Direct and inverse scattering problems for the local perturbation of an open periodic waveguide in the half plane

Takashi FURUYA
Graduate School of Mathematics, Nagoya University, e-mail: takashi.furuya0101@gmail.com

1 Introduction

Let $k>0$ be the wave number, and let $\mathbb{R}_{+}^{2}:=\mathbb{R} \times(0, \infty)$ be the upper half plane, and let $W:=$ $\mathbb{R} \times(0, h)$ be the waveguide in \mathbb{R}_{+}^{2}. We denote by $\Gamma_{a}:=\mathbb{R} \times\{a\}$ for $a>0$. Let $n \in L^{\infty}\left(\mathbb{R}_{+}^{2}\right)$ be real value, 2π-periodic with respect to x_{1} (that is, $n\left(x_{1}+2 \pi, x_{2}\right)=n\left(x_{1}, x_{2}\right)$ for all $\left.x=\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}\right)$, and equal to one for $x_{2}>h$. We assume that there exists a constant $n_{0}>0$ such that $n \geq n_{0}$ in \mathbb{R}_{+}^{2}. Let $q \in L^{\infty}\left(\mathbb{R}_{+}^{2}\right)$ be real value with the compact support in W. We denote by $Q:=\operatorname{supp} q$. We assume that $\mathbb{R}^{2} \backslash \bar{Q}$ is connected.

We consider the following scattering problem: For fixed $y \in \mathbb{R}_{+}^{2} \backslash \bar{W}$, determine the scattered field $u^{s} \in H_{l o c}^{1}\left(\mathbb{R}_{+}^{2}\right)$ such that

$$
\begin{gather*}
\Delta u^{s}+k^{2}(1+q) n u^{s}=-k^{2} q n u^{i}(\cdot, y) \text { in } \mathbb{R}_{+}^{2}, \tag{1.1}\\
u^{s}=0 \text { on } \Gamma_{0}, \tag{1.2}
\end{gather*}
$$

Here, the incident field u^{i} is given by $u^{i}(x, y)=\overline{G_{n}(x, y)}$, where G_{n} is the Dirichlet Green's function in the upper half plane \mathbb{R}_{+}^{2} for $\Delta+k^{2} n$, that is,

$$
\begin{equation*}
G_{n}(x, y):=G(x, y)+\tilde{u}^{s}(x, y), \tag{1.3}
\end{equation*}
$$

where $G(x, y):=\Phi_{k}(x, y)-\Phi_{k}\left(x, y^{*}\right)$ is the Dirichlet Green's function in \mathbb{R}_{+}^{2} for $\Delta+k^{2}$, and $y^{*}=\left(y_{1},-y_{2}\right)$ is the reflected point of y at $\mathbb{R} \times\{0\}$. Here, $\Phi_{k}(x, y)$ is the fundamental solution to Helmholtz equation in \mathbb{R}^{2}, that is,

$$
\begin{equation*}
\Phi_{k}(x, y):=\frac{i}{4} H_{0}^{(1)}(k|x-y|), x \neq y \tag{1.4}
\end{equation*}
$$

and \tilde{u}^{s} is the scattered field of the unperturbed problem by the incident field $G(x, y)$, that is, \tilde{u}^{s} vanishes for $x_{2}=0$ and solves

$$
\begin{equation*}
\Delta \tilde{u}^{s}+k^{2} n \tilde{u}^{s}=k^{2}(1-n) G(\cdot, y) \text { in } \mathbb{R}_{+}^{2} . \tag{1.5}
\end{equation*}
$$

If we impose a suitable radiation condition (see Definition 2.4), the unperturbed solution \tilde{u}^{s} is uniquely determined.

In order to show the well-posedness of the perturbed scattering problem (1.1)-(1.2), we make the following assumption.
Assumption 1.1. We assume that k^{2} is not the point spectrum of $\frac{1}{(1+q) n} \Delta$ in $H_{0}^{1}\left(\mathbb{R}_{+}^{2}\right)$, that is, evey $v \in H^{1}\left(\mathbb{R}_{+}^{2}\right)$ which satisfies

$$
\begin{gather*}
\Delta v+k^{2}(1+q) n v=0 \text { in } \mathbb{R}_{+}^{2} \tag{1.6}\\
v=0 \text { on } \Gamma_{0} \tag{1.7}
\end{gather*}
$$

has to vanish for $x_{2}>0$.

The following theorem was shown in Theorem 1.2 of [1].
Theorem 1.2. Let Assumptions 1.1 hold and let $f \in L^{2}\left(\mathbb{R}_{+}^{2}\right)$ such that $\operatorname{supp} f=Q$. Then, there exists a unique solution $u \in H_{\text {loc }}^{1}\left(\mathbb{R}_{+}^{2}\right)$ such that

$$
\begin{gather*}
\Delta u+k^{2}(1+q) n u=f \text { in } \mathbb{R}_{+}^{2} \tag{1.8}\\
u=0 \text { on } \Gamma_{0} \tag{1.9}
\end{gather*}
$$

and u satisfies the radiation condition in the sense of Definition 2.4.
Roughly speaking, this radiation condition requires that we have a decomposition of the solution u into $u^{(1)}$ which decays in the direction of x_{1}, and a finite combination $u^{(2)}$ of propagative modes which does not decay in x_{1}, but it exponentially decays in x_{2}. In Section 2, we will study details of the radiation condition.

By Theorem 1.2, the well-posedness of this perturbed scattering problem (1.1)-(1.2) holds. Then, we are now able to consider the inverse problem of determining the support of q from measured scattered field u^{s} by the incident field u^{i}. Let $M:=\left\{\left(x_{1}, m\right): a<x_{1}<b\right\}$ for $a<b$ and $m>h$, and $Q:=\operatorname{supp} q$. With the scattered field u^{s}, we define the near field operator $N: L^{2}(M) \rightarrow L^{2}(M)$ by

$$
\begin{equation*}
N g(x):=\int_{M} u^{s}(x, y) g(y) d s(y), x \in M \tag{1.10}
\end{equation*}
$$

The inverse problem we consider here is to determine support Q of q from the scattered field $u^{s}(x, y)$ for all x and y in M with one fixed $k>0$. In other words, given the near field operator N, determine Q.

The following theorem was shown in Theorem 1.1 of [2].
Theorem 1.3. Let $B \subset \mathbb{R}^{2}$ be a bounded open set. We assume that there exists $q_{\text {min }}>0$ such that $q \geq q_{\text {min }}$ a.e. in Q. Then for $0<\alpha<k^{2} n_{\text {min }} q_{\text {min }}$,

$$
\begin{equation*}
B \subset Q \quad \Longleftrightarrow \quad \alpha H_{B}^{*} H_{B} \leq \operatorname{fin} \operatorname{Re} N \tag{1.11}
\end{equation*}
$$

where the operator $H_{B}: L^{2}(M) \rightarrow L^{2}(B)$ is given by

$$
\begin{equation*}
H_{B} g(x):=\int_{M} \overline{G_{n}(x, y)} g(y) d s(y), x \in B \tag{1.12}
\end{equation*}
$$

and the inequality on the right hand side in (1.11) denotes that $\operatorname{Re} N-\alpha H_{B}^{*} H_{B}$ has only finitely many negative eigenvalues, and the real part of an operator A is self-adjoint operators given by $\operatorname{Re}(A):=\frac{1}{2}\left(A+A^{*}\right)$.

By Theorem 1.3, we can understand whether an artificial domain B is contained in Q or not. Then, by dispersing a lot of balls B in \mathbb{R}_{+}^{2} and for each B checking (1.11) we can reconstruct the shape and location of unknown Q.

This paper is organized as follows. In Section 2, we recall a radiation condition introduced in [4]. In Section 3, we study several factorizations of the near field operator N, which prepare for the proof of Theorem 1.3. Finally in Sections 4, we prove Theorems 1.3.

2 A radiation condition

In Section 2, we recall a radiation condition introduced in [4]. Let $f \in L^{2}\left(\mathbb{R}_{+}^{2}\right)$ have the compact support in W. First, we consider the following direct problem: Determine the scattered field $u \in H_{l o c}^{1}\left(\mathbb{R}_{+}^{2}\right)$ such that

$$
\begin{gather*}
\Delta u+k^{2} n u=f \text { in } \mathbb{R}_{+}^{2} \tag{2.1}\\
u=0 \text { on } \Gamma_{0} \tag{2.2}
\end{gather*}
$$

(2.1) is understood in the variational sense, that is,

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{2}}\left[\nabla u \cdot \nabla \bar{\varphi}-k^{2} n u \bar{\varphi}\right] d x=-\int_{W} f \bar{\varphi} d x \tag{2.3}
\end{equation*}
$$

for all $\varphi \in H^{1}\left(\mathbb{R}_{+}^{2}\right)$, with compact support. In such a problem, it is natural to impose the upward propagating radiation condition, that is, $u(\cdot, h) \in L^{\infty}(\mathbb{R})$ and

$$
\begin{equation*}
u(x)=2 \int_{\Gamma_{h}} u(y) \frac{\partial \Phi_{k}(x, y)}{\partial y_{2}} d s(y)=0, x_{2}>h \tag{2.4}
\end{equation*}
$$

However, even with this condition we can not expect the uniqueness of this problem. (see Example 2.3 of [4].) In order to introduce a suitable radiation condition, Kirsch and Lechleiter discussed limiting absorption solution of this problem, that is, the limit of the solution u_{ϵ} of $\Delta u_{\epsilon}+(k+$ $i \epsilon)^{2} n u_{\epsilon}=f$ as $\epsilon \rightarrow 0$. For the details of an introduction of this radiation condition, we refer to [4].

Let us prepare for the exact definition of the radiation condition. We denote by $C_{R}:=$ $(0,2 \pi) \times(0, R)$ for $R \in(0, \infty]$. The function $u \in H^{1}\left(C_{R}\right)$ is called α-quasi periodic if $u\left(2 \pi, x_{2}\right)=$ $e^{2 \pi i \alpha} u\left(0, x_{2}\right)$. We denote by $H_{\alpha}^{1}\left(C_{R}\right)$ the subspace of the α-quasi periodic function in $H^{1}\left(C_{R}\right)$, and $H_{\alpha, l o c}^{1}\left(C_{\infty}\right):=\left\{u \in H_{l o c}^{1}\left(C_{\infty}\right):\left.u\right|_{C_{R}} \in H_{\alpha}^{1}\left(C_{R}\right)\right.$ for all $\left.\mathrm{R}>0\right\}$. Then, we consider the following problem, which arises from taking the quasi-periodic Floquet Bloch transform in (2.1)-(2.2): For $\alpha \in[-1 / 2,1 / 2]$, determine $u_{\alpha} \in H_{\alpha, l o c}^{1}\left(C_{\infty}\right)$ such that

$$
\begin{gather*}
\Delta u_{\alpha}+k^{2} n u_{\alpha}=f_{\alpha} \text { in } C_{\infty} \tag{2.5}\\
u_{\alpha}=0 \text { on }(0,2 \pi) \times\{0\} \tag{2.6}
\end{gather*}
$$

Here, it is a natural to impose the Rayleigh expansion of the form

$$
\begin{equation*}
u_{\alpha}(x)=\sum_{n \in \mathbb{Z}} u_{n}(\alpha) e^{i n x_{1}+i \sqrt{k^{2}-(n+\alpha)^{2}}\left(x_{2}-h\right)}, x_{2}>h \tag{2.7}
\end{equation*}
$$

where $u_{n}(\alpha):=(2 \pi)^{-1} \int_{0}^{2 \pi} u_{\alpha}\left(x_{1}, h\right) e^{-i n x_{1}} d x_{1}$ are the Fourier coefficients of $u_{\alpha}(\cdot, h)$, and $\sqrt{k^{2}-(n+\alpha)^{2}}=$ $i \sqrt{(n+\alpha)^{2}-k^{2}}$ if $n+\alpha>k$. But even with this expansion the uniqueness of this problem fails for some $\alpha \in[-1 / 2,1 / 2]$. We call α exceptional values if there exists non-trivial solutions $u_{\alpha} \in H_{\alpha, l o c}^{1}\left(C_{\infty}\right)$ of (2.5)-(2.7). We set $A_{k}:=\{\alpha \in[-1 / 2,1 / 2]: \exists l \in \mathbb{Z}$ s.t. $|\alpha+l|=k\}$, and make the following assumption:

Assumption 2.1. For every $\alpha \in A_{k}$ the solution of $u_{\alpha} \in H_{\alpha, l o c}^{1}\left(C_{\infty}\right)$ of (2.5)-(2.7) has to be zero.
The following properties of exceptional values was shown in [4].

Lemma 2.2. Let Assumption 2.1 hold. Then, there exists only finitely many exceptional values $\alpha \in[-1 / 2,1 / 2]$. Furthermore, if α is an exceptional value, then so is $-\alpha$. Therefore, the set of exceptional values can be described by $\left\{\alpha_{j}: j \in J\right\}$ where some $J \subset \mathbb{Z}$ is finite and $\alpha_{-j}=-\alpha_{j}$ for $j \in J$. For each exceptional value α_{j} we define

$$
X_{j}:=\left\{\phi \in H_{\alpha_{j}, l o c}^{1}\left(C_{\infty}\right): \begin{array}{c}
\Delta \phi+k^{2} n \phi=0 \text { in } C_{\infty}, \quad \phi=0 \text { for } x_{2}=0 \\
\phi \text { satisfies the Rayleigh expansion }(2.7)
\end{array}\right\}
$$

Then, X_{j} are finite dimensional. We set $m_{j}=\operatorname{dim} X_{j}$. Furthermore, $\phi \in X_{j}$ is evanescent, that is, there exists $c>0$ and $\delta>0$ such that $|\phi(x)|,|\nabla \phi(x)| \leq c e^{-\delta\left|x_{2}\right|}$ for all $x \in C_{\infty}$.

Next, we consider the following eigenvalue problem in X_{j} : Determine $d \in \mathbb{R}$ and $\phi \in X_{j}$ such that

$$
\begin{equation*}
-i \int_{C_{\infty}} \frac{\partial \phi}{\partial x_{1}} \bar{\psi} d x=d k \int_{C_{\infty}} n \phi \bar{\psi} d x \tag{2.8}
\end{equation*}
$$

for all $\psi \in X_{j}$. We denote by the eigenvalues $d_{l, j}$ and eigenfunction $\phi_{l, j}$ of this problem, that is,

$$
\begin{equation*}
-i \int_{C_{\infty}} \frac{\partial \phi_{l, j}}{\partial x_{1}} \bar{\psi} d x=d_{l, j} k \int_{C_{\infty}} n \phi_{l, j} \bar{\psi} d x \tag{2.9}
\end{equation*}
$$

for every $l=1, \ldots, m_{j}$ and $j \in J$. We normalize the eigenfunction $\left\{\phi_{l, j}: l=1, \ldots, m_{j}\right\}$ such that

$$
\begin{equation*}
k \int_{C_{\infty}} n \phi_{l, j} \overline{\phi_{l^{\prime}, j}} d x=\delta_{l, l^{\prime}} \tag{2.10}
\end{equation*}
$$

for all l, l^{\prime}. We will assume that the wave number $k>0$ is regular in the following sense.
Definition 2.3. $k>0$ is regular if $d_{l, j} \neq 0$ for all $l=1, \ldots m_{j}$ and $j \in J$.
Now we are ready to define the radiation condition.
Definition 2.4. Let Assumptions 2.1 hold, and let $k>0$ be regular in the sense of Definition 2.3. We set

$$
\begin{equation*}
\psi^{ \pm}\left(x_{1}\right):=\frac{1}{2}\left[1 \pm \frac{2}{\pi} \int_{0}^{x_{1} / 2} \frac{\sin t}{t} d t\right], x_{1} \in \mathbb{R} \tag{2.11}
\end{equation*}
$$

Then, $u \in H_{l o c}^{1}\left(\mathbb{R}_{+}^{2}\right)$ satisfies the radiation condition if u satisfies the upward propagating radiation condition (2.4), and has a decomposition in the form $u=u^{(1)}+u^{(2)}$ where $\left.u^{(1)}\right|_{\mathbb{R} \times(0, R)} \in H^{1}(\mathbb{R} \times$ $(0, R))$ for all $R>0$, and $u^{(2)} \in L^{\infty}\left(\mathbb{R}_{+}^{2}\right)$ has the following form

$$
\begin{equation*}
u^{(2)}(x)=\psi^{+}\left(x_{1}\right) \sum_{j \in J} \sum_{d_{l, j}>0} a_{l, j} \phi_{l, j}(x)+\psi^{-}\left(x_{1}\right) \sum_{j \in J} \sum_{d_{l, j}<0} a_{l, j} \phi_{l, j}(x) \tag{2.12}
\end{equation*}
$$

where some $a_{l, j} \in \mathbb{C}$, and $\left\{d_{l, j}, \phi_{l, j}: l=1, \ldots, m_{j}\right\}$ are normalized eigenvalues and eigenfunctions of the problem (2.8).
Remark 2.5. It is obvious that we can replace ψ^{+}by any smooth functions $\tilde{\psi}^{ \pm}$with $\tilde{\psi}^{+}\left(x_{1}\right)=$ $1+\mathcal{O}\left(1 / x_{1}\right)$ as $x_{1} \rightarrow \infty$ and $\tilde{\psi}^{+}\left(x_{1}\right)=\mathcal{O}\left(1 / x_{1}\right)$ as $x_{1} \rightarrow-\infty$ and $\frac{d}{d x_{1}} \tilde{\psi}^{+}\left(x_{1}\right) \rightarrow 0$ as $\left|x_{1}\right| \rightarrow \infty$ (and analogously for ψ^{-}).

The following was shown in Theorems 2.2, 6.6, and 6.8 of [4].
Theorem 2.6. For every $f \in L^{2}\left(\mathbb{R}_{+}^{2}\right)$ with the compact support in W, there exists a unique solution $u_{k+i \epsilon} \in H^{1}\left(\mathbb{R}_{+}^{2}\right)$ of the problem (2.1)-(2.2) replacing k by $k+i \epsilon$. Furthermore, $u_{k+i \epsilon}$ converge as $\epsilon \rightarrow+0$ in $H_{l o c}^{1}\left(\mathbb{R}_{+}^{2}\right)$ to some $u \in H_{l o c}^{1}\left(\mathbb{R}_{+}^{2}\right)$ which satisfy (2.1)-(2.2) and the radiation condition in the sense of Definition 2.4. Furthermore, the solution u of this problem is uniquely determined.

3 A factorization of the near field operator

In Section 3, we discuss a factorization of the near field operator N. We define the operator $L: L^{2}(Q) \rightarrow L^{2}(M)$ by $L f:=\left.v\right|_{M}$ where v satisfies the radiation condition in the sense of Definition 2.4 and

$$
\begin{gather*}
\Delta v+k^{2}(1+q) n v=-k^{2} \frac{n q}{\sqrt{|n q|}} f, \text { in } \mathbb{R}_{+}^{2} \tag{3.1}\\
v=0 \text { on } \mathbb{R} \times\{0\} \tag{3.2}
\end{gather*}
$$

We define $H: L^{2}(M) \rightarrow L^{2}(Q)$ by

$$
\begin{equation*}
H g(x):=\sqrt{|n(x) q(x)|} \int_{M} \overline{G_{n}(x, y)} g(y) d s(y), x \in Q \tag{3.3}
\end{equation*}
$$

Then, by these definition we have $N=L H$. In order to make a symmetricity of the factorization of the near field operator N, we will show the following symmetricity of the Green function G_{n}.

Lemma 3.1.

$$
\begin{equation*}
G_{n}(x, y)=G_{n}(y, x), x \neq y \tag{3.4}
\end{equation*}
$$

Proof of Lemma 3.1. We take a small $\eta>0$ such that $B_{2 \eta}(x) \cap B_{2 \eta}(y)=\emptyset$ where $B_{\epsilon}(z) \subset \mathbb{R}^{2}$ is some open ball with center z and radius $\epsilon>0$. We recall that $G_{n}(z, y)=G(z, y)+\tilde{u}^{s}(z, y)$ where $G(z, y)=\Phi_{k}(z, y)-\Phi_{k}\left(z, y^{*}\right)$ and $\tilde{u}^{s}(z, y)$ is a radiating solution of the problem (1.5) such that $\tilde{u}^{s}(z, y)=0$ for $z_{2}=0$. In Introduction of [4] \tilde{u}^{s} is given by $\tilde{u}^{s}(z, y)=u(z, y)-\chi(|z-y|) G(z, y)$ where $\chi \in C^{\infty}\left(\mathbb{R}_{+}\right)$satisfying $\chi(t)=0$ for $0 \leq t \leq \eta / 2$ and $\chi(t)=1$ for $t \geq \eta$, and u is a radiating solution such that $u=0$ on $\mathbb{R} \times\{0\}$ and

$$
\begin{gather*}
\Delta u+k^{2} n u=f(\cdot, y) \text { in } \mathbb{R}_{+}^{2}, \tag{3.5}\\
u=0 \text { on } \mathbb{R} \times\{0\} \tag{3.6}
\end{gather*}
$$

where

$$
\begin{equation*}
f(\cdot, y):=\left[k^{2}(1-n)(1-\chi(|\cdot-y|))+\Delta \chi(|\cdot-y|)\right] G(\cdot, y)+2 \nabla \chi(|\cdot-y|) \cdot \nabla G(\cdot, y) \tag{3.7}
\end{equation*}
$$

Then, we have $G_{n}(z, y)=u(z, y)+(1-\chi(|z-y|)) G(z, y)$. By Theorem 2.6 we can take an solution $u_{\epsilon} \in H^{1}\left(\mathbb{R}_{+}^{2}\right)$ of the problem (3.5)-(3.6) replacing k by $(k+i \epsilon)$ satisfying u_{ϵ} converges as $\epsilon \rightarrow+0$ in $H_{l o c}^{1}\left(\mathbb{R}_{+}^{2}\right)$ to u. We set $G_{n, \epsilon}(z, y):=u_{\epsilon}(z, y)+(1-\chi(|z-y|)) G(z, y)$, and $G_{n, \epsilon}(z, y)$ converges as $\epsilon \rightarrow+0$ to $G(z, y)$ pointwise for $z \in \mathbb{R}_{+}^{2}$. By the simple calculation, we have

$$
\begin{equation*}
\left[\Delta_{z}+(k+i \epsilon)^{2} n(z)\right] G_{n, \epsilon}(z, y)=-\delta(z, y)+\left(2 k \epsilon i-\epsilon^{2}\right) n(z)(1-\chi(|z-y|)) G(z, y) \tag{3.8}
\end{equation*}
$$

Let $r>0$ be large enough such that $x, y \in B_{r}(0)$. By Green's second theorem in $B_{r}(0) \cap \mathbb{R}_{+}^{2}$ we
have

$$
\begin{align*}
- & G_{n, \epsilon}(y, x)+\left(2 k \epsilon i-\epsilon^{2}\right) \int_{B_{2 \eta}(y)} u_{\epsilon}(z, x) n(z)(1-\chi(|z-y|)) G(z, y) d z \\
& +G_{n, \epsilon}(x, y)-\left(2 k \epsilon i-\epsilon^{2}\right) \int_{B_{2 \eta}(x)} u_{\epsilon}(z, y) n(z)(1-\chi(|z-x|)) G(z, x) d z \\
= & \int_{B_{r}(0) \cap \mathbb{R}_{+}^{2}} G_{n, \epsilon}(z, x)\left[\Delta_{z}+(k+i \epsilon)^{2} n(z)\right] G_{n, \epsilon}(z, y) d z \\
& -\int_{B_{r}(0) \cap \mathbb{R}_{+}^{2}} G_{n, \epsilon}(z, y)\left[\Delta_{z}+(k+i \epsilon)^{2} n(z)\right] G_{n, \epsilon}(z, x) d z \\
= & \int_{\partial B_{r}(0) \cap \mathbb{R}_{+}^{2}} u_{\epsilon}(z, x) \frac{\partial u_{\epsilon}(z, y)}{\partial \nu_{z}}-u_{\epsilon}(z, y) \frac{\partial u_{\epsilon}(z, x)}{\partial \nu_{z}} d s(z) \tag{3.9}
\end{align*}
$$

Since $u_{\epsilon} \in H^{1}\left(\mathbb{R}_{+}^{2}\right)$, the right hand side of (3.9) converges as $r \rightarrow \infty$ to zero. Then, as $r \rightarrow \infty$ in (3.9) we have

$$
\begin{align*}
& G_{n, \epsilon}(x, y)-G_{n, \epsilon}(y, x) \\
& \quad=\left(2 k \epsilon i-\epsilon^{2}\right) \int_{B_{2 \eta}(x)} u_{\epsilon}(z, y) n(z)(1-\chi(|z-x|)) G(z, x) d z \\
& \quad-\quad\left(2 k \epsilon i-\epsilon^{2}\right) \int_{B_{2 \eta}(y)} u_{\epsilon}(z, x) n(z)(1-\chi(|z-y|)) G(z, y) d z \tag{3.10}
\end{align*}
$$

Since u_{ϵ} converges as $\epsilon \rightarrow+0$ in $H_{l o c}^{1}\left(\mathbb{R}_{+}^{2}\right)$ to u, the right hand side of (3.10) converges to zero as $\epsilon \rightarrow+0$. Therefore, we conclude that $G_{n}(x, y)=G_{n}(y, x)$ for $x \neq y$.

By the symmetricity of G_{n},

$$
\begin{align*}
\langle H g, f\rangle & =\int_{Q}\left\{\sqrt{|n(x) q(x)|} \int_{M} \overline{G_{n}(x, y)} g(y) d s(y)\right\} \overline{f(x)} d x \\
& =\int_{M} g(y)\left\{\overline{\left.\int_{Q} \sqrt{|n(x) q(x)|} G_{n}(x, y) f(x) d s(x)\right\}} d s(y)\right. \\
& =\int_{M} g(y)\left\{\overline{\left.\int_{Q} \sqrt{|n(x) q(x)|} G_{n}(y, x) f(x) d s(x)\right\}} d s(y)\right. \tag{3.11}
\end{align*}
$$

which implies that

$$
\begin{equation*}
H^{*} f(x)=\int_{Q} \sqrt{|n(y) q(y)|} G_{n}(x, y) f(y) d s(y), x \in M \tag{3.12}
\end{equation*}
$$

We define $T: L^{2}(Q) \rightarrow L^{2}(Q)$ by $T f:=\frac{|n q|}{k^{2} n q} f-\sqrt{|n q|} w$ where w satisfies the radiation condition and

$$
\begin{gather*}
\Delta w+k^{2} n w=-\sqrt{|n q|} f, \text { in } \mathbb{R}_{+}^{2} \tag{3.13}\\
v=0 \text { on } \mathbb{R} \times\{0\} \tag{3.14}
\end{gather*}
$$

We will show the following integral representation of w.

Lemma 3.2.

$$
\begin{equation*}
w(x)=\int_{Q} \sqrt{|n(y) q(y)|} G_{n}(x, y) f(y) d y, x \in \mathbb{R}_{+}^{2} \tag{3.15}
\end{equation*}
$$

Proof of Lemma 3.2. Let $w_{\epsilon} \in H_{l o c}^{1}\left(\mathbb{R}_{+}^{2}\right)$ be a solution of the problem (3.13)-(3.14) replacing k by $(k+i \epsilon)$ satisfying w_{ϵ} converges as $\epsilon \rightarrow+0$ in $H_{l o c}^{1}\left(\mathbb{R}_{+}^{2}\right)$ to w. Let $G_{n, \epsilon}(y, x)$ be an approximation of the Green's function $G_{n}(y, x)$ as same as in Lemma 3.1. Let $r>0$ be large enough such that $x \in B_{r}(0)$. By Green's second theorem in $B_{r}(0) \cap \mathbb{R}_{+}^{2}$ we have

$$
\begin{align*}
- & w_{\epsilon}(x)+\left(2 k \epsilon i-\epsilon^{2}\right) \int_{B_{2 \eta}(x)} w_{\epsilon}(y) n(y)(1-\chi(|y-x|)) G(y, x) d y \\
& +\int_{Q} \sqrt{|n(y) q(y)|} G_{n, \epsilon}(y, x) f(y) d y \\
& =\int_{B_{r}(0) \cap \mathbb{R}_{+}^{2}} w_{\epsilon}(y)\left[\Delta_{y}+(k+i \epsilon)^{2} n(y)\right] G_{n, \epsilon}(y, x) d y \\
& -\int_{B_{r}(0) \cap \mathbb{R}_{+}^{2}} G_{n, \epsilon}(y, x)\left[\Delta_{y}+(k+i \epsilon)^{2} n(y)\right] w_{\epsilon}(y) d z \\
& =\int_{\partial B_{r}(0) \cap \mathbb{R}_{+}^{2}} w_{\epsilon}(y) \frac{\partial u_{\epsilon}(y, x)}{\partial \nu_{y}}-u_{\epsilon}(y, x) \frac{\partial w_{\epsilon}(y)}{\partial \nu_{y}} d s(y) \tag{3.16}
\end{align*}
$$

Since $u_{\epsilon}, w_{\epsilon} \in H^{1}\left(\mathbb{R}_{+}^{2}\right)$, the right hand side of (3.16) converges as $r \rightarrow \infty$ to zero. Then, as $r \rightarrow \infty$ in (3.16) we have

$$
\begin{align*}
w_{\epsilon}(x) & =\left(2 k \epsilon i-\epsilon^{2}\right) \int_{B_{2 \eta}(x)} w_{\epsilon}(y) n(y)(1-\chi(|y-x|)) G(y, x) d y \\
& +\int_{Q} \sqrt{|n(y) q(y)|} G_{n, \epsilon}(y, x) f(y) d y \tag{3.17}
\end{align*}
$$

The first term of right hand side in (3.17) converges to zero as $\epsilon \rightarrow+0$, and the second term converges to $\int_{Q} \sqrt{|n(y) q(y)|} G_{n}(y, x) f(y) d y$ as $\epsilon \rightarrow+0$. As $\epsilon \rightarrow+0$ in (3.17) and by the symmetricity of G_{n} (Lemma 3.1) we conclude (3.15).

Since w satisfies

$$
\begin{align*}
\Delta w+k^{2}(1+q) n w & =-k^{2} \frac{n q}{\sqrt{|n q|}}\left\{\frac{|n q|}{k^{2} n q} f-\sqrt{|n q|} w\right\} \text { in } \mathbb{R}_{+}^{2} \\
& =-k^{2} \frac{n q}{\sqrt{|n q|}} T f \tag{3.18}
\end{align*}
$$

we have $\left.w\right|_{M}=L T f$. Therefore, by (3.12) and (3.15) we have $H^{*}=L T$. Then, we have the following symmetric factorization:

$$
\begin{equation*}
N=L T^{*} L^{*} \tag{3.19}
\end{equation*}
$$

We will show the following lemma.
Lemma 3.3. (a) L is compact with dense range in $L^{2}(M)$.
(b) If there exists the constant $q_{\text {min }}>0$ such that $q_{\min } \leq q$ a.e. in Q, then $\operatorname{Re} T$ has the form $\operatorname{Re} T=C+K$ with some self-adjoint and positive coercive operator C and some compact operator K on $L^{2}(Q)$.
(c) $\operatorname{Im}\langle f, T f\rangle \geq 0$ for all $f \in L^{2}(Q)$.
(d) T is injective.

Proof of Lemma 3.3. (d) Let $f \in L^{2}(Q)$ and $T f=0$, i.e., $\frac{|n q|}{k^{2} n q} f=\sqrt{|n q|} w$ where w satisfies (3.13)-(3.14). Then, $\Delta w+k^{2} n(1+q) w=0$. By the uniqueness, $w=0$ in \mathbb{R}_{+}^{2} which implies that $f=0$. Therefore T is injective.
(b) Since n and q are bounded below (that is, $n \geq n_{\min }>0$ and $q \geq q_{\min }>0$), T has the form $T=C+K$ where K is some compact operator and C is some self-adjoint and positive coercive operator. Furthermore, from the injectivity of T we obtain that T is bijective.
(a) By the trace theorem and $v \in H_{l o c}^{1}\left(\mathbb{R}_{+}^{2}\right), L f=\left.v\right|_{M} \in H^{1 / 2}(M)$, which implies that L : $L^{2}(Q) \rightarrow L^{2}(M)$ is compact.

By the bijectivity of T and $H=T^{*} L^{*}$, it is sufficient to show the injectivity of H. Let $g \in L^{2}(M)$ and $H g(x)=\sqrt{|n(x) q(x)|} \int_{M} \overline{G_{n}(x, y)} g(y) d s(y)=0$ for $\quad x \in Q$. We set $v(x):=$ $\int_{M} \overline{G_{n}(x, y)} g(y) d s(y)$. By the definition of v we have

$$
\begin{equation*}
\Delta v+k^{2} n v=0, \text { in } \mathbb{R}_{+}^{2} \backslash M \tag{3.20}
\end{equation*}
$$

and since q are bounded below, $v=0$ in Q. By unique continuation principle we have $v=0$ in $\mathbb{R}_{+}^{2} \backslash M$. By the jump relation, we have $0=\frac{\partial v_{+}}{\partial \nu}-\frac{\partial v_{-}}{\partial \nu}=g$, which conclude that the operator H is injective.
(c) For the proof of (c) we refer to Theorem 3.1 in [1]. By the definition of T we have

$$
\begin{equation*}
\operatorname{Im}\langle f, T f\rangle=-\operatorname{Im} \int_{Q} f \sqrt{|n q|} \bar{w} d x=\operatorname{Im} \int_{Q} \bar{w}\left[\Delta+k^{2} n\right] w d x \tag{3.21}
\end{equation*}
$$

where w is a radiating solution of the problem (3.13)-(3.14). We set $\Omega_{N}:=(-N, N) \times\left(0, N^{s}\right)$ where $s>0$ is small enough and $N>0$ is large enough. By the same argument in Theorem 3.1 of [1] we have

$$
\begin{align*}
& \operatorname{Im}\langle f, T f\rangle=\operatorname{Im} \int_{\Omega_{N}} \bar{w}\left[\Delta+k^{2} n\right] w d x=\operatorname{Im} \int_{\Omega_{N}} \bar{w} \Delta w d x \\
& \quad \geq\left[\frac{1}{2 \pi} \sum_{j \in J} \sum_{d_{l, j}, d_{l^{\prime}, j}>0} \overline{a_{l, j}} a_{l^{\prime}, j} \int_{C_{\phi(N)}} \overline{\phi_{l, j}} \frac{\partial \phi_{l^{\prime}, j}}{\partial x_{1}} d x\right] \\
& \quad-\operatorname{Im}\left[\frac{1}{2 \pi} \sum_{j \in J} \sum_{d_{l, j}, d_{l^{\prime}, j}<0} \overline{a_{l, j}} a_{l^{\prime}, j} \int_{C_{\phi(N)}} \overline{\phi_{l, j}} \frac{\partial \phi_{l^{\prime}, j}}{\partial x_{1}} d x\right]+o(1), \tag{3.22}
\end{align*}
$$

where where some $a_{l, j} \in \mathbb{C}$, and $\left\{d_{l, j}, \phi_{l, j}: l=1, \ldots, m_{j}\right\}$ are normalized eigenvalues and eigenfunctions of the problem (2.8). By Lemmas 6.3 and 6.4 of [4], as $N \rightarrow \infty$ in (3.22) we have

$$
\begin{equation*}
\operatorname{Im}\langle f, T f\rangle \geq \frac{k}{2 \pi} \sum_{j \in J}\left[\sum_{d_{l, j}>0}\left|a_{l, j}\right|^{2} d_{l, j}-\sum_{d_{l, j}<0}\left|a_{l, j}\right|^{2} d_{l, j}\right] \geq 0 \tag{3.23}
\end{equation*}
$$

which concludes (c).

In order to show Theorems 1.1 and 1.2 , we consider another factorization of the near field operator N. We define $\tilde{T}: L^{2}(Q) \rightarrow L^{2}(Q)$ by $\tilde{T} v:=k^{2} \frac{n q}{|n q|} g-k^{2} \frac{n q}{\sqrt{|n q|}} v$ where v satisfies the radiation condition and

$$
\begin{gather*}
\Delta v+k^{2}(1+q) n v=-k^{2} \frac{n q}{\sqrt{|n q|}} g, \text { in } \mathbb{R}_{+}^{2}, \tag{3.24}\\
v=0 \text { on } \mathbb{R} \times\{0\} . \tag{3.25}
\end{gather*}
$$

Then, by the definition of T and \tilde{T} we can show that $\tilde{T} T=I$ and $T \tilde{T}=I$, which implies that $T^{-1}=\tilde{T}$. Therefore, we have by $L=H^{*} T^{-1}$

$$
\begin{equation*}
N=L T^{*} L^{*}=H^{*} T^{-1} H=H^{*} \tilde{T} H=H_{Q}^{*} \hat{T} H_{Q} \tag{3.26}
\end{equation*}
$$

where $H_{Q}: L^{2}(M) \rightarrow L^{2}(Q)$ is defined by

$$
\begin{equation*}
H_{Q} g(x):=\int_{M} \overline{G_{n}(x, y)} g(y) d s(y), x \in Q \tag{3.27}
\end{equation*}
$$

and $\hat{T}: L^{2}(Q) \rightarrow L^{2}(Q)$ is defined by $\hat{T} f=k^{2} n q f+k^{2} n q w$ where w satisfies the radiation condition and

$$
\begin{gather*}
\Delta w+k^{2}(1+q) n w=-k^{2} n q f, \text { in } \mathbb{R}_{+}^{2}, \tag{3.28}\\
w=0 \text { on } \mathbb{R} \times\{0\} \tag{3.29}
\end{gather*}
$$

We will show the following lemma.
Lemma 3.4. Let B and Q be a bounded open set in \mathbb{R}_{+}^{2}.
(a) $\operatorname{dim}\left(\operatorname{Ran}\left(H_{B}^{*}\right)\right)=\infty$.
(b) If $B \cap Q=\emptyset$, then $\operatorname{Ran}\left(H_{B}^{*}\right) \cap \operatorname{Ran}\left(H_{Q}^{*}\right)=\{0\}$.

Proof of Lemma 3.4. (a) By the same argument of the injectivity of H in (a) of Lemma 4.3, we can show that H_{B} is injective. Therefore, H_{B}^{*} has dense range.
(b) Let $h \in \operatorname{Ran}\left(H_{B}^{*}\right) \cap \operatorname{Ran}\left(H_{Q}^{*}\right)$. Then, there exists f_{B}, f_{Q} suct that $h=H_{B}^{*} f_{B}=H_{Q}^{*} f_{Q}$. We set

$$
\begin{align*}
& v_{B}(x):=\int_{B} G_{n}(x, y) f_{B}(y) d y, x \in \mathbb{R}_{+}^{2} \tag{3.30}\\
& v_{Q}(x):=\int_{Q} G_{n}(x, y) f_{Q}(y) d y, x \in \mathbb{R}_{+}^{2} \tag{3.31}
\end{align*}
$$

then, v_{B} and v_{Q} satisfies $\Delta v_{B}+k^{2} n v_{B}=-f_{B}$, and $\Delta v_{Q}+k^{2} n v_{Q}=-f_{Q}$, respectively, and $v_{B}=v_{Q}$ on M. By Rellich lemma and unique continuation we have $v_{B}=v_{Q}$ in $\mathbb{R}_{+}^{2} \backslash(\overline{B \cap Q})$. Hence, we can define $v \in H_{l o c}^{1}\left(\mathbb{R}^{2}\right)$ by

$$
v:= \begin{cases}v_{B}=v_{Q} & \text { in } \mathbb{R}_{+}^{2} \backslash(\overline{B \cap Q}) \tag{3.32}\\ v_{B} & \text { in } Q \\ v_{Q} & \text { in } B\end{cases}
$$

and v is a radiating solution such that $v=0$ for $x_{2}=0$ and

$$
\begin{equation*}
\Delta v+k^{2} n v=0 \text { in } \mathbb{R}_{+}^{2} \tag{3.33}
\end{equation*}
$$

By the uniqueness, we have $v=0$ in \mathbb{R}^{2}, which implies that $h=0$.

4 Proof of Theorem 1.1

In Section 4, we will show Theorem 1.3. Let $B \subset Q$. We define $K: L^{2}(Q) \rightarrow L^{2}(Q)$ by $K f:=k^{2} n q w$ where w is a radiating solution of the problem (3.28)-(3.29). Since $\left.w\right|_{Q} \in H^{1}(Q), K$ is a compact operator. Let V be the sum of eigenspaces of $\operatorname{Re} K$ associated to eigenvalues less than $\alpha-k^{2} n_{\min } q_{\text {min }}$. Since $\alpha-k^{2} n_{\min } q_{\min }<0$, then V is a finite dimensional and for $H_{Q} g \in V^{\perp}$

$$
\begin{align*}
\langle\operatorname{Re} N g, g\rangle & =\int_{Q} k^{2} n q\left|H_{Q} g\right|^{2} d x+\left\langle(\operatorname{Re} K) H_{Q} g, H_{Q} g\right\rangle \\
& \geq k^{2} n_{\min } q_{\min }\left\|H_{Q} g\right\|^{2}+\left(\alpha-k^{2} n_{\min } q_{\min }\right)\left\|H_{Q} g\right\|^{2} \\
& \geq \alpha\left\|H_{Q} g\right\|^{2} \geq \alpha\left\|H_{B} g\right\|^{2} \tag{4.1}
\end{align*}
$$

Since for $g \in L^{2}(M)$

$$
\begin{equation*}
H_{Q} g \in V^{\perp} \quad \Longleftrightarrow \quad g \in\left(H_{Q}^{*} V\right)^{\perp} \tag{4.2}
\end{equation*}
$$

and $\operatorname{dim}\left(H_{Q}^{*} V\right) \leq \operatorname{dim}(V)<\infty$, we have by Corollary 3.3 of [3] that $\alpha H_{B}^{*} H_{B} \leq_{\text {fin }} \operatorname{Re} N$.
Let now $B \not \subset Q$ and assume on the contrary $\alpha H_{B}^{*} H_{B} \leq_{\text {fin }} \operatorname{Re} N$, that is, by Corollary 3.3 of [3] there exists a finite dimensional subspace W in $L^{2}(M)$ such that

$$
\begin{equation*}
\left\langle\left(\operatorname{Re} N-\alpha H_{B}^{*} H_{B}\right) w, w\right\rangle \geq 0 \tag{4.3}
\end{equation*}
$$

for all $w \in W^{\perp}$. Since $B \not \subset Q$, we can take a small open domain $B_{0} \subset B$ such that $B_{0} \cap Q=\emptyset$, which implies that for all $w \in W^{\perp}$

$$
\begin{align*}
\alpha\left\|H_{B_{0}} w\right\|^{2} & \leq \alpha\left\|H_{B} w\right\|^{2} \\
& \leq\langle(\operatorname{Re} N) w, w\rangle \\
& =\left\langle(\operatorname{Re} \hat{T}) H_{Q} w, H_{Q} w\right\rangle \\
& \leq\|\operatorname{Re} \hat{T}\|\left\|H_{Q} w\right\|^{2} . \tag{4.4}
\end{align*}
$$

By (a) of Lemma 4.7 in [3], we have

$$
\begin{equation*}
\operatorname{Ran}\left(H_{B_{0}}^{*}\right) \nsubseteq \operatorname{Ran}\left(H_{Q}^{*}\right)+W=\operatorname{Ran}\left(H_{Q}^{*}, P_{W}\right) \tag{4.5}
\end{equation*}
$$

where $P_{W}: L^{2}(M) \rightarrow L^{2}(M)$ is the orthognal projection on W. Lemma 4.6 of [3] implies that for any $C>0$ there exists a w_{c} such that

$$
\begin{equation*}
\left\|H_{B_{0}} w_{c}\right\|^{2}>C^{2}\left\|\binom{H_{Q}}{P_{V}} w_{c}\right\|^{2}=C^{2}\left(\left\|H_{Q} w_{c}\right\|^{2}+\left\|P_{W} w_{c}\right\|^{2}\right) \tag{4.6}
\end{equation*}
$$

Hence, there exists a sequence $\left(w_{m}\right)_{m \in \mathbb{N}} \subset L^{2}\left(\mathbb{S}^{1}\right)$ such that $\left\|H_{B_{0}} w_{m}\right\| \rightarrow \infty$ and $\left\|H_{Q} w_{m}\right\|+$ $\left\|P_{V} w_{m}\right\| \rightarrow 0$ as $m \rightarrow \infty$. Setting $\tilde{w}_{m}:=w_{m}-P_{W} w_{m} \in W^{\perp}$ we have as $m \rightarrow \infty$,

$$
\begin{gather*}
\left\|H_{B_{0}} \tilde{w}_{m}\right\| \geq\left\|H_{B_{0}} w_{m}\right\|-\left\|H_{B_{0}}\right\|\left\|P_{W} w_{m}\right\| \rightarrow \infty \tag{4.7}\\
\left\|H_{Q} \tilde{w}_{m}\right\| \leq\left\|H_{Q} w_{m}\right\|+\left\|H_{Q}\right\|\left\|P_{W} w_{m}\right\| \rightarrow 0 \tag{4.8}
\end{gather*}
$$

This contradicts (4.4). Therefore, we have $\alpha H_{B}^{*} H_{B} \not Z_{\mathrm{fin}} \operatorname{Re} N$. Theorem 1.3 has been shown.
By the same argument in Theorem 1.3 we can show the following.
Corollary 4.1. Let $B \subset \mathbb{R}^{2}$ be a bounded open set. Let Assumption hold, and assume that there exists $q_{\max }<0$ such that $q \leq q_{\max }$ a.e. in Q. Then for $0<\alpha<k^{2} n_{\min }\left|q_{\max }\right|$,

$$
\begin{equation*}
B \subset Q \quad \Longleftrightarrow \quad \alpha H_{B}^{*} H_{B} \leq_{\text {fin }}-\operatorname{Re} N \tag{4.9}
\end{equation*}
$$

References

[1] T. Furuya, Scattering by the local perturbation of an open periodic waveguide in the half plane, Prepreint arXiv:1906.01180, (2019).
[2] T. Furuya, The factorization and monotonicity method for the defect in an open periodic waveguide, Prepreint arXiv:1907.10670, (2019).
[3] B. Harrach, V. Pohjola, M. Salo, Monotonicity and local uniqueness for the Helmholtz equation, Anal PDE., 12, (2019), no. 7, 1741-1771.
[4] A. Kirsch, A. Lechleiter, The limiting absorption principle and a radiation condition for the scattering by a periodic layer, SIAM J. Math. Anal. 50, (2018), no. 3, 2536-2565.

