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ABSTRACT
In analyzing repeated measurements from randomized controlled
trials with mixed-effects models, it is important to carefully exam-
ine the conventional normality assumption regarding the random-
effects distribution and its dependence on treatment allocation in
order to avoid biased estimation and correctly interpret the esti-
mated random-effects distribution. In this paper, we propose the
use of a gradient function method in modeling with the different
random-effects distributions depending on the treatment allocation.
This method can be effective for considering in advance whether a
proper fit requires a model that allows dependence of the random-
effects distribution on covariates, or for finding the subpopulations
in the random effects.

1 INTRODUCTION
In randomized controlled trials (RCTs), some subject characteristics
are monitored longitudinally and measured repeatedly. Subject-
specific data features are often present, and a statistical model that
accommodates these features is preferable for the analysis. One
popular method for analyzing repeated measurements is mixed-
effects modeling, where each subject-specific feature is explicitly
taken into account as a random effect in the model. The infer-
ence is based on the marginal likelihood where the random effects
are integrated over an assumed parametric distribution. Since the
random effects are unobservable quantities, it is difficult to make
assumptions about their distributions. The normality assumption
is commonly made for practical reasons such as theoretical sim-
plicity or analysis feasibility using standard software packages.
However, mis-specifying the random-effects distribution is some-
times problematic [1, 2, 4, 13, 14, 17, 21] and can result in biased
estimates of fixed effects [9] or lead to improper predictions re-
garding subject-specific features. [20] For example, Verbeke and
Lesaffre (1996) reported simulations of repeated measurements in
which the random-effects predictions under the normality assump-
tion reflected neither the true ones nor the true random-effects
distribution due to the so-called shrinkage effect.

To check the normality assumption on random-effects distribu-
tions, Verbeke and Molenberghs (2013) proposed an exploratory
diagnostic tool based on the so-called gradient function. Although
this tool is used for exploratory assessment, the gradient function
offers insight on how the parametric distribution assumption is
violated and what types of models would improve the fit in terms
of likelihood. The calculation of the gradient function is based

on the model fitting results and does not involve any technical
computations.[15, 22] Verbeke and Molenberghs (2013) illustrated
the use of the gradient function method combined with a finite
mixture of normals, proposed by Verbeke and Lesaffre (1996), in-
stead of using the simple normality assumption on random-effects
distribution. Although mixtures of normals are very flexible and
may offer very simple interpretations,[16, 22] it is often difficult
to obtain stable solutions. Therefore, it was suggested that a finite
mixture of normals for random-effects distributions could be in-
corporated into a general sensitivity analysis.[14] Insights from
the gradient function can be utilized in model construction in this
framework,[16, 22] and can also be applied to research involving
joint modeling of longitudinal measurements and survival time.[3]

In addition to the normality assumption, dependence of the
random-effects variance on covariates is also an important issue.
The dependence on covariates is usually ignored in the modeling
unless valid evidence is available; however, when fitting general-
ized linear mixed-effects models, the estimates of fixed effects may
be sensitive to the assumption that random effects do not depend
on the covariates. [8–10] Several models flexible enough to accom-
modate this dependence are available. [5, 7, 11, 12] However, it
is ideal to consider in advance whether such complex models are
indeed required. Furthermore, dependence of the random-effects
distribution on covariates can occur concurrently with violation of
the normality assumption. For example, due to treatment adherence
or to the heterogeneity of the treatment effect, some non-trivial
subpopulations with subject-specific features can appear in either
treatment group. In these cases, modeling is usually difficult be-
cause there will be many complex model candidates. The insight
from the gradient function will be useful in this context as well. In
this paper, we apply the gradient function method in modeling with
different random-effects distributions depending on the treatment
allocation.

The remainder of the paper is organized as follows. In section
2, the details of two real data examples and their corresponding
mixed-effects modeling strategies will be introduced. In section 3,
the gradient function method by Verbeke and Molenberghs (2013)
will be extended to the case in which the random-effects distribution
may differ depending on the treatment allocation. In section 4, the
utilities of the proposed methods will be investigated in several
study settings for normal and binary outcomes using simulated
datasets. In section 5, the methods will be applied to real datasets.
In section 6, some practical issues regarding use of the gradient
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function method for random-effects distribution assessment will
be discussed.

2 MIXED-EFFECTS MODELS FOR REPEATED
MEASUREMENTS

The application of the gradient function will be explained following
the notation of Verbeke and Molenberghs (2013). Although the
general form of random effects b𝑖 with 𝑞 components is adopted
in sections 2 and 3, in this paper we mainly consider the random
intercept models (𝑞 = 1). The application for random slope models
(𝑞 = 2) is discussed in the supplementary materials. Here, 𝑖 is the
label for a total of 𝑁 subjects. The repeated outcomes are expressed
as y𝑖 = (𝑦𝑖1, ..., 𝑦𝑖𝑛𝑖 )T, where 𝑛𝑖 is the number of observations in
subject 𝑖 .

2.1 The mixed-effects model framework
In the mixed-effects model framework, the subject-specific feature
is explicitly presented in the distribution function of the outcomes
as y𝑖 | b𝑖 ∼ 𝐹𝑖 (y𝑖 | b𝑖 ). The corresponding density function is
denoted as 𝑓𝑖 (y𝑖 |b𝑖 ). Furthermore, the distribution function for
the population of subject-specific features is explicitly expressed
as 𝐺 (b𝑖 ), where b𝑖s are assumed to be randomly sampled accord-
ing to this random-effects distribution. The corresponding density
function is denoted as 𝑔(b𝑖 ).

For the likelihood-based inference for the parameters in 𝐹 (y𝑖 |b𝑖 )
and 𝐺 (b𝑖 ), the b𝑖 is marginalized over 𝐺 (b𝑖 ), denoted as,

𝑓𝑖 (y𝑖 |𝐺) ≡
∫

𝑓𝑖 (y𝑖 |b𝑖 )𝑑𝐺 (b𝑖 ) ,

and the logarithm of marginal likelihood is given by

𝑙 [𝐺] =
𝑁∑
𝑖=1

ln{𝑓𝑖 (y𝑖 |𝐺)} .

Thus, the forms of 𝑓𝑖 or 𝑙 highly depend on the choice of 𝐺 .
Regarding model fitting, the candidates for 𝐺 can be compared

based on the likelihoods or other fit statistics. One of the important
features of possible choices of 𝐺 in the RCT setting is the depen-
dence of𝐺 on the treatment allocation𝑇𝑖 (for simplicity, two groups
of control (𝑇𝑖 = 0) and treated (𝑇𝑖 = 1) subjects are considered in this
paper). Because the subject-specific features exist before the treat-
ment allocation, the original random-effects distribution should be
independent of the allocation result. Consistent with this point, two
types of random effects are introduced in this paper: b0𝑖 and b1𝑖 ,
whose distributions𝐺0 and𝐺1, respectively, are independent of the
allocation. Either b0𝑖 or b1𝑖 is assumed to be included in the model
if the subject 𝑖 is allocated to the control group or treated group.
The resulting random effects b𝑖 in the model and its distribution
can be written as

b𝑖 = b0𝑖 (1 −𝑇𝑖 ) + b1𝑖𝑇𝑖 , 𝐺 = 𝐺0 (1 −𝑇𝑖 ) +𝐺1𝑇𝑖 , (1)

where b𝑖 and 𝐺 are dependent on 𝑇𝑖 .

2.2 Real data example
In this section, two longitudinal datasets from RCTs will be pre-
sented as motivating examples. The framework of the analysis using
mixed-effects models is described here.

2.2.1 Cholesterol data. The first example is the repeated measure-
ments data from the "Ezetimibe Lipid-Lowering Trial on Prevention
of Atherosclerotic Cardiovascular Disease in 75 or Older" study
(EWTOPIA 75),[19] where subjects were asked to undergo treat-
ment consisting of dietary counseling plus ezetimibe or dietary
counseling alone. As secondary outcomes, several types of choles-
terol, including low-density lipoprotein cholesterol (LDLC), were
measured annually from baseline to a maximum of 7 years of follow-
up. In this paper, we analyze the LDLC data up to the third year of
follow-up. In total, 1520 and 1507 subjects in the ezetimib and con-
trol groups, respectively, had cholesterol measurements at baseline
and at a minimum of one follow-up visit. Among these individ-
uals, 1477 and 1454 subjects in the ezetimib and control groups,
respectively, had first-year measurements; 1236 and 1220 subjects,
respectively, had second-yearmeasurements; and 1000 and 1018 sub-
jects, respectively, had third-year measurements. The mean LDLC
value at each time point and a histogram showing the changes in
follow-up values from baseline are presented in Figure 2 (a) and (b).
The LDLC reduction was about 20 mg/dL greater in the treatment
group than in the control group. Although the LDLC reductions
in both groups had single and almost symmetric modes, the tail of
the side with greater reduction was slightly heavier in the control
group.

For follow-up LDLC values, the following linear mixed-effects
model will be fitted:

𝑦𝑖 𝑗 ∼ Normal(`𝑖 𝑗 , 𝜏2) ,
`𝑖 𝑗 = 𝛽0 + 𝛽1LDLCbase𝑖 + 𝛽2𝑇𝑖 + 𝛽3𝛿2𝑗 + 𝛽4𝛿3𝑗

+𝛽5𝑇𝑖𝛿2𝑗 + 𝛽6𝑇𝑖𝛿3𝑗 + 𝑏𝑖 , (2)
𝑏𝑖 ∼ 𝑔(𝑏𝑖 ) ,

in which 𝑗 = 2, 3, 𝛿𝑘 𝑗 = 1 if 𝑘 = 𝑗 and 𝛿𝑘 𝑗 = 0 if 𝑘 ≠ 𝑗 . Al-
though a normal distribution with a 0 mean is usually fitted for
a random-effects distribution 𝑔, other models will be examined
based on evaluation by gradient functions. For a model that allows
the dependence of random-effects distribution on the treatment
allocation, the following model can also be fitted:

𝑦𝑖 𝑗 ∼ Normal(`𝑖 𝑗 , 𝜎2) ,
`𝑖 𝑗 = 𝛽0 + 𝛽1LDLCbase𝑖 + (𝛽2 + 𝑏1𝑖 − 𝑏0𝑖 )𝑇𝑖 + 𝛽3𝛿2𝑗 + 𝛽4𝛿3𝑗

+𝛽5𝑇𝑖𝛿2𝑗 + 𝛽6𝑇𝑖𝛿3𝑗 + 𝑏0𝑖
= 𝛽0 + 𝛽1LDLCbase𝑖 + 𝛽2𝑇𝑖 + 𝛽3𝛿2𝑗 + 𝛽4𝛿3𝑗

+𝛽5𝑇𝑖𝛿2𝑗 + 𝛽6𝑇𝑖𝛿3𝑗 + 𝑏0𝑖 (1 −𝑇𝑖 ) + 𝑏1𝑖𝑇𝑖 , (3)
𝑏0𝑖 ∼ 𝑔0 (𝑏0𝑖 ) , 𝑏1𝑖 ∼ 𝑔1 (𝑏1𝑖 ) .

Again, the proper model for 𝑔0 and 𝑔1 will be examined based on
evaluation by gradient functions.

2.2.2 Toenail data. The second example involves repeated mea-
surements data from a RCT by De Backer et al. (1996) that compared
two oral treatments for toenail dermatophyte onychomycosis.[6]
These data were also analyzed in Verbeke and Molenberghs (2013)
as an illustration of gradient function use. For comparison with
their results, we use the same subset of data, consisting of at most 7
measurements of the infection severity, categorized as severe or not
severe, from 146 and 148 subjects for each of the two treatments,
respectively. The observed percentages of severe infections during
the follow-up periods are shown in Figure 5 (a).
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For the binary outcome of the severity of toenail infection, the
following logistic mixed-effects model will be fitted:

𝑦𝑖 𝑗 ∼ Bernoulli(𝜋𝑖 𝑗 ) ,
logit(𝜋𝑖 𝑗 ) = 𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑡𝑖 𝑗 + 𝛽3𝑇𝑖𝑡𝑖 𝑗 + 𝑏𝑖 , (4)

𝑏𝑖 ∼ 𝑔(𝑏𝑖 ) ,

where 𝑡𝑖 𝑗 is the time point (in months) at which the 𝑗 th measure-
ment is obtained for the subject 𝑖 . The appropriate model for 𝑔 was
described in Verbeke and Molenberghs (2013), and based on their
discussion, we will start the model with a mixture of three normals
for 𝑔. For the model that allows the dependence of random-effects
distribution on the treatment allocation, the following model can
also be fitted:

𝑦𝑖 𝑗 ∼ Bernoulli(𝜋𝑖 𝑗 ) ,
logit(𝜋𝑖 𝑗 ) = 𝛽0 + (𝛽1 + 𝑏1𝑖 − 𝑏0𝑖 )𝑇𝑖 + 𝛽2𝑡𝑖 𝑗 + 𝛽3𝑇𝑖𝑡𝑖 𝑗 + 𝑏0𝑖

= 𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑡𝑖 𝑗 + 𝛽3𝑇𝑖𝑡𝑖 𝑗

+𝑏0𝑖 (1 −𝑇 ) + 𝑏1𝑖𝑇 , (5)
𝑏0𝑖 ∼ 𝑔0 (𝑏0𝑖 ) , 𝑏1𝑖 ∼ 𝑔1 (𝑏1𝑖 ) .

3 THE GRADIENT FUNCTION METHOD
In this section, we build on the introduction of the gradient function
by Verbeke and Molenberghs (2013) and create an extension for the
case in which 𝐺 depends on the treatment allocation 𝑇𝑖 . First, we
consider the directional derivative Φ of the log-likelihood at𝐺 into
the direction 𝐻 , where Φ expresses the change in log-likelihood
between the cases where the assumed distributions for random
effects are 𝐺 or (1 − 𝛼)𝐺 + 𝛼𝐻 with an infinitesimal weight 𝛼 .

Φ[𝐺,𝐻 ] = lim𝛼→+0
𝑙 [ (1−𝛼)𝐺+𝛼𝐻 ]−𝑙 [𝐺 ]

𝛼

=
𝜕𝑙 [ (1−𝛼)𝐺+𝛼𝐻 ]

𝜕𝛼

�����
𝛼=0

(6)

If we have an estimate 𝐺 and Φ[𝐺,𝐻 ] ≤ 0 for all 𝐻 , no better
random-effects distribution than our parametric fit 𝐺 can be found.
Furthermore, noting that 𝑑{(1 − 𝛼)𝐺 + 𝛼𝐻 } = (1 − 𝛼)𝑑𝐺 + 𝛼𝑑𝐻 ,
we have

1
𝑁
Φ(𝐺,𝐻 ) =

𝜕
∑
𝑖 ln{(1 − 𝛼) 𝑓𝑖 (y𝑖 |𝐺) + 𝛼 𝑓𝑖 (y𝑖 |𝐻 )}

𝜕𝛼

�����
𝛼=0

=
1
𝑁

∑
𝑖

𝑓𝑖 (y𝑖 |𝐻 ) − 𝑓𝑖 (y𝑖 |𝐺)
𝑓𝑖 (y𝑖 |𝐺)

=
1
𝑁

∑
𝑖

𝑓𝑖 (y𝑖 |𝐻 )
𝑓𝑖 (y𝑖 |𝐺)

− 1

=
1
𝑁

∑
𝑖

∫
𝑓𝑖 (y𝑖 |b)𝑑𝐻 (𝑏)
𝑓𝑖 (y𝑖 |𝐺)

− 1

=

∫
1
𝑁

∑
𝑖

𝑓𝑖 (y𝑖 |b)
𝑓𝑖 (y𝑖 |𝐺)

𝑑𝐻 (b) − 1 . (7)

Here, the integrand of (7) is defined as the gradient function Δ.

Δ(𝐺, b) ≡ 1
𝑁

∑
𝑖

𝑓𝑖 (y𝑖 |b)
𝑓𝑖 (y𝑖 |𝐺)

. (8)

In general, the random-effects distribution 𝐻 is allowed to de-
pend on treatment allocation. For example, 𝐻 may be expressed as
𝐻 = 𝐻0 (1 −𝑇𝑖 ) +𝐺𝑇𝑖 and the directional derivative at 𝐺 into this
direction is written as follows,

1
𝑁
Φ(𝐺,𝐻 ) =

∫
1
𝑁

∑
𝑖

𝑓𝑖 (y𝑖 |b)
𝑓𝑖 (y𝑖 |𝐺)

𝑑𝐻 (b) − 1

=

∫
1
𝑁

∑
𝑖

(1 −𝑇𝑖 )
𝑓𝑖 (y𝑖 |b)
𝑓𝑖 (y𝑖 |𝐺)

𝑑𝐻0 (b) −
1
𝑁

∑
𝑖

(1 −𝑇𝑖 )

=
𝑁0
𝑁

{ ∫ 1
𝑁0

∑
𝑇𝑖=0

𝑓𝑖 (y𝑖 |b)
𝑓𝑖 (y𝑖 |𝐺)

𝑑𝐻0 (b) − 1
}

≡ 𝑁0
𝑁

{ ∫
Δ0 (𝐺, b)𝑑𝐻0 (b) − 1

}
, (9)

where 𝑁0 ≡ ∑
𝑖 (1 − 𝑇𝑖 ). Here, Φ(𝐺,𝐻 ) represents the change in

log-likelihood obtained by the infinitesimal change of𝐺 toward 𝐻0,
but only for𝑇𝑖 = 0 subjects; this will be evaluated by comparing Δ0
and 1 following the original gradient function method described
in Verbeke and Molenberghs (2013). Similarly, by considering 𝐻 =

𝐺 (1 −𝑇𝑖 ) + 𝐻1𝑇𝑖 , Δ1 is also obtained as

1
𝑁
Φ(𝐺,𝐻 ) =

∫
1
𝑁

∑
𝑖

𝑓𝑖 (y𝑖 |b)
𝑓𝑖 (y𝑖 |𝐺)

𝑑𝐻 (b) − 1

=

∫
1
𝑁

∑
𝑖

𝑇𝑖
𝑓𝑖 (y𝑖 |b)
𝑓𝑖 (y𝑖 |𝐺)

𝑑𝐻1 (b) −
1
𝑁

∑
𝑖

𝑇𝑖

=
𝑁1
𝑁

{ ∫ 1
𝑁1

∑
𝑇𝑖=1

𝑓𝑖 (y𝑖 |b)
𝑓𝑖 (y𝑖 |𝐺)

𝑑𝐻1 (b) − 1
}

≡ 𝑁1
𝑁

{ ∫
Δ1 (𝐺, b)𝑑𝐻1 (b) − 1

}
, (10)

where 𝑁1 ≡ ∑
𝑖 𝑇𝑖 . Here, Φ(𝐺,𝐻 ) represents the change in log-

likelihood obtained by the infinitesimal change of𝐺 toward𝐻1, but
only for 𝑇𝑖 = 1 subjects; this will be evaluated as described above
for equation (9).

If the areas for b where Δ0 > 1 or Δ1 > 1 are different from
each other, it is suggested that assuming a different random-effects
distribution depending on the treatment allocation will provide
a better fit. This evaluation should be performed in the common
support intervals [bmin, bmax] of Δ0 and Δ1. Using the model (1),
Δ0 (𝐺, b) = Δ0 (𝐺0, b0) and Δ1 (𝐺, b) = Δ1 (𝐺1, b1), which enables
us to search separately for better𝐺0 and𝐺1 following the procedure
based on the original gradient function. This will achieve a better𝐺
overall. The method can easily be extended to the situation where
more than two treatment groups exist.
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Fitting by Model A Scenario 1 Scenario 2
Bias Coverage % Bias Coverage %

Normal
outcome

𝛽1 = 0
𝑛𝑖 = 5 𝑁 = 300 0.00 0.95 0.00 0.94

𝑁 = 1000 0.00 0.95 0.00 0.95

𝑛𝑖 = 20 𝑁 = 300 0.00 0.95 0.00 0.95
𝑁 = 1000 0.00 0.96 0.00 0.96

𝛽1 = 1
𝑛𝑖 = 5 𝑁 = 300 0.00 0.95 0.00 0.95

𝑁 = 1000 0.00 0.95 0.00 0.95

𝑛𝑖 = 20 𝑁 = 300 0.00 0.94 0.00 0.94
𝑁 = 1000 0.00 0.97 0.00 0.95

Binary
outcome

𝛽1 = 0
𝑛𝑖 = 5 𝑁 = 300 0.00 0.96 -0.06 0.93

𝑁 = 1000 0.00 0.95 -0.06 0.89

𝑛𝑖 = 20 𝑁 = 300 0.00 0.95 -0.04 0.92
𝑁 = 1000 0.00 0.95 -0.04 0.90

𝛽1 = 1
𝑛𝑖 = 5 𝑁 = 300 -0.07 0.91 -0.17 0.79

𝑁 = 1000 -0.06 0.87 -0.16 0.48

𝑛𝑖 = 20 𝑁 = 300 -0.04 0.93 -0.12 0.81
𝑁 = 1000 -0.04 0.88 -0.12 0.52

Fitting by Model B Scenario 1 Scenario 2
Bias Coverage % Bias Coverage %

Binary
outcome

𝛽1 = 0
𝑛𝑖 = 5 𝑁 = 300 0.00 0.94 -0.06 0.92

𝑁 = 1000 0.00 0.93 -0.06 0.88

𝑛𝑖 = 20 𝑁 = 300 0.01 0.95 -0.03 0.94
𝑁 = 1000 0.00 0.95 -0.03 0.94

𝛽1 = 1
𝑛𝑖 = 5 𝑁 = 300 0.01 0.95 -0.08 0.90

𝑁 = 1000 0.00 0.95 -0.08 0.83

𝑛𝑖 = 20 𝑁 = 300 0.00 0.94 -0.04 0.92
𝑁 = 1000 0.00 0.94 -0.04 0.90

Table 1: Summary of the performances of treatment effect estimators under Scenarios 1 and 2 by mixed-effects models with
Models A and B.

4 SIMULATION STUDY
4.1 Simulation settings
To understand the behavior and utility of the gradient functions
Δ0 and Δ1 where random-effects distributions differed depending
on treatment allocation, datasets were generated and analyzed
under several basic study settings with repeated measurements.
The normal and binary outcomes were generated from the models
below.

Normal outocomes : 𝑦𝑖 𝑗 ∼ N(`𝑖 𝑗 , 0.52), `𝑖 𝑗 = 𝛽1𝑇𝑖 + 𝑏𝑖
Binary outocomes : 𝑦𝑖 𝑗 ∼ Bernoulli(𝜋𝑖 𝑗 ), logit(𝜋𝑖 𝑗 ) = 𝛽1𝑇𝑖 + 𝑏𝑖

We considered a number of measurements in one subject 𝑛𝑖 of 5
or 20, a total sample size 𝑁 of 300 or 1000, and a treatment effect
𝛽1 of 0 or 1. For both types of outcomes, the treatment allocation𝑇𝑖
for subject 𝑖 was generated from Bernoulli(0.5). For random-effects
in control group 𝑏0𝑖 and treated group 𝑏1𝑖 , the following scenarios

were considered.

All scenarios : 𝑏0𝑖 ∼ N(0, 0.52)
Scenario 0 : 𝑏1𝑖 ∼ N(0, 0.52)
Scenario 1 : 𝑏1𝑖 ∼ N(0, 1)

Scenario 2 : 𝑏1𝑖 ∼
1
2
N(−1, 0.52) + 1

2
N(1, 1)

Under Scenario 2, the random-effects distribution for the treated
group is skewed. Shapes of random-effects distributions in all sce-
narios are shown in the figures of the gradient functions.

The following mixed-effects models were fitted to the simulated
datasets.

Model for normal outocomes : 𝑦𝑖 𝑗 ∼ N(`𝑖 𝑗 , a2),
`𝑖 𝑗 = 𝛽0 + 𝛽1𝑇𝑖 + 𝑏𝑖

Model for binary outocomes : 𝑦𝑖 𝑗 ∼ Bernoulli(𝜋𝑖 𝑗 ),
logit(𝜋𝑖 𝑗 ) = 𝛽0 + 𝛽1𝑇𝑖 + 𝑏𝑖

Model A : 𝑏𝑖 ∼ N(0, 𝜎2)
Model B : 𝑏𝑖 ∼ N(0, (1 −𝑇𝑖 )𝜎20 +𝑇𝑖𝜎

2
1 )

More complicated settings, with fit by random slope models, are
discussed in the supplementary materials.
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Figure 1: Gradient functions Δ0 (blue dashed lines) and Δ1 (red solid lines) with 95% confidence bands from mixed-effects
models with Model A for binary outcomes and the true random-effects distributions for the control (blue dashed lines) and
treated (red solid lines) groups.

4.2 Results of simulation studies
4.2.1 Performances of estimators in mixed-effects models. First, we
investigated the performances of the treatment effect estimators
under Scenarios 1 and 2 by mixed-effects models with Models A
and B. Biases of the estimator and the proportion of 95% confidence
intervals that covered the true value were calculated by averaging
the results from 1000 simulated datasets (Table 1).

In normal outcomes with Model A, ignoring the dependence
of random-effects distributions on treatment allocation did not
produce biases in treatment effect estimates and did not harm the
coverage proportions under both Scenarios 1 and 2. In binary out-
comes with Model A, biased estimates were observed in 𝛽1 = 1
cases under Scenario 1. Under Scenario 2, biased estimates were
observed in both 𝛽1 = 0 and 𝛽1 = 1; the latter had a larger bias.
When fitting by Model B, biases disappeared in Scenario 1, but were

still present in Scenario 2 (the amount of bias was reduced when
𝛽1 = 1).

As described in Verbeke and Molenberghs (2013), the gradient
method is calculated under the assumption that the conditional
distribution 𝑓𝑖 (y𝑖 | b𝑖 ) is correctly specified. Therefore, gradient
functions from mixed-effects models for binary outcomes should
be carefully interpreted due to biases in the estimators.

4.2.2 Gradient functions Δ0 and Δ1. Based on the performance of
treatment effect estimators under Scenarios 1 and 2, we focused
on the setting of 𝛽1 = 1 to assess the behavior of gradient func-
tions. Gradient functions Δ0 and Δ1 frommixed-effects models with
Model A for normal outcomes are plotted in Figure S1 in the sup-
plementary materials. Clear differences between Δ0 and Δ1 were
observed, and the shapes roughly indicated the types of violations of
the assumptions. Gradient functions Δ0 and Δ1 from mixed-effects
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Figure 2: Cholesterol data: (a) The mean value of LDL cholesterol at each time point. (b) Histogram of changes in follow-up
LDLC from baseline LDLC. (c) Gradient function Δ and 95% confidence bands for fitting with (2) and Model 1. (d) Gradient
function Δ and 95% confidence bands for fitting with (2) and Model 2.

models with Model A for binary outcomes are plotted in Figure
1. Again, with biases in the estimators, clear differences between
Δ0 and Δ1 were observed, signaling violations of the assumptions.
Under Scenario 0, where the mixed-effects models with Model A
corresponded to the true models, differences between Δ0 and Δ1
were not observed for either type of outcome. For normal outcomes,
shapes of gradient functions became wavy as 𝑛𝑖 increased, resulting
in clearer differences when 𝑛𝑖 = 5. On the other hand, the degrees
of differences of gradient functions Δ0 and Δ1 became larger as 𝑛𝑖
increased for binary outcomes.

Gradient functions Δ0 and Δ1 from mixed-effects models with
Model B for both types of outcomes are plotted in Figure S2 in the
supplementarymaterials. Under Scenario 1, where themixed-effects
models with Model B corresponded to the true models, no violation
was suggested in either type of outcome. For cases with normal
outcomes, the shapes roughly indicated the types of violations of
model assumptions under Scenario 2, which could suggest that
more complicated models should be fit, e.g., a model with a finite
mixture of normals [20]. For cases with binary outcomes, clear
differences between Δ0 and Δ1 were observed in 𝑛𝑖 = 20 cases
under Scenario 2, but differences were not obvious in 𝑛𝑖 = 5 cases.

To roughly check the variations of gradient functions between
simulated datasets, gradient functions were plotted for three in-
dependent datasets in some settings, as shown in Figure S3 in the
supplementary materials. Under correct model specifications, gradi-
ent functions were plotted near 1 in all three cases. Under incorrect
model specifications, some differences were present between Δ0
and Δ1.

5 REAL DATA EXAMPLES
5.1 Cholesterol data
The cholesterol data were first modeled by equation (2) with

Model 1 : 𝑏𝑖 ∼ N(0, 𝜎2) .

Based on the estimates of equation (2) and Model 1, the gradient
function shown in Figure 2 (c) was obtained. This model suggests
that a more flexible random-effects distribution that allows moving
the probability mass from the region 𝑏 = [−30;−20] toward the
region 𝑏 = [−80;−50] can improve the model in terms of likeli-
hood. Furthermore, in the the region 𝑏 = [80; 100], the value of the
gradient function is quite large and the corresponding pointwise
interval is also very wide, which makes it difficult to interpret the
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Figure 3: Cholesterol data: Results of fitting to dataset without the six subjects with the largest marginal residuals averaged
within subjects. (a) Fitted random-effects distributions based on (2)with Model 1 and Model 2. (b) Gradient function Δ and 95%
confidence bands for fitting with (2) and Model 1. (c) Gradient function Δ and 95% confidence bands for fitting with (2) and
Model 2. (d) Gradient function Δ0 (solid), Δ1 (dashed), and 95% confidence bands for fitting with (2) and Model 2.

gradient function around this area. Thus, as an attempt to improve
the situation, the mixture of two normals was fitted.

Model 2 : 𝑏𝑖 ∼ (1 − 𝑝2) N(`1, 𝜎21 ) + 𝑝2N(`2, 𝜎22 )
with (1 − 𝑝2)`1 + 𝑝2`2 = 0

The finite mixture of normals for the random-effects distribution,
proposed by Verbeke and Lesaffre (1996), offers flexible models
and was also used as an alternative to the normal distribution in
Verbeke and Molenberghs (2013), where the model was fitted by the
method shown in Liu and Yu (2007) using the NLMIXED procedure
in SAS. Based on the estimates of equation (2) and Model 2, the
gradient function shown in Figure 2 (d) was obtained. Although
the value of the gradient function around 𝑏 < −20 moved toward 1,
the value was still quite large in the region 𝑏 = [80; 100].

By carefully investigating each subject’s contribution to the
gradient function, it was found that a very small portion of subjects
had huge influences that dominated the shape around the region𝑏 =

[80; 100]. According to the definition of the gradient function (8),
these subjects exhibited a large gap between 𝑓𝑖 (y𝑖 |b) and 𝑓𝑖 (y𝑖 |𝐺)

in the region 𝑏 = [80; 100]. Two choices were considered in order to
overcome this issue. The first was to use a more flexible model with
three normals to accommodate these influential subjects. This could
alter 𝑓𝑖 (y𝑖 |𝐺) and might decrease the gaps. The second choice was
to exclude these subjects and attempt themodeling for the rest of the
population. However, exclusion based on the influence on gradient
function must be carefully considered, because the interpretation
of each subject’s contribution 𝑓𝑖 (y𝑖 |b)/𝑓𝑖 (y𝑖 |𝐺) is not entirely clear.
In the modeling of cholesterol data with (2) and Model 1 or 2, 6
subjects (0.2% of the whole population, three in the treated group
and three in the control group) were identified as influential subjects
in the right side of gradient function. Furthermore, these subjects
accounted for the top six largest marginal residuals averaged within
subjects in both Models 1 and 2. Based on these facts, these six
subjects were excluded in the following analyses to simplify the
illustration of the methodology.

Equation (2) with Models 1 and 2 were again fitted to the dataset,
this time excluding the aforementioned six subjects. The estimated
random-effects distributions are plotted in Figure 3 (a). These results
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Figure 4: Cholesterol data: Estimated random-effects distributions for 𝑏𝑜𝑖 (solid) and 𝑏1𝑖 (dashed) plotted against 𝑏𝑖 + 𝛽2𝑇𝑖 based
on (3) with Model 4 fitted to the dataset without the six subjects with the largest marginal residuals averaged within subjects.

were used to obtain gradient functions Δ for Models 1 and 2, shown
in Figure 3 (b) and (c), respectively. Figure 3 (c) suggests no evidence
of model improvement from Model 2 based on Δ. Indeed, Model
2 achieved a better fit in terms of −2𝑙 and the Akaike information
criteria (AIC) (Table 1).

Next, the gradient functions Δ0 and Δ1 were investigated given
the estimates of equation (2) andModel 2, and plotted in Figure 3 (d).
According to these plots, the trends of deviation from 1 in Δ0 and Δ1
were totally different in the region 𝑏 = [−100; 10], suggesting that a
better fit will be achieved using the model with dependence on the
random-effects distribution on treatment allocation. Therefore, as
the next candidate, equation (3) with the following random-effects
distribution was adopted to fit,

Model 3 : 𝑏0𝑖 ∼ N(0, 𝜎20 ), 𝑏1𝑖 ∼ N(0, 𝜎21 ) .
The estimated random-effects distributions are plotted in Figure S5
(a) in the supplementary materials. Given the estimates of equation
(3) and Model 3, the gradient functions Δ0 and Δ1 were obtained
and are shown in Figure S5 (b) and (c), respectively, in the sup-
plementary materials. According to Figure S5 (b), a more flexible
random-effects distribution that allowsmoving the probability mass
from the region 𝑏 = [−30;−20] toward the region 𝑏 = [−80;−50]
can improve the model in the control group. On the other hand,
Figure S5 (c) suggests no evidence of model improvement in the
treated group. The fit of Model 3 was not as good as that of Model
2 (Table 1). Therefore, as the next candidate, the following model
was adopted and fitted:

Model 4 : 𝑏0𝑖 ∼ (1 − 𝑝02) N(`01, 𝜎201) + 𝑝02 N(`02, 𝜎202),
𝑏1𝑖 ∼ N(0, 𝜎21 )

with (1 − 𝑝02)`1 + 𝑝02`02 = 0 .

The estimated random-effects distributions are plotted in Figure S5
(d) in the supplementary materials. Given the estimates of equation
(3) and Model 4, the gradient functions Δ0 and Δ1 were obtained
and are shown in Figure S5 (e) and (f), respectively, in the supple-
mentary materials. This time, both Δ0 and Δ1 suggest no evidence
of model improvement in terms of likelihood. Model 4 achieved

Model 1 Model 2 Model 3 Model 4
−2𝑙 17804 17762 17768 17722
AIC 17822 17786 17788 17748

Table 2: Cholesterol data: Summary of model fit.

the best model fit among the models attempted (Table 2). The esti-
mated model parameters were similar among all models and are
summarized in Table S1 in the supplementary materials.

Two population types were thought to exist in the control group
based on the estimated results of Model 4. In detail, around 10%
of the population seemed to show a remarkable reduction in LDL
cholesterol during the follow-up period. This trend persisted even
after excluding subjects who received antidyslipidemic drugs dur-
ing the follow-up period. To properly interpret this observation,
estimated random-effects distributions are plotted against 𝑏𝑖 + 𝛽2𝑇𝑖
in Figure 4. One possible explanation is that a small portion of the
population may have been influenced by the dietary counseling
provided to both groups. This might have contributed to the pres-
ence of the left tails of the distributions, which could have been
masked by treatment effects in the treated group.

5.2 Toenail data
These data were analyzed in Verbeke and Molenberghs (2013), and
the appropriate random effects distribution was fully discussed
based on the gradient function Δ. The population was heteroge-
neous and was divided into three groups, namely no responders,
partial responders, and full responders. As a result, equation (4)
with

Model 5 : 𝑏𝑖 ∼ (1 − 𝑝2 − 𝑝3) N(`1, 𝜎21 ) + 𝑝2N(`2, 𝜎22 ) + 𝑝3N(`3, 𝜎23 )
was adopted. Here, we also used this model to derive the gradient
functions. Given the estimates of equation (4) and Model 5, the
estimated random-effects distribution, the gradient function Δ, and
the gradient functions Δ0 and Δ1 were plotted in Figure 5 (b), (c) and
(d), respectively. Neither Figure 5 (c) nor (d) suggest any evidence
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of model improvement. There seems to be no difference in trends
in Δ0 vs Δ1, suggesting that the model in which the random-effects
distribution is dependent on treatment allocation might not offer a
better model fit.

6 DISCUSSION
We applied the gradient function method for modeling different
random-effects distributions depending on the treatment allocation.
To do this properly, we considered the directional derivative with
the direction depending on treatment allocation, then defined the
gradient functions Δ0 and Δ1, and compared these in their common
support. ThemethodwithΔ0 andΔ1 was illustrated for both normal
and binary outcomes using simulated and real data examples, and
its utility in detecting the violation of assumptions for random-
effects distributions was investigated in random intercept and slope
models.

Scenario 1 for binary outcomes in the simulation study was
also considered in Heagerty and Kurland (2001), and we observed
biases in the treatment effect due to ignoring the dependence of
different random-effects distributions on treatment allocation, as
they calculated. We further observed additional types of biases in
modeling binary outcomes when only one of two treatment groups
had a skewed random-effects distribution, as in Scenario 2 in the
simulation study. In these situations, the gradient function should
be used with caution because the conditional model 𝑓𝑖 (y𝑖 |𝑏𝑖 ) can
be misspecified, and the signals from the gradient function may
not always be interpreted for random-effects distributions. In their
original paper, Verbeke andMolenberghs (2013) suggest that the use
of gradient functions in these situations will be similar in spirit to
residual and influence function plots often used in linear regression
analysis, in which the unknown model parameters are replaced by
their estimates. Based on this spirit, we showed that the existence
of these biases due to ignoring the dependence of different random-
effects distributions on treatment allocation could be detected by
comparing the plots of Δ0 and Δ1, as shown in Figure 1. This led to
a more flexible Model B in the simulation study, and the amount of
bias was reduced in both Scenario 1 and 2. After fitting by Model
B, comparison of the plots of Δ0 and Δ1 still detected the violation
of model assumptions in Scenario 2 for 𝑛𝑖 = 20 cases, but not for
𝑛𝑖 = 5 cases. This might be because signals became more distinct
as 𝑛𝑖 increased in modeling binary outcomes, as shown in Figure 1.

When the amount of biases in model parameters may seem
small, as in the cases of modeling normal outcomes in the simula-
tion study, the signals from gradient functions will be interpreted
more straightforwardly for random-effects distributions. In this sit-
uation, the purpose of plotting gradient functions is to explore the
true distributions. We proposed extending the use of the gradient
function in this context to detect the dependence of random-effects
distributions on treatment allocation, which led to a deeper under-
standing of the nature of random-effects in the cholesterol data
example. One practical note regarding gradient functions in model-
ing normal outcomes is that very small samples that are potentially
not normally distributed can have a huge influence on the gradient
function, as was the case in the cholesterol data. In such cases,
researchers must decide whether to fit a more flexible model to
accommodate the sample near outliers or to exclude them with

reason. This decision should be made regardless of the treatment
allocation before calculating Δ0 and Δ1.

We have several practical notes on the use of the gradient func-
tionmethod described in this paper. First, becauseΔ0 andΔ1 depend
on the reference distribution 𝐺 , it is recommended that the initial
modeling step should be to evaluate the random-effects distribution
for the entire sample using Δ, and then to check the shapes of Δ0
and Δ1. This might make it possible to avoid creating an unnecessar-
ily complex model. Second, as shown in Figure 5 of the toenail data
example, the 95% bands of gradient functions Δ0 and Δ1 were wider
than that of Δ because the calculations of the gradient functions
Δ0 and Δ1 involve dividing the sample population into two parts.
This will be more problematic in cases with much smaller sample
sizes. Under the settings considered in the simulation study, we
observed that a sample size of roughly 𝑁 < 10 could give a gradient
function plot with 95% bands wider than 2 in their support area,
making it practically difficult to evaluate departures from 1 in their
support area (gradient functions are bounded above 0). Therefore,
as a rule of thumb for plotting Δ0 and Δ1, we recommend roughly
20 or more sample size with 1:1 allocation. Third, the evaluation of
Δ0 and Δ1 can be performed for observational data, replacing treat-
ment allocation with exposure status. However, the assumption
that the conditional distribution 𝑓𝑖 (y𝑖 | b𝑖 ) is correctly specified
is often unrealistic in observational study settings. For example, if
the probability of exposure is associated with the random effects,
which in principle is not directly testable, then the basic assumption
in random effects is violated and can produce a biased estimate for
the exposure effect. It is unclear what influence this will have on
Δ, and of course on Δ0 and Δ1. On the other hand, the association
between the probability of exposure and random effects can be
expressed as a random-effects distribution depending on exposure
status. [18] Therefore, interpretations of Δ0 and Δ1 under the con-
ditional distribution with biased estimates might be important so
as to permit insights regarding directly untestable assumptions.
Further research is needed on interpreting the gradient functions
Δ, Δ0 and Δ1 in observational study settings.
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