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Abstract

We give a relation between the Turaev-Reidemeister torsion and an invariant related to the Chern-
Simons theory. As an application, we give a geometric description of the Turaev-Reidemeister torsion
of closed oriented 3-manifolds from the point of view of a variant of a linking number.

1 Introduction

The Chern-Simons perturbation theory, established by M. Kontsevich in [12], S. Axelrod
and I. M. Singer in [1], gives invariants of a 3-manifold with an acyclic representation of
the fundamental group. Here a representation is said to be acyclic if the local system
given by the representation is acyclic.

In the construction of the Chern-Simons perturbation theory, a 4-chain called a prop-
agator plays an important role. A propagator is a 4-chain in the two point configuration
space of given 3-manifold satisfying several homological conditions. There are some vari-
ations and related invariants of the Chern-Simons perturbation theory. Thus there are
some variations of the homological conditions.

R. Bott and A. S. Cattaneo gave a refinement of the Chern-Simons perturbation the-
oretical invariants via a purely topological construction in [2] and [3]. Due to the homo-
logical conditions used in [2] and [3], the existence of propagators is not guaranteed in
some cases. In [4] and [16], Cattaneo and the author refined the homological conditions
and then showed that there exist refined propagators in any case.

In [16], the author defined an invariant d of an acyclic representation as a defect of the
homological conditions for Bott-Cattaneo’s propagators and that of refined propagators.
The defect d was first introduced by C. Lescop in [14] for 3-manifold with b1 = 1 when
she defined an invariant of 3-manifolds with b1 = 1. Her invariant can be considered as
a generalization of the Chern-Simons perturbation theory for an abelian representation
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H = 〈t〉 → Q(t)× of the 1-dimensional homology group H of the manifold. She showed
that the defect d can be computed from the Alexander polynomial of the 3-manifold.

In this article, we define an invariant d′(M, e) of a closed oriented 3-manifold M with
an Euler structure e. An Euler structure is an equivalence class of non-vanishing vector
fields on the manifold. The invariant d′ is a refinement of d in the following sense: There
is a special non-vanishing vector filed v0 such that (−v0) is equivalent to v0. Then d′ of
the Euler structure represented by v0 coincides with d.

We show that d′(M, e) can be computed from the Reidemeister-Turaev torsion Tor(M, e)
of M and e via an operator D defined by using logarithm derivatives (Theorem 1). Here
the Reidemeister-Turaev torsion is a refinement of the Reidemeister torsion. The Alexan-
der polynomial can be computed from the Reidemeister torsion. Theorem 1 is a gen-
eralization of Lescop’s formula on the defect d to any closed oriented 3-manifold. The
operator D holds information of Tor(M, e) up to constant multiplication. Namely, the
Reidemeister-Turaev torsion Tor(M, e) can be computed from d′(M, e) up to constant.

Theorem 1 (Section 6).
D(Tor(M, e)) = d′(M, e).

The invariant d′(M, e) have the following topological description. Let∆ be the diagonal
of M × M . Take a non-vanishing vector field ve of the normal bundle of ∆ in M × M
corresponding to the Euler structure e. Then we have a framed 3-manifold (∆, ve) in
M × M . We introduce a kind of a self-linking number self.lk(∆, ve) of (∆, ve) with a
twisted coefficient. Then we show that d′(M, e) = self.lk(∆, ve). Thus Theorem 1 gives
a geometric description of the Reidemeister-Turaev torsion from the point of view of a
self-linking number:

Theorem 2 (Section 8.2).

D(Tor(M, e)) = self.lk(∆, ve).

Remark 1.1. There are several works on geometric approaches to the Reidemeister tor-
sion. M. Hutchings and Y. J. Lee gave descriptions of the Reidemeister-Turaev torsion
by using circle-valued Morse functions in [8],[9] and [10]. H. Goda, A. V. Pajitnov in [7]
and T. Kitayama in [11] gave Morse theoretical description for the Reidemeister torsion
for non-commutative representations in some cases. F. Deloup and G. Massuyeau in [5]
showed that a quadratic function given by the Redemeister-Turaev torsion coincides with
a quadratic form given by the intersection pairing of a cobordism.

Remark 1.2. The invariant d′ can be defined for any acyclic representation on any
oriented closed 3-manifold. The Reidemeister torsion is also defined for any acyclic rep-
resentation.
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The organization of this paper is as follows. In Section 2 we prepare some notations on
manifolds and Euler structures. In Section 3 we review a definition of the Reidemeister-
Turaev torsion. In Section 4 we define the invariant d′. In Section 5 we introduce an
operator D to state Theorem 1. In Section 6 we state Theorem 1. In Section 7 we give
a proof of Theorem 1. In Section 8 we state Theorem 2. In Section 9 we explain the
relation of the invariant d′ and Lescop’s invariant.
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2 Preliminaries

Let M be a closed oriented 3-manifold. Let us denote H = H1(M ;Z)/Tor. We fix a basis

{t1, . . . , tk} ⊂ H.

We interpret H as a multiplicative group. In this article, however, the operations of the
all homology groups including H1(M ;Z) are summation 2 with the exception of H:

H1(M ;Z)/Tor = {n1t1 + · · ·+ nktk | ni ∈ Z},

H = {tn1
1 · · · tnk

k | ni ∈ Z}.
For h ∈ H, we denote by

[h]+ ∈ H1(M ;Z)/Tor
the element of H1(M ;Z)/Tor corresponding to h. For example, [x2

1x2]+ = 2x1 + x2.
Let

RH = {
∑

n1,...,nk

an1,...,nk
tn1
1 · · · tnk

k }

be the group ring of H over R and let

Q(H) = {f/g | f, g ∈ RH, g (= 0}

2We will use H as the torsion free part of the abelianization of the fundamental group. Usually, the operations of
fundamental groups are multiplications and that of homology groups are summations.
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be the quotient field of RH. By using the basis, Q(H) can be identified with

Q(H) = R(t1, . . . , tk).

The natural representation
ρ0 : H → Q(H)×

given by x )→ (y )→ yx) induces a homomorphism

ρ0 : RH → Q(H)×.

(We use the same symbol ρ0 for the induced homomorphism).
Let Π(M) be the fundamental groupoid of M ; namely Π(M) is a category such that

the objects are the points of M and a morphism from x ∈ M to y ∈ M is a path from
x to y ∈ M up to homotopy relative to x, y. In particular, a morphism from a point
x ∈ M to x is an element of the fundamental group π1(M,x). A local system over M
is a covariant functor from Π(M) to a category of vector spaces. We denote by γ∗ the
isomorphism corresponding to a path γ via the local system. Let E be a vector space.
For a homomorphism ρ : π1(M,x) → AutE, there is a local system on M such that each
object is isomorphic to E and ρ∗ = ρ(γ) for any γ ∈ π1(M,x). We call such a local system
the local system corresponding to ρ and we use the same symbol ρ for the local system.

The homomorphism ρ0 : H → Q(H)× gives a representation of π1(M). Then there
is a local system corresponding to ρ0. We denote by Q(H)x the object corresponding to
x ∈ M .

We assume that ρ0 is acyclic. Namely, the corresponding local system is acyclic:

H∗(M ; ρ0) = 0.

2.1 Chains with local coefficients

LetX be a manifold. Let E be a vector space and let ρ be a local system corresponding to a
representation ρ : π1(X) → AutE. Let c : (A, a) → (X, c(a)) be a continuous map, where

A is a compact oriented manifold with a base point a ∈ A. We denote by Ec∗π1(A,a)
c(a) the

invariant part of Ec(a) under the action of c∗π1(A, a) < π1(X, c(a)) via the representation

ρ. Take an element e ∈ Ec∗π1(A,a)
c(a) . Then c and e ∈ Ec(a) give a (dimA)-dimensional chain.

We denote this chain by

〈c : A → X, a; e〉 ∈ CdimA(X; ρ)

or shortly,
〈A, a; e〉 = 〈c : A → X, a; e〉.

4



Let F be a compact oriented manifold. Let π : X̃ → X be a F -bundle over X. A
homomorphism ρ ◦ π∗ : π1(X̃)

π∗→ π1(X) → AutE gives a local system on X̃. Let c =
〈A → X, a; e〉 ∈ Ck(X;E) be a k-chain. We denote by c∗X̃ → A the pull back of
π : X̃ → X along c. Then we have a bundle map c̃ : c∗X̃ → X̃ induced by c : A → X.
By using c̃, the (k + dimF )-chain π!c ∈ Ck+dimF (X̃; π∗E) can be described as follows:

π!c = 〈c̃ : c∗X̃ → X̃, va; e〉 ∈ Ck+dimF (X̃; ρ ◦ π∗).

Here va ∈ π−1(a) is any point.

c∗X̃ c̃ !!

""
!

X̃

π
""

A c !! X

2.2 An Euler structure

Let v, v′ be non-vanishing vector fields on M . We say that v and v′ are homologous
if v|M\B3 is homotopic to v′|M\B3 for a small ball B3. An Euler structure on M is a
homologous class of non-vanishing vectors field on M .

3 The Reidemeister-Turaev torsion Tor(M, e)

Let M be a closed oriented 3-manifold and let e be an Euler structure on M . The
Reidemeister-Turaev torsion

Tor(M, e) ∈ Q(H)×

is an invariant of (M, e) defined by V. Turaev as a refinement of the Reidemeister torsion
for abelian representations. In this section, we review the definition of Tor(M, e). For
example, see [17] or [18] for more details.

Let C∗ = (Ci(M ; ρ0), ∂i : Ci(M, ρ0) → Ci−1(M, ρ0))i be a chain complex of M with the
local system associated to ρ0. Since ρ0 is acyclic, there exist homomorphisms

gi : Ci−1(M ; ρ) → Ci(M ; ρ) (i = 0, 1, 2, 3)

satisfying
∂i+1 ◦ gi+1 + gi ◦ ∂i = idCi .

Then ∂ + g gives an isomorphism

∂ + g = g3 + ∂2 + g1 : Ceven

∼=→ Codd.
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Here Ceven = C2(M ; ρ0) ⊕ C0(M ; ρ0) and Codd = C3(M ; ρ) ⊕ C1(M ; ρ). It is known that
an Euler structure gives a basis of both Ceven and Codd (in Section 7.2, we construct such
a basis when C∗ is given as a Morse-Smale complex). Therefore we can compute the
determinant of the matrix ∂ + g with respect to the basis given by the Euler structure e.

Definition 3.1.
Tor(M, e) = det(∂ + g) ∈ Q(H)×.

4 The invariant d′(M, e)

We define an invariant

d′(M, e) ∈ H1(M ;Z)/Tor⊗Z Q(H)

of (M, e). The invariant d′(M, e) is a refinement of an invariant d defined in [16]. See
Remark 4.3 for more details.

4.1 Preparation for local systems

Let Q(H)∗ = HomQ(H)(Q(H), Q(H)) be the dual space of Q(H). We denote by ρ∗0 : H →
AutQ(H)(Q(H)∗) = (Q(H)∗)× the dual representation of ρ0, namely ρ∗0 is given by

ρ∗0(h)(f) = f ◦ ρ0(h−1)

for h ∈ H and f ∈ Q(H)∗. Thanks to the Künneth theorem, ρ0 "Q(H) ρ∗0 : π1(M ×M) =
π1(M) × π1(M) → H1(M ;Z) × H1(M ;Z) → AutQ(H)(Q(H) ⊗ Q(H)∗) gives an acyclic
local system on a 6-dimensional manifold M × M . Here ρ0 " ρ∗0 is the exterior tensor
product of ρ0 and ρ∗0.

Let ev : Q(H) ⊗ Q(H)∗ → Q(H) be the evaluation map defined by ev(x ⊗ f) = f(x)
for x ∈ Q(H) and f ∈ Q(H)∗. For x ∈ Q(H), f ∈ Q(H)∗ and h ∈ H, we have

ev((ρ0 ⊗ ρ∗0)(h)(x⊗ f)) = ev(ρ0(h)(x)⊗ ρ∗0(h)(x)) = f ◦ ρ0(h−1)(ρ0(h)x) = f(x).

Namely, the action H ! Q(H)⊗Q(H)Q(H)∗ is compatible with the evaluation map. This
implies that ρ0 ⊗ ρ∗0 is trivial:

(ρ0 ⊗ ρ∗0) (h) = id : Q(H)⊗Q(H)∗ → Q(H)⊗Q(H)∗

for any h ∈ H. Therefore the restriction ρ0 ⊗ ρ∗0 = (ρ0 " ρ∗0)|∆ of ρ0 " ρ∗0 to the diagonal
∆ = {(x, x) | x ∈ M} ⊂ M ×M gives the trivial local system. Thus we have

H∗(∆ : ρ0 " ρ∗0|∆) = H∗(∆ : ρ0 ⊗ ρ∗0) = H1(∆;Z)⊗Z Q(H)

= H1(M ;Z)⊗Z Q(H) = H1(M ;Z)/Tor⊗Z Q(H).
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4.2 Preparation for manifolds

Let ν∆ be the normal bundle of ∆ in M2. Set D(ν∆) = {(x, v) | ‖v‖ ≤ 1}. D(ν∆) forms
a D3-bundle over ∆. Let Sν∆ = ∂D(ν∆) be (the total space of) the unit sphere bundle
of ∆. We denote by B&(M2,∆) the real blowing up of M2 along ∆, namely

B&(M2,∆) = (M2 \∆) ∪ {((x, tu), u) ∈ ν∆ × Sν∆ | x ∈ ∆, u ∈ (Sν∆)x, t ∈ [0,∞)}
∼= (M2 \∆) ∪ Sν∆.

We denote by π : B&(M2,∆) → M2 the blow down map. Namely, π|M2\∆ = id : M2\∆ →
M2 \∆ ⊂ M2 and π|Sν∆ : Sν∆ → ∆ ⊂ M2 are the projections. By the construction,

intB&(M2,∆) = M2 \∆,

∂B&(M2,∆) = π−1(∆) = Sν∆.

We identified ν∆ with the tangent bundle TM by the bundle isomorphism given by

ν∆ 3 ((x, x), (v,−v)) )→ (x, v) ∈ TM,

where x ∈ M, v ∈ TxM . Under the identification, we have D(ν∆) = D(TM) and Sν∆ =
STM .

Take an open tubular neighborhood N(∆) of ∆ in M2 and then we identify N(∆) with
ν∆. We can take a diffeomorphism between B&(M2,∆) and M2 \ intD(ν∆) by “shrinking”
a collar of ∂B&(M2,∆). More precisely, we take the inclusion map

ι : B&(M2,∆) ↪→ M2

as follows: Let D2(ν∆) = {(x, v) ∈ ν∆ | ‖v‖ ≤ 2} ⊂ M2. Take a C∞ function h : [0,∞) →
[1,∞) satisfying

dh

dt
(t) ≥ 0 ∀t and h(t) =

{
t (t ≥ 2)

1 (t = 0)
.

The inclusion ι : B&(M2,∆) ↪→ M2 is given as the canonical extension of the map
ι0 : (M2 \∆ =)intB&(M2,∆) → B&(M2,∆) defined by

ι0|B#(M2)\D2(ν∆) = id,

ι0|D2(ν∆)\∆(x, v) =

(
x,

h(‖v‖)
‖v‖ v

)
for (x, v) ∈ D2(ν∆) \∆.

Obviously, ι(B&(M2,∆)) = M2\N(∆). Thus we can identify B&(M2,∆) with M2\N(∆)
via ι. We will consider B&(M2,∆) ⊂ M2 via ι, if need be.
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4.3 The definition of d′(M, e)

Take a non-vanishing vector filed ve on M representing the Euler structure e. Set

ve(∆) =

{(
x,

ve(x)

‖ve(x)‖

)}
⊂ STM ∼= Sν∆ = ∂B&(M2,∆).

When we consider B&(M2,∆) ⊂ M2, ve(∆) is a 3-manifold given by pushing ∆ along ve.
Namely, ve(∆) is a parallel copy of ∆).

Via a triangulation, the closed 3-manifold ∆ gives a 3-cycle of C3(M ;Z) and then ∆
together with 1 ∈ Q(H) gives a 3-cycle of C3(∆, ρ0 " ρ∗0|∆):

∆⊗ 1 ∈ C3(∆;Z)⊗Z Q(H) = C3(∆, ρ0 " ρ∗0|∆).

∆⊗ 1 also gives a 3-cycle of C3(M ×M ; ρ0 " ρ∗0) via the morphism

C3(∆, ρ0 " ρ∗0|∆) → C3(M ×M ; ρ0 " ρ∗).

Since π∗(ρ0"ρ∗0)|∂B#(M2,∆) = π∗(ρ0⊗ρ∗0), ve(∆)⊗1 is a 3-cycle in C3(∂B&(M2,∆); π∗(ρ0"
ρ∗0)), and also gives a 3-cycle in C3(B&(M2,∆); π∗(ρ0 " ρ∗0)) as in the case of ∆⊗ 1.

Let
∂∗ : H4(M

2, B&(M2,∆); ρ0 " ρ∗0) → H3(B&(M2,∆); ρ0 " ρ∗0)

be the connecting homomorphism in the long exact sequence of homologies of the pair
(M2, B&(M2,∆)). Since H4(M2; ρ0 " ρ∗0) = 0 and H3(M2; ρ0 " ρ∗0) = 0, ∂∗ is an isomor-
phism. Let

E : H4(M
2, B&(M2,∆)), ρ0 " ρ∗0)

∼=→ H4(N(∆)), ∂N(∆); ρ0 " ρ∗0)

be an excision isomorphism. Let

τ : H4((N(∆)), ∂N(∆); ρ0 " ρ∗0)
∼=→ H1(∆; ρ0 ⊗ ρ∗0)
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be the Thom isomorphism. Therefore we have an isomorphism

Φ = τ ◦ E ◦ (∂∗)−1 : H3(B&(M2,∆); ρ0 " ρ∗0)
∼=→ H1(∆; ρ0 ⊗ ρ∗0).

Definition 4.1.

d′(M, e) = Φ([ve(∆)⊗ 1]) ∈ H1(∆; ρ0 ⊗ ρ∗0) = H1(M ;Z)/Tor⊗Z Q(H).

Here [ve(∆)⊗1] ∈ H3(B&(M2,∆); ρ0"ρ∗0) is the homology class represented by the 3-cycle
v3(∆)⊗ 1.

4.4 A geometric description of d′(M, e)

Since H3(M2, ρ0 " ρ∗0) = 0, there exists a 4-chain Σ ∈ C4(M2; ρ0 " ρ∗0) bounded by
ve(∆) ⊗ 1. Σ gives a 4-cycle of C4(M2, B&(M2,∆); ρ0 " ρ∗0). The 3-manifold ∆ ⊂ M2

gives a 3-cycle of C3(M2;Z).
Proposition 4.2. The intersection Σ ∩∆ ∈ C1(∆; ρ0 ⊗ ρ∗0) represents d′(M, e):

d′(M, e) = [Σ ∩∆] ∈ H1(∆; ρ0 ⊗ ρ∗0) = H1(M ;Z)/Tor⊗Z Q(H).

Proof. The 4-chain Σ represents ∂−1
∗ ([ve(∆) ⊗ 1]) ∈ H4(M2, B&(M2,∆); ρ0 " ρ∗0). The

composition of the Thom isomorphism τ and the excision isomorphism E is realized as
τ ◦ E([Σ]) = [Σ ∩∆]. Then d′(M, e) = Φ(ve(∆)⊗ 1) = [Σ ∩∆].

Remark 4.3. An invariant d(ρ0) defined in [16] can be computed from d′(M, e) as follows:

d(ρ0) = d′(M, e0).

Here e0 is an Euler structure represented by a non-vanishing vector field v0, which is
homologous to −v0.
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5 An operator D

In this section, we introduce an operator D from Q(H) to (H1(M ;Z)/Tor) ⊗Z Q(H).
Recall that for h ∈ H, [h]+ ∈ H1(M ;Z)/tor is the element corresponding to h.

Definition 5.1. (1) For g, h ∈ RH, we have g/h ∈ Q(H). We set D(g/f) = D(g) −
D(f).

(2) For f =
∑

h∈H ahh ∈ RH, ah ∈ R, we set D(f) = D

(
∑

h∈H

ahh

)
=
∑

h

[h]+ ⊗ ahh

f
.

Example 5.2. Let H = 〈t1, t2〉.

D(1 + t31 + t21t
6
2)

= [1]+ ⊗ 1

1 + t31 + t21t
6
2

+ [t31]+ ⊗ t31
1 + t31 + t21t

6
2

+ [t21t
6
2]+ ⊗ t21t

6
2

1 + t31 + t21t
6
2

= 0⊗ 1

1 + t31 + t21t
6
2

+ 3[t1]+ ⊗ t31
1 + t31 + t21t

6
2

+ (2[t1]+ + 6[t2]+)⊗
t21t

6
2

1 + t31 + t21t
6
2

= [t1]+ ⊗ 3t31 + 2t21t
6
2

1 + t31 + t21t
6
2

+ [t2]+ ⊗ 6t21t
6
2

1 + t31 + t21t
6
2

.

The following lemma and the corollary guarantee that the definition is well defined.
Namely, D(f) is independent of the representation of f ∈ Q(H).

Lemma 5.3. For any f, g ∈ RH,

(1) D(f + g) = (1⊗ f
f+g )D(f) + (1⊗ g

f+g )D(g),

(2) D(fg) = D(f) +D(g).

Proof. (1) Let f =
∑

h ahh, g =
∑

h bhh. We have
(
1⊗ f

f + g

)
D(f) +

(
1⊗ g

f + g

)
D(g) =

∑

h

[h]+ ⊗
(

f

f + g
· ahh

f
+

g

f + g
· bhh

g

)

=
∑

h

[h]+ ⊗
(

ahh

f + g
+

bhh

f + g

)

= D(f + g).
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(2) Let f =
∑

h ahh, g =
∑

h′ bh′h′. Then fg =
∑

h,h′ ahbh′hh′. We have

D(fg) =
∑

h,h′

[hh′]+ ⊗ ahbh′hh′

fg

=
∑

h,h′

([h]+ + [h′]+)⊗
ahbh′hh′

fg

=
∑

h,h′

[h]+ ⊗ ahbh′hh′

fg
+
∑

h,h′

[h′]+ ⊗ ahbh′hh′

fg

=
∑

h

(
[h]+ ⊗

∑

h′

ahbh′hh′

fg

)
+
∑

h′

(
[h′]+ ⊗

∑

h

ahbh′hh′

fg

)

=
∑

h

(
[h]+ ⊗ ahh

f

∑
h′ bh′h′

g

)
+
∑

h′

(
[h′]+ ⊗ bh′h′

g

∑
h ahh

f

)

=
∑

h

(
[h]+ ⊗ ahh

f

)
+
∑

h′

(
[h′]+ ⊗ bh′h′

g

)

= D(f) +D(g).

As a direct consequence of the above lemma, we have the following corollary.

Corollary 5.4. Let f1, g1, f2, g2 ∈ RH. If g1/f1 = g2/f2 ∈ Q(H) then

D(g1/f1) = D(g2/f2).

Proof. For any h ∈ RH, we have D
(

g1h
f1h

)
= D

(
g1
h1

)
. Actually,

D

(
g1h

f1h

)
= D(g1h)−D(f1h)

= D(g1) +D(h)− (D(f1) +D(h))

= D(g1)−D(f1) = D

(
g1
f1

)
.

This implies that D
(

g1
f1

)
= D

(
g2
f2

)
if g1

f1
= g2

f2
∈ Q(H).

The properties in Lemma 5.3 characterizes the operator D:
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Lemma 5.5. If a morphism D′ : Q(H) → H1(M ;Z)/Tor ⊗ Q(H) satisfies the following
properties (1), (2) and (3), then D′ = D.

(1) D′(f + g) = (1⊗ f
f+g )D

′(f) + (1⊗ g
f+g )D

′(g), for any f, g ∈ RH.

(2) D′(fg) = D′(f) +D′(g), for any f, g ∈ RH.

(3) For any h ∈ H and for any 0 (= a ∈ R, D′(ah) = D(ah) = [h]+ ⊗ 1.

Proof. Any element of Q(H) can be written as a quotient of elements in RH, and any
element of RH can be written as a linear combination of elements of H. Thus we can
compute D′ completely by the rule (1), (2) and (3).

We next give an alternative description of the operator D by using the basis t1, . . . , tk
of H for the convenience of computation.

Take a representation of the group H:

H = 〈x1, . . . , xm | R〉.

By using generators x1, . . . , xm of H, the operator D can be written as follows:

Proposition 5.6. For any polynomial f(x1, . . . , xm) ∈ RH of x1, . . . , xm,

D(f) =
m∑

i=1

(
[xi]+ ⊗ xi

∂

∂xi
log |f(x1, . . . , xm)|

)
.

In particular, for any monomial axn1
1 · · · xnm

m ∈ RH, where 0 (= a ∈ R and n1, . . . , nm ∈ Z,
we have

D(axn1
1 · · · xnm

m ) = (n1[x1]+ + · · ·+ nm[xm]+)⊗ 1.

Proof. Set D′(f) =
∑m

i=1

(
[xi]+ ⊗ xi

∂
∂xi

log |f(x1, . . . , xm)
)
| for f ∈ RH. Clearly, D′

satisfies the conditions in Lemma 5.5. Thus D′ = D.

Example 5.7. Let H = 〈t1, t2〉 and f = 1 + t31 + t21t
6
2.

D(f) = [t1]+ ⊗ t1
∂

∂t1
log |1 + t31 + t21t

6
2|+ [t2]+ ⊗ t2

∂

∂t2
log |1 + t31 + t21t

6
2|

= [t1]+ ⊗ 3t31 + 2t21t
6
2

f
+ [t2]+ ⊗ 6t21t

6
2

f
.

We can use other representation of H1, for example

H1 = 〈t1, t2, T |T = t21〉 and f = 1 + t1T + t62T = 1 + t31 + t21t
6
2.
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D(1 + t1T + t62T )

= [t1]+ ⊗ t1
∂

∂t1
log |1 + t1T + t62T |+ [t2]+ ⊗ t2

∂

∂t2
log |1 + t1T + t62|

+[T ]+ ⊗ T
∂

∂T
log |1 + t1T + t62T |

= [t1]+ ⊗ t1T

f
+ [t2]+ ⊗ 6t62T

f
+ [T ]+ ⊗ t1T + t62T

f

= [t1]+ ⊗ t31
f
+ [t2]+ ⊗ 6t31t

6
2

f
+ 2[t1]+ ⊗ t31 + t21t

6
2

f

= [t1]+ ⊗ 3t31 + 2t21t
6
2

f
+ [t2]+ ⊗ 6t31t

6
2

f
.

6 Main theorem

The following theorem is the main theorem of this article.

Theorem 1.
D(Tor(M, e)) = −d′(ρ, e).

Example 6.1. Let M = S1 × S2. In this case H = H1(M ;Z) = 〈t〉. Here t ∈ H is
represented by S1 × {pt} for a point pt ∈ S2. It is known that, for a suitable Euler
structure e, the Reidemeister-Turaev torsion is given as

Tor(S1 × S2, e) =
1

(t− 1)2
∈ Q(H).

Thus

d′(M, e) = −D

(
1

(t− 1)2

)
= −[t]+ ⊗ −2t

t− 1
.

7 Proof of Theorem 1

In this Section we give the proof of Theorem 1. In Section 7.1 and 7.2 we prepare a
Morse function and some notations. In Ssection 7.3 we give a description of d′(M, e) by
using the Morse function. In Section 7.4 we give explicit descriptions of the boundary
homomorphisms and related homomorphisms associated with the Morse function. By
using these descriptions, in Section 7.5 and 7.6 we compute d′(M, e) and Tor(M, e). And
then in Section 7.7 we compare these computations to get a proof of the theorem.
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7.1 A Morse function and a combinatorial propagator

We give a Morse theoretic description of Σ which is a 4-chain of C4(M2; ρ0" ρ∗0) bounded
by ve(∆)⊗ 1 (see Section 4.4). The description is related to the construction in [15], [16]
and it is inspired by [6] and [19].

Take a Morse function f : M → R and a Riemannian metric on M satisfying the
Morse-Smale condition. We denote by Criti(f) the set of critical points of index i. Let
Crit(f) =

∑
i Criti(f). We denote by ind(p) the Morse index of a critical point p.

Let (Φf
t : M

∼=→ M)t∈R be the one-parameter family of diffeomorphisms associated to
the gradient vector field gradf . For p ∈ Crit(f), let Ap and Dp be the ascending manifold
of p and the descending manifold of p respectively:

Ap = {x ∈ M | lim
t→−∞

Φf
t (x) = p},

Dp = {x ∈ M | lim
t→∞

Φf
t (x) = p}.

We orient Ap and Dp by imposing the condition TpAp ⊕ TpDp = TpM . Let M(p, q) be
the set of all trajectories from p ∈ Criti(f) to q ∈ Criti−1(f):

M(p, q) = {γ : R → M | dγ/dt = gradf, lim
t→−∞

γ(t) = q, lim
t→∞

γ(t) = p}/R.

Here s ∈ R acts as s · γ(t) = γ(t + s). We consider γ as both a path and a compact
oriented 1-manifold (or 1-chain). When we consider γ as a path, γ is a path from p to q
(the opposite direction induced by the parameter R). Thus γ determines an isomorphism

γ∗ : Q(H)p
∼=→ Q(H)q. When we consider γ as an oriented manifold, the orientation

is given as a closure of a part of the intersection Dp ∩ Aq. By using the orientation
of γ, we assign a signature ε(γ) ∈ {+1,−1} for each γ ∈ M(p, q) as follows: If the
orientation is from p to q, we set ε(γ) = (−1)ind(p). If the orientation is from q to p, we
set ε(γ) = (−1)ind(p)+1.

We denote by Cf
∗ = (Cf

i (M ; ρ0), ∂
f
i : Cf

i (M ; ρ0) → Cf
i−1(M ; ρ0))i the Morse-Smale

complex of f , namely Cf
i (M ; ρ0) = ⊕p∈Criti(f)Q(H)p and

∂i(x) =
∑

q∈Criti−1(f)

∑

γ∈M(p,q)

ε(γ)γ∗(x)

for any x ∈ Q(H)p and p ∈ Criti(f).
Take homomorphisms gf = {gfi : Cf

i−1(M ; ρ0) → Cf
i (M ; ρ0)}i=1,2,3,4 satisfying

∂f
i+1 ◦ g

f
i+1 + gfi ◦ ∂f

i = idCf
i (M ;ρ0)
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as in the definition of Tor(M ; ρ0) in Section 3. This gf is called a combinatorial propagator
in [6] and [19].

A combinatorial propagator gf gives a homomorphism

gq,p = πQ(H)p ◦ g
f
i |Q(H)q : Q(H)q → Q(H)p

for each q ∈ Criti−1(f) and p ∈ Criti(f), where πQ(H)p : ⊕r∈Criti(f)Q(H)r → Q(H)p is the
projection.

7.2 A Morse theoretical description of Euler structures

We assign an orientation (−1)ind(p) for each critical point p ∈ Crit(f). Then Crit(f) =∑
p p becomes a 0-cycle of C0(M,Z). Let c ∈ C1(M ;Z) be a 1-chain consists of ±1-wighted

+Crit(f)/2-trajectories satisfying the following conditions:

∂c = Crit(f).

We deform gradf to a non-vanishing vector field by canceling the critical points pairwise
along each component of c. We denote by gradf/c such a non-vanishing vector field.

We take a 1-chain ef such that the non-vanishing vector field gradf/ef represents the
given Euler structure e.

Notations on gradf/ef

For the subsequent sections, we introduce some notations related to gradf/ef . We
deform gradf by moving critical points along each component of ef and finally canceling.
Then we have a homotopy from gradf to a non-vanishing vector field. This homotopy
gives a vector filed s̃ ∈ Γ(p∗2TM), namely a section of the vector bundle p∗2TM . Here
p2 : [0, 1] ×M → M is the projection. We take the deformation of gradf to satisfy the
following conditions:

• There is an embedding i : (ef , ∂ef ) ↪→ (M × [0, 1],M × {0}) satisfying i|∂ef = id and
s̃−1(0) = i(ef ).

• There is a regular neighborhood N(ef ) ⊂ M of ef satisfying s̃|[0,1]×(M\N(ef )) =
p∗2s̃|M\N(ef ), namely we do not change gradf on M \N(ef ).

• s̃|{0}×M = gradf ,

• s̃ is transverse to the zero section 0.

Set
gradf/ef = s̃|{1}×M .
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7.3 A Morse theoretic description of d′(M, e)

By using the Morse function f and the metric, we first construct a 4-chain

Σ0
f ∈ C4(B&(M2;∆); ρ0 " ρ∗0)

bounded by ve(∆)⊗ 1 (Definition 7.5 and Proposition 7.6).
Let M→(f) be the set of all pairs of two points in M connected by a trajectory:

M→(f) = {(x,Φf
t (x)) | x ∈ M \ Crit(f), t > 0} ⊂ M2 \∆.

There is a compactification M→(f) ⊂ B&(M2,∆)(⊂ M2) which consists of all broken
trajectories (see [15, Lemma 5.13] or [13, Lemma 4.3], [19, Proposition 3.14]). M→(f) with
the local coefficient given by 1 ∈ Q(H) near ∆ gives a 4-chain in C4(B&(M2,∆); ρ0 " ρ∗0)
and in C4(M2; ρ0 " ρ0):

M→(f) = 〈M→(f), pt; 1〉,
where pt ∈ ∂B&(M2;∆) is any point.

Similarly, we have compactifications Dp of Dp and Aq of Aq by adding all the broken
trajectories (see [15, Lemma 5.14] or [19, Proposition 3.14]). For p ∈ Criti(f) and q ∈
Criti−1(f), the combinatorial propagator gf gives a homomorphism gfq,p ⊗ 1 : Q(H)q ⊗
Q(H)∗q → Q(H)p ⊗Q(H)∗q. Thus we have a 4-chain

〈Dp ×Aq, (p, q); (g
f
q,p ⊗ 1)1〉 ∈ C4(M

2; ρ0 " ρ∗0).

Let
〈(Dp ×Aq)

B#, (p, q); (gfq,p ⊗ 1)1〉 ∈ C4(B&(M2;∆); ρ0 " ρ∗0).

be the 4-chain given from the closure of Dp ×Aq \∆ in B&(M2,∆). See [19, Proposition
3.14] for more details.

Set

M0(f) = 〈M→(f), pt; 1〉+
∑

p,q;ind(p)=ind(q)+1

〈(Dp ×Aq)
B#, (p, q); (gfq,p ⊗ 1)1〉

∈ C4(B&(M2;∆); ρ0 " ρ∗0)

The 4-chain M→(f) has
{

gradxf

‖gradxf‖
| x ∈ M \ Crit(f)

}
⊗ 1 ∈ C3(∂B&(M2,∆);Z)⊗Z Q(H)

= C3(STM ;Z)⊗Z Q(H)

as a part of the boundary ∂M→(f).
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The intersection of manifolds (Dp × Aq) ∩ ∆ = Dp ∩ Aq forms a sum of trajectories
connecting p and q:

Dp ∩Aq =
∑

γ∈M(p,q)

γ.

Thus, 〈(Dp ×Aq)B#, (p, q); (gfq,p ⊗ 1)1〉 has
∑

γ∈M(p,q)

π!〈γ, q; ((γ∗ ◦ gfq,p)⊗ 1)1〉 ∈ C3(Sν∆; ρ0 " ρ∗0) = C3(Sν∆; π
∗(ρ0 ⊗ ρ∗0))

=
∑

γ∈M(p,q)

π−1(γ)⊗ γ∗g
f
q,p(1) ∈ C3(Sν∆;Z)⊗Q(H).

as a part of the boundary. Here π : Sν∆ = STM → M is the projection.
By a similar argument as in [15, Lemma 5.16] (or [16, Proposition 6.2]), we can check

that the other boundary strata of ∂M→(f) and ∂(Ap × Dq)B# with local coefficients are
cancelled:

Lemma 7.1.

∂M0(f)

=

〈{(
x,

gradxf

‖gradx(f)‖

)
| x ∈ M \ Crit(f)

}
, pt; 1

〉

+
∑

p,q;ind(p)=ind(q)+1

∑

γ∈M(p,q)

π!〈γ, q; ((γ∗ ◦ gfq,p)⊗ 1)1〉 (∈ C3(∂B&(M2;∆); ρ0 ⊗ ρ∗0))

=

{(
x,

gradxf

‖gradx(f)‖

)
| x ∈ M \ Crit(f)

}
⊗ 1 +

∑

p,q;ind(p)=ind(q)+1

∑

γ∈M(p,q)

π−1(γ)⊗ γ∗g
f
q,p(1)

(∈ C3(∂B&(M2;∆);Z)⊗Q(H)).

Here π : ∂D(v∆) → ∆ is the projection.

Set

Γ =
∑

p,q;ind(p)=ind(q)+1

∑

γ∈M(p,q)

〈γ, q; 1⊗ ((γ∗ ◦ gfq,p)⊗ 1)1〉 ∈ C1(M ; ρ0 ⊗ ρ∗0)

=
∑

p,q;ind(p)=ind(q)+1

∑

γ∈M(p,q)

γ ⊗ γ∗g
f
q,p(1) ∈ C1(M ;Z)⊗Q(H).

The 1-chain Γ has the following property:
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Lemma 7.2.
∂Γ = −Crit(f)⊗ 1 ∈ C0(M ;Z)⊗Q(H).

Proof. Let cp be the coefficient of p ∈ Crit(f) in ∂Γ. We show that cp = (−1)ind(p)+1. If a
trajectory γ is from a critical point r ∈ Critind(p)+1(f) to p and γ is oriented from p to r,
then the coefficient of p in ∂γ is −1 and ε(γ) = (−1)ind(r)+1 = (−1)ind(p). If the orientation
of γ is opposite, namely from r to p, then the coefficient is +1 and ε(γ) = (−1)ind(p)+1.
If a trajectory γ connecting p and q ∈ Critind(p)−1(f) is oriented from p to q, then the
coefficient of p in ∂γ is −1 and ε(γ) = (−1)ind(p). If the orientation of γ is opposite,
namely from q to p, then the coefficient is +1 and ε(γ) = (−1)ind(p)+1. Therefore cp is
computed as follows:

cp =
∑

r∈Critind(p)+1(f)

∑

γ∈M(r,p)

(−1)ind(p)+1ε(γ)γ∗g
f
p,r(1)

+
∑

q∈Critind(p)−1(f)

∑

γ∈M(p,q)

(−1)ind(p)+1ε(γ)γ∗g
f
q,p(1)

=
∑

r∈Critind(p)+1(f)

(−1)ind(p)∂f
r,pg

f
p,r +

∑

q∈Critind(p)+1(f)

(−1)ind(p)−1∂f
p,qg

f
q,p

= (−1)ind(p)+1
∑

r∈Critind(p)+1(f)

∑

q∈Critind(p)−1(f)

πQ(H)p ◦
(
gf ◦ ∂f + ∂f ◦ gf

)
|Q(H)p(1)

= (−1)ind(p)+1.

Here πQ(H)p :
∑

p′∈Critind(p)
Q(H)p′ → Q(H)p is the projection.

We prepare two more chains.
We recall that i(ef ) is a submanifold of [0, 1]×M and s̃ is a section of the R3 bundle

p∗2TM → [0, 1]×M introduced in Section 7.2.
The image of the 4-manifold

S̃ =

{
s̃(x)

‖s̃(x)‖ | x ∈ [0, 1]×M \ s̃−1(0)

}
⊂ [0, 1]× STM

under the projection p̃2 : [0, 1]× STM → STM gives a 4-chain in STM = ∂B&(M2,∆):
(
(p2)∗S̃

)
⊗ 1 ∈ C4(∂B&(M2,∆);Z)⊗Q(H).

Since s̃|{0}×M = gradf and s̃|{1}×M = gradf/ef , we have the following lemma.
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Lemma 7.3.

∂
(
((p2)∗S̃)⊗ 1

)

= π−1(ef )⊗ 1−
{

gradxf

‖gradxf‖
| x ∈ M \ Crit(f)

}
⊗ 1 +

{
(gradf/ef )x

‖(gradf/ef )x‖
| x ∈ M

}
⊗ 1.

D(ν∆) = D(TM) forms a D3-bundle over M . Let π̃ : D(ν∆) = D(TM) → M be the
projection. Thanks to Lemma 7.2,

ef ⊗ 1 + Γ

is a 1-cycle of C1(M ;Z)⊗Z Q(H). Thus we have a 4-chain

π̃−1(ef ⊗ 1 + Γ) ∈ C4(D(ν∆);Z)⊗Z Q(H).

By the construction, the boundary of this chain is written as follows:

Lemma 7.4.

∂(π̃!(ef ⊗ 1 + Γ)) = π!(ef ⊗ 1 + Γ)

= π−1(ef )⊗ 1 + π!Γ.

Here π : STM(= D(ν∆) → M is the projection.

Definition 7.5.

Σf
0 = M0(f) + ((p2)∗S̃)⊗ 1− π̃−1(ef ⊗ 1 + Γ) ∈ C4(M

2;∆).

The following proposition is a direct consequence of Lemma 7.1, Lemma 7.3 and
Lemma 7.4.

Proposition 7.6.

∂Σf
0 =

{
(gradf/e)x

‖(gradf/e)x‖
| x ∈ M

}
⊗ 1 = ve(∆)⊗ 1.

The above proposition implies that we can take Σf
0 as Σ in the description of d′(M, e)

given in Section 4.4. Thus we have the following formula.

Proposition 7.7.

d′(M, e) = −[ef ⊗ 1 + Γ]

= −[ef ⊗ 1 +
∑

p,q;ind(p)=ind(q)+1

∑

γ∈M(p,q)

γ ⊗ γ∗g
f
p,q(1)]

∈ H1(M ;Z)⊗Q(H).
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Proof. Thanks to Proposition 4.2,

d′(M, e) = [Σf
0 ∩∆]

= [
(
M0(f) + ((p2)∗S̃)⊗ 1− π̃−1(ef ⊗ 1 + Γ)

)
∩∆].

Since M0(f) and (p2)∗S̃ are in B&(M2;∆), these are far from ∆. Thus we have

d′(M, e) = [Σf
0 ∩∆]

= [−π̃−1(ef ⊗ 1 + Γ) ∩∆]

= −[ef ⊗ 1 + Γ]

= −



ef ⊗ 1 +
∑

p,q;ind(p)=ind(q)+1

∑

γ∈M(p,q)

γ ⊗ γ∗g
f
q,p(1)



 .

By collapsing ef to a point, each trajectory γ becomes a 1-cycle. We denote by γ/ef
such a 1-cycle. Thus we have the following slightly different description of d′(M, e):

Proposition 7.8.

d′(M, e) = −
∑

p,q;ind(p)=ind(q)+1

∑

γ∈M(p,q)

[γ/ef ]⊗ γ∗g
f
q,p(1) ∈ H1(M ;Z)⊗Q(H).

Here [γ/ef ] is a 1-cycle of H1(M ;Z) represented by γ/ef .

7.4 An explicit descriptions of the boundary operators ∂f
∗ and a propagator

gf

To compute d′(M, e) and Tor(M, e) explicitly, we first introduce two bases of Cf
∗ (M, ρ0).

Tow bases be and bf of Cf
∗ (M ; ρ0)

To simplify the computations, we assume that +Crit3(f) = +Crit0(f) = 1. Let

Crit3(f) = {NP},
Crit2(f) = {p1, . . . , pn},
Crit1(f) = {q1, . . . , qn},
Crit0(f) = {SP}.
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We denote by

CNP = Cf
3 (M ; ρ0) = Q(H)NP ,

Cp = Cf
2 (M ; ρ0) = ⊕n

i=1Q(H)pi ,

Cq = Cf
1 (M ; ρ0) = ⊕n

i=1Q(H)qi ,

CSP = Cf
0 (M ; ρ0) = Q(H)SP .

We take isomorphisms

Q(H)NP
∼= Q(H), Q(H)p1 ∼= Q(H), . . . , Q(H)pn ∼= Q(H),

Q(H)q1 ∼= Q(H), . . . , Q(H)qn ∼= Q(H), Q(H)SP ∼= Q(H)

such that these are compatible with the Euler structure ef . The compatibility means
that, for example, if a component γ of ef connects pi and qj, thus the following diagram
should commutes:

Q(H)pi
∼= !!

!
γ∗
""

Q(H)

Q(H)qj

∼=

##!!!!!!!!!

For each p ∈ Crit(f), we denote by p ∈ Q(H)p the element corresponding to the generator
1 ∈ Q(H) under the isomorphism Q(H)p ∼= Q(H). Therefore, we now have a basis be of
Cf

∗ (M, ρ0):
be = {NP, p1, . . . , pn, q1, . . . , qn, SP}.

To simplify the computations, we introduce an alternative basis. Let πQ(H)p1
: Cp →

Q(H)p1 be the projection. Without loss of generality, we assume that πQ(H)p1
◦∂f

3 (NP) (= 0.
We take a basis of Cp as

∂3(NP), p2, . . . , pn.

At least one of q1, . . . , qn does not belong to Im∂2 ⊂ Cq. We may assume that q1 (∈ Im∂2.
We take a basis of Cq as

q1, ∂2(p2), . . . , ∂2(pn).

Since H0(M ; ρ0) = 0, then ∂1(q1) (= 0. We take ∂1(q1) as a basis of CSP. Now we have a
new basis bf :

bf = {NP, ∂3(NP), p2, . . . , pn, q1, ∂2(p2), . . . , ∂2(pn), ∂1(q1)}.

The transformation matrix from be to bf
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Let (∂ij
1 )ij, (∂

ij
2 )ij and (∂ij

3 )ij be representation matrices of ∂f
1 , ∂

f
2 and ∂f

3 respectively
under the basis bf . Namely,

∂f
3 (NP) = (p1, . . . , pn)




∂11
3
...

∂1n
3



 ,

∂f
2 (p1, . . . , pn) = (q1, . . . , qn)




∂11
2 · · · ∂1n

2
...

. . .
...

∂n1
2 · · · ∂nn

2



 ,

∂f
1 (q1, . . . , qn) = (SP)(∂11

1 · · · ∂1n
1 ).

Then the transformation matrices are written as the following:

Lemma 7.9. (1)

(∂3(NP), p2, . . . , pn) = (p1, p2, . . . , pn)





∂11
3 0 · · · 0

∂12
3 1 0
...

. . .
∂1n
3 0 1



 .

(2)

(q1, ∂2(p2), . . . , ∂2(pn)) = (q1, q2, . . . , qn)





1 ∂21
2 · · · ∂n1

2

0 ∂22
2 · · · ∂n2

2
...

...
. . .

...
0 ∂2n

2 · · · ∂nn
2



 .

(3)
∂f
1 (q1) = ∂11

1 SP.

A propagator gf

We give a combinatorial propagator gf explicitly written by using the basis bf as
follows:

• gf3 (∂
f
3 (NP)) = NP, gf3 (p2) = 0, . . . , gf3 (pn) = 0,

• gf2 (q1) = 0, gf2 (∂
f
2 (p2)) = p2, . . . , g

f
2 (∂

f
2 (pn)) = pn,

• gf1 (∂
f
1 (q1)) = q1.
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Obviously, these homomorphisms gf = {gi}i satisfies ∂f
i+1 ◦ g

f
i+1 + gfi ◦ ∂f

i = id for any i,
namely gf is a combinatorial propagator.

An explicit description of gf under the basis be.

A description of gf3

Since
gf3 (∂3(NP), p2, . . . , pn) = (NP) (1 0 · · · 0) and

(∂3(NP), p2, . . . , pn) = (p1, p2, . . . , pn)





∂11
3 0 · · · 0

∂12
3 1 0
...

. . .
∂1n
3 0 1



 ,

we have

gf3 (p1, p2, . . . , pn) = (NP )(1 0 . . . 0)





∂11
3 0 · · · 0

∂12
3 1 0
...

. . .
∂1n
3 0 1





−1

= (NP )(1 0 . . . 0)





(∂11
3 )−1 0 · · · 0

−∂12
3 /∂11

3 1 0
...

. . .
−∂1n

3 /∂11
3 0 1





= (NP)((∂11
3 )−1 0 · · · 0).

Thus we have
gfp1,NP = (∂11

3 )−1, gfp2,NP = 0, . . . , gfpn,NP = 0.

A description of gf2

Since

gf2 (q1, ∂2(p2), . . . , ∂2(pn)) = (∂3(NP), p2, . . . , pn)





0 0 · · · 0
0 1 0
...

. . .
0 0 1



 ,
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(∂3(NP), p2, . . . , pn) = (p1, p2, . . . , pn)





∂11
3 0 · · · 0

∂12
3 1 0
...

. . .
∂1n
3 0 1



 and

(q1, ∂2(p2), . . . , ∂2(pn)) = (q1, q2, . . . , qn)





1 ∂21
2 · · · ∂n1

2

0 ∂22
2 · · · ∂n2

2
...

...
. . .

...
0 ∂2n

2 · · · ∂nn
2



 ,

We have

gf2 (q1, q2, . . . , qn)

= (p1, p2, . . . , pn)





∂11
3 0 · · · 0

∂12
3 1 0
...

. . .
∂1n
3 0 1









0 0 · · · 0
0 1 0
...

. . .
0 0 1









1 ∂21
2 · · · ∂n1

2

0 ∂22
2 · · · ∂n2

2
...

...
. . .

...
0 ∂2n

2 · · · ∂nn
2





−1

= (p1, p2, . . . , pn)





0 0 · · · 0
0 1 0
...

. . .
0 0 1









1 ∗ · · · ∗
0 1

detAA
22
2 · · · 1

detAA
n2
2

...
...

. . .
...

0 1
detAA

2n
2 · · · 1

detAA
nn
2





= (p1, p2, . . . , pn)





0 0 · · · 0
0 1

detAA
22
2 · · · 1

detAA
n2
2

...
...

. . .
...

0 1
detAA

2n
2 · · · 1

detAA
nn
2



 .

Here the matrix A is defined by

A2 =




∂22
2 · · · ∂n2

2
...

. . .
...

∂2n
2 · · · ∂nn

2





and (Aij
2 ) is the (i, j)-cofactor of A2, namely

(
1

detA2
Aji

2

)

i,j

= A−1
2 .

Thus we have

gfqi,pj =

{
1

detA2
Aij

2 (i, j ≥ 2),

gfqi,pj = 0 i = 1 orj = 1.
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A description of gf1

We have

gf1 (∂1(q1)) = (q1, ∂2(p2), . . . , ∂2(pn))





1
0
...
0





= (q1, q2, . . . , qn)





1 ∂21
2 · · · ∂n1

2

0 ∂22
2 · · · ∂n2

2
...

...
. . .

...
0 ∂2n

2 · · · ∂nn
2









1
0
...
0





= (q1, q2, . . . , qn)





1
0
...
0





and
∂f
1 (q1) = ∂11

1 SP.

Then we have

gf1 (SP) = (q1, q2, . . . , qn)





(∂11
1 )−1

0
...
0



 .

Therefore we have
gfSP,q1 = (∂11

1 )−1, gfSP,q2 = 0, . . . , gfSP,qn = 0.

7.5 The computation of D(Tor(M, e))

Recall that Tor(M, e) is defined to be Top(M, e) = det(∂f + gf ).
The isomorphism

∂f + gf = gf3 + ∂f
2 + gf1 : Cf

even → Cf
odd
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is represented by the following matrix under the basis be:

(gf3 + ∂f
2 + gf1 )(p1, p2, . . . , pn, SP)

= (NP, q1, q2, . . . , qn)





(∂11
3 )−1 0 · · · 0 0
∂11
2 ∂21

2 · · · ∂n1
2 (∂11

1 )−1

∂12
2 ∂22

2 · · · ∂n2
2 0

...
...

. . .
...

...
∂1n
2 ∂2n

2 · · · ∂nn
2 0




.

Therefore, we have

Tor(M, e) = det





(∂11
3 )−1 0 · · · 0 0
∂11
2 ∂21

2 · · · ∂n1
2 (∂11

1 )−1

∂12
2 ∂22

2 · · · ∂n2
2 0

...
...

. . .
...

...
∂1n
2 ∂2n

2 · · · ∂nn
2 0





= (−1)n−1(∂11
3 )−1 det




∂22
2 · · · ∂n2

2
...

. . .
...

∂2n
2 · · · ∂nn

2



 (∂11
1 )−1

= (−1)n−1(∂11
3 )−1(detA2)(∂

11
1 )−1.

We next compute D(Tor(M, e)). Recall that we already have a representation

H = 〈t1, . . . , tk〉.

To simplify the computations, we use the following alternative representation:

H = 〈t1, . . . , tk, {γ∗(1)}γ:trajectory | R〉,

where R is a family of appropriate relations. To simplify the notations, we denote by

γ′ = γ∗(1).

Thus our representation of H is written as

H = 〈t1, . . . , tk, {γ′}γ:trajectory | R〉.

Thanks to Proposition 5.6, D is written as follows:

D =
∑

i

(
[ti]+ ⊗ ti

∂

∂ti
log

)
+
∑

γ

(
[γ′]+ ⊗ γ′ ∂

∂γ′ log

)
.
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Lemma 7.10. For any trajectory γ ∈ M(p, q),

[γ′]+ = (−1)ind(p)+1ε(γ)[γ/ef ] ∈ H1(M ;Z)/Tor.

Proof. γ′ = γ∗(1) ∈ Q(H) = Hom(Q(H)p, Q(H)q). The identification Q(H)p = Q(H)q =
Q(H) is compatible with the Euler structure ef . The homology class [γ′]+ = [γ∗(1)]+ is
represented by a cycle γ/ef with the orientation directed from p to q along γ. Whereas,
γ/ef already has an orientation induced by that of γ as a part of Dp ∩Aq. Thus we have
[γ′]+ = (−1)ind(p)+1ε(γ)[γ/ef ].

The terms t1, . . . , tk do not appear in our representation of Tor(M, e). Therefore,

D(Tor(M, e)) =
∑

γ

[γ/ef ]⊗ γ′ ∂

∂γ′ log
∣∣(−1)n−1(∂11

3 )−1(detA2)(∂
11
1 )−1

∣∣ .

We compute γ′ ∂
∂γ′ log |(−1)n−1(∂11

3 )−1(detA2)(∂11
1 )−1| for each trajectory γ. We denote

by s(γ) = p, t(γ) = q for a trajectory γ from p to q. We break the computation into cases
depending on s(γ) and t(γ).

Case 1:s(γ) = NP, t(γ) = pi

In this case the term γ′ only appears in ∂1i
3 (We note that ∂1i

3 =
∑

γ∈M(NP,pi)
ε(γ)γ′).

Thus,

γ′ ∂

∂γ′ log
∣∣(−1)n−1(∂11

3 )−1(detA2)(∂
11
1 )−1

∣∣

= γ′ ∂

∂γ′ log

∣∣∣∣∣∣
(−1)n−1(∂11

3 )−1 det




∂22
2 · · · ∂n2

2
...

. . .
...

∂2n
2 · · · ∂nn

2



 (∂11
1 )−1

∣∣∣∣∣∣

= −γ′ ∂

∂γ′ log |∂
11
3 |+ γ′ ∂

∂γ′ log

∣∣∣∣∣∣
det




∂22
2 · · · ∂n2

2
...

. . .
...

∂2n
2 · · · ∂nn

2





∣∣∣∣∣∣
− γ′ ∂

∂γ′ log |∂
11
1 |

= −γ′ ∂

∂γ′ log |∂
11
3 |

= −γ′ 1

∂11
3

∂

∂γ′ (∂
11
3 )

=

{
−ε(γ) γ′

∂11
3

(i = 1),

0 (i (= 1).
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Case 2-1: s(γ) = pi, t(γ) = qj, i = 1 or j = 1

In this case there are no γ′ in (∂11
3 )−1(detA2)(∂11

1 )−1 . Then we have

γ′ ∂

∂γ′ log
∣∣(−1)n−1(∂11

3 )−1(detA2)(∂
11
1 )−1

∣∣ = 0.

Case 2-2: s(γ) = pi, t(γ) = qj, i, j ≥ 2

γ′ ∂

∂γ′ log
∣∣(−1)n−1(∂11

3 )−1(detA2)(∂
11
1 )−1

∣∣

= γ′ ∂

∂γ′ log

∣∣∣∣∣∣
det




∂22
2 · · · ∂n2

2
...

. . .
...

∂2n
2 · · · ∂nn

2





∣∣∣∣∣∣

= γ′ ∂

∂γ′ log

∣∣∣∣∣

n∑

a=2

∂aj
2 Aaj

2

∣∣∣∣∣

= γ′ 1

detA2
· ∂

∂γ′

n∑

a=2

∂aj
2 Aaj

2

= γ′ 1

detA2
ε(γ)Aij

2 .

Case 3: s(γ) = qj, t(γ) = SP

γ′ ∂

∂γ′ log
∣∣(−1)n−1(∂11

3 )−1(detA2)(∂
11
1 )−1

∣∣

= −γ′ ∂

∂γ′ log |∂
11
1 |

= −γ′ 1

∂11
1

∂

∂γ′ (∂
11
1 )

=

{
−ε(γ) γ′

∂11
1

(j = 1),

0 (j (= 1).
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Therefore, we can compute D(Tor(M, e)) as follows:

D(Tor(M, e))

=
∑

γ∈M(NP,p1)

−[γ′]⊗ ε(γ)γ′

∂11
3

+
∑

i,j≥2

∑

γ∈M(pi,qj)

[γ′]⊗ ε(γ)γ′

detA2
Aij

2 −
∑

γ∈M(q1,SP)

[γ′]⊗ ε(γ)γ′

∂11
1

=
∑

γ∈M(NP,p1)

[γ/ef ]+ ⊗ γ′

∂11
3

+
∑

i,j≥2

∑

γ∈M(pi,qj)

[γ/ef ]+ ⊗ γ′

detA2
Aij

2 +
∑

γ∈M(q1,SP)

[γ/ef ]+ ⊗ γ′

∂11
1

.

Lemma 7.11.

D(Tor(M, e))

=
∑

γ∈M(NP,p1)

[γ/ef ]+ ⊗ γ′

∂11
3

+
∑

i,j≥2

∑

γ∈M(pi,qj)

[γ/ef ]+ ⊗ γ′

detA2
Aij

2 +
∑

γ∈M(q1,SP)

[γ/ef ]+ ⊗ γ′

∂11
1

.

7.6 The Computation of d′(M, e) by using gf

By using the explicit description of gf under the basis be and the formula given in Propo-
sition 7.8, we have the following description of d′(M, e):

d
′
(M, e) = −

∑

p,q;ind(p)=ind(q)+1

∑

γ∈M(p,q)

[γ/ef ]⊗ γ∗g
f
p,q(1)

= −
∑

γ∈M(NP,p1)

[γ/ef ]⊗ γ′(∂11
3 )−1

−
∑

i,j≥2

∑

γ∈M(pi,qj)

[γ/ef ]⊗ γ′ 1

detA2
Aij

2

−
∑

γ∈M(q1,SP)

[γ/ef ]⊗ γ′(∂11
1 )−1.

Lemma 7.12.

d
′
(M, e)

= −
∑

γ∈M(NP,p1)

[γ/ef ]⊗
γ′

∂11
3

−
∑

i,j≥2

∑

γ∈M(pi,qj)

[γ/ef ]⊗
γ′

detA2
Aij

2 −
∑

γ∈M(q1,SP)

[γ/ef ]⊗
γ′

∂11
1

.

7.7 The proof of Theorem

As a direct consequence of Lemma 7.11 and Lemma 7.12, we have

D′(Tor(M, e)) = −d′(M, e).

29



8 d′(M, e) from the point of view of the self-linking homology
class

For a 2-component oriented link K1 8 K2 ⊂ S3, the linking number lkS3(K1, K2) ∈ Z
was defined as follows: Take a 2-chain K̃1 ∈ C2(S3, K1;Z) satisfying ∂K̃1 = K1 (we

note that we can take a Seifert surface of K1 as a K̃1). Then lkS3(K1, K2) is defined by
lkS3(K1, K2) = [K̃1] ∩ [K2] ∈ H0(K2;Z) = Z. Let v be a normal vector filed of K1 in S3.
The self-linking number

self.lkS3(K1, v) ∈ Z
of a framed knot (K1, v) is defined as a linking number of K1 and v(K1). Here v(K1) is
a copy of K1 given by pushing K1 along v.

We now turn to d′(M, e). The description d′(M, e) = [Σ ∩ ∆] given in Section 4.4
forms an intersection of a “Seifert 4-chain” Σ of ve(∆) and ∆. Actually, d′(M, e) can be
formulated as a “self-linking 1-dimensional homology class” of an embedded 3-manifold
in a 6-manifold with a local coefficient.

8.1 A self-linking homology class of an embedded 3-manifold

Let Y1, Y2 be closed 3-manifolds embedded in a closed 6-manifold X satisfying Y1 ∩ Y2 =
∅ ⊂ X. Let E be a local system on X corresponding to a representation π1(X) → AutE0,
where E0 is a vector space. We assume that they satisfy the following conditions:

• E|Y1 and E|Y2 are trivial. (Then H3(Yi, E) ∼= H3(Yi,Z)⊗Z E0 for each i = 1, 2.)

• There is a special element 1 ∈ E0 so that [Y1]⊗ 1 = [Y2]⊗ 1 = 0 ∈ H3(X;E).

Since [Y1] ⊗ 1 = 0 ∈ H3(X : E), there exists a 4-chain Ỹ1 ∈ C4(X;E) satisfying ∂Ỹ1 =
Y1. The intersection of [Ỹ1] ∈ H4(X, Y1;E) and [Y2] ∈ H3(Y2;Z) gives a 1-dimensional
homology class [Ỹ1] ∩ [Y2] = [Ỹ1 ∩ Y2] ∈ H1(Y2;E) = H1(Y2;Z)⊗Z E0.

Lemma 8.1. Let Ỹ1, Ỹ1
′
∈ C4(X;E) be 4-chains satisfying ∂Ỹ1 = ∂Ỹ1

′
= Y1. Then

[Ỹ1] ∩ [Y2] = [Ỹ1
′
] ∩ [Y2] ∈ H1(Y ;Z)⊗Z E0.

Proof. Since

([Ỹ1] ∩ [Y2])⊗ 1 = [Ỹ1] ∩ ([Y2]⊗ 1) ∈ H1(Y2;Z)⊗Z E0 ⊗Z E0

and the homomorphism

H1(Y2;E)(= H1(Y2)⊗Z E0) → (H1(Y2;Z)⊗Z E0 ⊗Z E0 =)H1(Y2;E ⊗Z E)
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given by
x⊗Z a )→ x⊗Z a⊗Z 1

for x ∈ H1(Y2;Z) and a ∈ E0 is injective, it is sufficient to show that

[Ỹ1] ∩ ([Y2]⊗ 1) = [Ỹ1
′
] ∩ ([Y2]⊗ 1) ∈ H1(Y2;E ⊗Z E).

[Ỹ1]∩ ([Y2]⊗ 1)− [Ỹ1
′
]∩ ([Y2]⊗ 1) = [Ỹ1 − Ỹ1

′
]∩ ([Y2]⊗ 1) is in the image of the morphism

∩ : H4(X;E)⊗Z H3(Y2;E) → H1(Y2;E ⊗ E).

The assumption [Y2]⊗ 1 = 0 says that [Ỹ1 − Ỹ1
′
] ∩ ([Y2]⊗ 1) = 0.

This lemma implies that a linking homology class is well defined:

Definition 8.2.
lk(Y1, Y2) = [Ỹ1] ∩ [Y2] ∈ H1(Y2;E).

If there is a non-vanishing vector field v of the normal bundle of Y1 in X, we can
formulate a self-linking homology class of the framed 3-manifold (Y1, v). Let v(Y1) ⊂ X
is a parallel of Y1 given by pushing Y1 along v1.

Definition 8.3. The self-linking homology class of (Y1, v) is defined to be

self.lk(Y1, v) = lk(v(Y1), Y1).

8.2 d′(M, e) as a self-linking homology class

The geometric description given in Proposition 4.2 implies that d′(M, e) is a self-linking
homology class of (∆, ve):

d′(M, e) = self.lk(∆, ve).

Thus we obtain a description of Tor(M, e) from the point of view of a self-linking homology
class.

Theorem 2.
D(Tor(M, e)) = self.lk(∆, ve).

9 Lescop’s invariant and d′(M, e)

Let M be a closed oriented 3-manifold with b1(M) = rkH1(M ;Z) = 1. In this section
we review the Lescop’s invariant I∆ ∈ Q(H) introduced in [14] as d′(M, e0) for a special
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Euler structure e0. Then we give an alternative proof of Lescop’s theorem ([14, Theorem
4.7]) on the relation between I∆ and the normalized Alexander polynomial ∆(t).

Let τ : TM → M × R3 be a framing. Take a vector v ∈ S2 ⊂ R3. We have a non-
vanishing vector field τ−1(v) on M . Let eτ be the Euler structure determined by τ−1(v).
In our language, the invariant I∆ is defined to be an element of Q(H) characterized by
the following equation:

d′(M, eτ ) = [K]⊗ I∆ ∈ H1(M ;Z)⊗Q(H).

Here K ⊂ M is an oriented knot satisfying [K] = 1 ∈ H1(M ;Z).
Proposition 9.1 ([14, Theorem 4.7]). Let M be a closed oriented 3-manifold with b1(M) =
1. Let K ⊂ M be an oriented knot satisfying [K] = 1 ∈ H1(M ;Z). Let eτ be an Euler
structure given by a framing τ : TM → M × R3. Then

I∆ =
1 + t

1− t
+

t∆(t)′

∆(t)
.

, where t is generator of H given as [K] = t. The Alexander polynomial ∆(t) ∈ Q(H) is
normalized as ∆(−t) = ∆(t) and ∆(1) = 1.

Proof. It is known (see [17, Section 5.2] of Chapter II) that the normalized Alexander
polynomial can be computed form the Reidemeister-Turaev torsion as

∆(t) = Tor(M, eτ )(t− 1)(t−1 − 1).

Thus

d′(M, eτ ) = D(Tor(M, eτ ))

= D
(
(t− 1)−1(t−1 − 1)−1∆(t)

)

= [t]⊗ t
d

dt
log
∣∣((t− 1)−1(t−1 − 1)−1∆(t)

)∣∣

= [t]⊗
(
1 + t

1− t
+

t∆′(t)

∆(t)

)
.

This implies that I∆ = 1+t
1−t +

t∆′(t)
∆(t) .
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