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Abstract 

We give a simple explicit example of a solution of the level set formulation of the crys
talline curvature flow in two dimensions whose one level set fattens, leading to nonuniqueness 
of the flow, and prove that it is the unique viscosity solution. The motivation of this note is 
to illustrate the notion of viscosity solutions introduced recently by Y. Giga and the author. 

1 Introduction 

The purpose of this short note is to illustrate the notion of viscosity solutions of the crystalline 
mean curvature flow introduced by Y. Giga and the author in [13, 14]. We will construct an 
explicit viscosity solution with a polygonal figure 8 initial data as an example of fattening in 
this problem. Fattening refers to the essential nonuniqueness present in the mean curvature 
flow where multiple evolutions are possible. A well-known example of this phenomenon in the 
context of the standard mean curvature flow in two dimensions is the initially connected, self
intersecting curve resembling the figure 8. During the evolution, the curve either splits at the 
self-intersection into two disconnected components that contract to two distinct points, or it 
separates at the self-intersection and evolves as a simple closed curve that contracts to a single 
point; see [7, 8]. 

The level set formulation of the mean curvature flow has a unique solution even when the 
evolution of the curve is not unique. The level set describing the evolution of the curve however 
develops a nonempty interior. That is, the level set fattens. Examples of fattening are discussed 
for instance in [7, 8, 15 , 17, 18], but none of them are given by an explicit formula. 

On the other hand, the solutions of the crystalline curvature flow in two dimensions, reviewed 
in Section 2, are in general polygonal curves whenever the initial curve is polygonal, and so we can 
expect that the crystalline algorithm [22 , 23] for tracking such evolutions will give an explicit 
solution. One such solution is constructed in Section 3, and the proof that it is the unique 
viscosity solution of the level set formulation is presented in Section 3.2. 

2 The crystalline mean curvature flow 

The same way that one can understand the standard curvature flow as the formal gradient flow 
of the curve length, one can consider the formal gradient flow t ,-+ Et of the anisotropic perimeter 

Pa(E) := r lT(v) d1l1 
la•E 

(2.1) 

defined for sets of finite perimeter E C llt2 , where v is the outer unit normal, lT : S1 --+ (0, oo) 
expresses the anisotropy of the perimeter, and 1{1 is the one-dimensional Hausdorff measure. 
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This formally yields the geometric evolution 

V = -K,"' (2.2) 

where V is the normal velocity of the evolving boundary 8Et, The term K," is the anisotropic 
mean curvature of 8Et corresponding to the anisotropy a. It is the first variation of the 
anisotropic perimeter Per [2, 4]. When the anisotropy a is nonsmooth so that the Wulff shape, 
that is, the set with the smallest anisotropic perimeter for a given volume, is a convex polytope, 
it is referred to as the crystalline mean curvature flow. This problem was introduced by An
genent and Gurtin [3] and Taylor [21] as a model of growth of crystals. Solutions of the flow in 
two dimensions are often evolving polygonal curves. Furthermore, the velocity of each segment 
can be found quite easily as a constant inversely proportional to the length of the segment; see 
(3.5). This motivates the crystalline algorithm [21- 23]. It is a first order ODE system for the 
positions of the individual segments. This algorithm provides an efficient way to find the evolu
tion before the onset of singularities. When singularities occur, the evolution can sometimes be 
continued in a natural way [1], but there are many examples where a much more care must be 
taken as in the case of collisions and topological changes [16, 19]. 

The viscosity solutions [10- 14] provide one way to select a unique continuation when no 
fattening occurs. It is also known that the crystalline algorithm generates a viscosity solution 
when no singularities occur [9, 11]. Another notion of generalized solutions was developed in 
[5,6]. It is defined in terms of the signed distance function to the evolving curve (surface) and 
relies for existence on the minimizing movements algorithm [2]. For a more detailed discussion 
see [6, 13] and the reference therein. 

The level set equation for the crystalline curvature flow can be formally written as 

Ut = IVul div Va(Vu) in JR2 X (0, 00 ), (2.3) 

so that every level set of the auxiliary function u defines a curve that evolves under the ge
ometric flow (2.2) [12]. The term div Va(Vu) must be properly understood in the sense of a 
subdifferential of the anisotropic total variation energy 

£(¢) := f a(V'lj;) dx. 
JTJl!.2 

Here a: JR2 --+ [0, oo) is the positively one-homogeneous extension of a in (2.1) given as a(p) = 
IPla(p/lPI), p =/- 0, and it is assumed to be convex. Any such function we shall call an anisotropy. 
If a is furthermore given as the maximum of a finite number of linear functions, 

a(p) := max xi· p, 
i 

we shall call it a crystalline anisotropy. In this case the vector field Va(Vu) is in general not 
continuous even if the level sets of u are smooth curves and therefore one cannot expect to be 
able to express divv'a(Vu) as a function. In fact, this operator becomes nonlocal on flat parts 
parallel to the sides of the Wulff shape. 

In this note we will focus on the crystalline anisotropy given by the £1 norm: a(p) := IIPll 1 = 

IP1I + IP2I- Clearly we can take Xi to be the four points (1,1), (-1,1), (1,-1) and (-1,-1). 
These happen to also be the vertices of the Wulff shape W corresponding to a, 

W = {x: a0 (x)::::; 1} = {x: llxll 00 ::::; 1}, 

where a 0 : JR2 --+ [0, oo) is the convex polar 

a 0 (x) := max{x · p: a(p)::::; 1} = llxll 00 , 
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Figure 1: Left: Level sets {uo = 0} of the initial data for 0 = -l (two points),-½ (two squares), 
0 (thick figure '8'), and½- Right: Level sets {u(·,t) = 0} (gray region) and {u(·,t) =½}at 
t = 0.45. 

see [20]. The Wulff shape is the set with the smallest anisotropic perimeter given the volume 
and in this case it happens to be a square. 

It is important to understand for what kind of curves we can define the crystalline curvature. 
In the case of the £1 anisotropy, we can for instance consider the following class: A curve is regular 
for the anisotropy t:, = 11·11 1 if it is a Lipschitz regular boundary of an open set and consists only 
of axes-aligned segments with positive length; see also [23]. 

3 The example of fattening 

We consider the initial data 

uo(x) = min ( llx - (1, 1)11 00 - 1, llx + (1, 1)11 00 - 1, 1), XE ll~.2, 

for the level set equation (2.3). Note that -1 :S uo :S 1. The zero level set {uo = 0} of uo is 
the boundary of the union of two axes-aligned squares of side-length 2 touching at the origin, 
centered at (1, 1) and (-1, -1), respectively; see Figure 1. This is the polygonal figure '8' shape. 

Other level sets { uo = 0} for -1 < 0 < l are boundaries of unions of two squares of side
length 2 + 20 with the same centers as above, but the squares are disjoint for -1 < 0 < 0, while 
the intersection has a nonempty interior for 0 > 0. 

The evolution of the initial polygonal curves { uo = 0} is therefore quite clear for 0 E 8 := 
( -1, 0) U (0, 1) by the crystalline algorithm since these initial curves are regular, see above, with 
respect to the anisotropy t:, = 11·11 1 . From these evolving curves, we will construct a level set 
function u : JR2 x [O, oo) --+ JR and show that it is the unique viscosity solution of (2.3) with 
initial data uo. 

3.1 Crystalline algorithm 

We will express the evolving curves as the boundaries of evolving open sets Ef C JR2 for 0 E 8, 
with initial data Eg = { uo < 0}. 



123

0 
Gt 

p0 lb(t) t 

0 
I 

I 
X 

-0 

Figure 2: The boundary of Ef for 0 E (0, 1) and 0::; t < tij. 

Case -1 < 0 < 0 

Eg := { uo < 0} is the union of two disjoint squares 

(3.1) 

where Qr(c) := {x: llx - cll 00 < r}. Each square can be evolved independently. If we denote 
the half-length of their sides as a= a(t), a(0) = 1 + 0, the crystalline curvature on the facet is 
given as 

1 
Ka=-. 

a 

This follows from a general formula r;,a = (length of Wulff shape facet)/(length of facet), which 
is rigorously written in (3.5) below. The velocity in the outer normal direction of each side of 
the square happens to be the derivative a'. Therefore under the crystalline algorithm, a satisfies 

t > 0, 

with exact solution a(t) = ✓(1 + 0) 2 - 2t fort< t* := (l~0l2
, where t* = t*,0 is the extinction 

time, that is, the time such that a(t) \. 0 as t /' t*. We continue the solution as a(t) = 0 for 
t 2 t*. 
Remark 3.1. In two dimensions, the flow with c, = 11·11 1 reduces the area of each connected component 
of the interior of the curve at a constant rate -8. Since the initial area of each component in this case is 
4(1 + 0)2 , the area becomes O exactly at t*. 

We define 

Ef := Qa(t)(l, 1) U Qa(t)(-1, -1), 

Note that Ef = 0 fort 2 t*. 

Case O < 0 < 1 

-1 < 0 < o, t 2 0. 

Eg = {uo < 0} is again a union of two squares as in (3.1), however, this time they are not 
disjoint. In fact Eg has 8 facets; see Figure 1. By the symmetry with respect to both diagonals, 
we need to only consider the two of them in {(x1, x2): x2 > lx1I}, namely 

Ft:= {(-0, x2) : 0 < x2 < 1 + 0}, G~ := {(x1, 1 + 0): -0 < x1 < 1 + 0}, 
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see Figure 2. The crystalline curvature is 0 on Ft by (3.5) and a positive constant depending 
on the length of the facet on G~. Therefore Ft does not move, only shortens, while G~ moves 
in the direction of Eg. We introduce b = b(t) to be the distance to the x 1-axis of the facet Gt 

Ff:= {(-0, x2) : 0 < X2 < b(t)}, cf:= {(x1, b(t)) : -0 < X1 < b(t)}. 

We define the time ttt = ttt ,0 as the time when b(ttt) = 0, and F~ vanishes. At this time Ef1 is the 
square Qe (0, 0). After that the evolution is self-similar (homothetic) as in the previous case. 

Let us find an expression for b(t) = b0 (t). The crystalline curvature on Gf is 

2 
1,,u= b(t)+0· 

As before, b' is the normal velocity of the facet Gf and therefore b is the solution of 

{ 
/ 2 

b = - b + 0 , t > 0, 

b(0) = 2 + 0, 

with formula 

b(t) = ✓(2 + 20) 2 - 4t - 0. 

We have b(ttt) = 0 at ttt = tU,0 := 1 + 20. After this time, Ef is the square 

Ef = Qc(t)(0), 

where c(t) = c0 (t) = ✓02 - 2(t - ttt), tU ::; t < tU + ~- At t* := tU + ~ = 1 + 20 + ½02 the set 
vanishes. 

We have 

{
Af U (-Ar), 0::; t < tU = 1 + 20, 

Ef = Qc(t)(0), ttt::; t < t* := ttt + ½02 = 1 + 20 + ½02 , 

0, t2'.t*, 

with Af = {(x1, x2): -0 < x1, X2 < b(t)}. As in Remark 3.1 , we can find ttt and t* by considering 
the area of Eg and the fact that the area of Ef decreases with a constant rate -8. 

We clearly have the following monotonicity: 

for71::;0,0::;s::;t, 71,0E8. 

In words, the sets are nonincreasing in time for each 0, and they form a monotonically increas
ing family in 0. This monotonicity of Ef is clear from the explicit formulas, but it is also a 
consequence of the comparison principle for the crystalline algorithm. In fact, it is rather easy 
to see that 

dist(E;7, (Efn 2'. 0 - 71 = dist(E3, (Egn whenever T/ ::; 0, T/, 0 E 8. (3.2) 

Moreover, due to the semigroup property we can always compare the evolving set with the 
homothetic solution starting from Q0(c) centered at any point c. 

Lemma 3.2. Whenever for some c E ~ 2 , t 2'. 0 and t5 > 0 we have x E Ef for all x E ~ 2 with 

llx - cll 00 < b, we can conclude that c E Effort::; s < t + ~-
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We will now define the level set function 

u(x,t) := inf ( {0 E (-1,0) U (0, 1): x E Ef} U {l}). (3.3) 

It is easy to see that -1 ::::; u ::; 1 on JR.2 x [O, oo ), u(x, t) = 1 for llxll 00 2'. 3 or t 2'. lim0-+1- t* = 3.5, 
and u is nondecreasing in time. Finally, u is Lipschitz in space with Lipschitz constant 1 by 
(3.2). 

In fact, we can write a rather explicit formula for u. To simplify the situation, we again take 
advantage of the symmetries of u guaranteed by the symmetries of the initial data and give the 
values of u(·, t) only on the set {x2 2'. lx1I}- Let us define 

{ ✓ X§ + 2t + 2 - 2, 
c;(x2 t) ·= ( ~-~-- ) ' · ½ x2 +J4(x2 -1)2 +12t-4 , 

X2 < (t - 1)/2, 

otherwise. 

It is not difficult to check that c; is 1-Lipschitz continuous since at x2 = (t - 1)/2 both branches 
are equal to x2. Note also that c;(x2, t) < 0 for O ::::; x2 < 2y'f"=t and O ::::; t < 1 = tU,o. 

For x2 < (t-1)/2, 0 = c;(x2, t) is the solution of b0 (t) = x2, that is, the point x might lie on 
the edge Gf Otherwise 0 = c;(x2, t) is a solution of c0 (t) = x2, in which case x lies on the top 
edge of Qc(t)· Let us combine this with the possibility that x lies on the edge Ff, which does 
not move: 

v(x, t) := min ( max(-x1, c;(x2, t)), 1). 

On the other hand, x can lie on the boundary of Qa(t)(l, 1) or in the fattened zero set, which 
we express by 

w(x, t) := min ( Jllx - (1, 1) II~+ 2t - 1, 0). 

Then we can write u for x2 2'. lx1 I as 

U X t -( ) {
v(x, t), 

' - w(x, t), 

u can be extended to the rest of JR.2 by symmetry. 

3.2 Viscosity solution 

v(x, t) > 0, 

otherwise. 

We claim that u is the unique viscosity solution of (2.3) with initial data ua. 

(3.4) 

The definition of viscosity solutions introduced in [13, 14] can be written in n = 2 with 
1J(p) = IIPll 1 = IP1I + IP2I in the following simplified way. First we introduce admissible support 
functions as the Lipschitz functions on lE. whose zero level set { '¢ = O} is the union of finite 
number of bounded closed intervals of positive length. Here we should note that the definition 
of admissible functions in [14] is potentially more general but the important point is that the class 
considered here still gives the density result [14, Theorem 1.3]: For every Lipschitz continuous 
function'¢ on lE. with { '¢ = O} compact and any p > 0 there exists an admissible support function 
( with sign 'lj;(x) ::::; sign ((x) ::::; suply-xl<P sign 'lj;(y). Note that signs := -1, 0, 1 whenever s < 0, 
s = 0, s > 0, respectively. This result is a simple consequence of the structure of open subsets 
of the real line. 

For such an admissible support function '¢, we will define 

x(x) 
A['lj;](x) := L(x) x E {'¢ = 0}, (3.5) 
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where L(x) is the length of the connected component of { 'ljJ = 0} that contains x, and x(x) is 
the sum of the signs of the two boundary points of the connected component. We define the 
sign of the boundary point as 1 if 'ljJ 2: 0 in its neighborhood, and -1 otherwise. Therefore the 
possible values of x(x) are -2, 0 and 2. 

Definition 3.3. We say that an upper semi-continuous function u is a viscosity subsolution of 
(2.3) whenever the following conditions are satisfied: 

{i1) If <p(x, t) = 'lj)(x1) + f(x2) + g(t), where 'ljJ is an admissible support function and f, 
g E C 1 (1E.), f'(x2) =f. 0, and u - ip(· - he1) has a global maximum at (x, i) for all h E JE., 
lhl small, and x1 E int { 'ljJ = O}, then 

(iFi.) Same as (i1) but with subscripts 1 and 2 exchanged. 

{ii) If <p(x, t) = 'lj)(x) + g(t), where 'ljJ E Lip(JE.2 ) and g E C 1 (JE.), and u - <p(· - h) has a global 
maximum at (x, i) for all h E JE.2, lhl small, and x E int{¢= 0}, then 

g'(i)::;o. 

{iii) If <p(x, t) = f(x) + g(t), where f,g E C1(1E.), and u - <p has a global maximum at (x, i), 
and 8x,J(x) =/- 0 =/- 8x2 f(x), then 

g'(i)::;o. 

A viscosity supersolution is defined analogously by replacing upper semi-continuous, maxi
mum and::; by lower semi-continuous, minimum and 2:, respectively. 

A function is a viscosity solution if it is both a viscosity subsolution and a viscosity superso
lution. 

Intuitively, u - <p having a maximum at (x, i) can be interpreted as the graph of <p touching 
the graph of u from above. In the language of the level sets, the sub-level set of <p touches the 
boundary of the sub-level set of u from inside. Note that in two dimensions we do not need to 
consider ess inf or ess sup in tests (i1) and (i2) as written in [13, 14] because A[¢] is constant on 
each connected component of { 'ljJ = 0}; see also [10, 12]. 

Theorem 3.4. The function u defined in (3.3) and given explicitly in (3.4) is the viscosity 
solution of the crystalline curvature flow with initial data uo. 

Proof. Let us show that u is a viscosity subsolution since this is more difficult. Indeed, u is 
nondecreasing in time and hence tests (ii) and (iii) are automatic for a supersolution. 

Let us get the simpler tests (ii) and (iii) out of the way first. 

Test (ii). Suppose that <p, 1/J, g and (x, i) are as in Definition 3.3(ii). We need to show that 
g'(i) :::; 0. Suppose therefore that g'(i) > 0. We can find ,5 > 0 such that 'lj)(x) = 0 = 1/J(x) for 
llx - xlloo < ,5 and g(t) < g(t) fort E (£ - ,5, £). 

Let us set 0 := u(x, i). By the maximality of u - <pat (x, i), WC get 

u(x, t) ::::: 0 - <p(x, i) + <p(x, t) = 0 + g(t) - g(t) < 0, 

for llx - xll 00 < ,5, t E (t-,5, i). This can be interpreted in the following way: for every t E (t-,5, i) 

and any 0 E (0 + g(t) - g(i), 0) n 0 =/- 0 we have x E Ef but x (j. Ef for llx - xll 00 < ,5. But 
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taking t > i - ~' we reach a contradiction with Lemma 3.2 that states that the neighborhood 
of x cannot disappear from Ef that fast. Therefore g'(i) ::; 0. 

Test (iii). Suppose now that 'P, f and g is as in Definition 3.3 (iii). There is E > 0 such 
that {x: f(x) = J(x), Ix - xi< E} is a C1 curve with normal vector p := 'vf(x) =/- 0 at x. 
Furthermore, as u(·, i) - f has a global maximum at x, we conclude that 

u(x, i) ::; u(x, i) + f(x) - f(x) in JR2 , 

and so 

{x: f(x) < J(x), Ix - xi< E} c {u(·, i) < 0} =: uf, (3.6) 

and x E auf. We can express the sub-level sets as 

uf := LJ Ef. 
0E0, 0<0 

See Figure 3 for the boundaries of uf for 0 < t < t•,0. 
In the following, we say that an edge of A C JR2, that is, a maximal line segment r of 

8A, is convex if A is convex in its neighborhood (-=-). More precisely, there exists a convex 
neighborhood C of the edge r such that A n C is convex. Similarly, the edge r is concave if 
Ac n C is convex for some convex neighborhood C ( ). Finally, if the edge is neither, we say 
that it is indeterminate (.~ ). Similarly we will talk about convex (&) or concave ( ) corners. 

Therefore by (3.6) and the fact that p is not parallel to either of the axes, x can be located 

only on the concave corners of the boundary of uf. More precisely, 0 E (0, 1], x1 = -x2 and 

0 < i < t«,iJ = 1 + 20. But then u(x, t) = u(x, i) fort near i because this corner does not move 
and hence g' ( £) = 0. 

Test (i1). It is time to tackle the more challenging test (ii). We will see that here we test the 
horizontal facets, that is, the one dimensional edges parallel to the xi-axis. Suppose that 'P, 
'I/!, f, g and (x, i) are as in Definition 3.3(ii). We need to estimate the quantity A[1P](x1) from 
below, which means controlling the length of the component of { 1P = 0} containing X1 and the 
behavior of 1P near its boundary points. 

We again set 0 := u(x, i). The maximality of u - 'Pat (x, i) is equivalent to 

1P(x1 + v1) + f (x2 + v2) + g(i) = ,p(x + v, i) 2 u(x + v, i) - 0 + ,p(x, i), 

for v E 1R2, which after rearrangement using 1P(x1) = 0 reads 

(3.7) 

We immediately have 

0 A A 

whenever (x1,x2) (/. Ui := {u(·,t) < 0}. (3.8) 

Let S = f'(x2)/lf'(x2)I be the sign of f'(x2) =/- 0. There is O > 0 such that f(x2)-f(x2-hs) > 
0 for h E (0, o). Therefore by (3.7) we get 

1P > 0 on {x1: (x1,x2 - hs) (/. uf for some h E (0,o)}. (3.9) 
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Figure 3: Possible locations of x on the boundary of uf for test (i1) denoted by thick line 
segments. 

u, 'Ip) u, 'Ip) 

~ ·:& x, :7 ~' ,0 x, 
convex nonconvex 

Figure 4: The graphs of 'ljJ (above) and u((·, x2), i) - 0 on a convex edge (left) vs. nonconvex 
edge (right). The set { 'ljJ = 0} is denoted by the bracketed interval. 

On the other hand, by the assumption on the test function, we have 'ljJ(x1 + h, i) = 0 for 
lhl < E for some E > 0 and therefore (3.9) yields 

{x+v: lv1I < E, -J < SV2 < O} C uf. 
This implies that x must lie on one of the horizontal edges of the boundary of uf away from 
the convex corners; see Figure 3. 

If x is on a convex edge, both boundary points of the component of { 'ljJ = O} containing x 
are positive due to (3.8) and (3.9), and hence x(x) = 2; see Figure 4(left). Furthermore, the 
length of the component is smaller than the length £ of the edge by (3.9). We conclude that 
A['ljJ](x) 2 ~-

0n the other hand, if x does not lie on a convex edge, we can only conclude that at least 
one boundary point of the component of {'ljJ = 0} has a positive sign and therefore x(x) 2 0; 
see Figure 4(right). This gives us only that A['ljJ](x) 2 0. 

To estimate the time derivative g'(i), we choose~ E C 1 (I,JR2 ) and I a neighborhood of i 
such that ~(t) E auf fort E J. Then 

u(~(t), t) - rp(W), t) ::; u(x, i) - rp(x, i) = 0 - rp(~(i), i). 

But u(~(t), t) = 0 and therefore t >-+ rp(~(t), t) has a minimum at£. In particular, 

Now s~~(i) just happens to be the outer normal velocity of the horizontal edge of uf on which 
x lies. So if x lies on a nonconvex edge, we can simply choose ~(t) = x since such edges do not 
move by construction, and so we have 
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On the other hand, on the convex edges, we have by the crystalline algorithm sf:,'(t) = -~, 
where £ is the length of the edge. Therefore we conclude that if x is on the convex edge, 

Test (b). This test can be verified as test (i1) by symmetry. 

This concludes the proof that u defined in (3.3) and given by the explicit formula (3.4) is 
a viscosity subsolution of the level set equation (2.3) in the sense of Definition 3.3. The proof 
that it is a supersolution is similar in (i1) and (i2), and trivial in cases (ii) and (iii) as u is 
nondecreasing in time. • 
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