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An inverse problem for stationary Kirschhoff 
plate equations 

Guanghui Hu * 

Abstract 

We consider an inverse problem for stationary Kirschhoff plate equations. It 
is proved that a single pair of surface Cauchy data (u, b..u) uniquely determine an 
inclusion where the deflection and bending displacement of a plate vanish. 

1 Introduction and main result 

This note is concerned with an inverse problem arising from plate bending problems 
modelled by the Kirchhoff theory of plates in elasticity. Let n c JR2 be a bounded domain 
with smooth boundary an (i.e., C 2), and let D c n be an open subset of n such that 
n\D is connected. In the stationary case, we consider an isotropic, homogeneous plate 
in the region n\D under pure bending governed by (which is also known as stationary 
Euler-Bernoulli equation) 

{ 

~ 2 u = w2u 
u = ~u = 0 
u = f, ~u = g 

m n\D, 
on an, 
on an, 

(1) 

where f E H 312 (an), g E H-112 (an). In (1), u and ~u represent the deflection and the 
bending displacement of the plate, respectively. The frequency w > 0 is assumed to be 
such that the above Kirchhoff plate problem admits a unique solution 

u EX:= {u: u E H 2 (n\D), u = ~u = 0 on aD}. 

In this paper we are interested in the inverse problem of recovering aD from knowledge 
of a single pair (f,g) E H 312 (an) x H-112 (an). 

Theorem 1.1. Suppose that D is a polygon and Iii > 0 on n. Then the interior 
boundary aD can be uniquely determined by the observation data (f, g). 
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2 Lemma 

Define x' := (x1, -x2) for x = (x1, x2) E ~ 2. 

Lemma 2.1. Let fl c ~ 2 be a bounded symmetric domain with respect to the x1 -axis 
and writer:= fl n {x2 = O}. Suppose that u E H 2 (0) is a solution to 

~u = v in fl, u = 0 on r, 

where v E L2(0) satisfies the symmetric relation v(x) = -v(x') for all x E fl. Then we 
have the same symmetry for u, that is, u(x) = -u(x') for all x E fl. 

Proof. Seto±:= fl n {x: x2 ~ O}. We extend ub+ from n+ to fl as follows 

w(x) = { u(x) 
-u(x') 

if XE fl+, 
if XE o-. 

Since u = 0 on rand v(x) = -v(x'), it is easy to verify ~w = v in fl and w = u, 8vw = 
8vv on r. By Holmgren's uniqueness theorem, we obtain w = u in fl, implying that 
u(x) = -u(x') for x En-. By the symmetry of the domain fl, we obtain u(x) = -u(x') 
for all x E fl. D 

Lemma 2.2. Let fl and r be given as in Lemma 2.1. Suppose that u E H 2 (0) is a 
solution to 

~ 2u = 0 in fl, u = ~u = 0 on r. 

Then (i} u(x) = -u(x') for all x E fl. (ii} If u = ~u = 0 on a line segment LC fl, then 
the same relations hold on L' := { x' : x E L}. 

Proof. Setting v = ~u E L2(0), we see ~v = 0 in fl and v = 0 on r. By reflection 
principle for harmonic functions, we get the symmetric relation v(x) = -v(x') for x E fl. 
Since u = 0 on r, applying Lemma 2.1 gives the relation in the first assertion. The 
second assertion follows directly from the first one. • 
Remark 2.1. Lemma 2.1 applies to the following system: 

u = ~u = 0 on r, 

where w > 0. In fact, the above boundary value problem can be equivalently formulated 
as the system 

~U AU, U= c~u), A= (~2 ~), 
U O on r. 

Applying the proof of Lemma 2.1, one can show that U(x) = -U(x') for x E fl. 
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3 Proof of Theorem 1.1 

Suppose that D1 and D2 are two polygons contained inside n, and let (fj, gj) be the 
boundary observations on an that correspond to solutions Uj to (1) with D = Dj. 
Assuming that (f1,g1) = (h,g2) and 1/jl > 0 (j = 1,2), we need to prove that D1 = D2. 
To prove Theorem 1.1, we employ path and reflection arguments first developed in [1] 
for the Helmholtz equation and later modified in [4, 10]. We shall carry out the proof 
following the arguments in [4, Section 3.1] but modified to be applicable for the equation 
(1 ). 

Proof of Theorem 1.1 Suppose on the contrary that D 1 -=/=- D 2 , we shall derive a 
contraction by two steps. 

Step 1. Existence of a nodal set. Set Vj = fiuj and Uj = (uj,vj)- Then 

fiUj=AUj in G, Uj=(fj,gj)T on an, 

where G denotes the connected component of (n\D1) n (n\D2) such that an c aG. 
The coincidence of the observation data Ji = h and g1 = g2 on an together with the 
assumption of w gives arise to U1 = U2 := U in G. This in turn implies 

(2) 

The nodal set of Uj, which we denote by :Ej, is defined as the set of line segments in D\D j 
on which both Uj and fiuj vanish. Since n\Dj is connected, we obtain ac\an <j;_ D 1nD2. 
Hence, without loss of generality we assume that 

Since both D1 and D2 are polygons, we can always find a line segment L lying on S. By 
(2), this implies that 

u2 = u1 = 0, on L c n\D2 

and thus :E2 -=/=- 0. 
Step 2. Derive a contradiction by path and reflection arguments. Since u2 is analytic, 

n\D2 is connected and lhl > 0 on an, the set :E2 must be bounded. Otherwise, :E2 
must intersect with an at some point 0, leading to contraction with 1/2(0)1 > 0. On 
the other hand, the two end points of any nodal line segment of :E2 must lie on aD2. 
Choose a point x 0 E L C ac and a continuous and injective path 'Y(t) (t 2 0) connecting 
x 0 and some point y E an. Without loss of generality, we suppose that "f(0) = x 0 and 
'Y(T) = y for some T > 0. Denote by M the set of intersection points of 'Y with all nodal 
sets of u2, i.e., 

M := {x: XE {'Y(t): t E [0,T]} n:E2}-

The set M is not empty, since at least x 0 = "f(0) EM. Obviously, y = "f(T) tJ. M. 
Observe that the set M is bounded. Moreover, it is closed, hence compact; see the 

arguments in the proof of [10, Lemma 2]. Thus, there exists T* E (0, T) such that 
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,y(t*) E M and {'Y(t) : t E (T*, T)} n M = 0. Let L* c ~2 be the finite nodal line 
segment passing through x*. We now apply the reflection principle of Lemma 2.2 (ii) to 
prove the existence of a new nodal line segment of u2 which intersects n. 

By coordinate rotation we can assume without loss of generality that L * lies on the 
xi-axis. Note that the two end points of L* must lie on aD2. Choose x+ = ,y(T* + E) 
for E > 0 sufficiently small and x- := (x+)'. Let ~± be the connected component of 
n\(L* U D2 ) containing x±, and denote by E± the connected component of~± n (~=f)' 
containing x±. 

Setting E = E+ U L * U E-. Then E is a connected open set with the boundary 
aE c aD2 U (aD2)' U an. Applying the reflection principle for bi-harmonic functions 
(see Remark 2.1), we get u2 = ~u2 = 0 on aE+, because the same conditions hold on 
both L* and (E+)'. By the assumption lhl > o on an, we see aE+ nan= 0, implying 
that E C n is a bounded open set containing ,y(T*). Recalling the definition of ,y(t), 
we conclude that ,y(t) must intersect aE at some t' > T*. Therefore, there must exist a 
new nodal line segment passing through ,y(t'). This is a contradiction to the definition 
of T* and L*. This contradiction implies D 1 = D 2. 

Remark 3.1. (i) The positivity assumption Iii > 0 on an can be replaced by either 
the distance assumption diam(D) < dist(D, n) or the irrational condition of each 
corner of D; see /6, 11}. 

(ii) The proof of Theorem 1.1 implies that u must be "singular" (that is, non-analytic) 
at corner points. This excludes the possibility of analytical extension in a corner 
domain and is important in designing inversion algorithms with a single measure
ment data; see e.g. the enclosure method /7}, the range test approach /8, gJ as well 
as /12, Chapter 5) and the data-driven scheme /5}. 
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