
 
 
 

 
 

SEISMIC REHABILITATION OF STEEL FRAMES WITH MINIMAL-DISTURBANCE USING 
TENSION-RODS AND STEEL BENDING PLATES 

 
*  ** ** *** 

 
The objective of this research is to develop a rehabilitation technique which can be easily installed to existing steel frames 
with minimal-disturbance. An unique approach to design a supplemental load-resisting system using light tension-only rods 
is adopted. Key structural features of the proposed technique are to reduce tensile stress at critical sections as bottom flange 
near beam-column connection and to add supplemental stiffness, strength and damping without significantly changing the 
properties of a original framing. Numerical simulations and experimental tests were conducted to verify the behavior of the 
developed technique. 
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Table 1  Specimens list 

 
  

  
[mm] 

 
[mm] 

 
[mm] 

 
 
 

PC

 [kN] 
1 

 

SS400 400 175 9  35 
2 SS400 400 175 9 PC  35 
3 SS400 600 175 9  35 
4 LY100 400 175 9  35 
5 SS400 400 175 9  50 
6  SS400 400 175 9  35 

 
(a)  Sp. 1, 3-6    (b)  Sp. 2. 

Fig. 10  Shape of bending plate. 

 

 (a)  Sp. 1, 3-6                  (b)  Sp. 2 
Fig. 11  Detail of specimen assembly. 
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(c)  Component test          (d) Application test 
Fig. 13  Installation of specimens. 
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Table 2  Results of coupon test 

   
[N/ ] 

 
[N/ ]  

 
SS400 290 440 0.66 
LY100 59 236 0.24 

 SS400 326 448 0.73 
 SS400 335 455 0.74 
 SS400 350 548 0.64 

 
Table 3  Comparison to analysis 

 

[kN/rad] 
 

 [kN] 
 

 [kN] 

      
1 0.15 0.17 17.0 16.0 23.3 23.4 
2 0.11 0.11 12.0 10.5 18.4 15.1 
3 0.31 0.28 24.0 24.5 36.9 38.0 
4 0.12 0.14 2.5 3.0 11.5 13.4 
5 0.15 0.14 17.0 16.0 23.3 24.6 
6 0.67 0.58 50.0 55.6 109.8 116.6 
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Fig. 14  Test result for Specimen 1. 
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Fig. 15  Component test results. 

  
            (a)  Force-story drift plot                (b)  With and without damper 

              Fig. 16  Result of retrofitting test. 
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Preparedness greatly reduce losses due to large earthquakes, and in the long-term it is an investment well 

worth making. A large building stock of seismically-deficient is yet most vulnerable factor in our community. 
Rehabilitating such building stock enhances earthquake preparedness by reducing direct casualty and 
increasing the number of operable buildings after events. However, seismic rehabilitation is costly and 
disturbing to occupants. Thus, the development of rehabilitation techniques that allow occupants to resume 
normal operations during construction and to keep as-is usage plan are highly desirable. 

This research presents a seismic rehabilitation technique developed under the scheme of 
. More specifically, the scheme allows the continuous usage of buildings, keeps existing 

openings and sight, and restrains increase of force demand to original framing. In steel buildings, one of the 
most vulnerable parts identified in past earthquakes is the bottom flanges of beam near beam-column 
connection which sustain large tensile stress during severe earthquake events due to composite actions by 
floor slab. To rehabilitate bottom flanges with , a rehabilitation system which connects 
the mid-span of beams and the upper part of a column with two tension rods and an energy dissipater 
comprised of steel bending plates is developed. The bending plates are attached to the two facing surfaces of 
the column and are connected by middle connecting blocks. This system adds supplemental strength and 
stiffness to beam-column connections, but also provides an alternative loading path to the frame for reducing 
bending moment at beam ends which are subjected to positive bending. In addition, an innovative geometric 
configuration in the energy dissipater achieves stable energy dissipation with bilinear restoring force 
characteristics. 

Two levels of tests, component test and application test, were conducted. The component test had three 
parameters: the section of middle connecting blocks, the material and the location of the steel bending plates. 
Specimens were designed with matrix structural analysis in which the elastic behavior of the system was 
estimated with finite element analysis code for details. Major findings in numerical simulations and tests are 
summarized as follows: (1) the baseline specimen successfully presented bilinear restoring force 
characteristics; (2) the flexibility of middle connecting blocks resulted in severe pinching behavior in the 
force-drift relationship; (3) the use of low yielding point steel provided four times larger energy dissipation 
than the baseline specimen with conventional steel at beam-column rotation angle of 1%; (4) both the initial 
stiffness and strength of the rehabilitation system increased when the plates were located farther from the 
beam-column connection. In the application test, the system was used to rehabilitate a steel beam-column 
connection. The test successfully showed the increase of the initial stiffness and the maximum strength by 
25% and 32%, respectively. The steel bending plates yielded at story drift of 1.0%, prior to the beam ends of 
1.5%.  

The accurate evaluation for reduce in bending-moment at beam ends required further testing with a 
specimen of two or more beam spans. To investigate the effectiveness of the proposed system, numerical 
simulations with multi-span and story building models are planned in the next research phase. 
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Preparedness greatly reduce losses due to large earthquakes, and in the long-term it is an investment well 

worth making. A large building stock of seismically-deficient is yet most vulnerable factor in our community. 
Rehabilitating such building stock enhances earthquake preparedness by reducing direct casualty and 
increasing the number of operable buildings after events. However, seismic rehabilitation is costly and 
disturbing to occupants. Thus, the development of rehabilitation techniques that allow occupants to resume 
normal operations during construction and to keep as-is usage plan are highly desirable. 

This research presents a seismic rehabilitation technique developed under the scheme of 
. More specifically, the scheme allows the continuous usage of buildings, keeps existing 

openings and sight, and restrains increase of force demand to original framing. In steel buildings, one of the 
most vulnerable parts identified in past earthquakes is the bottom flanges of beam near beam-column 
connection which sustain large tensile stress during severe earthquake events due to composite actions by 
floor slab. To rehabilitate bottom flanges with , a rehabilitation system which connects 
the mid-span of beams and the upper part of a column with two tension rods and an energy dissipater 
comprised of steel bending plates is developed. The bending plates are attached to the two facing surfaces of 
the column and are connected by middle connecting blocks. This system adds supplemental strength and 
stiffness to beam-column connections, but also provides an alternative loading path to the frame for reducing 
bending moment at beam ends which are subjected to positive bending. In addition, an innovative geometric 
configuration in the energy dissipater achieves stable energy dissipation with bilinear restoring force 
characteristics. 

Two levels of tests, component test and application test, were conducted. The component test had three 
parameters: the section of middle connecting blocks, the material and the location of the steel bending plates. 
Specimens were designed with matrix structural analysis in which the elastic behavior of the system was 
estimated with finite element analysis code for details. Major findings in numerical simulations and tests are 
summarized as follows: (1) the baseline specimen successfully presented bilinear restoring force 
characteristics; (2) the flexibility of middle connecting blocks resulted in severe pinching behavior in the 
force-drift relationship; (3) the use of low yielding point steel provided four times larger energy dissipation 
than the baseline specimen with conventional steel at beam-column rotation angle of 1%; (4) both the initial 
stiffness and strength of the rehabilitation system increased when the plates were located farther from the 
beam-column connection. In the application test, the system was used to rehabilitate a steel beam-column 
connection. The test successfully showed the increase of the initial stiffness and the maximum strength by 
25% and 32%, respectively. The steel bending plates yielded at story drift of 1.0%, prior to the beam ends of 
1.5%.  

The accurate evaluation for reduce in bending-moment at beam ends required further testing with a 
specimen of two or more beam spans. To investigate the effectiveness of the proposed system, numerical 
simulations with multi-span and story building models are planned in the next research phase. 
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