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1 Introduction 

We study numerical feasibility and properties of a Cauchy-type boundary integration 
formula in x-ray Computerized Tomography (CT). The integration formula has been 
developed by Bukhgeim et. al. [1, 2, 3] based on mainly the theory of A-analytic functions 
by converting the mathematical model of x-ray CT into the inverse source problem 
for the transport equation. However, to the best of the our knowledge, its numerical 
treatments have not been realized so far. It is also worthy of notice that the method 
has a possibility in application to the radiative transport equation [4], while the inverse 
Radon transform is unavailable due to its crucial dependence on straightness of x-ray 
propagation. 

This report is based on collaborations with Professor Alexandru Tamasan (Depart
ment of Mathematics, University of Central Florida). 

2 X-ray CT by the Radon Transform 

Let D be a bounded and strictly convex domain with 0 1 boundary in JR2 , andµ E L00 (D) 
be its absorption coefficient. Without loss of generality, we assume that D = { x E 

JR2 ; lxl < p} is the disk with radius p by letting µ(x) = 0 outside of the domain of 
interest. 

The standard mathematical model of the x-ray CT [8] is to find µ satisfying the 
integral equation 

Lw=s µ(x) d£ = Rµ(w, s), (1) 

from measurement of Rµ(w, s) for all w E S 1 = {~ E lR2 ; l~I = 1} ands E JR, which 
is called the Radon transform ofµ. Figure 1 depicts a typical measurement manner, 
where Rµ(w, s) = Rµ(e-, ( · e-) is the intensity of x-ray with velocity~ emitted from 
( E 8D. The filtered back projection (FBP) with the inverse Radon transform [9] has 
been well established in reconstruction of µ(x), which is given as 

1 l,r µ(x) ~ -2 Pw * h(x · w) dD, 
7r. 0 

XE D, 
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Figure 1: Mathematical Model of Measurement in X-ray Tomography 

where n = argw, Pw(s) = Rµ(w, s), and h(s) is a filter function whose Fourier transform 
approximates lrl-

3 Inverse Source Identification for the Transport 
Equation as a Mathematical Model of X-ray To
mography 

In this section we summarize a mathematical model of x-ray tomography with the 
transport equation and its numerical algorithm developed in [2, 3, 6, 7]- Hereinafter 
x = (x1 , x2 ) E ffi.2 is identified with z = x 1 + ix2 E C with i = A. Also, ~ = 
(cos0,sin0) E 8 1 is identified with O ~ 0 < 21r. We also assume that z denotes an 
interior point in n, while ( indicate a boundary point on an_ 

Let I(x, ~), (x, ~) E D x 8 1 , be the intensity of x-ray at x E D directing to~ direction, 
which is induced by the incidental x-ray at x* E &D with intensity I(x*, ~)- Since the 
boundary point x* E &D is uniquely determined from (x, ~) E D x 8 1 by the law of 
straightness of x-ray, we introduce 

I(x,~) 
u(x, ~) = - log I(x•, t)' (2) 

Under the notations, the mathematical model of x-ray tomography (1) is equivalent to 
the inverse source problem for the transport equation 

~ -Vu(x, ~) = µ(x), 

u(x, ~) = 0, 

u(x,~) = Rµ(e-,x · e-), 

where f± = {(x,~); x E &D,~ E 81,n(x) -~ ~ 0}. 

(x,~) ED x 81, 

(x,~) EL, 

(x,~) E f+, 
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For the source identification problem, Arbuzov, Bukhgeim and Kazantsev have pro
posed a novel inversion algorithm based on A-analytic theory [1, 2]. The Fourier ex

pansion of u with respect to 0 is u(z,,(0)) = L um(z)e-imO_ As the first step of the 
mEZ 

reconstruction procedure, the coefficients um(() on the boundary 8D are calculated from 
measurement data as 

um(()= 2_ f 2
1r u((, '(0))eim0 d0, m E Z. 

21r la (3) 

It has been proved in [2] that u1 ( z) in D is obtained by the boundary integral of u0 aa ( () = 
(u1((), u3((), u5((), ... ) on 8D as 

Uoad(z) = -21 . f _d(__,,-,,--S_*d_(_R (f- ~) Uoad((), 
7rl J BD ( - Z ( - Z 

z ED, (4) 

where R(>..) = (>..I - S*)-1 , >.. E C, is the resolvent of the left translation operator 
S*(u1, u3 , u5 , ... ) = (u3 , u5 , u7 , ... ). Particularly, the first Fourier mode is explicitly 
given in [3] as 

Finally, the attenuation µ is reconstructed as 

8u1 8u1 
µ(x) = Re -8 (x) + Im -8 (x), 

X1 X2 
XE D. (6) 

In numerical reconsruction, measurement Rµ is assumed to be given at ( (k, ,( 0n)) E 

r +, where { (k; 0:::; k < K} C 8D is K equally-spaced points on 8D, and {0n; 0:::; n < 
N} C [O, 21r) corresponds to N equally-spaced directions. We also introduce a positive 
integer M in order to truncate the Neumann series in (5) originated from the resolvent 
R. The composite trapezoidal rule derives discretizations 

N-1 

Um,k = ! L u((k, '(0n))eimOn, 
n=O 

and 

1 K-l (k 2 K-l ( (k ) { ('k - z)P} 
U1 ( z) = K L r _ z U1,k + K L Re ;- _ z L U2p+1,k r _ z . 

k=O ',,k k=O ',,k 3:,:'.2p+l:,:'.M ',,k 

Since U1(z) is recovered for any z E D, we can reconstruct µ(x) in D with (6) by 
numerical differentiations [6, 7]. 

4 Optimal Choice of the Truncation Parameter 

In various ill-posed problems, it has been reported that "higher frequency modes" cause 
numerical instability and prevent reliable numerical reconstruction, whereas they are 
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inevitable for accurate reconstruction because they deliver information of precise struc
tures of the system. In the present study, the Neumann series in (5) is explicitly asso
ciated with the Fourier modes. Therefore the truncation parameter Min (5) works as 
a regularization parameter to stabilize its numerical procedure and to control accuracy. 

In order to investigate the role of M quantitatively, we demonstrate numerical ex
amples using the modified Shepp-Logan model [10] with K = N = 360 and p = l.l [6]. 
Figure 2 shows the profile of the exact measurement data, where the gray region is the 
ellipse occupied by the Shepp-Logan model 

E = { (x1,x2); 0~~2 + 0~t2 < 1} 
and the gray circle is 8D with p = 1.1. The red curve shows measurement u((,~(0)) on 
8D in the polar coordinate with respect to 0 centered with ( E 8D indicated by •, and 
the right graph shows the magnification of that at ( = (1.1, 0). From this measurement, 

Figure 2: Exact Boundary Value u((, ~) on ( E 8D of Radius p = 1.1 (left), and one at 
( = (1.1, 0) (right) 

we obtain numerical reconstruction of µ(x) shown in Figure 3 by (a) the conventional 
FBP, and the proposed scheme with (b) M = 30, (c) M = 180, and (d) M = 340. In 
the proposed method, the parameter M = 180 in Figure 3( c) exhibits similar accuracy 
as FBP in Figure 3(a), although smaller M = 30 gives a blurred result in Figure 3(b). 
In contrast, larger M = 340 gives exceptional values out of the legend O ::::; µ ::::; 1.2 in 
Figure 3(d), which means numerical instability of the procedure. 

In the present study, we propose the optimal choice of M. In a similar way as u1 , it 
is shown that 

uo(z) = ~ { ua(() d( + ~ { (_5_ - -d( -) {f U2p(() ( ( - z )P}, 
21ri } an ( - z 21ri } an ( - z ( - z ( - z 

p=l 

which is discretized as 

1 K-l (k 2 K-l ( (k ) { ('k - z)P} 
Uo(z) = KL ;- _ z Uo,k +KL Re ;- _ z L U2p,k ;- _ z . 

k=O <,k k=O <,k 2"5c2p"5cM <,k 
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(a) Filtered Back Projection with Inverse (b) Proposed Method, M = 30 
Radon Transform 
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( c) Proposed Method, M = 180 (d) Proposed Method, M = 340 

Figure 3: Numerical Reconstructions for Modified Shepp-Logan Phantom [10] from 
Exact Measurement 
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From definition (2), u is real-valued, and hence so is u0 from (3). Therefore, the imag
inary part Im U0 obtained by numerical computation is presumed to be error which 
comes from discretization, rounding, and measurement. 

Based on the observation, we propose the following criterion for the choice of M: 

Criterion. Choose Min the reconstruction so as to minimize IIImUoll-

N ote that The proposed criterion is practical because U0 is computable from the mea
surement with fixed discretization parameters Kand N. 
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Figure 4: Choice of the Truncation Parameter M for Exact Measurement 

In order to perform the criterion, we calculate II Im U0 11 2 for 1 :S M :S 360. In 
Figure 4, the symbols + show II Im U0 ll 2 in E, while the symbols x show the relative 
error of reconstructed µ. The horizontal axis is 1 :S M :S 360 and the vertical one is the 
relative £ 2-norm in the logarithmic scale. In the figure, arrows indicate each minimum, 
M = 195 and M = 207. The proposed criterion chooses M = 195, and it is close to 
M = 207 which is optimal in the sense of realizing the minimal error. Furthermore, 
the relative errors in M = 180 (Figure3(c)), M = 195, M = 207 are 18.48%, 18.22%, 
18.12% respectively, and significant differences cannot be observed. 

5 Reconstruction from Noisy Data 

In this section we show that the proposed criterion is also valid in numerical reconstruc
tion under the presence of measurement error. 

We generate the noisy data by the pseudo-random generator normaLdistribution() 
in the programming language C++ with the mean 3 and 5% relative error in L2-norm, 
which is depicted in Figure 5. Figure 6 shows IIImUoll 2 (symbols + ) and relative errors 
in reconstructedµ (symbols x ). The former and latter are minimum at M = 117 and 
M = 113 in 1 :S M :S 360 respectively. The proposed criterion gives M = 117, with 
which µ(x) is reconstructed shown in Figure 7. Their relative errors are 24.06% for 
M = 117 and 24.03% for M = 113, and the differences are insignificant. This indicate 
validity of the proposed parameter choice strategy. 
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Figure 5: Measurement Data u((, ~) on ( E oD of Radius p = 1.1 with 5% Noise 

6 Concluding Remarks 

We have reported a numerical feasibility of x-ray tomography algorithm based on the 
boundary integral. In particular, parameter choice strategy has been proposed, and we 
demonstrate a reasonable numerical reconstruction from measurement data with errors. 

Finally we announce the validity of the proposed criterion in the scattering case 
discussed in [4, 5], where the same boundary integral (4) plays an essential role in 
reconstruction. In this case, Two regularization parameters ( truncation of the scattering 
kernel and truncation of Neumann series) are involved in the algorithm, and II Im U0 II 
also depends on them. In [5], the choice of the truncation number of the scattering kernel 
has been proposed for a fixed truncation number of Neumann series. On the other hand, 
the choice is completely compatible with the choice of the other parameter (truncation 
of Neumann series), and thus both can be chosen so as to minimize 11 Im U0 11- Under this 
strategy, they gives reasonable reconstruction images similarly as this research even for 
the presence of measurement error. 
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Figure 6: Regularization by the Truncation Parameter M for Measurement Data with 
5% Measurement Error 
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