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INVERSE SOURCE PROBLEM FOR KLEIN-GORDON 
EQUATION IN DE SITTER SPACE-TIME 

HIROSHI TAKASE 

ABSTRACT. De Sitter space-time is a solution of the vacuum Einstein equation 
with a positive cosmological constant in Euclidean space. We prove a unique
ness theorem to determine a time-independent source term for the Klein
Gordon equation in de Sitter space-time up to a neighborhood of an open 
subset when the mass in the equation has a particular value. We establish 
a new method based on the Duhamel's principle and theory of distributions 
with compact supports to deal with inverse problems for such equations having 
time-dependent coefficients. 

1. INTRODUCTION AND MAIN THEOREM 

Let n E N and T, H, m > 0 be constants. In this paper, we consider the initial 
value problem 

(1.1) 

{
Pmu := o;u - e-2Htt:i.u + nHOtU + m 2u = S (I; cHTdT) f(x) 

u(O, ·) = Otu(O, ·) = 0 

in (0, T) X lR.n, 

where f and S are smooth functions. Let ( t, x) = ( t, x1, ... , xn) E JR Hn be the 
Cartesian coordinate. If we use de Sitter space-time in Euclidean space (JR.l+n,g) 
defined by 

n 

g = -dt 0 dt + e2Ht L dxj 0 dxj, 
j=l 

which satisfies the Einstein equation with a positive cosmological constant, then 
our differential operator Pm can be written as 

Pm= • 9 +m2 , 

where • 9 denotes the d'Alembertian with respect to the metric g. Namely, (1.1) 
is the initial value problem of the Klein-Gordon equation in de Sitter space-time. 
This type of equations is dealt by Yagdjian and Galstian [9], [10]. The semi-linear 
case is also studied by Yagdjian [8] and Nakamura [5]. 

Let n c ]Rn be an open subset. We consider the inverse source problem to de
termine the source term f up to a neighborhood of n from a data of a solution u 
to (1.1) in n x (0, T). This inverse problem relates to the inverse source problem 
for the equations having time-dependent coefficients. This type of inverse problems 
are studied by Jiang, Liu and Yamamoto [3] by the Bukhgeim-Klibanov method 
[l]. They prove the local Holder stability under the assumption that there exists 
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the Carleman estimate for a suitable weight function. However, the Bukhgeim
Klibanov method in no longer useful since our goal is to prove uniqueness up to an 
outer neighborhood of fl and the choice of a weight function is unclear. We must 
generate a new method to solve this difficulty. 

To the best knowledge of the author, there are few publications on inverse source 
problems in the case that the principal part depends on time. Given the situa
tion, we consider a new method to deal with inverse source problems based on the 
Duhamel's principle and theory of distributions with compact supports. 
We denote the class of tempered distributions by S' and distributions with compact 
supports by £,'. 

Theorem 1.1. Let H, T > 0 be constants and m = y'n~-l H. Let fl C Rn be an 
open subset, f E C 00 (Rn) nS' and SE C 00 ([0,H- 1 )) with S(0)-/- 0. Assume u E 
C 00 ([0, T); S') is a solution to the initial value problem (1. 1). If u = 0 in [0, T) x fl, 
then f = 0 up to nT, where nT is defined by 

{ 1 -HT} nT := X E Rn I dist(x, fl) < - ~ . 

Remark 1. We should remark on the well-posedness of (1.1). Under the assump
tions in Theorem 1.1, it is well known that there exits a unique solution u E 

C00 ([0, T); S'). Furthermore, the solution u satisfies 

Vt E [0, T), u(t, ·) E C 00 (Rn), 

which is followed by the argument in the proof of Theorem 1.1 by means of the 
Fourier transform in S' and the fact that a convolution * is a map 

*: £' X C00 (Rn)---+ C00 (Rn), 

(e.g., [7, Theorem 27.2]). Thus, the condition u = 0 in [0, T) x fl makes sense. 

2. PROOF OF THEOREM 1.1 

Proof. Let m = ✓n~-l H. We remark that by defining 

S(a-) 1 
R(r:,) := !!H, r:, E [O, H- ) 

(l-Hr:,) 2 

as a smooth function with R(0) -/- 0, we can write 

S (late-HT dT) = e-~Ht R (late-HT dT) . 
For the solution u E C00 ([0, T); S'), by Lemma 3.1, there exists v E C00 ([0, T); S') 
such that v is a unique solution to the initial value problem 

{
Pmv = 0 

v(0, ·) = 0, 8tv(0, ·) = f 

Furthermore, u and v satisfy 

in [O, T) X Rn, 

on Rn. 

u(t, x) = e- n;;l Ht late n;;3 Hs R (1t e-HT dT) v(s, x)ds. 
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The Fourier transform with respect to the space variable x in S' yields 

{ ~'fv + ~-2Htll~2f; + n!!~tV + m 2v = O in [\T) x lRn, 

v(O, ·) - 0, 8tv(O, ·) - f on JR , 

where v(t, l) represents the Fourier transform of v in S'. The solution is written by 

1 sin (Ill I/ e-Hsds) 
v(t, l) = e- n, m loll l(l). 

Define a linear operator Ai : C 00 ([0, T); S')-+ C 00 ([0, T); S') for j EN as 

Aiw := ilie-n2lHt 1t en;-3HT 1T e-Hsdsw(r,l)dr. 

Applying Ai to the solution f; yields 

Aiv = ili e- n;-l Ht 1t e n;-3 Hr 1T e-Hsdsv(r, l)dr 

- . i _n;- 1 Ht( [- r -Hs cos(lllJ; e-Hsds)lt rt -HTcos(lllJ; e-Hsds) ) A() 
- il e lo e ds lll2 0 + lo e lll2 dT f l 

_ . i _ n;-l Ht (- t -Hs cos (Ill 1i e-Hsds) sin (Ill 1i e-Hsds)) A 

- il e lo e ds lll2 + lll3 f(l), 

Moreover, define a linear operator £) : C00 ([0, T); S') -+ C00 ([0, T); S') with the 
help of Ai as 

rj A ·- Ai A • a A 

1..., w .- w + i 8li w. 

Applying ,Ci to the solution f; yields 

(2.1) 

rjA AiA . a A 

1..., V = V + Z aliV 

. n-l li Ill 1i e-Hsds cos (Ill 1i e-Hsds) - li sin (Ill 1i e-Hsds) A 

= AJf; + ie--2-Ht lll3 f 

- n-l Ht sin (Ill 1i e-Hsds) . a A 

+e 2 Ill ialif(l) 

- n-l Ht sin (Ill 1i e-Hsds) . a A 

= e 2 l(I i ali J(l) 

n-1 sin (Ill 1i e-Hsds)--:--
= e--2 Ht 1(1 xJ f (l). 

On the other hand, we define a linear operator Ai : C 00 ([0, T); S')-+ C 00 ([0, T); S') 
and Li : C 00 ([0, T); S')-+ C 00 ([0, T); S') for j EN as 

. a ( n-lHt1t n-3H 1T H ) A1w := -. e--2- e-2- 7 e- 8 dsw(r,x)dr 
8xJ o o 
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and 

Ljw := Ajw + xJw. 

We then can easily see that Vw = .Ow for all j E N. Let p E P be an arbitrary 
polynomial, where P denotes a set of all polynomials with variable x. We then have 
from (2.1) 

___ n-i sin (Ill J; e-Hsds )-
p(L)v(t, ~) = e--2 Ht Ill pf(l), 

1 . n-1 Ht sin(l~I J.' e-H 8 ds) 
where L := (L , • • • , Ln). The Paley-Wiener theorem shows that e--2- l~I 
is the Fourier transform of some distribution s(t) E £' contained in the ball of radius 
J; e-Hsds. More precisely, it is well known that when n is odd number 

supps(t) = { x E ~n I lxl = lat e-Hsds}, 

and when n is even number, 

supps(t) = { x E ~n I lxl :Slat e-Hsds}. 

The inverse Fourier transform in S' yields 

p(L)v(t, x) = (s(t) * pf) (x). 

Our assumption requires 

(2.2) (s(t) * pf) (x) = 0 in [0, T) x D 

by the final claim of Lemma 3.1. Let V(t) c ~n be an arbitrary open neighborhood 
of supps(t). Since the polynomials P form a dense linear subspace of C00 (V(t)) 
(e.g., [7, Chapter 15]), we have 

'vt.p E Co'(V(t)), :l{pk}k=l C P, Pk~ t.p 

in the sense of C00 (~n). By continuity of multiplication of an element in C 00 (~n) 
and of convolution as a linear map of C00 (~n) into C 00 (~n) (e.g., [7, Theorem 
27.3]), it follows from (2.2) that 

(s(t) * t.pf) (x) = 0 in [O, T) x D 

holds for all t.p E C0 (V(t)). Finally, it means from the definition of convolution 
with elements of£' and C00 (~n) (e.g., [7, Definition 27.1]) that 

(s(t), t.pf(x - ·)) = 0 in [O, T) x D 

holds for all t.p E C0 (V(t)). By Lemma 3.2, we conclude that for all (t, x) E 

[O, T) x D and ally E supps(t), f(x - y) = 0 holds, i.e., 

f = 0 in LJ D - supps(t). 
tE[O,T) 

• 
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3. APPENDIX 

Lemma 3.1. Let fl c Rn be an open subset, H > 0, m = ✓n~-l H be constants, 
f E C 00 (Rn) n S' and RE C00 ([0, H-1 )). Assume u E C00 ([0, T); S') is a solution 
to 

{
Pmu = e-~HtR (Ji e-HTdT) f(x) 

u(0, ·) = 8tu(0, ·) = 0 

in [0, T) X Rn, 

on Rn. 

There then exists v E C 00 ( [0, T); S') such that v is a unique solution to 

{
Pmv = 0 

v(0, ·) = 0, 8tv(0, ·) = f 

and u and v satisfy the following relation 

in [0, T) X Rn, 

on Rn, 

Moreover, if R(0) =I= 0 and u = 0 in [0, T) x n, then v = 0 in [0, T) x n. 

Proof. From the argument by means of the Fourier transform in the proof of The
orem 1.1, the existence of such v is proved. It suffices to prove the relation (3.1). 
For the solution v, we set 

It then is obvious that w E C 00 ([0, T); S') by the regularity of v. What we have to 
prove is w satisfies the initial value problem. Some calculations yield 

a;w = ( - n; 1 He-Ht R(0) + e-2Ht R' (0)) V + e-Ht R(0)OtV 

(n - 1)2 2 n-lHt rt n-3H (1t H ) + 4 H e--2- lo e-2- s R s e- T dT v(s, •)ds 

-nHe_ntlHt lot en2 3HsR' (lt e-HTdT) v(s,·)ds 

+ e-~Ht lot e n23 Hs R" (lt e-HT dT) v(s, ·)ds, 
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e-2Htf:1w = e- nt3 Ht late n:,3 Hs R (1t e-HT dT) l:!.v(s, ·)ds 

= e- nta Ht late nti Hs R (1t e-HT dT) (8;v + 3H88 v + m 2v)(s, ·)ds 

= e-HtR(0)8tv - e-"f-Ht R (late-HT dT) f(x) 

+ ( n; 1 He-Ht R(0) + e-2Ht R'(O)) v 

+ e- nta Ht lat a; ( e ntl Hs R (1t e-HT dT)) v(s, ·)ds 

- nHe- nta Ht lat 8s (e2Hs R (1t e-HT dT)) v(s, ·)ds 

+ n2; 1 H2e- nta Ht late nti Hs R (1t e-Hr dT) v(s, ·)ds 

= e-Ht R(0)8tv - e- nta Ht R (late-Hr dT) f(x) 

+ (n; 1 He-HtR(0) + e-2HtR'(o)) v 

+ e- nt3 Ht late n:,3 Hs R" (1t e-HT dT) v(s, ·)ds, 

n(n - 1) 2 n-lHt rt n-3H (1t H ) nH8tw = - 2 H e--2- lo e-2- s R s e- 7 dT v(s, •)ds 

+nHe-HtR(O)v+nHe_ntim lat en23HsR' (1t e-HrdT) v(s,•)ds 

and 
2 n2 - 1 2 n-1 Ht rt n-3 H (1t H ) m w = - 4-H e--2- lo e-2- s R s e- 7 dT v(s, •)ds. 

We then have 

Pmw = a;w - e-2Ht1:1w + nH8tW + m 2w 

= e-"f-Ht R (late-Hr dT) f (x) 

and 
w(0, ·) = 8tw(0, ·) = 0. 

By the uniqueness of the initial value problem, we can conclude u = w. The final 
claim follows by differentiating (3.1) with respect tot and applying the Gronwall's 
inequality to the formula. • 
Lemma 3.2. Let n EN, f E C 00 (1Rn) and <I> E [' with a compact support supp <I>. 
If for an arbitrary open neighborhood V of supp <I>, 

(<I>,cpf) = 0, 'vcp E C0 (V) 

holds, then f = 0 on supp <I>. 
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Proof. Suppose there exists xo E supp <I>, f(xo) -/- 0. Without loss of generality, we 
can assume f(xo) > 0. Then there exists r > 0 such that f > 0 on Br(xo), which is 
an open ball centered at x0 of radius r. For a neighborhood V of supp <I> containing 
Br(xo) and any XE C0 (Br(xo)), define 'P := J E C0 (Br(xo)) c C0 (V). By our 
assumption 

(<I>, 1.pf) = (<I>, x) = o 
holds for all XE C0 (Br(xo)), that is, <I>= 0 on Br(xo)- However since xo E supp<I> 
it follows that x 0 (/_ U for all open subset U C ]Rn on which <I> = 0. By the 
contradiction argument, we prove our lemma. 

• 
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