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A GRADIENT-FLOW APPROACH FOR THE CONVERGENCE OF 
THE ANISOTROPIC ALLEN-CAHN EQUATION 

TIM LAUX 

ABSTRACT. These short notes provide a convergence result for the anisotropic Allen
Cahn equation to anisotropic mean curvature flow which applies to general "energetic" 
and "kinetic" anisotropies. This extends a previous result by Simon and the author 
[Comm. Pure Appl. Math. 71.8 (2018): 1597-1647] to the scalar anisotropic case. For 
the sake of brevity, the proof is merely sketched, but some additional background on the 
key tool, the anisotropic tilt excess, is provided. A detailed proof will appear elsewhere. 
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1. INTRODUCTION 

These notes explore the connection between the Allen-Cahn equation and mean curva
ture flow for general anisotropies from a variational viewpoint. The mean curvature flow 
(MCF) equation 

(1.1) V = -µHr; on ft 

describes the evolution of hypersurfaces (ft)tE[D,T) in ]Rd_ Here V = V(x, t) denotes 
the velocity of ft in direction of its normal v = v(x, t), µ = µ(v) is called the mobility 
function, and Hr; = H,,(x, t) = -Vr, · (Dcr(v)) denotes the mean curvature with respect to 
the anisotropic surface tension er= cr(v). Mean curvature flow models the slow relaxation 
of grain boundaries in polycrystals, which still remains the major application of and was 
in fact the first motivation for MCF. The Allen-Cahn equation 

(1.2) 

was introduced by Allen-Cahn [1] in the isotropic case f(p) = IPl 2 and g(p) = l and has 
received continuous attention ever since. We will use the standard double-well potential 
W(u) := ¼(u2 -1) 2 in these notes, but all statements carry over to double-well potentials 
with some mild growth and regularity properties. We will restrict our attention to the 
natural choices 

(1.3) f(p) = cr2(p) and IPI 
g(p) = µ(p)' 

whereµ and er are positively 1-homogeneous functions as in Definition 3.1. 
One fundamental structural property of both (1.1) and (1.2), which draws an intimate 

connection between them-even in the anisotropic case-is their gradient-flow structure. 
In general, to define a gradient flow one must fix an energy functional and a Riemannian 
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structure. The solution U,: of the Allen-Cahn equation (1.2) may be interpreted as the 
gradient flow of the Cahn-Hilliard (or Ginzburg-Landau) energy functional 

(1.4) E,:(u) := - sf(Vu) + -W(u) dx l J l 
2 c 

with respect to the inner product (bu, bu)u := I sg(Vu)(bu)2 dx. Formally speaking, also 
mean curvature flow is a gradient flow, namely of the surface energy functional E(f) = 
Ir a(v) dHd-l with respect to the Riemannian structure (V, V)r := Ir 1-Jv) V2 dHd-1; with 
the caveat that this structure is completely degenerate [22]. 

In the static case, the variational structure is rigorous: the energy (1.4) approximates 
the anisotropic area functional 

(1.5) E(u) := E(x) := 0 j a(v) IVxl 

defined for functions u = 2x - 1 taking values only in the wells -1, 1 of the double-well 
potential W for which 

J a(v) IVxl := sup { - j(v · ~)xdx: ~ E 01([0, 1tt, a 0
(~):::; 1} < oo, 

see §3 the definition of the polar norm a 0 • Indeed, Bouchite [9] showed, for more general 
integrands, that the functionals E,: converge (in the sense off-convergence) to E, where 
the coefficient 0 is given by 

(1.6) 0 := 1: JWwds. 

Regarding the dynamic case under consideration here, it should be pointed out that 
already in the early 90's, Chen-Giga-Goto [13] proved the existence and uniqueness of 
viscosity solutions if one allows for the degenerate behaviour called fattening. Bellettini
Paolini [8] set up the problem of anisotropic mean curvature flow very carefully and, 
using formal asymptotic expansions, show that the (anisotropic) implicit time discretiza
tion proposed by Almgren-Taylor-Wang [2] and Luckhaus-Sturzenhecker [21], the level-set 
formulation [13, 16], and phase-field models produce solutions of MCF. 

Using only minimal assumptions on a(v), Chambolle-Morini-Ponsiglione [12] proposed 
a new weak formulation for anisotropic two-phase MCF in the case µ(v) = a(v). Their 
formulation is somewhat reminiscent of the traditional viscosity solution, in the sense that 
it is based on level-set functions, more precisely, the distance function d(x, t) to E(t). In 
their setting it is rather easy to prove uniqueness ( except for fattening); the more difficult 
question of existence is solved by proving rigorously that the implicit time discretization 
[2, 21] converges in the anisotropic case. Using smoothing techniques instead of a time 
discretization, the same group of authors, together with Novaga, [11] extended this result 
to arbitrary mobilities µ(v). The interested reader is referred to [19] for the discussion of 
further related results in the isotropic case. 

Throughout the paper, we will work on the d-dimensional cube [O, l)d with peri
odic boundary conditions and use the short-hand notation I ( ·) dx := Jro,i)d( ·) dx and 

I (·)IV xi := fro,i)d( ·) IV xi for spatial integrals with respect to the d-dimensional Lebes
gue measure and the surface measure IVxl, respectively. The notation A ;SB means that 
there exists a generic constant C < +oo, only depending on the spatial dimension d, the 
anisotropy a and mobilityµ, such that A:::; CB. We reserve the notation D := DP for the 
derivative with respect to the variable p and write V for the spatial gradient. Throughout, 
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a· b := Li aibi and A: B := tr(AT B) = Li,j %bij denote the standard scalar products 
of vectors and matrices, respectively. 

2. MAIN RESULT 

The main result presented in these notes is the following convergence theorem. 

Theorem 2.1. Let u andµ be an admissible anisotropy and mobility according to Defi
nition 3.1, repectively, and suppose the compatibility conditions (1.3) hold. Given a finite 
time horizon T < oo, and well prepared initial conditions Ue:,o and u0 , i.e., 

Ue:,o-+ u0 in L2 and E0 := limEe:(ue: 0 ) = E(u0 ) < oo, 
c• O ' 

the solutions Uc: of the Allen-Cahn equation (1.2) with initial data ue:,o are pre-compact, 
i.e., there exists a subsequence c -+ 0 and a limit u = 2x - 1 such that 

Uc:-+ u in L2 • 

Furthermore, if additionally 

(2.1) lim ( Ee:(ue:(t)) dt = ( E(u(t)) dt, 
e:• o}o Jo 

then u satisfies the M CF equation ( 1.1) in the distributional sense: There exists a function 
V such that OtX = VIVxldt and 

(2.2) 1T j µ(v) VX · vlVxldt = 1T j VX: (u(v)Id- v@Du(v)) IVxl dt 

for all test vector fields XE C1 ([0, T] x [O, l)d)d. Moreover, u satisfies the optimal energy
dissipation relation 

(2.3) j u(v)IVx(T')I + 1T' j µ:v) V2 1Vxldt::; iEa for a.e. 0 < T' < T. 

Remark 2.2. (i) The integrand on the right-hand side of (2.2) reads 

V X: (u(v)Id - v 0 Du(v)) = u(v)(V • X) - (Du(v) • V)X • v 

so that for a smooth evolution, an integration by parts reveals 

1T j VX: (u(v)Id-v@Du(v))IVxldt=-1T j H,,.v•XIVxldt. 

Hence, the theorem indeed provides a distributional solution of the MCF equation 
(1.1). 

(ii) An energy dissipation relation with optimal constant similar to (2.3) is at the heart 
of weak formulations of general gradient flows [23] and also mean curvature flow in 
particular [10]. 

Remark 2.3. (i) In the isotropic case, this convergence result extends naturally to the 
multiphase case [19]. More precisely, replacing (1.2) by a system of N E N reaction
diffusion equation, where the potential W has P E N wells, the limit equation is 
multiphase MCF, i.e., the solution is described by a partition x = (x1 , ... , XP) of 
the domain [O, l)d and satisfies a distributional version of multiphase MCF similar 
to the two-phase version here. This distributional form naturally encodes both (1.1) 
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along each interface and a balance-of-forces condition along triple junctions. In the 
present more general anisotropic case, this condition reads 

L ( O"ij (vij) bij - (bij · Daij (vij)) vij) = 0 along triple junctions, 
i,j 

where the sum runs over the three pairs ( i, j) representing the three interfaces rij 
present at the triple junction, and bij denotes the normal of the triple junction 
pointing tangential to and away from rij· 

(ii) A major difficulty in generalizing the present anisotropic version to the multiphase 
case lies in the absence of a simple formula to relate the effective anisotropy aij (v) 
of the interface between Phases i and j to the anisotropy function f = f ( u, p) 
in the vector-valued Allen-Cahn equation. Bellettini-Braides-Riey [7] proved that 
the anisotropy is given implicitly by solving a cell problem, allowing for small
scale oscillations along the interface. In order to carry out a precise formal as
ymptotic expansion, Garcke-Nestler-Stoth [17] assumed that the effective energy 
densities are given by one-dimensional profiles, i.e., their Ansatz reads O"ij(v) := 

inf f0
1 JW('Y)f('y, 'Y x v)ds. This minimization problem is more restrictive than the 

minimization for the cell problem in [7], and it is easy to see that aij(v) :::: O"ij(v). 
It is, however, possible to construct simple examples of integrands in the case of 
systems for which this inequality is strict, i.e., aij(v) < O"ij(v); see Ambrosio-Fusco
Pallara [3, pp. 312-314; Theorem 5.55]. In other words, the simpler and explicit 
formula of [17] does not hold in general. 

(iii) In the scalar case, Bouchitte [9] proved that the explicit representation formula in 
[17] does hold indeed. Also in the isotropic vectorial case we have aij = O"ij, as has 
been shown by Baldo [6]; see also Aviles-Giga [4, 5]. 

The main difficulty in proving Theorem 2.1 is to derive the weak formulation (2.2) of 
the MCF equation for the limit. To this end, we fix a vector field XE C1 ([0, T] x [O, l)d)d 
and test the Allen-Cahn equation (1.2) with (X · c:V)u6 to obtain its appropriate weak 
form 

1T J g(v'u0 )8tu0 (X-cv')u0 dx dt 

= fTj!(V-(Df(v'u0 ))-
1
2 W'(u0 ))(X-cv')u0 dxdt. Jo 2 c 

(2.4) 

One can verify the equation for the limit if each side of this equation converges to 
the corresponding side of the limit equation (2.2). In order to pass to the limit in these 
nonlinear functions of the weakly converging quantities v'u6 and OtU6 , we will use the 
energy convergence (2.1) to show that the normals V6 = 

1
~::

1 
(or the normalized gradients 

c V U 6 ) of the level sets of U 6 in fact converge strongly. A caveat is that even in the isotropic 
multiphase case, the (normalized) gradients cv'u6 do not converge strongly. They rather 
behave like rank-1 matrices 8u0 ®v0 , whose second component does not oscillate. However, 
the first component 8u6 will in general oscillate across the diffuse interface as it follows 
the tangent field of the geodesic in !RN between the two corresponding wells of W. 

Below, after gathering some basic facts on general anisotropies in §3, we sketch the five 
steps of the proof of Theorem 2.1 in §4. First, we briefly discuss the compactness. Second, 
we define an appropriate anisotropic tilt excess for the phase field and show that we can 
pass to the limit c -+ 0 in this error functional. Third, we use the tilt excess to control 
the error in the veloctiy-term, the left-hand side of (2.4). Then we apply this method to 
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find an alternative, simple proof of the convergence of the curvature term, a result in the 
static case due to Cicalese-Nagase-Pisante [14]. Last, in the fifth step, we show that the 
optimal energy-dissipation relation follows easily from the third step of the proof. 

3. ANISOTROPIES 

We briefly collect some well-known facts about Finsler metrics. We refer the interested 
reader to [8, 15, 17, 18] for more details. 

Definition 3.1. 
(i) An admissible anisotropy CY is a function CY: ffi.d -t [0, oo) with the following proper-

ties: 
(a) CY is positively 1-homogeneous, i.e., CY(>..p) = >..CY(p) for all p E ffi.d and all>..> 0. 
(b) CY is smooth, i.e., CY E C2(ffi.d \ {0}). 
(c) CY is positive definite, i.e., CY(p) > 0 for all p E ffi.d \ {O}. 
(d) CY is (uniformly) conditionally convex, i.e., there exists Q. > 0 such that for all 

p E ffi.d \ {O}, D2CY(p) > Q. on p1-. 
(ii) The dual CY0 of an admissible anisotropy function CY is given by the polar norm, i.e., 

0 p · q 
CY (q) :=sup-(-) = sup p • q. 

p,fO CY p p: rr(p):Sl 

(iii) An admissible mobility µ is a function µ: ffi.d -t [0, oo) such that 
(a) µ is positively 1-homogeneous, i.e., µ(>..p) = >..µ(p) for all p E ffi.d and all>..> 0. 
(b) µ is regular, i.e.,µ E c0,1(ffi.d). 
(c) µ is positive definite, i.e.,µ> 0 in ffi.d \ {0}. 

The following general facts can be found in the references mentioned at the beginning 
of this section. 

Lemma 3.2. Let CY be an admissible anisotropy. Then the following statements are true. 

(i) The dual anisotropy CY 0 is admissible. 
(ii) CY is a Finster metric and equivalent to the Euclidean metric, i.e., 

IPI ~ CY(p) ~ IPI for all p E ffi.d. 

(iii) p · DCY(p) = CY(p) for all p E ffi.d. 

(iv) CY 0 (q)DrY(DrY0 (q)) = q for all q E ffi.d. 

Note that items (iii) & (iv) are trivially true for p = 0 and q = 0, respectively, even 
though DCY(0) and DrY0 (0) are not uniquely defined. 

The next lemma will be crucial for our proof. It states that the Euclidean distance 
Iv - vi, restricted to the sphere, is "equivalent" to (the square root of) rY(v) - DrY(v) • v. 
In the isotropic case, this simply follows from expanding the square: 

11 -12 1 -- V- V = - V · V. 
2 

Lemma 3.3 (Dziuk [15, Proposition 2.2]). Let CY be an admissible anisotropy function 
and let v, v E §d-l be two unit vectors. Then 

(3.1) Iv - vl 2 ~ CY(v) - DCY(v). V ~ Iv - vl 2 . 

Here, the implicit constant depends on sup IDrYI, sup ID2rYI, and Q., where the suprema 
are taken over the sphere §d-l _ We omit the proof here, as the more important lower 
bound was already shown by Dziuk and the proof of the upper bound is similar. 
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4. ELEMENTS OF PROOF 

4.1. Compactness. The energy identity 

(4.1) E0 (u0 (T')) + 1T' J 1::g('Vu0 )(8tu0 ) 2 dx dt = E0 (u0 ,o) for all O < T' < T, 

which follows from the differential identity -!ftE0 (u0 ) = - J 1::g('Vu0 )(8tu0 ) 2 dx, will serve 
as the basic a priori estimate to prove the compactness. 

More precisely, one first gains control over the concatenations ¢( u6 ), where 

(4.2) cp(s) := [sl Jw(s')ds', 

via Young's inequality for 

(4.3) 

and the definiteness ofµ and u, respectively, cf. Definition 3.1. Hence, after passing to a 
subsequence, we may assume ¢(u0 ) • ¢(u) and U6 • u = 2x -1 in L2 and we construct 
the normal velocity Vas the Radon-Nikodym derivative l~~I. 

4.2. Tilt excess. To prove the strong convergence of the normals, we define an anisotropic 
tilt excess for our phase field u6 • The inspiration comes from the tilt excess in geometric 
measure theory. In the isotropic case, the tilt excess reads 

(4.4) G\so(u,~) = ~ 1T J Iv- ~1 2 IVxl dt. 

Here ~ is a continuous vector field, which will be chosen to approximate the normal v. 
The trivial identity lv-~1 2 = 1 + 1~1 2 - 2~ · v implies that, provided l~I = 1 on supp IVxl, 

(4.5) G\so(u,~)= 1T J(l-~-v)IVxldt. 

Remark 4.1. The crucial properties of the excess are the following three. 

(i) The first representation shows that G\so(u,~) controls oscillations of the normal field 
ll. 

(ii) The second representation is useful to show that G\so(u,f) is continuous under the 
convergence Xk • X in L1, J IVxkl • J IVxl-

(iii) Furthermore, since the normal field v is measurable, we may approximate it by a 
continuous (or smooth) vector field~ so that G\so(u, ~) can be made small, see Lemma 
4.3 below for the anisotropic case. 

It is worth noting that the two representations (4.4) and (4.5) lead to (at least) two 
different generalizations of the tilt excess to the anisotropic case. We will generalize the 
first representation as 

(4.6) 

(which by Lemma 3.2 (ii) is equivalent to G\so) and, more crucially, the second represen
tation as 

(4.7) <ff(u, ~) := 1T j (u(v) - Du(~)· v) IV xi dt. 
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Although in the anisotropic case, the two variants do not agree exactly, by the crucial 
property (3.1) in Lemma 3.3, we know that these two variants are equivalent in the sense 
that 

<&°(u, () ;S <ff(u, () ;S <&°(u, () if 1(1 = 1 a.e. on supp lv'xldt. 

This can be combined with the trivial inequality 

(4.8) 

to relax the constraint 1(1 = 1 on the vector field at the expense of an additional lower
order term: 

<&°(u, () -1T j (l -1(1 2 ) CT(v)lv'xl dt 

;S <ff(u, () ;S <&°(u, () + 1T j (l - 1(1 2 ) CT(v)lv'xl dt 

(4.9) 

for any ( E C([O, l)d x [O, T])d with 1(1 ~ 1. It is easy to check that the anistropic 
functionals (partly) inherit the desired properties mentioned above. More precisely, 0° 
satisfies (i) & (iii) in Remark 4.1, and <ff satisfies the crucial continuity property (ii). 

The phase-field version I&°,, ( u, () of the anisotropic excess will serve as an error functional 
as it will control oscillations of the normal v,, = 

1
~~:

1
. Its necessary key feature is that it 

needs to be adapted to the particular form of the PDE and its gradient-flow structure so 
that the basic energy estimate and the natural energy-convergence assumption ( 2 .1) are 
sufficient to pass to the limit in the excess functional. It turns out that a proper Ansatz 
in the present anisotropic case is 

(4.10) 

At first sight, this seems somewhat surprising since the anisotropy does not appear ex
plicitly and a priori, the energy convergence (2.1) only gives us the precise limit of the 
energy density cCT2 (v'u,,) + ¼W(u,,), not its isotropic variant c:lv'u,,1 2 + ¼W(u,,). However, 
by Lemma 3.3, <&°,,(u,,,() is, up to a lower-order term as in (4.9), equivalent to 

<ff,,(u,,,() = 1T j (CT(v'u,,)JW(u,,) - Du(()• JW(u,,)v'u,,)dxdt. 

The following lemma is based on this observation and states that we can in fact control 
the excess precisely as E -+ 0. 

Lemma 4.2. Let CT be admissible according to Definition 3.1 and suppose f and is com
patible to CT in the sense of (1.3). Given a sequence u,, and u such that 

u,,-+ u and lim ( E,,(u,,(t)) dt = ( E(u(t)) dt < oo, c:-+olo lo 
then for any ( E C([O, l)d x [O, T])d with 1(1 ~ 1 

lim sup <&°,,(u,,, () ;S <&°(u, () + r /(1 -1(1 2 ) u(v)lv'xl dt. 
,,--;o lo 

Clearly, the lv'xl-measurability of v implies that we can approximate it by continuous 
(or smooth) functions: 
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Lemma 4.3. If for E(u)dt < oo, then for any E > 0 there exists t E C([0, l)d x [0, T])d 
with ltl s:; 1 such that !&"( u, t) < E. 

Of course, by taking uE and u independent of t in the previous two lemmas, upon 
division by T > 0, the analogous time-independent results hold as well. 

4.3. Convergence of the velocity term. We will now employ the tilt excess (4.10) 
to pass to the limit in the velocity term. More precisely, we will prove the following 
statement. 

Proposition 4.4. Let µ and O' be admissible according to Definition 3.1 and suppose f 
and g are compatible to O' andµ in the sense of (1.3). Let uE and u be such that 

UE -tu= 2x - 1 in L2 and lim r EE(uE(t)) dt = r E(u(t)) dt < 00. e--+O lo lo 
Then for any test vector field X E C([0, l)d x [0, T])d 

lim ( J g('vuE)OtUE(X · c'v)uE dx dt = 0 ( J-(1 ) V X · vl'vxldt. e--+olo lo µ v 
The idea behind the proposition is that, given a continuous vector field t with ltl s:; 1, 

we write the integrand of the left-hand side as X times 

1 
g('vuE)OtUEE'vuE = g(vE)OtUEE /l(vJ J f ('vuE) VE. 

f(vE) 

Thinking of ( ~ vE, we replace the normal vE on the right-hand side by ( at the expense 
of an error which will be controlled by the excess ~(uE, t). Since, by equipartition of 
energy, the remaining term satisfies 

OtUEcJ f('vuE) ~ OtuEJW(uE) = Ot(c/J(uE))-----'- Ot(c/J(u)) = 0Vl'vxl as E -t 0. 

Then we undo our previous manipulation by replacing t by v, the (measure theoretic) 
normal of the limit at the expense of another error controlled by the excess. More precisely, 
by the above method, we can show 

li1!1_!~P 11T J g('vuE)atuE(X · c'v)uEdxdt - e jT J µtv) VX · vl'vxldtl 
! 1 _!_ 

:S (sup IXl)Eci' (1 + T) 2 ( lim sup~( uE, t) + !&"(u, t)) 2 • 

E--+0 

Finally, we may apply Lemmas 4.2 and 4.3 to show that the right-hand side can be made 
arbitrarily small. 

4.4. Convergence of the curvature term. The convergence of the right-hand side 
term in (2.4) has already been proven by Cicalese-Nagase-Pisante [14] who generalized 
the Reshatnyak-type argument of Luckhaus-Modica [20] to the anisotropic setting. The 
main result of their paper may be stated as follows. 

Proposition 4.5 (Cicalese-Nagasa-Pisante [14, Theorem 3.3]). Suppose that O' is an ad
missible anisotropy and that the compatibility condition (1.3) holds. Given a sequence of 
functions 

(4.11) uE -tu= 2x- l in L2 such that limEE(uE) = E(u) < oo, 
E--+0 
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then for all test vector fields XE C 1 ([0, l)d)d 

limf !('v' · (Df(v'u,J)- 1
2 W'(u0 ))(X · cv')u0 dx 

c:--+0 2 c 

=0 j v'X: (<J(11)Id-11®D<J(11))lv'xl-

In other words, this result ensures that the convergence of the energies implies the 
convergence of their first (inner) variations. 

Let us give a brief sketch of a simple alternative proof using the tilt excess. Integration 
by parts shows that 

J ~ (v' · (D f(v'u 0 )) - : 2 W'(u0 )) (X · cv')u0 dx = J v' X: T0 dx, 

where T0 denotes the energy-stress tensor 

1 1 1 
T0 := -(1cf(v'u0 ) + -W(u0 ))Id - 1cv'u0 0 -Df(v'u0 ). 

2 c 2 
Now we only need to show 

T0 -----' 0(<J(11)Id - D<J(11) ® 11) lv'xl as measures on [O, l)d. 

This follows once we have have shown the convergence of the second term 
1 

(4.12) cv'uc: 0 2DJ(v'uc:)-----' 011 ® D<J(11)lv'xl, 

since the assumption (4.11) implies the desired convergence of the first term in T0 • 

To convince ourselves of (4.12) we make use of the tilt excess (4.10) once more. Let 
f E C([O, l)d)d with lfl ~ 1 be fixed. By the compatibility (1.3) of f and <J we have 
½DJ= <JD<J. Hence, using the positive I-homogeneity of <J, we may rewrite the left-hand 
side of (4.12) as 

w(v'u0 )v'u0 0 D<J(110 ) ~ w(v'u0 )v'u0 ® D<J(f) ~ Jw(u0 )v'u0 ® D<J(O, 

where the first "~" means up to an error controlled by the excess, and the second one 
up to an error, which due to equipartition of energy vanishes as E---+ 0. But the resulting 
nonlinear expression JW(u0 )v'u0 = v'(cp(u0 ) is compact and, upon replacing f by II after 
taking the limit c ---+ 0 at the expense of another error controlled by the excess, we arrive 
at 

lim sup I j ! (v' · (D f(v'u0 )) -
1
2 W'( u0 )) (X • 1cv')u0 dx 

t:--+0 2 c 

-0 j v'X: (<J(11)Id-11®D<J(11))lv'xll 

1 l 

;S (sup lv'Xl)EJ (limsup8',:(uc:,f) + 8'(u, e)) 2
• 

t:--+0 

Again, by Lemmas 4.2 and 4.3 the right-hand side can be made arbitrarily small. 

4.5. Optimal energy dissipation. Let us finally address the optimal energy dissipation 
relation (2.3). 

Lemma 4.6. Under the same assumptions as in Proposition 4-4, we have 

E(u(T') + 01T' j µ/11) V2 lv'xldt ~ Ea for a.e. 0 < T' < T. 
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We give a brief sketch of the proof behind this simple statement. Comparing the claim 
to the energy-dissipation identity ( 4.1), we see that the only difficulty is proving 

(4.13) l 1T' J 01T' J l liminf - c:g('v'uf:)(8tu0 )2 dxdt 2 - -( )V2 l'v'xl dt, 
c• O 2 o 2 o µ V 

where we divided through by 2 for convenience in the following argument. 
Let ( = ((x, t) and ( = ((x, t) be a continuous function and vector field, respectively. 

Using the trivial inequality ½a2 2 ab - ½b2 with a= 8tu and b = ¼JW(u0 )(, 

1 2 ~ 1 1 2 

2c:g(v0 )(8tu0 ) 2 g(v0 )y W(u0 )(8tU0 - 2g(v0 ) 6W(u0 )( • 

Note that after integration over x and t, the left-hand side is precisely the term on the 
left-hand side of (4.13) since g is 0-homogeneous, cf. (1.3). Now, as before, we may replace 
V0 on the right-hand side by ( at the expense of an error controlled by the excess. By 
equipartition of energy, ¼W(u0 ) ----' 0l'v'xl, and as before, JW(u0 )8tu0 = 8t(¢(u0 )) ----' 

0Vl'v'xldt. Hence 

lT' T' 0T' 
liI[!}(l 21 J c:g('v'uc)(8tuc)2 dxdt 201 J g(()(Vl'v'xl dt - 21 J g(()(2 l'v'xl dt 

1 ! _! 

- C(l + sup ( 2)(1 + T) 2 E(f ( lim sup !&'(u0 , ()) 2 • 

c• O 

Replacing ( by the normal in the first two right-hand side terms at the expense of just 
another error term controlled by the excess, we may then conclude by first appealing to 
Lemmas 4.2 and 4.3 (i.e., take ( -+ v) to make the last error term on the right-hand 
side vanish, and then choose ( -+ V to maximize the remaining term on right-hand side, 
which yields precisely (4.13). 
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