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Abstract A new method is presented for optimum cross-
section design of planar frame structures combining rein-
forcement learning (RL) and metaheuristics. The method
starts from RL jointly using artificial neural network (ANN)
so that the action taker, or the agent, can choose a proper
action on which members to increase, reduce or keep their
size. The size of the neural network is compressed into small
numbers of inputs and outputs utilizing story-wise decompo-
sition of the frame. The trained agent is used in the process
of generating a neighborhood solution during optimization
with simulated annealing (SA) and particle swarm optimiza-
tion (PSO). Because the proposed method is able to explore
the solution space efficiently, better optimal solutions can
be found with less computational cost compared with those
obtained solely by metaheuristics. Utilization of RL agent
also leads to high-quality optimal solutions regardless of
variation of parameters of SA and PSO or initial solution.
Furthermore, once the agent is trained, it can be applied
to optimization of other frames with different numbers of
stories and spans.
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1 Introduction

Attempt to find mechanically efficient structures is called
structural optimization. One of the main issues in the field of
optimization of building frames is size optimization, where
cross-sections of members are optimized as design variables
[25]. If the sizes can vary continuously, the optimization
problem can be formulated as a linear or nonlinear program-
ming problem, and various approaches based on mathemat-
ical programming such as simplex method [19] and sequen-
tial quadratic programming [9] are available. However, for
practical applications to steel frame structures, the sizes are
preferred to be discrete variables, because cross-sections are
usually chosen from a prescribed list of standard sections.

If some or all of the design variables are supposed to
have discrete values, the design problem becomes combi-
natorial optimization problem where integer programming,
such as cutting plane method and branch-and-bound method
are available. However, the computational cost grows ex-
ponentially as the problem size increases, and it becomes
difficult to obtain the global optimal solution.

Alternatively, many heuristic approaches have been pro-
posed to obtain approximate optimal solutions, although the
solutions do not satisfy any theoretically defined optimal-
ity criteria. Balling [2] applied simulated annealing (SA),
one of metaheuristic methods, to select optimum sections of
columns and beams from discrete standard sections. The
SA-based strategy requires less computation time to ob-
tain promising results compared with the branch-and-bound
method; however, quality of the solution is strongly depen-
dent on the initial solution. Besides SA, particle swarm op-
timization (PSO) is also a quite popular heuristic approach,
which solves a problem by improving a population of can-
didate solutions. PSO has been used to optimize either or
all of size, topology and shape of trusses [8, 20]. Although
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PSO ensures fast convergence than SA, escaping from a local
optimal solution is difficult with PSO [13].

Metaheuristics also require appropriate tuning of the pa-
rameters such as initial temperature or cooling rate in SA.
Although there are many methods for determining the pa-
rameters for some benchmark problems such as maximum
clique problem [3] and graph matching problem [29], each
optimization problem has its own suitable parameters that
are unknown beforehand. Hence, the validity of the param-
eter values can be confirmed only by trial-and-errors, which
needs substantial effort and computation time.

In the past decades, there are increasing number of appli-
cations of machine learning in the field of civil engineering.
The previous researches shows remarkable performance in
predicting structural properties or behavior which requires
complex structural analysis, such as shear capacity of rein-
forced concrete beams [27] and ground vibration induced by
blasting [15]. Nevertheless, there are relatively few number
of researches which focus on how to utilize the prediction
results in the design process.

Reinforcement learning (RL) is a branch of machine
learning, which trains an agent to take actions that are ex-
pected to maximize reward in an environment. The environ-
ment is usually formulated as the Markov decision process
(MDP) in which next state and reward depend on the state
and the action taken at the current step only. RL has shown
a remarkable success in game playing [23]; the games are
easily fit into MDP framework so that the state is repre-
sented by the game screen and the action is represented by
controlling buttons and a joystick. In the context of struc-
tural engineering, MDPs have been extensively used for the
modeling of infrastructure management [21, 33] in order to
estimate maintenance cost. Still, few studies focus on struc-
tural design process itself.

Structural design and optimization are essentially homo-
geneous because that they are intended to maximize their
structural performance within structural cost. If the process
of solving a structural optimization problem can be converted
to a series of decision making process by a qualified engi-
neer, the trained model by RL can be utilized to boost the
efficiency of structural design process, which is expected as
a strong tool to support structural engineers.

Another interplay of machine learning and structural op-
timization is classification of solutions based on objective
function value for reduction of computation time in the
searching process. Tamura et al. [32] applied binary deci-
sion tree and support vector machine to classify approximate
optimal and non-optimal brace placements of steel frames.
Approximation of response function value is a standard ap-
plication of machine learning to structural optimization. Pa-
padrakakis et al. [26] substituted structural analysis to neural
network (NN) to obtain objective function value in the itera-
tive process of a size optimization and a shape optimization

using an evolutionary strategy. Function approximation with
NN is a vital technique in the field of deep learning, which
has been extensively applied in the field of image recognition
[18]. Combination of deep learning and RL results in deep
reinforcement learning, which ignited a boom of artificial
intelligence.

In this paper, the design process of steel frames under
static loads is formulated as MDP in order to simulate the
sequential process of design change by structural engineers
and apply RL. The RL agent is trained using NN to minimize
the total structural volume while satisfying constraints on
allowable stress and strong column-weak beam design. To
verify the improvement of searching process by the proposed
method, we further combine the trained RL agent with SA
and PSO. The random process of neighborhood search in
SA and PSO is supported by RL agent to modify variables
in a better direction. The combination of trained RL and
metaheuristics is demonstrated through two different frame
models. Note that the second example uses the NN which is
trained for the first example model without re-training.

It is shown that combination of RL and SA and that of
RL and PSO requires fewer iterations to reach high-quality
solutions than using SA or PSO only. In addition, the pro-
posed method is robust with respect to variation of hyper-
parameters of these metaheuristics. Therefore, it does not re-
quire a precise tuning for determining the parameters, which
contribute to alleviate the effort for the parameter setting
before optimization.

2 Boosting simulated annealing with deep
reinforcement learning

2.1 Reinforcement learning

RL is one of the machine learning methods [31], which is
applied to a sequential decision making process. Let s and a
represent state and action of the learning problem. The goal
of RL is to acquire a policy π(s) = a that maximizes the
expected future rewards, and such policy is called an optimal
policy π∗. As a prerequisite, the task must be modeled as a
Markov decision process, where the next state and expected
reward are solely dependent on the current state and action
[4]. The model of RL is defined by four elements (S, A,P,R);
S is the state space; A is the action space; P(s,a, s′) is the
probabilistic model of the transition from state s to s′ by
taking action a; R(s,a, s′) is the space of reward function r
which returns the reward when taking action a at a state s
resulting in the next state s′. In addition, some states in S are
classified as terminal state.

Q-Learning [34] is a well established method of RL. In
Q-Learning, the agent updates its policy based on Q-function
Q(s,a), which is the expected future discounted reward for
taking action a in the current state s and then following the
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specified policy afterwards. When the reward r and the next
state s′ are observed, estimated value of Q-function, which
is called Q-value for brevity, is updated by the following
equation:

Q(s,a) ← Q(s,a)+α
(
r(s′) + γmax

a
Q(s′,a) −Q(s,a)

)
(1)

where α ∈ (0,1] is a learning rate to control the convergence
of learning process, and γ ∈ [0,1] is a discount factor to
control the importance of long-term rewards.

2.2 Neural network to approximate Q-function

When the state space or the action space is too large and
it is unrealistic to estimate and store the exact Q-values for
all the state-action pairs, it is possible to use an approxima-
tor to estimate the Q-values. Deep Q-network (DQN) [23]
is a method combining conventional Q-Learning and deep
learning: a method to estimate the relation between inputs
and outputs using a deep NN architecture. In DQN, the agent
learns by tuning NN parameters to find the ideal values θ∗ so
that it can output proper Q-function approximation Q(s,a; θ)
from the input states as

Q(s,a; θ∗) ≈ Q∗(s,a) (2)

where Q∗(s,a) is an Q-value, which is the highest expected
discounted rewards obtained by an optimal sequence of ac-
tions. In Eq. (1), it is intended that the difference is min-
imized between current estimation of Q-value Q(s,a) and
sum of the observed reward and the estimated Q-value there-
after r(s′)+γmaxa Q(s′,a). Similarly, the NN parameters θ
are optimized to minimize the mean squared error L defined
as

L(θ) =
(
r(s′) + γmax

a
Q(s′,a; θ) −Q(s,a; θ)

)2
(3)

The optimal target values r(s′) + γmaxa Q(s′,a; θ) are
substituted by r(s′) + γmaxa− Q(s′,a−; θ−), using θ− from
previous θ to stabilize the algorithm, where a− is distin-
guished from a because they are derived from different Q-
values [23]. Therefore, the NN parameters are tuned so as to
minimize the following equation:

minimize L̃(θ) =
(
r(s′) + γmax

a−
Q(s′,a−; θ−) −Q(s,a; θ)

)2

(4)

The gradient of L̃ with respect to θ is obtained as

∇L̃(θ) = 2
(
r(s′) + γmax

a−
Q(s′,a−; θ−) −Q(s,a; θ)

)
∇Q(s,a; θ)

(5)

Since the gradient of the objective function is analytically
obtained, the tuning problem (4) is solved with a gradient-
based method. See more details about DQN in Mnih et al.
[23].

3 Metaheuristics boosted by reinforcement learning

Two representative metaheuristics are first introduced and
their algorithms are strengthen by RL agent in this section.
SA is one of metaheuristics to obtain approximate global op-
timal solutions of a given optimization problem, whose name
is originated from annealing process to control crystaliza-
tion of materials by heating and cooling [17]. The algorithm
accepts worse solutions in the beginning of the optimiza-
tion process with high probability, and gradually reduces the
probability as optimization proceeds. PSO is also a popular
heuristic approach, which utilizes a population of candidate
solutions [14]. Each particle’s position is repeatedly updated
during the optimization based on its position, velocity and
the best known positions in the search space.

However, metaheuristics are generally stochastic meth-
ods that cannot adapt to the intrinsic structure of the de-
terministic optimization problem, and require an enormous
computational effort to obtain high-quality solutions for large-
scale optimization problems. For an optimization problem
with complex constraints, it is even difficult to reach the good
solutions through completely random search of the neigh-
borhood solutions. Therefore, in this paper, SA and PSO are
modified so that RL agent can be applied. In other words,
RL agent is utilized in selection process of neighborhood
solutions to develop a more intelligent algorithm.

The customized SA algorithm involving RL agent is de-
scribed in Algorithm 1. Note that the number of neighbor-
hood solutions is set to be just one in this study to observe
convergence property of SA. As shown in the line 4, RL agent
is utilized to generate neighborhood solutions. To balance the
exploitation of RL agent and exploration, a ϵ-greedy policy
with ϵ = 0.2 is utilized here. Similarly, the customized PSO
algorithm is described in Algorithm 2. Since the position and
velocity of each particle vary continuously, each particle’s
position is modified continuously in line 17; a greedy policy
is taken and the observed particle’s position and the previous
position is randomly interpolated.

4 Optimization of plane steel frame

In this section, the proposed algorithm is applied to cross-
section optimization of steel frame structures to minimize to-
tal structural volume under constraints on maximum stresses
and strength ratios between beams and columns. Figure 1
shows the prescribed configuration of the frame model; the
numbers of stories and spans are eight and three, respectively.
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Algorithm 1: SA with RL agent
input: x: initial solution, T : initial temperature, c: cooling

rate, nc: cooling interval, ni: maximum number of
iteration

output: xb: best solution
1 xb ←− x
2 j ←− 0
3 for i ← 1 to ni do
4 y ←− neighborhood solution of x generated by RL agent
5 if f (y) < f (xb) then
6 xb ←− y
7 else if f (y) < f (x) then
8 x ←− y
9 else

10 if exp
(
f (x)− f (y)

T

)
≥ random [0, 1] then x ←− y

11 j ←− j + 1
12 if j = nc then
13 T ←− cT
14 j ←− 0

15 return xb

Algorithm 2: PSO with RL agent
input: x j : initial solution of particle j, vj : initial velocity of

particle j, np: number of particles, ni: maximum
number of iteration, ξ : momentum factor, c1: social
coefficient, c2: cognitive coefficient

output: xb: best solution
1 i ←− 0
2 xb ←− x1
3 for j ← 1 to np do
4 xpb, j ←− x j

5 if f (x j ) < f (xb) then
6 xb ←− x j

7 i ←− i + 1
8 while i ≤ ni do
9 for j ← 1 to np do

10 x j ←− x j + vj
11 if f (x j ) < f (xb) then
12 xb ←− x j

13 if f (x j ) < f (xpb, j ) then
14 xpb, j ←− x j

15 i ←− i + 1
16 for j ← 1 to np do
17 x j ←− modified x j by RL agent
18 vj ←− ξvj + c1(xb − x j ) + c2(xpb, j − x j )

19 return xb

The frame has uniform spans and story heights, and the bot-
tom four nodes are rigidly supported. Note that the column
span in the perpendicular direction to the plane is also 10.0
m. The column section is a square hollow structural section
and the beam section is a wide-flange section. The section
dimensions of beams and columns are selected from the list
in Table1. Note that sectional dimensions of columns are
expressed in the form of (width)×(height)×(thickness), and
beams are (web height)×(flange width)×(web thickness)×(flange

Table 1 Dimension list of column and beam sections [mm].

index column beam
200 200 × 200 × 12 194 × 150 × 6 × 9
250 250 × 250 × 12 244 × 175 × 7 × 11
300 300 × 300 × 16 294 × 200 × 8 × 12
350 350 × 350 × 19 340 × 250 × 9 × 14
400 400 × 400 × 22 400 × 200 × 9 × 19
450 450 × 450 × 22 450 × 200 × 9 × 22
500 500 × 500 × 25 500 × 250 × 9 × 22
550 550 × 550 × 25 550 × 250 × 9 × 22
600 600 × 600 × 25 600 × 250 × 12 × 25
650 650 × 650 × 28 650 × 250 × 12 × 25

thickness). In this example, columns and beams in the same
story are assumed to have the same cross-sections, respec-
tively, to simplify the problem; still, about 1016 combinations
of variables are possible.

4 m

4 m

4 m

4 m

4 m

4 m

4 m

4 m

10 m10 m 10 m

Fig. 1 First example of steel frame.

4.1 Allowable stress design

Design strength F is the reference value for determining
allowable stresses of the material against tension, compres-
sion, bending and shear forces. For steel material, the yield
stress is generally equal to its design strength under short-
term loads. The value of F for columns and beams are both
equal to 235 N/mm2 in this example.

Based on the design strength F, allowable stresses of
the steel against tension, compression and bending forces,
denoted as ft, fc and fb, respectively, are determined as
shown in Table 2, where λ is the effective slenderness ratio
and Λ is the critical slenderness ratio. Note that Table 2 is
a simplified form of Japanese building standards. Usually
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allowable stress for long-term loads is used for self weight
and live load, and allowable stress for short-term loads is
for earthquake load and wind load. The frame structure is
assumed to be subjected to the latter loading case, and we
only use short-term allowable stresses in this paper.

Table 2 Allowable stresses of steel material

long-term allowable stress ∗

tension ft F/1.5

compression fc
λ ≤ Λ 1−0.4(λ/Λ)2

3/2+(2/3)(λ/Λ)2 F

λ > Λ 18
65(λ/Λ)2 F

bending fb F/1.5
∗ Short-term allowable stresses are 1.5 times the long-term ones.

To calculate stresses of members, the static nodal loads
are computed in the following way. Self weight of ith story
WS

i is a product of structural volume of ith story Vi [m3]
and unit weight of steel ρ = 77.0 [kN/m3]. Distributed load
of wL = 10.0 [kN/m2] is assigned to compute WL

i , the live
load of story i. WS

i and WL
i are re-distributed to ith story’s

nodes so that the loads at the exterior nodes are half of those
at the interior nodes.

Let WT and αi denote the total weight of the structure and
the ratio of the weight above ith story toWT, respectively. The
shear force coefficient which defines intensity and vertical
variation of the seismic load is denoted by Ci . In the current
Japanese seismic design code [22], the design shear force of
ith story Qi is expressed as

Qi = CiWTαi (6)

Note that distributed load of wE = 5.0 [kN/m2] is assigned
instead of wL on each story for computing Qi in Eq. (6). Ci is
expressed as a product of base shear coefficient CB and shear
coefficient variation factor which is simply given as 1/√αi
[12]. Hence, Eq. (6) is rewritten as

Qi = CBWT
√
αi (7)

Seismic load in story i is computed from Qi − Qi−1 as a
difference between shear forces of ith and (i−1)th story with
Q0 = 0.0. Horizontal seismic load is also distributed to the
nodes in each story so that the loads at the exterior nodes are
half of those at the interior nodes. The nodal loads explained
above are illustrated in Fig. 1.

4.2 Evaluation of member stress

The frame is assumed to be linear elastic with Young’s mod-
ulus E and shear modulus G. The standard 6-degree-of-
freedom 2D beam element is used. Let p̄i denote member

force vector. The local stiffness equation about member i is
described with local stiffness matrix K̄i , local displacement
vector ūi and p̄i as

K̄iūi = p̄i (8)

Using transformation matrix, elements of K̄i are converted to
those in the global coordinate system to be assembled into the
global stiffness matrix K. Let u and p denote displacement
and load vectors about all degrees of freedom in a global
coordinate system. Then stiffness equation is constructed as

Ku = p (9)

Since p is already specified by the process introduced in the
previous subsections, Eq. (9) is a set of simultaneous linear
equations with respect to u. After solving Eq. (9), the axial
force Ni and the bending moments Mi,1 and Mi,2 at the two
ends of member i are computed from p̄i . Using the cross-
sectional area Ai and the section modulus Zi of ith member,
the axial stress σa

i and the bending stresses σb
i,1 and σb

i,2 at
the two ends are computed as

σa
i =

Ni

Ai
(10a)

σb
i,1 =

Mi,1
Zi

(10b)

σb
i,2 =

Mi,2
Zi

(10c)

Note that σa
i is negative for compression and positive for

tension. Then, these stresses need to satisfy the following
equation using the stress ratio σ̄i and prescribed parameter
τ:

σ̄i ≤ τ (11a)

σ̄i =


−σa

i

fc
+

max{ |σb
i ,1 |, |σb

i ,2 | }
fb

(if σa
i < 0)

σa
i

ft
+

max{ |σb
i ,1 |, |σb

i ,2 | }
fb

(if σa
i ≥ 0)

(11b)

A value below 1.0 is usually specified for τ. In this paper,
τ = 0.8 to ensure the safety.

4.3 “Strong column-weak beam” design

To avoid local story collapse without enough energy dissi-
pation and ensure ductility of the frame, it is important to
design the frame in accordance with “strong column-weak
beam” principle. Figure 2 shows two typical collapse modes.
If a frame is designed so that plastic hinges are formed at
beam ends rather than in columns, its collapse mechanism
is expected to form the whole collapse mode where hinges
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at the beams are dominant as shown in the left figure of
Fig. 2. On the other hand, if plastic moment capacity of the
columns is smaller than that of the beams, there is a possi-
bility of collapse at a specific story as shown in right figure
of Fig. 2.

Fig. 2 Desirable mechanism (left) and mechanism to be avoided (right).

The column-to-beam strength ratio, or column overstrength
factor (COF), is a strong column-weak beam criterion about
a joint and calculated as

β =

∑
Mpc∑
Mpb

(12)

where
∑

Mpc and
∑

Mpb are the sum of full plastic moment
of columns and beams, respectively, connecting to the joint.

Nakashima and Sawaizumi [24] investigated the mag-
nitude of COF required for ensuring occurrence of plastic
hinges only at the ends of beams and the first-story column
bases. It was found that the required COFs increase steadily
with the increase of the ground motion velocity, and reaches
about 1.5 for the ground motion amplitude of 0.5 m/s, which
is considered as the strong earthquake in Japanese seismic de-
sign code. Therefore, frames are designed to satisfy β ≥ 1.5
in this study.

According to Japanese building standards law, Mpb in
Eq. (12) is given as

Mpb = FybZpb (13)

where Fyb is the design strength and Zpb is the plastic section
modulus of beam element. Although Mpc for a column is
given in the similar way using the design strength Fyc and
the plastic section modulus Zpc of column element, the value
is discounted using the axial force ratio ηc, the ratio of axial
stress |σa

i | to the yield stress, as

Mpc = τFycZpc (14a)

τ =

{
1 − 4η2

c
3 (ηc ≤ 0.5)

4(1−ηc)
3 (ηc > 0.5)

(14b)

Note that hinges are allowed to exist at upper ends of
the top story columns, because it is too difficult for only one

column to outperform sum of full plastic moments of two
beams. Similarly, hinges are allowed to exist at the bottom
ends of the first-story columns, since there is no correspond-
ing beam at the nodes.

4.4 Phase 1: learning

Although states primarily need to contain all the information
about the system, structural information about one certain
story and its upper and lower stories is included in the state
to reduce the size of NN and utilize the learning results to a
frame with different numbers of stories and spans. The beam
connected to the top node of a column in the ith story is called
“beam in the ith story”. The state contains the following five
types of features for the target ith story:

• sa ∈ R2×3 :
column and beam sections at the (i − 1)th, ith and (i +
1)th stories which are defined as the indices in Table1
normalized by their largest value, i.e., 650 in this example

• sb ∈ R2×2 :
binary features which are activated if the cross-section
of columns or beams at the ith story is at its upper- or
lower-bound

• sc ∈ R2×3 :
maximum stress ratios, respectively, in the columns and
beams for the (i − 1)th, ith and (i + 1)th stories

• sd ∈ R4 :
minimum COFs within the nodes in the (i−2)th, (i−1)th,
ith and (i + 1)th stories, respectively

• se ∈ R2 :
binary features which are activated if the ith story is the
first or the top story, respectively

For features sb and sc, zero is assigned if there is no corre-
sponding story to be focused. An example of extracting the
feature values is illustrated in Fig. 3 for i = 1. The left and
right numbers enclosed by rectangles show the indices of
beams and columns in the stories, respectively. The numbers
on the frame nodes with gray background show COFs at the
nodes. The numbers enclosed by rounded rectangles with
white background are the stress ratios of the members.

In addition to the state, five actions are defined as follows:

• increase size of the columns in the current target story
by one level
• increase size of the beams in the current target story by

one level
• reduce size of the columns in the current target story by

one level
• reduce size of the beams in the current target story by

one level
• keep the current sizes of beams and columns



Submitted to Engineering with Computers Reinforcement Learning for Optimum Design of a Plane Frame under Static Loads 7

450

200

350

300 0.680.580.65

0.720.620.70

6.00

9.00

3.00

4.50

3.00

4.50

6.00

9.00

0.000.000.000.000.00

0.00

0.000.000.000.000.00

0.00

0.000.000.000.000.00

0.00

0.000.000.000.000.00

0.00

0.550.640.610.44

0.730.750.760.68

0.00 0.00 0.00

0.00 0.00 0.00

0.00

sb =
0 0

1 0

sa =
350/650

300/650

450/650

200/650

0

0
sc =

0 0.76 0.64

0 0.72 0.68

sd = 0 0 4.50 3.00 se = 1 0

― column

― beam

Fig. 3 Feature extraction example from the first story as the target story.

In general, the number of layers and units in each layer
in NN cannot be determined analytically to address a spe-
cific problem, and they are usually determined by trial and
error [11]. Therefore, systematic experiment is employed to
discover the appropriate structure of NN and determined as
follows; the NN has three fully-connected middle layers with
100 units. Therefore, a relatively simple 22-100-100-100-5
NN is defined as illustrated in Fig. 4. Sigmoid function is
used as an activation function of all the units except for the
output layer [28].

Q(s,a)s

10010010022 5

Fig. 4 Number of cells in each layer of NN for frame optimization.

After taking the action, linear structural analysis is con-
ducted and reward r and the next state s′ are observed. If the
columns and beams in the current target story and its upper
and lower stories satisfy allowable stress constraint and the
nodes in the target story satisfy COF constraint, the value of
200 + 200 over sum of column and beam indices at current
target story is given to the agent as a reward; otherwise, zero
reward is given. For instance, if the constraints are satisfied
and column and beam indices in the target story are 400 and
600, respectively, (200+200)/(400+600) = 0.4 is provided
as the reward. This way, reward is clipped within the range of
[0,1]. After observing the reward, the target story moves up
by one level and the state values are updated for the current
target story, which becomes the next state s′ in Eqs. (1)–(5).
Note that the target story is reset to the first story when it
tries to move above the top story.

Initial indices of sections of the frame are set as 400 in
Table 1, and the initial state to be evaluated is assigned at the
first story of the frame. Terminal state is not explicitly pro-
vided; instead, each episode is terminated at the 100th step.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 200 400 600 800 1000

Σr

Episode

Fig. 5 History of total reward during training process of NN.

The memory size for storing a set of experience (s,a,r, s′) is
1000 to secure enough memory space, and randomly permu-
tated 100 mini-batch data is constructed from this memory
for updating the NN parameters. Synchronizing frequency of
NN parameters of θ and θ− is 5 steps [23]. Adam [16] is used
to solve the problem (4). Discount factor γ is set to be 0.99,
which is a widely accepted value for tasks where long-term
rewards are important [1, 10]. “Dropout” [30] is not used in
this study.

Every after ten episodes of learning, performance of the
NN is tested by simulating one episode with greedy policy
(i.e., ϵ-greedy policy with ϵ = 0.0) and observing the total
rewards. History of the test results is illustrated in Fig. 5. It
is observed that obtained total rewards increases as learning
proceeds, which implies that the agent acquired a policy of
section design to reduce the total structural volume while
satisfying requirements for allowable stresses and COFs. To
demonstrate the process of acquiring intelligence, three test
simulation results are illustrated; Figs. 6, 7 and 8 are the best
test simulations after 10-, 100- and 1000-episode training, re-
spectively. The resulting cross-sections after 10 episodes is
the same as the initial solution, because the NN only choose
the conservative action of keeping the size of members to
avoid violating allowable stress and COF constraints. On the
other hand, the best test simulation result after the training
of 100 and 1000 episodes successfully reduced the cross-
sections while satisfying the constraints. It should be noticed
that the latter result reached smaller cross-sections. The NN
parameters which showed the best test performance are re-
trieved in order to be utilized for solving the optimization
problem described in the next section.

It should be noted that the agent focuses on four stories
of the frame structure and fundamentally cannot handle the
whole structural design by itself, although the simulation
reached a section design satisfying the constraints. Moreover,
the policy in the test simulation is deterministic and is not
capable of finding better neighborhood solutions. Thus, it is
necessary to use a stochastic optimization method that can
consider performance of the whole structure.
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Fig. 6 Performance of frame after 10 episodes trained (V =

6.579 [m3]).
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Fig. 8 Performance of frame after 1000 episodes trained (V =

4.852 [m3]).

4.5 Phase 2: optimization

The objective of optimization is the same as the learning
task in Phase 1: minimizing total structural volume while
satisfying allowable stress and COF constraints. Therefore,
the optimization problem is formulated as

minimize V(t) (15a)

subject to


ti ∈ {200,250, · · · ,650} (i = 1, · · · ,ng)
σ̄j ≤ 0.8 ( j = 1, · · · ,m)
βk ≥ 1.5 (k ∈ Ω)

(15b)

where V(t) is the total structural volume, t ∈ {t1, t2, · · · , tng }
is the cross-section indices of ng member groups, σ̄j is the
stress ratio of jth member computed by Eq. (11b), βk is the
COF of node k, and Ω is the set of indices of all nodes except
for the bottom and the top ones. Initial solution is a frame
with uniform “400” sections in Table 1. To consider the
constraints for SA and PSO implementation, a neighborhood
solution which violates any of constraints in Eq. (15b) is
rejected regardless of its objective function value. In the
same manner as the learning process of Phase 1, the target
story is introduced to change cross-sections of the members
in the specific story. The target story moves up by one level
every step and is reset to the first story after finishing the top
story.

The maximum number of structural analyses for one op-
timization is set to be 1000 for both SA and PSO. The opti-
mization is conducted 10 times using different random seeds
to choose the best solution out of the 10 local optimal so-
lutions. In the implementation of SA, cooling rate c is 0.9,
and cooling interval nc is 20. Initial temperature is set so that
the acceptance probability p0 of worse transition at the ini-
tial step is 0.8 on average, by sampling a number of random
transitions from an initial solution, based on the algorithm
proposed by [5]. In the implementation of PSO, the number
of particles np is 5, momentum factor ξ is 0.7, and social
and cognitive coefficients c1 and c2 are both set to be 2.0.
The initial velocity is randomly generated within 10% of the
range of variables.

The maximum, median, minimum, average values, and
standard deviation of the objective function values of 10 dif-
ferent solutions are listed in Table 3. The combination of
metaheuristics and RL outperforms metaheuristics in max-
imum, median, minimum and average values of objective
function. It should also be noted that the increment of com-
putational cost by introducing RL agent is relative small;
the average CPU time for yielding one optimal solution is
2.99[s] for (SA+RL), 2.61[s] for SA, 3.08[s] for (PSO+RL),
and 2.71[s] for PSO. The reason of the outperformance can
be explained by tracing the iteration history of the objective
function in Figs. 9 and 10, where the histories of the best and
the worst optimal solutions out of the 10 solutions obtained
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Table 3 Maximum, median, minimum, average values, and standard
deviation of total structural volume for 10 solutions of the eight-story
model for proposed methods (SA+RL) and (PSO+RL) and conven-
tional methods (SA only and PSO only). c = 0.9 and p0 = 0.8 for
SA implementation, and c1 = 2.0, c2 = 2.0 and np = 5 for PSO
implementation.

SA+RL SA only PSO+RL PSO only
max. 4.935 5.334 4.892 5.297
median 4.701 4.860 4.824 5.111
min. 4.468 4.657 4.605 4.680
average 4.676 4.920 4.794 5.067
std. dev. 0.155 0.207 0.103 0.194

Table 4 Medians of objective functions with a variety of SA parame-
ters.

SA+RL SA only
c = 0.8 c = 0.9 c = 0.95 c = 0.8 c = 0.9 c = 0.95

p0 = 0.2 4.725 4.672 4.782 4.861 4.794 4.808
p0 = 0.8 4.677 4.701 4.697 5.023 4.860 4.804
p0 = 0.99 4.782 4.762 4.815 5.141 5.695 6.453

by the proposed hybrid methods and metaheuristics only are
plotted. The hybridized method steadily and rapidly reduces
the objective function in the early stage of optimization pro-
cess, which implies the intelligence of the agent in generating
neighborhood solutions. However, the iteration histories of
SA+RL fluctuate after the rapid reduction of optimization
process above V = 4.8, which is almost equal to V = 4.852
as observed in the best test simulation result. Therefore, it is
better to set a certain positive value on ϵ to complement the
agent’s knowledge and prevent premature convergence.

The best optimization result obtained by the proposed
method is illustrated in Fig. 11. The first observation to be
noticed is that the total structural volume of the solution is
better than that of the test result which is obtained just by
agent’s deterministic policy. This implies that the optimizer
using SA was able to search a wider range of solution space
while utilizing agent’s knowledge. Almost all the column
and beam sections in upper stories have smaller values than
lower stories; however, some column and beam sections in
the lower stories are relatively small, because the columns
are rigidly supported on the ground, and the first story has
enough horizontal stiffness.

We further investigate the robustness against variation of
parameters of metaheuristics. Table 4 shows medians of ob-
jective functions with different cooling rates c = 0.8,0.9 and
0.95 and initial temperatures with the acceptance probability
p0 = 0.5,0.8 and 0.99. Similarly, Table 5 shows medians of
objective functions with different social and cognitive coeffi-
cients c1 = c2 = 1.0, 2.0 and 3.0 and the number of particles
np = 2,5 and 10. It was found that introducing RL agent al-
leviates the dependency on parameters of SA and PSO, and
stabilize the process of optimization.
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6.5

7.0

0 100 200 300 400 500 600 700 800 900 1000

V
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SA only, Worst

Fig. 9 Iteration history of objective values of the best and the worst
solutions (SA).

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0 100 200 300 400 500 600 700 800 900 1000

V

Step

PSO+RL, Best

PSO+RL, Worst

PSO only, Best

PSO only, Worst

Fig. 10 Iteration history of best known objective values f (xb) of the
best and the worst solutions (PSO).
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Fig. 11 The best solution of the eight-story frame obtained by the
proposed method (V = 4.468 [m3]).

Table 5 Medians of objective functions with a variety of PSO param-
eters.

PSO+RL PSO only
c1 = c2 = c1 = c2 =

1.5 2.0 2.5 1.5 2.0 2.5
np = 2 4.926 4.806 4.920 6.579 5.850 4.901
np = 5 4.845 4.824 4.846 6.434 5.111 4.986
np = 10 4.788 4.798 4.934 6.125 5.006 4.946
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4.6 Utilization of learning results to a different frame model

4 m
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10 m10 m 10 m

Fig. 12 Second example of steel frame.

The same NN architecture used for the eight-story frame
model can be applied to different frame models, as long as
columns or beams at each story have the same cross-sections,
respectively. Performance of the NN is tested here for a more
complex eleven-story frame model, as illustrated in Fig. 12.
The number of spans and pitches of columns are the same
as the previous model; however, there is a story with large
height in the middle. The number of possible combinations
of cross-sections is 1022 in this example.

For optimization of this model, NN trained for the eight-
story model is applied to SA without further tuning. Opti-
mization is conducted from two different initial solutions: a
frame with uniform “400” cross-sections and that with “600”
cross-sections in Table 1. Because the former initial solution
does not satisfy the allowable stress constraint as shown in
Fig. 13, we further add a rule to the SA algorithm; if the
current solution is infeasible, the optimizer accepts a neigh-
borhood solution regardless of the objective function value.
That is, the change from an infeasible solution to another
infeasible or feasible solution is accepted unconditionally.
This time, the number of steps is set to be 2000 and cooling
interval is 40 accordingly. Temperature parameters are fixed
as c = 0.9 and p0 = 0.8.
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standard deviation of the objective function values of 10
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Fig. 13 Initial solution with uniform ”400” cross-sections violating the
allowable stress constraint (indicated with red).

Table 6 Maximum, median, minimum, average values and standard
deviation of total structural volume of feasible solutions of the eleven-
story model with two different initial solutions.

SA+RL SA only
t = 400 t = 600 t = 400∗ t = 600

max. 11.000 10.975 —- 10.850
median 10.482 10.333 —- 10.504
min. 10.175 9.775 —- 10.084
average 10.505 10.349 —- 10.450
std. dev. 0.293 0.303 —- 0.206
∗ No feasible solution was obtained.

solutions are summarized in Table 6. The key point to notice
is that nine feasible solutions were obtained by the proposed
method starting from “400” cross-sections. This implies that
the RL agent is certainly capable of finding feasible solutions.
The total structural volumes of the solutions obtained by
(SA+RL) are almost equal to those of SA only when starting
from a feasible solution and the best value by (SA+RL) is
slightly better than that by SA only. Optimal solution with
V = 9.775 [m3] is illustrated in Fig. 14. Despite the irregular
shape of the frame, the structure is successfully stiffened by
assigning large cross-section to members in the first and
middle stories.
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Fig. 14 The best solution of the eleven-story frame obtained by the
proposed method (V = 9.775 [m3]).

5 Concluding remarks

The sequential process of design change of plane frame
cross-sections by structural engineer is formulated in this
study. RL is further introduced for optimal design of the
cross-sections to minimize total structural volume under al-
lowable stress and strong column-weak beam constraints.
The method aims at searching the optimal solution intelli-
gently using RL agent, not just relying on the number of
iterations in the optimization process. We trained an agent
that focuses on a specific story and its upper and lower ones,
instead of the whole structure. In this way, not only the size
of the NN is reduced, but also the agent is capable of han-
dling any plane frame models regardless of the shape or the
number of spans and stories.

The agent is first trained within the same framework as
DQN in order to learn a desirable rule of updating cross-
section. Although the hyper-parameters are determined by
following previous studies here, the performance of NN
might be improved by adjusting them using auto-tuning
scheme [6, 7]. By utilizing the trained agent for generat-
ing neighborhood solutions during SA and for modifying
particle positions in PSO, quality of the optimal solutions
is improved rather than modifying the cross-section in ac-
cordance with the heuristic algorithm. Since the proposed

method especially boosts the improvement in early stage of
optimization, it is expected to obtain an feasible and approx-
imate optimal solution with less computation time.

The methodology presented in this study is not only effi-
cient, but also robust in variation of user-specified parameters
of metaheuristics. It is confirmed from the numerical exam-
ples that this method is able to mitigate the deterioration
of the optimization results obtained by SA due to the varia-
tion of initial temperature (i.e., initial acceptance probability)
and cooling rate, because the “intelligent” RL agent takes the
role of efficient selection of neighborhood solutions, which
is randomly generated in the standard SA algorithm. As a re-
sult, combination of RL and SA is capable of obtaining good
approximate optimal solutions regardless of the temperature
parameters. Similarly, it is confirmed that combination of RL
and PSO is also capable of alleviating the effect of variation
of the number of particles, social and cognitive coefficients of
PSO, and effective for obtaining good solutions regardless of
these parameters. Furthermore, introduction of the RL agent
is able to alleviate malfunction of the optimization due to
“bad” initial solutions, and can enhance ability of finding a
feasible solution. It is also noteworthy that this was achieved
just by reusing the NN parameters from the previous training
data, without tuning them for the new frame model. This
implies the adaptability of the agent to frame models with
different numbers of stories and spans.
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