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Partially reversible capital investment with both fixed and
proportional costs under demand risk*
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Abstract

This study investigates a firm’s capital expansion and reduction policy with both fixed
and proportional costs when the output demand follows the geometric Brownian motion.
We formulate the firm’s problem as an impulse control problem and solve it by using quasi-
variational inequalities. Through numerical analysis, we find that the output demand risk
delays the capital expansion and reduction. Furthermore, the output demand risk decreases
the magnitude of capital expansion, but it increases that of capital reduction.

Keywords: Capital expansion and reduction; quasi-variational inequalities; stochastic im-

pulse control

1 Introduction

Irreversibility and uncertainty are two main features in capital investment decision making
(Pindyck, 1991). Suppose that a firm’s manager considers a capital investment to produce an
output. The demand of the output is governed by a stochastic differential equation, so the firm’s
manager faces output demand risk. If the manager decides to invest in the capital, the investment
expenditure is generally sunk. Real options analysis has revealed the effects of uncertainty on
investment timing if the investment is irreversible (Caballero, 1991; Sarkar, 2000; Wong, 2007).

In this study, we relax the condition of irreversibility associated with capital investment.
We consider that a firm can sell a capital at a secondary market or to another firm. Then,
the investment cost is partially sunk. This relaxation generates a new problem to the firm. If
the investment expenditure is totally sunk, the firm only should consider the timing of capital
expansion and its size. By contrast, if the investment expenditure is partially sunk, the firm must
consider the timing of capital reduction and its size, in addition to the optimization problem of
capital expansion. Then, the firm faces the problem of when and how much the firm expands
and reduces its capital.

Abel and Eberly (1996), Guo and Pham (2005), Merhi and Zervos (2007), De Angelis and
Ferrari (2014), Federico and Pham (2014), and Tsujimura (2019) examine the capital expansion
and reduction problem when changing the level of capital incurs a cost proportional to its size.
In particular, the proportional cost represents the price of capital per unit. They formulated
the firms problem as singular stochastic control problems. This problem is characterized by two
thresholds. In case the controlled diffusion process, which represents the level of capital stock

directly or indirectly, reaches a threshold, the firm increases (or reduces) the capital to ensure
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that the controlled diffusion process does not cross the thresholds. Consequently, the controlled
diffusion process is a reflected diffusion process.

If changing the level of capital incurs a fixed and a proportional cost, the size of changing
the level of capital is larger than that in the absence of the fixed cost to cover both fixed
and proportional costs. Then, the firm’s capital investment problem with these two types of
cost is formulated as an impulse control problem. The firm’s problem is characterized by four
thresholds. The two thresholds determine the timing of changing the capital, whereas the other
two thresholds determine the size of changing the capital. Once the controlled diffusion process,
which represents the level of capital stock directly or indirectly, similar to that in the singular
stochastic control problems, reaches one threshold between the former two thresholds, the firm
increases (or reduces) the capital to ensure that the controlled diffusion process does not cross the
thresholds. Thus, the controlled diffusion process jumps the other associated threshold between
the later two thresholds due to the existence of the fixed cost. For more details on both stochastic
controls, refer to, for example, @ksendal (1999), Bensoussan et al. (2010), and Tsujimura (2020).
Bar-Ilan et al. (2002), Bensoussan and Chevalier-Roignant (2019), and Federico et al. (2019)
examine the capital expansion problem when changing the capital level requires both fixed and
proportional costs. This study extends these analyses, including capital reduction, with both
fixed and proportional costs, and reveals the optimal timing and size of capital expansion and
reduction.

We formulate the firm’s problem as an impulse control problem and solve it by using quasi-
variational inequalities (QVI), and then we derive the optimal capital investment policy, which
is characterized by four thresholds to increase and reduce the capital. We verify that the QVI
policy is an optimal capital expansion and reduction policy (if it exists). Through numerical
analysis, we conduct a comparative static analysis to ensure that our analysis provides useful
implications for firms’ investment decision making.

The remainder of this paper is organized as follows. We describe the setup of a firm’s
capital expansion and reduction problem in Section 2. Section 3 defines the quasi-variational
inequalities to solve the firm’s problem. Section 4 solves the problem of the firm through the
QVI. We numerically derive the optimal capital expansion and reduction policy and show some

comparative static results in Section 5. Finally, Section 6 concludes the paper.

2 Firm’s Capital Investment Problem

In this section, we formulate a firm’s capital expansion and reduction problem. The firm pro-
duces an output using capital K and sells it in a competitive market. Demand of the output X

is random, and its process is followed by the geometric Brownian motion:
dX; = ,U,Xtdt -+ O'Xtth, XO_ =x >0, (21)

where p > 0 and o > 0 are constants. Moreover, W} is a standard Brownian motion on a filtered
probability space (Q, F,P, {F;}+>0). The firm controls the capital corresponding to the output

demand. Let ¢; be the ith amount of change in capital at time 7;, ¢ = 0,1, ---. We assume that
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70 = 0. The dynamics of the capital stock are governed by

dK; = *(stht, 7 <t < Tit1,
KT' = K‘,—* + ¢i7 (22)

i

Ko— - k? (> 0)7

where ¢ € (0,1) is a constant depreciation rate. The firm’s operating profit 7 at time ¢ is given
by

#(Ki, Xi) = K X7, (2.3)
where « € (0,1), 8 > 0.

Changing the capital stock incurs a fixed ¢ > 0 and a proportional cost. The firm can
purchase a capital at a constant unit price p > 0 and sell it at a constant price (1 — A\)p > 0.
The purchase and sale price is the proportional cost. The parameter A € (0, 1) represents the
degree of irreversibility of investment. The investment cost is completely sunk if A goes to 1.

The capital expansion and reduction costs are given by

c+ pglv gl > 07
C(G) = A G =0, (2.4)
c+(1=NpG, ¢ <O0.

Note that, for all ¢, (', C(¢) satisfies the following:
C¢+¢) =) +0((). (2:5)

Inequality (2.5) represents subadditivity with respect to ¢, implying that reasonable {F;}>o0-
stopping times become strictly increasing sequences; that is, 0 =1 <71 <o < -+ - <13 < -+ <
0.

A capital expansion and reduction policy 0 is defined as the following double sequence:

0= {(7,G) }izo- (2.6)

The firm’s expected discounted profit j(k7 x;0) is given by

J(k,z8) = E / e (K, XAt — 3 e O ey | (2.7)

0 i=1

where r > 0 is the discount rate, ¢ := {(;}i>0, and [g is the indicator function of the set ©.
Hereinafter, for simplicity, we assume that f = 1 — «, as in Abel and Eberly (1996) and

change variables as Y; := K;/X;. Then, the operating profit function 7 and the expected

discounted profit J (k,x;0), respectively, can be rewritten as follows:

#(Ky, Xy) = KEX} Y =YX, = 7(Yi) Xy (2.8)

J(k,x) = xJ <§ 1) =zJ(y). (2.9)



The firm’s expected discounted profit is rewritten in the following form:
o0 o0
J(y;v) =E [ / e r(Y)dt — Y e O <00 | 5 (2.10)
0 i=1

where v is the capital expansion and reduction policy is composed by the capital expansion and
reduction timing and its magnitude £ := (/x:

v = {(7,&) }ixo- (2.11)

Proposition 2.1. The firm’s expected discounted profit function J(y;v) is well defined and finite
if the following conditions hold:

E { / e‘”Yﬁdt} < o0 (2.12)
0
. —rt _
Jim B [e"Y;dt] =0 (2.13)
P {lim 7 < T} =0, T€l0,00), (2.14)
1—>00

Proof. Condition (2.12) implies that

E UOOO c*’”%r(Yt)dt} < o0. (2.15)

Condition (2.14) implies that the capital expansion and reduction policy will only occur finitely

before a terminal time, 7. If condition (2.14) holds, then we obtain

E

Zemﬂ{n@o}} < . (2.16)

i=1

According to integration by parts formula, for every 0 < s <t < co (Rogers and Williams, 2000,
VI38), we have

t
Ele Y] — Ele ™Y, = —(r + 6 + u — 0>)E { / e*’”“Ytdu} +E

Zerﬁ&ﬂ{5<"'i<t}:| . (2.17)

i=1

Through (2.13), we obtain

oo
E Ze”"fiﬂ{s<n<t}} < oo0. (2.18)
i=1
Combining (2.16) and (2.18) yields the finite expected discounted costs.
[ee]
E ZemC’(@)H{n@o}} <00 (2.19)
i=1

Therefore, the firm’s expected discounted profit function, .J, is well defined and finite.

We define a set of admissible capital expansion and reduction policy as follows:
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Definition 2.1 (Admissible capital expansion and reduction policy). A capital expansion and
reduction policy v are admissible if conditions (2.12)—(2.14) hold. Let V be a set of admissible

capital expansion and reduction policy.

The firm’s problem is to maximize the expected discounted profit J over V.

V(y) = sup J(y;v) = J(y;v7), (2.20)
vey
where V' is the value function and v* is the optimal capital expansion and reduction policy. The

firm’s problem (2.20) is formulated as a stochastic impulse control problem.

3 QVI for the Firm’s Problem

Based on the formulation of the firm’s problem (2.20), we can guess the following optimal capital
expansion and reduction policy. The firm controls the level of y within a region to ensure that,
once the level of y reaches a threshold, the firm instantaneously increases the level of y by &.
Conversely, once the level of y reaches the other threshold, the firm immediately reduces the
level of y by ¢’. Recall that the variable y is defined by y := k/x. Thus, the above policy implies
the following capital expansion and reduction policy. The firm maintains the capital stock level
within a given region to ensure that, once the output demand reaches a threshold, the firm
purchases the capital and expands the capital by ;. Once the output demand reaches the other
threshold, the firm sells the capital and reduces the capital by ¢/. To verify this conjecture, we
prove that a policy induced by quasi-variational inequalities is an optimal capital expansion and
reduction policy for the firm’s problem (2.20).

Suppose that ¢ : Ry — Ry is a function. The quasi-variational inequalities of the firm’s

problem are given as follows.

Definition 3.1 (QVI). The following relations are referred to as the QVI for the firm’s problem:

Lo(y) +m(y) <05 (3.1)
o(y) > Mo(y); (3.2)
[Lo(y) + 7 (y)[[Me(y) — d(y)] =0, (3.3)

where L is the differential operator and M is the capital expansion and reduction operator. They

are defined as follows:
Lo(y) = (64 g () + 50°70" () — (r — WoLy). (34)

Mo(y) = sup  {o(y+¢) — C(&)}- (3-5)

EER,y+E£€(0,00)

It should be noted that the derivatives of the firm’s expected discounted profit function are
caleulated as Ji (k. z) = J'(y), Jx (k,z) = J(y) — yJ'(y), and Jxx (k,z) = (y*/2)J" (y).



The definition of the QVI enables us to divide the interval (0,c0) into three regions: the
continuation region #H, capital expansion region &£, and capital reduction region R. They are,

respectively, given as follows:
H = {y € (0,00); ¢(y) > M(y) and LV (y) + 7 (y) = 0}; (3.6)
&:={y € (0,00);¢(y) = Mo(y) and LV (y) + 7(y) = 0,§ > 0}; 3.7)
R :={y € (0,00);6(y) = M¢(y) and LV (y) + 7(y) = 0, < 0}. (3.8)
We define a policy that is derived from the QVI.

Definition 3.2 (QVI policy). Let ¢ be a solution to QVI (3.1)—(3.3). Then, the following

capital expansion and reduction policy ¥ is referred to as a QVI policy:

(70, €0) = (0,0); (3.9)
7~_i = inf{t > 7-i*1§Yt ¢ H}7 (310)
& = arg max {¢5 (Yff + §z‘) —C&); & e R Y- +&i € (0, OO)} : (3.11)

We verify that the QVI policy is the optimal capital expansion and reduction policy. The
following is the well-known verification theorem. We mainly refer to Brekke and Jksendal (1998,
Theorem 3.1), Cadenillas and Zapatero (1999, Theorem 3.1), and Wu (2019, Theorem 1).

Theorem 3.1. (1) Let ¢ be a solution of the QVI. Suppose that ¢ is a C'-function for y €
(0,00) and is a C? -function for y € (0,00) — N, where N is a finite subset of (0,00).
Suppose that there exists 0 < L < U < oo such that ¢ is linear in y € (0,L] U [U, c0).
Furthermore, we assume that the family {d(Y}')}r<oo is uniformly integrable for all y €
(0,00) and v € V. Then, for all y € (0,00), we obtain

o(y) > V(y). (3.12)

(II) If the QVI-policy corresponding to ¢ is admissible, then it is an optimal impulse control,
and for all y € (0,00), we obtain
o(y) =V(y). (3.13)

That is, ¢ is the value function, and ¥ is the corresponding optimal policy.

Proof. (I) The differentiability of ¢ implies its boundedness in the interval (L,U). The first
derivative of ¢, ¢(y), is bounded by y € (0,00). This is because ¢(y) is continuous for
y € (L,U) and is constant for y € (0, L] U [U, 00). Furthermore, condition (2.13) and the
property of ¢: bounded for y € (L,U) and linear for y € (0, L] U [U, co) imply that

. —rt _
Jim Efe~""6(¥;)] = 0. (3.14)
Choose v € V. Let ;11 := 7 V (Tix1 A s) for any s > 0. Then, through the generalized

Dynkin formula and (3.1) that we obtain

E[e%m (Y, )] SE[em6(¥5)] - E /f’ale*”wm)dt. (3.15)
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Using limg_, o, we have by the dominated convergence theorem:

E oo (Y, )| SE[0(¥5)] —E[ / ety (316)

Summing from i = 0 to i = n yields

/0 w(Yi)dt +ZE o) — e o (V) ~E e s (v )]
(3.17)

After changing the capital level, the variable Y jumps immediately from Y _- to Y, (=
Y - +¢&) for all 7; < oo; it follows from (3.5) that we obtain

E

Mo (Y, ) +C&) = 6 (V). (3.18)

Applying (3.18) to (3.17), we obtain

[ o] st el ) i)

)
Rewriting (3.19) yields

A n(V)dt ie—mc@»} <o(y) + ZE oMo (¥ ) —e o (v )]
*E[ H(b( n+1)i|.

E

(3.19)

E

(3.20)
Through (3.2), we obtain
Mo (v, ) =0 (v, ) <o (3.21)
Applying (3.21) to (3.20) leads to the following inequality:
Tht1 n . -
E / r(Y)dt = e OE) | < dly) — E [e kg (Yfﬂ)} . (3.22)
0 i=1 "

Because the family {¢(Y7)};<co is uniformly integrable, by letting n — oo and using (3.14)

and the dominated convergence theorem, we obtain

E

/ W(Yf)dt - Z e7‘TiO(§i)]IT@<oo:| S ¢(y) (323)
0 i=1
The left-hand side of (3.23) is the firm’s expected discounted profit J(y;v). For the arbi-
trariness of v € V, we have

sup J(y;v) < é(y). (3.24)

veEV
Then, we have V(y) < ¢(y).



(IT) Assume that the QVI policy v is applied. For the continuation region, (3.1) holds with
equality. We repeat that the augmentation in part (I) for v = ¥. Then, all inequalities

become equalities. Hence, we have
J(y;0) = ¢(y). (3.25)

Therefore, ¢(y) = V(y) and © = v* is optimal; that is, the solution of the QVI is the value
function and the QVI policy is optimal.
|

4 Solution of the Firm’s Problem

From the analysis of the previous section, we assume that, under a suitable set of sufficient
conditions on the given parameters, an optimal capital expansion and reduction policy v* € V
is characterized by the following form: once the level of Y reaches y (or ¢), firm purchases (or
sells) the capital to ensure that it instantaneously increases (or decreases) to the other level of
Y, y (or §), Hence, the level of Y changes by y —y (or § — ) at each time 7;.

Let v* = (7%,£*) € V be an optimal capital expansion and reduction policy such that
7/ :=inf {t >0 3Y- ¢ (g, gj)} ; (4.1)

-y Y-=y

=Y, -y =48 T (4.2)
Y-y, Y-=9

Then, the three regions, namely, the continuation region, capital expansion region, and capital

reduction region, are replaced as follows:

H={yy<y<y}, €={yy<y}, R:={yy=7} (4.3)
For y € H, QVI (3.1)—(3.3) leads to the following ordinary differential equation (ODE):
Lo(y) +7(y) = 0. (4.4)

The general solution of the ODE (4.4) is given by
o(y) = Aiy™ + Aoy + By*,  yeH, (4.5)

where A; and A, are constants to be determined and 7 and 5 are the solutions to the following

characteristic equation:
1 1
50272 - ((5 +p+ §az> y—(r—mp)=0. (4.6)

~1 and o are calculated with

NI

0+ p 1 S4+p 1\? 20r—p) )
Y1 = o2 +§+ <0_2 +§ +T > 1;
) i (4.7)
6+ 1 6+ 1 2(r —p)|°
p= i1 ( 2u+_> N (TQ,M)] <0
o o 2 o
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B is calculated as 1
B = - > 0. 4.8
=+ G+ ma—Itala- 1) "o

The first and second terms of (4.5) represent the option value to expand and reduce capital,
respectively. This implies that both the constants A; and Ay must be positive.

Furthermore, we assume that the candidate function of the value function seems to satisfy
the following equations for y € £ and y € R:

o(y) =o(y) — (c+ply—v), ye& (4.9)

Py) =¢@) —(c+ 1 =Np(g-y), yeR (4.10)

If the candidate function of the value function is differentiable in {y, 7}, from equations (4.9)

and (4.10), we obtain the following equations:
¢'(y) =p; (4.11)

¢'(7) = (1= Np. (4.12)

By (4.1) and (4.2), the firm’s expected discounted profit J is maximized at £ = y—yoré=y-—
Hence, by the first-order condition for the maximization d[p(y + &) — C(€)]/d¢ |E=9*Q =0 or
d[p(g + &) — C(&)]/d€|e=5—y = 0, if ¢(y) are differentiable in {y, 7}, we obtain

<

¢'(y) = p; (4.13)

¢'(§) = (1= Np. (4.14)

Consequently, we assume that the optimal solution described by (4.1) and (4.2) and the six
unknowns, Ay, Az, y, y, ¥, ¥, are a solution to the simultaneous equations:

d(y) = ¢y) — (c+ply —y)), (4.15)

oY) = o(G) — (c+ (1 = NpF — 7)), (4.16)
and (4.11)~(4.14).

5 Numerical Analysis

We conduct a numerical analysis to obtain useful insights for the firm’s manager in this section.
First, we numerically obtain the six unknowns: A;, Az, y, Y, ¥, and y. We then examine the
effects on the changes in the parameters on the thresholds y, y, §, and §. We use the following
baseline parameter values: r = 0.05, 6 = 0.1, x = 0.01, 0 = 0.15, « = 0.6, c =1, p = 10 and
A = 0.5. Then, we obtain A; = 2.61159 x 1075, Ay = 0.0541845, y = 0.00230798, y = 0.219237,
§ = 1.27266 and g = 2.91049.

Figure 1 illustrates the value function of the firm’s problem, and Figure 2 shows the contin-

uation, capital expansion, and reduction regions in the x — k plane, respectively.
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Figure 2: Continuation, expansion, and reduction regions
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Figures 3-9 show how each parameter influences the firm’s investment decision making.
Figure 3 depicts that all thresholds decreases in the discount rate r. This implies that the an
increase in the discount rate contracts the capital expansion region £ and expands the capital
reduction region R. The magnitude of change in the capital reduction region is larger than that
in the capital expansion region. Further, the continuation region H decreases in the discount
rate. The magnitude of capital expansion, y — y, and capital reduction, § — g, decreases in the
discount rate. They imply that, when the firm’s manager prefers the present to the future, the

manager curbs the change of capital.

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Figure 3: Effect of the changes in the discount rate, r, on the thresholds

Figure 4 illustrates that all thresholds increases in the drift rate of the output demand, pu.
This implies that the higher expected growth rate of the output demand expands the capital
expansion region £ and contracts the capital reduction region R. Moreover, the magnitude of
change in the capital reduction region is larger than that in the capital expansion region. Then,
the continuation region # increases in the drift rate of the output demand. The magnitude of
capital expansion, y — y, and capital reduction, § — g, increases in the drift rate.

Figure 5 shows that the three thresholds y, y, and y decrease in the output demand risk, o,
while ¢ increases in the output demand risk. This implies that the higher output risk contracts
the capital expansion region £ and the capital reduction region R, and it expands the continua-
tion region H. The magnitude of capital expansion, y — y, decreases in the output demand risk,
while that of capital reduction, § — ¢, increases in the output risk.

Figure 6 shows that as the thresholds correspond to the capital expansion, y and y decrease in
the output elasticity of the capital, while as the thresholds correspond to the capital reduction,
¢y and ¥ increase in the elasticity. This implies that the higher output elasticity of capital
contracts the capital expansion region £ and the capital reduction region R, and it expands
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Figure 4: Effect of the changes in the drift rate, u, on the thresholds
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Figure 5: Effect of the changes in the volatility, o, on the thresholds
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the continuation region H. The magnitude of capital expansion, y — Yy, decreases in the output

elasticity of capital, while that of capital reduction, § — ¥, increases in the elasticity.

alpha

Figure 6: Effect of the changes in the output elasticity of capital, , on the thresholds

Figure 7 shows that the threshold y decreases in the fixed cost ¢, while the threshold g
increases in the fixed cost. This implies that the higher fixed cost contracts the capital expansion
region £ and the capital reduction region R. The magnitude of capital expansion, y — y, and

capital reduction, §—g, increases in the fixed cost. Overall, the continuation region # is enlarged.

Figure 8 shows that all the thresholds, y, y, ¢, and ¥, decrease in the price of the capital
p. This implies that the higher price of capital contracts the capital expansion region £ and
expands the capital reduction region R. The magnitude of change in the capital reduction region
is larger than that in the capital expansion region. The magnitude of capital expansion, y — y,
and capital reduction, § — g, decreases in the price of the capital. Combining these effects, the
continuation region H decreases in the price of the capital.

Figure 9 shows that the thresholds associated with the capital reduction, § and ¥, increases
in the degree of irreversibility, while the parameters associated with the capital expansion, y and
y, do not change. This is because the degree of irreversibility is defined by the proportion of the
sale price to the purchase price of capital. This implies that the higher degree of irreversibility
contracts the capital reduction region R, and then it expands the continuation region . The

magnitude of capital reduction, § — ¢, increases in the degree of irreversibility.

6 Conclusion

This study examined the firm’s capital expansion and reduction policy with both fixed and

proportional costs under the output demand risk. We derived the optimal timing and size of the
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Figure 7: Effect of the changes in the fixed cost, ¢, on the thresholds

Figure 8: Effect of the changes in the price of capital, p, on the thresholds
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Figure 9: Effect of the changes in the degree of irreversibility of investment, A, on the thresholds

capital expansion and reduction. Through numerical analysis, we found some useful implications
for the firm’s manager.

This study has extended some ways to enhance our understanding of a firm’s capital invest-
ment problems. In this paper, we considered a case in which the firm’s manager identifies the
distribution of the output demand. In contrast, the real-world business environment is complex
and uncertain. Thus, it is difficult for a firm’s manager to have a specific demand distribution.
To expand our research in the future, we plan to investigate the firm’s problem by considering

multiple distributions of the output demand.
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