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An inversion algorithm for recovering a coefficient of 

Sturm-Liouville operator 

Xiaoying Jiang* Xiang Xu t 

Abstract 

In this paper, an efficient algorithm for recovering a density of Sturm-Liouville operator from given 
two spectra is investigated. Based on Lidskii's theorem and Mercer's theorem, we build a sequence of 
trace formulae which bridge explicitly the density and eigenvalues in terms of nonlinear Fredholm inte
gral equations. Due to intrinsic difficulties on ill-posedness of an inverse spectral problem, a truncated 
Fourier series regularization method is utilized for reconstructing the unknown density. Moreover, 
shifted Legendre polynomials are carried to balance the different order of trace formulae. Numeri
cal results are presented to illustrated the effectiveness and stability of the proposed reconstruction 
algorithm. 

AMS(MOS) subject classification: 45C05, 34L16 
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1 Introduction 

We are concerned with a Sturm-Liouville equation 

d2u 
- dx2 = .\p(x)u, 

with two separated boundary conditions (BCs) 

sin(a)u(0) + cos(a)u'(0) = 0, 

sin(b)u(l) + cos(b)u'(l) = 0, 

(1.1) 

(1.2) 

(1.3) 

where the density p(x) is a positive and unknown function defined in the interval [0, 1] and the coefficients 
a, b E [O, 1r). 

Our interest in this paper lies in computing the density function p everywhere on the interval [0, 1] 
from two spectra. Let 

{ >-1,k (p, a, b) h=1,2, ... (1.4) 

be a first spectrum of the equation (1.1) with Dirichlet-Dirichlet boundary conditions (DDBCs), i.e., 
a = b = 1r /2, and 

{>-2,k(p,a,b)h=1,2, ... , b#b (1.5) 

a second spectrum corresponding to Dirichlet-Neumann boundary condtions (DNBCs), i.e., a = 1r /2, b = 0. 
Besides, these two spectra (1.4) and (1.5) are assumed to be arranged from small to large according to 
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their values. In 1946, Borg [6] proved that two spectrum can uniquely determine the density of a string 
equation. Actually, if p E C 2 ([0, 1]), then with the following Liouville transformation [19, 20] 

the equation (1.1) reduces to a second-order Sturm-Liouville equation with potential function q over [O, c] 
of the form 

- y"(O + q(~)y(~) = >-y(O. (1.6) 

Together with some boundary conditions, the numerical method of inverse Sturm-Liouville problem 
(SLP) for recovering the potential function q in (1.6) had been studied intensively in past two decades. 
Theoretically, Sini [21] reviewed four popular methods, i.e., the asymptotic expansion technique, the 
integral equation technique, the C-prperty and the boundary control method, for proving the uniqueness 

results of inverse SLP. Numerically, Sacks [18] described several computational methods, i.e., the integral 
equation method, optimization method and matrix method, to recover q from spectral data. In terms of a 
single given spectrum, a potential q which is even with respect to x = c/2 [2, 7, 9, 13] or is given over the 
interval [c/2, c] [1, 3, 14] can be reconstructed. For the case of providing two-spectrum, the main methods 
of recovering general potentials are iteration approaches [4, 5, 8, 16, 17]. The primary differences are in the 
way of determining eigenvalues on direct problem or optimization methods on inverse problem. Rundell 
and Sacks [17] proposed a transformation method using a reference potential which results in solving a 
hyperbolic partial differential equation in each iteration step. Andrew [4] applied Numerov's method to 
approximate the eigenvalues in each modified Newton's iteration for recovering a non-symmetric potential. 
Gao et al. [8] using a boundary value method (BVM) [10] as the main tool for estimating the eigenvalues in 
each Newton iteration step. Bockmann and Kammanee [5] proposed a derivative-free method for recovering 
symmetric and non-symmetric potential functions in each Broyden iteration step. The methods mentioned 
above all rely heavily on the accuracy and the computing speed of direct problem. 

Current work is a direct extension of Xu and Zhai [22], where an explicit relationship between the trace 
operator and given eigenvalues {>-k}k=l was derived through the Lidskii's theorem, i.e., 

00 

trace(K) = I>;;:-1 . (1.7) 
k=l 

For the sake of keeping inverseion of the above trace formula (1.7) being stable, we choose different 
orthogonal polynomials from [22], i.e., shifted Legendre polynomials to convert the relationship (1.7) into 

trace(.Ln(K)) = L.Ln(>-;; 1 ). (1.8) 
k=l 

With the truncated Fourier series regularization method and the function of scaling factors, we finally 
obtain a system of trace formulae which could be solved by line search Newton-like method [12, 23]. A 
line-search method may not be able to achieve sufficient decrease, whereas the step length that satisfies 
the Wolfe conditions [11] is designed to guarantee a reasonable convergence property. 

This paper is organized as follows. A brief introduction about Numerov's method to solve the forward 
problem is given in Section 2. Subsequently, Sections 3 deals with the inverse problem by using the trace 
formulae. Afterwards, we discuss the inversion algorithm for recovering the density in Section 4. Finally, 
in Section 5, numerical examples with non-symmetric density functions demonstrate effectiveness of the 
proposed reconstruction method. 
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2 Numerov's method for the direct problem 

In this section, for completeness, we briefly recall the Numerov's method introduced in [2, 15] for approxi
mations of eigenvalues of the SLP (1.1)-(1.3). This method is based on the application of finite difference 
methods for the solution of ODEs over an assigned partition of [O, 1] frequently composed by 

1 
Xi = ih, i = 0, 1, ... , N + 1, h = N + l · 

Denote u(xi) by Ui and p(xi) by Pi· Recall Taylor's expansion of the following functions 

( ) ' h2 " h3 Ill h4 (4) 
ui+l = u Xi + h = Ui + hui + 1 u; + 1 u; + -41 ui + · · · 

2. 3. . 

( ) ' h2 " h3 Ill h4 (4) 
Ui-l = u Xi - h = Ui - hu; + 21 ui - 31ui + 41 U; + · · · 

From Eqs (2.1) and (2.2), it follows that 

Ui+i - 2u; + Ui-1 _ ,, h2 (4) O(h4) 
h2 - ui + 12 U; + . 

As uC4) = (->-.pu)", substituting u" and uC4) into (2.3) and applying difference approximation yield 

with local truncation error O(h2). Now using the same idea as in finite difference method, it gives 

Au= ->-.Bu, 

where A = (l/h2 )T, B = (I+ f-i T)Q. In addition, Q = diag(p1, P2, ... , PN ), and 

1 
-2 

1 
- 2 1 l 
1 TNN NxN 

with Tn = -2 + ~, TNN = -2 + ~ for the boundary conditions (1.2) and (1.3). 
l- cos(a.) h l+ cos(b) h 

3 Trace formulae for the inverse problem 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

In this seciton, we will determin the density p(x) in (1.1) from two spectra (1.4) and (1.5), which are 
corresponding to the SLP with DDBCs and DNBCs respectively. Note that p(x) in (1.1) is uniquely 
determined from two spectra (1.4) and (1.5). As a result, we refer to this problem as the DD-DN inverse 
problem. 

The solution of problem (1.1)-(1.3) can be expressed in the form of 

u(x) =).. [ p(y)g(x,y)u(y)dy, (3.1) 
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where 

{ 
x(l - y), 0 ~ x ~ y ~ 1, 

g(x, y) = g1(x, y) = 
y(l - x), 0 ~ y ~ x ~ l 

for Dirichlet-Dirichlet BCs and 

g(x, y) = 92(x, y) = 

for Dirichlet-Neumann BCs. 

{ 
x, 

Y, 

0 ~ X ~ y ~ 1, 

O~y~x~l 

Denoting the operator K as Ku= J; p(y)g(x,y)u(y)dy, we have 

(3.2) 

As K is a bounded linear operator over a separable Hilbert space, from the Lidskii's theorem, we have 

trace(K) = :r>k(K), 
k 

where {Ak(K)} are the eigenvalues of K. Clearly, 

k k=l 

which provides, with the proposition 2 introduced in [22], the representation of trace(K), 

trace(K) = fo 1 p(x)g(x,x)dx. 

Define the trace of K 8 , s E z+ as 

Ts(P) = trace(K"). 

00 

obviously T 8 (p) = I: Xi:;8. By proposition 1 and proposition 2 presented in [22], we have 
k=l 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Consequently, we build a relationship between the function p and the given data >... Especially, we have 
the following two trace formulae 

(3.8) 

for Dirichlet-Dirichlet BCs and 

(3.9) 

for Dirichlet-Neumann BCs. 



119

4 Inversion algorithm 

The following theorem will be utilized to design a inversion algorithm later. 

Theorem 4.1 (Mercer's theorem) Assume an operator K is positive definite, and its associated kernel 

K(x, y) is a real-valued symmetric, continuous function of x and y. Then K can be expanded in a uniformly 

convergent series 

K(x, y) = LVn'Pn(x)<pn(Y), 
n=l 

where Vn and 'Pn are the eigenvalues and normalized eigenfunctions of K. 

Assume {µn, <Pn ( x)} :;"=1 are the eigenvalues and normalized eigenfunctions of -~, where 

Applying Mercer's theorem to (-~)-1 whose kernel is g(x,y), we have 

g(x,y) = Lµ;;1¢n(x)<;bn(y). (4.1) 
n=l 

Substituting (4.1) into (3.7), it's easy to see that 

rs(p) = L -~- ( /1 <Pn1 (x)<Pn2 (x)p(x)dx) X ••· X ( /1 <Pn.(x)<Pn,(x)p(x)dx). 
n 1 , ... ,ns µn1 µns lo lo 

Denote M(p) to be an infinite-dimensional matrix where the element of the ith line and jth column 

1 11 M;j(P) = -- ¢,;(x)<;/>j(x)dx. 
._;µ;µ; 0 

(4.2) 

Then we have 
00 

L Aks = Ts(P) = trace(M8 (p)). (4.3) 
k=l 

4.1 Trigonometric polynomial 

It's natural to approximate the density function p by the following basis functions 

'lp2m-1(x) = cos(2(m - 1)7rX), 'lp2m(x) = sin(2m1rx) m = 1, 2, ... , M. 

The corresponding best approximation, in L2-norm, of the density, given by 

2M J.1 
( ) _ ~ .!, ( ) ( ) _ 0 p(x)'lj;m(x)dx 

p X - D am'f"m X , am X - l 
m=l fo 'lj;;,.(x)dx 

(4.4) 

is the truncated Fourier series of the periodic extension of p with period 1. However, that if pis sufficiently 
regular, the error with respect to such best approximation decreases as O(M-112)[1]. It is prefered to 
consider the space with basis functions given by 

'lj;m(x) = cos((m - l)1rx), m = 1, 2, ... , 2M. (4.5) 
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And denote a= {a1, a2, · · · , a2M }. We use T8 (a), M(a) in place of T8 (p), M(p). Then 

2M 

M;j(a) = L amMij(em), (4.6) 
m=l 

where Mij(em) = k f0
1 ,P;(x),Pj(x)'I/Jm(x)dx, and em= {a1 = 0, · · · , Um-1 = 0, am= 1, am+l = 0, · · · ,a2M = 0}. 

For the case of Dirichlet-Dirichlet BCs, the eigenvalues µn = n 21r2 and the eigenfunctions 1/Jn(x) 
v'2 sin n1rx. Therefore, 

+, [1 sin i1rx sinj1rx cos(m - l)1rxdx 
1r ZJ lo 

- 2rrl;ij, i + j + m - 1 = 0, 

- 2)iij, i + j - m + 1 = 0, 

2rr1ij, i - j + m - 1 = 0, m cfc 1, 

2rr}ij, i - j - m + 1 = 0, m c/c 1, 

7r2ii' i = j, m = 1, 

0, otherwise. 

Similarly, for the case of Dirichlet-Neumann BCs, the eigenvalues µn 
1/Jn(x) = v'2sin 2n21 1rx, and 

( 2n2- 1 1r) 2, the eigenfunctions 

8 11 2i - 1 2j - 1 
2(. )(. ) sin--1rxsin--1rxcos(m-l)1rxdx 

1r 2z - 1 2J - 1 0 2 2 

rr2(2i-i)(2j-l), i + j - 1 + m - 1 = 0, 

rr2(zi-i)c2i_1), i + j - 1 - m + 1 = 0, 

rr2(2i-i)(2j-l), i - j + m - 1 = 0, m cfc 1, 

rr'(2i-i)(2j-l), i - j - m + 1 = 0, m c/c 1, 

rr2 (2i-{)(2j-1)' i = j, m = l, 

0, otherwise, 

4.2 Shifted Legendre polynomials 

In order to balance the different order of trace formula, we choose polynomials {Pn}~=l to design a 
relatively stable scheme. From proposition 6 deduced in [22], we can see that for all polynomial Pn with 
Pn(0) = 0, the following equation holds: 

L Pn(Ai: 1 ) = tracePn(M(a)) (4.7) 
k=l 

In this section, we use the shifted Legendre polynomials on [O, 1] given by recursive formulae: 

2n -1 n -1 
Ln((x) = --(2x - l)Ln-1(x) - --Ln-2(x), n:::, 2, 

n n 

with 

Lo(x) = 1, L1(x) = 2x -1. 
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Denoting Ln(x) = xLn_ 1 (x), then we have the recursive formula 

- 2n -1 - n -1 -
Ln+i((x) = --(2x - l)Ln(x) - --Ln-i(x), 

n n 

with 

For evaluation of the forward map and its Jacobian, we utilize the following recursive relations: 

and 

Notice 

- (2n - 1 - ) (n - 1 - ) trace(Ln+i(M(a))) = trace -n-(2M(a) - l)Ln(x) - trace -n-Ln-i(x) , 

8trace(Ln+l (M(a)) 
8am 

( aLn+1(M(a))) 
trace a 

am 

trace ------ x + --- 2 a - 1 -----( 4n-28M(a)L- () 2n-1( M() )aLn(M(a))) 
n aamn n 8am 

-trace ------- . (
n -18Ln-1(M(a))) 

n 8am 

4.3 Line search Newton-like method 

If T1 is slightly smaller than >..1,1 and T2 slightly smaller than >..2,1, we use two uniform partitions for 
[O, T1] and [O, T2l, i.e., 0 = t1 < t2 < · · · < tN, = Ti and O = L1 < L2 < · · · < LN2 = T2. For every 
ti, i = 1, 2, ... , Ni and Li, i = 1, 2, ... , N2, we apply them to rescale >..1,k and >..2,k respectively. With 
the technique of trigonometric polynomial approximation and the operator of Legendre polynomials, the 
inverse problem of recovering p comes down to solving a system of nonlinear equations with the unknown 

2M-vector a= { a1, a2, · · · , a2M }, i.e., 

- (1) oo - -1 
trace(Ls1 (t1M (a)))- L Ls1 (t1>..1 k(p,a,b)) 

k=l ' 

F(a) = 

- (1) oo - -1 
trace(Ls1 (tN,M (a)))- L Ls1 (tN1 >..1 k(p,a,b)) 

k=l ' 
- (2) 00 - -1 ' 

trace(Ls 2 (i1M (a)))- L Ls2 (i1>..2k(p,a,b)) 
k=l ' 

=0, (4.8) 

- (2) oo - -1 ' 
trace(Ls2 (LN2 M (a))) - L Ls, (LN,>..2 k(p, a, b)) 

k=l ' 

where s1 and s2 are the chosen highest degree of shifted legendre polynomials. To make sure the above 
equations system has a unique solution, we set N1 + N2 >> 2M. 

Throughout this paper we make the assumption that the vector function F is continuously differentiable 
in the region D containing the value of a we are interested in. In other words, the Jacobian J(a) defined 
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by 

J(a) = 'vF(a? = 
'vri\a)T 
'ilri21la)T 

'vri; (a)T 

(4.9) 

exists and is continuous. In order to solve the above system (4.8), we apply the line search Newton-like 
method as 

ak+1 = ak + °'kPk, k = 0, 1, 2, ... , 

where the Newton step Pk satisfies that 

and the step length factor °'k satisfies the Wolfe condtions, i.e., 

with O < c1 < c2 < 1. 

{ F(ak + °'kPk) <'.'. F(ak) + C1akJ(ak)Pk, 
J(ak + °'kPk) 2". c2J(ak)Pk, 

(4.10) 

(4.11) 

(4.12) 

Since systems of nonlinear equations often contain singular points, this behavior gives cause for concern. 
To prevent this undesirable behavior, we may have to modify the Newton direction. One possibility is to 
add some multiple akI of the identity to f[ Jk, and define the step Pk to be 

(4.13) 

For any ak > 0 the matrix in parentheses is nonsingular. Therefore, some practical algorithms choose ak 

adaptively to ensure that the matrix in (4.13) does not approach singularity. In addition, more detailed 
computation procedure can be referred to Algorithm 2 in Appendix. 

5 Numerical simulations 

In this section, we choose four kinds of examples to study the reconstruction behaviours from the first 
L eigenvalues of the two spectra, respectively. The reference eigenvalues used have been computed by 
applying the Numerov's method discussed in Section 2. For the sensitive analysis, the perturbed eigenvalues 
Aj are defined by 

Af =A;+ OA; · (rand(size(A;))), i = 1,2, 

where o is the noise level and Ai = {Ai,l, Ai,2, ... , Ai,£}. As the matrix M(a) is infinite-dimensional, we 
shall truncate it to a J x J matrix in our computation procedure. 

Example 1 We first test the density 

p1(x) = 0.98 - 0.04cos1rx - 0.03 cos 21rx + 0.26 cos31rx + 0.07 cos41rx - 0.04cos 51rx, 

which is a linear combination of Fourier cosine functions with M = 3. 

For numerical implementation, T1 and T2 should not be greater than the minimum eigenvalue corre
sponding to DDBCs and the minimum eigenvalue corresponding to DNBCs respectively. Besides, the size 
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J usually equals to the value L. Most parameters are set in Table 1. We fix the noise level 6 = 0.5%. 
The reconstructed behaviours with different number of eigenvalues L are shown in Figure 1. As we can 
see from Figure 1, the inversion algorithm is effective for the reconstruction of p1 . Moreover, the greater 
L becomes, the better Pl is reconstructed. 

Table 1: The settings of parameters. 

0.004 45 60 8 2 180 180 

1.4,------,-------,-----,------;:===:::;i 
- true 

1.2 

0.8 

0.6~--~--~--~---~-~ 
0 0.2 0.4 0.6 0.8 

(a) recovery with L = 5 

1.4 ,--.------.--,----,------,--,----,--;::::r:=r::::::::;i 
- true 
- reconstruction 

1.2 
---· initial guess 

"1 

0.8 

o.s~~-~-~~---~-~~---
o ~ ~ ~ U ll M U U U 

1.4,-------.-----,----,--------;:===::;i 

o.s~--~--~--~---~--~ 
0 0.2 0.4 0.6 0.8 

(b) recovery with L = 10 

1.4,--~---~--~----;,====;i 
- true 

1.3 
- reconstruction 
---- initial guess 

0.7 

0.6~------~--~--~---~ 
0 0.2 0.4 0.6 0.8 

(c) recovery with L = 20 (d) recovery with L = 25 

Figure 1: These plots demonstrate the numerical recovery of Pl with diffrent number of eigenvalues when 
noise level 6 = 0.5%. 

Example 2 In this second example, we consider a general continuous density 

Most parameters are also listed in Table 1. In addition, we set J = L = 20, 6 = 0.5%. Figure 2 shows 
the reconstruction with diverse Fourier cosine functions. 
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1.45 0.07 

l==:~:nstruction I 
0.06 

1.35 

0.05 

1.25 
0.04 

1.2 

1.15 
0.03 

1.1 0.02 

1.05 

0.01 

0.95 0 
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 

(a) recovery with M = 2 (b) relative errors 

1.45 0.06 

--tr"' 
--reconstruction 

0.05 

1.35 

1.3 0.04 

1.25 
0.03 

1.2 

1.15 0.02 

1.1 
0.01 

1.05 

1 0 
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 

(c) recovery with M = 4 ( d) relative errors 

0.025 

l= ~:nstruction 
0.02 

1.3 

0.015 
1.25 

1.2 

(e) recovery with M = 5 ( f) relative errors 

Figure 2: Figure 2(a) 1(c) 1(e) describe the reconstruction with different Mand Figure 2(b)(d)(f) depict the 
numerical errors of recovery corresponding to their left subfigure where all the horizon lines represent the 
variable x. 
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Example 3 We next recover a non-smooth continuous function 

p3(x) = - + - X - -4 1 I 1 I 
5 2 3 

in the case of J = 10 and J = 20. Fixing s1 = 50, s2 = 70, T1 = 8, T2 = 2, N1 = 5s1, N2 = 4s2, h = 
0.004, 8 = 0.5%, Numerical reconstructions are shown in Figure 3. 

,.,~~-~-~~-~-~-~~-~~ 

0 0.1 0.2 

(a) recovery with J = 10 (b) recovery with J = 20 

Figure 3: These two plots exhibite the recovering of p3 (x) with M = 4. 

Example 4 For the last example, the unknown denstiy is a discontinuous function 

p4(x) = { 
1, 

0.9, 

1.1, 

0 <'.'. X <'.'. 0.3, 

0.3 < X <'.'. 0.7, 

0.7 < X <; 1. 

Setting s1 = 50, s2 = 70, T1 = 8, T2 = 2, N1 = 5s1, N2 = 4s2, h = 0.004, 8 = 0.5%, we investigate 
the reconstructed behaviors with M = 5 and M = 7 which are domenstrated in Figure 4. 

l= ~~truction 

(a) recovery with M = 5 (b) recovery with M = 7 

Figure 4: These two plots show the reconstruction of p4 with L = J = 20. 
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Table 2: Inversion errors of non-symmetric density functions in using the maximum norm. 

density noise level (%) norm of error density noise level (%) norm of error 

Pl 0 0.0005 P2 0 0.0696 
0.1 0.0012 0.1 0.0835 
0.5 0.0083 0.5 0.0954 
1 0.0254 1 0.1167 

p3 0 0.0178 p4 0 0.1017 
0.1 0.0233 0.1 0.1034 
0.5 0.0300 0.5 0.1180 
1 0.0514 1 0.2773 

Through Figure 1-3, one can clearly observe that the reconstructed non-symmetric density functions 
are in good agreement with their true solutions. Compared with the three mentioned densities, the 
reconstruction for discontinuous function p4 shown in Figure 4 is the worst, but even in this case the 
recovered function still resembles its exact solution. For sensitive analysis, Table 2 illustrates the results 
of inversion algorithm to recover these four kinds of densities where nosiy eigenvalues are provided with 
noise levels of 0.1%, 0.5%, 1%, respectively. One can see that our proposed reconstruction method stays 
stable. 

6 Conclusions and Acknowledgments 

In this paper, we introduce a new method to solve the inverse Sturm-Liouville problem in the non
symmetric case. It is based on the Lidskii's theorem and Mercer's theorem. A series of trace fomulas 
that combining the eigenvalues and the density in (1.1) are built by the two theorems. In our computaion 
procedure, therefore, we only need to compute eigenvalues once that is totally different from the previous 
methods introduced in [1, 3-5, 9, 13, 14]. Furthermore, our work provides a new possibility for solving 
inverse higher order Sturm-Liouville problem. This work was partially supported by NSFC 11621101, 
91630309 and the Fundamental Research Funds for the Central Universities. 
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Appendix. Detailed algorithm for inverse problem 

Algorithm 1 Calculating Jacobian and traces with Legendre polynomials 
Input: a= (a1, a2, ... , 2M), M(a), s; 
Output: J(a), trace(£ 8 (M(a))); 

1: Compute £2(M(a)), aL2J:(a)); 
2: d1 = trace(M(a)); 
3: d2 = trace(L2M(a)); 
4: for 1 :<; m :<; 2M do 
5: J1,m = trace(M(a)); 

6: J.2 = trace ( aM(a)) · 
,m Barn ' 

7: end for 
8: for 2 < i < s - 1 do 
9: L;+~(M(a)) = 2i;-1(2M(a) -1)£;(x)- iil Li-l(x); 

10: for 1 < m < 2M do 
ll: aL,i'c,r;:(a) = ( 4ii2M(em))£;(x) + 2iil (2M(a) _ 1) aL,J~(a))) _ iil aL,-~dr:(a)); 

12: end for 
13: di+l = trace(Li+1(M(a))); 
14: for 2 :<; i :<; s - 1 do 
15: J -t (aL+i(a))· i+l,m - race 8am ' 

16: end for 
17: end for 

Algorithm 2 Inversion of trace formulae with line search Newton-like method 
1: Given maximum number iteration N; 
2: Given c1, c2 with O < c1 < c2 < ½ and regularized parameter a; 
3: Choose initial value a0 ; 

4: Caculate the first N1 eigenvalues .>..1,1, .>..1,2, ... , .>..1 ,N, as well as the first N2 eigenvalues 
A2,1, .>..2,2, • • •, A2,N2 j 

5: Compute M(l\em), M(2l(em)i 

6: Compute ,true = ( I; £ 31 (t1A1k), .. · , I; £., (tN, .>..;_-!), I; £.2 (L1A2k), .. · , I; Ls2 (LN2A2t)); 
k=l ' k=l ' k=l ' k=l ' 

7: for 1 :<; k '.S N do 
8: Caculate J(1l(ak-1) and ,(l) = (trace(£51 (t1M(1l(ak-1))),--· ,trace(£51 (tN,M(1l(ak-1)))) with 

M(l\em) through Algorithm 1; 

9: Caculate J(2l(ak-1) and 1 (2) = (trace(£8 ,(L1MC2l(ak-1))),··· ,trace(Ls,(LN,M(2l(ak-1)))) with 

M(2l(em) through Algorithm 1; 
10: J(ak-1) = (J(ll; J(2)); 
11: I= (,(ll; ,(2) ); 
12: F(ak-1) =, - ,ture; 

13: Calculate Pk-l by the euqation (4.13); 
14: if a= 1 satisfies the Wolfe conditions (4.12) then 
15: Set °'k-1 = 1; 
16: else 
17: Perform a line search to find °'k-1 > 0 that satisfies ( 4.12) 
18: end if 
19: ak = ak-1 + °'k-lPk-li 

20: end for 
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