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Model-based prediction of spatial gene expression
via generative linear mapping
Yasushi Okochi 1,2,8, Shunta Sakaguchi3,8, Ken Nakae4, Takefumi Kondo 3,5 & Honda Naoki1,6,7✉

Decoding spatial transcriptomes from single-cell RNA sequencing (scRNA-seq) data has

become a fundamental technique for understanding multicellular systems; however, existing

computational methods lack both accuracy and biological interpretability due to their model-

free frameworks. Here, we introduce Perler, a model-based method to integrate scRNA-seq

data with reference in situ hybridization (ISH) data. To calibrate differences between these

datasets, we develop a biologically interpretable model that uses generative linear mapping

based on a Gaussian mixture model using the Expectation–Maximization algorithm. Perler

accurately predicts the spatial gene expression of Drosophila embryos, zebrafish embryos,

mammalian liver, and mouse visual cortex from scRNA-seq data. Furthermore, the recon-

structed transcriptomes do not over-fit the ISH data and preserved the timing information of

the scRNA-seq data. These results demonstrate the generalizability of Perler for dataset

integration, thereby providing a biologically interpretable framework for accurate recon-

struction of spatial transcriptomes in any multicellular system.

https://doi.org/10.1038/s41467-021-24014-x OPEN

1 Laboratory for Theoretical Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan. 2 Faculty of Medicine, Kyoto University, Kyoto, Japan.
3 Laboratory for Cell Recognition and Pattern Formation, Graduate School of Biostudies, Kyoto University, Kyoto, Japan. 4 Graduate School of Informatics,
Kyoto Universityo, Kyoto, Japan. 5 The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto, Japan.
6 Laboratory for Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
7 Theoretical Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki,
Aichi, Japan. 8These authors contributed equally: Yasushi Okochi, Shunta Sakaguchi. ✉email: nhonda@hiroshima-u.ac.jp

NATURE COMMUNICATIONS |         (2021) 12:3731 | https://doi.org/10.1038/s41467-021-24014-x | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24014-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24014-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24014-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24014-x&domain=pdf
http://orcid.org/0000-0002-3144-9375
http://orcid.org/0000-0002-3144-9375
http://orcid.org/0000-0002-3144-9375
http://orcid.org/0000-0002-3144-9375
http://orcid.org/0000-0002-3144-9375
http://orcid.org/0000-0001-8127-1141
http://orcid.org/0000-0001-8127-1141
http://orcid.org/0000-0001-8127-1141
http://orcid.org/0000-0001-8127-1141
http://orcid.org/0000-0001-8127-1141
mailto:nhonda@hiroshima-u.ac.jp
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Genes are heterogeneously expressed in multicellular
systems, and their spatial profiles are tightly linked
to biological functions. In developing embryos, spatial

gene-expression patterns are responsible for coordinated cell
behavior (e.g., differentiation and deformation) that regulates
morphogenesis1. In addition, within organ tissues, cells at dif-
ferent locations play different roles in organ function based on
their gene-expression patterns2. Thus, identification of spatial
genome-wide gene-expression profiles is key to understanding the
functions of various multicellular systems. In situ hybridization
(ISH) has been widely used to visualize spatial profiles of gene
expression; however, application of this method is generally
limited to only small numbers of genes. By contrast, the single-
cell RNA-sequencing (scRNA-seq) method developed during the
previous decade has enabled measurement of genome-wide gene-
expression profiles in tissues at the single-cell level3. However,
this method requires tissue dissociation, which leads to loss of
spatial information for the original cells.

To compensate for the lost spatial information, new compu-
tational approaches have emerged (Seurat (v.1)4, DistMap5,
Achim et al.6, Halpern et al.7), enabling reconstruction of
genome-wide spatial expression profiles from scRNA-seq data by
integrating existing ISH data as a spatial reference map in silico.
However, their methods require binarization of gene-expression
data8, which leads to unsatisfactory accuracy, or tissue-specific
modeling, which leads difficulty in application to other systems.
Recently, the seminal methods Seurat (v.3)9 and Liger10,11 were
developed to address gene-expression data as continuous vari-
ables in a non-tissue-specific manner. These methods match the
distributions of ISH and scRNA-seq data points by using
dimensionality reductions [e.g., canonical correlation analysis
(CCA)]12 and integrative nonnegative matrix factorization
(iNMF)13, followed by mapping the scRNA-seq data points to the
nearest ISH data points, according to Euclidean distance using
nearest-neighbor (NN) methods (e.g., k-NN14 and mutual NN15).
However, a major issue is that the flexibility of the methods allow
mapping of ISH data to scRNA-seq data without any models
of the underlying scRNA-seq data structure. Specifically, these
methods do not account for difference in gene-expression
noise associated with each gene. Given this model-free prop-
erty, these methods are dependent upon nonlinear NN mapping,
which innately causes overfitting to the reference ISH data.

To address these issues, we propose a model-based computa-
tional method for probabilistic embryo reconstruction by linear
evaluation of scRNA-seq (Perler), which reconstructs spatial
gene-expression profiles via generative linear modeling in a
biologically interpretable framework. Perler addresses gene-
expression profiles as continuous variables and models gen-
erative linear mapping from ISH data points into the scRNA-seq
space. To estimate parameters of the linear mapping, we devel-
oped a method based on the expectation–maximization (EM)
algorithm14. Using the estimated parameters, we also propose an
optimization method to infer spatial information of scRNA-seq
data within a tissue sample. We applied this method to existing
Drosophila scRNA-seq data5 and successfully reconstructed spa-
tial gene-expression profiles in Drosophila early embryos that
were more accurate than those generated using another spatial
reconstruction method (DistMap5). In addition, we showed that
Perler can reconstruct a spatial gene-expression pattern that
could not be fully predicted using previous methods, including
Seurat (v.3), Liger, and DistMap. Further analysis revealed that
Perler was able to preserve the timing information of the scRNA-
seq data without overfitting to the reference ISH data. Further-
more, we demonstrated that this method accurately predicted
spatial gene-expression profiles in early zebrafish embryos4, the
mammalian liver7, and the mouse visual cortex16,17. These

findings demonstrate Perler as a robust, generalized framework
for predicting spatial transcriptomes from any type of ISH data
for any multicellular system without overfitting to the reference.

Results
Framework of spatial reconstruction in Perler. Perler is a
computational method for model-based prediction of spatial
genome-wide expression profiles from scRNA-seq data that
works by referencing spatial gene-expression profiles measured by
ISH (Fig. 1a). In general, scRNA-seq data have higher dimen-
sionality (on the order of ~10,000 genes), but does not contain
information of spatial coordinates in tissues. By contrast, refer-
ence ISH data contain expression information for D genes in each
cell or tissue subregion, with these referred to as landmark genes
(e.g., D= 84 in Drosophila melanogaster early embryos) and
tagged with spatial coordinates in tissues.

The Perler procedure involves two steps. The first step
estimates a generative linear model-based mapping function
that transforms ISH data into the scRNA-seq space, thereby
enabling calculation of pairwise distances between ISH data and
scRNA-seq data (Fig. 1b). The second step reconstructs spatial
gene-expression profiles according to the weighted mean of
scRNA-seq data, which is optimized by the mapping function
estimated in the first step (Fig. 1c).

The first step considers gene-specific differences between
scRNA-seq and ISH measurements. For example, we assume
that some genes are more or less sensitive to ISH or scRNA-seq,
and subject to high or low background signals in the associated
data. We account for gene-specific noise intensity, because gene
expression fluctuates over time in a gene-specific manner18.
These differences in sensitivity, background signals, and noise
intensity can be expressed by linear mapping:

yi ¼ aihi þ bi þ ciξi

where yi and hi denote the expression levels of landmark gene i
measured by scRNA-seq and ISH, respectively; ai, bi, and ci are
constant parameters of gene i and interpreted as the sensitivity
coefficient, background signal, and noise intensity, respectively;
and ξi indicates standard Gaussian noise. Note that ai, bi, and ci
are different for each gene, and that these parameter values are
unknown. To estimate this linear mapping from the data, we
developed a generative model in which scRNA-seq data points are
generated/derived from each cell in the tissue, whose expression is
measured by ISH (see “Methods”). We then derived a parameter
estimation procedure based on the EM algorithm (see “Methods”).
Using the estimated parameters, a gene-expression vector for each
cell in a given tissue sample measured by ISH can be mapped to
the scRNA-seq space, thereby allowing evaluation of pairwise
distances between ISH and scRNA-seq data.

The second step reconstructs the spatial gene-expression
profile in tissue from scRNA-seq data. We estimated gene
expression of each cell in a tissue sample according to the
weighted mean of all scRNA-seq data points, where the weights
were determined by the pairwise distances between cells in tissue
samples measured using ISH and scRNA-seq data points
(Fig. 1c). Weights were evaluated by Mahalanobis distance,
which accounts for the reliability of each gene depending on its
noise intensity (Fig. 1d, Eqs. (22–25)). For the best prediction, we
optimized the hyperparameters of the weighting function to
ensure that the predicted and referenced landmark gene-
expression profiles were well-correlated by cross-validation
(CV; Fig. 1e and see “Methods”). We then predicted non-
landmark gene expression using the optimized weighting
function. Data were preprocessed before the first step. Some
landmark genes redundantly exhibit similar spatial expression
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patterns, which can lead to biased parameter estimation and
cause a loss of mapping ability. To reduce redundancy in scRNA-
seq and ISH data, we performed dimensionality reduction
using partial least squares correlation analysis (PLSC)19 (see
“Methods”). Each factor in the reduced dimension can be
interpreted as a “metagene”, which is representative among a
highly correlated gene cluster, with its coordinate corresponding
to the expression level of the metagene. In Perler, we regarded

the metagene-expression level i (i.e., factor i) in the scRNA-seq
and ISH spaces as yi and hi in the equation above (see
“Methods”).

Model-based mapping between scRNA-seq and ISH data.
Previously, Karaiskos et al.5 measured gene expression in indi-
vidual cells dissociated from early D. melanogaster embryos at
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developmental stage 6 by scRNA-seq, followed by development of
a computational method (DistMap) to reconstruct the spatial
gene-expression profile of the embryos from the scRNA-seq data.
They used as reference data a spatial gene-expression atlas pro-
vided by the Berkeley Drosophila Transcription Network Project
(BDTNP)20,21, in which the expression of 84 landmark genes was
quantitatively measured by fluorescent (FISH) at single-cell
resolution at developmental stage 5.

In the present study, we applied Perler to the same scRNA-seq
dataset and used the 84 landmark genes from the BDTNP atlas as
the spatial reference map. We then predicted the spatial gene-
expression profiles for 8840 non-landmark genes. To compare
Perler results with those of DistMap, we used the same normal-
ization methods for the scRNA-seq dataset as the previous study5.
For preprocessing, we manually extracted 60 metagenes as

nonredundant clusters of the landmark genes by dimensionality
reduction, because some landmark genes were correlatedly
expressed in both the ISH and the scRNA-seq data (Supplementary
Fig. 1a, b). Then, Perler estimated the parameters of the linear
mapping by integrating the scRNA-seq data with the ISH data
(Supplementary Fig. 2a–c). The mapped ISH data points according
to the linear mapping were distributed consistently with the
scRNA-seq data points (Fig. 2a and Supplementary Fig. 2d).
We also confirmed that the linear mapping properly calibrated the
difference between ISH and scRNA-seq data on each metagene
level (Supplementary Fig. 3).

Perler can predict the origin of a scRNA-seq data point in a
tissue by computing a posterior probability that a scRNA-seq data
point was generated from each cell in the tissue sample. We found
that the scRNA-seq data points were specifically assigned to cells
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in a small region (a few cell diameters) of the tissue (Fig. 2c, d and
Supplementary Fig. 2e). We also evaluated this performance of
other methods (Supplementary Fig. 4), showing that Perler had
superior performance to DistMap and equivalent performance to
Liger and Seurat v.3.

Based on linear mapping, Perler reconstructed gene-expression
profiles from scRNA-seq data. The reconstructed and referenced
gene-expression profiles were well-correlated following optimiza-
tion of the hyperparameters (Fig. 2b and Supplementary Fig. 5).
The reconstruction accuracy of Perler (average correlation
coefficient (aCC)= 0.83) was significantly higher than that
of Seurat v.3 (aCC= 0.61), Liger (aCC= 0.61), and DistMap
(aCC= 0.56; Fig. 2e, f and Supplementary Fig. 6).

We also evaluated the predictive performance of Perler by
conducting leave-one-gene-out cross-validation (LOOCV) to
confirm whether gene expression can be predicted following
removal of the landmark gene of interest from the ISH data prior
to training (Supplementary Figs. 7 and 8). The predictive accuracy
of Perler (aCC= 0.59) was significantly higher than that of Seurat
v.3 (aCC= 0.55), Liger (aCC= 0.51), and DistMap (aCC= 0.44;
Supplementary Fig. 7). However, we noticed that some genes lost
the predictive accuracy compared with the reconstruction
accuracy (Supplementary Fig. 9a), indicating that genes can be
classified as well-predicted or poorly predicted. To clarify the
difference between these two classes of genes (Supplementary
Table 1), we examined the correlated data structure among
landmark genes (Supplementary Fig. 9b–d) and found that poorly
predicted genes had different expression patterns between ISH
and scRNA-seq (Supplementary Fig. 9d), suggesting that the loss
of prediction accuracy was primarily caused by different correlated
data structures between ISH and scRNA-seq. Further, we showed
that the predictive accuracy of each well-predicted gene was not
affected by eliminating the poorly predicted genes (aCC= 0.64
before and 0.63 after gene elimination), indicating that Perler
robustly predicted the spatial gene-expression pattern irrespective
of the poorly predicted genes.

These results demonstrated that Perler accurately recon-
structed and predicted the spatial expression profiles of the
landmark genes and was capable of doing this via simple linear
mapping.

Validity and robustness of Perler. Next, to analyze the validity of
Perler, we examined the effect of dimensionality reduction on
reconstruction and predictive accuracy. We found that the high
reconstruction accuracy (aCC > 0.78) was maintained regardless
of the presence of the dimensionality reduction, whereas the
predictive accuracy was significantly improved by dimensionality
reduction (Supplementary Fig. 10a, b), indicating that dimen-
sionality reduction was an important factor for avoiding over-
fitting to ISH data. We also examined the effect of optimizing
hyperparameters and found that it significantly improved Perler
performance (Supplementary Fig. 11a).

Moreover, we analyzed the robustness of Perler against the
downsampled landmark gene set by, first, evaluating the
reconstruction performance under random selection of differ-
ent quantities of landmark genes (Supplementary Fig. 12a). We
found that reconstruction accuracy increased with the number
of landmark genes, while only 30 landmark genes were required
to achieve comparable performance with Liger and Seurat v.3,
with full use of the landmark genes (>0.6). Second, we evaluated
the resolution of the predicted origin of a scRNA-seq data point
(Supplementary Fig. 13a), and found that the confidence for
origin prediction of a scRNA-seq data point to a small region
increased with the number of landmark genes, while only 40
landmark genes were required for a scRNA-seq data point to

be predicted to a small region (four-cell radius) with sufficient
confidence (>0.5). To further demonstrate the robustness of
Perler, we conducted tenfold CV, for which the folds were
extracted from the Drosophila scRNA-seq data points22. In
this CV scheme, the performance of methods was evaluated
using scoring metrics that were previously used in the DREAM
Single-Cell Transcriptomics challenge22. We found that
Perler more robustly performed the origin prediction of the
scRNA-seq data points compared with other methods (Liger
and Seurat v.3), although the top-ranked methods developed in
the DREAM challenge had better performance than Perler
(Supplementary Tables 2–4). Note that the metrics used in
this DREAM challenge were designed assuming that DistMap
prediction was ground truth, namely, high scores on these
metrics would be interpreted as a method that performs
similarly to DistMap.

Taken together, we conclude that, in terms of reconstructing
gene-expression profiles and predicting the original location of
scRNA-seq data points, Perler exhibits robustness against the
downsampled gene set and the tenfold CV of scRNA-seq data
point.

Prediction of non-landmark genes. In addition to the landmark
genes, Perler successfully predicted the spatial expression profiles
of non-landmark genes along both anterior–posterior (A–P) and
dorsoventral (D–V) axes (Fig. 3a, b). Furthermore, we evaluated
the predicted spatial profile of 310 spatially restricted genes
proposed by Bageritz et al.23 (Supplementary Figs. 14 and 15) and
found that Perler was able to uncover the unknown spatial gene-
expression pattern. Notably, we observed that spatial patterns
predicted by Seurat (v.3), Liger, and DistMap were incomplete.
For example, the predicted stripes disappeared in the ventral part
of embryos (e.g., abd-A and Ubx in Fig. 3a), whereas this issue
was not observed with Perler, which accurately predicted the
stripe pattern, even in the ventral part of embryos.

Prediction of 14-stripe patterns of segment-polarity genes. We
then presented the spatial predictions of “segment-polarity”
genes, which are expressed in a 14-stripe pattern consistent with
the parasegments that subdivide the trunk (main body) region of
embryos (Fig. 3b)24–28. Although the BDTNP reference does not
contain information concerning the genes expressed in the 14-
stripe pattern, we found that Perler accurately predicted the
spatial expression patterns of these segment-polarity genes,
including engrailed (en), wingless (wg), hedgehog (hh), and mid-
line (mid) (Fig. 3b)24–28. By contrast, all of the previous methods
exhibited issues regarding prediction of the 14-stripe patterns.
The predicted patterns demonstrated that DistMap and Seurat
(v.3) were unable to predict any 14-stripe patterns, and that Liger
partially predicted 14-stripe patterns, although the ventral part of
each stripe was missing (Fig. 3b). These results suggested that
Perler more accurately revealed the spatial gene-expression pat-
terns of non-landmark genes.

We further analyzed the details of the gene-expression profiles
of the segment-polarity genes within each parasegment. Each
parasegment shows a four-cell width and is delimited by periodic
expression of pair-rule genes and segment-polarity genes at the
single-cell width resolution at stage 629,30 (Fig. 4a). First, we
confirmed that the reconstructed patterns of ftz, eve, and odd
were consistent with experimental results (Fig. 4b). In addition,
the predicted stripes of wg were identified adjacent to the
predicted stripes of en, and the predicted stripes of en were
identified adjacent to the reconstructed stripes of odd (Fig. 4b, c).
These results were consistent with experimental results29,30,
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Fig. 3 Spatial prediction of non-landmark genes. Predictions of non-landmark gene expression showing a spatial expression along the A–P and D–V axes
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strongly supporting the ability of Perler to reveal differences in
spatial gene expression at single-cell resolution.

Preservation of timing information of scRNA-seq data. We
then investigated the effect of timing differences between scRNA-
seq (stage 6) and FISH (stage 5) experiments. Although most
gene-expression patterns at stage 6 are the same as those at stage 5,
several “pair-rule” genes (odd, prd, slp1, and run) exhibit stripe-
doubling from the 7- to the 14-stripe expression patterns during
stages 5 and 629 (Fig. 5a). Accordingly, the scRNA-seq data should
intrinsically contain information for the 14-stripe expression
pattern. Therefore, we determined whether Perler could recon-
struct the 14-stripe pattern from the stage 6 scRNA-seq data.

In our reconstruction, ftz, eve, and h showed a seven-stripe
pattern, which was consistent with the previous report25 showing
that these genes do not exhibit stripe-doubling during stages 5
and 6 (Fig. 5b). For odd, prd, and slp1, which exhibit stripe-
doubling, Perler reconstructions resulted in 14-stripe patterns
(Fig. 5c). In addition, reconstruction of run resulted in a partial
stripe-doubling pattern, where the third stripe from the posterior
of the embryo was split into two stripes (Fig. 5c), surprisingly
suggesting that Perler detected the ongoing phase of a 7-stripe to
14-stripe pattern. These results showed that Perler was able to
reconstruct embryos according to the timing of the scRNA-seq
experiment. By contrast, Seurat (v.3) and DistMap reconstructed
every pair-rule gene as seven-stripe patterns (Fig. 5b, c).
Moreover, Liger reconstructed odd, prd, and slp1 as broad
primary seven stripes with weak secondary seven stripes, which
were so obscure that it was difficult to distinguish 14 stripes, and
reconstructed run as a 7-stripe pattern (Fig. 5c). These results
indicated that previous methods reconstructed embryos accord-
ing to the timing of FISH experiments rather than that of scRNA-
seq experiments. Taken together, these findings showed that
Perler successfully reconstructed spatial gene-expression profiles
according to the timing of scRNA-seq experiments (stage 6),

regardless of the timing of FISH experiments (stage 5), while all
other methods reconstructed those at the timing of FISH
experiments. We concluded that Perler has the ability to not
over-fit to ISH data and robustly preserve timing information in
scRNA-seq data.

Application to other datasets. To evaluate Perler applicability to
other datasets, we evaluated it using three published datasets.
First, we applied Perler to the zebrafish embryo datasets (Sup-
plementary Fig. 1, 10–13, 16, and 17), in which the spatial
reference map was binarized based on traditional measurement
by ISH4 (Fig. 6a and see “Methods”). LOOCV demonstrated that
Perler accurately predicted spatial gene-expression profiles com-
patible with Seurat (v.1)4 (median receiver operating character-
istic (ROC) score= 0.97), even using the binary spatial reference
map (Fig. 6a–c).

We then applied Perler to mammalian liver datasets (Supple-
mentary Figs. 11, 18, and 19), in which the spatial reference map
was measured by single-molecule (sm)FISH7 (Fig. 6d and see
“Methods”). LOOCV showed that the predictive accuracy (aCC
= 0.87) was sufficiently high (Fig. 6e), and that Perler successfully
predicted both monotonic and non-monotonic gene-expression
gradients (Fig. 6f)7.

Finally, we applied Perler to adult mouse visual cortex datasets
(Supplementary Figs. 1, 11–13, 20, and 21), in which the single-
cell resolution ISH data for 1020 genes was measured by recent
in situ technology (STARmap16), and scRNA-seq data for 14,739
cells available from the Allen Brain Atlas17. CV revealed that
Perler predicted the spatial expression patterns of genes according
to both layer-specific expression and cell-type-specific expression
in brain cortex (Fig. 6g). We also applied Perler to another
scRNA-seq dataset (194,027 cells; Drop-viz31), and found that
it predicted the spatial gene-expression patterns using the Drop-
viz dataset consistently with the Allen Brain Atlas dataset
(Supplementary Figs. 22–24). These results suggest that Perler
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is applicable for prediction using high-dimensional spatial
reference maps.

Taken together, the findings support Perler as a powerful tool
for predicting spatial gene-expression profiles in any multicellular
system with general applicability to any type of ISH data (e.g.,
binary or continuous, low to high dimension, and single-cell to
tissue-level resolution).

Discussion
In this study, we developed a model-based computational method
(Perler) that predicts genome-wide spatial transcriptomes. Perler
sequentially conducted a two-step computation, with the first step
mapping ISH data points to the scRNA-seq space according to
the generative linear model by EM algorithm (Fig. 1b), and the
second step optimizing the weighting function used to predict
spatial transcriptomes according to weighted scRNA-seq data
points (Fig. 1c, d). Using a dataset for early Drosophila embryos,
we demonstrated that Perler accurately reconstructed and pre-
dicted genome-wide spatial transcriptomes with robustness
(Figs. 2–5). Moreover, we showed that in any multicellular sys-
tem, Perler displayed broad applicability to any type of ISH data
(Fig. 6).

We propose that Perler offers three innovative features. First,
Perler can calibrate the difference between scRNA-seq and ISH
measurement properties. To express this difference, we applied
a “linear mapping model” assuming biologically interpretable
constraints that expression levels are linearly correlated
between ISH and scRNA-seq measurements with gene-specific
sensitivity, background signals, and noise intensity, as in Eq.
(1). Second, Perler can reliably reconstruct gene-expression
patterns in a noise-resistant manner. Specifically, Perler can
evaluate to which extent each gene is reliable for reconstruction
depending on the noise intensity (Fig. 1d), by using Mahala-
nobis pairwise distances (Eq. (23), related to Fig. 1c). As a

result, more reliable genes with low noises have larger con-
tribution to the weights for the reconstruction, whereas less
reliable genes with high noises have smaller contribution. It
should be stressed that such quantitative evaluation of gene
reliability is possible only with a method using a generative
model. Third, the model-based linear mapping used in Perler is
beneficial in terms of the performance for gene-expression
pattern reconstruction. To ensure generalized performance, we
introduced generative linear modeling with biologically inter-
pretable constraints and statistically reasonable distances. This
model-based characteristic of Perler differs from Seurat (v.3)9

and Liger10, both based on model-free mapping between ISH
and scRNA-seq data (e.g., CCA and NMF methods). Their
model-free mapping addresses gene expression as continuous
variables with applicability to any kind of multicellular system;
however, these methods freely map ISH data to scRNA-seq data
without any assumptions (i.e., they do not account for latent
relationships between the two datasets). We showed that
model-based Perler significantly improved reconstruction/pre-
diction accuracy compared with other methods (Liger, Seurat
v.3, and DistMap; Fig. 2e, f). Further, in a demonstration using
Drosophila data, Perler was found to preserve the timing
information of scRNA-seq data and robustly reconstruct the
spatial gene-expression patterns of the pair-rule genes; whereas
this kind of robustness is not observed in other model-free
methods (Liger, Seurat v.3, and DistMap; Fig. 5). For example,
by focusing on the stripe-doubling of pair-rule genes in Dro-
sophila, Perler successfully reconstructed 14-stripe patterns at a
single-cell resolution, while Seurat v.3 and Liger were unable to
effectively reconstruct these patterns, and over-fit to the timing
of ISH experiments (Fig. 5). We believe that these results
highlight the importance of using model-based prediction of
spatial gene-expression patterns. Additional characteristic fea-
tures of Perler are summarized in Supplementary Table 5.
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It is worth mentioning a recent method called novoSpaRc32.
This method proposed a new concept for predicting spatial
expression patterns using the physical information of cells in
tissue, which enables these predictions with little or no infor-
mation regarding ISH gene-expression patterns. However, in
practice, their predictive ability using Drosophila scRNA-seq data
is unsatisfactory at single-cell resolution; therefore, this concept of
using cellular information remains challenging. As a focus of

future study, it would be interesting to extend our generative
model to introduce prior knowledge of physical information.

We demonstrated that Perler can integrate two distinct datasets
of RNA-expression profiles, while also avoiding overfitting to
the reference. These features suggest that Perler could be a
suitable theoretical framework for integrating not only two RNA-
expression datasets, but also two single-cell datasets with different
modalities, such as chromatin accessibility measured by a single-
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cell assay for transposase-accessible chromatin, using sequencing
and DNA methylation measured by chromatin immunoprecipi-
tation sequencing. Particularly in terms of multi-omics analysis,
where datasets from two different modalities do not exactly
match and are often sampled from different individuals and using
different time intervals33,34, Perler can potentially help integrate
different types of single-cell genomics data. Thus, Perler provides
a powerful and generalized framework for revealing the hetero-
geneity of multicellular systems.

Methods
We developed a method to reconstruct spatial gene-expression profiles from an
scRNA-seq dataset via comparison with a spatial reference map measured by ISH-
based methods. In the spatial reference map, landmark gene-expression vectors (D
genes; e.g., D= 84 in early D. melanogaster embryos) are available for all cells,
whose locations in the tissue are known. The landmark gene-expression vector of
cell k is represented as hk= (hk,1, hk,2,…, hk,D)T, where cells are indexed by k (k∈
{1,2,…, K}), and K is the total number of cells in the tissue of interest. By contrast,
in an scRNA-seq dataset, genome-wide expression (D′ genes; e.g., D′= 8924 in
early D. melanogaster embryos) lack information regarding cell location in tissue.
The genome-wide expression vector of cell n is represented as yn= (yn,1, yn,2,…, yn,
D′)T, where cells are indexed by n (n∈ {1,2,…, N}), and N is the total number of
cells used for scRNA-seq measurement.

Observation model. We modeled the difference between scRNA-seq and ISH
measurements as

yi ¼ aihi þ bi þ ciξi ð1Þ
where yi and hi indicate expression levels of landmark gene i measured by scRNA-
seq and ISH experiments, respectively; ξi indicates Gaussian noise with zero mean
and unit variance; and ai, bi, and ci are constant parameters for gene i, which are
interpreted as scale difference amplification rates, background signals, and noise
intensities, respectively.

We reduced the dimensionality of the genes to change Eq. (1) to

xj ¼ ajrj þ bj þ cjξj ð2Þ
where xj and rj indicate expression levels of metagene j for scRNA-seq and ISH in
the lower dimensional space, j∈ {1, 2,…, M}; and M indicates the number of
metagenes. In vector–matrix representation, the Eq. (2) is written as:

x ¼ Arþ bþ Cξ ð3Þ
where x= (x1, x2, …, xΜ)Τ, r= (r1, r2, …, rΜ)Τ, A= diag(a1, a2, …, aΜ), b= (b1,
b2, …, bΜ)T, C= diag(c1, c2, …, cΜ), and ξ= (ξ1, ξ2, …, ξΜ)Τ.

Metagene representation in lower dimensional space. The dimensionalities of
both scRNA-seq and reference data were reduced by PLSC analysis19. PLSC can
extract the correlated coordinates from both datasets. In PLSC analysis, the cross-
correlation matrix of scRNA-seq and ISH data is first calculated as:

W ¼ YTH ð4Þ
where Y and H indicate a D ×N scRNA-seq data matrix with D landmark genes
and N cells, and a D × K ISH data matrix with D landmark genes and K cells,
respectively. W is then subjected to singular value decomposition as:

W ’ UTΔV ð5Þ
where U, Δ, and V indicate theM×N singular vector matrices, theM ×M diagonal
matrix, and M×K singular vector matrices, respectively, with M representing the
reduced dimension (i.e., the number of metagenes). In this study, the metagene
vectors for scRNA-seq (xn) and the reference data (rk) were, respectively, calculated
by:

xn ¼ Δun ð6Þ

rk ¼ Δvk ð7Þ
where un and vk indicate the nth row vector of U and the kth row vector of V,
respectively.

A Gaussian mixture model (GMM) for scRNA-seq observation. We used
Eq. (3) to transform ISH observations into scRNA-seq observations. To infer from
which cells in the tissue the scRNA-seq observations originated, we developed a
generative model for metagene-expression vectors for scRNA-seq data x, which
was expressed by a K-components GMM:

P xjθð Þ¼ ∑
K

k¼1
πkN xjμk;Σ

� �
; ð8Þ

where

μk ¼ Ark þ b; ð9Þ
Σ ¼ diag σ21;σ

2
2; :::;σ

2
M

� �
(σj= cj), N(x|μ, Σ) indicates a multivariate Gaussian

distribution with mean and variance-covariance matrix Σ, and πk is the probability
that x originated from cell k in the tissue. Note that A, b, and Σ are unknown
parameters that need to be estimated.

The log of likelihood function of this GMM model is given by:

L θð Þ ¼ ∑
N

n¼1
ln ∑

K

k¼1
πkN xnjμk ;Σ

� �� �
ð10Þ

where θ indicates a set of the parameters θ∈ {π, A, b, Σ} and π= (π1, π2, …, πM)T.

EM algorithm (the first step in Perler). To estimate the unknown parameters
(π, A, b, and Σ), we maximize the log likelihood function using the EM algorithm.
In the E step, based on the current parameter values, we calculated the responsi-
bility, which represents the posterior probability that scRNA-seq vector xn was
derived from cell k in the tissue as:

γnk ¼
πkN xnjA oldð Þrk þ b oldð Þ;Σ oldð Þ� �

∑K
j πjN xnjA oldð Þrk þ b oldð Þ;Σ oldð Þ� � ð11Þ

In the M step, we optimize the parameter values in order to maximize the log
likelihood function based on the current responsibilities. These parameter values
are updated as follows:

π newð Þ
k ¼

∑K
j γnk
N

; ð12Þ

a newð Þ
i ¼ ψi � χib

newð Þ
i

ωi
; ð13Þ

b newð Þ
i ¼ ωiϕi � ψiχi

Nωi � χ2i
; ð14Þ

σ2 newð Þ
i ¼ 1

N
∑
N

n¼1
∑
K

k¼1
γnk xni � a newð Þ

i rki � b newð Þ
i

� �2
; ð15Þ

where

ϕi ¼ ∑
N

n¼1
∑
K

k¼1
γnkxni; ð16Þ

χi ¼ ∑
N

n¼1
∑
K

k¼1
γnkrni; ð17Þ

ψi ¼ ∑
N

n¼1
∑
K

k¼1
γnkxnirni; ð18Þ

ωi ¼ ∑
N

n¼1
∑
K

k¼1
γnkr

2
ni: ð19Þ

The detailed derivation for these equations is presented in a later subsection.
The E and M steps iterate until the log likelihood function converges, after which
the obtained estimated parameters θ̂ 2 fπ̂; Â; b̂; Σ̂g. μ̂k are given as:

μ̂k ¼ Ârkþ b̂; ð20Þ
describing the mapped metagene-expression vector of cell kmeasured by ISH. Note
that μ̂k is the metagene-expression vector in the scRNA-seq space.

In Perler, updating πk is optional. Ideally, πk should be proportional to the
number of cells within region k. In our study, πk was fixed as 1/K for Drosophila,
zebrafish, and mouse cortex data as the tissue was equally divided in the ISH data,
whereas πk values were fixed to the area of each zone in the mammalian liver data.
Note, fixing πk accelerated the convergence of the EM algorithm compared with
optimizing πk (Supplementary Figs. 25 and 26).

For the initialization of parameter values, we selected the values of ai and bi
such that mean and variance of each element of xni and rki were the same and
selected the ci values as standard deviation of xni.

Spatial reconstruction (the second step in Perler). We reconstructed/predicted
the gene-expression vector by weighted averaging all scRNA-seq data points as

�yk ¼ ∑
N

n¼1

wnkyn
∑N

j¼1wjk

; ð21Þ

where yn indicates the nth scRNA-seq data point (D-component vector). wnk is
calculated by

wnk ¼
πkexp �αD2

nk � βDnk � δ
� �

∑K
j¼1πjexp �αD2

nj � βDnj � δ
� � ; ð22Þ
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where α, β, and δ are positive constants. Note that δ in the numerator and
denominator of Eq. (22) are canceled out. Dnk indicates Mahalanobis distance
between scRNA-seq data point xn and cell k:

Dnk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn � μ̂kÞTΣ̂

�1ðxn � μ̂kÞ
q

: ð23Þ
If α= 1/2 and β= 0, wnk is exactly the posterior probability that scRNA-seq data
point xn is generated by cell k. Note that Eq. (21) has a similar structure to the
Nadaraya–Watson model14. Values of α and β are determined by CV.

Weight sensitivity to the small perturbation of metagene. We calculated dif-
ferentiation of weight with respect to each metagene-expression level of scRNA-seq
data point as:

dwnk

dxni
¼ wnk 1� wnk

� � �2αDnk � β
� �

Dnk

xni � μki
σ i

2
ð24Þ

/ xni � μki
σ i

2 ð25Þ
These equations show that as xni moves away from μki , weights decrease with a

rate inversely proportional to the estimated noise of metagene i. This relationship
indicates that small changes in unreliable genes with high noise levels has little
effect on the weight, while small changes in reliable genes with low levels of noise
have a large effect on weight. Therefore, Perler can reconstruct gene-expression
profiles in a noise-resistant manner by accounting for the reliability of each gene
through weight determination.

Hyperparameter optimization. We optimized the hyperparameters α and β of the
weighting function by LOOCV, in order to fit the predicted gene expression to the
referenced gene expression measured by ISH. To this end, we removed one of the
landmark genes from the ISH data and used this dataset to predict the spatial gene-
expression profile of the removed landmark gene with the fixed hyperparameters in
Perler. This LOO prediction was repeated for every landmark gene. We then
quantitatively evaluated the predictive performance of these hyperparameters
according to the mutual information existing between the predicted expression and
referenced expression of all landmark genes:

J ¼ � 1
2
∑
D

i
lnf1� ρi α; β

� �2g; ð26Þ

where J is the approximated mutual information between the predicted and
referenced gene expression. ρi(α, β) indicates the Pearson’s correlation coefficient
between the predicted spatial expression pattern of each landmark gene i and its
reference ISH data as:

ρi α; β
� � ¼ ∑K

k �yki � �yi
	 
� �

hki � hi
	 
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑K

k �yki � �yi
	 
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑K
k hki � hi

	 
� �2q ; ð27Þ

where

�yi
	 
 ¼ 1

K
∑
K

k¼1
�yki; and ð28Þ

hi
	 
 ¼ 1

K
∑
K

k¼1
hki: ð29Þ

The derivation of J is described in a later subsection. Here, we optimized α and
β by grid search in order to maximize the mutual information, J. We then used the
optimized hyperparameters to predict the spatial profile of non-landmark genes
(Fig. 3 and Supplementary Fig. 5). To evaluate the predictive performance of Perler
(Fig. 3), we removed each landmark gene from the mutual information and re-
optimized the hyperparameters. This re-optimization is repeated for every
landmark gene. Note that for the zebrafish embryo data, we used the ROC score
instead of the correlation coefficient, because only the binary ISH data was
available. In addition, for the mouse visual cortex data, we conducted tenfold CV
because of the massive computational cost of LOOCV for the large number of
landmark genes (1020 genes).

Data acquisition and preprocessing. For D. melanogaster reconstruction, we used
scRNA-seq and ISH data at Drosophila Virtual Expression eXplorer (DVEX;
https://shiny.mdc-berlin.de/DVEX/5), which was originally used for DistMap5. In
these datasets, the number of scRNA-seq data points is 1297, whereas the number
of cells to be estimated in the embryos is 3039. The expressed mRNA counts in this
scRNA-seq dataset were already log normalized according to the total number of
unique molecular identifiers for each cell. For each gene, we subtracted the average
expression from the scRNA-seq data. In addition, the ISH data were log-scaled and
subtracted average expression from this ISH data, as same as the scRNA-seq data.

For reconstruction of the early zebrafish embryos, we acquired the public
scRNA-seq and ISH data from the Satija Lab homepage (https://satijalab.org/4),
with these data originally used by Seurat (v.1)4. In these data, the number of
scRNA-seq data points is 851, whereas the number of subregions to be estimated in
the embryos is 64. Note that the ISH data were binary. Similar to the Drosophila

data, we log-scaled both scRNA-seq and ISH datasets and subtracted the average
expression of each gene.

For reconstruction of the mammalian liver, we used scRNA-seq and smFISH
data provided by Halpern et al.7. In these data, the number of scRNA-seq data
points is 1415, whereas the number of zones to be estimated in the embryos is 9.
Because multiple samples were provided in the smFISH data, we calculated their
average at each tissue location for Perler, followed by log-scaling both the scRNA-
seq and smFISH data and subtracting the average expression of each gene.

For reconstruction of the mouse visual cortex, we used scRNA-seq data
provided by the Allen Brain Institute17 and Drop-seq data provided by Saunders
et al.31. For ISH data, we used smFISH data provided by Wang et al.16, respectively,
which were originally used for Seurat (v.3)9. The number of scRNA-seq data points
is 14,739 and 194,027, respectively, whereas the number of cells to be estimated in
the cortex is 1549. We log-scaled both the scRNA-seq and smFISH data, and
subtracted the average expression of each gene.

Data analysis. We used the newly developed method, Perler for data analysis.
Perler was deposited at GitHub (see “Code availability”). Perler is built on
Python 3.8.3.

All other software used in this study is publicly available: Numpy==1.19.5
(https://numpy.org/) for calculation; Scipy==1.6.1 (https://www.scipy.org/) for
calculation; joblib==1.0.0 (https://joblib.readthedocs.io/en/latest/index.html) for
calculation; scikit-learn==0.24.1 (https://scikit-learn.org/) for traditional machine
learning (e.g., PCA and NN method); Matplotlib==3.3.3 (https://matplotlib.org/)
for data visualization; Seaborn==0.11.1 (https://seaborn.pydata.org/) for data
visualization; and pandas==1.2.1 (https://pandas.pydata.org/) for reading data
frames. For the visualization of zebrafish embryos, we used “zf.insitu.vec.lateral”
function of Seurat (v. ≥ 1.2).

Data visualization. For D. melanogaster, we visualized the reconstructed gene-
expression profile at single-cell resolution by using the three-dimensional coordi-
nates of all cells from DVEX (https://shiny.mdc-berlin.de/DVEX/5). Because the
embryo is bilaterally symmetric, we mapped the reconstructed spatial gene-
expression levels of the 3039 cells in the right-half embryo. According to the
previous study5, we then mirrored the spatial gene-expression levels of the right-
half cells to the remaining cells in left-half embryo. In the case of the early zebrafish
embryos, we visualized the reconstructed gene expression using the “zf.insitu.vec.
lateral” function of Seurat (v. ≥ 1.2)4. In the case of the mammalian liver, we
visualized the reconstructed gene expression as a heatmap. In the case of the mouse
visual cortex, we visualized the reconstructed gene expression at single-cell reso-
lution. We used two-dimensional coordinates of all cells within cortical slices
provided by Wang et al.16.

Derivation of the EM algorithm. The goal of the EM algorithm is to maximize the
likelihood function p(X | θ) with respect to θ, where X= {x1, x2,…, xN} and θ= {π,
A, b, Σ}. The generative model of scRNA-seq data point x with latent variables z is
formulated, as follows. The probability distribution of z is:

P zð Þ ¼
YK
k¼1

πk
zk ; ð30Þ

where z is a vector in a one-of-K representation that shows from which cells/
regions in tissue a scRNA-seq sample originated; zk is the kth element of z; K is the
number of the elements of the latent variables z equal to the number of cells in the
tissue; and πk is probability that zk= 1. The probability distribution of x condi-
tioned by z is:

P xjzð Þ ¼
YK
k¼1

N xjArk þ bk;Σ
� �zk ; ð31Þ

where N(x|μ, Σ) indicates a Gaussian distribution with mean μ and variance Σ; Ak

is the M ×M diagonal matrix; bk indicates the M elements vector in Eq. (3); and rk
indicates the M elements vector describing the metagene-expression level in cell k.
The joint probability distribution of x and z is:

P x;zð Þ ¼
YK
k¼1

πkN xjArk þ bk;Σ
� �� �zk : ð32Þ

Note that the marginalized distribution of z becomes Eq. (8). The likelihood
function for the complete dataset {X, Z} is given as:

P X;Zð Þ ¼
YN
n¼1

YK
k¼1

πkN xnjArk þ b;Σ
� �� �znk ; ð33Þ

where Z= {z1, z2,…, zN}. Therefore, the expectation of its log likelihood function
over the posterior distribution of P(Z|X, θ(old)) becomes:

Q θ; θ oldð Þ� � ¼ ∑
Z
P ZjX; θ oldð Þ� �

lnP X;Zjθð Þ ð34Þ

¼ ∑
N

n¼1
∑
K

k¼1
γnklnπk þ γnklnN xnjArk þ b;Σ

� �
; ð35Þ
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where γnk is the expectation of znk over P(Z|X, θ(old)) given as:

γnk ¼ ∑
zn
znkP znjxn; θ oldð Þ� �

: ð36Þ
According to Bayes’ theorem:

P znjxn; θ oldð Þ� � ¼ P xnjzn; θ oldð Þ� �
P zn; θ

oldð Þ� �
∑zn

P xnjzn; θ oldð Þ� �
P zn; θ

oldð Þ� � ; ð37Þ

where P(znk= 1|xn) becomes Eq. (11).
In the E step, γnk is calculated based on the current parameter values of θ(old). In

the M step, we update the parameter values θ by maximizing the Q-function as:

θ newð Þ ¼ argmax
θ

Q θ; θ oldð Þ� �
: ð38Þ

The maximization of Q(θ, θ(old)) with respective to A, b, and Σ is achieved by ∂Q/
∂A= 0, ∂Q/∂b= 0, and ∂Q/∂Σ= 0, leading to Eqs. (13–19). π is updated by introducing
a Lagrange multiplier to enforce the constraint ∑K

k¼1πk ¼ 1, leading to Eq. (12).

Derivation of mutual information. We derived Eq. (26) by approximating the
following mutual information between the reconstructed spatial expression pattern
of the landmark genes and their reference map:

I �y; h
� � ¼

Z Z
P �y; h
� �

ln
P �y; h
� �

P �y
� �

P hð Þ d�ydh; ð39Þ

where �y ¼ ð�y1;�y2; ¼ ;�yDÞ; h ¼ ðh1; h2; ¼ ; hDÞ; and �yi and hi indicate random
variables representing the predicted and referenced expression levels of landmark
gene i, respectively, and Pð�y; hÞ indicates the joint probability distribution of �y and
h. Here, we assumed that spatial expressions of landmark genes are independent
from one another, which leads to:

I �y; h
� � ¼ ∑

D

i

Z Z
P �yi; hi
� �

ln
P �yi; hi
� �

P �yi
� �

P hi
� � d�yidhi: ð40Þ

We calculated Ið�y; hÞ by assuming Pð�yi; hiÞ as a bivariate Gaussian distribution
and obtained:

I �y; h
� � ¼ � 1

2
∑
D

i
ln 1� ρi α; β

� �2� �
; ð41Þ

where ρiðα; βÞ denotes the calculated Pearson’s correlation coefficient calculated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
This study constituted a reanalysis of existing data. The detailed data are available at the
following sites: Drosophila embryo datasets from Drosophila Virtual Expression eXplorer
(DVEX); Zebrafish embryo datasets from Satija Lab homepage (https://satijalab.org/);
mammalian liver datasets from Gene Expression Omnibus (GEO) with the accession
code GSE84498; STARmap data from STARmap Resources website (https://www.
starmapresources.com/; mouse cortex); SMART-seq2 data from Cell Types Database
website of the Allen Institute for Brain Science (http://celltypes.brain-map.org/api/v2/
well_known_file_download/694413985; mouse cortex); and Drop-seq data from Drop-
viz website (http://dropviz.org/; mouse cortex). Source data are provided with this paper.

Code availability
Perler is developed under python 3.8 on GitHub (https://github.com/yasokochi/Perler)35.
The minimal usage of Perler is provided in Supplementary Table 6, and the selected
parameters in the manuscript are provided in Supplementary Table 7. The running time
and the memory usages on a MacBook Pro (2.3 GHz 8-Core Intel Core i9, 64GB) are also
provided in Supplementary Table 8.
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