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Abstract— In this paper a novel model order reduction
method for nonlinear systems is proposed. Differently from
existing ones, the proposed method provides a suitable non-
linear projection, which we refer to as control-oriented deep
autoencoder (CoDA), in an easily implementable manner. This is
done by combining noise response data based model reduction,
whose control theoretic optimality was recently proven by the
author, with stacked autoencoder design via deep learning.

I. INTRODUCTION

Nowadays, various mathematical models for dynamical
behavior of complex systems are available, e.g., biological
systems, smart grids, social networks [1]. For these mod-
els, standard analysis and design methods are not directly
applicable. The major reason for this restriction is their
high dimensionality and nonlinearity. In order to manage
such situations, nonlinear model reduction is envisaged to
be a powerful tool. However, although research of nonlinear
model reduction has a long history, its applicability is still
limited [2], [3].

What we focus on this paper is “model reduction of
nonlinear systems by nonlinear state transform”. First, when
the dynamics are linear the use of linear transforms is often
theoretically justifiable and there are many well established
methods [4]. Concerning nonlinear systems, control theoretic
model reduction methods require an infeasible computational
burden, e.g., to solve nonlinear partial differential equations
[5], [6]. As a result, this approach has not yet lead to the de-
velopment of practical tools. On the other hand, simulation-
based approaches such as Proper Orthogonal Decomposition
(POD), have been widely utilized in computational physics
and numerical analysis [7], [8]. Although this is applicable
to complex systems such as nonlinear partial differential
equations, the approximation accuracy, in the sense of the
input-output system, is not taken into explicit account. In
addition, this is model reduction by linear transforms.

In view of this, we attempt to develop a practical method to
reduce nonlinear systems by possibly nonlinear transforms.
To tackle this challenging problem, we utilize two important
building blocks: One is the control theoretic optimality of
the simulation-based model reduction method [9], [10]. This
result can provide a simulation-based approach with an
approximation gap evaluation in the sense of input-output
systems. Although only linear transforms are considered in
[9], [10], it can be extended to nonlinear ones; see Theorem
1 below. The other is deep learning, which has been utilized
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in many fields in recent years [11], [12]. We reformulate
model reduction as a learning problem, for which a stacked
autoencoder can provide a practical way to find a reasonable
nonlinear state transform.

This paper is organized as follows: In Section II we
introduce the fundamental idea of model reduction and
its simulation-based method. In Section III we compare
controllability-based and simulation-based model reduction
methods. In Section IV we reformulate the model reduction
problem as a learning problem, which leads to a novel
model reduction method by possibly nonlinear projections. In
Section V we examine the usefulness of the proposed method
through a numerical example. Some concluding remarks are
given in Section VI.
Notation: The set of real numbers is R. For a vector x,
the Euclidean norm is ∥x∥. For a matrix X , the transpose
is XT. Let wt be the standard Wiener process (of suitable
dimension) which has a unit covariance matrix [13]. The
associated filtration, probability and expectation are denoted
by Ft, P and E, respectively.

II. PRELIMINARIES

In this section we briefly review some basic concepts of
projection-based model reduction.

A. Galerkin projection

Suppose that the system to be reduced is given as

d

dt
x(t) = f(x(t)) + g(x(t))u(t), x(0) = xi. (1)

We attempt to reduce the dimension n of the state variable
x(t) to k(< n). Assume that the smooth mappings ϱ : Rn →
Rk and ϱ† : Rk → Rn satisfy

x(t)− (ϱ† ◦ ϱ)(x(t)) ≈ 0, ∀t (2)

for the solution of (1), where ◦ represents the composite
mapping. Then, the reduced state variable z(t) := ϱ(x(t)) ∈
Rk can recover the original one by x(t) ≈ ϱ†(z(t)) =: x̂(t)
approximately. In this sense, the dynamics of k-dimensional
variable z(t) can be considered to be a suitable reduced
model of (1).

In particular, when the mappings are linear, i.e., ϱ and ϱ†

are matrices, the dynamics of z(t) can be written as

d

dt
z(t) = ϱf(ϱ†z(t)) + ϱg(ϱ†z(t))u(t), z(0) = ϱxi. (3)

This form of linear projection ϱ†ϱ ∈ Rn×n is called a Petrov-
Galerkin projection and covers most of the standard model
reduction methods [4].



We can say that the goal of model reduction is to find ϱ and
ϱ† that satisfy (2) in a suitable sense. In the control theoretic
approach we attempt to achieve (2) for trajectories that can
be realized by low energy control inputs. Controllability
analysis plays an important role for this purpose. However,
the practical applicability in this line of methods is still
limited to linear projections for linear systems [4].

B. Proper Orthogonal Decomposition

It also seems reasonable to find matrices ϱ and ϱ† that
minimize ∑

τ∈T

∥x(τ)− ϱ†ϱx(τ)∥2 (4)

where the error is evaluated at multiple, given time instances
τ ∈ T . This is the fundamental idea of the POD, and is
referred to as the method of snapshots.

Note that this optimization only requires numerical simu-
lation of the dynamics, and least square error analysis. That
is, define X := [x(t1) x(t2) · · · x(tN )] ∈ Rn×N where T =
{t1, · · · , tN}, and apply its singular value decomposition to
obtain X = UΣV ⊤. Then, the optimal k-dimensional ϱ is
given as [u1, . . . , uk] where ui is the left-singular vector
corresponding to the i-th largest singular value. Note that
this procedure is computationally tractable even for nonlinear
large-scale systems [7]. However, it is generally impossible
to simulate the trajectories for all admissible input signals.
Thus, we need to carefully choose input signals when we
collect snapshots.

III. CONTROL THEORETIC OPTIMALITY OF THE
SIMULATION-BASED METHOD

A. Advantages and disadvantages

Let us summarize the advantages and disadvantages of the
controllability-based and simulation-based model reduction
methods from the following aspects:

1) Approximation as input-output systems: In the control
theoretic approach the approximation error is small
at states that are reachable with small control effort.
On the other hand, in the simulation-based approach a
similar evaluation is available for linear dynamics only
by collecting snapshots, achieved by injecting impulse
or sinusoidal inputs [14], [15]. However, there is no
theoretic guarantee for nonlinear dynamics.

2) Applicability to nonlinear dynamics: The simulation-
based method does not require linearity of the dy-
namics as far as its simulation is easily executable.
However, for the controllability-based reduction of
nonlinear dynamics one needs to solve a nonlinear par-
tial differential equation with high-dimensional spatial
variables, which is not generally feasible.

3) Nonlinear projection: In both cases there is no practical
method to search for nonlinear projections.

We consider 1) and 2) in Section III-B, and 3) in Section
IV.

B. Control theoretic evaluation for simulation-based model
reduction

In this section we confirm that the noise response data
can provide both a practical computational method and also
control theoretic evaluation. In the case of the POD, let us
utilize the noise response data, that is, the snapshots of (1)
with white noise as its input:

dx̄t = f(x̄t)dt+ g(x̄t)dwt, (5)
x̄0 = xi.

Then, we attempt to minimize

JPOD(ϱ, ϱ
†) :=

∑
τ∈T

E
[
∥(I − ϱ† ◦ ϱ)x̄τ∥2

]
. (6)

Throughout this paper, we assume that (5) has a unique
solution process in a suitable sense.

Next, concerning the controllability-based approach, let us
investigate the following controlled dynamics, whose input
is disturbed by random noise:

dxt = f(xt)dt+ g(xt)(utdt+ dwt), (7)
x0 = xi.

In order to quantify the reachability of a state x̃ ∈ Rn at time
τ , it is standard to investigate the minimum input energy to
achieve x(τ) = x̃, for both linear and nonlinear systems
[4], [6]. Such a minimum input energy (of x̃) is called a
controllability function. The author introduced a definition
of a controllability function that can incorporate the effects
of stochasticity:

Definition 1 ([10]): Given (7) and γ > 0, define the γ-
stochastic controllability function as

Lγ(τ, x̃) := inf
u∈U

E
[∫ τ

0

1

2
∥ut∥2dt+

γ

2
∥xτ − x̃∥2

]
, (8)

where u ∈ U means ut is Ft-measurable for all t ∈ [0, τ ].
Here, the infimum is taken over all causal feedback control
laws. Note that the terminal constraint xτ = x̃ was replaced
by a quadratic cost. For sufficiently large γ, Lγ(τ, x̃) char-
acterizes the difficulty to traverse from xi to a neighborhood
of x̃ at time τ in terms of the required control energy under
the existence of noise. Actually, in the large γ limit, the
terminal cost assigns +∞ for xτ ̸= x̃ and 0 for xτ = x̃. In
this sense, the allowable neighborhood shrinks to the point
x̃, which plays the role of the fixed terminal condition.

For later discussion, we combine this measure with Defi-
nition 1 to define the best projection to reduce the dimension
of stochastic system (7):

Definition 2: Given Lγ(τ, x̃), we define

J(ϱ, ϱ†) :=
∑
τ∈T

lim
γ→∞

∫
Rn

e−Lγ(τ,x̃)∫
Rn e−Lγ(τ,x̃)dx̃

∥(I−ϱ†◦ϱ)x̃∥2dx̃.

(9)

Minimization of J(ϱ, ϱ†) yields a projection that realizes a
smaller projection error at the every state x̃ that is reachable
at time τ by a small input energy (i.e., Lγ(τ, x̃) is small).



We are now ready to explain the first building block:
Theorem 1: Under the definitions above,

J(ϱ, ϱ†) = JPOD(ϱ, ϱ
†) (10)

for any smooth mapping ϱ and ϱ†.
Proof: This equality was shown in [10] by assuming ϱ

and ϱ† are linear. The proof is valid for nonlinear mappings
if they are smooth. The details are omitted.
Therefore, the noise response data fitting in (6) is equivalent
to the minimization of the control theoretic error criterion
(9).

IV. REDUCTION BY AUTOENCODER

In what follows, we attempt to find possibly nonlinear
mappings that minimize (6). A natural way to do this may be
fixing some basis functions, and then to optimize parameters
therein. However, the choice of basis functions is highly
nontrivial. In this paper, we propose to utilize techniques
developed in learning theory. This does not require a priori
specification of the nonlinearity.

A. Reformulation as a learning problem

It is convenient for later discussion to describe the min-
imization of (6) as a learning problem. Let us denote the
noise response data set

XS := {x̄(s)
t : s = 1, 2, . . . , S, t ∈ T } (11)

where s and S denote the label and total number of sample
paths. Define

JS
DL(ϱ, ϱ

†) :=
1

S

∑
x∈XS

∥x− (ϱ† ◦ ϱ)x∥2. (12)

Theorem 2: Under the notation above,

lim
S→+∞

JS
DL(ϱ, ϱ

†) = J(ϱ, ϱ†) (13)

for arbitrary ϱ and ϱ†.
Proof: The result is obtained by the central limit

theorem and Theorem 1.
The minimization of (12) suggests a link to learning theory,
which will be briefly reviewed in the next section.

B. Autoencoder

In this section, we briefly explain learning by neural
networks, in particular an autoencoder. Let us consider an
artificial neuronal component as shown in Fig. 1. This unit
receives input signals x1, x2, . . . , xn and produces the
output z. The actual mapping is given by

z = a(w⊤x+ b) = a

( n∑
i=1

wixi + b

)
where constant vector w = [w1 · · · wn]

⊤ contains weighting
parameters, b is bias, and the nonlinear function a is called
an activation function. In this paper a layered interconnection
of such neurons is referred to as a neural network.

Next, let us consider the simple neural network shown in
Fig. 2. Note that the number of neurons of the input (left)

Fig. 1. Artificial neuron
Fig. 2. Autoencoder

layer and the output (right) layer are the same, and that the
middle layer has fewer neurons. The neurons in the input
and output layers are identical mappings. In addition, we
put together the weight and bias between input-middle and
middle-output layers as

W = [w1 · · · wk]
⊤ ∈ Rk×n (14)

b = [b1 · · · bk]⊤ ∈ Rk (15)

W̃ = [w̃1 · · · w̃n]
⊤ ∈ Rn×k (16)

b̃ = [b̃1 · · · b̃n]
⊤ ∈ Rn. (17)

Then, the output y(x) ∈ Rk of the middle and right-most
layers is given by

y(x) := a(Wx+ b),

and

x̃(x) := W̃y(x) + b̃

= W̃a(Wx+ b) + b̃,

where a(·) represents the nonlinear function acting on Rk

consisting of the activation function a.
A neural network whose output signals approximate the

input signal well are called autoencoder. In the simple neural
network above, the learning as an autoencoder for given
data set X can be regarded as the following minimization
problem:

min
W ,b,W̃ ,b̃

∑
x∈X

∥x− x̃(x)∥2. (18)

This can be viewed as a nonlinear principal component
analysis of the underlying probability distribution of the
given data set. An important feature is that we do not need
to care much about the nonlinearity, i.e., the choice of the
activation function. Actually, the standard choice for this is
the sigmoid function a(x) = 1/(1 + e−x), or the rectifier
a(x) = max(x, 0) independent of the given data set. Instead,
we expect that suitable nonlinear mappings that make (18)
small are obtained somewhat automatically, assuming a large
number of neurons and the availability of a large amount of
training data.

C. Nonlinear projection as a deep autoencoder

Now, we characterize a relation between model reduction
problem and autoencoder learning. Actually, the noise re-
sponse data fitting in Section III is in the same form as (18).
Thus, we propose to minimize (18) where



Fig. 3. Deep autoencoder

• the training data set is the noise response data XS in
(11) for large S, and

• the number of neurons of the middle layer is the desired
dimension k of the reduced model.

Then, once an autoencoder is successfully achieved, we can
use

• the mapping from the input signal to the middle layer
as ϱ, and

• the mapping from the middle layer to the output as ϱ†,

respectively, that is,

ϱ†(x) := a(Wx+ b) = y(x) (19)

ϱ(z) := W̃ z + b̃ = x̃(x). (20)

In this paper, in view of Theorem 2, the autoencoder trained
by the noise response data is referred to as Control-oriented
Autoencoder (abbr. CoA).

In practice we utilize an autoencoder having multiple
layers. This is called a deep (or stacked) autoencoder, and
has played a crucial role in the recent application of deep
learning. Learning of such multi-layer neural networks had
been known to be difficult because back propagation, the
most standard procedure to update parameters, does not
work properly. To circumvent this issue, layer-wise learning
with the help of autoencoders was a breakthrough [16].
This successfully made deep learning an outstanding feature
extraction method in various fields [11], [12], [17]. Hereafter,
CoA with multi-layer structure is referred to as Control-
oriented Deep Autoencoder (abbr. CoDA). We expect that
highly nontrivial projections, which cannot, realistically, be
characterized by an analytical method, can be obtained also
in the CoDA.

It should be noted that the use of noisy training data is
known to contribute to better learning performance, i.e., the
result is robustified by avoiding overfitting [11], [12]. In the
proposed method, the training data is the snapshot of the
noise response. Therefore, we can expect that the resulting
projection has a similar enhanced generalization ability to
input signals.

V. NUMERICAL EXAMPLE

A. Reduction of a singularly perturbed system

We examine the potential usefulness of the proposed
CoDA through a numerical example. As stated in Section
I, there is no general method for model reduction by non-
linear state transforms. For comparison, we investigate the

Fig. 4. Time response of the original model

Fig. 5. Time response of the singular perturbation model

following nonlinear system:

ẋ1 = −x1 + x2 + x2x3

ẋ2 = −x2 − x2x3 + x5

ẋ3 = −x3 + x4 + u

ẋ4 = 1
ε (x4 − x2

4)

ẋ5 = 1
ε (x2 − x5 − x2x5)

(21)

with xi = [1 2 3 2.5 1.5]⊤ where each element of the state
variable x ∈ R5 is positive, ε is a sufficiently small positive
constant, and u is the exogenous input. This is taken from a
model of chemical reactions in a living organism. The time
response with ε = 0.01 and u = 0 is shown in Fig. 4.

We can apply singular perturbation to the reduction of this
nonlinear system since the time scale are explicitly separated
[18]. That is, by solving ẋ4 = 0, ẋ5 = 0, we obtain

ϱ†sp(x) := [x1 x2 x3]
⊤

ϱsp(z) := [z1 z2 z3 1
z2

1 + z2
]⊤.

This ignores the fast dynamics, but approximates slow dy-
namics well; see Fig. 5. We use this nonlinear mapping for
the comparison.

For the CoDA, the noise response snapshots (11) with

S = 200, T = {0.01× (k − 1) : k = 1, 2, . . . , 1000}

are collected for the training data. The total number of data is
2.0×105. We utilized the aforementioned layer-wise learning
via back propagation to achieve a deep autoencoder.



TABLE I
COMPARISON WITH POD

JS
DL(ϱ, ϱ

†)

CoDA (k = 2) 0.22875
POD 71.6

TABLE II
COMPARISON WITH SINGULAR PERTURBATION

JS
DL(ϱ, ϱ

†)

CoDA (k = 3) 0.01376
Singular perturbation 3.009

B. Comparison with POD

In this section we set k = 2 and compare the result with
POD, i.e., linear projections. Table I shows the projection
error JS

DL(ϱ, ϱ
†) in (12) for the CoDA and POD. This value

for the POD is the minimum achievable one among all the
linear mappings. Therefore, this result implies the existence
of a 2-dimensional nonlinear manifold that approximates the
noise response data to a high level of accuracy that cannot be
realized by any 2-dimensional linear subspace. This shows
the potential for model reduction by nonlinear mappings to
outperform the POD.

C. Comparison with singular perturbation

Next, we compare with the singular perturbation to ob-
serve how the proposed approach achieves a reasonable
nonlinear mapping without using a priori information of the
explicit time scale separation, that is, only from the noise
response data. For this purpose, we fix k = 3 and the number
of neurons in each layer is given by

5− 15− 7− 3− 7− 15− 5.

First, we impose some structure on ϱ and ϱ† in order
to examine the shape of the obtained nonlinear mapping.
That is, let ϱ = ϱsp, ϱ† = ϱ†sp except for the fifth entry
of ϱ†. The fifth entry, denoted by ϱ†5(z2), is restricted to a
function of z2, and is to be designed via deep autoencoder
design. Table II shows the projection error JS

DL(ϱ, ϱ
†) in

(12). We can observe that the CoDA achieves a better fitting
performance without a priori information on the time scale
separation property. Fig. 6 shows

ϱ†5(z2),
z2

1 + z2
, and (x2(t), x5(t)) for XS .

We can observe that the obtained nonlinear projection is
close to the result of the singular perturbation. This implies
that the CoDA can extract the slow dynamics that are well
captured by the singular perturbation. However, there is a
large mismatch between them around 1.8 ≤ z2 ≤ 2. This
region corresponds to the transient response just after the
initial time, where the fast dynamics are still dominant; see
Fig. 4. In the case of the singular perturbation, such dynamics
are ignored. On the other hand, the CoDA shows a good
accordance during these fast dynamics.

Fig. 6. Comparison between ϱ5(z2),
z2

1+z2
, and (x2(t), x5(t)) for XS .

Fig. 7. Time response of the reduced order model obtained by CoDA

Next, the constraints on ϱ†4 and ϱ†5 are removed. We
examine dynamical state trajectories of the original and
reduced systems. As a nonlinear counterpart of the Petrov-
Galerkin projection, the reduced dynamics are given by the
time differentiation of z(t) := ϱ†(x(t)) such that

ż(t) =
∂ϱ

∂x
· dx
dt

≈ ∂ϱ

∂x

∣∣∣∣∣
x=ϱ(z(t))

·
(
f(ϱ†(z(t))) + g(ϱ†(z(t))u(t))

)
x̂(t) = ϱ†(z(t)).

The time discretization is ∆t = 0.001 for the numerical
integration. To evaluate the generalization ability, we inject
step inputs

u(t) = ū

for some ū ≥ 0.
Fig. 7 shows the time response of the reconstructed

trajectory x̂(t) for u(t) = 0, which is close to the original one
in Fig. 4. In particular, Figs. 8 and 9 magnify the responses
for 0 ≤ t ≤ 0.1. As expected from the observation in
the previous paragraph, only the trajectory of the CoDA
approximates the original one well for this fast time scale.
The errors corresponding to the several inputs

E :=

∫ τ

0

∥x(t)− x̂(t)∥2dt (22)

are given in Table III. The CoDA yields smaller errors when
the input energy is small.



Fig. 8. Transient behavior of x4 for 0 ≤ t ≤ 0.1

Fig. 9. Transient behavior of x5 for 0 ≤ t ≤ 0.1

VI. CONCLUSION

In this paper, we proposed a practical nonlinear model
reduction method. The proposed CoDA is implemented as
design of a deep autoencoder of the noise response data. The
proposed method has the following important features:

1) It is applicable to nonlinear systems as far as their
noise response data are available,

2) the control theoretic optimization criterion is consid-
ered,

3) it requires only the use of algorithms that are compu-
tationally efficient,

4) and it can achieve a performance beyond the limit of
the reduction by linear projections.

The numerical example in Section V suggests that this
direction is promising. Since deep learning is one of the
most actively investigated research topics in various fields,
there are numerous powerful techniques to enhance the
learning efficiency [11], [12]. These techniques will surely
enhance the practical usefulness of the proposed method.
Furthermore, the CoDA inherently possesses some properties
desirable for recent model reduction applications [2], [19]:

• the layered neural network automatically gives a hier-
archical model reduction, and

• we can use regularization to impose a connection topol-
ogy to perform structure preserving model reduction.

In deep learning, stacked autoencoders are used as the pre-
training for regression, classification. Therefore, deep learn-
ing based on the CoDA will be useful to reinforced learning,
fault detection, system identification, and so on, taking the
controllability into account. Currently, these directions are
under investigation by applying the proposed method to
large-scale nonlinear network systems.

TABLE III
COMPARISON OF ERROR NORM IN EQ. (22) (×10−3)

ū 0 0.1 0.5 1.0
CoDA 1.4242 1.6428 7.5407 29.1860

Singular perturbation 7.6114 7.6117 7.6130 7.6145
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