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Spectral analysis on the elastic N eumann-Poincare operator * 

Daisuke Kawagoe t 

Abstract 

The elastic N eumann-Poincare ( eNP) operator is a boundary integral operator that ap
pears naturally when we solve classical boundary value problems for the Lame system using 
layer potentials, and there is rapidly growing interest in its spectral properties recently in 
relation to cloaking by anomalous localized resonance (CALR). In this workshop, the speaker 
reported two results on the spectrum of the eNP operator. The first one is the polynomial com
pactness of the three-dimensional eNP operator on a C 1·" surface for a > 0, which describes a 
distribution of eigenvalues. The second one is on the essential spectrum of the two-dimensional 
eNP operator on a curve which is smooth except at a corner. 
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1 Introduction 

The elastic Neumann-Poincare (eNP) operator is a boundary integral operator that appears natu
rally when we solve classical boundary value problems for the Lame system using layer potentials. 
Recently, there is rapidly growing interest in the spectral properties of the eNP operator in relation 
to cloaking by anomalous localized resonance (CALR). Anomalous localized resonance occurs at 
the accumulation point of eigenvalues, which motivates us to investigate the spectral structure of 
the eNP operator. 

The Lame system, a system of equations of linear elasticity, is described by 

£>.,µU := µl::;,u + (>- + µ)VV · u = f, 

where u = (u1, ... ,ud) (d = 2,3) is the displacement,(.\,µ) are the Lame constants, and f is 
the body force. In what follows, we assume that the pair of constants (>-, µ) satisfies the strong 
convexity condition: 

µ > 0, d.\ + 2µ > 0. 

The Lame operator has the divergence form as follows. Let (C = ( Cijkt)f,j,k,l=l be the isotropic 
elasticity tensor corresponding to (.\, µ), namely, 

Here, D;j denotes the Kronecker delta. Also, let Vu be the symmetric gradient of a vector-valued 
function u, namely, 

~ 1 
Vu:= 2 (Vu+ (Vuf), 

where (Vu)T is the transpose of the matrix Vu. Then, the Lame system is also described as 

£>.,µU = V · (CVu) = f. 

*This work was supported by NRF grants No. 2016RlA2B4011304 and 2017RlA4Al014735. 
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Let us describe CALR. Let n be a bounded Lipschitz domain in ]Rd (d = 2, 3). Let a(x) be a 
function in JRd\an such that 

a(x) = {k, 
1, 

XE 0, 

XE JRd\0, 

where k is a complex number. We assume that k = ko + i8 in (1.1) for 8 > 0, where 

k ·- - >. + 3µ 
0 .- >. + µ . 

We consider the following transmission problem: 

{
V · (a(x)C\7u) =fin JRd, 

lu(x)I = O(lxl1-d) as lxl • oo, 

where f is a function compactly supported in JRd\O and satisfies 

{ f dx = 0. 
J[l_d 

For the transmission problem (1.1), let us define an energy E of the function u by 

E(u) := lo Vu: C\7udx = lo >-IV· ul 2 + (d - l)µIVul 2 dx. 

(1.1) 

Here, A: B = I:;ij a;jbij for two matrices A= (a;j) and B = (b;j), Let u6 be the solution to the 
problem (1.1). Then, CALR is characterized by two conditions: 

1. limsup8E(u6) = oo, 
6-!-0 

2. There exist positive constants C and R such that lu6(x)I < C for all lxl > R. 

Let V6 := u6/J8E(u8), Then, we have 8E(v8) = 1 and lv8(x)I • 0 as 8 + 0 for lxl > R. In 
other words, we cannot observe the displacement outside a ball. 

In the two dimension case, Ando et al. showed that CALR occurs when the domain n is a ball 
or an ellipse, and when the support off locates in a suitable area [2]. Also, in the three dimension 
case, Deng et al. showed that CALR occurs when the domain n is a ball and when the support 
off locates in a suitable area [9]. Moreover, they showed the same result for the elastic wave case 
[10]. All of the above results are shown by the spectral analysis of the eNP operator, or by the 
layer potential technique. 

Motivated by these previous works, we are going to work on the spectral analysis of the eNP 
operator. 

2 Potential Theory 

Let us introduce two operators originating from the potential theory. Let r(x) = (r(x))f,j=l be 
the fundamental solution to the Lame system associated with the Lame constants ( >., µ), namely, 

lxl 10, 

where 
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Also, let l1 be a bounded Lipschitz domain in JE.d ( d = 2, 3). Then, the single layer potential S is 
defined by 

S[cp](x) := { r(x - y)cp(y) day, a.e. x E JE.d. 
lari 

For a vector-valued function u, the conormal derivative 8vu corresponding to the Lame system 
is defined by 

8vu := (ICVu)n = >{v' • u)n + 2µ(Vu)n, 

where n is the outward unit normal to 8!1. Then, the eNP operator K* is defined by 

K*[cp](x) := p.v. { 8vxr(x - y)cp(y) day, a.e. x E 8!1. 
lari 

Here, we consider the conormal derivative 8v"r(x - y) of the matrix columnwise and p.v. stands 
for the Cauchy principal value. 

We will show some properties of these operators. For details, see [1]. 

Proposition 2.1 (Jump Formula). Let l1 be a bounded Lipschitz domain in JE.d. For cp E L2 ( 8!1)d, 
we have 

8vS[cp]I± = ( ±~J + K*) [cp]. 

where the subscript + and - in the left hand side implies the limit from outside and inside !1, 
respectively. 

Proposition 2.2. For any cp E L 2 (8!1)d, we have (S[cp], cp)L2(arJ)d :::; 0. Moreover, if S[cp] = 0, 
then cp = 0. 

Remark 2.1. To be precise, we need a slight modification in Proposition 2.2 when d = 2. For the 
detail, see {2}. 

From Proposition 2.2 , we can see that the sesquilinear form 

is indeed an inner product on L 2 (8!1)d. Let II· II, := (·, ·)!/2. Since S : L 2 (8!1)d • L 2 (8!1)d is 
bounded, we have 

for all cp E L 2 (8!1)d. 
Let 1i be the completion of the space L2 (8!1)d with respect to the norm II • II,. Then, we can 

show that 1i = H- 112 (8!1)d equipped with the inner product 

(cp, 7/J). := -(cp, S['I/;]) H-1/2.Hl/2 

for all cp, 7/J E H- 1/ 2(8!1)d by regarding the single layer potential Sas the operator S: H- 1/ 2(8!1)d • 
Hlf2(8!1l, 

By introducing the inner product (cp, 7/;)., the eNP operator K* becomes a self-adjoint operator 
on 1i, which follows from Plemelj's symmetrization principle 

SK*= KS, 

where K is the L2-adjoint of the eNP operator K*. Thus, the spectrum a(K*) of the eNP operator 
on 1i should be real. By further discussion on solvability of a transmission problem, we can show 
that 

a(K*) C (-1/2, 1/2). 

In what follows, we investigate the spectral structure of the eNP operator K* on 1i more deeply. 
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3 Polynomial Compactness 

So far, we obtain two results on the spectral structure of the eNP operator K* on the space 1-l. 
The first one is polynomial compactness of the three-dimensional eNP operator. This result 

was obtained by a joint work with Hyeonbae Kang (Inha University, Korea). 

Theorem 3.1. Let n be a bounded domain in R3 with the C 1,°'-smooth boundary for some a> 0. 
Let K* be the eNP operator on an corresponding to the pair of Lame constants (>.., µ). Let p3 (t) := 

t(t + Ko)(t - Ko), where Ko is given by 

k0 + 1 µ 
Ko ·= ~--~ = ~--~ 

. 2(ko-1) 2(>..+2µ)· 

Then, p3 (K*) is compact on H-112 (8n)3 . Moreover, K*(K*+11;0J), K*(K*-11;0!) and (K*)2 -K5l 
are not compact on H- 112 (8n) 3 . 

From Theorem 3.1 and the spectral mapping theorem, we obtain the following result on an 
asymptotic behavior of eigenvalues. 

Corollary 3.1. The spectrum of K* on H- 1! 2 (an) 3 consists of three non-empty sequences of 
eigenvalues which converge to 0, 11;0 and -11;0 , respectively. 

In the two-dimensional case, the counterpart of Theorem 3.1 is proved by replacing the poly
nomial p3 by p2 (t) := (t + Ko)(t - Ko) [2]. Also, Theorem 3.1 was once proved by assuming 
0 00-smoothness on the boundary an [3]. Theorem 3.1 is an extension of these two results. 

The key idea to a proof is to localize the eNP operator and to approximate it by surface Riesz 
transforms, which is also the main idea in [3]. 

Let G(u) = (g;j)i,j=l,Z be a positive-definite symmetric matrix valued function on R2 such that 
G(u) = I (the identity matrix) for u outside a compact set. We assume that G is C°'-smooth 
for some a > 0. In fact, G is a metric tensor corresponding to a C 1,°'-smooth boundary an of a 
certain bounded domain n in R3 (see (3.8) and (3.9)). Let 

L(u, u - v) = (u - v, G(u)(u - v))-312 . (3.1) 

The surface Riesz transform is defined by 

R3[f](u) = _!_p.v. { (uj-vj)L(u,u-v)f(v)dv, j = 1,2. 
271" JJR2 (3.2) 

Here, p.v. stands for the Cauchy principal value and Uj is the j-th component of the point u. The 
operator R3 is a singular integral operator of non-convolution type and bounded on L2 (R2 ). 

The surface Riesz transforms R3 satisfies the following relations, where A= B for two operators 
A and B bounded on L2 (R2 ) (or L2 (R2 ) 3 ) means that A-Bis compact on L2 (U) (resp. L2 (U)3) 
for any bounded open set U c R2 • 

Theorem 3.2. Let R3, j = 1,2, be surface Riesz transforms defined by the metric tensor G. 
Suppose that G is C°'-smooth for some a> 0. Then, following identities hold: 

(3.3) 

and 
(3.4) 

Remark 3.1. Theorem 3.2 could be shown by the pseudodifferential calculus with rough coefficients 
(for example, see /15)). 

In order to show Theorem 3.2, we introduce an auxiliary operator Rij· In what follows, we use 
the notation: 

rj(u,v) := VjL(u,v), j = 1,2, (3.5) 
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where L(u,v) is defined by (3.1). Observe that 

RfRJ[f](u)= lim ~1 r;(u,u-v)1 rj(v,v-w)f(w)dwdv 
0,,02-l-O 41r lu-vl>o, lv-wl>o2 

for a.e. u, where the limit exists either in the point-wise sense or L2-sense. Define the operator 
R;i by 

R;j[f](u) = lim ~1 r;(u,u-v)1 rj(u,v-w)f(w)dwdv 
o,,00-1-o 41r lu-vl>o, lv-wl>o2 

for a.e. u. We emphasize that the difference between Rf RJ [f] ( u) and R;j [f] ( u) lies in the r j 
appeared in the formulas: the first one is rj(v,v - w) while the second one is rj(u,v - w). 

The following proposition is the key ingredient in proving Theorem 3.2. 

Proposition 3.1. If the metric tensor G(u) is C°' for some a> 0, then 

Rf RJ = R;i· (3.6) 

fori,j = 1,2. 

It is shown in [3] that the eNP operator can expressed in terms of surface Riesz transforms. 
We review it and prove Theorem 3.1 using Theorem 3.2. 

Let 
K ( ) _ nx(x - y)T - (x - y)nI 

i x, y - 2 I 13 , 
7f X -y 

where nx is the outward unit normal at x, and let 

T[f](x) := p.v. f K1(x,y)f(y)da(y), x E 80. l&n 
It is proved in [2, 3] that 

K* = koT. (3.7) 

Here (3.7) means that the difference K* - k0T is compact on L 2 (80) 3 . We emphasize that Tis a 
singular integral operator and bounded on L 2 (80) 3 (see [6]). 

Denoting nx = (n1(x),n2(x),n3(x))T, we have 

where 

Let 

so that 

K12(x, y) = n1(x)(x2 - Y2) - n2(x)(x1 - Y1), 
K13(x, y) = n1(x)(x3 - y3) - n3(x)(x1 - Y1), 
K23(x, y) = n2(x)(x3 - y3) - n3(x)(x2 - Y2). 

[ ]( ) 1 K;j(x,y) ) ) 
T;j f x := p.v. I l3 f (y da(y , 

&D. 27f X - y 

T = [-~12 62 ~::] . 
-T13 -T23 0 

Let U be a coordinate chart in 80 so that there is an open set D in ffi.2 and a parametrization 
<I> : D • U, namely, 

X = <I>(u) = (rp1(u),rp2(u),rp3(u)), XE u, U ED. 
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Then the metric tensor of the surface, denoted by G(u) = (9ij(u));,j=l' is given by 

dxi + dx~ + dx~ = 911dui + 2912du1du2 + 922du~, 

where 
911 = 181 <I>l 2, 912 = 921 = 81 <I>· 82<1>, 922 = l82<I>l 2. 

Here and afterwards, 8j denotes the j-th partial derivative. In short, we have 

G(u) = D<I>(uf D<I>(u), 

(3.8) 

(3.9) 

where D<I> is the 3 x 2 Jacobian matrix of <I>. We then extend G(u) to JR.2 in such a way that 
G(u) = I for u outside a compact set. With this metric tensor, the surface Riesz transform is 
defined by (3.2). 

Choose open sets Uj (j = 1, 2) in 80 so that U1 c U2 and U2 c U. Let Xi (j = 1, 2) be 
0 1,a-smooth functions such that X1 = 1 in U1, supp(x1) c U2, X2 = 1 in U2, and supp(x2) c U. 
We denote by Mj the multiplication operator by Xi, i.e., 

and by Mj the multiplication operator by Xi(<I>(u)) for j = 1, 2. Let <I>* be a pull back operator, 
namely, 

For ease of notation, we set 

mu := (91182rp3 - 91281rp3), 

m12 := (92182rp3 - 92281rp3), 

m21 := -(91182rp2 - 91281rp2), 

m22 := -(92182rp2 - 92281rp2), 

m31 := (91182rp1 - 91281rp1), 

m32 := (92182rp1 - 92281rp1), 

and denote by M;j the multiplication operator by m;j. We emphasize that m;j are ca. 

Let 

and let 

X12 := M2(M11Ri + M12R§)M1, 

X13 := M2(M21Ri + M22R~)M1, 

X23 := M2(M31Ri + M32R§)M1, 

R := [-t2 X;2 1~:] . 
-X13 -X23 0 

Then it is proved in [3] that the following relation holds: 

<I>*M2TM1 = R<I>*. 

Note that the crux of the matter in Theorem 3.1 is that 

p3(K*) = K*((K*)2 - k5I) = 0. 

In view of (3.7) this fact follows once we have 

T 3 -T= 0, 

which in turn follows from the following proposition: 

(3.10) 
(3.11) 
(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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Proposition 3.2. It holds that 
(3.17) 

Since Theorem 3.2 proves Proposition 3.2, we see that the operator p3(K*) is compact on 
L2 (8D,)3. 

In order to push the polynomial compactness of K* on L2 (8rl) 3 up to that on 1-l, we borrow a 
result on function spaces with two norms [14]. Let us review the idea briefly. Let L be a pre-Hilbert 
space with an inner product (·, ·). We introduce two norms on L; II · IIB and II · IIH := (·, ·) 112 • 

Denote L with 11 · IIB and 11 · IIH by LB and LH, respectively. We assume that LB is a Banach space 
and that there exists a constant C such that 11/IIH ::::; CIIJIIB for all f EL. Let A be a self-adjoint 
(or a Hermittian) operator on L, that is, 

(Af,g) = (!,Ag) 

for all/, g EL. Furthermore, let 1-l be the completion of LH with respect to II · IIH and A. be the 
extension of A to 1-l. Under these settings, we have the following proposition. 

Proposition 3.3. Let A be a self-adjoint operator on L and suppose that A is compact on LB. 
Then, A is compact on 1-l. 

Theorem 3.1 follows from Proposition 3.3 by setting LB = L2 (80)3, 1-l = H-1/ 2 (80)3 and 
A= p3(K*). 

4 Essential Spectrum 

The second one is a characterization of the essential spectrum of the eNP operator when rl is 
a planar domain with a corner. This result was obtained by a joint work with Eric Bonnetier 
(Universite Grenoble-Alpes), Charles Dapogny (Universite Grenoble-Alpes) and Hyeonbae Kang. 

We consider a bounded domain rl in JR.2 such that 80 is smooth except at a single corner point, 
of angle a, 0 <a< 21r, a i= 1r (our results extend quite straightforwardly to the case of domains 
showing multiple corners). By translation and rotation, we may assume that the corner is located 
at the origin, and that for some Ro > 0, 

rlnBRo = {x = (rcos0,rsin0)I0::::; r < Ro, 0 < 0 < a}, ( 4.1) 

where Bp denotes the ball of radius p > 0 centered at the origin. Here and in the sequel, an 
arbitrary point x E JR.2 is indifferently identified with its Cartesian coordinates (x1 , x2 ) or its polar 
coordinates (r, 0) centered at the origin. 

We define a set :E(k0 ,a) by 

where 

:E(ko,a:) := {p E (0, 1- ko)ld(p,e) = 0 for some e > 0}, 

d(p, e) =l6d+(P, e)d_(p, e), 
d±(P,e) =h±(P,e)h,±(P,e) + g(p,e), 

h±(P,e) =sinh(ae)(p-1) ±esina:, 

h±(P, e) = sinh((21r - a)e)(p + ko) ± e sin a, 

g(p, e) =p(p - 1 + ko) sinh2 ((1r - a)e). 

Then, we have the following relation. 

Theorem 4.1. Let 0 <a< 21r. Then, we have 

CTess(K*) :) ! - ~k :E(ko, a). 
2 1- 0 

(4.2) 
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Remark 4.1. In the workshop, the speaker presented that the equality holds, namely 

CTess(K*) = ~ - 1 ~ ko ~(ko, a). 

However, we found a mistake in our proof. So, we excluded the opposite inclusion in the report. 

A proof of Theorem 4.1 is based on the idea of Bonnetier and Zhang [4], where they discussed 
the essential spectrum of the NP operator for the Laplace equation. It is worth mentioning that 
Perfekt and Putinar also discussed it with the complex analysis [17]. However, we do not think 
that their idea works in the case of Lame system because it is not invariant under a conformal 
mapping. 

Let us briefly review some relative works on the essential spectrum of K* on different function 
spaces from the energy space H-112 (80) 2 . Mitrea [16] investigated the essential spectrum of K* 
on £P(80) 2 for 1 < p < oo by applying the Mellin transform to the eNP operator directly, which 
originates from Cotabel and Stephan [7]. Also, based on the idea of [7], Diomeda and Lisena [11] 
discussed the well-posedness of a transmission problem on the Sobolev space H 312 (JR.2). Compared 
with these works, we discuss the essential spectrum of K* on H-112 (80)2, which is related to the 
well-posedness of the transmission problem on H 1 (JR.2 ). 

The definition of the essential spectrum is as the following. 

Definition 4.1. Let T : H • H be a bounded self-adjoint operator on a Hilbert space H. An 
element j3 E JR. belongs to the essential spectrum CTess(T) of T if (/31-T) fails to be Fredholm. 

From the physical point of view, the essential spectrum is of particular interest since it is a reso
nance effect characterized by values of the properties inside the inclusion associated to 'generalized 
eigenfunctions' which are highly concentrated; see for instance [12] in the context of electrostatics. 

From Theorem 4.1 and by analyzing structures of the set ~(ko, a), we obtain the following 
three theorems on bounds of the essential spectrum of the eNP operator K*. Here, we use the 
notation 1,,0 appearing in Theorem 3.1. 

Theorem 4.2. Let O < a < 27!'. If 

then, 

k 1 { lsinal lsinal} - o > +max ---,--- , 
a 27!'-a 

[-1,,0- (27r~:;\7 1-ko)'-K,o] U [1,,0,,,,,0+ a~~i~:~)] CCTess(K*). 

(4.3) 

Theorem 4.3. For O <a< 47r/3 (a i= 7r), there exists a positive number 51 depending only on 
ko and a such that 

[1,,0 - 61, 1,,0] C CTess(K*). 

Theorem 4.4. For 27r/3 <a< 27l' (a i= 7r), there exists a positive number 52 depending only on 
k0 and a such that 

[-1,,0, -K,o + 62] C CTess(K*). 

Roughly speaking, Theorem 4.2 states that, provided the relation (4.3) holds, there are two 
disjoint closed intervals containing -1,,0 and 1,,0 as endpoints belonging to CTess(K*). The next 
two theorems, Theorem 4.3 and Theorem 4.4, hold without the assumption (4.3); together with 
Theorem 4.2, they show that there are two closed intervals inside CTess(K*) containing -1,,0 and 1,,0 

as interior points. Notice that, strictly speaking, the essential spectrum could very well lie only on 
one side of either 1,,0 or -1,,0. 

Our proof relies on construction of a singular Wey! sequence. 



67

Proposition 4.1. Let A be a self-adjoint operator on a separable Hilbert space H. One real value 
"' belongs to D"ess(A) if and only if there exists a singular Weyl sequence, that is, a sequence of 
vectors ( 'Pn) C H such that 

{ 
ll'Pnll = 1, 
(,,,,J - A)[cpn] • 0 strongly in H, 

'Pn ---' 0 weakly in H. 

Let O be a bounded smooth domain in JR2 such that TI c 0, and let us consider the following 
transmission problem. 

£>.,µU = f in O\TI, 

£>,,µU = f in 0, 

ul+ = ul- on 80, ( 4.4) 

8vul+ = k8vul- on 80, 
u=0 on 80. 

The space HJ(0) 2 of functions in H 1 (0) 2 with null trace on 80 is equipped with the inner 
product(·, ·)e and the associated norm II· lie defined by: 

(u, v)e := la CVu: Vvdx = la ( >{v · u)('v · v) + 2µVu: Vv) dx, 

where A : B := L:,j=1 a;jbij is the Frobenius inner product of two matrices A= (a;i)T,j=l and 
B = (b;j );,j=l, and where the function u represents the complex conjugate of the function u. Let 
us recall that (·, ·)e is indeed an inner product on HJ(0) 2 and that the norm II · lie is a norm 
equivalent to the classical norm 

as follows from the classical Korn inequality and the strong convexity assumption; see for instance 
[5] Chap. 6 and the references therein about this point. 

We now come to the definition of the Poincare variational operator To : HJ ( 0) 2 • HJ ( 0)2 for 
the Lame system: for u E HJ(0) 2 , Tou is the unique element in HJ(0)2 such that 

(Tou, v)e = lo ( >.(V · u)(V · v) + 2µVu: Vv) dx 

for all v E HJ(0) 2 . The existence of Tou is guaranteed by the Riesz representation theorem. 
It readily stems from its definition that To is self-adjoint on HJ(0) 2 (with respect to the inner 
product(·, ·)e). Also, To is a positive operator with operator norm IIToll = 1. 

The Poincare variational operator has the following spectral structure. 

Lemma 4.1. The spectrum u(To) of To is contained in the interval [O, 1]. Moreover, the space 
HJ ( 0) 2 has the following orthogonal decomposition: 

HJ(0)2 = Ker(To) EB Ker(J - To) EB 1-i, 

where: 

• Ker(To) = {u E HJ(0)2, ulD E \JI}; 

• Ker(J -To)= {u E HJ(0)2, u = 0 on O\D} R:, HJ(D)2; 

• 1i is defined by: 

1i = { u E H6(0) 2 I £>.,µU = 0 in DU (O\D), laD 8vu+ · 'I/Ji ds = 0, j = 1, 2, 3}. (4.5) 
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There is a relation between the essential spectrum of To and that of the eNP operator K*. 

Proposition 4.2. 

O"ess(Tri)\{0, 1} = ~ - O"ess(K*). 

In what follows, we discuss the essential spectrum of the Poincare variational operator instead 
of that of the eNP operator. 

We consider the following transmission problem 

V · (a(x)CVu) = 0 in JR2 , (4.6) 

where 

a(x)={k(<O), 0<0<a, 
1, a< 0 < 211' 

with the polar coordinates x = (r cos 0, r sin 0). We also write the displacement vector using the 
polar coordinates as 

u = ur(r, 0)er + u0(r, 0)e0, 

where er= (cos0,sin0) and e0 = (-sin0,cos0), and we seek a formal solution of the form 

Ur(r, 0) = r'flr.pr(0), u0(r, 0) = r'fltp0(0), 

with a complex number T/· 
The pair ('-Pr, tp0) in ( 4. 7) should satisfy 

{
µr.p~ + ((>. + µ)TJ - (>. + 3µ))r.p~ + (>. + 2µ)(TJ 2 - l)rpr = 0, 

(>. + 2µ)cp~ + ((>. + µ)TJ + (>. + 3µ))r.p~ + µ(TJ2 - l)cp0 = 0 

in (0, a) U (a, 211') with the transmission conditions 

'-Pr(0) = '-Pr(27r), 

r.pe(0) = cp0(27r), 

k{µcp~(0) + µ(TJ - l)cpe(0)} = µcp~(27r) + µ(TJ - l)cp0(27r), 

k{(>. + 2µ)cp~(0) + (>.TJ + >. + 2µ)cpr(0)} = (>. + 2µ)rp~(27r) + (>.TJ + >. + 2µ)cpr(27r), 

'-Pr(a_) = '-Pr(a+), 
'-P0(a_) = 'P0(a+), 
k{µr.p~(a_) + µ(TJ- l)r.p0(a_)} = µr.p~(a+) + µ(TJ- l)r.p0(a+), 

k{(>. + 2µ)r.p~(a_) + (>.TJ + >. + 2µ)r.pr(a_)} = (>. + 2µ)r.p~(a+) + (>.TJ + >. + 2µ)r.pr(a+), 

where a± = lim40 a± E. 

(4.7) 

(4.8) 

(4.9) 

We rewrite the system (4.8) as a system of first order ordinary differential equations. To achieve 
this, let 'Pl = '-Pr, tp2 = tp0, lp3 = tp~, tp4 = cp~; then, we have: 

.!!._ [:~i = A [:~i , d0 '-P3 'P3 
'-P4 'P4 

(4.10) 

where A is the matrix with constant entries: 

0 0 1 0 
0 0 0 1 

A= 
(>. + 2µ)(1 - TJ2) 

0 0 
(>. + 3µ) - (>. + µ)TJ 

µ 
µ(1 - T/2) 

µ 

0 
(>. + µ)TJ + (>. + 3µ) 

0 
>. + 2µ >. + 2µ 
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The characteristic polynomial of this matrix reads: for all I E C, 

det(,I - A)= 1 4 + 2(1 + r"?),2 + (r/ - 1)2 . 

Another calculation reveals that A has four distinct eigenvalues, which are given by; 

,1 := (1 + 'fl)i, ,2 := -(1 + 'fl)i, 13 := (1 - 'fl)i, 14 := -(1 - 'fl)i, 

and the corresponding eigenvectors are respectively given by 

[ 
1 l [ 1 l [ 'f/ + ko l [ 'f/ + ko l i -i -(7/ - k0 )i (7/ - k0 )i 

(1 + 'fl)i ' -(1 + 7/)i ' (1 - 7/)(7/ + ko)i ' and -(1 - 7/)(7/ + ko)i · 
-(1 + 7/) -(1 + 7/) (1 - 7/)(7/ - k0 ) (1 - 7/)(7/ - k0 ) 

It is worth noticing that all four eigenvalues ,j, j = 1, ... , 4 are independent of the Lame constants 
( >., µ), while the associated eigenvectors actually depends on them through the parameter ko. Now 
defining the change of basis matrix 

it follows that A rewrites 

1 
-i 

-(1 + 7/)i 
-(1 + 7/) 

'f/ + ko 'f/ + ko l 
-('fl - ko)i (7/ - ko)i 

(1 - 7/)(7/ + k0 )i -(1 - 7/)(7/ + k0 )i ' 
(1 -7/)(7/ - ko) (1 -7/)(7/- ko) 

A= P diag[,1, 12, 13, 14] p-l, 

and so the general solution to ( 4.10) is given by 

(cp1, '-P2, cp3, cp4)T = PD(0)a, 

where a is an arbitrary constant vector in C4, and 

[
e,10 O 

0 e,20 
D(0) := 0 0 

0 0 0 

0 l 0 
0 . 

e,•0 

(4.11) 

Let an and an be constant vectors in (4.11) in intervals (O,a) and (a,21r), respectively. With 
the above notations, the transmission conditions (4.9) can be written as 

[I(k)MPD(O) 
I(k)MPD(a) 

-MPD(21r)] [an] = O 
-MPD(a) an ' 

(4.12) 

where 

[ 1 
0 0 

J,J [! 

0 0 

!] M·= 0 1 0 
I(k) := 

1 0 
. 0 µ('f/ - 1) µ ' 0 k 

A'f/+ >-.+ 2µ 0 0 0 0 

In order for (4.12) to have a non-trivial solution, the matrix in the above system has to be 
degenerate, that is: 

d [I(k)MPD(O) -MPD(21r)] _ O 
et I(k)MPD(a) -MPD(a) - . (4.13) 

Our task is now to find 7/ and k satisfying this equation for given values of the Lame constants 
>-., µ and the aperture angle a. To achieve this goal, assuming that 7/ is neither O nor 1, P and M 
are invertible. Therefore, we may factorize ( 4.13) as: 

d t [I(k)MPD(O) -MPD(21r)] 
e I(k)MPD(a) -MPD(a) 
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[MP 0 ] [ p- 1M- 1I(k)MP -D(21r)] 
= det O MP p-lM-1I(k)MPD(a) -D(a) 

= p-4 (det M P) 2 det (D(a - 21r)B(p, rJ) - B(p, ry)D(a)), 

where we have introduced the reduced variable: 

and the 4 x 4 complex-valued matrix: 

ko -1 
p= k-1 

Notice that since k < 0 and k0 < 0, the reduced variable p satisfies: 

p E (0, 1 - ko). 

(4.14) 

(4.15) 

Note also that the entries of B(p, ry) depend on the Lame coefficients (.\, µ), although the depen
dence is not made explicit in the notations. The condition that (4.13) is now reduced to the 
following equation: 

d(p, rJ) := det(D(a - 21r)B(p, rJ) - B(p, ry)D(a)) = 0. 

Through straightforward but tedious calculations, one can see that 

[

ko +p 

B(p, rJ) = ~1 

Expanding (4.16), we obtain: 

'I/ 
ko +p 

0 
-1 

ko + ry2 

ry(ko + 1) 
p-1 

-ry 

d(p, rJ) = 4(cos(21rry) - 1)2(p - 1)2(p + k0 ) 2 

ry(ko + l)l 
ko + '//2 

-ry . 
p-1 

+ 4ry2 (1 - cos(2a))(cos((41r - 2a)ry) - l)(p + k0 ) 2 

+ 4ry2 (1 - cos(2a))(cos(2ary) - l)(p - 1)2 

+ 8k0 (cos(21rry) - l)(cos((21r - 2a)ry) - l)(p - l)(p + ko) 

- 8ry2 (1 - cos(2a))(cos(2ary) - l)(p - l)(p + k0 ) 

+4{k0 (cos((21r - 2a)ry) -1) - (1-cos(2a))ry2 } 2 • 

(4.16) 

(4.17) 

We should emphasize that the same formula as ( 4.17) was also derived by Diomeda and Lisena 
[11]. It is also worth mentioning that the function d(p,rJ) is even with respect to'//, namely, 

d(p, -ry) = d(p, 'f/). 

Let us presently seek the pure imaginary zeros rJ = i{;, ( {;, E JR) of the determinant d(p, rJ). For 
simplicity, we let d(p, [;,) := d(p, it;,). It then follows from ( 4.17) that: 

d(p,[;,) = 4(cosh(21r[;,) - 1)2(p- 1)2 (p + k0 ) 2 

- 4{;,2(1 - cos(2a))(cosh((41r - 2a)[;,) - l)(p + k0 ) 2 

- 4{;,2(1 - cos(2a))(cosh(2a{;,) - l)(p- 1)2 

+ 8k0 (cosh(21r{;,) - l)(cosh((21r - 2a)[;,) - l)(p - l)(p + k0 ) 

+ 8{;,2(1 - cos(2a))(cosh((21r - 2a)[;,) - l)(p- l)(p+ k0 ) 

+ 4{k0 (cosh((21r - 2a)E;,) - 1) + (1 - cos(2a)){;,2}2 • 
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Elementary computations based on the elementary identity 

s+t s-t 
coshs - cosht = 2sinh-2-sinh-2-, s,t EC, 

show that d(p, 0 admits the following factorization: 

d(p,0 = 16d+(P,~) d_(p,e), where d±(P,e) := h±(P,0 h±(P,e) + g(p,e), (4.18) 

and 

h±(P, e) := sinh(ae)(p - 1) ± e sin a, 

h±(P, e) := sinh((27r - a)e)(p + ko) ± e sin a, 

g(p, e) := p(p - 1 + ko) sinh2((7r - a)e). 

Let us remark that, owing to the estimate (4.15) for p, one has p(p- 1 + k0 ) < 0. 

(4.19) 

(4.20) 

(4.21) 

Summarizing the above argument, the condition p E E(ko, a) holds if and only if there is 
a formal solution to the transmission problem ( 4.6) of the form ( 4. 7) with the pure imaginary 
exponent T/ = it 

Now we are ready to prove the following inclusion. 

Proposition 4.3. For any k0 < -1 and 0 <a< 27r, a i= 'If, one has: 

1 
--k-E(ko, a) C CTess(To)-
1 - 0 

Since CTess(To) is closed, it suffices to show that all of the interior points in (1/(1- ko))E(ko, a) 
belong to CTess(To). For such a number p, there exists a nontrivial solution to the transmission 
problem (4.6) of the form (4.7) with the pure imaginary exponent TJ = ie. 

Straight computations show that if u and v are of the form u = ur(r, 0)er + u0(r, 0)e0 and 
v = Vr(r, 0)er + v0(r, 0)e0, then 

(4.22) 

and 

(Vu): (Vv) = 8rur8rvr + r-2 (ur + 80u0) (vr + 80v0) 
1 + 2 ( 8rU0 + r- 180Ur - r- 1U0) ( 8rV0 + r- 180Vr - r- 1V0) , (4.23) 

where 8r and 80 denotes the partial derivative with respect tor and 0, respectively. Thus, we see 
that the solution u given in ( 4. 7) with T/ = ie and e > 0 satisfies: 

IV. ul 2 :::::: cr-2 and 1Vul2 :::::: cr-2 in BRo· 

Let xi : JR+-+ [0, 1] be smooth a cut-off function such that: 

x1(s) = 0, s::::; 1; x1(s) = 1, s 2 2; lx~(s)I::::; C; 

choosing r0 < R0 /2, let x 2 : JR+-+ [0, 1] be another smooth cut-off function such that: 

x2(s) = 0, s 2 2ro; x2(s) = 1, s::::; ro; lx;(s)I::::; C. 

(4.24) 

In the above equation, and throughout the proof, C > 0 is a positive constant which may change 
from one line to the next, but is in any case independent of E. We set x1(r) := x1(r/c) for E > 0, 
and define 

(4.25) 

where the constant Sc is chosen so that lluclle = 1. We can show that (uc) is the desired singular 
Wey! sequence, which proves Proposition 4.3. 
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