(Cl;, a_;) —V(a,a_), 4.7)

foranyie N,a;,a; € A, and a_; € A_,.

Game with Payoff Function 0

Game G0 = (N, (A;), (u0;)) is not a potential game. This can be shown by pre-
senting a counterexample. Consider a path, i.e., a sequence of channel assign-
ments as shown in Fig. 4.3. It starts from the left-top and moves counterclock-
wise.

Nodes 1, 2, and 3, form a three-node-chain topology on the contention graph.
Each of them has two available channels to choose from. Hence, N = {1,2,3} and
A = Ay, = Az = {1,2}. A potential function V(a,, a,, as) satisfying Definition 5
does not exist. Define a potential function V' that correctly captures the change in
payoff function u0;(a). Hence, V(1,1,1) < V(1,2,1) = V(2,2,1) = V(2,2,2) <
V(2,1,2) =V(2,1,1) = V(1, 1, 1), which is contradictory.

Game with Payoff Function 1

In this section, the game with the payoff function u1; is proved to be a potential

game. This game is similar to the local altruistic game discussed in [74].

Theorem 1. Game G1 = (N, (A;), (ul,)) is a potential game with the following

potential function,

Vi(@) = - ) filai, ay). (4.8)

ieN
Proof. Assume that player i updates its strategy from a; to a;. The increment of
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payoff function ul,; is,

uli(a;, a_;) — Mli(a;, a_;)

= —flanan) = ) filajan anyg) + flal, an) + D filaj,d}, an).

JEN; JEN;
On the other hand,

Vi, a) ==Y flaj,a)

JEN

= —fla,an) = ). flapanan) = D fila,a).

JEN; JEN\N UL}
The third term does not depend on a;. Therefore,

Vi(ai, a-;) = V1(ai, CL'_,-)
= —filai, an,) + fila), ay;) — Z filaj, ai, aniy) + Z filaj, a;, anyiy)

JeN; JeN;

= uly(a;,a_;) — Mli(a;, a_;).

According to Definition 5, game G1 = (N, (A;), (ul;)) is a potential game with a
potential function V1(a). |
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Game with Payoff Function 2

Before the potential game formulation of the game with payoff function u2;, define
the following notation for simplicity. It means that nodes i, j, and k is a three-
node-chain topology, where node j is the middle transmitter.

Lii-jory = Lyijegy Lijkesy Liige) Liai=aj) Ligi=ar) -

A necessary and sufficient condition for a strategic game to be a potential game

is the existence of an interaction potential [78].

Theorem 2 (Interaction potential [78]). A strategic form game is a potential game
if and only if, for every subset S C N, there exists an iteration potential ®@g :
[Tics A: = R such that

w@)= > ®sas). (4.9)

SCN:ieS

The potential function is given as

V(a) = Z Ds(as). (4.10)

SCN

Theorem 3. Game G2 = (N, (A;), (u2;)) is a potential game.
Proof. According to (4.2) and (4.4), u2;(a) can be transformed as follows.

u2i(a) = —fi(a;, aN,-) - gi(a;, GN_(2>)

== Z Lijkee) ll{a,-=a,~}ﬂ{a,-=ak}—z Z Liikee) Lia=a;) Lia=ar) -
UKICN; JeNi kEN\L)

Using the notation defined above, it is transformed as follows.

u2i(a) = - Z Njeiony — Z (M iz jeky + Tick-jy)
{

(kIEN JIEN
== Z (Lijiity + Liiejoky + Liick-)
{JkIEN

= - Z Z Lisi=3y (Lijoiky + Liijoiy + Lok jy)
SCN. €S {i,jk)CS

= Z Ds(as).

SCN,ieS
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Here, define ®g(as) as follows.

Ds(as) = Z Lis1=31(Lijrik) + Lpiojoty + Lok )-

{i,jk}CS
According to Theorem 2, G2 := (N, (A;), (u2,)) is a potential game with interac-
tion potential ®s(as). O

4.4 Distributed Algorithm

This work adopts spatial adaptive play (SAP) algorithm [79] for each player to
update strategies in a distributed manner. Each player is randomly assigned a
channel at the beginning of the algorithm. In the kth iteration (k € N*), player i is
randomly selected to update its strategy according to the following distribution,
explBu(a;, a_;[k])]
Za;eﬂ[ explBui(a;, a_;[k])] '

The learning parameter 5 (0 < 8 < o0) can be viewed as the inverse of temperature

xi(a; | a_[k]) = 4.11)

in the Boltzmann-Gibbs distribution. Notice that, in the situation 8 — oo, the
SAP approaches to the best response (BR) dynamics [74] where one player i is
randomly selected in the kth iteration to update its strategy according to

a;lk + 1] € argmax u;(a;, a_;[k]). 4.12)
aiEﬂ,’

For player i € N, to calculate the value of payoff function ul;(a), it only
requires limited knowledge of the topology.

e The contention graph within two hops, i.e., the nodes within two hops and

the edges connecting them.

e The operating channels of nodes within two hops.

In such case, the information can be collected in a distributed manner through
message passing. The process is summarized in Algorithm 5.1.

Calculating the proposed payoff functions u0;(a) and u2;(a) requires less in-
formation than the ul;(a). Specifically,

e The edges that connecting two-hop nodes are not required.

In such case, Step 3 in Algorithm 5.1 in not required.
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Algorithm 4.1 Spatial adaptive play (SAP) algorithm

1: Let each player i € N randomly select a channel a; € A; with equal probabil-
ity.

2: Let each player i € N broadcast a message M1; over all its neighbors j € N;.
The message M1, contains a list of neighbors of i and the channels they are
operating on, i.e., M1; = (N;, {a; | j € N;}).

3: Let each player i € N broadcast a message M2; over all its neighbors j € N;.
The message M2; contains a set of messages { M1; | j € N;}.

4: A player i is randomly selected from N.

5: Let selected player i calculate the payoff function over all its available actions,
1e., u;(a;, a_;),Ya; € A,.

6: Let player i update its strategy according to the (4.11) while all the other
players remain their strategies.

7: Stop if the maximum number of iterations is reached; else, go to Step 2.

4.5 Simulation

4.5.1 Compared Scheme

Channel assignment schemes in WLANs have been extensively studied under var-
ious approaches [80], including potential game approaches [75]. To enhance suc-
cessful access probability in collision channels, Chen and Huang [75] discussed a
game whose payoff function is given by the probability that transmitter i acquires
channel access. It is expressed as the probability of getting the minimal back-off
timer among all the contending nodes, specifically,

31' =P /ll' i A}t 4.13

u3i(a@) = Pr{ 4 < jEAr/}:llarjl:ai{ n (4.13)
Here, A; denotes the back-off timer of transmitter i, a; denotes the channel of
transmitter i, and N; denotes the neighbors of node i on the graph.

It can easily be proven that when the contention window size goes to infinity,

i.e., the upper limit of A goes to infinity, (4.13) can be approximated as follows.

1
4(a) = . 4.14
u4;(a) T+ % on Lo (4.14)
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Here, this compared scheme is referred to as the Least Overlapping Basic Service
set (Least OBSS) scheme, since selecting the channel of least neighbors gets the
highest payoff.

4.5.2 Graph-based Throughput Model

To evaluate the throughput distribution in the network, this work uses the graph-
based back-of-the-envelope (BoE) model proposed in [18]. Previous studies have
used this model to calculate the throughput in dense deployments of APs, e.g.,
Ref. [9]. BoE model ignores packet collisions. It also assumes a saturated traffic
condition, that is, each transmitter always has packets to send.

Due to the CSMA mechanism, the set of simultaneous transmitting nodes
would be an independent set [18] on the contention graph. An independent set
is a set of nodes no two of which are connected by an edge.

The key of BoE model is to neglect the probability of all the other states ex-
cept the maximum independent sets [18] (MISs) states. A maximum independent
set is an independent set with the maximum numbers of nodes. The normalized
throughput of node i is given by the ratio of the number of MISs in which node i is
included to the number of MISs on the entire contention graph as shown in (2.1)
in Chapter II.

4.5.3 Graph-based Simulations

The graph-based simulation considers a densely deployed WLANSs environment
distributed on a 1200m X 1200 m plane. Any two transmitters whose distance
is closer than 240 m are assumed to be connected by an edge on the contention
graph. There are 4 orthogonal frequency channels for each AP to choose from.

Fig. 4.4 shows the potential functions along with the iterations. Notice that,
both potential functions V1(a) and V2(a) correspond to the minus number of
three-node-chain topologies on the entire graph. Consider 200 APs randomly
distributed on the region. In the case of SAP, the temperature is set to decrease
exponentially along with the iteration. As shown in the simulation results, in
both payoff functions 1 and 2, BR dynamics converges faster than the SAP, while
the SAP achieves a higher value of the potential function, i.e., there is a speed-
optimality trade-off between BR and SAP.
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Figure 4.4: Potential function v.s. iteration. ©2017 IEICE

To convey the intuition of the proposed channel selection schemes in reducing
the number of three-node-chain topologies, Fig. 4.5 is plotted, i.e., the subgraph
of contention graph induced by nodes in each channel when the proposed scheme
with payoff function 1 converges. Here, BR dynamics is adopted and only the
proposed scheme with payoff function 1 is plotted for simplicity. Similar results
are obtained in the payoff function 2. In Fig. 4.5, the nodes represent the APs and
the colors represent the frequency channels.

As shown, the three-node-chain topologies are completely eliminated, and
only isolated cliques [18] remain on the graph. A clique is a set of the nodes
such that every two distinct nodes are adjacent. In this case, the potential function
(4.8), whose physical meaning is the minus number of three-node-chain topolo-
gies, is maximized to zero. In Fig. 4.6, the subgraph after the convergence of
compared scheme (4.14), there are three-node-chain topologies remained.

Fig. 4.7 through Fig. 4.9 make a comparison between the random channel

allocation, proposed schemes, and the compared scheme i.e., Least OBSS, whose
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Figure 4.5: Subgraph induced by nodes in each channel when the proposed
scheme with payoff function 1 converges. ©2017 IEICE

payoff function is given in (4.14). In these simulations, the learning parameter
is set as § — oo for simplicity, i.e., best response dynamics is adopted, because
the payoff functions of these schemes have different order of magnitudes and the
optimal value of 8 in SAP varies from schemes to schemes. Here the average of

100 realization of random deployment is taken.

Fig. 4.7 shows the empirical cumulative distribution function (ECDF) of the
normalized throughput of all the nodes. In the case of random channel allocation,
the cumulative probability of zero normalized throughput is 20%, which indicates
that there are 20% of the nodes being starved. Similarly, there are 8% of the nodes
being starved in the case of compared scheme, whereas in proposed schemes with
payoff functions 1 and 2, the cumulative probability of zero normalized through-
put is less than 1%. Note that, payoff functions 1 and 2 also outperform the non-
PG payoff function.

Fig. 4.8 shows the 5th percentile throughput. Fig. 4.9 shows the average of the
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Figure 4.6: Subgraph induced by nodes in each channel when compared scheme
converges.©2017 IEICE

throughput against the number of APs. The proposed channel selection schemes
result in lower average normalized throughput than the compared scheme but
higher 5th percentile throughput, i.e., there is a trade-off between starvation miti-
gation and average throughput. Based on these results, it is clear that the proposed
schemes reduce the number of nodes whose throughput are unfairly low due to
their neighbors, at a slight loss of average throughput.

4.6 Conclusion

To mitigate the FIM starvation in densely deployed WLANS, distributed chan-
nel selection schemes are proposed to reduce the number of three-node-chain
topologies on the contention graph. The proposed channel selection schemes are
conducted in a distributed manner, requiring limited knowledge of the topology.

Moreover, the schemes are formulated in the framework of strategic form game.

67



Chapter 4

0.9
c 08
Xe]
©
5 0.7 el
C
S o6
5
2
5 0.5 -
S g'J
o 04
2 -
©
3 o r,,r-"‘
]
O o2 —_Fr—l Random allocation =]+
: Proposed scheme (payoff 1)
01 Proposed scheme (payoff 2) | |
Proposed scheme (non-PG payoff) e
o ‘ Compared sgheme (!_east QBSS) —

0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1
Normalized throughput

Figure 4.7: ECDF of normalized throughput. ©2017 IEICE

Payoff functions are designed so that the games are proved to be potential games.
Simulations confirmed the convergence of the proposed scheme with payoff func-
tions 1 and 2. Simulation results also proved the effectiveness of the proposed
schemes in reducing the number of three-node-chain topologies and in enhancing
the percentile throughput.
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Load Balancing Between Exclusive
and Multi-Operator Shared RANs

5.1 Introduction

The fundamental problem studied in this chapter is as follows. From an opera-
tor’s perspective, how to split the user traffic over the shared RAN and non-shared
RANS to accomplish offloading? This problem is studied from a load-balancing
perspective. Specifically, the cell load [12,81] is utilized as an indicator of the
network load conditions. It is a more reliable indicator compared to other metrics,
e.g., the number of users. It is defined as the fraction of airtime resources that are
used in a BS. By considering the cell load, it is possible to study the interactions
of offloading policies among multiple operators. Moreover, it is desirable to min-
imize the cell load from a quality of service (QoS) guaranteeing perspective. This

is because UEs experience higher scheduling delay if the cell load is heavy.

5.1.1 Motivation

There are two aspects that have been less well studied in the previous works.

Analysis Incorporating Cell Load Equation

The cell load equation has been investigated in [12, 81, 82]. The image behind

this equation is the causal chain as shown in Fig. 5.1. It is a fixed-point equation
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Figure 5.1: Causal chain of the load-interference coupling.

where the cell load appears on both sides of the equation. Existing literatures only
solve the cell load equation numerically, i.e., iteratively searching for the cell load
satisfying this equation. How to incorporate this equation into theoretical analysis
is a topic worth studying.

Load Balancing without Exchanging Information

In a multi-operator shared RAN, it is desirable that the usage of shared resources
adapts to the temporal fluctuations in the traffic. Nevertheless, there may ex-
ist situations where operators do not hope to share private information for confi-
dential reasons such as the amount of traffic. Moreover, there may be a lack of
information-exchanging entity among the operators, where the operators do not
have any observations of any private information about the other operators, e.g.,

traffic demands and number of users.

5.1.2 Main Contributions

Corresponding to the above two motivations, the novelty and contributions are as

follows.

Load Analysis in a Multi-Operator Setting

In order to provide guidelines for multi-operator RAN sharing and dynamic of-
floading, this work perform stochastic geometric analysis that incorporates the cell
load equation. This wokr theoretically derives the conditions on multi-operator
traffic density such that the networks do not overload. Moreover, this work theo-

retically proves that the proportionally fair (PF) load balancing can accommodate
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more traffics than the round robin (RR) load balancing. The analysis also indi-
cates that the PF balancing scheme impairs inter-operator resource isolation, i.e.,
the decisions made by one operator may increase the cell load in the exclusive
RANS of other operators.

This work theoretically analyze two types of typical load balancing schemes
in a multi-operator setting, i.e., the round robin (RR) and proportionally fair (PF)
load balancing schemes. Our main finding is that the PF-like load balancing
scheme impairs inter-operator resource isolation but can accommodate more traf-
fic such that the RAN does not overload. To the best of our knowledge, this is the
first study indicating that the PF load balancing impairs inter-operator resource
isolation. This is because this work has taken into account the cell load [12, 81]
and the load-interference coupling effect. This analysis would not be possible

without considering this effect.

Load Balancing Without Exchanging Information

A scenario is considered where operators adapt to temporal fluctuations in net-
work traffic but do not want to reveal their traffic load information or BS densities
to their sharing counterparts for confidentiality reasons. The dynamic load bal-
ancing game is formulated as a stochastic game with individual states. Owing to
the existence of potential function, a branch of reinforcement learning algorithms
is guaranteed to guide multiple operators to an NE under incomplete informa-
tion. Despite the information is incomplete, simulation results show that the rein-
forcement learning-based solutions achieve as good performance as the complete
information scenario, if the traffic demand is highly correlated among different

operators temporally.

The rest of this chapter is organized as follows. The system model and pre-
liminary knowledge are presented in Section 5.2. The analysis of load balancing
schemes in a multi-operator setting is presented in Section 5.3. The game formula-
tion, the existence of NE and a fully distributed learning algorithm are discussed in
Section 5.4. Section 5.5 presents the results of numerical evaluations. Section 5.6

concludes this chapter.
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Figure 5.2: A multi-operator cellular network with dual-connectivity capabilities.
The locations of shared BSs and non-shared BSs follow independent Poisson point
processes (PPPs).

5.2 System Model

5.2.1 Network Deployment and Traffic Model

Consider a two-operator-three-tier RAN sharing model as illustrated in Fig. 5.2.
For cost reduction purposes, two operators deploy and share the use of a group of
shared BSs for the open access from users of the other operator, e.g., the MOCN
architecture [25]. The shared BSs are connected to the core networks of both
operators. Meanwhile, each operator also independently deploys non-shared BSs
for the exclusive use of its own users. The exclusive BSs operate in an exclu-
sive licensed spectrum, while the shared BSs operate in a commonly shared spec-
trum. Denote the index set of operators as M := {1,2}. Note that, the analysis
and the algorithm used in this chapter can also be extended to the scenario of an
arbitrary number of operators. Furthermore, it is assumed that each UE has dual-

connectivity capabilities, i.e., each UE is associated with the nearest shared BS
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while maintaining a connection with the nearest exclusive BS of its own operator.
For the shared BSs, UEs from different operators are treated equally without pri-
oritizing about any specific operator. The traffics allocated to the shared BS from
any operators are transmitted with full bandwidth.

The locations of BSs are modeled as independent homogeneous Poisson point
processes (PPPs). Note that, the PPP is assumed to obtain tractable theoretical
insights as it is a tractable model accounting for the randomness of BSs deploy-
ment [21,28,43]. The learning algorithm to be presented in Section IV, however,
does not require the PPP assumption. Denote three tiers of BSs as ®g;, Og,, and
@g, with intensities Ag;, A2, and Ag, respectively. Here, E represents exclusive use
and S represents shared use. Denote the bandwidths of the exclusive spectrum and
the shared spectrum as Wg;, Wg,, and Wg, respectively.

This chapter considers a dynamic traffic scenario. Depending on the number of
subscribers and users activities, the traffic is a time-varying stochastic process that
follows certain periodic patterns [83, 84]. For example, it is high in certain hours
of the day and much lower in some others. The traffic is a private information.
An operator can only observe its own traffic but does not hope to reveal its traffic
information to its sharing counterparts for confidentiality reasons. Let a stochastic
process w;[t] denote the downlink network traffic density of operator i € M at time
stage 7. This is interpreted as the downlink traffic per area, whose unit is bit/s/m?.
As the time variations are not considered in Sections II and III, w;[7] is denoted as

w; for notational simplicity.

5.2.2 Downlink SINR and Cell Load

Consider a UE that is associated with BS k € ®; of tier j € {E1,E2,S}. Let P;
denote the transmit power of BSs of tier j. Let 8; and a; denote the path-loss
coeflicient and the path-loss exponent, respectively. Let xj and hj denote the
distance from BS k € ®; to the considered UE and the Rayleigh fading gain. The
Rayleigh fading gain is an exponentially distributed variable with unit mean. The

received signal power is formulated as:
—@j
Pjﬁjhjkxjk .

For the interference power, this chapter mainly takes into account the inter-cell

interference rather than the intra-cell interference [21,43]. In our model, BSs do
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Figure 5.3: The interference structure considered in this chapter.

not continuously emit interference power. The probability that a BS transmits in-
terference depends on its load conditions [81,82]. This is because during the peak
hours of traffic, BSs consume more airtime resources. Hence, from a probabilistic
perspective, a BS has a higher probability to be transmitting at a given instant dur-
ing peak hours. To model this fact, the cell load concept [12,81,82] is introduced
to characterize the network load condition. The cell load is denotes as p; € [0, 1],
where j € {E1, E2, S}. It interprets the average probability that an arbitrary BS of
tier j is transmitting at a certain instant. A higher value of p; indicates a heavier
load condition. For example, p; = 0.3 indicates that, on average 30% of BSs of
tier j are transmitting at an instant. Meanwhile, followed from the ergodicity of
PPP, it also indicates that a BS is transmitting with a probability of 0.3 at a certain
instant.

The considered interference model is illustrated in Fig. 5.3. Denote the set of
BSs that are transmitting interference at an instant as i) ; where j € {E1,E2, S}.
Hence, the set of idle BSs is @; \ ((T) ;U {k}). The aggregated interference power

is characterized as:

»
Z PiBjhjex;.

k'E(i)j

where the interfering BSs @ ;j can be modeled as a thinned PPP with density A ;=
Ajp;j by using the cell load p; [81,82]. Let W;N, denote the noise power. The
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downlink SINR is characterized as follows:

—(lj
PiBihjex

= —a; ?
2wed; PiBihjwxy’ + WiNo

Vi (5.1

where j € {E1,E2, S}.

5.2.3 Load Balancing Model

Load balancing is an important task from a QoS-guaranteeing perspective. The
fundamental problem studied in this chapter is: how to split user traffic over the
shared RAN and the non-shared exclusive RAN to accomplish load balancing?
To study this problem from a tractable approach, a basic load balancing model is
present here.

An illustration of the traffic splitting model is shown in Fig. 5.4. Consider
a small area at location s. The incoming traffic raised from UEs of operator i
in this area is given as w; ds. Operators use traffic splitters to split the incoming

traffic over the shared BSs and the non-shared exclusive BSs. The incoming traffic
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Table 5.1: List of load balancing schemes.

Scheme &r1(s) E2(s) &s(s)
w1 w) bl w1 bz&)z
RR 1+b, 1+b, 1+by 1+b,
PE RE1(s)w; R (5)w Rs(8)byw; Rs(8)brw,

Re((s)+b1Rs(s)  Rpa(s)+byRs(s)  Rgi(s)+biRs(s) + Re2(5)+b2Rs(5)

is divided into two streams and aggregated at the UE through dual connections.
Based on this model, the original traffic densities w; and w, are splitted into three
tiers. Given the downlink traffic densities w; and w,, operator 1 splits w; into tiers
El and S while operator 2 splits w, into tiers E2 and S. Specifically, let &g;(s)
and &gy (s) denote the traffic densities allocated to the exclusive tier by operators
1 and 2 at location s, respectively. Let &(s) denote the traffic density allocated to
the shared tier jointly by operators 1 and 2 at location s. For any location s, the

following equation holds:

Ee1(8) + Epa(s) + &s(s) = wy + wy. (5.2)

Depending to whether or not the channel state information (CSI) is utilized,

two typical load balancing schemes are considered:
e (Biased) Round Robin (RR)
e (Biased) Proportionally Fair (PF)

The reason of considering these two schemes is that they are typical examples of
two types of load balancing schemes. Their fundamental difference is that: the
PF scheme is rate-dependent, while the RR scheme is rate-independent. Both of
these two schemes use the control variable b; to accomplish load balancing, where
i € {1,2}. Hereafter, the control variable b; is called offload bias. The amounts of
traffic allocated to each tier are summarized in Table 5.1.

In the RR scheme, the traffic is split into shared BS and non-shared exclusive
BS according to a constant ratio. The ratio is fixed regardless of the location or
temporal achievable data rate. In other words, the traffic splitter does not require
any instantaneous channel state information from the UE. Consider UEs of oper-

ator i located in a small area at location s, whose total incoming traffic is w; ds.

78



Section 5.3

The amounts of traffic split to the shared BS and the non-shared exclusive BS are
biw;ds/(1 + b;) and w; ds/(1 + b;), respectively. In this scheme, the operators may
adjust the offload bias b; to adapt to the time-varying incoming traffic density w;.
As operator i increases the offload bias b;, it splits more traffic into the shared
RANS.

In the PF scheme, the traffic is splitted according to the instantaneous down-
link data rate. As the UE has dual-connectivity with two BSs, it is reasonable to
allocate more traffic to the link with a higher achievable data rate. Consider UEs
of operator i located in a small area at location s, whose total incoming traffic is
w; ds. Denote the instantaneous downlink data rate as Rs(s) and Rg;(s) or Rg»(s).
The traffic splitter allocates traffic to the exclusive BS and the non-shared BS pro-
portionally to the achievable data rate as summarized in Table 5.1. In this scheme,
the operators may also adjust the offload bias b; to adapt to the time-varying in-
coming traffic density w;. Note that, the allocated traffic £;(s) is rate-dependent in
the PF scheme.

5.3 Analysis of Load Balancing Schemes in a Multi-
Operator Setting

In this section, the cell load equation is introduced. It is used to perform theo-
retical analysis on load balancing in multi-operator shared RANs. By using this
equation, it is able to demonstrate that the PF load balancing scheme has the abil-
ity to admit more traffic than the RR scheme. On the other hand, the RR load
balancing scheme has certain property that the PF load balancing scheme does

not have.

The cell load equation is a fix point equation that the cell load is supposed to
satisfy, which has been studied in previous works, e.g., [12,81,82]. Some slight

changes are made to fit it to our system model.

Definition 6. Consider tier j € {E1,E2,S}. Let &; denote the downlink traffic
density splitted to tier j at an arbitrary location, whose unit is bit/s/m*. Let R;

denote the achievable downlink data rate at this location. The cell load p; satisfies
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the following equation [12,81,82]:

&j
=B , 5.3
Pj [ R4, (5.3)
where R; = W;log,(1 +v,), A; denotes BSs density, and W; denotes the spectrum
bandwidth

Note that, equation (5.3) is a fixed point equation on the cell load p;, as the
SINR v; 1s depends on the cell load p;. The intuition behind this equation is
as follows. The (normalized) airtime that is required to transmit traffics at the
considered location is &;/R;. The expected cell area of a BS in tier jis 1/4;.
Hence, the expectation evaluates the expected (normalized) airtime that is required
to transmit all traffics demand within a cell.

To provide guidelines for operators to deploy sufficient numbers of shared
BSs, this chapter also defines the maximum allowed traffic density region. 1t is
defined as the traffic density (w, w;) such that there exists offload bias b; and b,
where the network does not overload, i.e.,

0= {((1)1,(1)2)|30 < bl,bz < oo, s.t. 0 < Ps, PE1, PE2 < l}

Notations Ogrg and Opr are used to distinguish between the regions of the RR and

PF schemes.

5.3.1 Round Robin Load Balancing

Due to the randomness of location s and channel fading gains, the SINR y(s) is a
stochastic variable. The complementary cumulative distribution function (CCDF)
of the SINR, however, can be characterized under proper assumptions. Recall that,
the Rayleigh fading channel, nearest BS association, and that BSs follow PPPs
are assumed. The CCDF can be derived by following the stochastic geometry

approach [85].

Lemma 2. The CCDF of vy; conditioned on p; is derived as (5.4), where j €
{E1,E2,S} and »F, (-, -; ;) is the Gauss hypergeometric function. Furthermore,
if the path-loss exponent ag| = ag; = as = 4, a simplified expression (5.5) can be

obtained.
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Bly;>6|p)]
= foo 2rtxA; exp (—ﬂxz/l QNOWX ,
0 / Jﬁ] (5.4)
270 ;A ;0>
S R (11 - 2/a;2 - 2 —9)) dx.
Clj -
Bly;>6|p)]
A 7er,8 ; 2/12 gty
= 1+ p; VOarct
2 \oNow, “ P\ 6Now; ( pj VBarctan V) (5.5)
md; | PiB;
erfc [7 WWJ (1 + p; V@ arctan \/5) .
Proof. See Appendix A. O

When the RR load balancing scheme is applied, it is clear from Table 5.1
that the allocated traffic &; is location-independent. Consequently, the cell load

equation can be transformed as follows:
$iclp -
;= /l—JjE R 1oy (5.6)

where the expectation of the inverse Shannon capacity needs to be derived. As the
CCDF of the SINR has been derived in Lemma 1, the cell load equation (5.3) can
be derived based on Lemma 1.

Lemma 3. Given the density of BSs A; and the bandwidth W, the CCDF of y; as
shown in (5.5), the cell load equation is transformed as follows for j € {E1,E2, S}:

g [ In2 (1-Ply; > 01p)1)
2 W(1 + 6)[In(1 + )2

p; = Sg, R |Rp)] = de, (5.7)

4

emin
where O, is the minimum allowable SINR for association.

Proof. See Appendix B. O
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The parameter 6,,;, denotes the minimum SINR for cell association [81, 86].
Note that, the selection of 6,,;, determines the trade-off between coverage proba-
bility and cell load. Since the selection of 6,,;, is beyond our scope, G, is consid-
ered as a constant close to zero.

Substituting the parameters listed in Table 5.1 into Definition 1, obtain the

following cell load equations.

_ ( biw, N byw, ) E[Rs_l|p5]
PS=\T+b, " 1+ b PR

W E[RE1_1|pE1] (5.8)
PEL = 1+ bl . Ag1 ’

_w, E [RE2_1|pE2]
PE2 = 1+0b, . A ’

The derived cell load equations are a set of fixed point equations of ps, pg;, and
pe2. From the equations, it is clear that the RR load balancing scheme guarantees
inter-operator resource isolation. Precisely, the offload decisions made by one
operator does not affect the cell load of the exclusive RAN of the other operator.
Specifically, pg; does not depend on b, and pg, does not depend on b;.

Deriving the explicit expressions of the cell loads can be difficult, if not im-
possible. Fortunately, it is possible to derive the maximum allowed traffic density

such that the network does not overload, i.e., p; < 1. It is derived as follows.

Proposition 1. The closed form of the maximum allowed traffic density region

Okrr is given as the following inequalities when the RR load balancing scheme is

applied.
W < As N Ag ’
E[RS_1|/)S = 1] E[RE1_1|pE1 = 1]
0, < As N Ag2 ’
E[RS_1|/)S = 1] E[RE2_1|,0E2 = 1]
(5.9)
W)+ w, < As + Ap:
E[RS_1|pS = 1] E[RE1_1|pE1 = 1]
Ag2

+

E[RE2_1|pE2 = 1]'

82



Section 5.3

This is a sufficient condition for w, and w, such that there exists offload bias b,

and b,, where the network does not overload, i.e., pg; < 1, pgx < 1, and ps < 1.

Proof. Consider the extreme case in which all tiers have been overloaded. Setting

the cell loads ps = pg; = pg2 = 1 in (5.8), the result can be obtained. i

5.3.2 Proportionally Fair Load Balancing

To analyze the maximum allowable traffic in the PF load balancing case, this
section begins with characterizing the cell load equation in three tiers. Following
the definition of cell load in (5.3), the PF scheme defined in Table 5.1, the cell

load equation is expressed as follows:

a).

&Ei ;
REi + b,’RS

=B E
PE [REiAEi

1
pEi,pS] =—E PEi,PS]- (5.10)

/lEi

where i € M. The cell load equation of tier S is determined by the traffic jointly

allocated to tier S by two operators.

1
PSZA—SZE

ieM

b,-wl-
REi + b,‘RS

PEf,ps] : (5.11)

Given the CCDF of v; as shown in (5.5), the expected value of inverse Shannon
rate conditioned on the cell load is given as follows for j = {E1,E2},i =1, 2:

E [(REi + biRS)_1|pEiapS]

:ff“ dPlyg; > 0] pgi] dPlys > ¢|ps] (5.12)
o Wilog,(1+6) + b;Ws log,(1 + @)’

where 0,,;, is the minimum allowable SINR for association.

From the derived cell load equations from (5.10) to (5.11), it is clear that the
PF load balancing scheme no longer guarantees inter-operator resource isolation.
Precisely, the cell load pg; depends on the offload bias b, and the cell load pg,
depends on the offload bias b,. This is because the PF load balancing scheme
depends on the instantaneous data rate R, which depends on the cell load p;. This
is the load-interference coupling effect as illustrated in Fig. 5.1. Consequently,
the offload decisions made by one operator would influence the cell load of the

exclusive RANs of the other operator.
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Figure 5.5: Dynamic load balancing game framework.

The explicit expressions of cell load equations from (5.10) to (5.11) are diffi-
cult to derive. The following proposition, however, can be theoretically proved. It
indicates that the PF load balancing scheme has the ability to admit more traffic

than the RR load balancing scheme.

Proposition 2. The maximum allowed traffic density region of the PF load bal-

ancing scheme is a super set of that of the RR load balancing scheme.

Ogr C Opr. (5.13)

Proof. See Appendix C. O

This theorem shows that exploiting a PF load balancing scheme expands the
maximum allowed traffic density region. Given a traffic density, the PF load bal-
ancing scheme would not overload the RANSs if the RR load balancing scheme
does not. On the other hand, the RR load balancing scheme guarantees inter-
operator resource isolation. Moreover, it is easy to implement as the temporal

achievable data rate information is not required.
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5.4 Dynamic Load Balancing Game Formulation:

Stochastic Game with Individual States

The previous section has derived the cell load p; as a function of offload bias
b; and traffic density w;. Based on this result, this section considers the multi-
operator load balancing game in a dynamic settings where the traffic density state
w; 1s a time-varying stochastic variable. Operators dynamically adjust their offload
bias b; to the variation in w; without exchanging any information. To model the
incompleteness of the information, a repeated stochastic game with individual
states is formulated. Moreover, both of the RR and the PF load balancing schemes

are discussed under the same framework.

5.4.1 Game Formulation

The repeated stochastic game is built from a one-stage game. The one stage game
is denoted as G = (M, {Q;}iepms {Aitiems {Uti}iem), where M, Q;, A; and u; de-
note the index set of players, state space of player i, action space of player i
and the utility function of player i, respectively. The players of this game are
the operators M := {1,2}. The state of a player is the network traffic density
w; € Q;. The action of a player is the offload bias b; € A;. For notation sim-
plicity, denote b := (b;,b;) and w = (w;,w;). Note that, both of the traffic
density w; and the offload bias b; are continuous variables. To study this problem
in a game-theoretic framework, this section considers a uniform quantized finite
state space Q; = {0,Aw,2Aw,...,wnx} and a uniform quantized finite space,
A; ={0,Ab,2Ab, . .., by}

The utility function is a function defined as u;: [[;cp 2 X [liem Ai — R. For
the utility function, this section considers the scenario where operators are willing
to minimize the cell load. This is because minimizing the cell load reduces the
scheduling delay and is important from a QoS-guaranteeing perspective. Note
that, the cell load p; depends on the traffic density w and offload bias b as have
been studied in the previous section. The considered utility function is given as

follows:
uj(w, b) === (Cypg;1 + ps), (5.14)

85



Chapter 5

where C; € R, is a weighting constant determined by an operator. It reflects how
importantly an operator judges its exclusive shared band. Similarly, the utility

function of operator 2 is defined as:

ur(w, b) = = (Cypg2 + ps) - (5.15)

The repeated stochastic game G* = (M, {7 }iems {#i}iepm) 15 built from the
one-stage game G defined above. Precisely, G™ is built by playing G an infinite
number of stages, where 7; denotes the sequence of actions played by player i and
u; denotes the time average utility for i € M. In the repeated stochastic game, a
player cares about what he gains over the whole game duration, i.e.,:

1 T
u; = lim — u;(w(t], b[t]), (5.16)
Tooo T pr

where w(t] and b[f] denote the traffic density state and the offload bias in stage ¢,
respectively.

The same game-theoretical framework can be used to discuss both of the RR
and the PF load balancing schemes. The entire framework is as shown in Fig. 5.5.
At the beginning of stage t, each player observes its own traffic state w;[t] and
determines the offload bias b;[f] based on a certain algorithm. Within the time
interval between stages ¢ and 7 + 1, it is assumed that w;[¢] and b;[¢] do not change.
Recall that the physical meaning of the cell load p;[7] is the fraction of the con-
sumed airtime resource. The cell load can be measured at the end of each stage.
In the case of overload, i.e., p;[t] > 1, the cell load can also be measured indi-
rectly from the scheduling delay of associated UEs, as the cell load determines
the average scheduling delay of UEs [81]. Operators use the measured cell load
to calculate their utility functions and to update the parameters in their learning
automata. Note that in this framework, each operator is only aware of its own
traffic density and its own cell load. An operator cannot observe or memorize that
of the other operators. For instance, operator 1 is aware of w [t], b;[t], pg:[¢], and
pslt], but not w;[t], by[t], and pg;[1].

5.4.2 Equilibrium Analysis

The NE is a solution concept of the game. It is a set of action profiles where

a single player has no incentive to deviate unilaterally. The characterization of
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NEs in a dynamic game can be a formidable task if the non-stationary strategy is
considered. To this end, this work focuses on studying the NE of the stationary
behavioral strategy [71]. In other words, this work assumes that the strategy of
players has reached stationary distribution in the equilibrium state. A stationary

distribution over strategy is a conditional probability mass function defined as:
gibilwy) =P [Player i acts b; |Player i observes w,-] . (5.17)

From the ergodicity of the stationary strategy g;, the time average of the utility

function i; is expressed as its expectation as a function of g; and g,. Fori € M:

i = ii(g1,82) = Eo [Z 81(b1|w1)ga2(balw2)ui(b, w)} ; (5.18)

beA

where A := A; X A,. The definition of NE is hence given as follows:

Definition 7 (NE). [71, 87] A profile of probability mass functions (g7, g5) is an
NE for the considered game G if it satisfies the following constraint: ¥i,i" € M,
i #1, Yw; € Q, Vb € A,

E, Z 8 (bilw) g~ (b_jlw_)u(w, b)‘
beA
> E,, [Z g (V' |w)g= (b_ilw_)ui(w, b, b—i)} .
beA

From the theoretical analysis in the previous section, it is clear that RR guar-
antees inter-operator resource isolation. In the RR load balancing scheme, the
offload decisions made by one operator does not affect the cell load of the exclu-
sive RANs of the other operators. Owing to this fact, it is able to first prove that
the considered one-stage game G is a potential game at least when the RR load

balancing scheme is applied.

Lemma 4. When RR load balancing is applied, the considered one-stage game G
is a potential game [71,72], i.e., Vi,i" € M, i # 1, Vw; € Q;, Vb;,b" € A;, and
b_; € A_; there exists a potential function ¢: [|iepm A — R satisfying:

ui(w, b}, b_;) — ui(w, bi, b_;) = p(w, bi, b_;) — p(w, bi, b_). (5.19)
The potential function ¢(w, b) is given as follows:

¢(w,b) = —Cpgi(w, b) — Crpp(w, b) — ps(w, b). (5.20)
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Proof. 1f the RR load balancing scheme is applied, the deviation of a player
does not change the cell load of the exclusive band of the other operator. Tak-
ing i = 1 for instance, pg,(w, by, by) = pp(w, b’, by). Consequently, u;(w, b’, by) —
u(w,by,by) = —(Cipgi1(w, b, br)+ps(w, b, by))+(Cipgi(w, by, by)+ps(w, by, by)) =
d(w,b’,by) — p(w, by, by). This proves the lemma. O

In our considered stochastic game G, the network traffic state w(¢] is an ex-
ternal factor that does not depend on the actions chosen by the players. Thus, it is
possible extend the existence of the potential function to the considered stochastic

game G~.

Proposition 3. When the RR load balancing scheme is applied, the considered

load balancing game G* is a potential game, i.e.,

E, Z g;‘k(bilwi)g:(b—ilw—i)ui(w’ b)}
beA
—Bu | Y 60 |wig’ (b-lw_uiw, b, b_i>}
beA

(5.21)
=E,

> i iw)g" (b-lw_)¢(w, b)]
beA

_Ew

Z g;'k (b,|wi)g:(b—i|w—i)¢(W, b, b—i)} .
beA

Proof. This follows from Lemma 3 by taking the expectation over the traffic den-
sity w and the chosen action b. O

Proposition 3 provides assurance for the convergence property of the consid-
ered multi-operator load balancing game even under incomplete information. The
existence of potential function is guaranteed if the RR load balancing scheme is
applied and the distribution of traffic density w is stationary. Owing to this fact,
the incentive of all players to change their strategy can be expressed using a single
global function ¢. A branch of fully distributed algorithms is guaranteed to guide

players to NE upon convergence [71].
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5.4.3 Load Balancing Algorithm

A player cannot directly calculate the NE as given in (5.19), because the knowl-
edge of traffic density w and the stationary behavioral g_; of the other operators
are unknown. To this end, a fully distributed algorithm is required to enable play-
ers to learn the NE under incomplete information. Owing to the existence of the
potential function, there is a group of algorithms that can guide multiple players to
the NE under incomplete information, e.g., Boltzmann Gibbs sampling, trial-and-
error learning [71], and deep Q-learning algorithm [88]. These algorithm works in
a similar manner: each player presumes that the opponents are playing stationary
strategies and then iteratively improves the strategy based on empirical rewards.
Consequently, the incentive of all players to change their strategy can be expressed
using the potential function. Among these, the deep Q-learning algorithm [88] is
a recently proposed algorithm, which is suitable for learning policy like g;(b;|w;),
i.e., executing an action in a specific state. It also has good scalability and is easy

to implement.

The entire algorithm is given in Algorithm 5.1. Note that, the contribution
of this wokr is to confirm its convergence property in the considered game. The
standard deep Q-learning with experience replay algorithm [88] is applied. For
both of the RR and the PF load balancing schemes, the algorithm works in the
same way. As shown in Fig. 5.5, the learning automaton comprises a main Q
network, a target network, and a replay buffer. The main network is used as a
function approximation for the stationary behavioral strategy g;. The input of the
main network corresponds to the state w;. The input layer size of the main network
is |Q;|. One-hot encoding is used to encode the input traffic into a vector with size
|Q3;|. The hidden layer size is 24. The input layer activation and hidden layer
activation are ReLLU functions, while the output activation layer is linear. The
output layer is |A;|. The replay buffer and the target network are used to train the
parameters in the main network. The target network has the same shape with the
main network. The replay buffer stores the memory in each stage. The batch size

is 144. The loss function is MSE. The optimizer is a gradient descent algorithm.

89



Chapter 5

Table 5.2: Simulation parameters.

Parameters Notation Value

BS density Ag1, A2, As 1 x 10 m™
Path loss exponent QaE|, QE2, S 4

Path loss gain B, B2, Bs @nf./(3 x 10%))?
Transmit power Pg1, Ppa, Ps 43 dBm
Bandwidth Wg1, Wi, W 20MHz

Noise power spectral density No —174dBm/Hz
Minimum Association SINR Omin -10dB
Weighting constant C, C, 2

Time interval At 10 min

Episode length 144 time intervals
Input layer (state space) size Q| 100

Output layer (action space) size |A;| 100

Mini-batch size 144

Replay buffer memory 288

Exploration factor initial value  &pgn 1

Exploration factor decay 0.995/time interval
Discount factor YDON 0.1

90



Section 5.5

Algorithm 5.1 Load Balancing Algorithm based on Deep Q-learning [88].

1:
2:

N kW

10:

11:
12:

13:
14:
15:

For each operator i = 1,2 executes the following algorithm distributedly.
Initialize replay buffer D;, action-value function Q;(w,b,;6;) with random
weights.
Initialize target action-value function Qi(w, b; 67) with weights 6, = 6;.
for every episode do
for every time interval do
Observe the network traffic density w;[?].
With probability epgn select a random offload bias b;[f] € A;. Other-
wise select the offload bias b;[1] = argmax,,. 4 Qi(w;lt], D; 6;).
Given the offload bias b,[¢], split incoming traffic based on Table 5.1.
Then, observe the cell load and calculate reward r;[¢] based on (5.14) or (5.15).
Store transition (w;[t], b;[t], ri[t], w;[t + 1]) in D;.
Sample random minibatch of transition samples
(wil?'], bi[t'], [t ], wil¥ + 1]) from D,;.
Let y[#'] = ri[#'] + yponmax, Q(wilt + 11,a’;67).
Perform a gradient descent step on (y[#'] — Q(w;[#'], ai[t']; 6))* with
respect to the network parameters 6.
end for
Reset O; = Q; at the end of episode.
end for

5.5 Numerical Results

Numerical results are presented to validate the theoretical results and to evaluate

the learning algorithm. Unless otherwise stated, the simulation parameters are
listed in Table 5.2.

5.5.1 Impact of Offload Bias on Cell Load

In this subsection, the accuracy of the theoretical derivation of the cell load is

demonstrated by comparing it with the Monte Carlo simulation results. This sec-

tion also evaluates the impact of offload bias b; on the cell load p;. This section

plots cell load pg; and pg as the function of the offload bias ;. The downlink traf-
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fic density is fixed as w; = w, = 200bit/s /m? and fix the offload bias as b, = 0.
The RR and the PF load balancing schemes are evaluated in Figs. 5.6a and 5.6b,
respectively. The theoretical results matches with the Monte Carlo simulation
results, which demonstrates the accuracy of the theoretical derivation.

In Fig. 5.6a, as operator 1 offloads more traffic to the shared band, the cell
load in the shared band pg increases, while the cell load in the exclusive band
pg; decreases. Specifically, when b; > 4, the shared band approaches to the
overloaded condition. On the other hand, when b; < 0.25, the exclusive band
approaches to the overloaded condition. An appropriate offload bias in this case
would be 0.25 < b; < 4. Fig. 5.6a also increases the offload bias of b,. In doing so,
the cell load of the shared band pg increases. Especially, when b, > 1, no matter
how b is set, there is no appropriate b; such that the networks do not overload.

Compared to the RR load balancing scheme, the PF load balancing scheme
achieves lower cell load under the same traffic density. This is owing to the uti-
lization of CSI for traffic splitting. As shown in Fig. 5.6b, when b; > 30, the
shared band approaches to the overloaded condition. On the other hand, when
b, < 0.01, the exclusive band approaches to the overloaded condition. An appro-
priate offload bias in this case would be 0.01 < b, < 30, which is much wider than
that in the RR load balancing scheme.

Figure 5.6b also demonstrates that the PF impairs the inter-operator resource
isolation. Note that, in Fig. 5.6b, pg, increases with b;. This indicates that, the
offloading action performed by operator 1 affects the cell load of the exclusive
band of operator 2. The reason for this can be explained by the load-interference
coupling effect in Fig. 5.1. As operator 1 increases the offload bias by, the cell
load of the shared band increases. This will further decrease the achievable rate in
the shared band, and hence, result in more traffic to be allocated to the exclusive
band of operator 2. This effect does not appears in the RR load balancing scheme:

As shown in Fig. 5.6a, pg; does not change with b,.

5.5.2 Maximum Allowed Traffic Density Region

Figures 5.7a and 5.7b evaluate the maximum allowed traffic density of the RR
load balancing scheme and PF load balancing scheme, i.e., Oggr and Opf, respec-

tively. Several conditions of BS densities are evaluated. For any point (w;, w;) in
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the shaded region, there exists a setting of b; and b, such that the network does
not overload. Comparing Figs. 5.7a and 5.7b, it is clear that Opr is a superset of
Ogr, Which validates Proposition 2. Moreover, as operator 1 deploys more ex-
clusive BSs, the boundary shifts to the right parallelly. On the other hand, if the
shared BSs are increased, the boundary expands. This theoretical analysis aims at

providing guidelines for deploying sufficient shared BSs.

5.5.3 Dynamic Load Balancing Performance

This subsection evaluates the multi-operator load balancing in a time-varying traf-
fic setting. The following evaluations use a real dataset of telecommunication
traffic [83] to represent the time series of traffic densities w;[t] and w,[t]. The
dataset is measured in an area of 11.75km X 11.75km in the city of Milan at a
time interval of 10 min. As the dataset only provides the traffic profile of one op-
erator, to evaluate the multi-operator case, a week of data is used to represent the
traffic profile of operator 1 and another week of data is used to represent that of
operator 2. It is assumed that the time series of traffic densities w;[f] and w,|1]
has a period of one week. This is reasonable as the traffic densities of different
operators are generally highly correlated temporally [83,84]. Without the loss of
generality, the data is normalized such that operator 2 has a lower traffic density
compared to operator 1, i.e., operator 2 has fewer subscribers than operator 1. The
traffic pattern is shown in Fig. 5.8. For expression simplicity, denote 1 episode
= 24 hours = 144 time intervals. Note that, the traffic density in the workdays is
higher than that in the weekends.

The dynamics of the cell load after a sufficiently long time are shown in
Figs. 5.9a and 5.9b. Referring to Fig. 5.8, observe that the cell load fluctuates
in accordance with the traffic density temporally. Note that, during peak hours in
Fig. 5.9a, the shared band overloads as operators jointly offload traffics. This is
because the exclusive bands have higher priorities than the shared band as consid-
ered in the utility functions (5.14) and (5.15), where C;, C, > 1. Moreover, it is
clear that the PF load balancing achieves a much lower cell load than the RR load
balancing scheme. This is owing to the utilization of achievable data rate informa-
tion in the PF load balancing scheme. Figures 5.10a and 5.10b present the average

cell load in one week as the learning algorithm proceeds. Results indicate that the
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average cell load converges fast in both cases. Although the convergence is not
rigorously proved in the PF case, the convergence is still confirmed in simulation
evaluations.

The results from Figs. 5.9a to 5.10b validate that operators learned to of-
fload without exchanging private information with other operators. Even though
the traffic density information is partially observable, i.e., operator 1 (or 2) only
observes wq[t] (or ws[t]), the conditioned probability distribution P[w;|w,] and
Plw;|w,] are rather stationary as w[t] and w,[t] are highly correlated temporally.
Hence, this provides the possibility for operators to learn to offload without ex-
changing private information, e,g., traffic densities, number of BSs, and number
of UEs.

5.6 Conclusion

This chapter has investigated the load balancing problem in a multi-operator RAN
sharing scenario. Each operator strategically decides the fraction of the traffic of-
floaded to the shared RAN without exchanging the private traffic demand infor-
mation. Through theoretical derivations and simulation results, it is demonstrated
that the PF load balancing scheme admits more traffic than the RR load balancing
scheme. On the other hand, it impairs the inter-operator resource isolation. In
other words, the offloading decision made by one operator affects the cell load of
the exclusive band of the other operators. This chapter proved that the game is
a potential game at least when the RR load balancing scheme is applied. Owing
to the existence of potential function, a fully distributed reinforcement learning
algorithm is guaranteed to guide multiple operators to the NE upon convergence.
Numerical evaluations demonstrate that the cell loads of different RANs are well-

managed without exchanging any information among operators.

5.7 Details of Proofs

5.7.1 Proof of Lemma 1

The proof is similar to the approach in [85]. Consider a randomly selected UE
of tier j. The CCDF of its downlink SINR can be derived by conditioning on the
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communication distance to the associated BS:

P[yj>9 |p_,-] :f:oP['yj>9

where f; denotes the probability density function (PDF) of the communication

fi(x) dx,

x,pj

distance. Under the assumption that the UE associates with the closest BS and the
BSs follow PPP, fi(x) is given as follows [85]:

fi(x) = 2nxA;exp (—erle J-).

Substituting (5.1), the conditioned probability is given as follows under Rayleigh

fading channel:

P[’}/j>9

NOWJHx“f') (Q_x“j )
PiB; PiB;)’

where £(-); denotes the Laplace transform of interference. By using the Gauss

x,Pj] = &Xp (—

hypergeometric function, it can be expressed as follows: [85]:
Ox%i —271p ;A 6x* 2 2
(2] =[5 i 11 2= 2,
PiBj), aj=2 a; a;
where ,F (-, -; ;) 1s the Gauss hypergeometric function. This derives the result
(5.4). Furthermore, substitute a; = 4, (5.5) is derived.

5.7.2 Proof of Lemma 2

Let f, ;(0) denote the PDF of the SINR ;. The expectation over the inverse Shan-
non rate is given as:

* f(6)de

B, (R p= [ =222
nlR e W log, (1 +6)’

Omin
where 6, denotes minimum SINR for association, i.e., A == {s € R? | y(s) >
Omin}- The threshold 6., s a pre-determined threshold and it determines the trade-
off between coverage probability and cell load. It is considered as a constant close
to zero.

Given a radon variable X that has nonzero probability density for only positive

values. Its expected value is given by integrating its CCDF P[X > x], i.e.,

Ex[X] = f‘x’ xfx(x)dx = foo P[X > x]dx.
0 0
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Notice that RJ‘.1 is a monotonically decreasing function of 6. Hence, it is derived
as follows:

E, [R;"pi| = f (1-Ply; > 01p,1) dR}'(6).
Omin
Finally, differentiate R; and derive the result as follows:

=2 (1-Ply; > 0lp;l)
Wi(1 +6)[In(1 + 6)]?

E,[R;|pj] =

Omin

5.7.3 Proof of Proposition 2

Proof. Our goal is to prove that the PF load balancing scheme can always achieve
equal or lower cell load than the RR load balancing scheme. Formally, consider
a traffic (w;, w,) € Ogrr. Let by and b, denote the offload bias in RR load balanc-
ing scheme. Denote the cell load achieved under RR load balancing scheme as
PE1, PE2, and ps. Denote the cell load achieved under PF load balancing scheme

as Pry» Ppy» Ps- Our goal is to prove that: there exists b} and b} such that:

’ ’ ’
PE1 2 PE1> PE2 2 PE)> PS 2 Ps-

This can be proved by determining b and b/ as follows:

1+ b : Rg1 + bllRS ’
b, - RsD,
1+ b2 : Rg, + b’st '

Note that, such b and b} always exist in R,.

First of all, stochastic variables Rg and Rg; are independent because the po-
sitions of different tiers of BSs are assumed to be independent. Hence, 1/Rs and
Rg; are independent. Owing to this fact, it is possible to focus on Rg; and consider
Rs as a constant. Second, function f(x) = 1/(1 + ax) is concave when a, x > 0.

Based on this two facts, according to Jensen’s inequality,

b\ /Rs ]< E[b|/Rs] E[b|/Rs]

b, +Rgi/Rs |~ b, + E[Rei/Rs]  E[b, + Rei/Rs]’
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Applying Jensen’s inequality once again,

E[b}/Rs]
E[b] + Rg1/Rs]

E[1/Rs|E| ————1.
< E[1/Rs] [b'1+RE1/Rs]

Combining the above inequalities, the following inequality holds:

b [ 1 Rl I %
E|l—|=E|m——-+—|E|=—|2E|7m———F+].
1+ b Rg R + bllRS Rq Rg; + b’le
Hence,
b] 1 w1 bll w1
= gl |Lsp|— o
PEI 1+ bl [Rs] Ay Rg; + bllRS Ay PE1

Following the same approach, it can be proved that:

1 1
El—I|2E|m——+|.
1+ bl [REI] Rg; + b’lej|
This proves the following inequalities and hence proves the proposition.

PE2 > Pras Ps 2 5.
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Figure 5.6: Cell loads when the RR or PF load balancing schemes are applied.
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Figure 5.9: Dynamics of cell load after after a sufficiently long time of learning.
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Figure 5.10: Average cell load in one week as the learning algorithm proceeds.
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Conclusions

This thesis aims to reduce MAC delay in densely deployed wireless communica-

tion system by airtime resource management.

In the first topic, a reinforcement learning-based spatial reuse scheme is pro-
posed. When the agent overhears an on-going transmission, it utilizes the infor-
mation in the detected frame header to identify the interferer and decides whether
or not to freeze the backoff counter accordingly. The proposed scheme is evalu-
ated under various scenarios through simulations. Specifically, the composition
of MAC layer service time is analyzed. The proposed scheme reduces the time
of freezing the backoff counter while keeping the number of failed transmissions
low. This confirms that, on the one hand, the agent learns to transmit concur-
rently with those OBSS interferers whose interference is tolerable at the receiver.
On the other hand, the agent learns to refrain from transmitting concurrently with
those interferers whose interference is not tolerable at the receiver. Moreover, the
concept of state partition in MDP is utilized to study the performance gains due
to making non-binary identifications of interferers on exploiting spatial reuse in
WLANS. A theoretical bound on the gains in value function due to identifying

interferers is obtained.

In the second topic, to mitigate the FIM starvation in densely deployed WLANSs,
distributed channel selection schemes are proposed to reduce the number of three-
node-chain topologies on the contention graph. The proposed channel selection
schemes are conducted in a distributed manner, requiring limited knowledge of

the topology. Moreover, the schemes are formulated in the framework of strate-
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gic form game. Payoff functions are designed so that the games are proved to be
potential games. Simulations confirmed the convergence of the proposed scheme
with payoff functions 1 and 2. Simulation results also proved the effectiveness of
the proposed schemes in reducing the number of three-node-chain topologies and
in enhancing the percentile throughput.

In the third topic, the load balancing problem in a multi-operator RAN sharing
scenario has been investigated. Each operator strategically decides the fraction
of the traffic offloaded to the shared RAN without exchanging the private traffic
demand information. Through theoretical derivations and simulation results, it is
demonstrated that the PF load balancing scheme admits more traffic than the RR
load balancing scheme. On the other hand, it impairs the inter-operator resource
isolation. In other words, the offloading decision made by one operator affects the
cell load of the exclusive band of the other operators. The game is proved to be
a potential game at least when the RR load balancing scheme is applied. Owing
to the existence of potential function, a fully distributed reinforcement learning
algorithm is guaranteed to guide multiple operators to the NE upon convergence.
Numerical evaluations demonstrate that the cell loads of different RANs are well-
managed without exchanging any information among operators.

It is expected that the schemes and analytical results proposed in this thesis
can provided candidate technologies or guidelines for the next generation wireless
communications and wireless networkings. Note that, the main topic of this thesis
is focusing on reducing the average MAC delay. Few attention, however, has been
paid to study the delay in the worst case. In the future works, it is indispensable
to study the methods of stabilizing the MAC delay under environmental changes,
such as the changes of topologies and traffic patterns. To support the real-time
applications, it is important to provide deterministic guarantees and robustness to

various environmental changes.
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