
 
 
 
 

 
  

INTEGRITY ASSESSMENT OF STEEL BEAM-COLUMN CONNECTIONS 
 USING AMBIENT-BASED INNER-FORCE ESTIMATES  

 
 

* ** *** **** 
Masahiro KURATA, Akiko SUZUKI, Kaede MINEGISHI, and Masayoshi NAKASHIMA 

 
This paper presents a method of evaluating local damage in steel beam-column connections using dynamic strain responses 
measured under ambient vibrations. In the proposed method, inner-force distribution in steel beam-column connection was estimated 
using the natural modal components measured by PolyVinylidene DiFluoride (PVDF) strain sensors. For evaluating damage in steel 
beam-column connections, two kinds of damage-related features were proposed. One was the transition of the neutral axis for 
evaluating the loss of composite action between steel beams and concrete floor slab. The other was the reduction of the dynamic strain 
responses from the undamaged condition in terms of root mean square (RMS) for quantifying steel beam fractures. A unique testing 
method was developed to verify the damage-related features at component-level. In the test configuration, the specimen was damaged 
quasi-statically, and vibration tests were conducted as damage proceeds. Moreover, an analysis model of the specimen was built and 
updated using dynamic strain responses. This model-updating was particularly interested as it provided estimates on the residual 
seismic capacities of the specimens in terms of the quantities familiar to structural engineers (i.e., stiffness and strength). 
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Fig. 1 Concept and test system.
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Fig. 3 Sensor layout (Unit: mm).
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Fig. 4 Hysteresis loop.
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Fig. 12 Residual Seismic performance evaluation (No slab).

1 5 6 7-100

-75

-50

-25

0

Case A

EI
 R

ed
.(%

)

1 5 6 7-100

-75

-50

-25

0

Case A

St
iff

ne
ss

 R
ed

.(%
)

Test
Estimate

Test
Estimate

1 5 6 7-100

-75

-50

-25

0

Case A

St
re

ng
th

 R
ed

.(%
)

Test
Estimate

 

INTEGRITY ASSESSMENT OF STEEL BEAM-COLUMN CONNECTIONS 
 USING AMBIENT-BASED INNER-FORCE ESTIMATES 

 
 

Masahiro KURATA*, Akiko SUZUKI**, Kaede MINEGISHI***, and Masayoshi NAKASHIMA****  
 

* Associate Professor, Ph.D., DPRI, Kyoto Univ. 
**Grad. Student Researcher, Dept. of Archi. and Archi. Eng., Kyoto Univ. 

***JGC Corporation 

****Professor, Ph.D., DPRI, Kyoto Univ. 

 
 
In responses to recent large earthquakes and their consequences, post-earthquake damage assessment of buildings 

has drawn much attention for reducing earthquake impacts on our society. A lack of information on the status of 
buildings (i.e., damage level or residual performance) may significantly delay decision-making on evacuation or 
re-occupancy. At the present moment, however, standard visual-based inspection procedures require considerable 
labors and time. 

This paper presents a method of evaluating local damage in steel beam-column connections using dynamic strain 
responses measured under ambient vibrations. In developing the method, particular emphasis was on providing 
damage information in the format familiar to structural engineers and stakeholders. In the presented method, 
inner-force distribution in steel beam-column connection was estimated using the natural modal components of 
ambient vibration responses measured by PolyVinylidene DiFluoride (PVDF) strain sensors. For evaluating damage 
in steel beam-column connections, two kinds of damage-related features were proposed. One was the transition of the 
neutral axis for evaluating the loss of composite action between steel beams and concrete floor slab. The neutral axis 
was estimated from the ratio of dynamic strain responses at the bottom and top flange. The other was the reduction 
of the dynamic strain responses from the undamaged condition in terms of root mean square (RMS) for quantifying 
steel beam fractures. The reduction of RMS can be translated into the reduction of the second moment of inertia at 
the fractured section using a pre-defined damage curve. 

A unique testing method was developed to verify the damage-related features at component-level. In the proposed 
test configuration, a specimen of building’s components is connected with a pinned frame that supports large 
fictitious mass so that the natural frequency of the entire system becomes similar to that of the building. The entire 
system is loaded quasi-statically to introduce seismic damage to the specimen and, as notable damage occurs, the 
natural modal vibration is excited using a modal shaker. 

Two specimens of steel beam-column connections with and without slab were tested. The tests verified the 
effectiveness of the proposed damage-related features in identifying the damage states: (1) the dynamic neutral axis 
computed by the RMS ratios of dynamic strain responses traced well the shifts of the static neutral axis and the loss 
of the composite action; (2) fractures at beam ends were successfully quantified by comparing the dynamic strain 
responses at undamaged and damage conditions.  

Moreover, an analysis model of the specimen with fiber beam elements was built and whose properties were 
updated using the dynamic strain responses measured in the tests. In the model, the loss of composite action was 
represented by gradually eliminating the elements of the floor slab section until the neutral axis of the model and the 
measurement matched with sufficiently small error. For beam fracture, the rotational stiffness of a damage spring 
installed at the beam ends were updated in a similar manner. This model-updating method was particularly 
interested as it provided estimates on the residual seismic capacities of the specimens in terms of the quantities 
familiar to structural engineers (i.e., stiffness and strength). The estimated residual lateral stiffness and strength of 
the specimen corresponded well to those identified in the force-drift relationship with reasonable accuracy. 
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Fig. 12 Residual Seismic performance evaluation (No slab).
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has drawn much attention for reducing earthquake impacts on our society. A lack of information on the status of 
buildings (i.e., damage level or residual performance) may significantly delay decision-making on evacuation or 
re-occupancy. At the present moment, however, standard visual-based inspection procedures require considerable 
labors and time. 

This paper presents a method of evaluating local damage in steel beam-column connections using dynamic strain 
responses measured under ambient vibrations. In developing the method, particular emphasis was on providing 
damage information in the format familiar to structural engineers and stakeholders. In the presented method, 
inner-force distribution in steel beam-column connection was estimated using the natural modal components of 
ambient vibration responses measured by PolyVinylidene DiFluoride (PVDF) strain sensors. For evaluating damage 
in steel beam-column connections, two kinds of damage-related features were proposed. One was the transition of the 
neutral axis for evaluating the loss of composite action between steel beams and concrete floor slab. The neutral axis 
was estimated from the ratio of dynamic strain responses at the bottom and top flange. The other was the reduction 
of the dynamic strain responses from the undamaged condition in terms of root mean square (RMS) for quantifying 
steel beam fractures. The reduction of RMS can be translated into the reduction of the second moment of inertia at 
the fractured section using a pre-defined damage curve. 

A unique testing method was developed to verify the damage-related features at component-level. In the proposed 
test configuration, a specimen of building’s components is connected with a pinned frame that supports large 
fictitious mass so that the natural frequency of the entire system becomes similar to that of the building. The entire 
system is loaded quasi-statically to introduce seismic damage to the specimen and, as notable damage occurs, the 
natural modal vibration is excited using a modal shaker. 

Two specimens of steel beam-column connections with and without slab were tested. The tests verified the 
effectiveness of the proposed damage-related features in identifying the damage states: (1) the dynamic neutral axis 
computed by the RMS ratios of dynamic strain responses traced well the shifts of the static neutral axis and the loss 
of the composite action; (2) fractures at beam ends were successfully quantified by comparing the dynamic strain 
responses at undamaged and damage conditions.  

Moreover, an analysis model of the specimen with fiber beam elements was built and whose properties were 
updated using the dynamic strain responses measured in the tests. In the model, the loss of composite action was 
represented by gradually eliminating the elements of the floor slab section until the neutral axis of the model and the 
measurement matched with sufficiently small error. For beam fracture, the rotational stiffness of a damage spring 
installed at the beam ends were updated in a similar manner. This model-updating method was particularly 
interested as it provided estimates on the residual seismic capacities of the specimens in terms of the quantities 
familiar to structural engineers (i.e., stiffness and strength). The estimated residual lateral stiffness and strength of 
the specimen corresponded well to those identified in the force-drift relationship with reasonable accuracy. 
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