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1 Introduction

Let £ > 0 be the wave number, and let Ri := R X (0,00) be the upper half plane, and let W :=
R x (0,h) be the waveguide in R%. We denote by T, := R x {a} for a > 0. Let n € L>°(R%) be real
value, 27-periodic with respect to z1 (that is, n(x1 + 27, x2) = n(21, 22) for all @ = (z1,22) € R2),
and equal to one for zo > h. We assume that there exists a constant ng > 0 such that n > ng in
R2. Let ¢ € L®(R%) be real value with the compact support in W. We denote by @ := suppq. We
assume that R? \ @ is connected.

We consider the following scattering problem: For fixed y € ]R?,r \ W, determine the scattered
field u® € HL (R%) such that

loc
Au® + K (1 + g)nu® = —k2*gqnu’(-,y) in RZ, (1.1)
u® =0 on T, (1.2)

Here, the incident field u’ is given by u(z,y) = G, (x,y), where G, is the Dirichlet Green’s function
in the upper half plane ]R?,r for A + k?n, that is,

Gn(x,y) = G(ac,y) + ﬂ,s(z“y)’ (1'3)

where G(z,y) = Pr(z,y) — Px(z,y*) is the Dirichlet Green’s function in Ri for A + k2, and
y* = (y1, —y2) is the reflected point of y at R x {0}. Here, ®(x,y) is the fundamental solution to
Helmholtz equation in R2, that is,

i
Bi(e,y) = JH (e —y)), @ 4y, (1.4)

and @® is the scattered field of the unperturbed problem by the incident field G(x,y), that is, @°
vanishes for zo = 0 and solves

AT + k*na® = k*(1 —n)G(,,y) in R3. (1.5)

If we impose a suitable radiation condition (see Definition 2.4), the unperturbed solution @ is
uniquely determined.

In order to show the well-posedness of the perturbed scattering problem (1.1)—(1.2), we make
the following assumption.

Assumption 1.1. We assume that k? is not the point spectrum of mA mn H& (Ri), that 1is,
evey v € HY(RY) which satisfies

Av+ k(14 ¢)nv =0 in RY, (1.6)
v=0on Ty, (1.7)

has to vanish for xs > 0.



The following theorem was shown in Theorem 1.2 of [1].

Theorem 1.2. Let Assumptions 1.1 hold and let [ € LQ(Ri) such that suppf = Q. Then, there
exists a unique solution u € HY (R%) such that

Au+ k(1 + q)nu = f in R%, (1.8)

u =0 on Iy, (1.9)

and u satisfies the radiation condition in the sense of Definition 2./.

Roughly speaking, this radiation condition requires that we have a decomposition of the solution
w into uM which decays in the direction of z1, and a finite combination u®@ of propagative modes
which does not decay in x1, but it exponentially decays in x9. In Section 2, we will study details of
the radiation condition.

By Theorem 1.2, the well-posedness of this perturbed scattering problem (1.1)—(1.2) holds.
Then, we are now able to consider the inverse problem of determining the support of ¢ from measured
scattered field u® by the incident field u?. Let M := {(x1,m) : a < z1 < b} for a < b and m > h,
and Q := suppg. With the scattered field u®, we define the near field operator N = L*(M) — L*(M)
by

Ng(z) = /M u’(z,y)9(y)ds(y), x € M. (1.10)

The inverse problem we consider here is to determine support @ of g from the scattered field u®(x, y)
for all x and y in M with one fixed £ > 0. In other words, given the near field operator N, determine
Q.

The following theorem was shown in Theorem 1.1 of [2].

Theorem 1.3. Let B C R? be a bounded open set. We assume that there exists qmin > 0 such that
0> Gmin a.e. in Q. Then for 0 < a < k*NminGmin,

BcCQ <~ aHEHp <gn ReN, (1.11)

where the operator Hp : L>(M) — L?(B) is given by
tpg(r) = [ Galrpa(wisty). = € B (112)
M

and the inequality on the right hand side in (1.11) denotes that ReN — aHgHp has only finitely
many negative eigenvalues, and the real part of an operator A is self-adjoint operators given by

1
Re(A) := i(A + A").

By Theorem 1.3, we can understand whether an artificial domain B is contained in @ or not.
Then, by dispersing a lot of balls B in Ri and for each B checking (1.11) we can reconstruct the
shape and location of unknown Q).

This paper is organized as follows. In Section 2, we recall a radiation condition introduced in
[4]. In Section 3, we study several factorizations of the near field operator N, which prepare for the
proof of Theorem 1.3. Finally in Sections 4, we prove Theorems 1.3.
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2 A radiation condition

In Section 2, we recall a radiation condition introduced in [4]. Let f € L*(R2) have the compact
support in W. First, we consider the following direct problem: Determine the scattered field
u € HE (R%) such that

loc

Au+ k*nu = f in R%, (2.1)
uw=0on I'y. (2.2)

(2.1) is understood in the variational sense, that is,

J

for all p € Hl(Ri), with compact support. In such a problem, it is natural to impose the upward
propagating radiation condition, that is, u(-,h) € L>(R) and

[Vu - VP — k*nup|de = — / foda, (2.3)
w

2
+

u(z) = 2/ u(y)wda(y) =0, z3 > h. (2.4)
I Y2
However, even with this condition we can not expect the uniqueness of this problem. (see Example
2.3 of [4].) In order to introduce a suitable radiation condition, Kirsch and Lechleiter discussed
limiting absorption solution of this problem, that is, the limit of the solution wu, of Au. + (k +
i€)?nu, = f as e — 0. For the details of an introduction of this radiation condition, we refer to [4].
Let us prepare for the exact definition of the radiation condition. We denote by Cgr :=
(0,27) x (0, R) for R € (0,00]. The function u € H'(Cg) is called a-quasi periodic if u(27, z2) =
e?™2q(0, 22). We denote by H}(CRr) the subspace of the a-quasi periodic function in H'!(Cg), and
H(,lv,loc(coo) = {u € 0} (Cx) : u|CR€ H}(CR) for all R > 0}. Then, we consider the following
problem, which arises from taking the quasi-periodic Floquet Bloch transform in (2.1)-(2.2): For
a € [-1/2,1/2], determine u, € H}, (Cs) such that

a,loc
Aug + k*nug = f, in Cs. (2.5)
uq =0 on (0,27) x {0}. (2.6)

Here, it is a natural to impose the Rayleigh expansion of the form

ua(x) _ Zun(a)einxﬁri\/kZ,(nJra)Z(xth)’ 29 > h, (2.7)

nez

where u, (o) := (27) 7! fOQW g (w1, h)e” 1 dxy are the Fourier coefficients of 1y (-, k), and \/k2? — (n + a)? =

iv/(n+a)?—k%if n+ a > k. But even with this expansion the uniqueness of this problem
fails for some a € [—1/2,1/2]. We call a exceptional values if there exists non-trivial solutions
Ug € Hé’loc(C’oo) of (2.5)—(2.7). We set Ay :={a €[-1/2,1/2]: J € Z s.t. |« + 1| = k}, and make
the following assumption:

Assumption 2.1. For every a € Ay, the solution of u, € Hé loc

(Cso) of (2.5)—(2.7) has to be zero.

The following properties of exceptional values was shown in [4].



Lemma 2.2. Let Assumption 2.1 hold. Then, there exists only finitely many exceptional values
a € [—1/2,1/2]. Furthermore, if o is an exceptional value, then so is —«. Therefore, the set of
exceptional values can be described by {a; : j € J} where some J C Z is finite and a_j = —o; for
j € J. For each exceptional value oj we define
Ad+E*ng=01in C ¢ =0 for x9 =0
R 1 . 005 2 5
X {(]5 < H"‘J"ZOC(OOO) * ¢ satisfies the Rayleigh expansion (2.7)
Then, X; are finite dimensional. We set mj = dimX;. Furthermore, ¢ € X; is evanescent, that is,
there exists ¢ > 0 and & > 0 such that |p(x)], |Vo(x)| < ce 1%l for all x € Cu.

Next, we consider the following eigenvalue problem in X;: Determine d € R and ¢ € X such
that

Op — _
—i/ —¢wdz = dk/ noyde, (2.8)
o 011 -
for all ¢ € X;. We denote by the eigenvalues d; ; and eigenfunction ¢; ; of this problem, that is,
Oy i — —
—i K, bda = dy jk / ney bz, (2.9)
Coo 8:51 o k

for every I =1,...,m; and j € J. We normalize the eigenfunction {¢;; : I = 1,...,m;} such that
k/ n(bl’jqﬁl/,jd.ﬁ = 6171/, (2.10)
Cxo

for all 1,1’. We will assume that the wave number k > 0 is regular in the following sense.
Definition 2.3. k> 0 is regular if dij # 0 for all = 1,...m; and j € J.
Now we are ready to define the radiation condition.

Definition 2.4. Let Assumptions 2.1 hold, and let £ > 0 be regular in the sense of Definition 2.3.

We set ,

1 2 ("% sint

W) = 5 {1 + ;/ Wt" dt] , 1 €R. (2.11)
0

Then, u € Hlloc(Ri) satisfies the radiation condition if u satisfies the upward propagating radiation
condition (2.4), and has a decomposition in the form u = u") + «(?) where u(l)‘RX( H'(R x

(0,R)) for all R > 0, and u® € L=(R2) has the following form
uP (@) =0 (@)Y Y wd@) v (@)Y D asen(x) (2.12)

jeJ di ;>0 jeJ dy ;<0

0,R)

where some a;; € C, and {d; j, ¢1; : l = 1,...,m;} are normalized eigenvalues and eigenfunctions of
the problem (2.8).
Remark 2.5. It is obvious that we can replace T by any smooth functions ’lZJi with @*(m) =
1+0O(1/x1) as 21 — oo and ¥+ (z1) = O(1/21) as 21 — —occ and %w+(w1) — 0 as |21] — oo (and
analogously for ¢7).

The following was shown in Theorems 2.2, 6.6, and 6.8 of [4].

Theorem 2.6. For every f € LQ(R?F) with the compact support in W, there exists a unique solution
Utic € HY(RZ) of the problem (2.1)-(2.2) replacing k by k + ic. Furthermore, ugr; converge as
€ — +0 in HL (R%) to some u € HE (R%) which satisfy (2.1)-(2.2) and the radiation condition in
the sense of Definition 2.4. Furthermore, the solution u of this problem is uniquely determined.
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3 A factorization of the near field operator

In Section 3, we discuss a factorization of the near field operator N. We define the operator
L : L2Q) — L*M) by Lf = v u Where v satisfies the radiation condition in the sense of
Definition 2.4 and

Av + k2 = k24 ,in R?, .
+E5(1+q) mf 1 (3.1)
v=0onR x {0} (3.2)
We define H : L2(M) — L*(Q) by
Hg(e) i= V@@ | Gl ma)ds). « € Q. (3:3)

Then, by these definition we have N = LH. In order to make a symmetricity of the factorization
of the near field operator N, we will show the following symmetricity of the Green function G,,.

Lemma 3.1.
Gn(x,y) = Gu(y, @), ©#y. (3.4)

Proof of Lemma 3.1. We take a small 77 > 0 such that Ba,(x) N B, (y) = 0 where B(z) C R? is
some open ball with center z and radius € > 0. We recall that G, (z,y) = G(z,y) + @°(z,y) where
G(z,y) = Pr(z,y) — Pi(z,y") and @°(z,y) is a radiating solution of the problem (1.5) such that
@*(z,y) = 0 for z5 = 0. In Introduction of [4] @° is given by u°(z,y) = u(z,y) — x(|z — y|)G(z,y)
where x € C*°(Ry) satisfying x(t) = 0 for 0 < ¢ < n/2 and x(t) = 1 for t > 1, and u is a radiating
solution such that w =0 on R x {0} and

Au+ k*nu = f(-,y) in R, (3.5)
u=0onR x {0}, (3.6)

where
fy) = [k2(1 —n)(1—=x(|-—yl) +Ax(| - —yl)] G(y) +2Vx(| - —yl) - VG(-,y). (3.7)

Then, we have Gy, (z,y) = u(z,y) + (1 — x(|z —y|))G(2,y). By Theorem 2.6 we can take an solution
ue € HY(R2) of the problem (3.5)-(3.6) replacing k by (k + i) satisfying ue converges as e — +0
in H} (R2) to u. We set Gno(2,9) = uc(2,y) + (1 — x(|z — y))G(2,y), and Gy, (2,y) converges as
e = 40 to G(z,y) pointwise for z € Ri. By the simple calculation, we have

[Az + (k+ ze)2n(z)} Ghe(z,y) = —0(z,y) + (2kei — eQ)n(z)(l —x(|z — y|))G(z,y). (3.8)

et r > e large enough such that z,y € B,(0). reen’s second theorem in B, N we
L 0 be larg gh h th. y € B.(0). By G ’ d th in B,(0) Ri



have
Gl w) + (2hei — ) /B | EAE 0 X~ y)OG )

+ Guelr,y) — (2]{761*62) . ()ue(z ,y)n(z)(1— x(lz — 2|)G(z, x)dz

= / Gne 2,2)[As + (k +i€)*n(2)| G (2, y)dz
B.(0)n

_ / Ghe(z,y) [A + (k + ie) n(z)] Gne(z,2)dz
B.(0)n
= Uel 2 M—u z M s(z
- /83, (0)NR2 () v, e(2:y) v, ds(2). (3.9)

Since u. € H(R2), the right hand side of (3.9) converges as r — oo to zero. Then, as r — oo in
(3.9) we have

Gn,e(:m y) - Gn,E(y’ ZE)
= (2kei — 62)/ ue(z,y)n(2)(1 — x(]z — 2]))G(z, x)d=
Bap(z)

—  (2kei — €2) / ue(z,x)n(2)(1 — x(|z — y]))G(z,y)dz (3.10)
Ban(y)

Since u, converges as ¢ — +0 in H} (R2) to u, the right hand side of (3.10) converges to zero as
e — +0. Therefore, we conclude that Gy, (z,y) = G, (y, z) for z # y. O

By the symmetricity of G,

/ (V@@ / o 9)e()ds(y) V(@) de
[ s [ VIa@IGn (. 0)5(w)dsta) bisty)
M JQ

(Hg, f)

= [, o (| VGG 2 @) yis(r), (3.11)

which implies that
H f(z) = /Q ()4 G, ) [ ()ds(y), = € M. (3.12)
We define 7' : L2(Q) — L3(Q) by T'f := 134 f — \/[nglw where w satisfies the radiation condition
. Aw + knw = —/|ng|f, in R2, (3.13)
v =0onR x {0}. (3.14)

We will show the following integral representation of w.
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Lemma 3.2.

v) = /Q I G, )y, @ € R2. (3.15)
Proof of Lemma 3.2. Let w, € H._(R2) be a solution of the problem (3.13)(3.14) replacing &
by (k +ie) satisfying w, converges as ¢ — +0 in H} (R%) to w. Let Gy, ((y, ) be an approximation

of the Green’s function G, (y,z) as same as in Lemma 3.1. Let r > 0 be large enough such that
z € B,(0). By Green’s second theorem in B,(0) N R2 we have

—we () + (2kei — €) / we(y)n(y)(1 = x(ly — =]))G(y, x)dy
B2W(T)
/ VIn(w)a(y)|Gr.e(y, x) f(y)dy

- / VA + (k + i€)2n(y)] Gue(y, 7)dy
B-(0) rﬂR2

J’_

- / , Gnelana) By + (4 ie)2n(y)] we(y)dz
B(0)N

3u€ (y, ) Owe(y)
= we(y) =L (g, 2 ds(y). 3.16
/ - ) ) s (3.16)

Since ue, we € HY(R2), the right hand side of (3.16) converges as r — 0o to zero. Then, as r — oo
in (3.16) we have

wde) = @ki=) [ (- - D). )dy
Bap(z)
/Q VI G > ) F () ly (3.17)

The first term of right hand side in (3.17) converges to zero as € — +0, and the second term converges
to -[Q VIn(y)q(y)|Gnly, ) f(y)dy as € — +0. As e — 40 in (3.17) and by the symmetricity of G,
(Lemma 3.1) we conclude (3.15). O

Since w satisfies

Aw+ k(1 +qnw = —k? ng_g Ing f—Inglw} in R%
VIng| * kPng
_ Mgy (3.18)

VInd|

we have w|M: LTf. Therefore, by (3.12) and (3.15) we have H* = LT. Then, we have the
following symmetric factorization:

N =LT*L". (3.19)
We will show the following lemma.

Lemma 3.3. (a) L is compact with dense range in L*>(M).



ReT = C + K with some self-adjoint and positive coercive operator C' and some compact
operator K on L?(Q).

() Tm(f, Tf) > 0 for all f € L*(Q).
(d) T is injective.

(b) If there exists the constant Gmin > 0 such that Gmin < q a.e. in Q, then ReT has the form

Proof of Lemma 3.3. (d) Let f € L?(Q) and Tf = 0, i.c., kaL‘qf = \/|n_qw where w satisfies
(3.13)=(3.14). Then, Aw + k?n(1 + ¢)w = 0. By the uniqueness, w = 0 in R2 which implies that
f = 0. Therefore T is injective.

(b) Since n and ¢ are bounded below (that is, n > 1y, > 0 and ¢ > @i > 0), T has the form
T = C + K where K is some compact operator and C' is some self-adjoint and positive coercive
operator. Furthermore, from the injectivity of 7" we obtain that 7" is bijective.

(a) By the trace theorem and v € H] (R2), Lf = U‘MG H'/2(M), which implies that L :
L?(Q) — L?(M) is compact.

By the bijectivity of T and H = T*L*, it is sufficient to show the injectivity of H. Let

g € L*(M) and Hg(z) = \/|n(x)q(x)| [, Gn(z,9)g(y)ds(y) = 0 for 2 € Q. We set v(x) :=
Jur Gz, y)g(y)ds(y). By the deﬁnltlon of v we have
Av + k*nv =0, in R? \ M, (3.20)

and since ¢ are bounded below, v = 0 in (. By unique continuation principle we have v = 0 in
R2 \ M. By the jump relation, we have 0 = 6”* E)u, = g, which conclude that the operator H is
1nJect1ve

(c¢) For the proof of (c) we refer to Theorem 3.1 in [1]. By the definition of 7" we have

m(f,Tf) = —Im/Qf\/\nq\de:Im/QE[A—i—k:?n]wdx, (3.21)

where w is a radiating solution of the problem (3.13)—(3.14). We set Qn := (=N, N) x (0,N?®)
where s > 0 is small enough and N > 0 is large enough. By the same argument in Theorem 3.1 of
[1] we have

Im(f,Tf) = Im/ WA 4 k*njwdz = Im wAwdzx
Qn Qn

= DN DL FURY B T

JE€J dy j.dy ;>0 B(N)

1 . IPv
R o T

€T dyjdy ;<0 Con)

+0(1), (3.22)

where where some a;; € C, and {d; j,¢; : 1 =1,...,m;} are normalized eigenvalues and eigenfunc-
tions of the problem (2.8). By Lemmas 6.3 and 6.4 of [4], as N — oo in (3.22) we have

Im(f, Tf) > —E{Z Jar; Pdi; — Y |al,j2dl,j} >0, (3.23)

JeJ Ldy ;>0 d; ;<0

which concludes (c). O
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In order to show Theorems 1.1 and 1.2, we consider another factorization of the near field

. T2 2 oy o L2709 o 1.2 _ng :
operator N. We define T : L*(Q) — L*(Q) by Tv := k a9 k m@ where v satisfies the

g, in R?, (3.24)

radiation condition and
Av+ 21+ ¢)nw = —k?

nq
VIndg|
v=0onR x {0}. (3.25)

Then, by the definition of 7" and T we can show that 77 = I and TT = I, which implies that
T—! = T. Therefore, we have by L = H*T~1

N =LIT*L* = H'T"'H = H*TH = H)THy, (3.26)

where Hg : L*(M) — L*(Q) is defined by
Hog(@) = [ Culeylowdsty). =€ Q. (3.21)
M

and T : L2(Q) — L2(Q) is defined by Tf = k2ngf + k*nqw where w satisfies the radiation condition
and
Aw + X (1 + ¢)nw = —k*ngf, in ]Rz_7 (3.28)

w=0onR x{0}. (3.29)
We will show the following lemma.
Lemma 3.4. Let B and Q be a bounded open set in ]R?'_.
(a) dim(Ran(Hp)) = oco.
(b) If BNQ =0, then Ran(Hp) N Ran(Hp) = {0}.

Proof of Lemma 3.4. (a) By the same argument of the injectivity of H in (a) of Lemma 4.3, we
can show that Hp is injective. Therefore, H} has dense range.

(b) Let i € Ran(Hp) NRan(Hg)). Then, there exists fp, fo suct that h = Hy fp = H{) fo. We
set

op(r) == /B Gulw,y) By, © € RE (3.30)

1@@:Lammm@@mem (3.31)

then, vp and v satisfies Avp +k*nvp = —fp, and Avg +k2an = —fo, respectively, and vp = vg
on M. By Rellich lemma and unique continuation we have vp = vg in R2 \ (BN Q). Hence, we
can define v € I} _(R?) by

vg=vg R\ (BNQ)
v:i=1<{ vp in @ (3.32)
vQ in B

and v is a radiating solution such that v = 0 for 9 = 0 and
Av+ k*nv =0 in RZ. (3.33)

By the uniqueness, we have v = 0 in R?, which implies that h = 0. O



4 Proof of Theorem 1.1

In Section 4, we will show Theorem 1.3. Let B C Q. We define K : L*(Q) — L*(Q) by K f := k*nqw
where w is a radiating solution of the problem (3.28)-(3.29). Since w|QE HY(Q), K is a compact

operator. Let V be the sum of eigenspaces of Re K associated to eigenvalues less than oekanmmqmm.
Since o — kgnmmqmm < 0, then V' is a finite dimensional and for Hgg € v

(ReNg,g) = /QkQ”Q|HQ9|2d$+((ReK)HQ%HQQ)

> Enmindmin | Hogll” + (@ = K*numingmin) || Hogl?
> a|Hgg|?> al||Hgg| (4.1)
Since for g € L*(M)
HogeV*t <« ge(HyV), (4.2)

and dim(H;V) < dim(V) < oo, we have by Corollary 3.3 of [3] that aH3Hp <fin ReN.
Let now B ¢ @ and assume on the contrary aH5Hp <g, ReN, that is, by Corollary 3.3 of [3]
there exists a finite dimensional subspace W in L?(M) such that
((ReN — aHpHp)w,w) > 0, (4.3)
for all w € W+. Since B ¢ Q, we can take a small open domain By C B such that By N Q = 0,
which implies that for all w € W+

allHpul® < alHpul?
< ((ReN)w,w)
= ((ReT)Hqu, Hou)
< HRCTH | Houwl)?. (4.4)

By (a) of Lemma 4.7 in [3], we have
Ran(Hp,) € Ran(Hg) + W = Ran(H, Pw), (4.5)

where Py : L?(M) — L?(M) is the orthognal projection on W. Lemma 4.6 of [3] implies that for
any C' > 0 there exists a w, such that
)

Hq

Py
Hence, there exists a sequence (wm)men C L?(S!) such that |Hp,wp| — oo and [[Howm| +
| Pvwm]|| — 0 as m — co. Setting Wy, := wm — Pwwm € W we have as m — oo,

2

1Hpywe|* > C* = C*(|| Howe* + || Pwwel*)- (4.6)

1 H gy Wml| = || Hpywml| = [[Hpy | | Pw wml| — oo, (4.7)
[HQowml|l < [[Howmll + [[Ho|l || Pwwm|| — 0. (4.8)
This contradicts (4.4). Therefore, we have aHj;Hp Zan ReN. Theorem 1.3 has been shown. |

By the same argument in Theorem 1.3 we can show the following.

Corollary 4.1. Let B C R? be a bounded open set. Let Assumption hold, and assume that there
exists Gmaz < 0 such that ¢ < ¢maz a.c. in Q. Then for 0 < a < k®Numin|@maz|,

BCQ < aHyHp <g —ReN, (4.9)
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