A remark on the asymptotic behavior of solutions of the Allen-Cahn equation

Toru Kan
Department of Mathematical Sciences, Osaka Prefecture University

1 Introduction

We consider the reaction-diffusion equation

$$
\begin{equation*}
u_{t}=\Delta u+(u+a)\left(1-u^{2}\right), \quad(x, y) \in \mathbb{R}^{2} \tag{1.1}
\end{equation*}
$$

where $u=u(x, y, t)$ is unknown and $a \in(0,1)$ is a constant. Our interest is the asymptotic behavior of solutions of (1.1).

It is well-known that (1.1) has one-dimensional traveling fronts connecting stable equilibria 1 and -1 . One of the fronts is given by $u_{*}(x, y, t)=\Phi(y-k t)$, where $\Phi(\eta):=-\tanh (\eta / \sqrt{2})$ and $k=\sqrt{2} a$. We note that the front propagates in y-direction with speed k and that Φ solves

$$
\begin{equation*}
\Phi^{\prime \prime}+k \Phi^{\prime}+(\Phi+a)\left(1-\Phi^{2}\right)=0 . \tag{1.2}
\end{equation*}
$$

It is shown that u_{*} is stable in appropriate senses (see for instance [3, 4, 8]), and therefore u_{*} plays an important role to understand front propagation in (1.1). To see this, let us observe the asymptotic behavior of a radially symmetric solution $u(x, y, t)=u(r, t)$, $r=\sqrt{x^{2}+y^{2}}$. According to $[1,5,6,7,10,11,12]$, the following hold. For any $\varepsilon>0$, there exists $r_{0}>0$ such that if

$$
\min _{r \leq r_{0}} u(r, 0) \geq-a+\varepsilon, \quad \limsup _{r \rightarrow \infty} u(r, 0)<-a, \quad \liminf _{r \rightarrow \infty} u(r, 0)>-\frac{1}{\varepsilon},
$$

then for some function h satisfying $h(t) \rightarrow \infty(t \rightarrow \infty)$,

$$
\begin{equation*}
u(r, t)-\Phi(r-h(t)) \rightarrow 0 \quad \text { uniformly for } r>0 \text { as } t \rightarrow \infty \tag{1.3}
\end{equation*}
$$

Furthermore, the asymptotic behavior of h is given by

$$
\begin{equation*}
h(t)=k t-\frac{1}{k} \log t+O(1) \quad(t \rightarrow \infty) . \tag{1.4}
\end{equation*}
$$

From (1.3), we see that the profile of u locally looks like a one-dimensional traveling front. Indeed, one finds that

$$
\begin{equation*}
u(x, \eta+k t+\tilde{h}(t), t) \rightarrow \Phi(\eta) \quad \text { locally uniformly for }(x, \eta) \in \mathbb{R}^{2} \text { as } t \rightarrow \infty \tag{1.5}
\end{equation*}
$$

where $\tilde{h}(t)=h(t)-k t$. (1.4) and (1.5) mean that the difference of the position of a level set between u and u_{*} grows logarithmically while u converges locally to u_{*}. The natural question arises whether it is possible to find a solution which satisfies (1.5) for some $\tilde{h}(t)$ growing polynomially. Our main result is concerned with the existence of such solutions.

Theorem 1. Let $0<\beta<1 / 2$ and $b>0$. Then there exists a solution u of (1.1) such that for some function h satisfying $h(t)=k t+b t^{\beta}+o\left(t^{\beta}\right)(t \rightarrow \infty)$ and some time sequence $\left\{t_{i}\right\}$ with $t_{1}<t_{2}<\cdots \rightarrow \infty$,

$$
\begin{equation*}
u\left(x, \eta+h\left(t_{i}\right), t_{i}\right) \rightarrow \Phi(\eta) \quad \text { locally uniformly for }(x, \eta) \in \mathbb{R}^{2} \text { as } i \rightarrow \infty \tag{1.6}
\end{equation*}
$$

Remark 2. The theorem should hold for $\beta<1$ and without taking a time sequence.

2 Sketch of the proof of Theorem 1

In this section we give a procedure to prove Theorem 1.

2.1 Supersolutions and subsolutions

We find the desired solution by constructing a supersolution and a subsolution. We look for a supersolution in the form

$$
u^{+}(x, y, t)=\Phi\left(\frac{y-\phi(x, t)}{\sqrt{1+\phi_{x}(x, t)^{2}}}-p(t)\right)+q(t)
$$

where the functions ϕ, p and q are determined later. A supersolution of this type was first used in [9] to construct conical traveling wave solutions. Put $f(u)=(u+a)\left(1-u^{2}\right)$ and $\mathcal{F}[u]=u_{t}-\Delta u-f(u)$. By a direct calculation, we have

$$
\begin{aligned}
\mathcal{F}\left[u^{+}\right]=- & \frac{\Phi^{\prime} \circ \zeta}{\sqrt{1+\phi_{x}^{2}}}\left(\phi_{t}-\phi_{x x}-k \sqrt{1+\phi_{x}^{2}}\right) \\
- & \frac{\Phi^{\prime} \circ \zeta}{1+\phi_{x}^{2}}\left[\frac{2 \phi_{x}^{2} \phi_{x x}}{\sqrt{1+\phi_{x}^{2}}}+(\zeta+p)\left\{\phi_{x}\left(\phi_{t}-\phi_{x x}\right)_{x}-\frac{\left(1-2 \phi_{x}^{2}\right) \phi_{x x}^{2}}{1+\phi_{x}^{2}}\right\}\right] \\
& -\frac{(\zeta+p)\left(\Phi^{\prime \prime} \circ \zeta\right) \phi_{x}^{2} \phi_{x x}}{\left(1+\phi_{x}^{2}\right)^{3 / 2}}\left\{2+\frac{(\zeta+p) \phi_{x x}}{\sqrt{1+\phi_{x}^{2}}}\right\} \\
& -\left(\Phi^{\prime} \circ \zeta\right) p_{t}+f(\Phi \circ \zeta)-f(\Phi \circ \zeta+q)+q_{t}
\end{aligned}
$$

where we have used (1.2) and put

$$
\zeta(x, y, t)=\frac{y-\phi(x, t)}{\sqrt{1+\phi_{x}(x, t)^{2}}}-p(t)
$$

Since we are looking for a solution converging locally to a one-dimensional traveling front, the derivatives of ϕ with respect to x should decay as $t \rightarrow \infty$. For this reason $\phi_{t}-\phi_{x x}-k \sqrt{1+\phi_{x}^{2}}$ would dominate other terms. Hence it is appropriate to choose ϕ as a solution of the equation

$$
\begin{equation*}
\phi_{t}=\phi_{x x}+k+\frac{k}{2} \phi_{x}^{2}, \quad x \in \mathbb{R} . \tag{2.1}
\end{equation*}
$$

As an initial value of ϕ, we take a function with sublinear growth, that is,

$$
\begin{equation*}
\phi(x, 0)=A|x|^{\alpha}, \quad x \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

where $A>0$ and $\alpha \in(0,1)$. Then the derivatives ϕ_{x} and $\phi_{x x}$ indeed decay.
Lemma 3. Let ϕ be a solution of (2.1)-(2.2). Then there is a constant $C>0$ such that

$$
\left\|\phi_{x}(\cdot, t)\right\|_{L^{\infty}(\mathbb{R})} \leq C t^{-\frac{1-\alpha}{2-\alpha}}, \quad\left\|\phi_{x x}(\cdot, t)\right\|_{L^{\infty}(\mathbb{R})} \leq C t^{-\frac{2(1-\alpha)}{2-\alpha}}
$$

for all $t \geq 1$.
We omit the proof of this Lemma. Suppose that ϕ satisfies (2.1)-(2.2). Then $\mathcal{F}\left[u^{+}\right]$is written as

$$
\mathcal{F}\left[u^{+}\right]=-\left(\Phi^{\prime} \circ \zeta\right) p_{t}+f(\Phi \circ \zeta)-f(\Phi \circ \zeta+q)+q_{t}+R,
$$

where

$$
\begin{aligned}
R= & \frac{k\left(\Phi^{\prime} \circ \zeta\right)}{\sqrt{1+\phi_{x}^{2}}}\left(\sqrt{1+\phi_{x}^{2}}-1-\frac{1}{2} \phi_{x}^{2}\right) \\
- & \frac{\Phi^{\prime} \circ \zeta}{1+\phi_{x}^{2}}\left[\frac{2 \phi_{x}^{2} \phi_{x x}}{\sqrt{1+\phi_{x}^{2}}}+(\zeta+p)\left\{k \phi_{x}^{2} \phi_{x x}-\frac{\left(1-2 \phi_{x}^{2}\right) \phi_{x x}^{2}}{1+\phi_{x}^{2}}\right\}\right] \\
& -\frac{(\zeta+p)\left(\Phi^{\prime \prime} \circ \zeta\right) \phi_{x}^{2} \phi_{x x}}{\left(1+\phi_{x}^{2}\right)^{3 / 2}}\left\{2+\frac{(\zeta+p) \phi_{x x}}{\sqrt{1+\phi_{x}^{2}}}\right\} .
\end{aligned}
$$

Note that $\eta \Phi^{\prime}(\eta)$ and $\eta^{2} \Phi^{\prime \prime}(\eta)$ are bounded in \mathbb{R}. From this fact and Lemma 3, we deduce that

$$
\begin{equation*}
|R| \leq K\left(1+p^{2}\right) t^{-\gamma} \tag{2.3}
\end{equation*}
$$

for $t \geq 1$, where $K>0$ is a constant and $\gamma=4(1-\alpha) /(2-\alpha)$. For positive constants p_{0}, q_{0} and t_{0}, we put

$$
p(t)=K p_{0}\left(t_{0}^{-\gamma+1}-t^{-\gamma+1}\right), \quad q(t)=K q_{0} t^{-\gamma}
$$

We check that under the condition

$$
\begin{equation*}
\alpha<\frac{2}{3}, \tag{2.4}
\end{equation*}
$$

u^{+}satisfies $\mathcal{F}\left[u^{+}\right] \geq 0$ for $t \geq t_{0}$ provided that p_{0}, q_{0} and t_{0} are chosen appropriately. We first note that (2.4) implies $\gamma>1$. It is easy to see that

$$
\left(\min _{|s| \geq 1-2 \delta}\left(-f^{\prime}(s)\right)\right)>0
$$

for some $\delta>0$. Then we take $q_{0}>0$ such that

$$
\begin{equation*}
\left(\min _{|s| \geq 1-2 \delta}\left(-f^{\prime}(s)\right)\right) q_{0} \geq 3 \tag{2.5}
\end{equation*}
$$

Since $\Phi(\eta) \rightarrow \pm 1$ as $\eta \rightarrow \mp \infty$, one can pick up $\eta_{0}>0$ such that

$$
\begin{equation*}
|\Phi(\eta)| \geq 1-\delta \quad \text { for all }|\eta| \geq \eta_{0} \tag{2.6}
\end{equation*}
$$

The constant $p_{0}>0$ is then chosen so that

$$
\begin{equation*}
\left(\min _{|\eta| \leq \eta_{0}}\left(-\Phi^{\prime}(\eta)\right)\right)(\gamma-1) p_{0}-\left(\max _{s \in \mathbb{R}} f^{\prime}(s)\right) q_{0} \geq 3 \tag{2.7}
\end{equation*}
$$

Finally we choose $t_{0} \geq 1$ so large that

$$
\begin{equation*}
\max \left\{K p_{0} t_{0}^{-\gamma+1}, \gamma q_{0} t_{0}^{-1}, \delta^{-1} K q_{0} t_{0}^{-\gamma}\right\} \leq 1 \tag{2.8}
\end{equation*}
$$

This particularly gives $0 \leq p \leq K p_{0} t_{0}^{-\gamma+1} \leq 1$ for $t \geq t_{0}$. From (2.3), (2.8) and the fact that $0 \leq p \leq 1$, we have

$$
\begin{aligned}
& \mathcal{F}\left[u^{+}\right] \\
& \geq K t^{-\gamma}\left\{-\left(\Phi^{\prime} \circ \zeta\right)(\gamma-1) p_{0}+\left(\int_{0}^{1}-f^{\prime}(\Phi \circ \zeta+\theta q) d \theta\right) q_{0}-\gamma q_{0} t^{-1}-\left(1+p^{2}\right)\right\} \\
& =K t^{-\gamma}\left\{-\left(\Phi^{\prime} \circ \zeta\right)(\gamma-1) p_{0}+\left(\int_{0}^{1}-f^{\prime}(\Phi \circ \zeta+\theta q) d \theta\right) q_{0}-3\right\}
\end{aligned}
$$

for $t \geq t_{0}$.
Let us verify $\mathcal{F}\left[u^{+}\right] \geq 0$. We consider the case $|\zeta| \geq \eta_{0}$. We see from (2.6) and (2.8) that

$$
|\Phi \circ \zeta+\theta q| \geq|\Phi \circ \zeta|-q \geq 1-\delta-K q_{0} t_{0}^{-\gamma} \geq 1-2 \delta
$$

for $\theta \in[0,1]$. Hence, by (2.5) and the fact that $\Phi^{\prime}<0$,

$$
\mathcal{F}\left[u^{+}\right] \geq K t^{-\gamma}\left\{\left(\min _{|s| \geq 1-2 \delta}\left(-f^{\prime}(s)\right)\right) q_{0}-3\right\} \geq 0
$$

Moreover if $|\zeta| \leq \eta_{0}$, then (2.7) gives

$$
\mathcal{F}\left[u^{+}\right] \geq K t^{-\gamma}\left\{\left(\min _{|\eta| \leq \eta_{0}}\left(-\Phi^{\prime}(\eta)\right)\right)(\gamma-1) p_{0}-\left(\max _{s \in \mathbb{R}} f^{\prime}(s)\right) q_{0}-3\right\} \geq 0
$$

Thus we conclude that $\mathcal{F}\left[u^{+}\right] \geq 0$.
Let ϕ, p and q are chosen as above. Then from a similar computation we see that

$$
u^{-}(x, y, t)=\Phi\left(\frac{y-\phi(x, t)}{\sqrt{1+\phi_{x}(x, t)^{2}}}+p(t)\right)-q(t)
$$

satisfies $\mathcal{F}\left[u^{-}\right] \leq 0$ provided $t \geq t_{0}$. By the monotonicity of Φ, we have $u^{-} \leq u^{+}$. Consequently the comparison principle shows that there is a solution u of (1.1) satisfying $u^{-} \leq u \leq u^{+}$.

2.2 Asymptotic behavior of ϕ

To determine the asymptotic profile of u^{+}and u^{-}, we need to examine the precise behavior of ϕ. It is well-known that by the putting $v=e^{\phi-k t}$, the problem (2.1)-(2.2) is transformed into the heat equation

$$
\left\{\begin{aligned}
v_{t} & =v_{x x}, & & x \in \mathbb{R}, t>0 \\
v(x, 0) & =\exp \left(A|x|^{\alpha}\right), & & x \in \mathbb{R}
\end{aligned}\right.
$$

Hence ϕ is given by

$$
\begin{gathered}
\phi(x, t)=k t+\log v(x, t) \\
v(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} \exp \left(-\frac{(x-y)^{2}}{4 t}+A|y|^{\alpha}\right) d y
\end{gathered}
$$

Splitting the interval of integration into $[0, \infty)$ and $(-\infty, 0)$ gives

$$
\begin{aligned}
v(x, t)= & \frac{1}{\sqrt{4 \pi t}} \int_{0}^{\infty} \exp \left(-\frac{(x-y)^{2}}{4 t}+A y^{\alpha}\right) d y \\
& +\frac{1}{\sqrt{4 \pi t}} \int_{0}^{\infty} \exp \left(-\frac{(x+y)^{2}}{4 t}+A y^{\alpha}\right) d y
\end{aligned}
$$

By the change of variables $y=t^{1 /(2-\alpha)} Y$, we obtain

$$
\begin{equation*}
v(x, t)=I\left(t^{-\frac{1}{2-\alpha}} x, t\right)+I\left(-t^{-\frac{1}{2-\alpha}} x, t\right) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{aligned}
I(X, t) & :=\frac{1}{\sqrt{4 \pi}} t^{\frac{\alpha}{2(2-\alpha)}} \int_{0}^{\infty} \exp \left(t^{\frac{\alpha}{2-\alpha}} g(Y)\right) d Y, \\
g(Y) & =g(Y ; X):=-\frac{1}{4}(Y-X)^{2}+A Y^{\alpha} .
\end{aligned}
$$

It is easily seen that $g(Y)$ has a unique critical point $Y_{*}=Y_{*}(X)>0$. Then we define $M=M(X)$ and $K=K(X)$ by

$$
\begin{gathered}
M:=g\left(Y_{*}\right)=-\frac{1}{4}\left(Y_{*}-X\right)^{2}+A Y_{*}^{\alpha} \\
K:=\frac{1}{\sqrt{-2 g^{\prime \prime}\left(Y_{*}\right)}}=\frac{1}{\sqrt{1+2 \alpha(1-\alpha) A Y_{*}^{\alpha-2}}} .
\end{gathered}
$$

It is elementary to show that

$$
\begin{gather*}
g^{\prime \prime}(Y)<-\frac{1}{2} \tag{2.10}\\
Y_{*}(X), M(X) \text { and } K(X) \text { are increasing. } \tag{2.11}
\end{gather*}
$$

We set

$$
U(X, t):=K(X) \exp \left(t^{\frac{\alpha}{2-\alpha}} M(X)\right)
$$

The asymptotic behavior of ϕ is described by means of U.
Proposition 4. The solution ϕ of (2.1)-(2.2) satisfies

$$
\left|\phi(x, t)-k t-\log \left(U\left(t^{-\frac{1}{2-\alpha}} x, t\right)+U\left(-t^{-\frac{1}{2-\alpha}} x, t\right)\right)\right| \leq C t^{-\frac{\alpha}{2(2-\alpha)}}
$$

for all $x \in \mathbb{R}$ and $t \geq 1$ with some constant $C>0$.
To prove the proposition we consider the estimate of I.
Lemma 5. There is a constant $C>0$ such that

$$
\left|\frac{I(X, t)}{U(X, t)}-1\right| \leq C t^{-\frac{\alpha}{2(2-\alpha)}}
$$

for all $X \geq-1$ and $t \geq 1$.
Proof. Let $X \geq-1$. In the proof, constants in big O notation do not depend on X. Put

$$
Y_{0}:=Y_{*}(-1), \quad C_{1}:=\frac{1}{6} g^{\prime \prime \prime}\left(\frac{Y_{0}}{2}\right)=\frac{2^{2-\alpha}}{3} \alpha(1-\alpha)(2-\alpha) A Y_{0}^{\alpha-3}
$$

and define $\delta>0$ by

$$
\delta:=\min \left\{\frac{Y_{0}}{2}, \frac{1}{8 C_{1}}\right\}
$$

From (2.11), we see that $0<\delta<Y_{*}(X)$. We rewrite I as

$$
\begin{aligned}
I & =\frac{1}{\sqrt{4 \pi}} t^{\frac{\alpha}{2(2-\alpha)}} \exp \left(t^{\frac{\alpha}{2-\alpha}} M\right) \int_{0}^{\infty} \exp \left(t^{\frac{\alpha}{2-\alpha}}(g(Y)-M)\right) d Y \\
& =\frac{1}{\sqrt{4 \pi}} t^{\frac{\alpha}{2(2-\alpha)}} \exp \left(t^{\frac{\alpha}{2-\alpha}} M\right)\left(\int_{\left|Y-Y_{*}\right|>\delta, Y \geq 0}+\int_{\left|Y-Y_{*}\right| \leq \delta}\right) \\
& =: \frac{1}{\sqrt{4 \pi}} t^{\frac{\alpha}{2(2-\alpha)}} \exp \left(t^{\frac{\alpha}{2-\alpha}} M\right)\left(I_{1}+I_{2}\right)
\end{aligned}
$$

Let us estimate I_{1}. From (2.10) and the fact that $g^{\prime}\left(Y_{*}\right)=0$,

$$
g(Y)-M=\left\{\int_{0}^{1}(1-\theta) g^{\prime \prime}\left(Y_{*}+\theta\left(Y-Y_{*}\right)\right) d \theta\right\}\left(Y-Y_{*}\right)^{2} \leq-\frac{1}{4}\left(Y-Y_{*}\right)^{2}
$$

For $a, b>0$,

$$
\begin{equation*}
\int_{|x|>a} e^{-b|x|^{2}} d x=\int_{|x|>a} \frac{1}{|x|} \cdot|x| e^{-b|x|^{2}} d x \leq \frac{1}{a} \int_{\mathbb{R}}|x| e^{-b|x|^{2}} d x=\frac{1}{a b} . \tag{2.12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|I_{1}\right| \leq \int_{\left|Y-Y_{*}\right|>\delta} \exp \left(-\frac{1}{4} t^{\frac{\alpha}{2-\alpha}}\left(Y-Y_{*}\right)^{2}\right) d Y \leq \frac{4}{\delta} t^{-\frac{\alpha}{2-\alpha}} . \tag{2.13}
\end{equation*}
$$

I_{2} is handled as follows. We rewrite I_{2} as $I_{2}=I_{21}+I_{22}+I_{23}$, where

$$
\begin{gathered}
I_{21}:=\int_{\mathbb{R}} \exp \left(\frac{1}{2} g^{\prime \prime}\left(Y_{*}\right) t^{\frac{\alpha}{2-\alpha}}\left(Y-Y_{*}\right)^{2}\right) d Y, \\
I_{22}:=\int_{\left|Y-Y_{*}\right|>\delta, Y \geq 0} \exp \left(\frac{1}{2} g^{\prime \prime}\left(Y_{*}\right) t^{\frac{\alpha}{2-\alpha}}\left(Y-Y_{*}\right)^{2}\right) d Y, \\
I_{23}:=\int_{\left|Y-Y_{*}\right| \leq \delta}\left(\exp \left(t^{\frac{\alpha}{2-\alpha}} R(Y)\right)-1\right) \exp \left(\frac{1}{2} g^{\prime \prime}\left(Y_{*}\right) t^{\frac{\alpha}{2-\alpha}}\left(Y-Y_{*}\right)^{2}\right) d Y, \\
R(Y):=g(Y)-M-\frac{1}{2} g^{\prime \prime}\left(Y_{*}\right)\left(Y-Y_{*}\right)^{2} .
\end{gathered}
$$

By a direct computation,

$$
I_{21}=\sqrt{4 \pi} K t^{-\frac{\alpha}{2(2-\alpha)}} .
$$

From (2.10) and (2.12), I_{22} is estimated as

$$
\left|I_{22}\right| \leq \int_{\left|Y-Y_{*}\right|>\delta} \exp \left(-\frac{1}{4} t^{\frac{\alpha}{2-\alpha}}\left(Y-Y_{*}\right)^{2}\right) d Y \leq \frac{4}{\delta} t^{-\frac{\alpha}{2-\alpha}} .
$$

We consider I_{23}. Let $\left|Y-Y_{*}\right| \leq \delta$. Then, by (2.11) and the definition of δ, we have $Y_{*}+\theta\left(Y-Y_{*}\right) \geq Y_{0}-\delta \geq Y_{0} / 2$ for all $\theta \in[0,1]$. This together with the fact that $g^{\prime \prime \prime}$ is
positive and decreasing yields

$$
\left|g^{\prime \prime \prime}\left(Y_{*}+\theta\left(Y-Y_{*}\right)\right)\right| \leq g^{\prime \prime \prime}\left(\frac{Y_{0}}{2}\right)=6 C_{1}
$$

Therefore

$$
\begin{equation*}
|R(Y)|=\frac{1}{2}\left|\int_{0}^{1}(1-\theta)^{2} g^{\prime \prime \prime}\left(Y_{*}+\theta\left(Y-Y_{*}\right)\right) d \theta\right|\left|Y-Y_{*}\right|^{3} \leq C_{1}\left|Y-Y_{*}\right|^{3} \tag{2.14}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
C_{1}\left|Y-Y_{*}\right| \leq C_{1} \delta \leq \frac{1}{8} \tag{2.15}
\end{equation*}
$$

Combining (2.10), (2.14), (2.15) and the inequality $\left|e^{a}-1\right| \leq|a| e^{|a|}(a \in \mathbb{R})$, we deduce that

$$
\begin{aligned}
\left|I_{23}\right| & \leq t^{\frac{\alpha}{2-\alpha}} \int_{\left|Y-Y_{*}\right| \leq \delta}|R(Y)| \exp \left(t^{\frac{\alpha}{2-\alpha}}\left\{-\frac{1}{4}\left(Y-Y_{*}\right)^{2}+|R(Y)|\right\}\right) d Y \\
& \leq C_{1} t^{\frac{\alpha}{2-\alpha}} \int_{\left|Y-Y_{*}\right| \leq \delta}\left|Y-Y_{*}\right|^{3} \exp \left(t^{\frac{\alpha}{2-\alpha}}\left(-\frac{1}{4}+C_{1}\left|Y-Y_{*}\right|\right)\left(Y-Y_{*}\right)^{2}\right) d Y \\
& \leq C_{1} t^{\frac{\alpha}{2-\alpha}} \int_{\mathbb{R}}\left|Y-Y_{*}\right|^{3} \exp \left(-\frac{1}{8} t^{\frac{\alpha}{2-\alpha}}\left(Y-Y_{*}\right)^{2}\right) d Y \\
& =64 C_{1} t^{-\frac{\alpha}{2-\alpha}} .
\end{aligned}
$$

From the computations for I_{21}, I_{22} and I_{23}, we obtain

$$
\begin{equation*}
I_{2}=\sqrt{4 \pi} K t^{-\frac{\alpha}{2(2-\alpha)}}\left(1+O\left(t^{-\frac{\alpha}{2(2-\alpha)}}\right)\right) \quad(t \rightarrow \infty) \tag{2.16}
\end{equation*}
$$

where we have used the fact that

$$
\begin{equation*}
K(X) \geq K(-1) \tag{2.17}
\end{equation*}
$$

By (2.13), (2.16) and (2.17), we conclude that

$$
I(X, t)=\left(1+O\left(t^{-\frac{\alpha}{2(2-\alpha)}}\right)\right) U(X, t)
$$

as claimed.
Lemma 6. There is a constant $C>0$ such that

$$
I(X, t) \leq C t^{-\frac{\alpha}{2(2-\alpha)}} U(-X, t)
$$

for all $X<-1$ and $t \geq 1$.

Proof. By (2.10),

$$
\begin{aligned}
I & =\frac{1}{\sqrt{4 \pi}} t^{\frac{\alpha}{2(2-\alpha)}} \exp \left(t^{\frac{\alpha}{2-\alpha}} M\right) \int_{\mathbb{R}} \exp \left(t^{\frac{\alpha}{2-\alpha}}(g(Y)-M)\right) d Y \\
& \leq \frac{1}{\sqrt{4 \pi}} t^{\frac{\alpha}{2(2-\alpha)}} \exp \left(t^{\frac{\alpha}{2-\alpha}} M\right) \int_{\mathbb{R}} \exp \left(-\frac{1}{4} t^{\frac{\alpha}{2-\alpha}}\left(Y-Y_{*}\right)^{2}\right) d Y \\
& =\exp \left(t^{\frac{\alpha}{2-\alpha}} M\right)
\end{aligned}
$$

Since $X<-1<1<-X$, we see from (2.11) that

$$
\begin{aligned}
\exp \left(t^{\frac{\alpha}{2-\alpha}} M(X)\right) & =\frac{1}{K(-X)} \exp \left(-t^{\frac{\alpha}{2-\alpha}}(M(-X)-M(X))\right) U(-X, t) \\
& \leq \frac{1}{K(1)} \exp \left(-t^{\frac{\alpha}{2-\alpha}}(M(1)-M(-1))\right) U(-X, t)
\end{aligned}
$$

It is elementary to show that for any fixed constant $c>0$,

$$
\begin{equation*}
\exp \left(-c t^{\frac{\alpha}{2-\alpha}}\right)=O\left(t^{-\frac{\alpha}{2(2-\alpha)}}\right) \quad(t \rightarrow \infty) \tag{2.18}
\end{equation*}
$$

Hence the lemma follows.
Proof of Proposition 4. In the proof, constants in big O notation do not depend on x. We set $X=t^{-1 /(2-\alpha)} x$. Since $\phi(x, t)=k t+\log (I(X, t)+I(-X, t))$, the proof is completed by showing that

$$
\begin{equation*}
I(X, t)+I(-X, t)=\left(1+O\left(t^{-\frac{\alpha}{2(2-\alpha)}}\right)\right)(U(X, t)+U(-X, t)) \quad(t \rightarrow \infty) \tag{2.19}
\end{equation*}
$$

In the case $|X| \leq 1$, this is immediately verified by applying Lemma 5 to $I(X, t)$ and $I(-X, t)$.

Assume now that $X<-1$. In this case we use Lemma 5 for $I(-X, t)$ and Lemma 6 for $I(X, t)$ to obtain

$$
I(X, t)+I(-X, t)=\left(1+O\left(t^{-\frac{\alpha}{2(2-\alpha)}}\right)\right) U(-X, t) \quad(t \rightarrow \infty)
$$

Since (2.11) and (2.18) show that

$$
\begin{aligned}
U(X, t) & \leq \frac{K(-1)}{K(1)} \exp \left(-t^{\frac{\alpha}{2-\alpha}}(M(1)-M(-1))\right) U(-X, t) \\
& \leq C t^{-\frac{\alpha}{2(2-\alpha)} U(-X, t)}
\end{aligned}
$$

for some constant $C>0$, we obtain (2.19). The case $X>1$ can be handled in the same way as in the case $X<-1$, and therefore the proof is complete.

2.3 Proof of (1.6)

Finally we show that the solution u constructed above satisfies (1.6). We easily see that as $X \rightarrow 0$,

$$
\begin{gathered}
M(X)=M_{0}+O(X), \quad K(X)=K_{0}+O(X), \\
M_{0}=(2-\alpha) 2^{-\frac{1-\alpha}{2-\alpha}} \alpha^{\frac{\alpha}{2-\alpha}} A^{\frac{2}{2-\alpha}}, \quad K_{0}:=(2-\alpha)^{-\frac{1}{2}}
\end{gathered}
$$

From this we see that for each $x \in \mathbb{R}$,

$$
\begin{aligned}
& \left(U\left(t^{-\frac{1}{2-\alpha}} x, t\right)+U\left(-t^{-\frac{1}{2-\alpha}} x, t\right)\right) \exp \left(-t^{\frac{\alpha}{2-\alpha}} M_{0}\right) \\
& =K\left(t^{-\frac{1}{2-\alpha}} x\right) \exp \left(t^{\frac{\alpha}{2-\alpha}}\left(M\left(t^{-\frac{1}{2-\alpha}} x\right)-M_{0}\right)\right) \\
& \quad+K\left(-t^{-\frac{1}{2-\alpha}} x\right) \exp \left(t^{\frac{\alpha}{2-\alpha}}\left(M\left(-t^{-\frac{1}{2-\alpha}} x\right)-M_{0}\right)\right) \\
& \rightarrow 2 K_{0} \quad(t \rightarrow \infty)
\end{aligned}
$$

Therefore, by Proposition 4,

$$
\lim _{t \rightarrow \infty}\left(\phi(x, t)-k t-M_{0} t^{\frac{\alpha}{2-\alpha}}\right)=\log \left(2 K_{0}\right)
$$

This together with Lemma 3 implies that for $(x, \eta) \in \mathbb{R}^{2}$,

$$
\begin{align*}
& \limsup _{t \rightarrow \infty} u\left(x, \eta+h_{0}(t), t\right) \leq \lim _{t \rightarrow \infty} u^{+}\left(x, \eta+h_{0}(t), t\right)=\Phi\left(\eta-\eta_{1}\right), \tag{2.20}\\
& \liminf _{t \rightarrow \infty} u\left(x, \eta+h_{0}(t), t\right) \geq \lim _{t \rightarrow \infty} u^{-}\left(x, \eta+h_{0}(t), t\right)=\Phi\left(\eta+\eta_{1}\right),
\end{align*}
$$

where $h_{0}(t)=k t+M_{0} t^{\frac{\alpha}{2-\alpha}}+\log \left(2 K_{0}\right)$ and $\eta_{1}=K p_{0} t_{0}^{-\gamma+1}$.
Now we discuss the convergence of the function $w(x, \eta, t):=u\left(x, \eta+h_{0}(t), t\right)$. It is seen that w satisfies

$$
w_{t}=\Delta w+\left(k+\frac{\alpha}{2-\alpha} t^{-\frac{2(1-\alpha)}{2-\alpha}}\right) w_{\eta}+f(w)
$$

The fact that $u_{-} \leq u \leq u_{+}$shows that $w(\cdot, t)$ is uniformly bounded. By the regularity theory for parabolic partial differential equations and compact embeddings for Sobolev and Hölder spaces, we can take a sequence $\left\{t_{i}\right\}, t_{1}<t_{2}<\cdots \rightarrow \infty$ such that $w\left(\cdot, t_{i}\right)$ converges locally uniformly to a solution $W=W(x, \eta)$ of the equation

$$
\begin{equation*}
\Delta W+k W_{\eta}+f(W)=0 \tag{2.21}
\end{equation*}
$$

as $i \rightarrow \infty$. From (2.20), we have

$$
\begin{equation*}
\Phi\left(\eta+\eta_{1}\right) \leq W(x, \eta) \leq \Phi\left(\eta-\eta_{1}\right) \tag{2.22}
\end{equation*}
$$

[2, Theorem 3.1] shows that the function W satisfying (2.21) and (2.22) coincides with $\Phi\left(\eta-\eta_{2}\right)$ for some $\eta_{2} \in \mathbb{R}$. Thus we conclude that (1.6) holds with

$$
\beta=\frac{\alpha}{2-\alpha}, \quad b=M_{0}=(2-\alpha) 2^{-\frac{1-\alpha}{2-\alpha}} \alpha^{\frac{\alpha}{2-\alpha}} A^{\frac{2}{2-\alpha}}, \quad h(t)=h_{0}(t)+\eta_{2} .
$$

The restriction $\beta<1 / 2$ comes from the condition (2.4), and $b>0$ can be chosen arbitrarily since $A>0$ is arbitrary.

References

[1] D. G. Aronson and H. F Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30 (1978), no. 1, 33-76.
[2] H. Berestycki and F Hamel, Generalized travelling waves for reaction-diffusion equations, Perspectives in nonlinear partial differential equations, 101-123, Contemp. Math., 446, Amer. Math. Soc., Providence, RI, 2007.
[3] X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations 2 (1997), no. 1, 125-160.
[4] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal. 65 (1977), no. 4, 335-361.
[5] C. K. R. T. Jones, Asymptotic behaviour of a reaction-diffusion equation in higher space dimensions, Rocky Mountain J. Math. 13 (1983), no. 2, 355-364.
[6] C. K. R. T. Jones, Spherically symmetric solutions of a reaction-diffusion equation, J. Differential Equations 49 (1983), no. 1, 142-169.
[7] H. Matano, Y. Mori and M. Nara, Asymptotic behavior of spreading fronts in the anisotropic Allen-Cahn equation on \mathbb{R}^{n}, Ann. Inst. H. Poincaré Anal. Non Linéaire 36 (2019), no. 3, 585-626.
[8] H. Matano, M. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation, Comm. Partial Differential Equations 34 (2009), no. 7-9, 976-1002.
[9] H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations 213 (2005), no. 1, 204233.
[10] V. Roussier, Stability of radially symmetric travelling waves in reaction-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 3, 341-379.
[11] K. Uchiyama, Asymptotic behavior of solutions of reaction-diffusion equations with varying drift coefficients, Arch. Rational Mech. Anal. 90 (1985), no. 4, 291-311.
[12] H. Yagisita, Nearly spherically symmetric expanding fronts in a bistable reactiondiffusion equation, J. Dynam. Differential Equations 13 (2001), no. 2, 323-353.

