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1 Introduction
We consider the reaction-diffusion equation
uy = Au+ (u+a)(l—u?), (z,y)€R? (1.1)

where © = u(z,y,t) is unknown and a € (0, 1) is a constant. Our interest is the asymp-
totic behavior of solutions of (1.1).

It is well-known that (1.1) has one-dimensional traveling fronts connecting stable
equilibria 1 and —1. One of the fronts is given by u.(z,y,t) = ®(y — kt), where
®(n) := —tanh(n/v/2) and k = v/2a. We note that the front propagates in y-direction
with speed k and that ® solves

" + k®' + (@ +a)(1 — %) = 0. (1.2)

It is shown that u, is stable in appropriate senses (see for instance [3, 4, 8]), and therefore
u, plays an important role to understand front propagation in (1.1). To see this, let us
observe the asymptotic behavior of a radially symmetric solution u(x,y,t) = u(r,t),
r = y/x? + y2. According to [1, 5, 6, 7, 10, 11, 12], the following hold. For any £ > 0,
there exists 7y > 0 such that if

1
minu(r,0) > —a+e¢, limsupu(r,0) < —a, liminfu(r,0) > ——,

r<ro r—00 r—00 £

then for some function A satisfying h(t) — oo (t — o0),
u(r,t) — ®(r — h(t)) — 0 uniformly for » > 0 as t — oo. (1.3)

Furthermore, the asymptotic behavior of A is given by
1
h(t) = kt — Elogt—i—O(l) (t — o). (1.4)

From (1.3), we see that the profile of u locally looks like a one-dimensional traveling
front. Indeed, one finds that

w(x,n+ kt + h(t),t) — ®(n) locally uniformly for (z,7) € R ast — oo, (1.5)
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where iL(t) = h(t) — kt. (1.4) and (1.5) mean that the difference of the position of a level
set between u and u, grows logarithmically while u converges locally to u,. The natural
question arises whether it is possible to find a solution which satisfies (1.5) for some iL(t)
growing polynomially. Our main result is concerned with the existence of such solutions.

Theorem 1. Let 0 < § < 1/2 and b > 0. Then there exists a solution u of (1.1) such that
for some function h satisfying h(t) = kt + bt® + o(t®) (t — c0) and some time sequence
{tl}Wll‘htl <ty < -ro =00

u(z,n+ h(t;), t;) — ®(n) locally uniformly for (x,n) € R* as i — oo. (1.6)

Remark 2. The theorem should hold for 5 < 1 and without taking a time sequence.

2 Sketch of the proof of Theorem 1

In this section we give a procedure to prove Theorem 1.

2.1 Supersolutions and subsolutions

We find the desired solution by constructing a supersolution and a subsolution. We look
for a supersolution in the form

mmww:¢&%%%%%?mm>+wx

where the functions ¢, p and ¢ are determined later. A supersolution of this type was first
used in [9] to construct conical traveling wave solutions. Put f(u) = (u+ a)(1 — u?) and
Flu] = u — Au — f(u). By a direct calculation, we have

Flut] = _@% (qbt — o — km)

Vol | 2620u B (1 =243)92,
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— (@ o )pi + f(® o)~ f(®ol+q)+a,
where we have used (1.2) and put

Yy — (}5(13, t)
L+ ¢z, t)?

é.(xvyvt) = _p(t)
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Since we are looking for a solution converging locally to a one-dimensional traveling
front, the derivatives of ¢ with respect to x should decay as ¢ — oo. For this reason
1 — Puw — k+/1 + ¢2 would dominate other terms. Hence it is appropriate to choose ¢
as a solution of the equation

k
As an initial value of ¢, we take a function with sublinear growth, that is,
¢(z,0) = Alz|*, z€R, (2.2)

where A > 0 and @ € (0, 1). Then the derivatives ¢, and ¢,, indeed decay.
Lemma 3. Let ¢ be a solution of (2.1)—(2.2). Then there is a constant C' > 0 such that

2(1—a)

_l-a _
H(bw("t)”L‘x’(R) < Ot e, ”d’zz('vt)HL“(R) < Ct 2=a

forallt > 1.

We omit the proof of this Lemma. Suppose that ¢ satisfies (2.1)—(2.2). Then Flu"] is
written as

Flut] = —(®" o Q)pr + f(®o() = f(Po(+q) +q + R,

where

K@) o,
R‘m<v”¢3 - 5e%)

_ P’o g 2¢32v¢zw 2 _ (1 — 2¢3:) 32590}

o (C+p)(P"o C)Qﬁémx 24 (C+D)bea
(1+¢2)¥2 VI+éE |

Note that n®’(n) and 7*®”(n) are bounded in R. From this fact and Lemma 3, we deduce
that
|R| < K(1+p*)t™" (2.3)

for ¢t > 1, where K > 0 is a constant and v = 4(1 — «)/(2 — «). For positive constants
Po> qo and £y, we put

p(t) = Kpo(tawl — ), q(t) = Kqot™.

We check that under the condition
a < -, 24
3 (2.4)



46

ut satisfies Flu™] > 0 for t > t, provided that py, g and t, are chosen appropriately. We

first note that (2.4) implies v > 1. It is easy to see that

(lsgllifl%(_f'(s))) >0

for some § > 0. Then we take gg > 0 such that

o -
<|S|g11m25( f (S))> o =3
Since ®(n) — £1 as 7 — Foo, one can pick up 7, > 0 such that
|®(n)] >1 -6 forall|n| > .

The constant py > 0 is then chosen so that

((in (-2 ) (= D~ (s '6) = 3

[n1<no

Finally we choose ¢, > 1 so large that

max {Kp0t57+17 Yoty !, 5_1Kq0t57} < 1.

(2.5)

(2.6)

2.7)

(2.8)

This particularly gives 0 < p < Kpotawl < 1fort > ty. From (2.3), (2.8) and the fact

that 0 < p < 1, we have

Flu]

> Kt {—(CD’ o ¢)(v = 1)po + (/01 —f'(® OC+9q}d9> Qo — vt = (1 +p2)}

Kt {—(@’ 0 C)(y - Dpo + (/0 @+ eq>d9> - 3}

fort > t,.

Let us verify Flut] > 0. We consider the case |[¢| > 1. We see from (2.6) and (2.8)

that

[P0l +0g>|Po(l—qg>1—06—Kqt,” >1-20

for 6 € [0, 1]. Hence, by (2.5) and the fact that &' < 0,

Flut] > Kt~ {( min (—f’(s))) do — 3} > 0.

|s|>1—26



Moreover if |¢| < 1o, then (2.7) gives
Flut] > Kt { (min (—@’(n))) (v — Dpo — <max f’(s)) qo — 3} > 0.
Inl<mo s€ER

Thus we conclude that F[ut] > 0.
Let ¢, p and q are chosen as above. Then from a similar computation we see that

— o Yy — ¢(.’E, t) _
u(z,y.t) =@ (—1 . +p(t)> q(?)

satisfies F[u~| < 0 provided ¢ > tyo. By the monotonicity of ®, we have u~ < ut.
Consequently the comparison principle shows that there is a solution v of (1.1) satisfying
v <u<ut.

2.2 Asymptotic behavior of ¢

To determine the asymptotic profile of u™ and u~, we need to examine the precise be-
havior of ¢. It is well-known that by the putting v = ¢®~*, the problem (2.1)-(2.2) is
transformed into the heat equation

Vp = Uspg, reRt>0,
v(x,0) = exp(Alz|¥), xze€R.

Hence ¢ is given by

¢(x,t) =kt +logv(z,t),

N2
\/H/exp( Tw+A|y|“> dy.

Splitting the interval of integration into [0, c0) and (—o0, 0) gives

2
v(z,t) = \/ﬂ/ exp< x4—ty)+Aya>dy

(r+1y)?
- Ay® .
p< Tan y)dy

v(z,t) =

+
Vart Jo

By the change of variables y = t'/(2~®)Y", we obtain

v(z,t) =1 (t*ﬁx,t> +1 (—t*ﬁx,t) , (2.9)
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where

1 2] 0 e
I(X,8) 1= =t /0 exp (tmg(y)) dy,

™

g¥Y)=g(V;X) = —(Y - X)* 4+ AY™.

1

4
It is easily seen that g(Y") has a unique critical point Y, = Y.(X) > 0. Then we define
M = M(X)and K = K(X) by

1
M = g(Y,) = =7 (Yo = X)* + AY?,

K = L = L .

V=2¢"Y.) /1+2a(1—a)AY. 72

It is elementary to show that

1
g'Y) <=3 (2.10)
Y.(X), M(X) and K(X) are increasing. (2.11)

We set
U(X,t) == K(X)exp (tf M(X)) .

The asymptotic behavior of ¢ is described by means of U.
Proposition 4. The solution ¢ of (2.1)—(2.2) satisfies

o, t) — kt —log (U (7 770,t) + U (—¢777a,1) )| < 01 70w

forall x € Randt > 1 with some constant C' > Q.
To prove the proposition we consider the estimate of I.

Lemma 5. There is a constant C' > 0 such that

I(X,t) __a

— 1| < Ct 2o
‘U(X,t) ‘_
forall X > —1andt > 1.

Proof. Let X > —1. In the proof, constants in big O notation do not depend on X. Put

1 " YEJ 227& -3
Yo :=Yi(-1), Ci:= 69 5 )T 3 a(l —a)(2 - a) AV,

and define § > 0 by



From (2.11), we see that 0 < § < Y,(X). We rewrite I as

I= \/Etﬁ exp (tﬁM) /OOO exp (tﬁ(g(Y) - M)> ay

= ! tﬁexp(tﬁM) (/ +/ >
Var Y =Y |>8,Y>0 Y —Yi|<6

1 « «
— 9 ex (th) I+ 1)
T p (11 + I)

Let us estimate I;. From (2.10) and the fact that ¢'(Y.) = 0,

gY)—M = {/O (1—-0)g"(Ye+0(Y — Y*))de} (Y -Y.)? < —i(Y —-Y.)>

Fora,b > 0,
1 1 1
/ ey = / — |x|e_b‘w‘2dx < —/ |x|e_b|’”‘2da: =—. (2.12)
|z|>a |z[>a |l‘| a Jr ab

1 « 4 o
L < / exp (--t“(y _ n)?) dy < 3% (2.13)
Y =Y« |>d 4 0

Hence

I, is handled as follows. We rewrite I as Iy = Iy + Ioo + o3, where
1 " 2 2
Iy := | exp 39 (Yotz==(Y = Y.)" | dY,
R
' 1 (3
Iy = / exp <—g”(Y*)tM(Y - Y*)Z) dy,
Y Y |>8,Y >0 2

= /YY*Sg (eXp GﬁR(Y)) B 1) P <%g"(y*)tzi’a(y - Y;)2> a

R(Y) 1= g(¥) = M~ L' (V)Y ~Y.)%

By a direct computation,
.[21 =V 4 Kt 2C-o),
From (2.10) and (2.12), I, is estimated as

1 e 4 o
i< [ (e v)av < e
Y —Yi|>6 4 S

We consider I53. Let |Y — Y,| < 6. Then, by (2.11) and the definition of J, we have
Y,+0Y —Y.,) >Yy,—3d>Yy/2forall 0 € [0,1]. This together with the fact that g’ is
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positive and decreasing yields

9" (Y. +0(Y = Ya))| < g” (%) = 6C).
Therefore
RWM—%Ah—m%%n+ﬂY4mM4W—m3saW—xﬁ (2.14)
Furthermore,

Gl ~vi<Ci< ¢ 2.15)

Combining (2.10), (2.14), (2.15) and the inequality [e® — 1| < |ale!”! (a € R), we deduce
that

[e7 (3 1
|Ios] < tM/ |R(Y)| exp (t‘za {——(Y —Y.)* + \R(Y)|}> dy
[V =Y |<6 4
(23 (o3 1
<outs [y -vipes (s (<p+aly - vl ) - v ay
[V —Y,|<6 4
[e3 b 1 (3
< Cytz-= / Y — Y.|? exp (—gtﬁ(Y - Y*)2) dy
R
= 640t 7.
From the computations for /53, Is; and I53, we obtain
I, = Vir Kt = (1 +0 (t‘—w‘iw)) (t — o), (2.16)
where we have used the fact that
K(X)> K(-1). (2.17)

By (2.13), (2.16) and (2.17), we conclude that
I(X,1) = (1 +0 (fﬁ)) U(X,1),
as claimed. O
Lemma 6. There is a constant C > 0 such that
I[(X,t) < Ct e U(—X, t)

forall X < —landt > 1.



Proof. By (2.10),

I= £33 exp (tﬁM) /exp (tﬁ(g(Y) - M)) dy
R

[e3 [} 1 (]
#2074 exp (tﬁM) / exp (——tn(y - Y*)2> dy
47 R 4

= exp (tﬁM) .
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Since X < —1 <1 < —X, we see from (2.11) that

1
K(—X)

exp (ftﬁ(M(l) - M(—l))) U(—X,1).

exp (tﬁM(X)) - exp (—tﬁ(M(—X) - M(X))) U(-X,1t)

< 1
— K1)
It is elementary to show that for any fixed constant ¢ > 0,
exp (—ctﬁ) =0 (t_m(ia)) (t — o0). (2.18)

Hence the lemma follows. O

Proof of Proposition 4. In the proof, constants in big O notation do not depend on z. We
set X = t~1/(=%g_ Since ¢(x,t) = kt +log(I(X,t)+1(—X,t)), the proof is completed
by showing that

I(X.t) + [(—X,1) = (1 +0 (t*—m‘i«n)) (U(X,t) + U(—X,t)) (t— o00). (2.19)
In the case |X| < 1, this is immediately verified by applying Lemma 5 to I(X,¢) and
I(-X,1).

Assume now that X < —1. In this case we use Lemma 5 for /(—X,¢) and Lemma 6
for I(X,t) to obtain
(X, 0) + I[(—X, 1) = (1 +0 (fi?@ia))) U(=X,1) (t — o).

Since (2.11) and (2.18) show that

U(X,t) < exp (—tﬁ(Mu) - M(—l))) U(=X,1)

K(1)
< Ot @ U(—X, t)

for some constant C' > 0, we obtain (2.19). The case X > 1 can be handled in the same
way as in the case X < —1, and therefore the proof is complete. O

o1
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2.3 Proof of (1.6)

Finally we show that the solution u constructed above satisfies (1.6). We easily see that
as X — 0,

M(X) = Mo +0(X),  K(X) = Ko+ 0(X),
Mo = (2 — 05)27%@&14%7 KO — (2 - O[)_%,

From this we see that for each z € R,

(U (fﬁz,t) +U (—t*ﬁax,t)) exp (—tﬁMo)
- K (t‘ﬁx) exp (tﬁ (M (t‘ﬁx) — MO>)
+K (—t‘ﬁx) exp (tﬁ (M (—t‘ﬁx) - MO))

— 2K, (t = ).

Therefore, by Proposition 4,

lim ((;S(:c, t) — kt — Motﬁ) = log(2Ky).

t—00

This together with Lemma 3 implies that for (z,7n) € R?,

lim sup U(JZ'7 n -+ hO(t)vt) < thm ’LL+ (‘T'/ n+ hO(t)7 t) = (I)(n - 771)7

tmroe o (2.20)
litminf u(x,n + ho(t),t) > Jim (x,m + ho(t),t) = ®(n+m),

—00 —00

where ho(t) = kt + MytTs + log(2Ky) and n; = Kpota"’ﬂ.
Now we discuss the convergence of the function w(z,n,t) := u(x,n + ho(t),t). Itis
seen that w satisfies

o 2(1-a)

e ) wy, + f(w).

—

wt:Aw+<k‘+2

The fact that v < u < u, shows that w(-, ¢) is uniformly bounded. By the regularity
theory for parabolic partial differential equations and compact embeddings for Sobolev
and Holder spaces, we can take a sequence {t;}, t; < ty < --- — oo such that w(-,t;)
converges locally uniformly to a solution W = W (x, ) of the equation

AW + kW, + f(W) =0 (2.21)
as ¢ — oco. From (2.20), we have

S(n+m) <W(x,n) < O(n—m). (222



[2, Theorem 3.1] shows that the function W satisfying (2.21) and (2.22) coincides with
®(n — 1) for some 7, € R. Thus we conclude that (1.6) holds with

o

8= L b=My=(2—a)2 TaarsATa,  h(t) = ho(t) + .

2—«

The restriction § < 1/2 comes from the condition (2.4), and b > 0 can be chosen arbi-
trarily since A > 0 is arbitrary.
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