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Cheng Hua 
Department of Aeronautics and Astronautics, Fudan University, China 

1 Introduction 

Waves that propagate in elastic solid can be divided into two main categories: body waves and 
surface waves. Two and only two types of body waves in an unbounded solid, namely 
longitudinal wave (P-wave) and shear waves (SV -wave and SH-wave), can be propagated 
independently. Rayleigh wave is one kind of surface waves which propagates along the free 
boundary and decays exponentially away from the boundary. Rayleigh wave is essentially the 
formation of interference on the surface of the medium of P-wave and SY-wave. It was firstly 
introduced as a solution of the free boundary problem for an elastic half space by Lord Rayleigh 
(1885) [ll, who summed it up as the simultaneous solution of the equations of P-wave and SV­
wave. Yet to this day, the method of the characteristic equation of surface wave velocity he 
deduced is still the important way to seek for Rayleigh wave [ZJ_ 

There remains a dispute about the number of Rayleigh waves in viscoelastic medium until 
now. Rayleigh wave in viscoelastic media was early and deeply studied by Scholte [3l, who 
proofed that Rayleigh wave also existed on the surface of half-space viscoelastic media, but he 
was not sure whether the Rayleigh wave he calculated was the only one valid. In 1960, from the 
mathematical aspect of the effective characteristic root, Bland [4l raised the question of the 
existence and uniqueness of Rayleigh wave in viscoelastic media "It has not yet been shown that 
for any viscoelastic material there is one and only one such root" [4, P 75l_ In response to this 
question, after a series of studies based on linear viscoelastic models, Currie et al. [5,6,7l came to a 
conclusion in 1977 that there was more than one possible Rayleigh wave in the viscoelastic half­
space surface. In most cases, there existed two while in some special material there would even 
be three possible Rayleigh waves [6l. What's more, they predicted that the velocity of viscoelastic 
surface wave would sometimes be higher than that of the body wave, and there would even be 
retrograde wave [5,6l. 

After that, Bland's question seemed to be solved. But, on one hand, there is no report about the 
practical examples that the velocity of surface wave will surpass the body wave velocity nor the 
retrograde propagation phenomenon. On the other hand, in 2001 Romeo [S,9J promoted Nkemzi's 
elastic Rayleigh wave equation [!OJ to linear viscoelastic situation, thus put forward an opposite 
viewpoint. He took advantage of complex modulus to analyze the root number of the 
characteristic equation of viscoelastic half-space Rayleigh wave. Although his derivation process 
contained multiple variable substitutions, which appeared complicated and obscure, he deemed 
that there is only one complex root valid, while the other two are invalid. This implied that there 
is only one truly valid Rayleigh wave in viscoelastic half-space surface. 

Obviously, Romeo's opinion denied the conclusion by Currie et al., but it hasn't been widely 
accepted yet. Except that Ivanov and Savova's [lll study supports Romeo's opinion only in the 
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sense of wavelength fixed condition, studies in the common sense of frequency fixed condition 
[12,131 and more researchers' studies [l 4,l 5,1 61 are in favor of the conclusion of Currie et al. The 
possibility of the existence of a retrograde Rayleigh surface wave is even suggested [l61, and there 
maybe third types of Rayleigh waves in the case of some special combinations of material 
parameters [l61. What is worth noting is that the study in 2014 by Chirita et al [l 61. is carried out 
based on Kelvin viscoelastic model, which is simple but very commonly adopted in practical 
engineering. It is interesting but a little unbelievable that the process of derivation, settings of 
variable and multiple variable substitutions by Chirita et al. in the study [l 61 were similar to 
Romeo's method, but in the conclusion, Romeo's opinion is completely negated. The obscure of 
mathematical derivation process in Chirita et al.' s article brings some difficulty to understanding 
for us, but the authors' work arouses our interest and makes us want to find out the truth. 

This paper is to propose a brief way of handling this essential problem within half-space 
Kelvin viscoelastic medium. Starting from the dynamic equations of transverse wave and 
longitudinal wave based on Kelvin viscoelastic model, we derive the characteristic equation of 
Rayleigh surface wave in Kelvin viscoelastic half-space in a much simpler way and in terms of 
complex wavenumber. We then propose a relatively convenient and concise method which is 
able to directly analyze the validity of characteristic roots in a physical sense. Finally, the 
uniqueness problem of Rayleigh wave is discussed and we reach the conclusion that there is only 
one Rayleigh wave in Kelvin viscoelastic half-space surface, confirming Romeo's [S,9J conclusion 
under the assumption of Kelvin model. Meanwhile, we point out the error ofChirita et al [l 6l have 
made in handling the result, negating their viewpoint that there is not only one Rayleigh wave in 
Kelvin viscoelastic half-space surface. 

2 Basic equations in viscoelastic medium 

According to the theory of Continuum Mechanics, the dynamic equilibrium equation 
neglecting body force is expressed as 

(2.1) 

where uu is second order symmetric stress tensor, pis the density of the medium, andu; is the 

displacement vector, i,j = 1,2,3 denote the axis. 

For a linear isotropic viscoelastic medium, the constitutive equation can be uniformly expressed 
as 

<Y lj = J,,(t)1\ * duk,k + µ(t) * [ du;,J + du J,i] (2.2) 
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where ;l,(t), µ(t) are the Lame coefficients of viscoelastic material which depend on the time, * 
denotes convolution operator, 8ij is the Kronecker symbol. By submitting the relation (2.2) into 

(2.1 ), we obtain the displacement vector satisfying the dynamic equilibrium equation 

P :t~; = [ ;l,(t) + µ(t)] * du J.Ji + µ(t) * du;,ii (2.3) 

As for constitutive relations of linear viscoelastic medium, there are exactly many 
mathematical models. In this paper we adopt Kelvin model, which is a simplified model more 
efficient for describing the attenuation of elastic waves. It is also called Voigt model or Kelvin­
Meyer-Voigt model [I 7, p.99l and it is commonly used in practical engineering, especially in the 
field of seismic exploration. 

Under the assumption of the Kelvin model, the above equation of displacement vector can then 
be expressed as 

Where, ;1, andµ are the elastic partition of Lame coefficients, while ;1,' andµ' describe two 

variables of the viscous partition which is independent on time, whose effect is corresponding to 
the ;!,and µ in describing elastic medium. 

Applying Helmholtz decomposition theorem on displacement vector field 

Where <I> is the scalar potential function, 'I' k is the vector potential function, k = I, 2, 3 denote 

the axis. Substitute it in (2.4), change the differential order, the longitudinal wave equation and 
the transverse wave equation can be obtained in expression of potential functions 

82<1> ( 8<l>) p-2 =(;l,+2µ)<1> +(;1,'+2µ') -at ·11 at .. 
,]] 

a2'I'k =Ji¥ .. + ,(a'I'k) 
p 8t2 k,JJ µ 8t ·· 

,]] 

(2.5) 

The above equation(2.5) shows that, in Kelvin viscoelastic medium, there are also two kinds of 
independent wave modes like in the elastic medium, namely, the P-wave and the S-wave. But we 
should pay attention to the addition of first order partial derivative term for time in their wave 
equations. 
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3 The characteristic equation for viscoelastic medium Rayleigh wave 

As shown in Fig. 1, the lower half space is characterized by Kelvin viscoelastic medium, 
whose elastic coefficients are /4 andµ . Its density is p and the viscoelastic coefficients are X and 

µ'. The origin O of the axis is located on the free surface of the half space, with the axis Ox on 

the free surface and the vertically downward axis Oz pointing to the inner medium part. Assume 
the propagation direction of the wave pointingxalong the planexz, so the displacement 
componentux,uz are independent ony anduY = 0 so that it could be considered as a plane 

problem. The vibrations of particles happen only in plane xz and the potential function of the 
displacement vector in space is independent on y. 
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Fig. 1 Diagram of Rayleigh wave (modified from picture on wiki pedia) 

Since the formation of Rayleigh wave propagating on the free surface is due to the interference 
and superposition of the transverse wave and longitunidal wave, thus the problem comes down to 
establishing the simultaneous solution of the P-wave equation and the S-wave equation, 
meanwhile finding the solution that the free surface boundary condition equation is satisfied. 
Here as Fig 1. shows, to be specifically, the wave equation (2.5) can be expressed as 

(3.l) 
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Where the scalar potential function is <I>= <l>(x,z,t), the vector potential function 'f\ is taken 

as 'PY (x, z, t). From equation (3.1) it is easy to find that <I> and 'PY satisfy the same form of 

equation, so they should have the same form of expression. To begin with we try to find the 
solution in the form bellow 

<l>(X,z,t) = ae-az ei(Kx-wt) 

'P (x z t) = be-flz ei(Kx-wt) 
y ' ' 

(3.2) 

Where aandb are both real non-zero constants; a and /J are positive real constants just like the 

condition in elastic medium, expressing the attenuations on the direction of axis z ; OJ denotes the 
circular frequency of the motivation source. What is different from that in the elastic condition is 
K, which denotes the complex circular wavenumber, whose imaginary part reflects the 
attenuation effect of viscoelastic medium on the propagation along the free surface. a and /J 
above act as coefficients attenuating exponentially with the increase of depth in medium (both in 
elastic and viscoelastic condition), which are firstly introduced by Rayleigh and commonly 
accepted. So that the undetermined coefficient K, namely, the complex wavenumber is the key 
factor to determine the character of Rayleigh surface wave in Kelvin viscoelastic medium. In 
order to determine K, the boundary stress condition must be used: 

(J'zx lz=O= Q 

(J'zz lz=O= Q 
(3.3) 

Taking use of constitutive equation of Kelvin viscoelastic medium, the stressazx,azz are 

expressed by displacementux,uz. Finally, substitute the potential functions above with it 

a<1> a'P y 
u =----

x ax az 
8<1> 8'¥ y 

Uz=-+--
8z ax 

(3.4) 

Then 

( a)(a2'P a2'P a2<1>) CJ' = µ+µ'- __ Y ___ Y +2--
zx at ax2 8z2 axaz 

(3.5) 

[ a ] a2<1> ( a ) a2<1> ( a ) a2'P (J'zz = (,1,+2µ}+(,1,'+2µ'}- - 2 + A+X- - 2 +2 µ+µ'- __ Y 

at az at ax at axaz 

Substitute (3 .5) with (3 .2) and simplify it, on the free surface z = 0 it satisfies 
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crzx lz=o= {-2iaK (µ-iwµ')· a-[µ( K 2 + /J2 }-iwµ'( K 2 + /J2 }]-b} e;(I<x-wt) 

CY22 lz=o= { {[ (,1, + 2µ )a2 -AK2 ]-iw[ (A'+ 2µ')a 2 -A'K2 ]} •a-2i/JK(µ-iwµ') ·b} e'(Kx-mt) 

(3.6) 

Substitute (3.3) with (3.6), we get the homogeneous linear equations for a and b 

-2iaK(µ-iOJµ')·a-[µ( K 2 + /J2 )-iOJµ'(K2 + /J2 )]·b = 0 
{[ (1+ 2µ)a 2 -JK2]-iOJ[ (X +2µ')a 2 -,1,'K2 ]} ·a-2i/JK(µ-iOJµ')·b = 0 

(3.7) 

Ifthere is non-zero root for (3.7), the coefficient determinant should be zero. Rearrange it 

(iOJµ' - µ)(/3 2 + K 2 ){[ (1+2µ)a 2 -JK2 ]-iOJ[ (X + 2µ')a 2 -XK2 ]}-4(iµ+ OJµ 1)2a/3K2 = 0 

(3.8) 

Equation(3.8)above is the characteristic equation to determine the complex wavenumber K of 
Rayleigh surface wave. It is seen that for this problem, coefficient K is not only related to the 
material modulus( ,1,, µ , ,1,1 , µ' ),but also related to the circular frequency w . Meanwhile it has 

mutual inference with ( a , /3 ) 

What is special is that, in purely elastic condition, A' = µ' = 0, the imaginary part of complex 

wavenumber K is zero. In this condition, K is exactly the circular wavenumber kR in elastic 

Rayleigh wave. What has been known is thata 2 = k/-k;,,/32 = k/ -k.~, herekp,ks are 

respectively the circular wavenumbers of elastic longitudinal wave and transverse wave. The 
equation of Kelvin viscoelastic Rayleigh wave (3.8) retrogrades to 

(2k 2 -k2)2 -4k 2 ✓(k 2 -k2 )(k 2 -k2) =0 RS RR PR S (3.9) 

Equation (3.9) above is well-known equation for Rayleigh wave in elastic medium. 

Apparently, for particular case, the values of complex wavenumber K can be obtained by 
solving characteristic equation of Kelvin viscoelastic Rayleigh wave(3.8).But commonly it is 
complicated to find the analytic solution of complex wavenumber K. We try to get simpler form 
of equation (3.8) to analyze the propagation character of Rayleigh wave, especially the number of 
Rayleigh wave in viscoelastic medium. We introduce two more complex moduli 

A= 1-iOJA', M = µ-iOJµ' 

It is easily found that the newly introduced complex moduli A, Mare composed of two parts. 
The real parts of them are the Lame elastic coefficient ,1,, µ , while the imaginary parts act as the 



34

viscous part A' , µ' of Lame coefficient times circular frequency OJ , In the same time we can keep 

the dimension consistent. So, equation (3.8) is rearranged into following form 

AK4 +[A,82 -(A+2M)a2 +4Ma,B]K2 -a2,82(A+2M) = 0 (3.10) 

In the deduction above, we follow the use of a, ,B as undetermined coefficients, but the 

meaning of them has changed. We try to set relations bellow 

a 2 =K2-K; 

,82 =K2-K; 
(3.11) 

2 2 

Where K; = ---1!!!!__, K~ = pm . Kp,K8 respectively express the wavenumbers oflongitudinal 
A+2M ' M 

wave and transverse wave in viscoelastic medium. Like the condition in the Rayleigh 
wavenumber K, it is also complex. Substitute (3.10) with (3.11 ), rearrange it 

(2K2 -K;)2 -4K2 ,J(K2 -K;)(K2 -K;) = 0 (3.12) 

Thus, we have derived the Rayleigh wave equation (3.12) in viscoelastic medium, though the 
same in the form, but the related coefficients are the solution for the characteristic equation of 
viscoelastic Rayleigh wave. 

Based on equation (3.12) above we could solve the complex wavenumber K of surface wave. 
Now K is not only related to the material coefficients of material A, µ,l', µ' ,but also related to 

circular frequency OJ • What's more it has relationship with complex numbers a, ,B . Rearrange the 

equation above, we can get six order equation about K 

I 6(Kf -K;)K6 + (I 6K;Kf -24K;)K 4 + &K!K 2 - K! = 0 (3.13) 

Beacause equation (3.13) includes only even order terms, there are three pairs ofcomplex roots 
with inter conjugate. In the analysis bellow, we only focus on three complex roots whose 
imaginary parts are positive. 

4. The uniqueness problem of Rayleigh wave 

Equation (3.13) can be simplified into 

16(1-;; )R6 +(16 ;;-24)R4 +8R2 -1 = 0 (4.1) 
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Where R = .!5.._ is the ratio between the wavenumber of Rayleigh wave to that of transverse wave, 
Ks 

let Z =~be the ratio of complex modulus, then equation ( 4.1) is further simplified into 
M 

16(Z + l)R6 -8(3Z +4)R4 +8(Z +2)R2 -(Z +2) = 0 (4.2) 

Ifwe pay attention to the real part and imaginary part of complex modulus ratio Z, namely let 
).µ + ( mX) ( mµ') ). ( mµ')- µ ( m).') 

Z = p +qi, where p = 2 ( ')2 , q = 2 ( ')2 , p, q reflect the ratio relationship 
µ + mµ µ + mµ 

between Lame coefficients. So it should satisfy p > 0. Based on the values of the real part p and 
imaginary partqofZ, the solution R to equation(4.2) can be solved. We can use it to analyze the 

number of Rayleigh wave. 

Rayleigh wave is generated by interference between longitudinal wave and transverse wave, 
therefore in a physical sense, the velocity (phase velocity) of Rayleigh wave should not surpass 
the velocity of transverse wave. Because the phase velocity of Rayleigh wave can be decided by 

v = __!!!__( ) , the phase velocity of transverse wave is decided by vs= ( ) . The Rayleigh 
~K ~~ 

wave velocity is lower than that of transverse wave, that is 

Re(K) >Re(Ks) (4.3) 

Ifwe takeK,Ks,R in polar coordinate system, from Ks (Ps,0s ),R(pR,0R)we can obtain 

K(PsPR,0s + 0R). Then, According to equation(4.3), we have 

PsPR cos( 0s + 0R) > Ps cos( 0s) 

Simplified into 

(4.4) 

Judging from K; = p~
2 

, M's augment 0M E [ O, -f), Ks 's augment 0s E [ O, ¾) ,take 

consideration of equation( 4.3), it can be known that when 0R > 0, pR cos 0R > I ;when 0R < 0, 

PR cos 0R >I+ PR sin 0R . Because when Z is conjugated, the complex root R in correspond should 

also be conjugated, so the complex root R should satisfy 
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Re(R) > 1-IIm(R)I 

Namely the root should be located to the left side of the purple line in Fig 2(a) 

(a)scatter plot of root R in eqaution(4.2) 
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Fig. 2 relation between characteristic root of equation( 4.2)and coefficient P, q ( take 

pE[0.01,10000],qE[0.0001,100]) () l f h · · (b) h 1 · a scatter p ot o c aractenstJc root; t e re at1on 

between variation of characteristic root and p,q; (c)the relation between argumentR1andp,q. 

From the result we can know that there is only one rootR1 that satisfies the Rayleigh wave 

equation to relationRe(K) > Re(Ks). Namely, there is only one possible Rayleigh wave in 

correspond to the characteristic root R1 correspond. The characteristic roots Ri, R3 are against the 

physical nature that the velocity of Rayleigh wave should be lower than the transverse wave, so 
they are all invalid. What's more, since the argumentR1 is rather small, it could be known that 

K,., l.1K8 .Namely, similar to the condition of elastic medium, the phase velocity of Rayleigh 

wave is about 0.9 times that of transverse wave. 

Then we analyze the study of Currie et al[5•6•71 in 1977 that there is not only one valid Rayleigh 
wave in linear viscoelastic half-space medium as well as the study of Chirita et al[161 in 2014 on 
the method of solving several solutions of the Rayleigh wave in Kelvin viscoelastic condition. 
When they were studying the characteristic roots of Rayleigh wave, they also required that the 
characteristic roots should satisfy the charactrer of attenuation and the propagation direction, but 
none of them have taken consideration of the relative value between the velocity of Rayleigh 
wave and transverse wave. Take the example of the article ofChirita et al[161, the table below 
shows their several calculation examples. We find that there is only one root close to R1 in this 

paper whose corresponding Rayleigh wave velocity is lower than that of transverse wave, the 
ratio modulus of the other two roots to the velocity of transverse wave are larger than 2. Namely, 
the velocities of Rayleigh wave are far higher than that of transverse wave, which fits the 
condition of R2 ,R3 in this article. So, in physical sense, there is only one valid Rayleigh wave in 

their calculation examples. So it could be considered that the wrong result concluded in the 
reference ofChirita et al[161 is due to their error in handling the results. 

Tnbl,• l The vuJucs or u. ,, and r;! fur the set orthc Ra~l1:igh wnvc solutions ror w 1nc •pccilled vis,:oclasric 
auucrial• ch:mu:lcr:izcd by -o - l'O· C1 and Ca 

O.tl 

1.0 

1.7.S 

1.0 o_s/! 0.492535 - 1.663-lli I 
o.864 29 - o.n69rn 

1.0 0.38025 - 1.9711 Si 
~ Cl.743741 - 1.60562i •0Ll11 lu~ lcll l{l h 1.s L...;.;_;_...;..._;_'-"'-;.c;_J 

b:t 1:i:1lli"l 1 liilll :[_ 0.816203 - 0.423236i 

r1 

o.s~209 + 0.1 163.m 

I. 16655 + I .35667i 

0.841)-134+0.030 7011 

0.0 141401 - 0.513189I 

0,0234002 + 0.2 50521 
0.848123 -0.0012l024i 

().346807 - 0.0847438/ 

0.392.526 + 2.179121 

0.39616 -0.0J 1-l553i 

0.009o59\l - 1.0\)2331 

0.02151 12 + 1.50-ISi 

0.3926190..f.0.00 1203441 

Fig. 3 Some analysis of numerical example from Chirita et al. 
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5 Conclusion 

We derive the characteristic equation of Rayleigh surface wave in Kelvin viscoelastic half­
space in a much simpler way and in terms of complex wavenumber. We then propose a new 
and simple method which is able to directly analyze the validity of characteristic roots in a 
physical sense. Finally, we reach the conclusion that there is only one Rayleigh wave in Kelvin 
viscoelastic half-space surface, confirming Romeo's [s,91 conclusion under the assumption of 
Kelvin model. Meanwhile, we point out the error ofChirita et al[161 have made in handling the 
result, negating their viewpoint that there is not only one Rayleigh wave in Kelvin viscoelastic 
half-space surface. 
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