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ABSTRACT
Extreme outliers of wind power fluctuation are a source of severe damage to power systems. In
our previous work, we proposed amodelling framework, verified its usefulness via real data, and
developed a model-based evaluation method of the impact of such extreme outliers. However,
it has been a drawback that the obtained estimates of frequency fluctuation of power systems
are sometimes excessively conservative for their practical use. To overcome this weakness, the-
ory and methods for tightening the fluctuation estimates are investigated in this paper. This is
done by applying a robust performance analysis method of a Lur’e system to the error analy-
sis of stochastic linearization. The usefulness of our proposed method is shown through a load
frequency control model.
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1. Introduction

In many engineering problems, it is important to eval-
uate the effect of probabilistic uncertainty. Stochastic
dynamical models play an important role in such eval-
uation. In particular, a linear stochastic system driven
by a Wiener process is a popular framework. The great
advantage is that its various statistical properties are
explained byGaussian distributions; see e.g.H2-control
design, Kalman filtering [1]. On the other hand, in
recent years, it has been pointed out that the fluctu-
ation of wind power generation is usually small, but
it takes extremely large values due to the occurrence
of wind gusts and turbulence at a non-negligible fre-
quency. These outliers bring about large frequency
fluctuation to power systems interconnected to wind
energy [2]. Therefore, Gaussian distributions whose
tails decay rapidly are not suitable for modelling wind
power fluctuation.

In view of this, the authors proposed a modelling
method for such uncertainty using stable processes [3].
Here, stable processes can represent extreme outliers
that obey a power law. In [4], the authors verified based
on real data that wind power fluctuation can be well
modelled by this proposed framework. To the best of
our knowledge, this is the only result of building a
dynamical model of wind power fluctuation taking its
power law tail into an explicit account.

Concerning model-based analysis of power systems,
nonlinearities such as saturation and rate limiter of
power generation are crucial. Consequently, it is dif-
ficult to analyse their behaviour analytically, and we

usually rely on Monte Carlo simulations. Note that,
because power systems require a very high resilience to
perturbations, it is indispensable to properly assess risks
with guaranteed accuracy. However, the relationship
between the number of Monte Carlo samples and their
accuracy is not trivial. To make matters worse, a huge
sample size is often required to capture the effect of
extreme outliers [5]. To resolve these issues, a stochastic
linearization method [6,7] is extended for the systems
driven by stable processes based on their mathematical
similarity to Gaussian distributions [3]. Moreover, our
previous work [3,8] derived theoretical error bounds
for stochastic linearization to guarantee the accuracy
of the approximation. This makes it possible to per-
form approximate evaluations with guaranteed accu-
racy without generating any sample paths. A remaining
drawback of our proposed framework has been that the
obtained bounds are sometimes excessively conserva-
tive for their practical use.

Contribution: The goal of this paper is to overcome
this weakness to developmethods for the assessment of
power systemfluctuation subject to extreme outliers. To
this end, in this paper, we exploit the fact that the pro-
posed error analysis can be seen as robust performance
analysis of a Lur’e system having diagonal nonlinear-
ity. This enables us to apply a scaling approach used to
reduce the conservativeness of the small gain condition
for structured uncertain systems [9]. The present paper
shows that this method is also effective for the error
analysis of stochastic linearization. This is not trivial
due to the heavy-tailed stochasticity in the dynamics.
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Actually, limits and expectation in the proof of themain
result in [8] are interchanged partially carelessly. Its the-
oretically rigorous justification is also provided in this
paper; see Appendix 2. Finally, it should be noted that
the proposed evaluation method is applicable to analy-
sis and synthesis of various systemswhich have extreme
outliers.

Organization: This paper is organized as follows:
In Section 2, we provide mathematical preliminaries
and formulate our problem. In Section 3, we derive
novel error bounds for stochastic linearization via scal-
ing. In Section 4, its usefulness is shown through a
load frequency control (LFC) model. Some concluding
remarks are given in Section 5.

Notation: The set of real numbers is denoted by
R. The imaginary unit is denoted by j. The identity
matrix is denoted by I. For a matrix A ∈ R

n×n, we
write A � 0 (resp. ≺ 0) if A is symmetric and posi-
tive (resp. negative) definite. For A � 0, A1/2 denotes
the unique positive definite square root. Let (�,F ,P)
be a complete probability space equipped with a natu-
ral filtration {Ft}t≥0. The expectation is denoted by E.
Only when we need to specify the underlying proba-
bility distribution, or conditioning, will this be shown
in the subscript. For a stochastic process {xt}, the con-
vergence in law [10,11] to a random variable x∞ is

denoted by xt
d−→ x∞. The probability distribution of

x∞ is referred to as the stationary distribution of xt . The
vector 1-norm and Euclidean norm is denoted by ‖ · ‖1
and ‖ · ‖, respectively. The matrix norm induced by
the vector 1-norm is denoted by ‖ · ‖1ind , i.e. ‖A‖1ind =
max1≤j≤n

∑m
i=1 |aij|, A = (aij) ∈ R

m×n. For α ∈ [1, 2]
and a real-valued function f (t) defined on t ≥ 0, the
Lα-norm of f is defined by

‖f ‖Lα :=
(∫ ∞

0
|f (t)|α dt

)1/α
(1)

provided that it is finite. The gamma function � is
defined by

�(s) :=
∫ ∞

0
ts−1 e−t dt, s > 0. (2)

2. Preliminaries

2.1. Stable process

In this paper, we deal with systems driven by stable pro-
cesses. Here, we briefly introduce them. We begin with
an extension of a Gaussian distribution [12].

Definition 2.1: A real-valued random variable X is
said to have a symmetric stable distribution with
parameter α ∈ (0, 2] and σ > 0, simply denoted by
X ∼ SαS(α, σ), if its characteristic function satisfies

E[exp(jνX)] = exp(−σα|ν|α), ν ∈ R. (3)

Figure 1. Density function pα(x) of the stable distribution
SαS(α) for different α (a) and on a log–log plot (b).

The parameter α represents the degree of non-
Gaussianity. In particular, SαS(2, σ) coincides with the
Gaussian distribution with zero-mean and variance
2σ 2. The scale parameter σ acts like the standard devi-
ation of the Gaussian distribution. The parameter is
omitted when σ = 1 such as X ∼ SαS(α). For X ∼
SαS(α), we have

κX ∼ SαS(α, |κ|), κ ∈ R (4)

by definition. We write Xt
d−→ SαS(α, σ) when Xt

d−→
X∞ such thatX∞ ∼ SαS(α, σ). The property of the tail
of stable distributions is characterized as follows [12,
Property 1.2.15].

Proposition 2.1: For X ∼ SαS(α),α ∈ (0, 2),
lim
λ→∞

λαP (X > λ)

=

⎧⎪⎨
⎪⎩

1 − α

2�(2 − α) cos
(
πα
2
) (α �= 1)

1
π

(α = 1)
. (5)

This is a power law of the stable distribution. In
Figure 1, the probability density function pα(x) of the
stable distribution SαS(α) is plotted for differentα. Due
to its power law, the slope of pα(x) on a log–log plot
approaches−(α + 1) as x → ∞ except for α = 2. As α
becomes small, the resulting distribution has a heavier
tail.

Next, we extend the notion to stochastic processes.
A Wiener process can be generalized in a similar way
to Definition 2.1.

Definition 2.2: A stochastic process {Lt}t≥0 is said to
be a (normalized) α-stable process with parameter α if

Lt ∼ SαS(α, t1/α). (6)

Every α-stable process is a Lévy process, that is,
it has stationary independent increments. Stable pro-
cesses include a Wiener process (α = 2). Finally, sim-
ilarly to the Ito integral for the Wiener process, we can
introduce a stochastic differential equation associated
with stable processes [12, Chapter 3].
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Next, consider the following linear system driven by
a stable process:

dxt = Axt dt + b dLt , yt = cxt (7)

where A ∈ R
n×n is Hurwitz, b, c� ∈ R

n, and {Lt} is an
α-stable process with α ∈ (1, 2]. Then, the stationary
behaviour is characterized as follows [3, Theorem 2].

Proposition 2.2: For (7) with α ∈ (1, 2],

yt
d−→ SαS(α, ‖c eAtb‖Lα ) (8)

holds where the Lα-norm is defined in (1).

This analytical tractability is a great advantage of
the stable processes over other stochastic processes
having a power law. For example, although Student’s
t-distribution also has a power law and is widely
used to model extreme outliers, its associated stochas-
tic process [13] cannot replace the stable process in
Proposition 2.2.

2.2. Problem formulation

This paper focuses on a system consisting of a linear
system and saturation nonlinearity in Figure 2:

dxt = Axt dt + But dt + b dLt , (9)

zt = czxt , (10)

yt = Cyxt , (11)

ut = satd(yt), (12)

where xt ∈ R
n, ut ∈ R

r, zt ∈ R, yt ∈ R
r denote the

state, control input, evaluation output, and observation
variables, respectively. The matrices A,B, and Cy have
compatible dimensions, and b, c�z ∈ R

n. The stochastic
input {Lt} is an α-stable process with parameter α > 1,
and

satd(y) :=

⎡
⎢⎣
satd1(y1)

...
satdr(yr)

⎤
⎥⎦ , y ∈ R

r (13)

with the given threshold vector d ∈ [0,∞)r and

satdj(yj) :=
⎧⎨
⎩

−dj, yj < −dj,
yj, |yj| ≤ dj,
dj, yj > dj,

(14)

where yj (resp. dj) is the jth element of y (resp. d).
Then, we are ready to state our problem.

Problem 2.1: Consider the feedback system with sat-
uration given above. Suppose that (A + BKCy) is Hur-
witz for anyK ∈ {diag(k1, . . . , kr) : kj ∈ [0, 1]} and that
x0 has finite pth moment for some p ∈ (1,α), and xt
converges in law to a random variable x∞ valued in

Figure 2. Block diagram for Problem 2.1.

Figure 3. Static nonlinearities (solid) and linearizations (chain).
(a) Saturation. (b) Relay. (c) Deadzone and (d) Friction.

R
n as t → ∞. Then, given an approximate stationary

distribution of zt by a linearization of the saturation,
guarantee its accuracy.

Thanks to Proposition 2.2, we can obtain the station-
ary distribution of zt once the nonlinearity is approxi-
mated by a suitable linear gain. To bemore precise, if we
replace satd by K ∈ {diag(k1, . . . , kr) : kj ∈ [0, 1]}, then

zt
d−→ SαS(α, ‖cz e(A+BKCy)tb‖Lα ).

However, it is not trivial

(1) how to choose K, and
(2) how to guarantee the accuracy.

The former question has been thoroughly studied
in our work [3] based on stochastic linearization; see
Appendix 3 for its brief review. In this paper, we shed
light on the latter question.

Remark 2.1: Although we deal only with the satu-
ration nonlinearity in this paper, our analysis can be
applied to other nonlinearities as shown in Figure 3.
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3. Error analysis of linearization

3.1. Theoretical error bounds

For the error analysis of the linearization by K ∈
{diag(k1, . . . , kr) : kj ∈ [0, 1]}, we apply the loop shift-
ing in Figure 4 to obtain

dxt = (A + BKCy)xt dt + Būt dt + b dLt , (15)

ūt = ψ(yt), (16)

with (10) and (11) where

ψ(y) := satd(y)− Ky. (17)

Thanks to the linearity of the dynamics, the solutions
to

dx̃t = (A + BKCy)x̃t dt + b dLt , (18)

dδt = (A + BKCy)δt dt + Būt dt (19)

with x̃0 = x0, δ0 = 0 satisfy

xt = x̃t + δt . (20)

See the block diagram in Figure 5. Stochastic lineariza-
tion approximates x∞ by x̃∞ which satisfies czx̃∞ ∼
SαS(α, ‖cz e(A+BKCy)tb‖Lα ). It is, therefore, crucial for
the error analysis to evaluate δt . The main difficulty lies
in the fact that δt is a signal generated in the nonlinear
feedback loop.

In order to state the main result, let us define

σj(K) := ‖Cyj e(A+BKCy)tb‖Lα , (21)

ν(σ , k, d) := EY∼SαS(α,σ)[|satd(Y)− kY|], (22)

ηj(K) := ν(σj(K), kj, dj), (23)

where Cyj is the jth row of Cy, and K ∈ K :=
{diag(k1, . . . , kr) : kj ∈ [0, 1]}. Also, define the scal-
ing set S := {diag(s1, . . . , sr) : sj > 0}. Here, we derive
a novel error bound using scaling [9]. The proof is
provided in Appendix 1.

Figure 4. Block diagram for the loop shifting.

Figure 5. Nonlinear feedback loop generating the error
signal δt .

Theorem 3.1: In Problem 2.1, given K = diag(k1, . . . ,
kr) ∈ K and S = diag(s1, . . . , sr) ∈ S , define

ζ := max
1≤j≤r

ζj, ζj := max{kj, 1 − kj}, (24)

ηy := ‖SCy e(A+BKCy)tBS−1‖1•, (25)

ηz := ‖cz e(A+BKCy)tBS−1‖1•, (26)

where ‖ · ‖1• for a matrix-valued function f (t) is defined
by

‖f ‖1• :=
∫ ∞

0
‖f (t)‖1ind dt

provided that it is finite. Then, if ζηy < 1,

E := lim sup
t→∞

E[|cz(xt − x̃t)|] ≤ ηz

1 − ζηy

r∑
j=1

sjηj(K).

(27)

The obtained error bound can be understood intu-
itively as follows: First, we consider the case S = I cor-
responding to the previous result [8]. The L1-gain [14]
of Cy(sI − (A + BKCy))

−1B is less than or equal to ηy.
Therefore, ζ and ηy can be viewed as (incremental) gain
upper bounds of the static nonlinearityψ(·) and the lin-
ear system from ūt to yt , respectively. Consequently, the
assumption ζηy < 1 plays a role of a small gain condi-
tion to ensure the stability of the nonlinear feedback
loop in Figure 5. Under this condition, 1/(1 − ζηy)

can be seen as the sensitivity function that characterizes
how much the signal added to ūt , which is related to∑r

j=1 ηj(K), affects ūt . Similarly, ηz is the gain of the lin-
ear system from ūt to zt . The upper bound in (27) is the
product of these three terms. Next, consider a general
scaling S ∈ S . This amounts to inserting S and S−1 into
the system as shown in Figure 6.We emphasize that this
system is no longer equivalent to the original system in
Figure 4 due to the nonlinearity of ψ(·). Nevertheless,
the same interpretation as explained above applies to
this case. For instance, ηy can be regarded as the gain of
the linear system from ū′

t to y′
t in Figure 6.
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Figure 6. Block diagram with a scaling.

When the mean absolute value of zt is of interest in
Problem 2.1, one can use

E[|czx̃∞|] − E ≤ E[|czx∞|] ≤ E[|czx̃∞|] + E , (28)

which follows from (27), the triangle inequality, and
Lemma A.1 in Appendix 2. By applying czx̃∞ ∼
SαS(α, ‖cz e(A+BKCy)tb‖Lα ) to [15, Example 25.10], we
have

E[|czx̃∞|] = 2‖cz e(A+BKCy)tb‖Lα
π

�

(
1 − 1

α

)
.

In addition, we can employ [8, Theorem 2] to compute
ηj(K) by numerical integration, which is computation-
ally much more effective than Monte Carlo methods.
Hence, it is not necessary to generate samples at all in
computing the error bound in Theorem 3.1.

Note that one of the diagonal elements in scaling
matrices can be normalized to 1 since for any γ > 0,

ηy = ‖(γ S)Cy e(A+BKCy)tB(γ S)−1‖1•, (29)

ηz

r∑
j=1

sjηj(K)

= ‖cz e(A+BKCy)tB(γ S)−1‖1•
r∑

j=1
γ sjηj(K). (30)

Applying some modifications to the proof of
Theorem 3.1, we obtain another type of the error
bound. The proof is given in Appendix 1.

Corollary 3.1: In Problem 2.1, given K = diag(k1, . . . ,
kr) ∈ K and S = diag(s1, . . . , sr) ∈ S , define

ηyj := ‖sjCyj e(A+BKCy)tBS−1‖1◦, j = 1, . . . , r,

η̃z := ‖cz e(A+BKCy)tBS−1‖1◦,
where ‖ · ‖1◦ for a vector-valued function f (t) is defined
by

‖f ‖1◦ :=
∫ ∞

0
‖f (t)‖ dt

provided that it is finite. Then, if
∑r

j=1 ζjηyj < 1,

E = lim sup
t→∞

E[|cz(xt − x̃t)|]

≤ η̃z

1 − ∑r
j=1 ζjηyj

r∑
j=1

sjηj(K) (31)

where ζj is defined in (24).

The condition
∑r

j=1 ζjηyj < 1 may be milder than
that of Theorem 3.1 when some of kj, j = 1, . . . , r are
close to 1/2 while the others are close to 0 or 1.

3.2. Choice of a scaling

Differently from the previous error bounds in [8], we
can relax the condition required to obtain the bounds
and tighten them by choosing a suitable scaling. Espe-
cially when one wants to find a scaling that satisfies
ζηy < 1 in Theorem 3.1, it is reasonable to minimize
ηy with respect to S ∈ S since ζ is a constant. In addi-
tion, we can expect a smaller ηy makes 1/(1 − ζηy)

smaller, and the right-hand side of (27) as well. Unfor-
tunately, the authors are not aware of any method to
efficiently find S that directly minimizes ηy. Instead, we
minimize an upper bound of ηy given by the following
proposition.

Proposition 3.1: Define G(s) := Cy(sI − (A +
BKCy))

−1B and let ν be McMillan degree of G(s). Then,
for any S ∈ S ,

ηy = ‖SCy e(A+BKCy)tBS−1‖1•
≤ 2ν

√
r‖SGS−1‖H∞ =: η̄y (32)

where ‖ · ‖H∞ is the H∞-norm.

Proof: It can be shown that∫ ∞

0
‖SCye(A+BKCy)tBS−1‖2ind dt ≤ 2ν‖SGS−1‖H∞

(33)

where ‖ · ‖2ind is the matrix norm induced by the
Euclidean norm; see [16]. We also have

1√
r
‖Ā‖1ind ≤ ‖Ā‖2ind (34)

for any Ā ∈ R
r×r; see [17]. Combining (33) and (34),

we obtain (32). �

The problem of finding a scaling that minimizes η̄y
can be solved efficiently using the following proposi-
tion.

Proposition 3.2: Consider the scaling set S and a
continuous-time transfer function T(s) of (not neces-
sarily minimal) realization T(s) = C̄(sI − Ā)−1B̄ where
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Ā ∈ R
n×n, B̄ ∈ R

n×r, and C̄ ∈ R
r×n. For any γ > 0, the

following statements are equivalent.

(i) Ā is Hurwitz and there exists S̄ ∈ S such that

‖S̄1/2TS̄−1/2‖H∞ < γ . (35)

(ii) There exist positive definite solutions X and S̄ ∈ S
to the linear matrix inequality (LMI):[

Ā�X + XĀ + C̄�S̄C̄ XB̄
B̄�X −γ 2S̄

]
≺ 0. (36)

Proof: Using the strict bounded real lemma [18], (i) is
equivalent to the condition:

∃X � 0, ∃S̄ ∈ S

:
[
Ā�X + XĀ + C̄�S̄C̄ XB̄S̄−1/2

S̄−1/2B̄�X −γ 2I

]
≺ 0. (37)

By left and right multiplying the left-hand side of (37)
by diag(I, S̄1/2), we obtain (ii). �

Note that the LMI (36) can be solved by convex opti-
mization techniques [19,20]. In addition, by the proof,
a solution S̄ ∈ S to the LMI (36) satisfies (35), and vice
versa. Hence, the scaling S = S̄1/2 ∈ S that minimizes
η̄y can be found efficiently by replacing Ā by the Hur-
witz matrix (A + BKCy) and performing a bisection
search on γ .

4. Numerical example: uncertainty
assessment of wind power generation

4.1. Model description

In this section, we apply the proposed framework to
evaluate the frequency fluctuation of power systems
interconnected to wind energy. In particular, we con-
sider two types of thermal generators: a coal genera-
tor and a combined cycle thermal unit. The latter can
change its output at a faster rate, but takes a higher fuel
cost than the former. From an economic point of view, it
is preferable to increase the ratio of the former capacity
to the latter one. However, the excessive increase leads
to the situation that the output of the thermal power
generators cannot follow the abrupt change of wind
power. Hence, it is important to balance the ratio. This
is why we model the two types of the thermal genera-
tors separately. Specifically, we utilize the LFCmodel in
Figure 7. The physical meaning of each signal and block
is

• t: time,
• nt : wind power fluctuation,
• et : power deviation,
• ft : frequency deviation,
• v1t , v2t : power adjustment by LFC units,

• W: frequency domain model of the wind power
fluctuation,

• P1: physical inertia, e.g. load characteristics and sys-
tem inertia of the power system,

• P21, P22: thermal power generators for LFC,
• P31, P32: characteristics of LFC units.

The values of d1, d2 > 0 represent the capacity of the
thermal power generators and largely affect the running
cost and the resulting frequency deviation.

Considering the 1500MW interconnected wind
power case, and based on the discussion in [4,7], we
take d1 = 25MW, d2 = 35MW, kfq = 1/250Hz/MW,
kfb1 = 0.75, kfb2 = 0.10,

P1 = 1
8s + 1

, P21 = 1
1

0.15 s + 1
,

P22 = 1
1

0.05 s + 1
, P31 = 0.4

2s + 1
,

P32 = 0.9
5s + 1

, W = 0.0021 × 1500
s + 0.001

,

and set the non-Gaussian parameter of Lt as α = 1.755.
The time constant of P21 corresponding to a combined
cycle thermal unit is shorter than that of P22 for a coal
generator. In summary, the dynamics in Figure 7 with
zt = ft are given by (9) to (12) with

xt = [
et y1t y2t v1t v2t nt

]� ,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1/8 0 0 −1/8 −1/8 1/8
0.1125 −0.15 0 0 0 0
0.005 0 −0.05 0 0 0
0 0 0 −1/2 0 0
0 0 0 0 −1/5 0
0 0 0 0 0 −0.001

⎤
⎥⎥⎥⎥⎥⎥⎦
,

B =
[
0 0 0 0.2 0 0
0 0 0 0 0.18 0

]�
,

Cy =
[
0 1 0 0 0 0
0 0 1 0 0 0

]
,

cz = [1/250 0 0 0 0 0] ,

b = [0 0 0 0 0 0.0021 × 1500]� .

4.2. Simulation result

In order to assess the resulting average frequency fluc-
tuation, we approximately compute E[|f∞|]. We deter-
mine the linearized gain

K =
[
0.1683 0

0 1.000

]
(38)

by the algorithm proposed in [3]; see Appendix 3 for
detail. In the linear dynamics where the saturation is
replaced by K, it readily follows from Proposition 2.2
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Figure 7. Block diagram of the load frequency control system.

that ft converges to a stable distribution which suggests

E[|f∞|] � 0.5378Hz. (39)

To quantify the accuracy of the approximation, we com-
pute error bounds by Theorem 3.1. First, we consider
the case without scaling corresponding to the previ-
ous result [8], i.e. S = I. Although, for this case, ζηy =
0.6955 < 1, and we can obtain an error bound

0.5378Hz − 0.1588Hz ≤ E[|f∞|]
≤ 0.5378Hz + 0.1588Hz, (40)

this is too conservative.
Next, we find the scaling that minimizes η̄y:

S∗ =
[
0.4364 0

0 1.793

]
. (41)

For S∗, we obtain

ηy(S∗) = 0.4198, ζηy = 0.4198 < 1, (42)

and an error bound is given by

0.5378Hz − 0.0492Hz ≤ E[|f∞|]
≤ 0.5378Hz + 0.0492Hz. (43)

This is much tighter than (40). For comparison pur-
pose, we compute the scaling that directly minimizes
ηy by a parameter sweep in S ∈ {diag(s1, s2) : sj > 0}.
It suffices to search over (s1, s2) ∈ (0, 1] × (0, 1] due
to (29) and (30). However, in this case, either s1 or s2
cannot be normalized beforehand. We naively divide
(0, 1] into 250 equal intervals since properties of ηy(S)
such as its convexity are not revealed. The obtained
scaling is

S∗∗ =
[
0.2440 0

0 0.6680

]
, (44)

and

ηy(S∗∗) = 0.3825, ζηy = 0.3825 < 1. (45)

Then, the corresponding error bound is

0.5378Hz − 0.0442Hz ≤ E[|f∞|]
≤ 0.5378Hz + 0.0442Hz. (46)

In this case, there is not much difference between
the error bounds (43) and (46). This implies that we
can find a sufficiently suitable scaling and obtain a
tight error bound by the proposed method. Finally, we
emphasize that when the dimension r becomes larger,
e.g. when rate limiters are contained in a power system
model (r = 4), the parameter sweep is no longer realis-
tic. Even for our example (r = 2), the computation time
of ηy for each S is about 0.05 seconds, and the parameter
sweep takes about 1 hour. On the other hand, the pro-
posedmethod takes 1 second. The advantage of the pro-
posed method in terms of computation time becomes
significant especially whenwe design controller param-
eters while referring to the uncertainty evaluation. In
this case, we need to recompute the error bound when-
ever the controller parameters are changed, and there-
fore the parameter sweep is impractical.

5. Conclusion

In this paper, we have derived novel theoretical error
bounds for stochastic linearization of a class of feed-
back systems. Specifically, we have analysed the effect
of scaling on stochastic Lur’e systems, and proposed
how to choose a suitable scaling efficiently. This makes
it possible to assess uncertainties containing extreme
outliers with high reliability, and our proposed method
becomes applicable to a much broader range of sys-
tems. Furthermore, we have examined that the pro-
posed method can evaluate the impact of wind power
on the power system.
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Appendices

Appendix 1. Proof of Theorem 3.1 and
Corollary 3.1

A.1 Theorem 3.1

In what follows, the following explicit representation is
employed:

δt = e(A+BKCy)(t−t′)δt′ +
∫ t

t′
e(A+BKCy)(t+t′−s)Bψ(ys) ds,

(A1)

for any t > t′ > 0. We ignore the first term since it vanishes
as t → ∞ independent of the choice of t′. This implies that

E[‖C̃yδt‖1] ≤ ηy · sup
s≥t′

E[‖ψ̃(ys)‖1], t > t′ (A2)

where C̃y := SCy, ψ̃(y) := Sψ(y). Furthermore, due to the

assumption xt
d−→ x∞ and Lemma A.2 in Appendix 2,

lim
t′→∞

sup
s≥t′

E[‖ψ̃(ys)‖1] = lim
t→∞ E[‖ψ̃(yt)‖1]

(
= E[‖ψ̃(Cyx∞)‖1]

)
. (A3)

In summary,

Ey := lim sup
t→∞

E[‖C̃yδt‖1] ≤ ηy · lim
t→∞ E[‖ψ̃(yt)‖1]. (A4)

By the same argument,

E ≤ ηz · lim
t→∞ E[‖ψ̃(yt)‖1] (A5)

also holds.
Next, the inequality

|ψj(y +�)|
≤ |ψj(y)| + ζj|�j|, y,� = [�1, . . . ,�r]� ∈ R

r ,
(A6)

where ψj is the jth element of ψ , yields

lim
t→∞ E[‖ψ̃(yt)‖1] =

r∑
j=1

sj · lim
t→∞ E[|ψj(yt)|]

≤
r∑

j=1
sj
(
lim sup
t→∞

E[|ψj(Cyx̃t)| + ζj|Cyjδt|]
)

≤
r∑

j=1
sj · lim

t→∞ E[|ψj(Cyx̃t)|]

+
r∑

j=1
ζj · lim sup

t→∞
E[|sjCyjδt|]

≤
r∑

j=1
sjηj(K)+ ζEy

≤
r∑

j=1
sjηj(K)+ ζηy · lim

t→∞ E[‖ψ̃(yt)‖1], (A7)

where Cyjx̃t
d−→ SαS(α, ‖Cyj e(A+BKCy)tb‖Lα ), Lemma A.2,

and (A4) are applied. Therefore, under the assumption ζηy <
1,

lim
t→∞ E[‖ψ̃(yt)‖1] ≤ 1

1 − ζηy

r∑
j=1

sjηj(K). (A8)

Finally, this inequality with (A5) completes the proof.

A.2 Corollary 3.1

First, instead of C̃yδt in (A2), we estimate each of its compo-
nent from above as follows.

E[|C̃yjδt|] ≤ ηyj · sup
s≥t′

E[‖ψ̃(ys)‖], t > t′ (A9)

where C̃yj is the jth row of C̃y = SCy. Then similarly to the
proof of Theorem 3.1, we obtain

lim sup
t→∞

E[|C̃yjδt|] ≤ ηyj · lim
t→∞ E[‖ψ̃(yt)‖]. (A10)

By the same argument, it holds that

E ≤ η̃z · lim
t→∞ E[‖ψ̃(yt)‖]. (A11)

Next, similarly to (A7), we get

lim
t→∞ E[‖ψ̃(yt)‖] ≤

r∑
j=1

(
sjηj(K)+ ζjηyj limt→∞ E[‖ψ̃(yt)‖]

)
.

(A12)

Here, we applied (A10) and

E[‖ψ̃(yt)‖] ≤
r∑

j=1
E[|ψ̃j(yt)|],

where ψ̃j is the jth element of ψ̃ . Hence, under the assump-
tion

∑r
j=1 ζjηyj < 1, we obtain the desired result.

Appendix 2. Interchange of limits and
expectation

Here, we provide results to guarantee that the interchange of
limits and expectation is valid. In our problem setting, the
interchangeability is not trivial due to the power law of the
stable process.

Lemma A.1: In Problem 2.1, for any constant vector c ∈ R
n

and the solutions to (9)–(12) and (18),

lim
t→∞ E[|c�xt|] = E[|c�x∞|], (A13)

lim
t→∞ E[|c�x̃t|] = E[|c�x̃∞|]. (A14)

Proof: Note that, by the assumption xt
d−→ x∞ and

Proposition 2.2,

c�xt
d−→ c�x∞, c�x̃t

d−→ c�x̃∞.

By showing that

sup
t

E[|c�xt|p] < +∞, sup
t

E[|c�x̃t|p] < +∞ (A15)

for some p> 1, we can prove this lemma; see [21,
Theorem 3.5, (3.18)]. In what follows, we show that (A15)
is satisfied for p = p̄ where p̄ ∈ (1,α) and x0 has finite p̄th
moment. Equation (18) admits the explicit strong solution

x̃t = e(A+BKCy)t x̃0 +
∫ t

0
e(A+BKCy)(t−s)b dLs,
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and therefore we have

E[|c�x̃t|p̄]

= E

[∣∣∣∣c� e(A+BKCy)t x̃0 +
∫ t

0
c� e(A+BKCy)(t−s)b dLs

∣∣∣∣
p̄
]
.

(A16)

By applying the triangle inequality and the following inequal-
ity

(
x + y
2

)p
≤ xp + yp

2
, ∀ x, y ≥ 0, ∀ p ≥ 1 (A17)

to (A16), we obtain

E[|c�x̃t|p̄] ≤ 2p̄−1
(

E[|c� e(A+BKCy)t x̃0|p̄]

+ E

[∣∣∣∣
∫ t

0
c� e(A+BKCy)(t−s)b dLs

∣∣∣∣
p̄
] )

≤ 2p̄−1
(

‖(c� e(A+BKCy)t)�‖p̄E[‖x̃0‖p̄]

+ cα,p̄
(∫ t

0
|c� e(A+BKCy)τb|α dτ

)p̄/α )

where cα,p̄ is a constant independent of t, and the last line
follows from [12, Property 3.2.2]. Furthermore, due to the
assumption that (A + BKCy) is Hurwitz,

E[|c�x̃t|p̄] ≤ 2p̄−1
(
γ p̄‖c‖p̄E[‖x̃0‖p̄]

+ cα,p̄
(∫ t

0
|c� e(A+BKCy)τb|α dτ

)p̄/α )
(A18)

where γ is a positive constant, and

lim
t→∞

(∫ t

0
|c� e(A+BKCy)τb|α dτ

)p̄/α

< +∞.

The first termof (A18) is finite since x̃0 has finite p̄thmoment.
The second term is an increasing function of t and bounded
above. In summary,

sup
t

E[|c�x̃t|p̄] < +∞. (A19)

Next, we consider the solution xt . It is given by

xt = eAtx0 +
∫ t

0
eA(t−s)b dLs +

∫ t

0
eA(t−s)Bus ds.

By a similar argument as for x̃t , we obtain

E[|c�xt|p̄] ≤ E

[(∣∣∣∣c� eAtx0 +
∫ t

0
c� eA(t−s)b dLs

∣∣∣∣
+

∣∣∣∣
∫ t

0
c� eA(t−s)Bus ds

∣∣∣∣
)p̄]

≤ 2p̄−1

(
E

[∣∣∣∣c� eAtx0 +
∫ t

0
c� eA(t−s)b dLs

∣∣∣∣
p̄
]

+ E

[∣∣∣∣
∫ t

0
c� eA(t−s)Bus ds

∣∣∣∣
p̄
] )

≤ 2p̄−1

{
E

[∣∣∣∣c� eAtx0 +
∫ t

0
c� eA(t−s)b dLs

∣∣∣∣
p̄
]

+
(
max

i
di ·

∫ t

0
‖(c� eAτB)�‖1 dτ

)p̄}
,

(A20)

where the boundedness of ut ∈ [−d1, d1] × · · · × [−dr , dr]
is utilized in the last line. Note that A is also Hurwitz by the
assumption. Hence, the supremum of the first term of (A20)
is finite for the same reason as the case of x̃t , and

lim
t→∞

(∫ t

0
‖(c� eAτB)�‖1 dτ

)p̄

< +∞.

Therefore we have

sup
t

E[|c�xt|p̄] < +∞. (A21)

This completes the proof. �

LemmaA.2: In Problem 2.1, for the solutions to (9)–(12) and
(18),

lim
t→∞ E[|ψj(Cyxt)|] = E[|ψj(Cyx∞)|], (A22)

lim
t→∞ E[|ψj(Cyx̃t)|] = E[|ψj(Cyx̃∞)|] (A23)

where ψj is the jth element of ψ defined by (17).

Proof: Define a continuous function f (x) := |ψj(Cyx)|.
Then,

f (xt)
d−→ f (x∞) (A24)

holds due to the assumption xt
d−→ x∞ and the mapping

theorem [21, Theorem 2.7]. Hence, similarly to the proof of
Lemma A.1, it suffices to show that

sup
t

E[|f (xt)|p̄] < +∞, (A25)

where p̄ ∈ (1,α) and x0 has finite p̄th moment. In fact, we
have

E

[
|f (xt)|p̄

]
≤ 2p̄−1

E

[
dp̄j + kp̄j |Cyjxt|p̄

]
= 2p̄−1

(
dp̄j + kp̄j E

[
|Cyjxt|p̄

])
. (A26)

This inequality with (A21) implies (A25), and therefore we
obtain (A22). By the same argument, (A23) also holds. �

Appendix 3. Stochastic linearization

We briefly introduce stochastic linearization to determine a
linearized gain proposed in [3]. By Theorem 3 in [3], given
d > 0, σ > 0, and α ∈ (1, 2), the gain k> 0 that minimizes

EY∼SαS(α,σ)[|satd(Y)− kY|] (A27)

is given by

k = min
{
1,

d
γασ

}
(A28)

where γα is a positive constant which satisfies the specific
equation. In view of this, if the stationary distribution of
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yj is approximated by SαS(α, σyj), then it is reasonable to
approximate satdj(yj) by the linear gain

kj = min
{
1,

dj
γασyj

}
. (A29)

Conversely, once each saturation satdj(yj) is approximated by

a linear gain kj, the stationary distribution of yj is given by

SαS(α, ‖Cyj e(A+BKCy)tb‖Lα ) (A30)

by Proposition 2.2. Combining (A29) and (A30), we obtain
the algorithm to determine a linearized gain, that is, we
choose the solution K = diag(k1, . . . , kr) to the coupled
equations

kj = min

{
1,

dj
γα‖Cyj e(A+BKCy)tb‖Lα

}
, j = 1, . . . , r

(A31)

as a linearized gain.
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