1 TITLE

2	Relationship between ankle plantar flexor force steadiness and postural stability on stable and unstable platforms
3	
4	AUTHOR NAMES and AFFILIATIONS
5	Tetsuya Hirono ^{1, 2} , Tome Ikezoe ¹ , Masashi Taniguchi ¹ , Momoko Yamagata ¹ , Kosuke Miyakoshi ¹ , Jun Umehara ¹ ,
6	² , Noriaki Ichihashi ¹
7	
8	1. Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
9	53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
10	2. Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
11	5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
12	
13	CORRESPONDING AUTHOR
14	Tetsuya Hirono. R.P.T., M.Sc.
15	Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
16	53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
17	TEL:+81-75-751-3967
18	hirono.tetsuya.56x@st.kyoto-u.ac.jp
19	ORCID 0000-0002-4337-6249

20 ABSTRACT 21 Purpose 22 This study was aimed at determining the relationship between ankle plantar flexor force steadiness and postural 23 control during single leg standing on stable and unstable platforms. 24 Methods 25 For the thirty-three healthy participants, force steadiness, at target torques of 5%, 20%, and 50% of the maximum 26 voluntary torque (MVT) of the ankle plantar flexors, was measured. Force steadiness was calculated as the 27 coefficient of variation of force. Single leg standing on stable and unstable platforms was performed using the 28 BIODEX Balance System SD. The standard deviation of the anteroposterior center of pressure (COP) 29 displacements was measured as the index for postural control. During both measurements, muscle activities of the 30 soleus were collected using surface electromyography. 31 Results 32 On the stable platform, the COP fluctuation significantly correlated with force steadiness at 5% of MVT (r = 0.512, 33 p = 0.002). On the unstable platform, the COP fluctuation significantly correlated with force steadiness at 20% of 34 MVT (r = 0.458, p = 0.007). However, the extent of muscle activity observed for a single leg standing on both 35 stable and unstable platforms was significantly greater than the muscle activity observed while performing force 36 steadiness tasks at 5% and 20% of MVT, respectively. 37 Conclusion

38 Postural stability during single leg standing on stable and unstable platforms may be related to one's ability to

- 39 maintain constant torque at 5% and 20% of MVT regardless of the muscle activity. These results suggest that the
- 40 required abilities to control muscle force differ depending on the postural control tasks.

42		KEYWORDS
43	force ste	adiness, force fluctuation, plantar flexor, single leg standing, postural control
44		
45		ABBREVIATIONS
46	СОР	center of pressure
47	CV	coefficient of variation
48	EMG	electromyography
49	MVC	maximum voluntary contraction
50	MVT	maximum voluntary torque
51	RMS	root mean square

INTRODUCTION

54	The mechanism for controlling muscle force is important to motor performance. The variability of motor output
55	is generally affected by the variability of a motor unit discharge and environment (Enoka et al. 2003; Moritz et al.
56	2005). Force steadiness is one aspect of muscle force control. The force fluctuations that occur during submaximal
57	muscle contractions at a target-value torque can be quantified as the force steadiness (Tracy 2007a). The
58	quantification of force steadiness is often obtained during isometric contraction, while torque fluctuation is
59	calculated as the standard deviation, or coefficient of variation (CV), of the amplitude of the torque during a task
60	where submaximal steady contractions must be maintained (Enoka et al. 2003; Oomen and van Dieen 2017; Tracy
61	2007a). Force steadiness can be affected by the variance in the common synaptic input received by the motor
62	neurons of concurrently active motor units (Feeney et al. 2018; Kornatz et al. 2005; Moritz et al. 2005; Negro et
63	al. 2009). Aging, neurological disorders, and musculoskeletal disorders can also affect force steadiness
64	(Castronovo et al. 2018; Carlyle and Mochizuki 2018; Tracy and Enoka 2002). For example, force steadiness of
65	the knee extensor muscle was significantly more impaired in older adults with knee osteoarthritis than in age-
66	matched control individuals (Smith et al. 2014). In a comparison between young adults and older adults, force
67	fluctuations are generally greater in older adults, which indicates a lower force control ability among older adults
68	(Enoka et al. 2003; Kallio et al. 2012; Tracy 2007a). In addition, it has been demonstrated that force fluctuations
69	in older adults with a history of falling were less steady during force matching tasks than that in older adults
70	without any history of falling (Carville et al. 2007).

71

The center of pressure (COP) in humans during quiet standing fluctuates continuously with

72	coordination of the lower limb muscles by afferents from muscle and tendon of foot (Van Doornik et al. 2011).
73	Therefore, COP fluctuation can be limited to a person's base of support (Fitzpatrick et al. 1994). However, it was
74	concluded that maximum strength of the lower leg muscles was not associated with postural control ability during
75	quiet standing (Ema et al. 2016). Moreover, a previous study investigating the muscle activities of the extensor
76	digitorium longus, soleus, peroneus longus, and tibialis anterior during single leg standing on stable and unstable
77	surfaces revealed that these muscle activities required 10-50% of the maximum voluntary contraction (MVC)
78	(Cimadoro et al. 2013). Postural control during standing, therefore, would require an ability to modulate
79	submaximal muscle torque rather than exert maximum muscle strength.
80	Among lower limb muscles, the ankle plantar flexor is especially important for postural control,
81	mobility, and other motor functions (Masani et al. 2003; Stenroth et al. 2015). Regarding age-related changes in
82	the force steadiness of ankle plantar flexion, it has been reported that, compared with young adults, force
83	fluctuations of less than 5% of maximum strength was greater (i.e., unsteadiness) in older adults (Tracy 2007a).
84	Additionally, the motor unit discharge rate was decreased, and the variability in the motor unit discharge rate was
85	higher during force steadiness at 10% and 20% of the maximum voluntary isometric torque in older adults (Kallio
86	et al. 2012). Kouzaki and Shinohara (2010) investigated the relationships of ankle dorsiflexor and plantar flexor
87	force steadiness with COP fluctuation during quiet standing and revealed that anteroposterior COP fluctuation
88	was significantly positively correlated to plantar flexor force steadiness at 2.5% and 5% of maximum strength.
89	The results suggest that subjects with greater COP fluctuations have less ability to maintain constant muscle force
90	at low intensity. Furthermore, considering the fact that COP fluctuations during standing could decrease after a 4-

week training of ankle plantar flexor force steadiness (Oshita and Yano 2011), postural stability during standing

92 can be especially affected by ankle plantar flexor force steadiness.

93	Daily activities are often performed not only on stable surface environments, but also on uneven ground
94	(i.e., unstable environments). It is expected that postural control during standing under unstable environment
95	conditions would require greater muscle force exertion and elaborated COP control using lower limb muscles,
96	compared to postural control under stable environment conditions (Cimadoro et al. 2013). In fact, approximately
97	10% of the muscle activity needed for maximum ankle plantar flexor strength would be required for controlling
98	standing posture on a stable platform, whereas approximately 20% of that same muscle activity would be required
99	for controlling standing posture on an unstable platform (Cimadoro et al. 2013). Therefore, it would be expected
100	that postural control ability in a stable environment may be related to force steadiness at a relatively low-intensity
101	torque. On the other hand, one's postural control ability in an unstable environment may be related to force
102	steadiness at a greater intensity torque. However, to our knowledge, no study has examined the relationship
103	between ankle plantar flexor force steadiness and postural control ability in unstable environments. Compared to
104	bipedal standing (Kouzaki and Shinohara 2010; Oshita and Yano 2011), single leg standing would be better suited
105	for detecting balance impairments because of its narrow base of support. Additionally, as the same legs were used
106	for single leg standing and force steadiness tasks, the effects of the contralateral leg, in a single leg standing
107	configuration, could be minimized, unlike in bipedal standing; the effects could also clarify the relationship
108	between force steadiness and postural control. Therefore, the purpose of the present study was to investigate the
109	relationship between ankle plantar flexor force steadiness and postural control for a configuration involving a

110	single leg standing, on both stable and unstable platforms. The hypothesis of the present study was that force
111	steadiness at very low intensity, such as 5% of maximum voluntary torque (MVT), would be correlated with
112	postural control on stable platforms, and that force steadiness at greater intensity would be correlated with postural
113	control on unstable platforms.

METHODS

116	Participants
117	Thirty-three young adults (age: 23 ± 2 yr., height: 166.6 ± 8.3 cm, and body mass: 60.3 ± 11.7 kg), including 19
118	men and 14 women, participated in this study. Inclusion criteria required subjects without a history of
119	neuromuscular disorders or surgery on the legs. The purpose and procedures were explained to the participants
120	before they provided informed written consent to participate in the study. The study was conducted in accordance
121	with the Declaration of Helsinki and approved by the ethics committee of the Kyoto University Graduate School
122	and Faculty of Medicine (R0548-1).
123	
124	Procedure
125	The participants first performed the postural control task, followed by the force steadiness task. For the postural
126	control task, single leg standing with the right leg on either stable or unstable platforms was performed in a random
127	order. During single leg standing, COP displacement was measured. Then, the MVT of the ankle plantar flexors
128	was measured twice. Force steadiness, at intensities of 5%, 20%, and 50% of the MVT of the ankle plantar flexors,
129	was measured twice, in a random order. Force steadiness at 5% of MVT was found to be related to COP fluctuation
130	during conditions of quiet bipedal standing on a stable platform (Kouzaki and Shinohara 2010), while force
131	steadiness at 20% of MVT was observed to be related to the sustainable time of quiet standing with a single leg
132	and eyes closed (Oshita and Yano 2010). In addition, postural control during single leg standing in unstable
133	conditions would require a greater intensity of force steadiness; previous studies (Tracy 2007a, b) have used 50%

134	of MVT as a high intensity of force steadiness. Therefore, intensities of 5%, 20%, and 50% of MVT for force
135	steadiness tasks were selected in the present study. Muscle activities were also measured using surface
136	electromyography (EMG) during postural control, measuring MVT (i.e., maximum voluntary contraction (MVC)
137	for maximum activation), and force steadiness tasks.
138	
139	Measurements of postural control tasks
140	Postural control tasks consisting of single leg standing were performed using the Biodex Balance System SD
141	(Biodex Medical Systems, Shirley, NY, USA). Biodex Balance System SD has eight springs located around the
142	perimeter of the balance platform, and the degree of tilt and COP can be measured via these springs. The
143	participants put their bare right foot on the center of the platform and performed a quiet single leg standing for 40
144	s. Their upper limbs were kept in front their chest, and their hip and right knee angles were kept neutral (i.e., 0°),
145	while their left knee was flexed. The participants were instructed to look at a point 30 cm in front of them while
146	maintaining a natural neck position. They were also instructed as follows: "Please keep your posture upright.
147	When controlling your posture, try to use your ankle joint, with as little hip and knee movement as possible."
148	Single leg standing tasks were performed under stable and unstable conditions in random order. For the
149	stable condition, we selected the mode "static" in the Biodex Balance System SD; the platform was not inclined.
150	For the unstable condition, we selected the mode "dynamic" in the Biodex Balance System SD; the platform could
151	be inclined about its center, in any direction. The Biodex Balance System SD in the "dynamic" mode varies
152	between Level 1 (minimum stability) and Level 12 (maximum stability). In this study, "Level 2" (less stable) was

- 153 used for the unstable condition (Brown et al. 2018). The COP data acquired during the single leg standing trial
- 154 were sampled at 20 Hz and analyzed for 30 s, excluding the first and last 5 s. If a participant touched the platform
- 155 with their left foot, the trial was repeated under the same conditions.
- 156 We focused on the relationship between ankle plantar flexor force steadiness and anteroposterior
- 157 postural stability, because the muscle function of the ankle plantar flexors could be associated with anteroposterior
- 158 postural control. Therefore, in this work, the standard deviation of the anteroposterior COP displacements was
- 159 calculated. In addition, considering the effect of an individual's height and body mass on the center of mass and
- 160 tilt of the platform, the standard deviation of the COP displacements was divided by their height and body mass,
- 161 and used as an index of COP fluctuation.
- 162

163 Measurements of maximum voluntary torque and force steadiness

- 164 The tasks of maximum strength and force steadiness were performed using the Biodex System 4 (Biodex Medical
- 165 Systems, Shirley, NY, USA). The participants were seated with their hips flexed and their right knee fully extended.
- 166 Their trunk, pelvis, and right ankle were fixed with inelastic belts, with their right ankle in a neutral position. The
- 167 torque signals obtained from the dynamometer were sent to a personal computer using the software application
- 168 (MyoResearch XP Master Edition, Noraxon Inc., Scottsdale, Arizona, USA) with a sampling rate of 1500 Hz. The
- 169 exerted torque was processed with a moving root mean square (RMS) 50 ms time window in real time because
- 170 the torque data of plantarflexion via BIODEX included some noise.
- 171 The participants were verbally encouraged to exert the maximum ankle plantar flexion for

172	approximately 3 s. MVT measurements were performed for two trials with a rest interval of more than one minute.
173	The averaged peak torques for the two trials were calculated as an individual MVT. Furthermore, the MVT was
174	divided by the individual's body mass (Nm/kg). Based on the MVT of the ankle plantar flexor, the target torques
175	for the force steadiness tasks were set at 5%, 20% and, 50% of the MVT for individual participants. Each force
176	steadiness task was performed twice, in random order, with a sufficient rest interval. During the force steadiness
177	tasks, the target and exerted torques were shown on the monitor of the personal computer for visual feedback. In
178	a previous study (Tracy 2007a), the time frame for analysis was set to approximately 5 s for a force steadiness at
179	50 % of MVT. With this in mind, the present study set as long a time frame as possible for analysis in order to
180	avoid muscle fatigue. The participants were instructed to exert torque for 25 s; this included a duration of 10 s
181	where the torque was gradually increased from the baseline torque to the target torque and stabilized at this target
182	value. Therefore, the first 10 s of torque data were omitted to ensure that the readings were steady. The force
183	steadiness was identified as measuring the CV of force (100 \cdot standard deviation / mean [%]) using the last 15 s
184	of exerted torque data. The average CV of the two trials for each force steadiness task was used for the analysis.
185	A low CV of force value indicated less force oscillation (i.e., an ability to control force exertion to a higher degree).
186	

187 Electromyography measurements

Surface EMG of the right soleus muscle was measured with sampling at 1500 Hz (MyoResearch XP Master
Edition, Noraxon Inc., Scottsdale, Arizona, USA) during postural control tasks and force exertion tasks (MVC
and force steadiness tasks). According to the recommendations of the Surface Electromyography for Non-Invasive

191	Assessment of Muscle (SENIAM) project, EMG electrodes (Blue Sensor; Medicotest, Olstykke, Denmark) with
192	a 20 mm center-to-center interelectrode distance were placed at a point located two-thirds of the way down the
193	line between the medial condylis of the femur and the medial malleolus. The raw EMG signals were processed
194	using a bandpass filter between 20 and 500 Hz (a fourth-order Butterworth filter). A moving RMS window of 50
195	ms was used, after which the average amplitude of the EMG during the analysis interval was calculated. The MVC
196	of the ankle plantar flexor was performed twice for 3 s, and the averaged EMG values were used in the following
197	analysis. In the postural control tasks, the EMG analysis interval was 30 s, which was the same as the analysis
198	interval for the COP data. In the force steadiness tasks, the EMG analysis interval was 15 s, which was the same
199	as the analysis interval for the force data. The averaged EMG activity of the two measurements for the force
200	steadiness and MVC tasks was used for analysis. Muscle activities during the postural control and force steadiness
201	tasks were normalized using muscle activity during the MVC.
202	
203	Statistical Analyses
204	
	Statistical analyses were performed using the Statistical Package for the Social Sciences (SPSS version 22.0; IBM
205	Statistical analyses were performed using the Statistical Package for the Social Sciences (SPSS version 22.0; IBM Japan, Inc., Tokyo, Japan). Paired t tests were performed to compare the index of the COP fluctuations between
205 206	
	Japan, Inc., Tokyo, Japan). Paired t tests were performed to compare the index of the COP fluctuations between
206	Japan, Inc., Tokyo, Japan). Paired t tests were performed to compare the index of the COP fluctuations between stable and unstable conditions. Pearson's correlation coefficients were performed to investigate the relationship

- same between the postural control and the force steadiness tasks. Statistical significance was set at an alpha (α)
- 211 level of 0.05.

RESULTS

214	Postural control tasks and force steadiness tasks
215	Table 1 shows the index of the COP fluctuation, CV of force, and maximum isometric strength. The paired t tests
216	revealed that the index of the COP fluctuation on unstable platforms was significantly less than that of the COP
217	fluctuation on stable platforms (p < 0.001).
218	
219	Relationship between COP fluctuation and force steadiness or maximum strength
220	On the stable platform, the index of the COP fluctuations was significantly positively correlated with CV of force
221	only at 5% of MVT ($r = 0.512$, $p = 0.002$, Fig. 1 A). On the other hand, the COP fluctuations on the stable platform
222	were not correlated with CV of force at 20% of MVT ($r = 0.298$, $p = 0.093$, Fig 1 B), 50% of MVT ($r = -0.044$, p
223	= 0.808, Fig 1 C), or maximum isometric strength (r = -0.298, p = 0.093, Fig 1 D).
224	On the unstable platform, the index of the COP fluctuations significantly and positively correlated with
225	CV of force only at 20% of MVT ($r = 0.458$, $p = 0.007$, Fig 2 B). On the other hand, the COP fluctuations on the
226	unstable platform were not correlated with CV of force at 5% of MVT ($r = 0.276$, $p = 0.121$, Fig 2 A), 50% of
227	MVT (r = 0.331, p = 0.060, Fig 2 C), or maximum isometric strength (r = 0.051, p = 0.779, Fig 2 D).
228	Table 2 presents the muscle activity of the soleus during each task. Muscle activity showed significant
229	correlation between the postural control task and force steadiness; comparisons revealed that the muscle activity
230	observed during a single leg standing on a stable platform (27.5 \pm 10.4% MVC) was significantly greater than the
231	muscle activity observed during the force steadiness task at 5% of MVT ($14.5 \pm 6.8\%$ MVC, $p < 0.001$). In addition,

- 232 the muscle activity observed during a single leg standing on an unstable platform (33.7 \pm 14.8% MVC) was
- 233 significantly greater than the muscle activity observed during the force steadiness task at 20% of MVT (26.3 \pm

234 9.7% MVC, p = 0.001).

DISCUSSION

237	The current study investigated whether COP fluctuations during single leg standing on stable and unstable
238	platforms are related to ankle plantar flexor force steadiness. We found that the COP fluctuations on a stable
239	platform was correlated with force steadiness only at 5% of MVT, whereas the COP fluctuations on an unstable
240	platform was correlated with force steadiness only at 20% of MVT. These results supported our hypothesis that
241	postural control in an unstable environment would be related to force steadiness at a greater intensity when
242	compared to that in a stable environment. To the best of our knowledge, this is the first study that provides evidence
243	that anteroposterior COP fluctuations on support surfaces with different stabilities were each related to ankle
244	plantar flexor force steadiness at different intensities. Interestingly, the intensity of the force steadiness at which
245	the correlation was observed in the stable condition differed from that in the unstable condition. Our findings
246	indicate that force steadiness might be affected by different mechanisms based on the difficulty of the motor task
247	or if neural adaptation interfered with the motor task. If the intensity of the force steadiness related to specific
248	tasks is different, force steadiness training focused on a specific motor task can be applied to improve the
249	performance of that task.
250	Regarding the postural control tasks, the COP fluctuations on the unstable platform were significantly
251	less those that on the stable platform. In the stable condition, as the platform was locked and did not tilt,
252	participants could move their COP over a large area. On the other hand, in the unstable condition, the platform
253	tilted as the COP moved away from the center of the platform; therefore, the COP had to be maintained at one
254	point to ensure a standing posture. Therefore, the COP fluctuations in the unstable condition seemed to decrease

255	as compared to the stable condition. Additionally, this study did not use visual feedback of the COP displacement
256	during postural control tasks. In the unstable condition, the COP displacement is assumed to be affected by
257	additional afferent information, including a sense of equilibrium related to the platform tilt or movement related
258	to the ankle joint change, unlike in the stable condition. Posture was controlled by using the interaction between
259	sensory functions (such as somatosensory, equilibrium, and visual information about the surrounding
260	environment) and motor functions (such as reflex system or voluntary contractions) (Horak 2006). This implies
261	that the COP in the unstable condition might experience less fluctuation due to additional afferent information.
262	The current study revealed that the COP fluctuations on the stable platform were not related to
263	maximum strength and force steadiness at high-intensity contractions but were significantly related to force
264	steadiness only at the low-intensity force of 5% of MVT. Kouzaki and Shinohara (2010) reported that the COP
265	fluctuations on the stable floor were significantly correlated with force steadiness at 2.5% and 5% of MVT. Oshita
266	and Yano (2012) also found that the anteroposterior COP velocity was significantly associated with force
267	steadiness at 10% of MVT, but not at 20%. These previous studies (Oshita and Yano 2012; Kouzaki and Shinohara
268	2010) investigated COP fluctuations during bilateral standing, whereas the current study investigated COP
269	fluctuations during an single leg standing task, which has a smaller area of base support and requires additional
270	muscle activity (Garcia-Masso et al. 2016). Similar to previous studies, our results showed that the COP
271	fluctuations on the stable platform were also significantly correlated with force steadiness at low intensities such
272	as 5% of MVT. This implies that neural adaptation, such as a motor unit discharge rate or recruitment strategies,

273 might contribute to the control of the COP on a stable surface. Further research will be needed to investigate the

274 contribution of neural adaptation for postural control.

275	On the unstable platform, the COP fluctuations were not associated with force steadiness at 5% of MVT,
276	but significantly correlated at 20% of MVT. When a greater intensity force steadiness task was performed, the
277	blood oxygenation level-dependent responses in the ipsilateral parietal lobule, putamen, insula, and contralateral
278	superior frontal gyrus during isometric contraction increased (Yoon et al. 2014). The responses in the areas were
279	also associated with force fluctuations. In addition, it is accepted that high-intensity force exertion could apply
280	high pressure on a participant's sole, from which additional somatosensory could be stimulated. The difficult
281	postural tasks would require increased innervation from the cerebral cortex, such as supplementary motor area
282	(Jacobs and Horak 2007; Nandi et al. 2018; Solis-Escalante et al. 2019), additional somatosensory, and
283	sensorimotor integration (Horak 2006; Peterka 2002). It is assumed that force steadiness at 20% of MVT
284	demanded extra regulation from the central nervous system and additional afferent sensory from the peripheral
285	system than does force steadiness at 5% of MVT. Therefore, in the current study, difficult postural control tasks
286	on an unstable platform may be related to force steadiness at 20% of MVT. However, there was no correlation
287	between the COP fluctuations on the unstable platform and force steadiness at 50% of MVT. This result suggests
288	that postural control on the unstable platform was not required to achieve force control at such high-intensity
289	contractions as 50% of MVT.

290 The muscle activation values were compared between correlated tasks (the postural task on a stable 291 platform versus the force steadiness task at 5% of MVT, and the postural task on an unstable platform versus the

292	force steadiness task at 20% of MVT) to determine whether the correlations observed were due to a similar level
293	of muscle activation between two tasks. The results showed that the muscle activity observed during the single
294	leg standing on the stable platform was greater than the muscle activity during the force steadiness task at 5% of
295	MVT. Moreover, the muscle activity during single leg standing on the unstable platform was also greater than the
296	muscle activity during the force steadiness task at 20% of MVT. Unexpectedly, even though a significant
297	correlation between COP fluctuations and force steadiness was observed, the degree of muscle activity differed
298	between the two tasks. Some studies (Oomen and van Dieen 2017; Jacobs and Horak 2007; Hunter et al. 2016)
299	reported that both postural control and force steadiness were related to the neuromuscular system. In particular,
300	force steadiness was influenced by a variability of the motor unit discharge rate (Moritz et al. 2005) and muscle
301	afferents, such as muscle spindle and somatosensory (Harwood et al. 2014; Mani et al. 2019). These factors may
302	be related to the postural control tasks, whereas the results of muscle activity do not directly explain the
303	relationship between postural control and force steadiness. Other muscle neurophysiological behaviors or
304	strategies are expected to influence the correlation between force steadiness and postural control. Further study is
305	required to clarify the causes of this relationship from the perspective of the neuromuscular system.
306	There are some limitations to this study. First, the surface EMG was not synchronized in time with the
307	COP displacement data during the single leg standing tasks. If the relationship between the muscle activity pattern
308	and COP displacement can be investigated, it is expected that a detailed neuromuscular control system may be
309	realized. Second, five participants who were left-leg dominant (out of thirty-three) were included. The differences
310	between a leg that is dominant and a leg that is not may affect the results of the postural control and force steadiness

311	tasks. However, it is possible that this dominant effect was minimized as the analysis of the correlation between
312	force steadiness and postural control was performed using observations obtained from legs of the same dominance.
313	Another limitation was that force steadiness and the EMG of the ankle dorsi flexor were not measured; the tibial
314	anterior muscle can also contribute to postural control (Day et al. 2017). Therefore, future study of dorsi flexion
315	behavior for postural control may be of interest, particularly in unstable conditions. Finally, the participants of
316	this study were limited to healthy young adults. Therefore, it is unclear whether our findings could be applied to
317	populations with impaired postural control or force control, such as older adults and patients with neurological
318	disorders. Further studies are required to clarify the relationship between force steadiness and postural control in
319	older adults or patients with neurological disorders.
320	

CONCLUSION

322	In conclusion,	we investigated th	ne relationship	o of the antero	posterior COP	fluctuations during	single le	g standing

- 323 with ankle plantar flexor force steadiness at 5%, 20%, and 50% of the MVT in healthy young adults. Our results
- 324 revealed that the COP fluctuations on the stable platform were correlated with force steadiness only at 5% of MVT.
- 325 In contrast, the COP fluctuations on the unstable platform were correlated with force steadiness only at 20% of
- 326 MVT.

328	ACKNOWLEDGEMENTS				
329	This work was supported by a Grant-in-Aid from the Japan Society for the Promotion of Science Fellows				
330	(19J14772).				

332	COMPLIANCE with ETHICAL STANDARDS
333	
334	CONFLICTS of INTEREST
335	The authors have no conflicts of interest relevant to this article.
336	
337	RESEARCH INVOLVING HUMAN PARTICIPANTS
338	The study was conducted in accordance with the Declaration of Helsinki and approved by the ethics committee
339	of the Kyoto University Graduate School and Faculty of Medicine (R0548-1).
340	
341	INFORMED CONSENT
342	The purpose and procedures were explained to the participants before they provided informed written consent to
343	participate in the study.
344	

REFERENCES

346	Brown SR, Brughelli M, Lenetsky S (2018) Profiling Single-Leg Balance by Leg Preference and Position in
347	Rugby Union Athletes. Motor Control 22 (2):183-198. doi:10.1123/mc.2016-0062
348	Carlyle JK, Mochizuki G (2018) Influence of post-stroke spasticity on EMG-force coupling and force steadiness
349	in biceps brachii. J Electromyogr Kinesiol 38:49-55. doi:10.1016/j.jelekin.2017.11.005
350	Carville SF, Perry MC, Rutherford OM, Smith IC, Newham DJ (2007) Steadiness of quadriceps contractions in
351	young and older adults with and without a history of falling. Eur J Appl Physiol 100 (5):527-533.
352	doi:10.1007/s00421-006-0245-2
353	Castronovo AM, Mrachacz-Kersting N, Stevenson AJT, Holobar A, Enoka RM, Farina D (2018) Decrease in force
354	steadiness with aging is associated with increased power of the common but not independent input to
355	motor neurons. J Neurophysiol 120 (4):1616-1624. doi:10.1152/jn.00093.2018
356	Cimadoro G, Paizis C, Alberti G, Babault N (2013) Effects of different unstable supports on EMG activity and
357	balance. Neurosci Lett 548:228-232. doi:10.1016/j.neulet.2013.05.025
358	Day J, Bent LR, Birznieks I, Macefield VG, Cresswell AG (2017) Muscle spindles in human tibialis anterior
359	encode muscle fascicle length changes. J Neurophysiol 117 (4):1489-1498. doi:10.1152/jn.00374.2016
360	Ema R, Saito M, Ohki S, Takayama H, Yamada Y, Akagi R (2016) Association between rapid force production by
361	the plantar flexors and balance performance in elderly men and women. Age (Dordr) 38 (5-6):475-483.
362	doi:10.1007/s11357-016-9949-3

363 Enoka RM, Christou EA, Hunter SK, Kornatz KW, Semmler JG, Taylor AM, Tracy BL (2003) Mechanisms that

364	contribute to differences in motor performance between young and old adults. Journal of
365	Electromyography and Kinesiology 13 (1):1-12. doi:10.1016/s1050-6411(02)00084-6
366	Feeney DF, Mani D, Enoka RM (2018) Variability in common synaptic input to motor neurons modulates both
367	force steadiness and pegboard time in young and older adults. J Physiol 596 (16):3793-3806.
368	doi:10.1113/JP275658
369	Fitzpatrick R, Rogers DK, McCloskey DI (1994) Stable human standing with lower-limb muscle afferents
370	providing the only sensory input. J Physiol 480 (Pt 2):395-403. doi:10.1113/jphysiol.1994.sp020369
371	Garcia-Masso X, Pellicer-Chenoll M, Gonzalez LM, Toca-Herrera JL (2016) The difficulty of the postural control
372	task affects multi-muscle control during quiet standing. Exp Brain Res 234 (7):1977-1986.
373	doi:10.1007/s00221-016-4602-z
374	Harwood B, Cornett KM, Edwards DL, Brown RE, Jakobi JM (2014) The effect of tendon vibration on motor
375	unit activity, intermuscular coherence and force steadiness in the elbow flexors of males and females.
376	Acta Physiol (Oxf) 211 (4):597-608. doi:10.1111/apha.12319
377	Horak FB (2006) Postural orientation and equilibrium: what do we need to know about neural control of balance
378	to prevent falls? Age Ageing 35 Suppl 2:ii7-ii11. doi:10.1093/ageing/afl077
379	Hunter SK, Pereira HM, Keenan KG (2016) The aging neuromuscular system and motor performance. J Appl
380	Physiol (1985) 121 (4):982-995. doi:10.1152/japplphysiol.00475.2016
381	Jacobs JV, Horak FB (2007) Cortical control of postural responses. J Neural Transm (Vienna) 114 (10):1339-1348.
382	doi:10.1007/s00702-007-0657-0

- 383 Kallio J, Sogaard K, Avela J, Komi P, Selanne H, Linnamo V (2012) Age-related decreases in motor unit discharge 384 rate and force control during isometric plantar flexion. J Electromyogr Kinesiol 22 (6):983-989. 385 doi:10.1016/j.jelekin.2012.05.009 386 Kornatz KW, Christou EA, Enoka RM (2005) Practice reduces motor unit discharge variability in a hand muscle 387 and improves manual dexterity in old adults. J Appl Physiol (1985) 98 (6):2072-2080. 388 doi:10.1152/japplphysiol.01149.2004 389 Kouzaki M, Shinohara M (2010) Steadiness in plantar flexor muscles and its relation to postural sway in young 390 and elderly adults. Muscle Nerve 42 (1):78-87. doi:10.1002/mus.21599 391 Mani D, Feeney DF, Enoka RM (2019) The modulation of force steadiness by electrical nerve stimulation applied 392 to the wrist extensors differs for young and older adults. Eur J Appl Physiol 119 (1):301-310. 393 doi:10.1007/s00421-018-4025-6 394 Masani K, Popovic MR, Nakazawa K, Kouzaki M, Nozaki D (2003) Importance of body sway velocity 395 information in controlling ankle extensor activities during quiet stance. J Neurophysiol 90 (6):3774-3782. 396 doi:10.1152/jn.00730.2002 397 Moritz CT, Barry BK, Pascoe MA, Enoka RM (2005) Discharge rate variability influences the variation in force 398 fluctuations across the working range of a hand muscle. J Neurophysiol 93 (5):2449-2459. 399 doi:10.1152/jn.01122.2004 400 Nandi T, Fisher BE, Hortobagyi T, Salem GJ (2018) Increasing mediolateral standing sway is associated with
 - 401 increasing corticospinal excitability, and decreasing M1 inhibition and facilitation. Gait Posture 60:135-

140. doi:10.1016/j.gaitpost.2017.11.021

- 403 Negro F, Holobar A, Farina D (2009) Fluctuations in isometric muscle force can be described by one linear
- 404 projection of low-frequency components of motor unit discharge rates. J Physiol 587 (Pt 24):5925-5938.
- 405 doi:10.1113/jphysiol.2009.178509
- 406 Oomen NM, van Dieen JH (2017) Effects of age on force steadiness: A literature review and meta-analysis. Ageing
- 407 Res Rev 35:312-321. doi:10.1016/j.arr.2016.11.004
- 408 Oshita K, Yano S (2010) Relationship between Force Fluctuation in the Plantar Flexor and Sustainable Time for
- 409 Single-leg Standing. Journal of PHYSIOLOGICAL ANTHROPOLOGY 29 (3):89-93.
 410 doi:10.2114/jpa2.29.89

Oshita K, Yano S (2011) Low-frequency Force Steadiness Practice in Plantar Flexor Muscle Reduces Postural

- 412 Sway during Quiet Standing. Journal of PHYSIOLOGICAL ANTHROPOLOGY 30 (6):233-239.
- 413 doi:10.2114/jpa2.30.233
- 414 Oshita K, Yano S (2012) Association of force steadiness of plantar flexor muscles and postural sway during quiet
- 415 standing by young adults. Percept Mot Skills 115 (1):143-152. doi:10.2466/15.26.29.PMS.115.4.143-
- 416 152

- 417 Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88 (3):1097-1118.
- 418 doi:10.1152/jn.2002.88.3.1097
- 419 Smith JW, Marcus RL, Peters CL, Pelt CE, Tracy BL, LaStayo PC (2014) Muscle force steadiness in older adults
- 420 before and after total knee arthroplasty. J Arthroplasty 29 (6):1143-1148. doi:10.1016/j.arth.2013.11.023

421	Solis-Escalante T, van der Cruijsen J, de Kam D, van Kordelaar J, Weerdesteyn V, Schouten AC (2019) Cortical
422	dynamics during preparation and execution of reactive balance responses with distinct postural demands.
423	Neuroimage 188:557-571. doi:10.1016/j.neuroimage.2018.12.045
424	Stenroth L, Sillanpaa E, McPhee JS, Narici MV, Gapeyeva H, Paasuke M, Barnouin Y, Hogrel JY, Butler-Browne
425	G, Bijlsma A, Meskers CG, Maier AB, Finni T, Sipila S (2015) Plantarflexor Muscle-Tendon Properties
426	are Associated With Mobility in Healthy Older Adults. J Gerontol A Biol Sci Med Sci 70 (8):996-1002.
427	doi:10.1093/gerona/glv011
428	Tracy BL (2007a) Force control is impaired in the ankle plantarflexors of elderly adults. Eur J Appl Physiol 101
429	(5):629-636. doi:10.1007/s00421-007-0538-0
430	Tracy BL (2007b) Visuomotor contribution to force variability in the plantarflexor and dorsiflexor muscles. Hum
431	Mov Sci 26 (6):796-807. doi:10.1016/j.humov.2007.07.001
432	Tracy BL, Enoka RM (2002) Older adults are less steady during submaximal isometric contractions with the knee
433	extensor muscles. J Appl Physiol (1985) 92 (3):1004-1012. doi:10.1152/japplphysiol.00954.2001
434	Van Doornik J, Azevedo Coste C, Ushiba J, Sinkjaer T (2011) Positive afferent feedback to the human soleus
435	muscle during quiet standing. Muscle Nerve 43 (5):726-732. doi:10.1002/mus.21952
436	Yoon T, Vanden Noven ML, Nielson KA, Hunter SK (2014) Brain areas associated with force steadiness and
437	intensity during isometric ankle dorsiflexion in men and women. Exp Brain Res 232 (10):3133-3145.
438	doi:10.1007/s00221-014-3976-z

441	FIGURE LEGENDS				
442	Fig. 1 Relationship between the index of the COP fluctuation on the stable platform, and force steadiness or				
443	maximum strength				
444	(a) relationship to CV of force at 5% of MVT				
445	(b) relationship to CV of force at 20% of MVT				
446	(c) relationship to CV of force at 50% of MVT				
447	(d) relationship to maximum isometric strength				
448	COP center of pressure; CV coefficient of variation; MVT maximum voluntary torque				
1.10					

- 450 Fig. 2 Relationship between the index of the COP fluctuation on the unstable platform, and force steadiness or
- 451 maximum strength
- 452 (a) relationship to CV of force at 5% of MVT
- 453 (b) relationship to CV of force at 20% of MVT
- 454 (c) relationship to CV of force at 50% of MVT
- 455 (d) relationship to maximum isometric strength
- 456 COP; center of pressure, CV; coefficient of variation, MVT; maximum voluntary torque

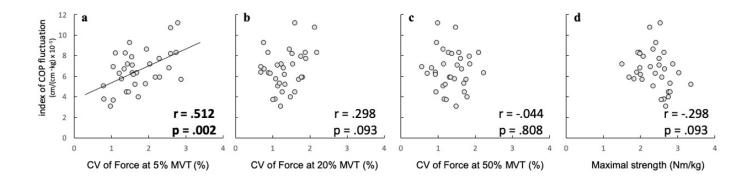
Postural control tasks				
COP fluctuation on a stable platform (cm/(cm \cdot kg) \times 10 ⁻⁵)	6.58 ± 1.90 *			
COP fluctuation on an unstable platform (cm/(cm \cdot kg) \times 10 ⁻⁵)	4.82 ± 1.59 *			
Force steadiness tasks				
CV of force at 5% of MVT (%)	1.73 ± 0.59			
CV of force at 20% of MVT (%)	1.34 ± 0.40			
CV of force at 50% of MVT (%)	1.37 ±0.39			
Maximum isometric strength (Nm/kg)	2.39 ± 0.41			

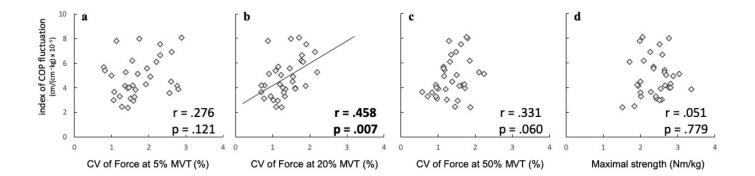
Table 1. The indexes of COP fluctuations, CV of force, and maximum isometric strength.

* The paired t test revealed a significant difference (p < 0.001).

COP: center of pressure, MVT: maximum voluntary torque

Postural control tasks	
On a stable platform	$27.5\pm10.4~^a$
On an unstable platform	$33.7\pm14.8\ ^{b}$
Force steadiness tasks	
5% of MVT	14.5 ±6.8 °
20% of MVT	$26.3\pm9.7~^{b}$
50% of MVT	51.5 ± 14.1


Table 2. Muscle activities of the soleus muscle during each task (% MVC).


a: A significant difference between the two tasks, which showed a significant correlation between

postural control on a stable platform and force steadiness at 5% MVT.

b: A significant difference between the two tasks, which showed a significant correlation between postural control on an unstable platform and force steadiness at 20% MVT.

MVT; maximum voluntary torque

