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Upper bounds for higher-order Poincare constants 
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Tohoku University 

1 Introduction 

Estimating eigenvalues of the Laplacian in terms of geometric quantities such as diameter, 
isoperimetric constants, etc were studied various mathematicians ([2]). In this survey we 
explain several results obtained in [9] and their background. In [9] the author together with 
Yohei Sakurai gave upper bounds of eigenvalues of the (p-)Laplacian in terms of subsets 
of compact Riemannian manifolds. Although these estimates also hold in the setting of 
weighted Riemannian manifolds we treat only unweighted Riemannian manifolds as usual 
for simplicity. 

1.1 The case of closed Riemannian manifolds 

Let M be a closed Riemannian manifold and µ be the Riemannian volume measure of 
M normalized as µ(M) = l. In order to estimate eigenvalues of the p-Laplacian, we 
introduce the k-th order p-Poincare constant as follows: 

(1) 

Here Lk runs over k-dimensional subspaces in the (1,p) Sobolev space W 1,P(M) which 
do not contain nonzero constant functions. In the case of p = 2 vk,2(M) coincides with 
the k-th nontrivial eigenvalue of the Laplacian >..k(M). Also v1,1 (M) is equivalent to the 
Cheeger isoperimetric constant (see Section 4). In the case of p > 1 the above p-Pincare 
constants are closely related with eigenvalues of the p-Laplacian (see Section 4). 

For a family { A;}7=o of subsets of M we set 

V({A;}) := m_lnd(Ai,Aj), 
i,-J 

where d(Ai, Ai):= inf{d(x, y) Ix E Ai, y E Aj}-

Theorem 1.1. Let M be a closed Riemannian manifold. For a family {A;}7=o of Borel 
subsets of M we have 

(2) 
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1.2 The case of compact Riemannian manifolds with boundary 

Let M be a compact Riemannian manifold with boundary. 
We define the p-th Dirichlet p-Poincare constant as 

(3) 

where Lk runs over k-dimensional subspaces of the (1,p) Sobolev space wt,P(M). When p 
= 2, this constant is equal to the k-th Dirichlet eigenvalue of the Laplacian. When p = 2, 
this constant is equal to the k-th Dirichlet eigenvalue of the Laplacian. For p E (1, oo) the 
value vP,p(M) coincides with the first Dirichlet eigenvalue of the p-Laplacian and vf,1 (M) 
the Dirichlet isoperimetric constant (see Section 4). 

For a family { A;}~=l of subsets of M we define 

D8 ({A}):= min{mjnd(A,Aj), mind(A;,8M) }. 
i-;-J 'I, 

(4) 

Theorem 1.2. Let M be a compact Riemannian manifold with boundary. For a family 
{ A;}~=l of Borel subsets of M we have 

D .!. < 2 e(l - LJ#, µ(A1 )) 

vk,p(M)p - D8({A }) ~ax log (A) , , l, ... ,k µ , 
(5) 

Before we explain the proof of Theorems 1.1 and 1.2 we explain the former results. 

2 Results by Gromov-Milman and Chung-Grigory'an
Yau 

2.1 The result by Gromov-Milman 

Gromov-Milman obtained a similar result of Theorem 1.1 in the case of k = 1 and p = 2. 
The result asserts in terms of the concentration inequality and we will see that it is 
essentially equivalent to Theorem 1.1 in the case where k = 1 and p = 2. In the proof of 
Theorems 1.1 and 1.2 we use their argument. For a subset A of a Riemmanian manifold 
Mand a positive number r > 0 Ur(A) denotes the r-neighborhood of A. 

Theorem 2.1 ([13, Theorem 4.1], [16, Theorem 3.1]). Let M be a closed Riemannian 
manifold and A be a subset of M such that µ(A) 2: 1/2. For r > 0 we have 

(6) 

Sketch. For a subset B of M we can show the following inequality by using the min-max 
principle: 

(7) 
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([16, Theorem 3.1]). Sets:= J2/>-.1(M). Ifs< r- we take a natural number k such that 
ks-<::'. r- < (k + l)s. Using (7) repeatedly we get 

µ(M \ Ur(A)) -<::'. µ(M \ Uk0 (A)) 

-<::'. r 1µ(M \ u(k-l)c(A)) 

-<:::: rkµ(M \ A) 
-<::'. rk-1 

-<::'. 2-clr 

-<::'. e-Fi{M)r/3. 

If r- -<::::Ewe have 

This completes the proof. • 
For A in the claim of the above theorem we set B := M \ Ur(A). Then (6) can be 

written as 

3 1 3 { 1 1} 
>-1(M)-<:::: d(A,B) log µ(B) = d(A,B) max log µ(A)'log µ(B) . (8) 

This is similar to Theorem 1.1 in the case of k = 1. One might think that A is constrained 
as µ(A) ~ 1/2 but if (6) holds then (8) holds for any A, B up to universal constants. 
Conversely (8) implies the exponential concentration inequality (6). Refer to [7, Lemma 
4.3]. 

In the case where p ~ 1 an exponential concentration inequality in terms of v1,P(M)1iP 
is known, for instance, see [17, Remark2.8] (One can fix the above proof to get the 
inequality). 

2.2 The result by Chung-Grigoriy'an-Yau 

In this subsection we explain the proof of the following result by Chung-Grigoriy'an-Yau. 
The proof is based on some heat kernel estimate. 

Theorem 2.2 ([3, 4], [10, Theorem 12.5]). Let M be a closed Riemannian manifold and 
A 0 , A1, · · · , Ak be subsets of M. Then we have 

(9) 

Sketch. We use the Davis-Gaffney type heat kernel estimate and the heat kernel expansion 
Laplacian. Here, the Davis-Gaffney (integral) heat kernel is 

(10) 
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([10, Corollary 12.4]). Also the heat kernel expansion means 

00 

Pt(x, y) = L e->-ztcp,(x)cp,(y) (11) 
l=O 

([10, Theorem 10.13]), where cp, is the eigenfunction which corresponds to>., and normal
ized as JM cpfdµ = l. Subsetituting (11) to the left-hand side of (10) we obtain 

l; l; Pt(x,y)dµ(x)dµ(y) = te->-zt li cp,(x)dµ(x) l; cp,(y)dµ(y) 

k-1 

:;::> µ(A;)µ(Aj) + ~ e->-zt li cp,(x)dµ(x) l; cp,(y)dµ(y) 

- 11 lA; 11£2 (µ) 11 lA; IIL2 (µ)e->.kt. (12) 

Here we used that cp0 = l. Chung-Grigory'an-Yau proved that the second term of the 
right-hanf side of the above inequality is nonnegative for some pair i, j. In fact, define an 
inner product of JRk-l as 

k-1 

( ) ·-~ ->.it 
U,V .- ~e UiVi. 

l=l 

Then one can find a pair among k+ l vectors in JRk-l whose inner product is nonnegative. 
For such a pair i, j such that the second term of the right-hand side of (12) is nonnegative 
the heat kernel estimate (10) implies 

Choosing an appropriate t we obtain (9). • 
In Proposition 2.2 of [11] Gozlan-Herry imposed the following assumption for k Borel 

subsets A1 , A2 , ... , Ak of Mand obtained a similar statement as Theorems 1.1 and 2.2; 

k 

µ(Ai)+ Lµ(Aj):;::, 1 (i = 1,2,··· ,k). 
j=l 

Under this assumption putting Ao := M\ Ur(LJ7=1 Ai) they showed the following estimate 
of the k-th eigenvalue of the Laplacian: 

( )½ < 2 (1 1- ~7=1 µ(Ai)) 
>.k M _ V({A;}/ ~log µ(Ao) , (13) 

where ¢(x) := max{ ..jx, x} and c > 0 is some constant. In [9] we compare our estimate (2) 
with the estimates (9) and (13). Our inequality is better than their inequalities upon the 
choice of A0 , A1 , • • • , Ak . . Comparing (9) the numerator in logarithm of our inequality 
( 2) can be small for some families {A;}. From this one can show the sharpness of our 
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inequality (2) with respect to the order of k ([9, Subsection 6.1]). However, we do not 
know whether the following inequality holds or not: 

( )1/p < 1 1 
vk,p M ~ V( {Ai}) log k mF log µ(Ai)" 

The above estimate was conjectured in [6]. If the conjecture is affirmative we can prove 
some universal inequality for succesive eigenvalues of the Neumann Laplacian of bounded 
convex domains in Euclidean spaces, see [6, 7]. 

In the proof of 2.2 Chung-Grigor'yan-Yau used the fact that eigenfunctions correpond
ing to the eigenvalue O are constant functions. Thus one cannot apply the method for 
Dirichlet eigenvalues of the Laplacian. Also it seems the heat kernel method cannot ap
ply for the p--Laplacian in the case of p-=/= 2. In [4] Chung-Grigor'yan-Yau generalize the 
method of the proof of Theorem 2.2. 

3 Outline of the proof of Theorem 1. 1 

Let M be a closed Riemannian manifold. In stead of working with vk,p(M) we consider 
the following quantity: 

(14) 

Here the infimum is taken all over k + 1-dimensional subspace of W 1·P(M). We find the 
follwing: 

Proposition 3.1 ([9, Proposition 2.2]). 

Theorem 1.1 follows from the above proposition and the following theorem: 

Theorem 3.2. Let M be a closed Riemannian manifold. For a family {AJ7=o of Borel 
subsets of M we have 

~ 1. 2 e(l - I::#i µ(Ai)) 
vk,p(M)P::::; ({A-}) ~ax log (A) . V i a o, ... ,k µ i 

In the proof of Theorem 3.2 we use the following two theorems and proposition: 

Lemma 3.3 (Domain monotonicity). For a subdomain n of a closed Riemannian mani
fold we have 

vk,p(M) ::::; flf+1,p(n). 

Lemma 3.4 (Domain decomposition principle). Let {ni}7=o be a family of pairwise dis
joint subdomains of a closed Riemannian manifold M. Then we have 
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Proposition 3.5 (Boundary concentration inequality). Let M be a compact Riemannian 
manifold with boundary. Then for any r > 0 we have 

µ(M \ Ur(8M)) :::; exp(l - vf P(M)~ r). (15) 

The idea of the above boundary concentration is Theorem 2.1. In the proof in stead 
of (7) we prove 

See [8], [9, Proposition 2.3]. 

Proof of Theorem 3.2. Let A 0 , A1 , • • • , Ak be subsets of Mand put D := D( {A}), ni := 
U 12 (Ai)- Note that ni are pairwise disjoint. Using Lemma 3.3, 3.4 we get 

2 

k 

vk,p ( M) ::::: vf,p ( II ni) ::::: m;1x vf,p ( nJ (16) 
i=l 

(A ) - µ(Aio) > µ(Ao) 
µnio zo - (!:1- ) - l _ '-'. . (A) µ zo L..J,#zo µ z 

If we assume µnio ( nio \ Ur ( 8!1i0 )) < aio then we have A0 n Ur ( 8!1i0 ) -=/- 0 and ~ :::; r. 
From the boundary concentration inequality (15) 

µni 0 (Oio \ Ur(8!1i0 )) :::; exp(l - vf P(!:1i0 )~r) < aio 

holds as long as r satisfies 

Thus (16) implies 

D 1 e 1 e - < 1 log - < 1 log - . 
2 - i)D (0 )- a,0 - i)D (M),; O:io 

1,p zo P k,p 

This completes the proof. • 
The proof of Theorem 1.2 follows from the same argument and we omit it. 
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4 Relation to the isoperimetric constant and eigen
values of the p-Laplacian 

Let M be a closed Riemannian manifold and p E (1,oo). We define the p-Laplacian ~P 

as 
~P := - div (IIV · llp-2 V-) • 

In the case of p = 2 this coincises with the usual Laplacian. If p =/- 2 then ~P becomes 
a nonlinear operator (refer to [1] for the spectral theory of the p-Laplacian). If >.1,p(M) 
denotes the least positive eigenvalue of ~P then we have the following variational formula 
([12, Corollary 2.1]): 

where C is the set of constant functions on M. 
It turns out that 

>.1,p(M)~ ~ ll1,p(M)~ ~ V1,p(M)~, 

where C1 ~ C2 means that C1 and C2 are equivalent up to universal constants. 
Let us compare vk,p(M) with eigenvalues of the p-Laplacian in the case where p =/-

2. Refer to [1] for eigenvalues of the p-Laplacian. We explain some construction of 
eigenvalues of the p-Laplacian. Let us BP denote the set of symmetric closed subsets of 
{¢ E W1,P(M) I 11¢11LP = 1}. For BE BP its genus ,+(B) is defined as the supremum of 
l 2: 1 such that there exists an odd continuous map from l dimensional Euclidean sphere 
§ 1 to B. 

The cogenus (Krasnosel'skii genus) ,-(B) is defined as the least l 2: 1 such that there 
exists an odd continuous map from B to § 1 ([15]). Set 

where Bt+l,p := { B E BP I ,±(B) 2: k+ 1 }. These two sequences {>.t,P(M) hare known to 
be increasing and unbounded sequences of eigenvalues of the p-Laplacian and it is known 
that >.1,p(M) coincides with >.t,P(M) ([5]). >.t,P(M) is introduced by Drabek-Robinson 
([5]). From the Borsuk-Ulam theorem one can find the following relation between these 
quantities and vk,p(M): 

>.t,P(M) :::; vk,p(M) 

(see [9, Remark 2.1]). Theorem 3.2 implies the following. 

Theorem 4.1. Let M be a closed Riemannian manifold. For a family {A;}7=o of Borel 
subsets of M we have 
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For a subset A of a closed Riemannian manifold M we define its (Minkowski) boundary 
measure as 

µ+(A):= liminf µ(Ur(A)) - µ(A). 
r-+0 r 

The Cheeger's isoperimetric constant of M is defined as 

where the infimum is taken over pairwise disjoint Borel subsets A, B of M. Due to 
Feferer-Fleming h(M) coincides with the best constant of the (1,1)-Poincare inequality 
([17, Lemma 2.2]), and hence v1,1(M)-:::: h(M). 
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