# On polynomial solutions of the Lamé and Stokes systems 

Hiroya ITO*<br>The University of Electro-Communications

## 1 Introduction

The Laplacian $\Delta$ is one of the most important differential operators in Mathematics. Solutions of the Laplace equation $\Delta u=0$ are called harmonic functions, which play significant roles in many subjects of mathematical research fields. It is well known that harmonic polynomials in $n$ variables are well classified. Moreover, the restriction of nonzero elements of $\mathcal{H}_{m}$ to the unit sphere $\mathbb{S}^{n-1}$, called spherical harmonics of degree $m$, become eigenfunctions of the Laplace-Beltrami operator $-\Delta_{\mathbb{S}^{n-1}}$ on $\mathbb{S}^{n-1}$ with the common eigenvalue $m(m+n-2)$, and this restriction is a linear isomorphism between $\mathcal{H}_{m}$ and the space of spherical harmonics of degree $m$. Furthermore, we can think that all the harmonic polynomials in $\mathbb{R}^{n}$ (or all the spherical harmonics) generate most function spaces on $\mathbb{S}^{n-1}$ (see Theorem 1 below). We shall study that such beautiful theory can be partially generalized to vector-valued elliptic systems.

Fixing $n$ variables $x_{1}, \ldots, x_{n}$ with $n \geq 2$, for each $m \in \mathbb{N}_{0}$, we denote by $\mathcal{P}_{m}$ the vector space of all the homogeneous polynomials of degree $m$ in $x=\left(x_{1}, \ldots, x_{n}\right)$, and by $\mathcal{H}_{m}$ its subspace consisting of those in $\mathcal{P}_{m}$ which are harmonic. Moreover, $\stackrel{\mathcal{H}}{m}$ denotes the vector space of all the functions on $\mathbb{S}^{n-1}$ obtained by restricting each element of $\mathcal{H}_{m}$ to $\mathbb{S}^{n-1}$; each element of $\mathcal{H}_{m}$ is called a spherical harmonic of degree $m$ :

$$
\mathcal{H}_{m}=\left\{u \in \mathcal{P}_{m} \mid \Delta u=0\right\}, \quad \stackrel{\circ}{\mathcal{H}}_{m}=\left\{\left.u\right|_{\mathbb{S}^{n-1}} \mid u \in \mathcal{H}_{m}\right\} .
$$

Then, the dimension $d_{m}$ of $\mathcal{P}_{m}$ is given by $d_{m}=\binom{m+n-1}{n-1}$ and the restriction map $\mathcal{H}_{m} \ni u \mapsto$ $\left.u\right|_{\mathbb{S}^{n-1}} \in \dot{\mathcal{H}}_{m}$ is, due to the homogeneity of elements of $\mathcal{H}_{m}$, a linear isomorphism: $\mathcal{H}_{m} \cong \mathcal{H}_{m}$. Fundamental properties of spherical harmonics on $\mathbb{S}^{n-1}$ are described in the following theorem (see, e.g., Chapter 2 of Shimakura [4], Chapter 3 of Simon [5], Nomura [2]).

Theorem 1. The space $\stackrel{\circ}{\mathcal{H}}_{m}\left(m \in \mathbb{N}_{0}\right)$ has the following properties.
(i) The dimension of $\stackrel{\circ}{\mathcal{H}}_{m}$ is given by $\operatorname{dim} \stackrel{\circ}{\mathcal{H}}_{m}=d_{m}-d_{m-2}$, where $d_{-1}=d_{-2}=0$.
(ii) $L^{2}\left(\mathbb{S}^{n-1}\right)=\bigoplus_{m=0}^{\infty} \stackrel{\circ}{\mathcal{H}}_{m}$ in the sense that

$$
\stackrel{\circ}{\mathcal{H}}_{\ell} \perp \stackrel{\circ}{\mathcal{H}}_{m}(\ell \neq m) \text { in } L^{2}\left(\mathbb{S}^{n-1}\right) \quad \text { and } \quad \overline{\operatorname{span}\left(\bigcup_{m=0}^{\infty} \stackrel{\circ}{\mathcal{H}}_{m}\right)}{ }^{L^{2}}=L^{2}\left(\mathbb{S}^{n-1}\right)
$$

In the present paper, we consider the homogeneous equation of the Lamé system

$$
\begin{equation*}
\mathcal{L} \boldsymbol{u}:=\mu \Delta \boldsymbol{u}+(\lambda+\mu) \nabla(\operatorname{div} \boldsymbol{u})=\mathbf{0} \quad \text { in } \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

[^0]for $n$-vector valued functions (vector fields) $\boldsymbol{u}$, where $\lambda$ and $\mu$ are elasticity constants. We study the structure of the restriction of polynomial solutions of (1) to $\mathbb{S}^{n-1}$ (or analogues of spherical harmonics for (1)). Here, the operator $\mathcal{L}$ of (1) appears in linear theory of isotropic elasticity and the constants $\lambda$ and $\mu$ are assumed to satisfy
\[

$$
\begin{equation*}
\mu(\lambda+2 \mu)>0, \quad \gamma:=\frac{\lambda+\mu}{\lambda+3 \mu} \in(-1,1) \tag{2}
\end{equation*}
$$

\]

The symbol of $\mathcal{L}$ is

$$
\begin{equation*}
L(\xi)=\mu|\xi|^{2} I+(\lambda+\mu) \boldsymbol{\xi} \otimes \boldsymbol{\xi} \tag{3}
\end{equation*}
$$

whose eigenvalues are given by $\mu|\xi|^{2}$ (multiplicity $\left.n-1\right)$ and $(\lambda+2 \mu)|\xi|^{2}$ (simple), where we write $\xi$ in boldface in order to clarify that $\boldsymbol{\xi}$ is a column vector. Assumption (2) implies that $\mathcal{L}=L(\partial)$ is a strongly elliptic system. In a similar way we also deal with polynomial solutions of the homogeneous equations of the Stokes system.

## 2 Orthogonally invariant partial differential operators for vector fields

Let $P(\partial)$ be a partial differential operator with constant coefficients for scalar fields $u$ on $\mathbb{R}^{n}$. It is well-known that $P(\partial)$ is invariant under the special orthogonal group $\mathrm{SO}(n)$ if and only if $P(\partial)$ is in the form $P(\partial) u=f(\Delta) u$ for some polynomial $f(t)$. How about the case $P(\partial)$ is for vector fields $\boldsymbol{u}$ on $\mathbb{R}^{n}$ ? The following theorem In the case $P(\partial)$ for scalar functions $u$, it is well-known that $P(\partial)$ is invariant under $\mathrm{SO}(n)$ if and only if it is in the form $P(\partial) u=f(\Delta) u$. The following theorem shows, in a sense, the necessity of considering the Lame system.

Theorem 2. A partial differential operator $P(\partial)$ with constant coefficients for vector fields $\boldsymbol{u}$ on $\mathbb{R}^{n}$ is invariant under the orthogonal group $\mathrm{O}(n)$ if and only if $P(\partial)$ is in the form

$$
P(\partial) \boldsymbol{u}=f(\Delta) \boldsymbol{u}+g(\Delta) \nabla(\operatorname{div} \boldsymbol{u})
$$

for some polynomials $f(t)$ and $g(t)$.
Even if we restrict $\mathrm{O}(n)$ to $\mathrm{SO}(n)$ in Theorem 2, then the conclusion is valid for $n \geq 4$, but not for $n=2,3$, in which $P(\partial) \boldsymbol{u}$ may contain additional terms, for example $h(\Delta) \operatorname{rot} \boldsymbol{u}$ if $n=3$.

## $3 \quad L$-harmonic vector fields and $L$-harmonics

Denote by $\mathcal{P}_{m}$ the vector space of all $n$-vector homogeneous polynomials in $x=\left(x_{1}, \ldots, x_{n}\right)$ of degree $m$. We define subspaces $\mathcal{H}_{m}$ and $\mathcal{H}_{m}^{L}$ of $\mathcal{P}_{m}$ by

$$
\mathcal{H}_{m}=\left\{\boldsymbol{u} \in \mathcal{P}_{m} \mid \Delta \boldsymbol{u}=\mathbf{0}\right\}, \quad \mathcal{H}_{m}^{L}=\left\{\boldsymbol{u} \in \mathcal{P}_{m} \mid \mathcal{L} \boldsymbol{u}=\mathbf{0}\right\}
$$

Elements of $\boldsymbol{\mathcal { H }}_{m}^{L}$ are called L-harmonic polynomials of degree $m$.
Vector functions on $\mathbb{S}^{n-1}$ obtained by restricting $L$-harmonic polynomials are called spherical $L$-harmonics. We represent the vector spaces of such vector functions (vector fields) as

$$
\stackrel{\circ}{\mathcal{H}}_{m}=\left\{\left.\boldsymbol{u}\right|_{\mathbb{S}^{n-1}} \mid \boldsymbol{u} \in \mathcal{H}_{m}\right\}, \quad \stackrel{\circ}{\mathcal{H}}_{m}^{L}=\left\{\left.\boldsymbol{u}\right|_{\mathbb{S}^{n-1}} \mid \boldsymbol{u} \in \mathcal{H}_{m}^{L}\right\}
$$

Corresponding to Theorem 1 for spherical harmonics, the following theorem for spherical $L$ harmonics has been established through joint research with Prof. Honda and Prof. Jimbo.

Theorem 3 ([1]). The space $\mathcal{H}_{m}^{L}\left(m \in \mathbb{N}_{0}\right)$ has the following properties.
(i) The dimension of $\dot{\mathcal{H}}_{m}^{L}$ is given by $\operatorname{dim} \dot{\mathcal{H}}_{m}^{L}=\operatorname{dim} \mathcal{H}_{m}^{L}=n\left(d_{m}-d_{m-2}\right)$, where $d_{-1}=d_{-2}=0$.
(ii) For each $m \in \mathbb{N}$, the sum $\dot{\mathcal{H}}_{0}^{L}+\dot{\mathcal{H}}_{1}^{L}+\cdots+\dot{\mathcal{H}}_{m}^{L}$ is a direct sum.
(iii) The linear span of $\bigcup_{m=0}^{\infty} \dot{\mathcal{H}}_{m}^{L}$ is dense in $\boldsymbol{L}^{2}\left(\mathbb{S}^{n-1}\right)$ with the $L^{2}$-norm.

## $4 \quad$ Case $n=2$

In this section we consider the case $n=2$. The spaces $\mathcal{H}_{m}, \mathcal{H}_{m}^{L}, \mathcal{\mathcal { H }}_{m}, \mathcal{\mathcal { H }}_{m}^{L}$ are defined not only for nonnegative integer $m$ but also negative integer $m$. For example, $\boldsymbol{u} \in \mathcal{\mathcal { H }}_{m}^{L}$ for $m<0$ implies that $\boldsymbol{u}$ is a vector field solution of (1) in $\mathbb{R}^{2} \backslash\{0\}$ which is homogeneous in $x=\left(x_{1}, x_{2}\right)$ of degree $m$.

Let $\boldsymbol{u}=\left(u_{1}, u_{2}\right)$ be a real vector field solution of $\mathcal{L} \boldsymbol{u}=\mathbf{0}$ in $\mathbb{R}^{2} \backslash\{0\}$. Then the complex function $U(z):=u_{1}\left(x_{1}, x_{2}\right)+i u_{2}\left(x_{1}, x_{2}\right)\left(z:=x_{1}+i x_{2}\right)$ satisfies

$$
\frac{\partial}{\partial \bar{z}}\left(\frac{\partial U}{\partial z}+\gamma \frac{\overline{\partial U}}{\partial z}\right)=0 \quad \text { in } \mathbb{C} \backslash\{0\}
$$

which is solved as

$$
U=\varphi(z)-\gamma z \overline{\varphi^{\prime}(z)}+\overline{\psi(z)}+2 c \log |z|-\gamma \bar{c}\left(\frac{z}{|z|}\right)^{2}
$$

where $\varphi(z), \psi(z)$ are holomorphic functions in $\mathbb{C} \backslash\{0\}$, and $c \in \mathbb{C}$ is a constant ([3]). Using this fact, we have the following assertions.
Theorem 4. The spaces $\mathcal{H}_{m}^{L}$ and $\mathcal{\mathcal { H }}_{m}^{L}$ have the following bases.
(i) $\mathcal{H}_{0}^{L}=\mathbb{R}^{2}$. For $m \neq 0$, the space $\mathcal{H}_{m}^{L}$ has a basis

$$
\left\{\left[\begin{array}{c}
\operatorname{Re}\left[z^{m}-\gamma m z \overline{z^{m-1}}\right] \\
\operatorname{Im}\left[z^{m}-\gamma m z \overline{z^{m-1}}\right]
\end{array}\right],\left[\begin{array}{c}
-\operatorname{Im}\left[z^{m}+\gamma m z \overline{z^{m-1}}\right] \\
\operatorname{Re}\left[z^{m}+\gamma m z \overline{z^{m-1}}\right]
\end{array}\right],\left[\begin{array}{c}
\operatorname{Re}\left[z^{m}\right] \\
-\operatorname{Im}\left[z^{m}\right]
\end{array}\right],\left[\begin{array}{c}
\operatorname{Im}\left[z^{m}\right] \\
\operatorname{Re}\left[z^{m}\right]
\end{array}\right]\right\} .
$$

(ii) $\mathcal{H}_{0}^{L}=\mathbb{R}^{2}$. For $m \neq 0$, the space $\dot{\mathcal{H}}_{m}^{L}$ has a basis

$$
\left\{\left[\begin{array}{c}
\cos m \theta-\gamma m \cos (m-2) \theta \\
\sin m \theta+\gamma m \sin (m-2) \theta
\end{array}\right],\left[\begin{array}{c}
-\sin m \theta+\gamma m \sin (m-2) \theta \\
\cos m \theta+\gamma m \cos (m-2) \theta
\end{array}\right],\left[\begin{array}{c}
\cos m \theta \\
-\sin m \theta
\end{array}\right],\left[\begin{array}{c}
\sin m \theta \\
\cos m \theta
\end{array}\right]\right\}
$$

## Corollary 5.

(i) $\dot{\mathcal{H}}_{0}^{L}+\stackrel{\circ}{\mathcal{H}}_{1}^{L}+\cdots+\stackrel{\circ}{\mathcal{H}}_{m}^{L}=\stackrel{\circ}{\mathcal{H}}_{0}+\stackrel{\circ}{\mathcal{H}}_{1}+\cdots+\stackrel{\circ}{\mathcal{H}}_{m} \quad$ for $m \geq 1$.
(ii) The sum $\check{\mathcal{H}}_{0}^{L}+\dot{\mathcal{H}}_{-1}^{L}+\cdots+\check{\mathcal{H}}_{-m}^{L}(m \geq 1)$ is a direct sum, and satisfies

$$
\stackrel{\circ}{\mathcal{H}}_{0}+\check{\mathcal{H}}_{1}+\cdots+\stackrel{\circ}{\mathcal{H}}_{m-2} \subset \check{\mathcal{H}}_{0}^{L}+\check{\mathcal{H}}_{-1}^{L}+\cdots+\check{\mathcal{H}}_{-m}^{L} \subset \circ_{\mathcal{H}}^{0}+\circ_{\mathcal{H}}^{1}+\cdots+\circ^{\circ}{ }_{m+2} \quad \text { for } m \geq 2
$$

## References

[1] N. Honda, H. Ito and S. Jimbo, Spherical vector functions associated with the Lamé and Stokes systems, preprint.
[2] T. Nomura, Spherical Harmonics and Group Represensations (Japanese), NipponHyoronsha (2018).
[3] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, 2nd ed., Noordhoff N.V., 1953.
[4] N. Shimakura, Partial Differential Operators of Elliptic Type, AMS, Providence, RI, 1992.
[5] B. Simon, Harmonic analysis, A Comprehensive Course in Analysis, Part 3. AMS, Providence, RI, 2015.


[^0]:    *e-mail: ito-hiroya@uec.ac.jp

