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A remark on the asymptotic behavior of solutions 
of the Allen-Cahn equation 

Torn Kan 
Department of Mathematical Sciences, Osaka Prefecture University 

1 Introduction 

We consider the reaction-diffusion equation 

Ut = ~u + (u + a)(l - u2), (x, y) E l~.2, (1.1) 

where u = u(x, y, t) is unknown and a E (0, 1) is a constant. Our interest is the asymp
totic behavior of solutions of (1.1). 

It is well-known that (1.1) has one-dimensional traveling fronts connecting stable 

equilibria 1 and -1. One of the fronts is given by u*(x, y, t) = <I>(y - kt), where 

<I>(17) := - tanh(17/v'2) and k = \1'2a. We note that the front propagates in y-direction 

with speed k and that <I> solves 

<I>"+ k<I>' +(<I>+ a)(l - <I>2) = 0. (1.2) 

It is shown that u. is stable in appropriate senses (see for instance [3, 4, 8]), and therefore 

u* plays an important role to understand front propagation in (1.1). To see this, let us 

observe the asymptotic behavior of a radially symmetric solution u(x, y, t) = u(r, t), 
r = Jx2 + y2 • According to [l, 5, 6, 7, 10, 11, 12], the following hold. For any c > 0, 
there exists r0 > 0 such that if 

min u(r, 0) 2 -a+ E, 
r<::ro 

limsupu(r, 0) < -a, 
r--+oo 

then for some function h satisfying h ( t) ----+ oo ( t ----+ oo), 

1 
liminfu(r,0) > --, 

r--+oo E 

u(r, t) - <I>(r - h(t)) ----+ 0 uniformly for r > 0 as t----+ oo. (1.3) 

Furthermore, the asymptotic behavior of h is given by 

1 
h(t) = kt - k Iogt + 0(1) (t----+ oo). (1.4) 

From (1.3), we see that the profile of u locally looks like a one-dimensional traveling 

front. Indeed, one finds that 

u(x, 17 +kt+ h(t), t) ----+ <1'>(17) locally uniformly for (x, 17) E ffi.2 as t----+ oo, (1.5) 
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where h(t) = h(t) - kt. (1.4) and (1.5) mean that the difference of the position of a level 

set between u and u. grows logarithmically while u converges locally to u •. The natural 

question arises whether it is possible to find a solution which satisfies (1.5) for some h(t) 
growing polynomially. Our main result is concerned with the existence of such solutions. 

Theorem 1. Let O < f3 < 1/2 and b > 0. Then there exists a solution u of(l.1) such that 
for some function h satisfying h(t) =kt+ bt13 + o(t13 ) (t----+ oo) and some time sequence 
{ti} with t1 < t2 < · · · ----+ oo, 

u(x, T/ + h(ti), ti) ----+ <I>(T/) locally uniformly for (x, T/) E IR2 as i----+ oo. (1.6) 

Remark 2. The theorem should hold for f3 < 1 and without taking a time sequence. 

2 Sketch of the proof of Theorem 1 

In this section we give a procedure to prove Theorem 1. 

2.1 Supersolutions and subsolutions 

We find the desired solution by constructing a supersolution and a subsolution. We look 

for a supersolution in the form 

u+(x, y, t) = <I> ------;::::=== - p(t) + q(t), ( 
y - ¢(x, t) ) 

Jl + r/>x(x, t) 2 

where the functions ¢, p and q are determined later. A supersolution of this type was first 

used in [9] to construct conical traveling wave solutions. Put f ( u) = ( u +a) ( 1 - u 2) and 

F[u] = Ut - 6;.u - f(u). By a direct calculation, we have 

<I>' 0 ( ( ) F[u+] = -~ r/>t - ¢xx - kJl + ¢; 
1 + ¢; 

<I>' 0 ( [ 2rp;r/Jxx ( ) { ( ) (1 - 2¢;)¢;x }] - 1 + ¢; Jl + ¢; + ( + P r/Jx r/Jt - ¢xx x - l + ¢; 

_ ((+p)(<I>"o()rp;r/Jxx { 2 + ((+p)r/Jxx} 
(1 + ¢;)3/2 ✓1 + ¢; 

- (<I>' o ()Pt+ J(<I> o () - J(<I> o ( + q) + qt, 

where we have used (1.2) and put 

y - ¢(x, t) 
((x, Y, t) = Jl + ¢x(x, t)2 - p(t). 
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Since we are looking for a solution converging locally to a one-dimensional traveling 

front, the derivatives of ¢ with respect to x should decay as t -+ oo. For this reason 

<Pt - <Pxx - kJ1 +¢;would dominate other terms. Hence it is appropriate to choose¢ 

as a solution of the equation 

(2.1) 

As an initial value of ¢, we take a function with sublinear growth, that is, 

¢(x, 0) = Alxl''\ x E IR, (2.2) 

where A> 0 and a E (0, 1). Then the derivatives <Px and <Pxx indeed decay. 

Lemma 3. Let¢ be a solution of (2.1)-(2.2). Then there is a constant C > 0 such that 

2(1-a) 

ll<Pxx(·, t)IIL00 (IR) ::::; er~ 

for all t 2:: 1. 

We omit the proof of this Lemma. Suppose that¢ satisfies (2.1)-(2.2). Then F[u+] is 

written as 

F[u+] = -(<I>' o ()pt+ f(<I> o () - f(<I> o ( + q) +qt+ R, 

where 

R = k(<I>' o () ( ~ - 1 - !,1,2) 
✓1 + ¢; V .L , C/'x 2 '1-'x 

_ <I>' 0 ( [ 2</J;<Pxx + (( + ) {k¢2¢ _ (1 - 2¢;)¢;,x }] 
1 + ¢; ✓1 + ¢; p X XX 1 + ¢; 

_ (( + p)(<I>" O ()¢;¢xx { 2 + (( + P)<Pxx} 
(1 + ¢;)3/2 Jl + ¢; . 

Note that ry<I>' ( TJ) and ry2 <I>" ( T/) are bounded in IR. From this fact and Lemma 3, we deduce 

that 

(2.3) 

fort 2:: 1, where K > 0 is a constant and 'Y = 4(1 - a)/(2 - a). For positive constants 

Po, qo and to, we put 

We check that under the condition 
2 

a<-3' 

q(t) = K qoC'Y. 

(2.4) 
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u+ satisfies F[u+] 2 0 fort 2 t 0 provided that p0 , q0 and t 0 are chosen appropriately. We 

first note that (2.4) implies 'Y > 1. It is easy to see that 

( min (-J'(s))) > 0 
lsl::::1-20 

for some 8 > 0. Then we take q0 > 0 such that 

( min (-J'(s))) Qo 2 3. 
isl::::1-20 

(2.5) 

Since <I>(17) --+ ±1 as 17--+ =fOO, one can pick up 170 > 0 such that 

l<I>(11)I 2 1 - 8 for all 1111 2 rJo• (2.6) 

The constant p0 > 0 is then chosen so that 

( min (-<I>1(17))) ('Y- l)Po - (maxf'(s)) Qo 2 3. 
1'71<:::'lo sEIR 

(2.7) 

Finally we choose t0 2 1 so large that 

{ K -,+ 1 1 , 1 K -, } l max Pot0 , "(Qot"0 , u- Qot0 ::; . (2.8) 

This particularly gives 0 ::; p::; Kp0 f01 +1 ::; 1 fort 2 t0 • From (2.3), (2.8) and the fact 

that 0 ::; p ::; 1, we have 

F[u+] 

2 KC1 {-(<I>' o ()('Y- l)Po + (11 -J'(<I> o ( + 0q)d0) Qo - ,yq0C 1 - (1 + p2)} 

= KC1 {-(<I>' o ()('Y - l)p0 + (11 
- j'(<I> o ( + 0q)d0) q0 - 3} 

fort 2 to. 
Let us verify F[u+] 2 0. We consider the case 1(1 2 170 • We see from (2.6) and (2.8) 

that 

l<I> 0 ( + 0ql 2 l<I> 0 (I - q 2 1 - 8 - Kqota' 2 1 - 28 

for 0 E [0, 1]. Hence, by (2.5) and the fact that <I>'< 0, 

F[u+] 2 KC1 { ( min (-J'(s))) Qo - 3} 2 0. 
isl::::1-20 
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Moreover if 1(1 ::::; f/o, then (2.7) gives 

F[u+] 2: KC1 { ( min (-<I>'(rJ))) ('y- l)po - (maxf'(s)) qo - 3} 2: 0. 
1'71'.o'lo sElR 

Thus we conclude that F[u+] 2: 0. 
Let ¢, p and q are chosen as above. Then from a similar computation we see that 

u-(x, y, t) = <I> ------;::::=== + p(t) - q(t) ( 
y - ¢(x, t) ) 

Jl + <Px(x, t) 2 

satisfies F[u-J ::::; 0 provided t 2: t0 . By the monotonicity of <I>, we have u- ::::; u+. 

Consequently the comparison principle shows that there is a solution u of ( 1.1) satisfying 
u-::::; u::::; u+. 

2.2 Asymptotic behavior of ¢ 

To determine the asymptotic profile of u+ and u-, we need to examine the precise be
havior of¢. It is well-known that by the putting v = e¢-kt, the problem (2.1)-(2.2) is 
transformed into the heat equation 

Hence ¢ is given by 

¢(x, t) = kt+ log v(x, t), 

v(x, t) = ~ r exp ( (x - y) 2 + Alvl°') dy. 
y 41rt }JR 4t 

Splitting the interval of integration into [0, oo) and (-oo, 0) gives 

v(x, t) = ~ 100 
exp (- (x ~/)2 + Ay°') dy 

1 100 
( (x+y)2 ) + ~ exp - --'---------'- + Ay°' dy. 

V 41rt o 4t 

By the change of variables y = t1/C2-aly, we obtain 

v(x, t) = I (r2~ax, t) + I (-r2~ax, t), (2.9) 
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where 

1 a [
00 

( 0 ) I(X, t) := \!'47rt 2<2- 0 ) lo exp t2-a g(Y) dY, 

1 
g(Y) = g(Y; X) := - 4(Y - X)2 + AY". 

It is easily seen that g(Y) has a unique critical point Y. = Y.(X) > 0. Then we define 

M = M(X) and K = K(X) by 

M := g(Y.) = -i(Y. - X) 2 + AYt, 

K ·= 1 1 
. J-2g"(Y.) vl + 20:(l - a)AY*"-2 

It is elementary to show that 

"( ) 1 g y < -2, 
Y*(X), M(X) and K(X) are increasing. 

We set 

U(X, t) := K(X) exp (t 2 " 0 M(X)). 

The asymptotic behavior of¢ is described by means of U. 

Proposition 4. The solution¢ of(2.l)-(2.2) satisfies 

1¢(x, t) - kt - log ( u (c2~0 x, t) + u (-c2~0 x, t)) I ~ cc2(2'=-a) 

for all x E JR and t ;:::: 1 with some constant C > 0. 

To prove the proposition we consider the estimate of I. 

Lemma 5. There is a constant C > 0 such that 

I 
I(X, t) - 11 < CC2<2'=-al 
U(X,t) -

for all X 2 -1 and t 2 1. 

(2.10) 

(2.11) 

Proof Let X ;:::: -1. In the proof, constants in big O notation do not depend on X. Put 

Yo:= Y.(-1), C1 := ig"' (~) = 22;" a(l - a)(2 - a)AYa"-3 , 

and define 8 > 0 by 

. {Yo 1 } 
8 := mm 2' 801 . 
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From (2.11), we see that 0 < 8 < Y.(X). We rewrite I as 

I= ~t2c2'=-a) exp (t2~aM) 100 
exp (t2~a(g(Y)- M)) dY 

= --t2c2-aJ exp t2-a M + 1 a ( a ) (1 1 ) 
-v'41r IY-Y.1>8,Y~0 IY-Y.l'.::8 

1 a ( a ) =: -v'41rt2c2-aJ exp t2-aM (11 + 12). 

Let us estimate Ii. From (2.10) and the fact that g'(Y.) = 0, 

g(Y) - M = {11 (1 - 0)g"(Y. + 0(Y - Y.))d0} (Y - Y.) 2 s -i(Y -Y*) 2 . 

For a, b > 0, 

f e-blxl2 dx = f ~. lxle-blxl2 dx S ! f lxle-blxl2 dx = ~- (2.12) 
Jlxl>a Jlxl>a lxl a }"IR ab 

Hence 

II1I S r exp (-!t2~a(Y - Y*)2) dY S ±c2~". 
llY-Y.1>8 4 8 

(2.13) 

12 is handled as follows. We rewrite 12 as 12 = 121 + 122 + h 3, where 

h1 := L exp (~g''(Y.)t 2~a(Y - Y.)2) dY, 

122 := f exp (!g"(Y*)t2~a (Y - Y*)2) dY, 
llY-Y.1>8,Y~O 2 

123 := f (exp (t 2~"R(Y)) - 1) exp (~g"(Y.)t 2~"(Y - Y.)2) dY, 
llY-Y.l'.::8 

R(Y) := g(Y) - M - ~g"(Y.)(Y - Y*)2. 

By a direct computation, 

From (2.10) and (2.12), 122 is estimated as 

We consider 123 . Let IY - Y*I s 8. Then, by (2.11) and the definition of 8, we have 

Y. + 0(Y - Y.) ~ Y0 - 8 ~ Yo/2 for all 0 E [0, 1]. This together with the fact that g"' is 
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positive and decreasing yields 

Therefore 

Furthermore, 

(2.15) 

Combining (2.10), (2.14), (2.15) and the inequality lea - 11 :S lalelal (a E JR), we deduce 

that 

lld :S t2 ':_ 0 r IR(Y)I exp (t 2 ':_0 {-i(Y - Y.) 2 + IR(Y)I }) dY 
lw-Y.15,8 

:S C1t2 ':_ 0 f IY - Y.1 3 exp (t 2 ':_0 (-! + C1 IY - Y.1) (Y - 1:)2) dY 
lw-Y.15,8 4 

:S C1t 2 ':_« 1 w - Y.1 3 exp (-lt 2 ':_ 0 (Y - Y.) 2) dY 

= 64C1c2':_«_ 

From the computations for 121, 122 and 123, we obtain 

12 = ~KC 2<2a___«) ( 1 + 0 (c 2<2a__«))) (t-+ oo), (2.16) 

where we have used the fact that 

K(X) 2: K(-1). (2.17) 

By (2.13), (2.16) and (2.17), we conclude that 

l(X, t) = ( 1 + 0 (c 2<2a__«))) U(X, t), 

as claimed. • 
Lemma 6. There is a constant C > 0 such that 

l(X, t) :S CC 2 <2a___ 0 ) U(-X, t) 

for all X < -1 and t 2'. 1. 
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Proof By (2.10), 

I= ~t2(2~") exp (t2",, M) l exp (t 2",, (g(Y) - M)) dY 

::::; ~t2<2~n) exp (t2",,M) l exp (-~t2"a(Y - Y.)2) dY 

= exp (t 2",, M) . 
Since X < - l < 1 < - X, we see from (2.11) that 

exp (t2",,M(X)) = l exp (-t2",,(M(-X)- M(X))) U(-X t) 
K(-X) ' 

::::; K~l) exp (-t2",,(M(l)- M(-1))) U(-X,t). 

It is elementary to show that for any fixed constant c > 0, 

Hence the lemma follows. 

(2.18) 

• 
Proof of Proposition 4. In the proof, constants in big O notation do not depend on x. We 

setX = r 1/(2-alx. Since cp(x, t) = kt+log(I(X, t) +I(-X, t)), the proof is completed 

by showing that 

I(X, t) + I(-X, t) = ( 1 + 0 (c 2<2~"l)) (U(X, t) + U(-X, t)) (t--+ oo). (2.19) 

In the case IXI ::::; 1, this is immediately verified by applying Lemma 5 to I(X, t) and 

I(-X, t). 
Assume now that X < -1. In this case we use Lemma 5 for I(-X, t) and Lemma 6 

for I(X, t) to obtain 

I(X, t) + I(-X, t) = ( 1 + 0 (r 2 c2~,,5)) U(-X, t) (t--+ oo). 

Since (2.11) and (2.18) show that 

U(X, t) ::::; i(l~) exp ( -t2",, (M(l) - M(-1))) U(-X, t) 

::::; CC 2 (2~"l U(-X, t) 

for some constant C > 0, we obtain (2.19). The case X > l can be handled in the same 

way as in the case X < - l, and therefore the proof is complete. • 
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2.3 Proof of (1.6) 

Finally we show that the solution u constructed above satisfies (1.6). We easily see that 

asX----+ 0, 

M(X) = Mo+ O(X), K(X) =Ko+ O(X), 

From this we see that for each x E JR, 

( U (c2-="x, t) + U (-c2-="x, t)) exp (-t2'::aM0) 

= K (c2-=ax) exp (t2'::" ( M (c2-=ax) - M 0)) 

+ K (-c2-=ax) exp (t 2 '::" ( M (-c2-=ax) - M 0)) 

----+ 2K0 (t----+ oo). 

Therefore, by Proposition 4, 

lim (¢(x, t) - kt - M0t 2 '::") = log(2K0 ). 
t--+oo 

This together with Lemma 3 implies that for (x, ry) E JR.2, 

limsupu(x, TJ + h0 (t), t) '.S lim u+ (x, TJ + h0(t), t) = <P(TJ - ry1), 
t--+oo t--+oo 

liminf u(x, TJ + h0 (t), t) 2: lim u- (x, TJ + h0(t), t) = <P(ry + ry1), 
t--+oo t--+oo 

" +1 where h0 (t) =kt+ M0t 2-" + log(2K0 ) and ry1 = Kp0t-;;"1 . 

(2.20) 

Now we discuss the convergence of the function w(x, TJ, t) := u(x, TJ + h0 (t), t). It is 
seen that w satisfies 

Wt= b.w + k + --c~ w,,, + f(w). ( a 2c1-aJ) 
2-a 

The fact that u_ '.S u '.S u+ shows that w(·, t) is uniformly bounded. By the regularity 
theory for parabolic partial differential equations and compact embeddings for Sobolev 

and Holder spaces, we can take a sequence {ti}, t 1 < t 2 < · · · ----+ oo such that w(,, ti) 
converges locally uniformly to a solution W = W ( x, TJ) of the equation 

b.W +kW,,,+ f(W) = 0 (2.21) 

as i ----+ oo. From (2.20), we have 

<P(ry + TJ1) :S W(x, TJ) :S <P(ry - TJ1). (2.22) 
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[2, Theorem 3.1] shows that the function W satisfying (2.21) and (2.22) coincides with 

<P(TJ - TJ2 ) for some 7]2 ER. Thus we conclude that (1.6) holds with 

Cl'. 1-n a 2 

/3=-2-, b=Mo=(2-a)r2-aa2-aA2-", h(t)=ho(t)+TJ2 • 
-a 

The restriction (3 < 1/2 comes from the condition (2.4), and b > 0 can be chosen arbi

trarily since A > 0 is arbitrary. 
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