An inverse problem for stationary Kirschhoff plate equations

Guanghui Hu *

Abstract

We consider an inverse problem for stationary Kirschhoff plate equations. It is proved that a single pair of surface Cauchy data ($u, \Delta u$) uniquely determine an inclusion where the deflection and bending displacement of a plate vanish.

1 Introduction and main result

This note is concerned with an inverse problem arising from plate bending problems modelled by the Kirchhoff theory of plates in elasticity. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with smooth boundary $\partial \Omega$ (i.e., C^{2}), and let $D \subset \Omega$ be an open subset of Ω such that $\Omega \backslash \bar{D}$ is connected. In the stationary case, we consider an isotropic, homogeneous plate in the region $\Omega \backslash \bar{D}$ under pure bending governed by (which is also known as stationary Euler-Bernoulli equation)

$$
\begin{cases}\Delta^{2} u=\omega^{2} u & \text { in } \Omega \backslash \bar{D}, \tag{1}\\ u=\Delta u=0 & \text { on } \partial D, \\ u=f, \quad \Delta u=g & \text { on } \partial \Omega,\end{cases}
$$

where $f \in H^{3 / 2}(\partial \Omega), g \in H^{-1 / 2}(\partial \Omega)$. In (1), u and Δu represent the deflection and the bending displacement of the plate, respectively. The frequency $\omega>0$ is assumed to be such that the above Kirchhoff plate problem admits a unique solution

$$
u \in X:=\left\{u: u \in H^{2}(\Omega \backslash \bar{D}), \quad u=\Delta u=0 \quad \text { on } \quad \partial D\right\} .
$$

In this paper we are interested in the inverse problem of recovering ∂D from knowledge of a single pair $(f, g) \in H^{3 / 2}(\partial \Omega) \times H^{-1 / 2}(\partial \Omega)$.

Theorem 1.1. Suppose that D is a polygon and $|f|>0$ on Ω. Then the interior boundary ∂D can be uniquely determined by the observation data (f, g).

[^0]
2 Lemma

Define $x^{\prime}:=\left(x_{1},-x_{2}\right)$ for $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.
Lemma 2.1. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded symmetric domain with respect to the x_{1}-axis and write $\Gamma:=\Omega \cap\left\{x_{2}=0\right\}$. Suppose that $u \in H^{2}(\Omega)$ is a solution to

$$
\Delta u=v \quad \text { in } \quad \Omega, \quad u=0 \quad \text { on } \quad \Gamma,
$$

where $v \in L^{2}(\Omega)$ satisfies the symmetric relation $v(x)=-v\left(x^{\prime}\right)$ for all $x \in \Omega$. Then we have the same symmetry for u, that is, $u(x)=-u\left(x^{\prime}\right)$ for all $x \in \Omega$.
Proof. Set $\Omega^{ \pm}:=\Omega \cap\left\{x: x_{2} \gtrless 0\right\}$. We extend $\left.u\right|_{\Omega^{+}}$from Ω^{+}to Ω as follows

$$
w(x)=\left\{\begin{array}{lll}
u(x) & \text { if } & x \in \Omega^{+} \\
-u\left(x^{\prime}\right) & \text { if } & x \in \Omega^{-}
\end{array}\right.
$$

Since $u=0$ on Γ and $v(x)=-v\left(x^{\prime}\right)$, it is easy to verify $\Delta w=v$ in Ω and $w=u, \partial_{\nu} w=$ $\partial_{\nu} v$ on Γ. By Holmgren's uniqueness theorem, we obtain $w=u$ in Ω, implying that $u(x)=-u\left(x^{\prime}\right)$ for $x \in \Omega^{-}$. By the symmetry of the domain Ω, we obtain $u(x)=-u\left(x^{\prime}\right)$ for all $x \in \Omega$.

Lemma 2.2. Let Ω and Γ be given as in Lemma 2.1. Suppose that $u \in H^{2}(\Omega)$ is a solution to

$$
\Delta^{2} u=0 \quad \text { in } \quad \Omega, \quad u=\Delta u=0 \quad \text { on } \quad \Gamma .
$$

Then (i) $u(x)=-u\left(x^{\prime}\right)$ for all $x \in \Omega$. (ii) If $u=\Delta u=0$ on a line segment $L \subset \Omega$, then the same relations hold on $L^{\prime}:=\left\{x^{\prime}: x \in L\right\}$.

Proof. Setting $v=\Delta u \in L^{2}(\Omega)$, we see $\Delta v=0$ in Ω and $v=0$ on Γ. By reflection principle for harmonic functions, we get the symmetric relation $v(x)=-v\left(x^{\prime}\right)$ for $x \in \Omega$. Since $u=0$ on Γ, applying Lemma 2.1 gives the relation in the first assertion. The second assertion follows directly from the first one.

Remark 2.1. Lemma 2.1 applies to the following system:

$$
\Delta^{2} u-\omega^{2} u=0 \quad \text { in } \quad \Omega, \quad u=\Delta u=0 \quad \text { on } \quad \Gamma,
$$

where $\omega>0$. In fact, the above boundary value problem can be equivalently formulated as the system

$$
\begin{aligned}
\Delta U & =A U, \quad U=\binom{u}{\Delta u}, \quad A=\left(\begin{array}{cc}
0 & 1 \\
\omega^{2} & 0
\end{array}\right), \\
U & =0 \quad \text { on } \quad \Gamma
\end{aligned}
$$

Applying the proof of Lemma 2.1, one can show that $U(x)=-U\left(x^{\prime}\right)$ for $x \in \Omega$.

3 Proof of Theorem 1.1

Suppose that D_{1} and D_{2} are two polygons contained inside Ω, and let $\left(f_{j}, g_{j}\right)$ be the boundary observations on $\partial \Omega$ that correspond to solutions u_{j} to (1) with $D=D_{j}$. Assuming that $\left(f_{1}, g_{1}\right)=\left(f_{2}, g_{2}\right)$ and $\left|f_{j}\right|>0(j=1,2)$, we need to prove that $D_{1}=D_{2}$. To prove Theorem 1.1, we employ path and reflection arguments first developed in [1] for the Helmholtz equation and later modified in $[4,10]$. We shall carry out the proof following the arguments in [4, Section 3.1] but modified to be applicable for the equation (1).

Proof of Theorem 1.1 Suppose on the contrary that $D_{1} \neq D_{2}$, we shall derive a contraction by two steps.

Step 1. Existence of a nodal set. Set $v_{j}=\Delta u_{j}$ and $U_{j}=\left(u_{j}, v_{j}\right)$. Then

$$
\Delta U_{j}=A U_{j} \quad \text { in } \quad G, \quad U_{j}=\left(f_{j}, g_{j}\right)^{\top} \quad \text { on } \quad \partial \Omega,
$$

where G denotes the connected component of $\left(\Omega \backslash \bar{D}_{1}\right) \cap\left(\Omega \backslash \bar{D}_{2}\right)$ such that $\partial \Omega \subset \partial G$. The coincidence of the observation data $f_{1}=f_{2}$ and $g_{1}=g_{2}$ on $\partial \Omega$ together with the assumption of ω gives arise to $U_{1}=U_{2}:=U$ in G. This in turn implies

$$
\begin{equation*}
u_{1}=u_{2} \quad \text { in } \quad G . \tag{2}
\end{equation*}
$$

The nodal set of u_{j}, which we denote by Σ_{j}, is defined as the set of line segments in $\bar{\Omega} \backslash \bar{D}_{j}$ on which both u_{j} and Δu_{j} vanish. Since $\Omega \backslash \bar{D}_{j}$ is connected, we obtain $\partial G \backslash \partial \Omega \nsubseteq D_{1} \cap D_{2}$. Hence, without loss of generality we assume that

$$
S:=\left(\partial D_{1} \backslash \partial D_{2}\right) \cap \partial G \neq \emptyset .
$$

Since both D_{1} and D_{2} are polygons, we can always find a line segment L lying on S. By (2), this implies that

$$
u_{2}=u_{1}=0, \quad \Delta u_{2}=\Delta u_{1}=0 \quad \text { on } \quad L \subset \Omega \backslash \bar{D}_{2}
$$

and thus $\Sigma_{2} \neq \emptyset$.
Step 2. Derive a contradiction by path and reflection arguments. Since u_{2} is analytic, $\Omega \backslash \bar{D}_{2}$ is connected and $\left|f_{2}\right|>0$ on $\partial \Omega$, the set Σ_{2} must be bounded. Otherwise, Σ_{2} must intersect with $\partial \Omega$ at some point O, leading to contraction with $\left|f_{2}(O)\right|>0$. On the other hand, the two end points of any nodal line segment of Σ_{2} must lie on ∂D_{2}. Choose a point $x_{0} \in L \subset \partial G$ and a continuous and injective path $\gamma(t)(t \geq 0)$ connecting x_{0} and some point $y \in \partial \Omega$. Without loss of generality, we suppose that $\gamma(0)=x_{0}$ and $\gamma(T)=y$ for some $T>0$. Denote by \mathcal{M} the set of intersection points of γ with all nodal sets of u_{2}, i.e.,

$$
\mathcal{M}:=\left\{x: x \in\{\gamma(t): t \in[0, T]\} \cap \Sigma_{2}\right\} .
$$

The set \mathcal{M} is not empty, since at least $x_{0}=\gamma(0) \in \mathcal{M}$. Obviously, $y=\gamma(T) \notin \mathcal{M}$.
Observe that the set \mathcal{M} is bounded. Moreover, it is closed, hence compact; see the arguments in the proof of [10, Lemma 2]. Thus, there exists $T^{*} \in(0, T)$ such that
$\gamma\left(t^{*}\right) \in \mathcal{M}$ and $\left\{\gamma(t): t \in\left(T^{*}, T\right)\right\} \cap \mathcal{M}=\emptyset$. Let $L^{*} \subset \Sigma_{2}$ be the finite nodal line segment possing through x^{*}. We now apply the reflection principle of Lemma 2.2 (ii) to prove the existence of a new nodal line segment of u_{2} which intersects Ω.

By coordinate rotation we can assume without loss of generality that L^{*} lies on the x_{1}-axis. Note that the two end points of L^{*} must lie on ∂D_{2}. Choose $x^{+}=\gamma\left(T^{*}+\epsilon\right)$ for $\epsilon>0$ sufficiently small and $x^{-}:=\left(x^{+}\right)^{\prime}$. Let $\Sigma^{ \pm}$be the connected component of $\Omega \backslash\left(L^{*} \cup D_{2}\right)$ containing $x^{ \pm}$, and denote by $E^{ \pm}$the connected component of $\Sigma^{ \pm} \cap\left(\Sigma^{\mp}\right)^{\prime}$ containing $x^{ \pm}$.

Setting $E=E^{+} \cup L^{*} \cup E^{-}$. Then E is a connected open set with the boundary $\partial E \subset \partial D_{2} \cup\left(\partial D_{2}\right)^{\prime} \cup \partial \Omega$. Applying the reflection principle for bi-harmonic functions (see Remark 2.1), we get $u_{2}=\Delta u_{2}=0$ on ∂E^{+}, because the same conditions hold on both L^{*} and $\left(E^{+}\right)^{\prime}$. By the assumption $\left|f_{2}\right|>0$ on $\partial \Omega$, we see $\partial E^{+} \cap \partial \Omega=\emptyset$, implying that $E \subset \Omega$ is a bounded open set containing $\gamma\left(T^{*}\right)$. Recalling the definition of $\gamma(t)$, we conclude that $\gamma(t)$ must intersect ∂E at some $t^{\prime}>T^{*}$. Therefore, there must exist a new nodal line segment passing through $\gamma\left(t^{\prime}\right)$. This is a contradiction to the definition of T^{*} and L^{*}. This contradiction implies $D_{1}=D_{2}$.

Remark 3.1. (i) The positivity assumption $|f|>0$ on $\partial \Omega$ can be replaced by either the distance assumption $\operatorname{diam}(D)<\operatorname{dist}(D, \Omega)$ or the irrational condition of each corner of D; see [6, 11].
(ii) The proof of Theorem 1.1 implies that u must be "singular" (that is, non-analytic) at corner points. This excludes the possibility of analytical extension in a corner domain and is important in designing inversion algorithms with a single measurement data; see e.g. the enclosure method [7], the range test approach [8, 9] as well as [12, Chapter 5] and the data-driven scheme [5].

Acknowledgements

Discussions with Prof. M. Yamamoto were greatly acknowledged, which motivated this note.

References

[1] G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc. 133 (2005): 1685-1691 (Corrigendum: arXiv: math/0601406v1).
[2] J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem with non-trapping polygonal obstacles with at most two incoming waves, Inverse Problems 19 (2003): 1361-1384 (Corrigendum: Inverse Problems 21 (2005): 1193).
[3] J. Elschner and M. Yamamoto, Uniqueness in determining polygonal soundhard obstacles with a single incoming wave, Inverse Problems 22 (2006): 355-364.
[4] J. Elschner and M. Yamamoto, Uniqueness in determining polyhedral soundhard obstacles with a single incoming wave, Inverse Problems 24 (2008): 035004.
[5] J. Elschner and G. Hu, Uniqueness and factorization method for inverse elastic scattering with a single incoming wave, Inverse Problem, 35 (2019): 094002.
[6] A. Friedman and V. Isakov, On the uniqueness in the inverse conductivity problem with one measurement, Indiana Univ. Math. J., 38 (1989): 563-579.
[7] M. Ikehata, Reconstruction of a source domain from the Cauchy data, Inverse Problems, 15 (1999): 637-645.
[8] S. Kusiak, R. Potthast and J. Sylvester, A 'range test' for determining scatterers with unknown physical properties, Inverse Problems 19 (2003): 533-547.
[9] S. Kusiak and J. Sylvester, The scattering support, Communications on Pure and Applied Mathematics, 56 (2003): 1525-1548.
[10] H. Liu and J. Zou, Uniqueness in an inverse obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems 22 (2006): 515524.
[11] Y. Lin, G. Nakamura and R. Potthast and H. Wang, Duality between Range and Non-response tests and its application for inverse problems, to appear in: Inverse Problems and Imaging.
[12] G. Nakamura and R. Potthast, Inverse Modeling - an introduction to the theory and methods of inverse problems and data assimilation, IOP Ebook Series, 2015.

[^0]: *School of Mathematical Sciences, Nankai University, Tianjin 300071, P. R. China. Email: ghhu@nankai.edu.cn

