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Abstract 

We examine a discrete-time optimal pair-trade execution problem with generalized cross-
impact. This research is an extension of [14], which consider the price impact of aggregate random 
orders posed by small traders with a Markovian dependence. We focus on how a risk-averse large 
trader optimally executes two correlated assets to maximize his/her expected utility from the final 
wealth over a finite horizon. A stochastic dynamic programming modeling constitutes the basis 
for the formulation of the optimal pair-trade execution problem. Then, under some regularity 
conditions, the backward induction method of dynamic progr加 mingenables us to derive the 
optimal pair-trade execution strategy and its associated optimal value function. Besides, we 
reveal that the trading orders of each risky asset posed by small traders do affect the optimal 
execution volume of both risky assets. 

1 Introduction 

A considerable number of empirical researches conducted in the last decade show that considering 

the cross-impact of multi assets is important when constructing a portfolio or an optimal execution 

strategy (e.g., [3], [36]). Along with these empirical researches, a multitude of theoretical studies 

analyze the optimal portfolio liquidation strategies of multi assets for a single or multiple large 

investors (e.g., [5], [9], [17], [18], [28]). These works are vulnerable from the practitioners'point of 

view. 

This paper addresses an optimal pair-trade execution problem for a single large trader. We the 

following situations which the institutional trader (or large trader) may face in a real marketplace: 

Institutional traders manage their trading with multiple assets all or some of which are correlated 

with each other to mitigate the price risk. The so-called'pair trading'has already been discussed 

in much empirical literature, clarifying the importance of trading multiple assets (e.g., in [15]). In 

line with the significant insights from other researches, we consider an optimal pair-trade strategy 

for an institutional trader. Also, the market model includes the effect of temporary, permanent, 

and transient price impacts caused by both the large trader and the (aggregate) trading volume 

submitted by small traders. This research is, to the best of our knowledge, the first paper to 

incorporate the transient price impact as well as the effect of small traders'submission into the 

optimal pair-trade execution strategy. 

The organization of this paper is as follows. Section 2 describes the market model and per-

formance criteria. A stochastic dynamic programming approach leads us to derive the optimal 

pair-trade execution strategy. We present the closed-form solution of the optimal pair-trade exe-

cution strategy and its associated value function. Section 3 concludes. 

*This work was supported by Japan Society for the Promotion of Science under KAKENHI [Grant Numbers 
17K01255, and 19J10501]. 
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2 p. . nee impact model with cross-impact 

In a discrete time framework t E {1, ... , T, T + l }, (T E Z+ := {1, 2, ... }), we assume that one 

large trader purchases two risky assets in a trading market. It is also supposed that he/she has a 
Constant Absolute Risk Aversion (CARA) von Neumann-Morgenstern (vN-M) utility (or negative 

exponential utility) utility function with the absolute risk aversion rate'Y > 0. 

2.1 Market model 

For each asset i E {1, 2} =: I, he/she must purchase ,Qi(E良） volume by the time T + 1. Let 
qi(E JR) for i E I represent large amount of orders of asset i submitted by the large trader at time 

—t 
t E {1, ... , T} =: T. Then, we denote by Qt the remained execution volume of asset i, that is, the 

number of shares remained to purchase by the large trader at time t E {1, ... , T, T + 1 }.1 From this 
→ → 

assumption, we have Q1 =四切=0 and Qt+l = Qt―qf for i EI. In a stacked form, 

図：＝（記） =Qt―Qt:= (忍□:D (E 1R2), t = 1, ... , T. (2.1) 

with the initial and terminal conditions: 

Q1 = (腐）(E酎），叩＝⑰)=: 0 (E酎） (2.2) 

Then, the (aggregate) trading volumes submitted by small traders at time t E Tare assumed to 

have a Markov dependence described as follows: 

Vo三 O;

Yt+llv, ~ NIR2 (吋+1+ bf+l Vt,~ 『+1), t = 0, ... , T -1, 
(2.3) 

where 

at:= (:DE阻l2; ht:= (とが 乞仁） E囮2x2; Ef := (: 心： i:) E JR2x2_ (2.4) 

Note that吋，bf,and Ef are deterministic functions of time t. The dynamics of Vt can be rewritten 
as follows: 

vo三 O;

Vt+1 = (~+1 + bf+1vt) +uf+1切 +1, t = 1, ... , T -l, 
(2.5) 

where Wt~ N即 (0,l2) for all t E T and ut+l (uい）T := Et'is a Cholesky decomposition of均 for
all t E T. In the rest of this paper, l2 indicates the 2 x 2 identity matrix. 

Remark 2.1 (Effect of bv). Eq. (2.5) becomes a covariance-stationary VAR (1) process when all 

values z satisfying 112 -zbt'I = 0 lies outside of the unit circle. Equivalent conditoins are: 

lzl = I 
Tr(bf) 土 ✓Tr(bザー 4lbfl

c, l<..vl > 1, (2.6) 

where for any squared matrix A E罠nxnIAI stands for the determinant of A and Tr (A) is the 
trace of A defined as a map from艮nxnto罠 suchthat 

Th(A)~Th(: ロニ）＝苫％ (2.7) 

1The positive ql for t E T stand for the acquisition and negative ql the liquidation of the risky asset i E'L. This 
setting allows us to establish a similar setup for a selling problem of a large trader. 
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Moreover, if the following determinant: 112 -btl is zero, then the Eq (2.5) contains at least one 

unit root. For the details, see, e.g., [21]. The continuous-time version, that is, the multivariate OU 

process is discussed in [30]. 

We assume the market price (or quoted price) of the risky asset i E I at time t E {1, ... , T, T + 1} 

is set as Pf. Then, the execution price of the asset i becomes Pf since the large trader submits a 

large number of orders, influencing the asset price at which he/she execute the transaction. In the 
rest of this paper, we assume that for each asset i EI submitting one unit of (large) order at time 

t E T causes the instantaneous price impact denoted as入H>0). We also assume that the aggregate 
trading volume posed by small traders also has some impact on the execution price. r;,i(> 0) 
represents the price impact per unit at time t E T caused by small traders for asset i E I. The 

(aggregate) trading volume submitted by small traders at time t E Tis assumed to be a sequence 

of random variables Vt, which has a Markovian dependence and follows a normal distribution with 

the following mean and variance: 

In the sequel of this paper, the buy-trade and sell-trade of a large trader are supposed to 

induce the same (instantaneous) linear price impact.2 We consider the cross-impact caused by the 

order submission of both the large trader and small traders. From this assumption, we define the 

execution price, Pt:= (覧）， inthe form of a linear price impact model as follows: 
Pt= Pt+ (A心t十凡Vt), t = 1, ... , T. (2.8) 

where 

Pt:= (岱）， At:=(訊悶），凡=(:}1 ji), (2.9) 

and入?represents the cross-impact of asset j's order execution on asset i per unit caused by the 
large trader, and忍causedby small traders at time t E T. [36] show that, in order for the 
market not to allow the dynamic arbitrage opportunities, the cross-impact must take the form of a 

symmetric matrix. From this viewpoint, we have the following assumption. 

A ssumpt10n 2.1. At and K.t are symmetric for all t E T. 

Adding to the above assumption, we restrict our analysis of the price impact with cross-impacts 

on the following case. 

Assumption 2.2. At and凡 arepositive definite matrices for all t E T. 

Remark 2.2 (Symmetricity of a positive definite matrix). We can always regard a positive definite 

n x n matrix as a symmetric one since for each positive definite matrix A E良nxna symmetric and 

positivc dcfinitc matrix A*(:=½(A+ ぶ）） such that x T Ax= x T A*x. 

Remark 2.3 (Diagonally dominant matrices). For a complex-(or real-)valued n x n matrix A, we 

say that A is a strictly diagonally dominant matrix if 

|心I>Llaijl, 
J弁

(2.10) 

for all i E {1, ... , n }. Referring to this definition, we can replace the Assumption 2.2 as follows. 

2This assumption would be inconsistent with the situation observed in a real market. [7] and [8] conduct a linear 
regression of price changes on net order-flow using trading data obtained from Nasdaq to estimate the permanent 
and temporary price impact. Then they reveal that assuming linear price impact is compatible with the real stock 
market and that the price impact caused by both buy and sell trades are deemed as same from a statistical analysis 
point of view. 
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Assumption 2.2'. At and i,,t are strictly diagonally dominant matrices. 

If At is a strictly diagonally dominant matrix, regardless of the symmetricity of the matrix, the 

fact that刈>0 and 

IAtl=〉,}1〉,;2-〉,}2入;1>〉,}1入;2-I〉,FIi入fll> 0 (2.11) 

reveals the positive definiteness of At, and the same holds for "'t• If we weaken the assumption 2.3 to 
weakly diagonally dominant matrices, then both At and "'t become positive semidefinite matrices. 

Moreover, we can further say that if At is a strictly diagonally dominant matrix, then it also becomes 

a generalized diagonally dominant matrix. For more detail, see, e.g., [37]. 

Remark 2.4 (Positive definiteness of the price impact coefficient matrix). We can interpret the 

assumption above as follows. Consider the case入t=入r=ふ(>0) and氾＝入； for all t E T. 
Then, using~E JR., the characteristic equation results in 

IAt -i;I叫=0←* (入t-i;)2 -(>..;)2 = 0, 

and solving the above equation with respect to I; yields the eigen value: 

I;=入t土入；．

(2.12) 

(2.13) 

By the assumptionふ>0, the conditionふ土入； > 0, i.e., 入｝＝入r>I炉 Imust hold for At to be 
a positive definite matrix for all t E T. This means that the price impact of the asset i E {1, 2} on 
the execution price on asset j(=J i) E {1, 2} must be less than that on asset i itself, which is rather 
a realistic situation considering the real marketplace. 

Remark 2.5 (An extension from two assets ton assets (n 2 3)). We can extend this model to the 
case of n risky assets (n 2 3). Consider, for example, the case that a large trader trades three risky 
assets and the price impact caused by the large trader is the following form: 
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(2.14) 

meaning that the execution of asset 1 causes a cross impact on the priced of asset 3 and vice versa, 

and no cross impacts exist between assets 1 and 2 as well as assets 2 and 3. Then, by a similar 

examination as in Remark 2.2 with the assumption入｝＝入;=入r=ふforall t E {1, ... , T} and 
泊＝炉＝入；， theeigenvalue ofぶ denotedby~, becomes~= ふ，ふ土入；. Thus, the condition 
入｝＝入;=入r>I炉 Iis the necessary and sufficient condition for At for all t E {1, ... , T} to be 
positive definite. 

We subsequently define the residual effect of past price impact at time t E T, represented by 
Rt E訊 whichcharacterizes the discounted sum of past transient price impact. Many existing 
researches, conducted from both theoretical and empirical viewpoint, highlight the significance of 

the transient nature of price impacts (e.g., [6], [31]). By means of the following exponential decay 

kernel function G : 艮→民叫

G(t) := e―ptl2 = e―ptl2 = (e―: e~Pt) , t = 1, ... , T, (2.15) 

where p (E [O, oo)) stands for the deterministic resilience speed, we formulate the residual effect of 

the past orders posed by both the large trader and small traders. 

Remark 2.6. [1] show that the decay kernel G(t): [O, oo)→民nxnfor multiple (n) risky assets 

with cross-impact must satisfy 
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1 . nonnegative matrix for all t E [O, oo); 

2. for all x E町 thefunction t >----+ x T G(t)x is nonmcreasing; 

3. for all x E町 thefunction t >----+ゞ G(t)xis convex; 

4 . commutmg, i.e., G(t)G(s) = G(s)G(t) for all t E [O,oo). 

Eq. (2.15) clearly satisfies all the conditions. 

Remark 2.7 (Extension of deterministic resilience speed). We can extend the exponential decay 

kernel function in several ways. For example, the time dependency for the resilience speed, i.e., Pt, 

is consistent with much of empirical analysis. Another extension includes different resilience speeds 

for each asset, which [38] considers as follows: 
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where p'for i EI is the deterministic resilience speed of asset i and p := (心 pり）．
The dynamics of the residual effect of past price impact Rt is given as follows: 

R1 =0; 

Rt+l = Lふ (A輝＋屈vk)e―p((t+l)-k)
k=l 
t-1 

=e―p区At(A叫＋心Vk)e―p(t-k)+ At (A心＋的Vt)e―p 
k=l 

=e―P [Rt +At(A心＋凡Vt)], t = 1, ... , T, 

(2.16) 

(2.17) 

where At:= (訊Ic;f) 2 represents the pnce impact coeffic1ents representmg the temporary pnce 
impacts with cross-impact. Eq. (2.17) indicates that Rt has a Markov property in this settings, 

which stems from the assumption of the exponantial decay kernel. For simplicity, we assume that 

At is symmetric. 

Furthermore, we define a sequence of independent random variables et at time t E T as the 

effect of the public news/information about the economic situation between t and t + 1 since some 

public news or information about the economic situation affect the price. et for t E T are assumed 

to follow a bivariate normal distribution with meanμf E~2 and variance Ef E艮2x2,i.e.,3 

et~N恥2(μt 1:n, t = 1, ... , T. (2.18) 

The'funda.Illental price'at time t E T, denoted by P{, must be carefully constructed. The fact 

that the residual effect of the past execution dissipates over the course of the trading horizon allows 

us to define Pt -Rt as the fundamental price of the risky asset. We assume that the permanent 

3In the rest of this paper, we suppose that the two stochastic processes, Wt and Et fort ET are mutually independent 
for simplicity. 
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price impact is represented by Bt (砂+K,kVk) where Bt := (贔胃）• We assume that Bt is 
symmetric for all t E T for simplicity. By the definition of Et, we can set the fundamental price 
p f t := Pt -Rt with a permanent pnce impact as follows: 

Pい=Pt+! -Rt+i 
= Pt -Rt+ Bt(Atq斤凡Vt)+ct 

= P{ + Bt(Atqt十凡Vt)+ Et, t = 1, ... , T. (2.19) 

This relation indicates that the permanent price impact caused by large traders and small traders 

and the public news or information about an economic situation are assumed to affect the funda-

mental price. This assumption also reveals that the permanent price impact may give a non-zero 

trend to the fundamental price, even if the mean of et is zero vector for all t E T. According to Eq. 

(2.8), (2.17), and (2.19), the dynamics of market price are described as 

Pt+l =Pt+ (Rt+1 -Rt)+ Bt(A心+K,tVt) +釘

= Pt -(1-e―P)Rt十 (e-Pふ＋且） (A心＋的Vt)+et, t = 1, ... , T, (2.20) 

Remark 2.8. In this context, Bt (A心+K,tVt) , At (A心＋凡Vt),and e―PAt (A心+K,tVt) repre-
sent the permanent impact, temporary impact, and transient impact, respectively. Moreover, if 

P→ oo, the resid叫 effectof past price impact becomes zero for all t E T since R1 = 0 and from 
Eq. (2.17) 

lim Rt+l = lim e―P [Rt +At (A心＋的Vt)]= 0, t = 1, ... , T, (2.21) 
P→ 00 p→OO 

and therefore, 

Pt+l =P戸且(A心＋凡Vt)+ t:t, t = 1, ... , T, 

that is, we have a permanent impact model. 

In the sequel of this paper, we assume the following regularity condition holds. 

Assumption 2.3. At (l2 -(e―P At+ Bt)) + (l2 -(e―P At+ Bt)) At is positive semidefinite. 

Remark 2.9. The assumption above is equivalent to the following conditions: 

1. 入}(1-e―Paf -f3i) +入;(1-e―Pa; -f3;) -2入i2(e―Paf2 + /3£2) 2': 0, 

2 

2. II {入;(1-e―Pai -f3;)ー炉 (e―p詔＋炉）} 2': {氾 (e―p祖＋附）}2. 
i=l 

(2.22) 

Both conditions imply that the cross-impact must be small enough for the optimal execution 

strategy to exist. A close analysis of condition 1 reveals that入i(l-e-Pai -/31) for i E I is 
positive (except when p "". 0) if the temporary and permanent price impacts are proportional (e.g., 

considered in [33]), i.e., /31 := 1 -ai for all t E T, since in this case 

1-e―国—悶 =1-e―Pal -(1 -aD = aHl -e―P) > 0, (2.23) 

holds for all p E (0, oo). 

Remark 2.10 (Alternative assumption). We can replace Assumption 2.3 as follows. 

A ssumptmn 2.3'. At (l2 -(e-PAt + Bt)) is normal in the sense of [29], i.e., 

{ At (l2 -(e―pふ +Bt))}At(l2-(e―PAt+Bt)) =At(I2-(e―pふ +Bり）{ At (l2 -(e―PAt + Bt)) r. 
(2.24) 

This statement follows from Theorem 3 of [29]: If At (l2 -(e-P At + Bt)) is normal, then 

At (l2 -(e-P At+ Bt)) is also positive semidefinite. 

From the definition of the execution price, the wealth process Wt (E罠） evolves as follows: 

Wt+l = Wt一釘Qt=Wt -{Pt+ (A心＋凡Vt)}T Qt, t = l, ... , T. (2.25) 
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2.2 F ormulat10n as a Markov dec1s10n process 

In a discrete-time window t E {1, ... , T, T + 1 }, we define the state of the decision process at time 
t E {1, ... , T, T + 1} as 5-tuple and denote it as 

St= (Wt,P心 t,Rt, Vt-1) E JR. X配 x配 x配 x配=:s. (2.26) 

For t E T, an allowable action chosen at state St is an execution volume qt E政=:A so that the 
set A of admissible actions is independent of the current state St, 

When an action qt is chosen in a state St at time t E T, a transition to a next state 

St+i = (Wt+1,Pt+1,Qt+1,Rt+1,Vt) ES (2.27) 

occurs according to the law of motion which we have precisely described in the previous subsection. 
We symbolically describe the transition by a (Borel measurable) system dynamics function ht (: 

s X AX  (戦 X股)---+ S): 

Bt+1 = ht(st, qt, (w心 t)), t=l, ... ,T. (2.28) 

A utility payoff (or reward) arises only in a terminal state sr+1 at the end of horizon T + l as 

如 1(sT+1):= {-expい WT+1} if叩=O; 
—00 if QT+l =J 0, 

(2.29) 

where 1 > 0 represents the risk aversion. The term -oo means a hard constraint enforcing the large 
trader to execute all of the remaining volume QT at the maturity T, that is, 町＝切．
If we define a (history-independent) one-stage decision rule ft at time t E T by a Borel mea-

surable map from a state St E S =炉 toan action 

Qt = ft(st) E A=民， (2.30) 

then a Markov execution strategy 7r is defined as a sequence of one-stage decision rules 

n: := (f1, ... , ft, ... , fr). (2.31) 

We denote the set of all Markov execution strategies as IIM. Further, for t E T, we define the 

sub-execution strategy after time t of a Markov execution strategy 71" E IIM as 

勾：=(ft, ... , fr), (2.32) 

and the entire set of町 asIIM,t• 
By definition (2.29), the value function under an execution strategy 1r becomes an expected 

utility payoff arising from the terminal wealth Wr+i of the large trader with the absolute risk 

aversion 1: 

叫 1]=図［正1(sr+1)s1] = E1 [ -exp {ーサVr+i}・1{叫 =0}+ (-oo)・1{百T+l'FO}81], 
(2.33) 

where lA is the indicator function of the event A and, for t E {1, ... , T}, E『isa conditional 
expectation given a condition at time t under Jr. 

Then, fort E {1, ... , T, T + l} and St E S, we further let 

½,r[st] =四［町+1(8T+1)ist]=叫— exp{ -,Wr+i}・1{叫 =O}+ (-oo)・l{Qた ,c/O}St] (2.34) 

be the expected utility payoff at time t under the strategy Jr. It should be noted that the expected 
utility payoff½,r [st] depends on the Markov execution policy 1r = (f1, ... , ft, ... , fr) only through 
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the sub-execution policy Irt := (ft, ... , fT) after time t. The Markov property of residual effect (and 

hence the price dynamics) and the path independency of the large trader's utility at the terminal 

period makes the optimal value function½the function of decision process (Wt, Pt, Qぃ凡，Vt-1),
Thus, from the principle of optimality, the optimality equation (Bellman equation, or dynamic 

programming equation) becomes 

卯[Wt,P心工Vt-1]= sup lE [如[wi+1,Pi+1, Qi+1, Ri+1, vt] Wt, P心 t,Rt, Vt-1] , t = 1, ... , T. 
q,EJR2 

(2.35) 

Therefore, we obtain the optimal execution volume qt for t E T which attains Vi from the maturity 
T by backward induction method (of dynamic programming) in terms of time t. 

2.3 Optimal pair-trade execution 

The optimal dynamic execution strategy 1r is acquired by solving the above equation (2.35) back-

wardly in time t from maturity T. Then, we obtain the following theorem. 

Theorem 2.1 (Optimal Execution Strategy and Optimal Value Function). Under a set ofregularity 
conditions, 

1. The optimal execution volume at time t E T, denoted as qt, becomes an affine function of 

the aggregate volume submitted by small traders at time t-1, Vt-1, as well as the remaining 

execution volume Qt and the cumulative residual effect Rt: that is, 

q; =at+ btQt + CtRt + dtVt-1, t = 1, ... , T. (2.36) 

2. The optimal value function½[st] at time t E {1, ... , T, T + 1} is represented as a functional 
form shown as follows: 

½[Wt,P心t,Rt,V□ ] = exp 
T- -T - T- -T - {→ [wt-Pt Q□ QtG心+Ht Qt + Qt ltRt 

＋面Jt瓦 +L池 +Q況 Vt-1+ R!NtVt-1 + Vi-1XtVt-l + Y[ Vt-1 + Zt] }, (2.37) 

where at, ht, ct, dt; Gt, Ht, It, lt, Lt, Mt, Nt, Xt, Yt, Zt for t E {1, ... , T, T + 1} are deterministic 
functions of time t which are dependent on the problem parameters, and can be computed back-

wardly in time t from maturity T. 

Proof. See Appendix A. ロ

As the above theorem shows, the optimal execution volume q'i for t E T depends on the 

state St = (Wt, Pt, Qt, RぃVt-1)of the decision process through the total volume submitted by 
small traders at the previous time Vt-1 in addition to the remaining execution volume Qt and 

the cumulative residual effect Rt, and not through the wealth Wt or market price Pt. Further, 

by the definition of the residual effect, the optimal execution volume q'i for t E T includes a 

nondeterministic term (random variable) through Rt and Vt-1• Thus, we have the following facts. 

Corollary 2.1. If the aggregate trading volumes submitted by small traders, Vt, for t E T are 

deterministic, the optimal execution volumes q'i at time t E T also become deterministic functions 

of time. This fact means that the optimal execution strategy is one in a class of the static (and 
non-randomized) execution strategy. 

Not only does our analysis show that the optimal execution strategy becomes a stochastic one 

but also it reveals that the orders of asset 1 posed by small traders directly affect the execution 
volume of both assets for the large trader and vice versa. This is our contribution to the field of 

the optimal execution problem. 
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Corollary 2.2 (In the case without transient price impact). If we consider only temporary and 

permanent price impact, the optimal execution volume for the large trader at time t E T becomes 

q; =at+ btQt + CtVt-1• (2.38) 

In this case, the aggregate trading volume of each asset posed by small traders still directly affects 

the optimal execution volume of the large trader. However, if we further assume that Vt has no 

Markovian dependence and simply follows a bivariate normal distribution; 

Vt~ NJR2 (μr, 四）， (2.39) 

then the optimal execution volume of the large trader at time t E T takes the form as follows: 

q; = at + btQt, (2.40) 

meaning that the aggregate trading volume posed by small traders do not affect the optimal ex-

ecution strategy even if we incorporate the price impact caused by small traders'trading orders. 

Therefore, taking into account the transient price impact is significant when we consider the effect 

of price impact caused by small traders. 

2.4 In the case with target close orders 

In this subsection, we consider an execution model with a closing price. The time framework 
t E {1, ... , T, T + 1} is same in the model mentioned above. However, we add an assumption that 

a large trader can execute his/her remaining execution volume at time T + 1 , Qr+i, with closing 

price Pr+i-We further assume that the trading at time T + 1 impose the large trader to pay the 

additive cost XT+l per unit of the remaining volume. As stated in the last section, we have the 

following proposition. 

Theorem 2.2 (Optimal Value Function and Optimal Execution Strategy in the C邸 ewith Target 

Close Orders). Under a set of regularity conditions assumed in Theorem 2.1 and the following 

additional邸 sumption:

Ar (l2 -Ilr) + {Ar (l2 -Ilr)} T + (xr+i + X~+i) (2.41) 

is positive definite, 

1. The optimal execution volume at time t E {1, ... , T, T + l }, denoted as g;', becomes an affine 

function of the aggregate volume submitted by small traders at time t -1, Vt-1, as well as 

the remaining execution volume Qt and the cumulative residual effect Rt: that is, 

g;'= a; + b;Qt + c; 凡+d;vt-1, t = 1, ... , T, T + l. (2.42) 

2. The optimal value function½, [st] at time t E {1, ... , T, T +I} 1s represented as follows: 

い[Wt,P心，R凶 1]= exp { [ 
丁― -T - T- -T 

ー一'YWt -Pt Qげ QtG;Qt + H; Qげ Qt1;Rt 

＋糾J;凡 +L国+Q~M凶1 + RiT N;vt-1 + vいx;vt-1+ v; 丁Vt-1+ z;] }, (2.43) 

where叫，bi,ci,di;G1,H1,11,J1,L;,M1,N1,X1,Y;,z; fort E {l, ... ,T,T+ 1} are determin-
istic functions of time t which are dependent on the problem parameters, and can be computed 

backwardly in time t from maturity T. 

Proof. See Appendix B. 口
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3 Conclusion 

We constructed a two assets optimal execution problem of a single large trader in a (finite) discrete-

time framework. The large trader maximizes the expected Constant Absolute Risk Aversion 

(CARA) von Neumann-Morgenstern (vN-M) utility that arises from his/her wealth at the end of the 

trading epoch in a market with small traders. By formulating a generalized price impact model, the 

backward induction method of dynamic programming based on the dynamic programming principle 
permitted us to derive the optimal pair-trade execution strategy. The most important result which 

emerged from this research is as follows: the aggregate volume of small traders has both direct 

and indirect impacts on the execution strategy of the large trader. Moreover, the small traders' 
ordcrs do affcct thc cxccution volumc of both assets. Thc simulation-bascd analysis is lcft for this 

research. Future research includes the continuous-time analog of this research and optimal VWAP 

strategy in this setting. 
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Appendix 

A Proof of Theorem 2.1 

We derive the optimal execution volume qt at time t E {1, ... , T} by backward induction method 
of dynamic programming from the maturity T via the following steps. 

Step 1 From the assumption that the large trader must unwind all the remainder of his/her position 
at time t = T 

QT+l =QT―qT=O, 

must hold, which yields QT= qT. Then, fort= T, 

Vr[s叶=sup四[vr+1[sr+1]sr] 
q峠配

= sup E[Vr+1[Wr+1,Pr+1,QT+1,RT+1,VT]lwr,P適 r,R戸 T-1
qが5配

= sup E [ -exp {-1Wr+1} Wr, Pr母 Rr,vr-1] 
qが5配

(A.I) 

l 

= sup E[ -exp {-,[Wr -[P戸 (A心＋町vr)]団］｝防，P遠 r,R戸 T-1]
qTEil!.d 

= -exp{ — ,[Wr-
- -T  -
PJ:Qr-Q心 Q叶｝

xE[exp{,v圧拉h}Wr, Pr, Qr, Rr, vr-1 ]- (A.2) 

Using the fact that vJK,Pふ,=Qr町 vr(EJR) and the moment-generating function with respect 
to VT, 

吋exp{,応叫 Wr,Pr, Qr, Rr, vr-1] 

=exp{, 叫 (ar-brvr-1) +~(如心(,い）T}, (A.3) 

Eq. (2.35) becomes 

叫sr]= -exp {—,[Wr-Pj心叫A心］｝

x exp {心町 (a子— b抄T-1) +~(如四(,応）T} 
= -exp {→ [wr-P心＋切G心戸H互 +Q;l¥伍vr-1]}, (A.4) 

where we have used the fact that QT町吋＝（吋）玉jQrand 

1 
Gr := -Ar -- T 2x2 

2 
訳T均朽（€ 股 ）； 

Hj := -(ar)丁町(E良lx2);

Mr:=町 br(E賊2x2). (A.5) 

Note that Gr is negative definite (by Assumptions 2.1 and 2.2). 
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Step 2 Fort= T-1, we have 

Vr-1 [sr-iJ 

= sup lE[v: 心 Jlsr-1 
qT-1国 l 
= sup lE[-exp{ -'Y[Wr-P心 +QiG心 +HfCふ+QiM玉 1]}年 1l 
qr-1E即

= sup lE [ -exp { -'Y [ Wr-1 -{Pr-1 + (Ar-1叫+K.r-1 vr-1)} T qr-1 
qr-1E配

-{Pr-1 -(1 -e―P)Rr-1 + (Ar-1虹 1+町 -1vr-1)(e―P Ar-1 + Br-1) +釘ー1「(Qr-1―qr-1)
+(団-qr-1) T Gr (虹-qr-1) + (QT-1―qr-1) TM四 T-1]}年 1l 
= sup -exp {→ [q乙{Aい{(l2 -Ilr-1)} -G叶qT-1+ Qい｛心{(l2 -Ilr-1)} -2G叶qT-1
Qr-1E恥

-(1-e―P)厨-lqT-1-Hいqr-1
- -T  - - -T  

+ Wr-1 -Pr-1Qr-1 + Qr-1G心 T-1+HいQT-1+ (1-e―P)Qr-1 Rr-1]} 

X lE [四{'Y[qい{(l2-Ilr-1)立 1+ Mr-1} + Qi-1 (Ilr-1K.r-1 -Mr)]町 -1}年 1l 
x lE [四{'Y(Qr-1―qr-1)い}sr-1] , (A.6) 

where IIr-1 := e-P Ar-1 + Br-1-Using the moment generating function, we obtain 

1. First expectation in Eq. (A.6): 

lE [exp{, [qい{(l2-Ilr_i) K.r-1 + Mr-1} +切-1(IIT-1立 1-Mけ]VT-1}汀 -1]
=exp{,[正 {(l2-IIr-1五 1+Mr-1} +虹(Ilr訊 T-1-Mr)] (aい＋叫V口）

＋討［叫-1{(l2 -II口）立1+M口｝＋瓜(Ilr訊 T-1-Mr)]Er-1 

［叫{(l2-IIい）町ー1+Mぃ }+Qい(IIT-1町ー1-Mr)「}; (A.7) 

2. Second expectation in Eq. (A.6): 

lE [exp {'(Qr-1―qr-1)ぃ｝汀ー1l 
= exp {, (Qr-1 ― qい）µい +~12 (QT-1―q口）T E~-1 (Q□ -qい） }・(A.8) 

Therefore, substituting Eq. (A.7) and (A.8) into Eq. (A.6) and rearranging results in 

V□ [sr-1] 

= sup -exp {—,[— qf_10r-1虹1 + (Qi〗釘1+厨-1奇1 +vf_2il>た 1+重L1)qr-1 
Qr-1EIR 

+ Wr-1-Pい阻＋犀{Gr -~, {Ilr-1K,T-1 -M心い{Ilr_1K,r-1-Mが— ;1叫｝閲
+{厨— (aい）丁 {Ilr-1朽ー1-M叶T_(土）丁}QT-1 + (1-e-P)Qi-1Rr-1 

-Qr-1 {IIr-1K,r-1 -Mr} b芹_1vr-2]}, (A.9) 
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with the following relations: 

虹=1~ 臼叫） 1 

= -Aロ {(l2-IIr-tl} + -{Ar-1 {(l2 -IIr-1)}} T -Gr 
2 2 

1 
十一,{ (l2 -IIr-1) K.r-1 + M心い{(l2-IIr-1)立 1+Mr}丁十一,:Eい (EJR2x2); 
2 2 

0r-1 := -IIr-1Ar-1 -2Gr -, {IIr-1K.r-1 -Mr} :Eい {(l2-IIr-1) K.r-1 + M叫T
＋心い (E股2x2);

=r-1 := -(1 -e―P)l2 (E股2x2);

~T-1 := -(bい）T {(l2 -IIr-1)心 1+ Mr}T (E JR2x2); 

wL1 := -Hf -(ar-1) T {(l2 -IIr-1) K.r-1 +Mr} T + (μ 今-1)T (E恨1x2). (A.lO) 

By the assumption 2.1, fir-1 becomes a (symmetric and) positive definite matrix. Finding the 

optimal execution volume q;.,_1 which attains the supremum of Eq. (A.6) is equivalent to finding 

the one which yields the m邸 imumof the following function Kr-1(Qr-1) defined as 

Kr-1(Qr-1) := -qい叫QT-1+ (娼0r-1+ RL1=r-1 + vL2釘 1+町-1)QT-1 
+ Wr-1-Pr-1叩＋厨怜—;, {IIr-1紅1-Mr}豆 {IIr訊r-1-M吋T_~心い}QT-1
+ {Hf-(aい）T {IIr-1心 1-Mr「-(μ い）丁}QT-1 + (1-e―P)Qr-1Rr-1 
+ Qr-1 {IIr-1幻T-1-M吋br-1Vr-2, (A.11) 

since both Eq. (A.6) and Eq. (A.11) are concave functions with respect to QT-1• Thus, by 
completing the square of Kr-1, we obtain the optimal execution volume qT-l as 

qい＝匝｛糾心T-1+年-1見＋酎-lVT-2+軒1} (A.12) 

(=: ar-1 + br-1 Qr-1 + cr-1Rr-1 + dr-1 vr-2) . 

Thus, the optimal value function at time T -l becomes a functional form as follows: 

VT-1 [sT-1] 

= -exp{ — r[wT-1 -PJ_1Qぃ +QいGT-1Qぃ+HL1QT-l + Qi-1IT-1RT-l +厨-lJT-lRT-1
+LいRT-1+ Qi-1MT-1VT-l-l + RL1N→ T-2+v戸XT-1VT-2 + Y j_l VT-2 + ZT-1] }, 

(A.13) 

where 

1 1 1 
Gr-1 := Gr --, {IIr-1町—1-M心い {IIr-1K-r-1 -Mr} T --,Eい＋ー釘1fl止e:f-1;

2 2 4 

H:f_1 := H:f -(aい）T {IIr-1町ー1-Mr}T-(μ い）T+~ 叫叩叫；

Ir-1 := (1-e―叫＋抄叩叫 Jr-1:=担-1叩毎-1i Ljー 1:=因犀再-li
叫：= {IIr-1K.r-1 -Mけ叫+~豆虹c1>:f_1; Nr-1 :=担号叩ぶ1;

Xr-1 :=柘-1位ぷー1i yい＝ゲ直r~ぶ-li Zr-1 :=~ 叫直戸泣T-1・(A.14)
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Step 3 Fort E {T-2, ... , 2}, we can assume from the above results that, at time t+ 1, the optimal 

value function has the following functional form: 

罰 [st+1]= -exp { -,[wt+l -Pi+l叩＋瓜Gt+l団 +Hい叫＋瓜lt+1Rぃ＋此Jt+1Rt+1

+LいRt+l十瓜Mt+1Vt+糾i+1Nt+1Vt+ ViXt+1Vt + y; □ Vt+Zt+1]}- (A.15) 
Then, we can obtain the following calculation by substituting the dynamics of Wt+ 1, Pt+ 1, Qt+ 1, Rt+ 1, Vt 

into the equation above: 

叫=sup -exp {—叶Qi (-At +II心 +Gt+1_e-叫 Aふ +e―2pA因 Jt+1A人）Qt 
q氏配

+ [Qi (-II心ー 2Gt+l+e―叫A心） +Ri(一(1-e―P)l2 -e―PJt+l + 2e―2PJt+1Aふ）

+ (-Hふ+e―PL;□A心）]qt+Wt-P心 +Qぶ直t+Hi+1Qt 
Qi ((1-e―叫+e-Pit) Rt+ e―2面 Jt+l凡 +e―PL氾+Zt+1]} 

xlE[exp{-,[vi恥+(qiふ+Qt'T/t +~T8t +</>n Vt]}吋
xlE[exp{1(Qt―qt)丁ct}吋， (A.16)

where Ilt := e-P At+ Bt and 

€t := e-2pK,i AtJt+1A心 +e―PK,tAぶt+l+Xt+l (E恥2x2);

ふ：＝一(l2-Ilt)凡ーe―PJt+1A心 +2e―2pAふ lt+1AtK,t-Mt+l + e―PAtAぶt+l(E股2x2);
，，，t := -II心 +e―Pit+lA心 +Mt十1(E艮2x2);

0t := 2e―2PJt+1A心 +e―PNt+l(E艮2x2);

対：=e—PL~ □A心 +Y~□ (E屈lx2).
The direct calculation leads to the following equalities: 

1. First expectation in Eq. (A.16): 

E [exp{ -1 [対恥+(qiふ＋知t+R池 +<f>i)Vt]}吋
= I~ 塁〗 exp 且 [(a;'+h7立 1)T{ (E7「国）―国）―i- (E7戸}(a;'+ h7Vt-l) 
-2, [qふ+Qぶ＋い＋叫（江）―1(四）―1国＋吋Vt-1)

＋召 [q泣 +Qぶ＋応8t+対l(E;)―1 [立+Qぶ +R油 +</>i『]}; (A.17) 
2. Second expectation in Eq. (A.16): 

lE [exp { 1⑬ -q凸｝吋
= exp {, (Qt -Qt)μf +~ 召(Qt―Qt)T I:f⑬ -qt)}- (A.18) 

To derive Eq. (A.17), the following lemma has been used. Although this lemma is a straightforward 

result, we here note the result as a lemma for this paper to be self-contained. 
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Lemma A.1. For an n-dimensional normally distributed random variable X with meanµE~n 
and variance E E艮nxn(where Eis a symmetric positive definite matrix), we have 

I (ゞ）―1仕 1吋exp{sTx+xTvx}]= IEI½ expし [(μ*)T正（ゞ ）―1E-1が一戸叫}, (A.19) 

wheres E即， VE恥nxn,μ* :=μ+Es and汀：= E -2V, under the assumption that E* is a 

non-singular matrix. Remind that when V = 0, the result is consistent with the one obtained from 

the moment generating function. 

Proof. We can assum~, without loss of generality, that Vis symmetric, since XTVX E良 wehave 
v+vT a symmetric matrix V(:= 2)  which satisfies xTvx = xTvx even if V is not symmetric. 

Define x :=(xi, ... , Xn)T E町.Then, direct calculation yields 

E[exp{sTX+ぶ vx}]

1 1 
=1™ 恥nexp{sTx+xぷ}(21r)? IEI½exp {-2 (x -μ) T:r:-1 (x -μ)} dx 
= (21r): El½Ln exp日［ぶ(:r:-1-2V) x -2 (μ+Es)玉 lx+心叫}dx, (A.20) 

where dx := dx1・ ・ ・dxn. If we set E* := :r:-1 -2V andμ* :=μ+Es, then by the assumption that 
刃*E~nxn is a non-singular matrix, Eq. (A.20) results in 

叫exp{sTX+XTVx}]
1 1 

= (21r) 号 IEI½i恥nexp {-2戸*x-2 (μ*) TE-1x +μTE-1μ]} dx 
1 1 

= (21r)~IEI½i恥n exp い（ゞ—（ゞ）―1い）ゞ（ぶ—心）ば1µ
xexpH 1-(が）団（ゞ ）―'E加+μい l}dx)}
(21r)~I(ゞ）―1½1
= (2叫 IEI½ expし[(μ*)T E-1 (ゞ）―lE-1がーμい］

X !, 即 (2,)号1i刃＊）―'11exp{-W-1ゞ）―1戸） {IE•)—,t-, (xT -(ゞ）―1い）} dx 
=1 

I (ゞ）―1仕 1
= El½ expし [(μ*)TE-1(ゞ）―1E-1がーμTい］｝ (A.21) 

ロ

Eq. (A.21) can be rewntten as follows: 

(E*)―1仕 1
叫 expし [(μ*)TE-1(ゞ）―lE-1がーμい］｝

（ゞ）ー1 1 

IEI 
= expし似 {E(ゞ）―lE-1_炉}μ+2sT (ゞ）―1(E)-1μ+ sT (江）―1s]}. (A.22) 

T T 
Therefore, setting s :=→ [q泣+Qt 1/t + Ri 0t +針]and V := -~(し+{!) in Eq. (A.21) 
yields Eq. (A.17). 



59

Substituting Eq. (A.17) and (A.18) into Eq. (A.16) and rearranging results in 

叫]= sup -exp {→［ーq直 qt+[Q厄t+R国 +vi_池 +wi]qt+Wt-P心
q,EJR2 

心[Gt+l -~11/t (江）―1吋ー臼汎＋［虹+(arl心）国）―11/i

五（江）―1吋ー (μi)T心＋叫(1-e-P)I2 + e-Pit -111四）―1oi] Rt 

国 [e-2PJt+l-~"(0t (江）ー1町］凡+[e一PLい+(ar)丁(:Et)―1国）ー1針ー心）心；）ー1針]Rt

心ぶ（戸（江）―lhtYt-1 +い図）ー1(江）―lhtYt-1ーかい(ht)丁埒htYt-1

1 
＋［一：国）T江*ht+</>i (四）―1(:E; 戸 br]vt-1+zt+1 -2-r国）丁江・ar

1 
+(a汀 (:Et戸（江）―1<l>t -五釘（江）―1<l>t +吋}, (A.23) 

whereヰ：= (:Er)―1□ (~t +a), 江＊：＝閲）―1図）―1(:Er)―1 -(:Er)―1, 叩：=log唸旦 and
1 nt := 
2 他＋叫
1 1 1 1 
= -At (l2 -Ilt) + -{At (l2 -Ilt)} T -Gt+l + -e―PJt+1Aふ＋ー {e―PJt+1Aふ}T
2 2 2 2 

1 1 
-e―2pAふ lt+1Aふ＋ー,ot(江）―1屁＋ー湿 (E艮2x2);

2 2 

0t := -II心ー 2Gt+l+e―pい A心ー可t(江）―18°[+燐 (E艮2x2);
己t:=一(1-e―P)l2 -e―PJt+l + 2e―2PJt+1A心—吼 (E;)―1 屁 (E 恥2x2);

屯：= (b汀（匹）―1(江）―18°[(E~2x2); 

剣：＝ーHlt-1+ e―PL[+lA心+(at) T (Et)―i (E;)―1屁ー1対（ヰ）―1屈+(μDT (E罠lx2).
(A.24) 

Thus, under the following assumptions (or regularity conditions): 

1. 江：= (Et)―1 + 1 (€t +€l) is non-sungular; 

2. flt:=½ ⑫＋幻） is positive (semi)definite, 

we can derive the optimal execution volume at time t via the same method used in step 2 and obtain 

as follows: 

q; =釘{e心＋三[Rt+≪I>[Vt-1心｝
(=:at+ btQt + Ct凡+dtVt-1)・ 

(A.25) 

Finally, by substituting this into Eq. (A.23) the optimal value function becomes 

叫 t]
- -T  

=-exp{-1[wt-P心 +QtG心 +H心 +Qt訊＋面lt瓦 +LiRt

心iM殴 1+凡凶Vt-1+ VいXtVt-1+ Yi Vt-1 + Zt] }, (A.26) 
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where 

1 1 
Gt:= Gt+l- —"Y1ld江）―l吋ー羹＋ー1 - 1 紐 e!;

2 2 4 

Hi := Hi+1 + (a汀（口 (E;J ―1 町—五（江）―1 吋ー (µn丁＋和釘e!;

It:= (1 -e―P)I2 + e―Pit一 "YT/図）一10i+~。tflt国
2 

1 1 
Jt := e-2PJt+l -—吼心）―面＋ーSt釘函；

2 4 

Li :=e―p叫＋団(E7)―1(江）―10i-"Y(い（江）―1厨＋和釘函；

1 
Mぃ=1/t (E7)―1 (江戸h7+-0両叫；

2 
1 

Nぃ=Ot図）―1(E; 戸W+ —己tflt1吋
2 

1 
Xt := --(b7) T E**bV 1 - 1 
2"'(t  t + 4気nt<I1!; 
1 1 

Yi:= --(a7)TE;*b7 +</>i (E7)―i (E;J―lb7 +ー重if2tlif1i;
"Y 2 

1 1 
Zt := Zt+l -- (a7)丁江*a7+ (~)T (E7)―i (E;)―1 <f>t -―対（江）―1<f>t 

約 2"'(

1 
＋叩十—叫f2tl飢
4 

(A.27) 

口
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B Proof of Theorem 2.2 

According to the above settings, the value function at the maturity becomes 

Vni[sn1] =-exp{-1[Wn1-(Pn1+Xn1Qn1)TQた 1]}, (B.1) 

and thereby, the optimal value function at time T is calculated as follows: 

VT[sT] = sup lE[VT+1[Wn1,Pn1,Qn1,Rn1,vT] WT,Pゎ切RT,VT-1
町 Elli.

= sup lE[ -exp { -1[wT+1 -(PT+l + XT+1Qぃ）Qn1]}叫
qrE恥

l 

= sup -exp { -'Y [ -q池 QT+[Q亙＋厨西+vLふ＋屯五+WT-P国
q恒 R

心[-(xn1 +叫）―；111団 TE休TIIT-! 
2 叫 QT

＋［一 (ar)T町 IIT-(μ;)丁瓦+(1-e―P)切恥— Q;rr四T吋VT-1]}, (B.2) 

where IIr := e-P A戸恥， and

fir 
1 
: =-
2 佃＋叫）
1 1 1 
= 2~r (l2 -IIr) +戸幻(l2-IIr)ド+2 (xr+1 +心） +~'(l2 -IIr)町均町(l2-IIr) 

十→葛 (E]R2x2); 
2 

0r := -II心+(XT+l + xf +1) -,ITr町均町(l2-IIr) +燐 (E砂）；

匂：＝ー(1-e―P)l2 (E恥2x2);

剣：＝一(br)T町 (l2-IIり (E恥2x2);

叫：＝一(ar)T町 (l2-IIr) +μ 牙(E尺lx2). (B.3) 

We can derive the optimal execution volume satisfying Eq. (B.2) by obtaining the optimal 

execution volume q; which attains the m訟 imumof 

応 [qr]:=-q池 qr+[豆+R図 +vL1剣＋町]qr+Wr-P心
心[-(xr+1 +xf+i) —; ,II四 T叫 rITr-~ 位 ]Qr

＋［一 (a;f,)T K,rITr -(μ 手）T厄+(1-e―p心瓦— Q;rr四T研VT-1· (B.4) 

Eq. (B.4) is a quadratic function with a negative definite matrix Or+ nf with respect to qゎ

and thereby a concave function with respect to qゎ whichleads to the concavity of Eq. (B.2) with 

respect to qr. Therefore, by completing the square of K吋q吋withrespect to qゎ weobtain the 
optimal execution volume at time t = T: 

qr=: f(sr) =的{e江い再R戸的VTふ｝
(=: aT-1 + br-1 QT-1 + Cr-1 Rr-1 + dr-1 vr-1) , (B.5) 

where 

aT := n:;,1wr; bT := nテ10;; cT := n:;,12が dT:= n:;,1il>;, 
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and by substituting this into Eq. (B.2) the optimal value function becomes 

Vr[s吋= -exp{ -"([Wr-P図 +QrG心 +H図 +Q山恥＋厨JrRr+LfRr

＋切Mrvr-1+厨Nrvr-1+vJ:_ぷTVT-1+対vr-1+zr]}, (B.6) 

where 

1 1 1 
Gf := -2 (xr+i +叫）ー!1rr団 T叫 rllr--況+-0叩釘；

2 2 4 

Hf丁：＝ー(ar)T幻RLLRー(μ汀+~勇［＿両eL1;
1 1 1 

If:= (1 -e―P)l2 + -0rfir1Bf; Jf := -Brfir1Bf; L~ 「：= -wfflサ；lBf; 
2 4 2 
1 1 

Mf := -II心 bい＋ー〇直内汁； Nf:=号的五
2 2 

1 1 1 
Xf := -il>rfi戸叶； YfT :=—叫幻1吋；幻：＝連泣戸好
4 2 4 

(B.7) 

Fort E {T-1, ... , 1 }, we can recursively derive the optimal execution volume and optimal value 

function at each time by a similar derivation which we use to obtain the optimal execution volume 

in the last subsection for time t E {T-2, ... , 1}. ロ

Graduate School of Economics 

Osaka University, Osaka, 560-0043, Japan 

＆ 
Center for Mathematical Modeling and Data Science 

Osaka University, Osaka, 560-8531, Japan 

E-mail address: ohnishi@econ.osaka-u.ac.jp 

Graduate School of Economics 
Osaka University, Osaka, 560-0043, Japan 

＆ 

Graduate School of Management 
Tokyo Metropolitan University, Tokyo, 100-0005, Japan 

E-mail address: shimosshi1q94@gmail.com 

Masamitsu OHNISHI 

Makoto SHIMOSHIMIZU 


