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1 Introduction 

Let k > 0 be the wave number, and let JRt := JR x (0, oo) be the upper half plane, and let W := 

JR x (0, h) be the waveguide in JRt. We denote by r a := JR x {a} for a > 0. Let n E L00 (JRt) be real 
value, 21r-periodic with respect to x1 (that is, n(x1 + 21r, x2) = n(x1, x2) for all x = (x1, x2) E JRt), 
and equal to one for x2 > h. We assume that there exists a constant no > 0 such that n ~ no in 
JRt. Let q E L 00 (JRt) be real value with the compact support in W. We denote by Q := suppq. We 
assume that JR2 \ Q is connected. 

We consider the following scattering problem: For fixed y E JRt \ W, determine the scattered 
field us E H1~jJRt) such that 

/),.us+ k2(1 + q)nu8 = -k2qnui(·, y) in JRt, (1.1) 

us= 0 on ro, (1.2) 

Here, the incident field ui is given by ui(x, y) = Gn(x, y), where Gn is the Dirichlet Green's function 
in the upper half plane JRt for /),. + k2n, that is, 

Gn(x,y) := G(x,y) +us(x,y), (1.3) 

where G(x,y) := il">k(x,y) - il">k(x,y*) is the Dirichlet Green's function in JRt for /),. + k2 , and 
y* = (y1, -y2) is the reflected point of y at JR x {O}. Here, il">k(x,y) is the fundamental solution to 
Helmholtz equation in JR2 , that is, 

·- i (1) il">k(x, y) .- 4H 0 (klx - YI), xi- Y, (1.4) 

and us is the scattered field of the unperturbed problem by the incident field G(x,y), that is, us 
vanishes for x2 = 0 and solves 

(1.5) 

If we impose a suitable radiation condition (see Definition 2.4), the unperturbed solution us is 
uniquely determined. 

In order to show the well-posedness of the perturbed scattering problem (1.1)-(1.2), we make 
the following assumption. 

Assumption 1.1. We assume that k2 is not the point spectrum of (H\)n!),_ in HJ(JRt), that is, 

evey v E H 1 (JRt) which satisfies 

V = 0 OH ro, 

has to vanish for x2 > 0. 

(1.6) 

(1.7) 
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The following theorem was shown in Theorem 1.2 of [l]. 

Theorem 1.2. Let Assumptions 1.1 hold and let f E L2(1Ri) such that suppf = Q. Then, there 
exists a unique solution u E H1~jlRi) such that 

b.u + k2 (1 + q)nu = f in IRi, 

u = 0 on ro, 

and u satisfies the radiation condition in the sense of Definition 2.4. 

(1.8) 

(1.9) 

Roughly speaking, this radiation condition requires that we have a decomposition of the solution 
u into uC1) which decays in the direction of x1 , and a finite combination uC2) of propagative modes 
which does not decay in x1 , but it exponentially decays in x2 . In Section 2, we will study details of 
the radiation condition. 

By Theorem 1.2, the well-posedness of this perturbed scattering problem (1.1)-(1.2) holds. 
Then, we are now able to consider the inverse problem of determining the support of q from measured 
scattered field us by the incident field ui. Let M := {(x1 ,m): a< x1 < b} for a< band m > h, 
and Q := suppq. With the scattered field us, we define the near field operator N: L2 (M) • L2 (M) 
by 

Ng(x) := JM us(x,y)g(y)ds(y), x EM. (1.10) 

The inverse problem we consider here is to determine support Q of q from the scattered field us(x, y) 
for all x and yin M with one fixed k > 0. In other words, given the near field operator N, determine 
Q. 

The following theorem was shown in Theorem 1.1 of [2]. 

Theorem 1.3. Let B C IR.2 be a bounded open set. We assume that there exists qmin > 0 such that 
q 2'. qmin a.e. in Q. Then for O <a< k2nminqmin, 

BcQ (1.11) 

where the operator HB : L2 (M) • L 2 (B) is given by 

HB9(x) := JM Gn(x,y)g(y)ds(y), x EB, (1.12) 

and the inequality on the right hand side in {1.11) denotes that ReN - aH'sHB has only finitely 
many negative eigenvalues, and the real part of an operator A is self-adjoint operators given by 

1 
Re(A) := 2(A + A*). 

By Theorem 1.3, we can understand whether an artificial domain B is contained in Q or not. 
Then, by dispersing a lot of balls B in IRi and for each B checking (1.11) we can reconstruct the 
shape and location of unknown Q. 

This paper is organized as follows. In Section 2, we recall a radiation condition introduced in 
[4]. In Section 3, we study several factorizations of the near field operator N, which prepare for the 
proof of Theorem 1.3. Finally in Sections 4, we prove Theorems 1.3. 
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2 A radiation condition 

In Section 2, we recall a radiation condition introduced in [4]. Let f E L2(JR!) have the compact 
support in W. First, we consider the following direct problem: Determine the scattered field 
u E H1~jJR!) such that 

u = 0 on ro. 
(2.1) is understood in the variational sense, that is, 

(2.1) 

(2.2) 

(2.3) 

for all cp E H 1(JR!), with compact support. In such a problem, it is natural to impose the upward 
propagating radiation condition, that is, u(·, h) E L00 (JR) and 

l Oif>k(x,y) 
u(x) = 2 u(y) 0 ds(y) = 0, x2 > h. 

rh Y2 
(2.4) 

However, even with this condition we can not expect the uniqueness of this problem. (see Example 
2.3 of [4] .) In order to introduce a suitable radiation condition, Kirsch and Lechleiter discussed 
limiting absorption solution of this problem, that is, the limit of the solution u, of flu, + (k + 
iE)2nu, =fas E • 0. For the details of an introduction of this radiation condition, we refer to [4]. 

Let us prepare for the exact definition of the radiation condition. We denote by CR := 
(0, 21r) x (0, R) for R E (0, oo]. The function u E H 1 ( CR) is called a-quasi periodic if u(21r, x2) = 
e21riau(0,x2). We denote by H},(CR) the subspace of the a-quasi periodic function in H 1(CR), and 
H;,,lojCoo) := {u E Hz~c(C00 ) : ul 0 RE H},(CR) for all R > O}. Then, we consider the following 
problem, which arises from taking the quasi-periodic Floquet Bloch transform in (2.1)-(2.2): For 
a E [-1/2, 1/2], determine Ua E H;,,loc( C00 ) such that 

Uc,= 0 on (0, 21r) x {0}. 

Here, it is a natural to impose the Rayleigh expansion of the form 

Ua(x) = Lun(a)einx,+i✓k2-(n+a)2(x,-h), X2 > h, 

nEZ 

(2.5) 

(2.6) 

(2.7) 

where un(a) := (21r)-1 Jg,,. ua(x1, h)e-inx1 dx1 are the Fourier coefficients of ua(·, h), and jk2 - (n + a) 2 = 

iJ(n + a)2 - k2 if n + a > k. But even with this expansion the uniqueness of this problem 
fails for some a E [-1/2, 1/2]. We call a exceptional values if there exists non-trivial solutions 
Ua EH}, loc(C00 ) of (2.5)-(2.7). We set Ak := {a E [-1/2, 1/2]: :31 E Z s.t. la+ ll = k}, and make 
the follm,ving assumption: 

Assumption 2.1. For every a E Ak the solution of Ua E H;,,loc( C00 ) of {2.5)-(2. 7) has to be zero. 

The following properties of exceptional values was shown in [4]. 
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Lemma 2.2. Let Assumption 2.1 hold. Then, there exists only finitely many exceptional values 

a E [-1/2, 1/2]. Furthermore, if a is an exceptional value, then so is -a. Therefore, the set of 
exceptional values can be described by { CTj : j E J} where some J C Z is finite and CT-j = -aj for 

j E J. For each exceptional value aj we define 

X··={<p HI (C )· l1</J+k2n</J=OinC00 , </J=Oforx2=0,} 
J · E a;,loc 00 • <fa satisfies the Rayleigh expansion (2.7) 

Then, Xj are finite dimensional. We set mj = dimXj. Furthermore, <p E Xj is evanescent, that is, 
there exists c > 0 and 8 > 0 such that l</J(x)I, IV</J(x)I :S ce-olx2 I for all x E 0 00 • 

Next, we consider the following eigenvalue problem in Xj: Determine d E JR and </J E Xj such 
that 1 8</J- 1 --i 8 '1j;dx = dk n</J'lj;dx, 

c= XI c= 
(2.8) 

for all 1j; E Xj. We denote by the eigenvalues dz,j and eigenfunction </Jz,j of this problem, that is, 

1 8</Jlj- 1 --i --' ·1·dx = dz ·k W/.,z ·•1·dx Bx '// '1 '// ,J'// ' 
c= I c= 

(2.9) 

for every l = 1, ... , mj and j E J. We normalize the eigenfunction { </Jz,j : l = 1, ... , mj} such that 

k r n</Jz,j</Jl',jdX = 6z,z1, (2.10) le= 
for all l, l'. We will assume that the wave number k > 0 is regular in the following sense. 

Definition 2.3. k > 0 is regular if dz,j =I= 0 for all / = 1, ... mj and j E J. 

Now we are ready to define the radiation condition. 

Definition 2.4. Let Assumptions 2.1 hold, and let k > 0 be regular in the sense of Definition 2.3. 
We set 

·ip±(xI) := - 1 ± - -dt , XI E JR. 1 [ 2 lxi/2 sint ] 
2 7r o t 

(2.11) 

Then, u E Hz~c(JRt) satisfies the radiation condition if u satisfies the upward propagating radiation 
condition (2.4), and has a decomposition in the form u = u(l) + u(2) where u(lllocx(O,R)E HI(JR x 

(0, R)) for all R > 0, and u(2) E L00 (JRt) has the following form 

u(2l(x) = 1/J+(xI) L L az,j</JZ,j(x) + 1/J-(xI) L L az,j</Jl,j(x) (2.12) 

where some az,j E IC, and { dz,j, </Jz,j : l = 1, ... , mj} are normalized eigenvalues and eigenfunctions of 
the problem (2.8). 

Remark 2.5. It is obvious that we can replace 1j;+ by any smooth functions -j;± with {;+(xI) = 
1 + O(1/xI) as XI-+ oo and {;+(x1) = O(l/x1) as x1-+ -oo and ;j;,1 {;+(x1) -+ 0 as lx1I -+ oo (and 
analogously for 1/J-). 

The following was shown in Theorems 2.2, 6.6, and 6.8 of [4]. 

Theorem 2.6. For every f E L2(JRt) with the compact support in W, there exists a unique solution 

Uk+ic E H 1(JRt) of the problem {2.1)-(2.2) replacing k by k + iE. Furthermore, Uk+ic converge as 

E-+ +o in Hz~c(JRt) to some u E Hz~c(JRt) which satisfy {2.1)-(2.2) and the radiation condition in 
the sense of Definition 2.4. Furthermore, the solution u of this problem is uniquely determined. 
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3 A factorization of the near field operator 

In Section 3, we discuss a factorization of the near field operator N. We define the operator 
L : L2 (Q) • L2 (M) by Lf := vlM where v satisfies the radiation condition in the sense of 
Definition 2.4 and 

6-v + k2 (1 + q)nv = -k2 ~f, in JRi, 
vlnql 

v = 0 on JR x {0}. 

We define H: L2 (M) • L2 (Q) by 

Hg(x) := ✓ln(x)q(x)I JM Gn(x,y)g(y)ds(y), x E Q. 

(3.1) 

(3.2) 

(3.3) 

Then, by these definition we have N = LH. In order to make a symmetricity of the factorization 
of the near field operator N, we will show the following symmetricity of the Green function Gn, 

Lemma 3.1. 
Gn(x,y) = Gn(y,x), X =f. y. (3.4) 

Proof of Lemma 3.1. We take a small T/ > 0 such that B21i(x) n B2T/(y) = 0 where Bc(z) C JR2 is 
some open ball with center z and radius E > 0. We recall that Gn(z, y) = G(z, y) + u8 (z, y) where 
G(z,y) = •h(z,y) - <l>k(z,y*) and u8 (z,y) is a radiating solution of the problem (1.5) such that 
u8 (z,y) = 0 for z2 = 0. In Introduction of [4] u8 is given by u8 (z,y) = u(z,y) - x(lz-yl)G(z,y) 
where x E C00 (JR+) satisfying x(t) = 0 for O :s; t :s; TJ/2 and x(t) = 1 fort 2'. TJ, and u is a radiating 
solution such that u = 0 on JR x {0} and 

where 

6.11, + k 2nn = f(·,y) in JRi, 

u = 0 on JR x {0}, 

(3.5) 

(3.6) 

f(·,y) := [k2 (1-n)(l - x(I · -yl)) + 6-x(I · -yl)]G(·,y) + 2v'x(I · -yl) · v'G(-,y). (3.7) 

Then, we have Gn(z, y) = u(z, y) + (1- x(lz-yl))G(z, y). By Theorem 2.6 we can take an solution 
Uc E H 1(JRi) of the problem (3.5)-(3.6) replacing k by (k + iE) satisfying Uc converges as E • +0 
in Hz~c(JRt) to 7L. We set Gn,c(z, y) := 11,c(z, y) + (1 - x(lz -yl))G(z, y), and Gn,c(z, y) converges as 
E • +0 to G(z, y) pointwise for z E JRt. By the simple calculation, we have 

[ 6-z + (k + iE)2n(z)] Gn,h, y) = -o(z, y) + (2kEi - E2)n(z) (1 - x(lz - YI)) G(z, y). (3.8) 

Let r > 0 be large enough such that x, y E Br(0). By Green's second theorem in Br(0) n JRi we 
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have 

-Gn,c(Y, x) + (2kEi - E2 ) { uc(z, x)n(z)(l - x(lz - Yl))G(z, y)dz 
JB2"(y) 

+ Gn,c(x, y) - (2kEi - E2) { Uc(z, y)n(z)(l - x(lz - xl))G(z, x)dz 
jB2"(x) 

r Gn,c(z, x) [~z + (k + iE) 2n(z)] Gn,h, y)dz 
jBr(O)nRt 

{ Gn,c(z,y)[~z + (k + iE)2n(z)]Gn,c(z,x)dz 
jBr(O)nRt 

l ( )auc(z,y) ( )8uc(z,x)d ( ) UcZ,X a -Ucz,y a SZ. 
8Br(0)nRt llz llz 

(3.9) 

Since Uc E H 1(JRt), the right hand side of (3.9) converges as r • oo to zero. Then, as r • oo in 
(3.9) we have 

Gn,c(x, y) - Gn,c(Y, x) 

(2kEi - E2 ) { uc(z, y)n(z)(l - x(lz - xl))G(z, x)dz 
jB2"(x) 

- (2kEi - E2 ) { Uc(z, x)n(z)(l - x(lz - Yl))G(z, y)dz 
jB2"(y) 

(3.10) 

Since Uc converges as E • +O in H1~c(JRt) to u, the right hand side of (3.10) converges to zero as 
E • +O. Therefore, we conclude that Gn(x, y) = Gn(Y, x) for x c/= y. • 

By the symmetricity of Gn, 

(Hg,!) 

which implies that 

l { Jln(x)q(x)I JM Gn(x,y)g(y)ds(y) }!(x)dx 

JM g(y){k Jln(x)q(x)IGn(x, y)f(x)ds(x) }ds(y) 

JM g(y){l Jln(x)q(x)IGn(Y, x)f(x)ds(x) }ds(y), 

H* f(x) = l Jln(y)q(y)IGn(x,y)f(y)ds(y), x EM. 

(3.11) 

(3.12) 

We define T: L 2 (Q) • L 2 (Q) by Tf := ~f - Jjnqfw where w satisfies the radiation condition 
and 

~w + k2nw = --✓)ajj, in JR~, 

v = 0 on JR x {O}. 

We will show the following integral representation of w. 

(3.13) 

(3.14) 
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Lemma 3.2. 

w(x) = l Jln(y)q(y)IGn(x,y)f(y)dy, x E JR~. (3.15) 

Proof of Lemma 3.2. Let w, E H1~j1R~) be a solution of the problem (3.13)-(3.14) replacing k 
by (k+iE) satisfying w, converges as E • +0 in Hz~c(iRt) to 11J. Let Gn,,(y,x) be an approximation 
of the Green's function Gn(Y, x) as same as in Lemma 3.1. Let r > 0 be large enough such that 
x E Br(O). By Green's second theorem in Br(O) n iRt we have 

-w,(x) + (2kEi - E2) f w,(y)n(y)(l - x(IY - xl))G(y, x)dy 
ls2"(x) 

+ l Jln(y)q(y)IGn,,(y,x)f(y)dy 

f w,(y) [~y + (k + iE) 2n(y)]Gn,(y,x)dy 
lsr(O)nIB.t ' 

f Gn,(y,x)[~y+(k+iE)2n(y)]w,(y)dz 
lsr(O)nIB.t ' 

1 ( )au,(y,x) _ ( )aw,(y)d ( ) w, y u, Y, X s y . 
8Br(O)nIB.t 8vy 8vy 

(3.16) 

Since u,, w, E H 1(JRt), the right hand side of (3.16) converges as r • oo to zero. Then, as r • oo 
in (3.16) we have 

w,(x) (2kEi - c2 ) f w,(y)n(y)(l - x(IY - xl))G(y, x)dy 
Js2 ,(x) 

+ l Jln(y)q(y)IGn,,(y,x)f(y)dy (3.17) 

The first term ofright hand side in (3.17) converges to zero as E • +o, and the second term converges 
to JQ Jln(y)q(y)IGn(y,x)f(y)dy as E • +0. As E • +O in (3.17) and by the symmetricity of Gn 
(Lemma 3.1) we conclude (3.15). • 

Since w satisfies 

(3.18) 

we have wlM= LTf. Therefore, by (3.12) and (3.15) we have H* = LT. Then, we have the 
following symmetric factorization: 

N=LT*L*. (3.19) 

We will show the following lemma. 

Lemma 3.3. (a) L is compact with dense range in L2 (M). 
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(b) If there exists the constant qmin > 0 such that qmin ~ q a. e. in Q, then ReT has the form 
ReT = C + K with some self-adjoint and positive coercive operator C and some compact 
operator K on L2 (Q). 

(c) Im(j,Tf) 2 0 for all f E L 2 (Q). 

( d) T is injective. 

Proof of Lemma 3.3. (d) Let f E L 2 (Q) and Tf = 0, i.e., ~f = -v'fnqiw where w satisfies 

(3.13)-(3.14). Then, llw + k 2n(l + q)w = 0. By the uniqueness, w = 0 in JRt which implies that 
f = 0. Therefore T is injective. 

(b) Since n and q are bounded below (that is, n 2 nmin > 0 and q 2 qmin > 0), T has the form 
T = C + K where K is some compact operator and C is some self-adjoint and positive coercive 
operator. Furthermore, from the injectivity of T we obtain that T is bijective. 

(a) By the trace theorem and v E Hz~c(JRt), Lf = vlME H 1i2 (M), which implies that L : 
L 2 (Q) • L2 (M) is compact. 

By the bijectivity of T and H = T* L *, it is sufficient to show the injectivity of H. Let 
g E L 2 (M) and Hg(x) = Jln(x)q(x)I IM Gn(x, y)g(y)ds(y) = 0 for x E Q. We set v(x) := 

IM Gn(x, y)g(y)ds(y). By the definition of v we have 

llv + k2nv = 0, in JR! \ M, (3.20) 

and since q are bounded below, v = 0 in Q. By unique continuation principle we have v = 0 in 
JRt \ M. By the jump relation, we have 0 = 8;.; - 8;.;- = g, which conclude that the operator His 
injective. 

(c) For the proof of (c) we refer to Theorem 3.1 in [1]. By the definition of T we have 

Im(!, Ti)= -Im l f-v'fnqiwdx = Im l w[ll + k2n]wdx, (3.21) 

where w is a radiating solution of the problem (3.13)-(3.14). We set f!N := (-N, N) x (0, N 8 ) 

where s > 0 is small enough and N > 0 is large enough. By the same argument in Theorem 3.1 of 
[1] we have 

(3.22) 

where where some az,j EC, and {dz,j, ¢1,j: l = l, ... , mj} are normalized eigenvalues and eigenfunc
tions of the problem (2.8). By Lemmas 6.3 and 6.4 of [4], as N • oo in (3.22) we have 

Im(!, Ti) 2 2: L [ L laz,jl 2dz,j - L laz,jl 2dz,j] 2 0, 
jEJ di,;>0 di,;<0 

(3.23) 

which concludes ( c). • 
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In order to show Theorems 1.1 and 1.2, we consider another factorization of the near field 
operator N. We define T : L 2 (Q) • L 2 (Q) by Tv := k2 .!!:!l...1n 19 - k2 6V where v satisfies the 

nq V lnql 
radiation condition and 

~v + k2 (1 + q)nv = -k2 69, in Rt, 
y lnql 

v = 0 on R x {O}. 

(3.24) 

(3.25) 

Then, by the definition of T and T we can show that TT = I and TT = I, which implies that 
T-1 = T. Therefore, we have by L = H*T- 1 

N = LT*L* = H*T- 1H = H*TH = Hc/I'HQ, 

where HQ: L2 (M) • L 2 (Q) is defined by 

HQ9(x) := JM Gn(x,y)9(y)ds(y), x E Q, 

(3.26) 

(3.27) 

and T : £ 2 ( Q) • L2 ( Q) is defined by T f = k 2nqf + k 2nqw where w satisfies the radiation condition 
and 

~w + k2 (1 + q)nw = -k2nqf, in Rt, 
w = 0 on R x {O}. 

We will show the following lemma. 

Lemma 3.4. Let B and Q be a bounded open set in Rt. 

(a) dim(Ran(HB)) = oo. 

(b) If B n Q = 0, then Ran(HB) n Ran(HQ) = {O}. 

(3.28) 

(3.29) 

Proof of Lemma 3.4. (a) By the same argument of the injectivity of Hin (a) of Lemma 4.3, we 
can show that HB is injective. Therefore, HB has dense range. 

(b) Leth E Ran(HB) n Ran(HQ). Then, there exists /B, /Q suet that h = HBfB = HQfQ- We 
set 

VB(x) := L Gn(x, y)fB(y)dy, x E Rt 

VQ(x) := l Gn(x,y)/Q(y)dy, x E Rt 

(3.30) 

(3.31) 

then, VB and VQ satisfies ~VB+ k 2nvB = - fB, and ~VQ + k 2nvQ = - /Q, respectively, and VB = VQ 
on M. By Rellich lemma and unique continuation we have VB= VQ in Rt\ (B n Q). Hence, we 
can define v E H 1~jR2 ) by 

{ 
VB= VQ 

V := VB 

VQ 

in Rt\ (B n Q) 
in Q 
in B 

and v is a radiating solution such that v = 0 for x2 = 0 and 

~v + k 2nv = 0 in Rt. 

By the uniqueness, we have v = 0 in R2 , which implies that h = 0. 

(3.32) 

(3.33) 

• 
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4 Proof of Theorem 1.1 

In Section 4, we will show Theorem 1.3. Let BC Q. WedefineK: L 2 (Q)-+ L 2 (Q) by Kf := k2nqw 
where w is a radiating solution of the problem (3.28)-(3.29). Since wlQE H 1 (Q), K is a compact 

operator. Let V be the sum of eigenspaces of ReK associated to eigenvalues less than a-k2nminQmin· 
Since a - k2nminQmin < 0, then Vis a finite dimensional and for HQg E VJ_ 

(ReN g, g) l k2nqlHQgl 2 dx + ((ReK)HQg, HQg) 

Since for g E L2 (M) 

2 k2nminQmin IIHQ9ll 2 + (a - k 2nminQmin) IIHQ9ll 2 

2 a IIHQgll 2 2 a IIHMll 2 ( 4.1) 

(4.2) 

and dim(HQ V) S dim(V) < oo, we have by Corollary 3.3 of [3] that aH3HB S!in ReN. 
Let now B ct. Q and assume on the contrary aH3HB S!in ReN, that is, by Corollary 3.3 of [3] 

there exists a finite dimensional subspace Win L2 (M) such that 

((ReN - aH3HB)w, w) 2 0, (4.3) 

for all w E W_!_. Since B ct. Q, we can take a small open domain Bo C B such that Bon Q = 0, 
which implies that for all w E W _!_ 

a IIHB0 wll 2 S a IIHBwll 2 

S ((ReN)w, w) 

((ReT)HQw, HQw) 

S IIRerll IIHQwll 2 . (4.4) 

By (a) of Lemma 4.7 in [3], we have 

Ran(H30) g; Ran(HQ) + W = Ran(HQ, Pw), (4.5) 

where Pw : L2 (M) -+ L2 (M) is the orthognal projection on W. Lemma 4.6 of [3] implies that for 
any C > 0 there exists a We such that 

IIHB0 Wcll 2 > C2 II ( !i ) Wcll
2 

= C2 (IIHQwcll 2 + 11Pwwcll2 ). (4.6) 

Hence, there exists a sequence (wm)mEN C £ 2 (§1 ) such that 11Hs0 wmll -+ oo and IIHQwmll + 
IIPvwmll-+ 0 as m-+ oo. Setting Wm:= Wm - Pwwm E W_!_ we have as m-+ oo, 

IIHBo'Wmll 2 IIHBoWmll - llHBoll llPwwmll-+ oo, (4.7) 

IIHQwmll s IIHQwmll + IIHQII IIPwwmll-+ o. (4.8) 

This contradicts (4.4). Therefore, we have aH3HB ffin ReN. Theorem 1.3 has been shown. D 

By the same argument in Theorem 1.3 we can show the following. 

Corollary 4.1. Let B c 1R2 be a bounded open set. Let Assumption hold, and assume that there 
exists Qmax < 0 such that q S Qmax a.e. in Q. Then for O <a< k 2nminlQmaxl, 

BcQ aHsHB S!in -ReN, (4.9) 
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