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Abstract

Functional encryption (FE) is an advanced cryptographic paradigm where we can compute function
values from encrypted data without revealing any additional information on the original data. Inner
product functional encryption (IPFE) is a class of FE that supports inner products as computable
functions. IPFE can be efficiently constructed from well-studied cryptographic tools and thus is
practical, unlike FE for general functions. In this thesis, we improve three essential factors in
practical applications of IPFE, namely, efficiency, functionality, and security.

First, we present an IPFE scheme with the function-hiding property that is more efficient than
previous schemes. The function-hiding property allows us to hide functions that are applied to en-
crypted data from evaluators and is necessary for some applications. Thus, efficiency improvement
is also important for such applications.

Second, we study unboundedness of IPFE. Prior to our work, all IPFE schemes are bounded,
that is, the data size used in the schemes has to be fixed. However, cryptosystems normally handle
data with various sizes, and thus the bounded property is inconvenient. We solved this problem
by introducing unbounded IPFE, in which we can use data with various sizes for encryption and
function evaluations.

Finally, we study tight security of IPFE. In the real world, it is natural that malicious users
obtain many ciphertexts to break cryptosysetems. Tight security theoretically guarantees that the
security of the cryptosystem is independent of the number of ciphertexts that the malicious user
obtains. Thus, tight security is practically important. We present the first tightly secure IPFE
schemes and show that our schemes are compatible with several conversions for IPFE. Via these
conversions, we can also obtain tightly secure IPFE schemes with various extended properties.
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Chapter 1

Background

1.1 Modern Cryptography
Nowadays, companies provide various services on the Internet such as banking, shopping, and
video streaming. Cryptography plays an essential role to protect these services from malicious
users. For instance, when we register our personal information or credit card numbers to service
providers, we encrypt them before sending it to prevent the malicious users from obtaining the
information. When a company provides a service to users, the company authenticates users to
provide the service to only users who have paid for it. Various cryptographic tools such as encryp-
tion, digital signatures, and hash functions are used to securely implement these communications
on the Internet.

Public-Key Encryption. One of such central tools in modern cryptography is public-key en-
cryption (PKE). The idea of PKE was first introduced by Diffie and Hellman [DH76] and the
first instantiation of PKE was proposed by Rivest, Shamir, and Adleman [RSA78]. Public-key en-
cryption enables a sender to securely send a message to a receiver via an insecure communication
channel, where the message can be eavesdropped on, without any preparation between them. In
PKE, the receiver generates two keys (a public key and a secret key) and makes the former public.
The sender can encrypt a message with the public key, and only the owner of the corresponding
secret key can decrypt the encrypted message. Eavesdroppers cannot read the encrypted message
since they do not have the secret key.

How to Define Security. One of the most important issues in cryptography is how to define the
security requirement of cryptosystems. In modern cryptography, we often use game-based security
definitions. The security of many cryptographic primitives such as PKE, digital signatures, hash
functions, and pseudorandom generators are defined by game-based definitions. In a game-based
definition, we consider a game where an adversary modeled as a probabilistic polynomial-time
(PPT) Turing machine tries to break a cryptosystem. Basically, the cryptosystem is said to be
secure if no PPT Turing machines can win the game with meaningful probability.
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Let us give an example of PKE. One standard security requirement for PKE is indistinguisha-
bility under chosen-plaintext attacks (IND-CPA) [GM82], which is defined by the following game.
The adversary is first given a public key and chooses two messages m0 and m1. Then, the adversary
is given a challenge ciphertext of mβ , where β ∈ {0, 1} is chosen uniformly at random. Finally, the
adversary guesses β and wins if the guess is correct. Roughly speaking, the PKE scheme is said
to be IND-CPA secure if, for all PPT adversaries, the probability that the adversary wins is very
close to 1/2.

How to Prove Security. Once the security definition is settled, the remaining thing is to prove
that the PKE scheme satisfies the definition. However, inventing an unconditionally IND-CPA
secure PKE scheme proves P 6= NP [Imp95], which is a fundamental open problem in complexity
theory. To circumvent this difficulty, we typically prove the security of a cryptosystem under
assumptions that some mathematical problems are hard to solve. More precisely, we prove the
existence of a polynomial-time Turing reduction from the hard problem to the problem of breaking
the cryptosystem. If the hardness of the underlying problem is solid, the proof gives a strong
guarantee that breaking the cryptosystem is hard. A notable example is the ElGamal encryption
[ElG85], which is proved to be IND-CPA secure under the assumption that the decisional Diffie-
Hellman (DDH) problem is hard.

Standard Assumptions. Taking the above proof strategy, reliable assumptions must be used,
since the proof is meaningless if the assumption is false. We consider that assumptions that are
well-studied and have experienced the test of time are reliable and “standard”. It is far more
desirable to prove the security of cryptosytems under standard assumptions rather than under ad-
hoc assumptions. There are no rigid definitions for standard assumptions, while cryptographers
roughly agree about which assumptions are standard. For instance, the assumptions that the
factoring, DDH problem [Bon98], and learning with error (LWE) problem [Reg05] are not solvable
in polynomial time are considered as standard.

The matrix decisional Diffie-Hellman (MDDH) assumption [EHK+17], which we use entirely in
this thesis, is also one of standard assumptions. The MDDH assumption is a family of assumptions
and subsumes many specific assumptions. The well-studied standard DDH assumption [Bon98] is
the weakest assumption in the MDDH family and thus all assumptions in the MDDH family are
considered as standard assumptions. The k-Lin and symmetric external Diffie-Hellman (SXDH)
assumptions, which are also used in this thesis, are captured as special cases of the MDDH as-
sumption.

We also briefly mention quantum-safe assumptions. Several number theoretic assumptions,
such as factoring and DDH, are broken by quantum algorithms [Sho97]. Although we do not know
when such practical quantum computers that can break the number theoretic assumptions with
practical parameters will be developed, we have been extensively studying cryptography based
on assumptions that are considered to be solid even under the existence of practical quantum
computers. The LWE assumption is considered to be one of the most hopeful quantum-safe
assumptions, which is based on a well-studied problem in lattices.
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1.2 Functional Encryption
Since the first introduction of PKE and digital signatures [DH76, RSA78], a bunch of more ad-
vanced and generalized cryptographic paradigms have been proposed to solve problems that are
not solvable with such traditional cryptographic tools. One of the main problems in traditional
encryption paradigms is that we cannot utilize encrypted data without decrypting it since the
encrypted data do not leak any information on the original data. Functional encryption (FE) is an
advanced cryptographic paradigm that is expected to solve the unavailability of encrypted data in
traditional encryption paradigms.

Although FE was formally defined in the early 2010s [O’N10,BSW11], PKE has been gradually
generalized until the notion of FE was introduced. We briefly review the history of FE.

Identity-Based Encryption. The first generalized notion of PKE toward FE is identity-based
encryption (IBE), the model of which was introduced by Shamir [Sha84] and achieved by Boneh and
Franklin [BF01] and Cocks [Coc01]. Identity-based encryption enables us to attach an identity to
a ciphertext and a secret key. Basically, there are three types of keys in IBE (and more generalized
notions such as attribute-based encryption and functional encryption, which we explain later),
namely, public key, master secret key, and secret key. A public key is used to encrypt messages
together with identities, a master secret key is used to generate secret keys that are associated with
identities, and a secret key is used to decrypt ciphertexts. A ciphertext for identity i is decryptable
with a secret key for identity i′ if and only if i = i′. A public-key is assumed to be accessible to
all users while a master secret key is assumed to belong to an authority who controls accessibility
to encrypted data by distributing appropriate secret keys to users.

The advantage of IBE is that we can use identities as public keys, which can simplify public-key
management. In IBE system, the user with identity i is given a secret key for identity i from an
authority that has a master secret key. A user who wants to send a message to user i encrypts the
message with identity i. Then, the ciphertext is decryptable by only a user who has a secret key
for i, which is user i.

Attribute-Based Encryption. Attribute-based encryption (ABE), a more generalized notion
of PKE, was introduced by Sahai and Waters [SW05,GPSW06]. Each ABE scheme has a predicate
P : X ×Y → {0, 1}, where X and Y are a ciphertext attribute space and secret-key attribute space,
respectively. In ABE, a ciphertext and a secret key can be associated with any ciphertext attribute
x ∈ X and any secret-key attribute y ∈ Y, respectively, instead of identities. The ciphertext for
x is decryptable with the secret key for y if and only if P(x, y) = 1. For instance, let X be a set
of n-bit binary strings, Y be a set of n-input Boolean formulae, and P(x, f) = f(x) where x ∈ X
and f ∈ Y. Then, an ABE scheme for P allows us to control access with Boolean formulae over
encrypted data [GPSW06].

In addition to Boolean formulae, ABE schemes have been proposed for various computation
models, such as span programs [OSW07], (non-)deterministic finite automata [Wat12, AMY19],
polynomial-size circuits [GVW13], polynomial-time Turing machines [GKP+13]. Note that IBE
can be seen as a subclass of ABE by setting X ,Y as some identity space, and P(x, y) = 1⇔ x = y.
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Predicate encryption (PE) is a similar paradigm to ABE, although it additionally requires that
a ciphertext hides the attached attribute as well as the underlying message [KSW08]. There are
two levels for the attribute-hiding property, namely, weakly attribute-hiding and fully attribute-
hiding. The weakly attribute-hiding property assures that the ciphertext hides its attribute only
when the decryptor does not have a key that can decrypt the ciphertext. Weakly attribute-hiding
PE schemes are constructed for orthogonality of inner products and general circuits from standard
assumptions [OT09,OT10,GVW15].

On the other hand, the fully attribute-hiding property assures that the ciphertext hides its
attribute in any condition. As explained in the next paragraph, fully attribute-hiding PE for pred-
icate P is equivalent to FE for functions f(·) = P(·, y) where y ∈ Y, and it is hard to construct from
standard assumptions. The only fully attribute-hiding PE achieved from standard assumptions is
for orthogonality of inner products [KSW08,OT12a,CGW18].

Functional Encryption. Functional encryption, formally defined in [O’N10, BSW11], is a fur-
ther generalized notion of PKE, which subsumes ABE and PE as a subclass. In an FE scheme
that supports function class F , a public key is used to encrypt messages, a master secret key is
used to generate secret keys that are associated with functions in F , and a secret key for f is used
to compute a function f on encrypted messages by decryption, that is, decryption of a ciphertext
for message m with a secret key associated with a function f reveals f(m) and nothing else.

Observe that we can capture ABE and PE as a subclass of FE by considering that MFE =

MABE×X , whereMFE andMABE are message spaces for the FE and ABE schemes, respectively,
and F consists of functions f :MABE ×X →MABE ∪ {⊥} such that

f(m,x) =

m (P(x, y) = 1)

⊥ (P(x, y) = 0)
.

We can see the equivalence between fully attribute-hiding PE and FE from the above observa-
tion. FE implies fully attribute-hiding PE since attribute x is a part of a message, and decryption
never reveals x. For the opposite direction, a decryptor can learn P (x, y) by interpreting correct
decryption as P (x, y) = 1 and otherwise P (x, y) = 0.

Security Definitions for Functional Encryption. Before reviewing the related works on FE,
we briefly recall security notions on FE since the familiarity to these notions are helpful to follow
the related works. A primal security requirement for FE is the message-hiding property, that is,
ciphertexts need to hide the underlying messages. Other than that, an important security property
required for FE is collusion resistance. Roughly speaking, it requires that an owner of multiple
secret keys cannot compose a new secret key that is “stronger” than the collection of the original
secret keys. That is, no PPT adversaries that possess ciphertext for an unknown message m and
secret keys for f1, . . . , fn can learn information on m more than {fi(m)}1≤i≤n.

This security requirement is defined basically in two ways: the indistinguishability-based def-
inition (similarly to the case of PKE in Section 1.1) and simulation-based definition. Roughly
speaking, the simulation-based definition says that a real ciphertext can be simulated without
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knowing the original message, and the simulated ciphertext is indistinguishable from the real ci-
phertext. More precisely, the definition requires the existence of a PPT algorithm (simulator) that
outputs a simulated ciphertext without taking a message m, where the probability distribution
of the simulated ciphertext is indistinguishable from that of the real ciphertext for m. Since the
simulated ciphertext does not contain the information on m, the simulation-based definition im-
plies that the real ciphertext, which is indistinguishable from the simulated ciphertext, does not
leak any information on m to PPT adversaries. On the other hand, the indistinguishability-based
definition requires that no PPT adversaries can distinguish two ciphertexts of known messages
such as IND-CPA.

Although the simulation-based definition is basically stronger than the indistinguishability-
based definition, it is hard to achieve and impossible for some function classes [BSW11,AGVW13].
Throughout this thesis, we use the indistinguishability-based definition. The security game for
the indistinguishability-based security of FE is defined almost the same as the IND-CPA security
for PKE except that the adversary can query a secret-key oracle on f such that f(m0) = f(m1)

before and after obtaining the challenge ciphertext. The secret key oracle takes f ∈ F and returns
a secret key for f . An FE scheme is said to be adaptively or fully secure if the definition is satisfied
in the above game. Intuitively, this security definition indicates that an adversary that has the
ciphertext for mb and secret keys for f1, . . . , fn can learn f1(mb), . . . , fn(mb) about mb and nothing
else as otherwise the adversary can distinguish the ciphertext for m0 from that for m1. It means
that the ciphertext does not leak any information on mb other than decryption values.

When we find that proving adaptive security is too hard, we sometimes use weaker security
definitions: selective or semi-adaptive security. Roughly speaking, the adversary is allowed to
make a secret-key query only after obtaining the challenge ciphertexts in these security definitions.
However, these definitions are somewhat artificial and less desirable than adaptive security. These
security notions (i.e., selective, semi-adaptive, and adaptive) are similarly defined for simulation-
based security.

Another important security property for FE is the function-hiding property, which requires
that secret keys hide their associated functions as ciphertexts hides the messages. The function-
hiding property is important in some applications of FE, as explained in Section 2.1. Generally, the
function-hiding property is difficult to achieve in the public-key setting, where all users can encrypt
any messages with a public key [BRS13a,BRS13b]. This is because an adversary can encrypt any
messages and examine what kind of function their secret key has by decrypting the ciphertexts. In
other words, an owner of a secret key for some unknown function f can compute f(m) for arbitrary
m, and it leaks information of f . In contrast, the function-hiding property can basically be achieved
in the private-key setting, where encryption needs some secret information [AAB+15,BS15].

Related Works on Functional Encryption. Functional encryption can be basically classified
into two categories with respect to its function class.

General functionalities: This category consists of FE schemes for general circuits or Turing ma-
chines. Although they are powerful enough to handle all functions computable in polynomial
time, known schemes are built on quite heavy cryptographic primitives and not practical at
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all.

Specific functionalities: The second category covers FE schemes for specific functions such as
inner products and quadratic functions. They are aimed at obtaining more practical features
i.e., efficiency and concrete security, while sacrificing the generality. Therefore, most of them
have simple constructions, and their security is based on standard assumptions.

We give the background on the first category in the rest of this section and defer presenting
the background on the second category to Section 2.1.

Early works of FE mostly studied the feasibility of simulation-based security for FE. Beneh et
al. showed that simulation-based security is unachievable even for a family of ABE in the adaptive
and many-ciphertexts setting [BSW11]. The many-ciphertext setting is a model where an adversary
can obtain many ciphertexts. Agrawal et al. gave another result for impossibility on simulation-
based security, that is, FE for a function family implying weak pseudorandom functions basically
cannot achieve simulation-based security [AGVW13].

The first breakthrough in FE was brought by Garg et al. [GGH+13], who proposed the first
candidate of FE for all circuits. This is a quite strong result since the function class for circuits is the
most general class of computation, which enables us to handle all functions that are computable
in polynomial time. In their work, they constructed the first candidate of indistinguishability
obfuscation (iO) for all circuits and then show that FE for all circuits is constructible from iO.

Indistinguishable obfuscation is also a very interesting and important cryptographic object.
The notion of iO has been known since 2001 [BGI+01], but the first candidate was not proposed
more than a decade. Roughly speaking, iO is an algorithm for obfuscating a program, or in other
words, converting a program into a black box. That is, an obfuscated program has the same input-
output behavior as the original program while the “code” of the original program is not revealed
from the obfuscated program.

Since the security of the FE scheme by Garg et al. is proven in the selective-security model,
cryptographers made a significant effort to construct an adaptively secure FE scheme for general
circuits. Boyle et al. constructed adaptively secure FE from differing-input obfuscation (diO),
which is a stronger variant of iO [BCP14]. Waters and Garg et al. constructed ones from iO and
multi-linear maps, respectively [Wat15, GGHZ16]. Ananth et al. presented a generic method of
constructing an adaptively secure FE from a selective one [ABSV15].

Multi-input functional encryption (MIFE) is a natural extension of FE, which can handle a
function class that takes multiple inputs. Roughly speaking, an owner of a secret key for f can
learn the computation result f(m1, . . . ,mµ) from ciphertexts of messages m1, . . . ,mµ for some
natural number µ ≥ 1. Note that MIFE corresponds to FE when µ = 1. Multi-input functional
encryption is first defined by Goldwasser et al. [GGG+14]. They also constructed MIFE schemes
for all circuits from iO, diO, and virtual black-box obfuscation (VBB). Note that VBB is similar
to iO but has a stronger security property. In their schemes, the number of inputs is a priori fixed.
Later, Badrinarayanan et al. proposed unbounded input MI-FE that supports the computation of
functions with unbounded arity [BGJS15].

Functional encryption for Turing machines is another interesting research topic that has been
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widely studied [BCP14,IPS15,AS16]. Since the complexity class captured by circuits, i.e., P/poly,
are larger than that captured by Turing machines, i.e., P, one may wonder what the purpose of
considering FE for Turing machines is. A crucial fact is that P/poly consists of problems efficiently
solved by a family of circuits whereas P consists of problems efficiently solved by a Turing machine.
In FE for circuits, secret keys are associated with a circuit (not a family of circuits) and thus the
input length or plaintext size is fixed. On the other hand, in FE for Turing machines, secret keys
are associated with a Turing machine and thus the plaintext size is arbitrary. Hence, they are
incompatible in the context of FE. Boyle et al. and Ishai et al. constructed FE for Turing machines
from diO [BCP14, IPS15], and Ananth and Sahai constructed one from iO [AS16].

The relationship between iO and FE or relations among various types of FE has recently
become one of main topics in FE. These works are important to figure out what kind of FE is
sufficient to construct iO or full-fledged FE, since constructing iO and full-fledged FE from standard
assumptions is a very important open problem in recent cryptology. That is, if an easy-to-construct
FE implies iO or full-fledged FE, the problem of constructing them from standard assumptions is
reduced to the problem of constructing the easy FE.

Before moving onto specific works, we introduce two notions on FE. The first is single-key
vs. many-key. Single-key FE is IND-CPA secure only when the adversary obtain at most one
secret key via a secret-key query, while many-key FE is IND-CPA secure even if the adversary can
make an arbitrary number of secret-key queries. The second is succinctness (which is also called
compactness). FE is called succinct/sub-linearly succinct if its encryption time depends on the
maximum circuit size for key generation logarithmically/sub-linearly.

In this paragraph, FE refers to public-key FE for circuits unless otherwise specified. Ananth
et al. and Bitansky et al. showed that many-key non-succinct FE implies many-key succinct FE
[AJS15, BV15]. Ananth et al. and Bitansky et al. showed that single-key sub-linearly succinct
FE implies iO with sub-exponential security loss [AJ15, BV15]. Li et al. and Garg et al. showed
that single-key sub-linearly succinct FE implies many-key sub-linearly succinct FE [LM16,GS16].
These three implications are for selectively secure FE. Kitagawa et al. showed that selectively
secure singe-key sub-linearly succinct FE implies full-fledged FE, namely, adaptively secure many-
key succinct FE [KNTY19]. Kitagawa et al. showed private-key many-key non-succinct FE also
implies iO [KNT18].

Inner Product Functional Encryption. Inner product functional encryption (IPFE), the
subject of this thesis, is FE that supports inner products as a function class. In an IPFE scheme,
a message to be encrypted is a vector, and a function to be associated with a secret key is also
specified by a vector. Decryption of the ciphertext for x with the secret key for y reveals the inner
product 〈x,y〉 and nothing else. Inner product functional encryption allows us to encrypt, for
instance, a numerical database to store it in an untrusted server (adversary) and compute linear
functions such as weighted means over the encrypted database without revealing any additional
information to the server. We present the background on IPFE in Chapter 2.

We also consider MIFE for inner products in this thesis, which is called multi-input inner prod-
uct functional encryption (MIPFE). In an MIPFE scheme, a secret key sky1,...,yµ

is associated with
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vectors y1, . . . ,yµ, and decrypting ciphertexts ctx1
, . . . , ctxµ

of vectors x1, . . . ,xµ with sky1,...,yµ

reveals the summation of the inner products
∑

i∈[µ]〈xi,yi〉. When µ = 1, this corresponds to an
IPFE scheme.

10



Chapter 2

Inner Product Functional
Encryption

2.1 Inner Product Functional Encryption: Survey
Functional encryption is a useful tool to delegate computation to untrusted servers since it allows
the servers to compute functions over encrypted data. Consider an example case where a user, say
Alice, who has only a powerless computer wants to perform a computationally heavy analysis on
her data, which is intractable for her computer. A possible solution is to delegate the computation
to a powerful cloud server. However, the solution will not work if she is unwilling to reveal her
entire data to the untrusted server since it contains sensitive information (in this scenario, the
adversary is the server). Functional encryption solves this problem, that is, she can encrypt the
data before sending it to the server so that the server cannot read the data. When she needs
analysis results for her data, she sends a secret key whose function corresponds to the analysis to
the server. The server can compute the analysis results by decrypting the encrypted data by the
secret key, while the security of FE guarantees that the server does not obtain any information on
her data other than the analysis result. Note that if the algorithm of the analysis also contains
sensitive information, the function-hiding property is necessary. This is because the property
guarantees that the secret key does not reveal the information of the corresponding function.

Although ABE is a subclass of FE, it only provides cryptographic access control for entire
data. In contrast to more general FE, ABE does not enable us to obtain processed information
from encrypted data. Thus, ABE cannot be used for delegation of computation to cloud servers
like the above scenario. The first such an FE scheme to be achieved was one for general circuits
[GGH+13], which uses indistinguishability obfuscation (iO) as a building block. Later, FE for
general circuits was also instantiated from multi-linear maps [BLR+15,GGHZ16]. Indistinguishable
obfuscation and multi-linear maps are quite strong tools whereas known candidates are quite
heavy to implement and have not been well-studied yet. In fact, many candidates were broken,
e.g., [CHL+15,CGH+15].
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Inner Product Functional Encryption. Motivated by the impracticality of FE for general
circuits, Abdalla et al. proposed the first simple FE scheme for inner products aiming for an
efficient FE scheme based on standard assumptions [ABDP15]. They constructed two selectively
secure IPFE schemes, one is based on the DDH assumption and the other is based on the LWE
assumption. The inner product is less powerful than general circuits, but it is a still a useful
function and can be used in statistical computation, biometrics, and so on [ABDP15, KLM+18].
This is a reason that Abdalla et al. focused on inner products.

As mentioned in Section 1.2, however, the selective security model is less desirable than the
adaptive security model. Agrawal et al. proposed adaptively secure IPFE schemes based on the
DDH, LWE, and decisional composite residuosity (DCR) assumptions [ALS16], which improved
the security of IPFE schemes. Besides adaptive security, constructing the first IPFE scheme based
on the DCR assumptions is another significant contribution of their work. The salient feature of
the DCR-based IPFE scheme is that it can handle inner products for modulo p since it uses a group
where the discrete logarithm problem is easy. It is in contrast to the DDH-based IPFE scheme,
which uses a group where the discrete logarithm problem is hard. Castagnos et al. constructed a
more efficient and adaptively secure IPFE scheme for modulo p based on a class group [CLT18].
Their scheme is similar to the DCR-based IPFE scheme, that is, it also leverages a group where
the discrete logarithm problem is easy, which is induced by a class group.

The security against chosen-ciphertext attack [RS92] for IPFE was studied in [BBL17]. An
encryption scheme satisfies indistinguishability under the chosen ciphertext attack (IND-CCA) if
the adversary cannot distinguish two ciphertexts even if it has an access to a decryption oracle.
Thus, IND-CCA is stronger than IND-CPA. IND-CCA security is considered as a de facto standard
in practice, since there are practical attacks not captured by the IND-CPA model [Ble98].

Simulation-based security for IPFE has been considered in [Wee17, AGRW17, ALMT20]. As
mentioned in Section 1.2, simulation-based security is impossible to achieve for some function
classes. However, inner product is a simple function and not applicable to the impossibility.
Wee and Agrawal et al. the authors proposed selective or semi-adaptive IPFE schemes based on
DDH [Wee17, AGRW17]. Later, Agrawal et al. proposed several adaptively secure IPFE schemes
based on DDH, LWE, and DCR [ALMT20].

Unboundedness is a well-studied and important notion in the area of ABE, and Tomida
and Takashima defined and realized unbounded IPFE [TT18]. Concurrently, Dufour Sans and
Pointcheval also presented unbounded IPFE schemes [DP19]. In Section 2.2.2, we describe the
background on unboundedness in detail. Tight security is another important notion for crypto-
graphic schemes and has been extensively studied. Tomida proposed the first IPFE schemes with
tight security in [Tom19]. In Section 2.2.3, we elaborate on the background on tight security.

Multi-Input Inner Product Functional Encryption. Analogous to IPFE, we could natu-
rally consider whether we can efficiently construct MIFE for inner products. Abdalla et al. answered
this question and extended IPFE to the multi-input setting and constructed an MIPFE scheme
from pairings [AGRW17]. A pairing (in the context of cryptography) is an efficiently computable
bilinear map from two points of an elliptic curve to a finite field where some mathematical problem
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is hard. They found that MIPFE is trivially constructible from IPFE in the public-key setting,
where all users can encrypt messages with public-keys. In contrast, MIPFE in the private-key
setting is non-trivial, where only users who have a maser secret key can encrypt messages.

Later, Abdalla et al. constructed MIPFE schemes based on DDH, LWE, and DCR [ACF+18].
Technically, they proposed a generic transformation from IPFE to MIPFE. Since IPFE is con-
structed from DDH, LWE, and DCR, the transformation gives the corresponding MIPFE schemes
based on these assumptions. Especially, IPFE is constructible without pairings [ABDP15,ALS16],
and thus their MIPFE scheme based on DDH does not use pairings. Group operations in pairing-
free groups is much faster than those in pairing-friendly groups. Thus, the construction without
pairings is far more efficient than the previous construction from pairings.

Multi-Client Inner Product Functional Encryption. Multi-input functional encryption
(MIFE) is useful when a user computes function values from encrypted data derived from multiple
owners. In some cases, however, MIFE leaks too much information to the evaluator. Let us
consider the following example. Suppose a user U is allowed to analyze data DA,1 and DB owned
by owners A and B, respectively, by aggregating these data. Since A and B are not willing to
reveal all data to U , they use MIFE for the analysis. Later, U is allowed to analyze data DA,2

and DC owned by owners A and C, respectively, where DA,2 is different from DA,1. The problem
is that U , who has already obtained the ciphertext for DA,1, can use DA,1 for the latter analysis,
since MIFE schemes allow such decryption, while A may not assume that U make an analysis
with DA,1 and DC . To eliminate this inconvenience, the notion, multi-client functional encryption
(MCFE) was introduced [GGG+14].

In an MCFE scheme, each ciphertext is associated with a label, and decryption is possible only
when all ciphertexts to be decrypted have the same label. Thus, possible decryption patterns can
be controlled by labels. MCFE subsumes MIFE because MCFE with one label is the same as
MIFE.

Multi-client functional encryption for inner product was first proposed in [CDG+18]. They also
proposed decentralized MCFE, in which the key generation process is done by not an authority but
each encryptor. In this work, they used the random oracle model and one-label restriction. The
random oracle model assumes the existence of an oracle that returns a random outputs for each
input, which does not exist in the real world. One-label restriction prohibits an adversary from
obtaining more than one ciphertext per label, which is an unnatural model. Thus, it is desirable
to construct schemes without using these factors.

The random oracle model was removed in [ABKW19], although the ciphertext size is bigger
than the previous scheme. The one-label restriction was removed in [ABG19], and they additionally
proposed a generic transformation from IPFE to MCFE for inner products. Thus, they obtained
MCFE schemes for inner products from DDH, LWE, and DCR. Independently, Libert and Titiu
also proposed an MCFE scheme for inner products from LWE via another technique [LT19].

Function-Hiding Inner Product Functional Encryption. The function-hiding property is
first considered for FE for general functions [BS15]. Later, Bishop et al. studied efficient con-
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structions of the function-hiding IPFE [BJK15], since the function-hiding FE scheme for general
functions is also inefficient. Specifically, they proposed an efficient IPFE scheme that satisfied
weakly function-hiding property, which imposes unnatural restriction on an adversary in the secu-
rity game.

Datta et al. first removed the restriction and constructed fully function-hiding property. How-
ever, their scheme is less efficient than that by Bishop et al. This is due to their security proof
technique, which requires large ciphertexts and secret keys. Tomida et al. improved the scheme
by Datta et al. and proposed a fully function-hiding IPFE scheme that is as efficient as that by
Bishop et al. [TAO16]. This contribution is explained in Section 2.2.1. Lin also constructed a
fully function-hiding IPFE scheme that is as efficient as that by Bishop et al. via a different tech-
nique from ours [Lin17]. Her scheme is based on the double layered construction [Lin17], while
the previous three schemes including ours are based on the dual pairing vector spaces (DPVS)
framework by Okamoto and Takashima [OT10]. The most efficient function-hiding scheme is pro-
posed in [KLM+18], which is based on the generic group model. The generic group model is a
model where we can use an idealized cyclic group and thus the security proof is basically easy. On
the other hand, the security guarantee given in the generic group model is weaker than that in
the standard model. They also gave several applications of function-hiding IPFE to, for example,
biometrics and its benchmarks of their implementations.

The function-hiding property for MIPFE is also achieved by Datta et al. and Abdalla et
al. [DOT18, ACF+18]. Intuitively, the MIPFE scheme by Datta et al. can be seen as extend-
ing of the IPFE scheme by Tomida et al. [TAO16], and the MIPFE scheme by Abdalla et al. can
be seen as extending of the IPFE scheme by Lin [Lin17].

Functional Encryption for Quadratic Functions. Functional encryption for inner products
is equivalent to FE for linear functions, since the elements of a secret-key vector can be seen as
coefficients of the linear function. Efficient FE for quadratic functions from standard assumptions
is constructed from pairings by Baltico et al. [BCFG17]. Perceptive readers may think that IPFE
can compute quadratic functions by encrypting all quadratic terms in advance, and this idea is
correct. The important feature of FE for quadratic functions is that the ciphertext is compact,
meaning that the size is linear in the number of elements to be encrypted. They proposed two
schemes. One is selectively secure in the indistinguishability-based security definition and based
on standard assumptions. The other is adaptively secure in the indistinguishability-based security
definition, and its security relies on the generic group model.

Later, Gay proposed FE for quadratic functions with stronger security [Gay20]. That is, his
scheme is semi-adaptively secure in the simulation-based security definition. The semi-adaptive
security is similar but stronger than the selective security

Machine learning has recently become a major subject in computer science, and the demand fro
its commercial use is drastically increasing. For privacy reasons, it is desirable for us to be able to
use classifiers to encrypted data in many cases. Functional encryption is expected to be an useful
tool for such a purpose. Since a classifier can be seen as a function, we can classify encrypted
data by a secret key for a classifier without revealing other information on the underlying data.
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Ryffel et al. proposed an application of FE for quadratic functions to partially hide original data
in prediction [RPB+19].

2.2 Contributions
In this section, we present an overview of our contributions in the progress of IPFE.

2.2.1 Efficient Function-Hiding Inner Product Functional Encryption

In [TAO20], which is majorly revised from the conference version [TAO16], we propose an efficient
function-hiding IPFE scheme. We present this contribution in Chapter 4.

Prior to our work, Bishop et al. took the first step toward a private-key IPFE scheme with
the function-hiding property [BJK15]. However, their security definition for the function-hiding
property was somewhat unnatural, which is currently called weakly function-hiding. For private-
key IPFE, function-hiding security considers an adversary that interacts with an encryption oracle
Encb and a key generation oracle KeyGenb, where b is randomly chosen from {0, 1}. The adversary
can query the encryption oracle on a pair of messages (x0

` ,x
1
`) and obtain a ciphertext for xb

`. It
can also obtain a secret key for yb

j from the key generation oracle similarly. Here, ` and j refer to
the indices of queries to the encryption oracle and key generation oracle, respectively. To make the
game meaningful where the adversary’s goal is to guess b, the minimum restriction for the adversary
is 〈x0

` ,y
0
j 〉 = 〈x1

` ,y
1
j 〉 for all ` and j, as otherwise the adversary can trivially determine b. After

the query phase, if no PPT adversaries can guess b with non-negligible advantage, we say that the
private-key IPFE scheme is fully function-hiding. On the other hand, the weakly function-hiding
security requires the restriction for the adversary to be 〈x0

` ,y
0
j 〉 = 〈x1

` ,y
0
j 〉 = 〈x0

` ,y
1
j 〉 = 〈x1

` ,y
1
j 〉.

How this additional restriction affects security is unclear. Later, Datta et al. constructed a fully
function-hiding IPFE scheme, which satisfies a natural security definition [DDM16]. We construct
a more efficient private-key IPFE scheme with the fully function-hiding from a weaker assumption
than those by Datta et al. Note that the weaker assumption the better since it provides a stronger
security guarantee.

Assumption. The schemes in [BJK15,DDM16] are secure under the symmetric external Diffie-
Hellman (SXDH) assumption, while our scheme is secure under the k-linear (k-Lin) assumption.
It is well known that the k-Lin assumption for k = 1 corresponds to the SXDH assumption and
becomes weak as k increases [EHK+17]. Hence, the security of our scheme is based on the weaker
assumption than that used in [BJK15,DDM16], considering the case where k > 1. We also mention
the XDLIN assumption, which is used in the conference version [TAO16]. The XDLIN assumption
is a variant of the DLIN assumption and implied by it. Since the DLIN assumption corresponds to
the k-Lin assumption for k = 2, the k-Lin assumption is also weaker than the XDLIN assumption
for k > 1.

Efficiency. Before discussing the efficiency, we recall techniques used in private-key IPFE schemes.
The schemes in [BJK15, DDM16] and our scheme are all based on the dual pairing vector spaces
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Table 2.1: Comparison of private-key IPFE schemes. A natural number m is a vector length,
msk size refers to a number of Zp elements, and sk size and ct size refer to numbers of G1 and
G2 elements, respectively, #Exponentiation refers to the number of exponentiations in encryption
and key generation, and #Paring refers to the number of pairings in decryption. When k = 1, the
k-Lin assumption is identical to the SXDH assumption.

BJK15 [BJK15] DDM16 [DDM16] Our Scheme

Function-hiding weak full full
msk size 8m2 + 8 8m2 + 12m+ 28 4m2 + (8k + 2)m+ 2k(2k + 1)

ct, sk size 2m+ 2 4m+ 8 2m+ 2k + 1

#Exponentiation 2m+ 2 4m+ 8 2m+ 2k + 1

#Paring 2m+ 2 4m+ 8 2m+ 2k + 1

Assumptions SXDH SXDH k-Lin

(DPVS) framework introduced by Okamoto and Takashima [OT09,OT10], and they have the same
structure. That is, a master secret key is orthonormal bases of DPVS, secret keys and ciphertexts
are vectors of DPVS, both key generation algorithm and encryption algorithms involve exponen-
tiation, and a decryption algorithm involves pairing operations in bilinear groups. Our scheme
is superior to the scheme by Datta et al. with a constant factor 2 in terms of both space and
computational efficiency, assuming k � n (Table 2.1).

2.2.2 Unbounded Inner Product Functional Encryption

In [TT20], the conference version of which is [TT18], we propose the first unbounded IPFE schemes.
We present this contribution in Chapter 5. The motivation of this work is that all IPFE schemes
prior to this work have one inconvenient property: they are bounded. That is, we need to fix
the maximum length of vectors to be handled in the scheme at the beginning. After fixing the
maximum length, we cannot handle vectors whose lengths exceed it. This is very inconvenient
because it is almost impossible in the setup phase to predict which data will be encrypted. One
may think that we can solve the problem by setting the maximum length to a quite large value.
However, the size of a public parameter of bounded schemes expands at least linearly with the fixed
maximum length, and such a solution incurs an unnecessary efficiency loss. Hence, it is desirable
that we do not need to declare the maximum length of vectors to be handled in the scheme at the
beginning and can make encryption or key generation for vectors with unbounded lengths. In the
context of inner product encryption (IPE) [KSW08] and attribute-based encryption [GPSW06],
there exist unbounded schemes [LW11,OT12b,BV16,CGKW18], whose public parameters do not
impose a limit on the maximum length of vectors or number of attributes used in the scheme.
Thus, we naturally have the following question:

Can we construct IPFE schemes that can handle vectors with unbounded lengths?
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Table 2.2: Comparison among private-key schemes that are fully function-hiding and public-key
schemes with adaptive security in the standard model. The schemes refer to DDM16 [DDM16],
TAO16 [TAO16], KKS17 [KKS17], and ALS16 [ALS16]. Although Lin also presented a construction
of function-hiding scheme [Lin17], her scheme is the selective secure one and we do not adopt it
here. A natural number m ∈ N denotes a length of a vector associated with the ciphertext or secret
key. In our schemes, α denotes a bit length that is necessary to specify an index set associated
with a vector. In the ALS16 scheme, β denotes a bit length that is necessary to specify a vector
to be embed into a secret key. In this table, we omit a group description in a public key.

private-key scheme
scheme |msk| |ct| |sk| pairing assump.
DDM16 (8m2 + 12m+ 28)|Zp| (4m+ 8)|G1| (4m+ 8)|G2| Yes SXDH
TAO16 (4m2 + 18m+ 20)|Zp| (2m+ 5)|G1| (2m+ 5)|G2| Yes XDLIN
KKS17 (6m+ 8)|Zp| (2m+ 8)|G1| (2m+ 8)|G2| Yes SXDH
Ours 1 |PRF key| 4m|G1| 4m|G2|+ α Yes SXDH

public-key scheme
scheme |pk| |msk| |ct| |sk| pairing assump.
ALS16 (m+ 1)|G| 2m|Zp| (m+ 2)|G| 2|Zp|+ β No DDH
Ours 2 28|G1| 28|Zp| 7m|G1| 7m|G2|+ α Yes SXDH

Our contributions. We answer the question affirmatively. More precisely, we construct two
concrete unbounded IPFE (UIPFE) schemes on the basis of the standard SXDH assumption that
are both secure in the standard model.

1. The first scheme is private-key IPFE with the fully function-hiding property, which is the
strongest indistinguishability-based security notion when considering function privacy [DDM16].

2. The second scheme is public-key IPFE with adaptive security, which is a standard and
desirable indistinguishability-based security notion [ALS16].

Table 2.2 compares efficiency among private-key schemes that are fully function-hiding and
public-key schemes with adaptive security in the standard model. Both our schemes achieve
almost the same efficiency as the previous bounded fully function-hiding IPFE schemes except
the small constant factor. Note that previous public-key based schemes do not need pairing when
instantiated from a cyclic group [ABDP15, ALS16]. However, we do not know how to construct
unbounded public-key based IPFE schemes without pairing.

In UIPFE schemes, we can consider various conditions about encryption, key generation, and
decryption. It is another important merit of UIPFE. For encryption and key generation, we can
consider two cases, consecutive and separate. In the consecutive setting, each element of a vector is
automatically indexed to its position when the vector is input to an encryption or key generation
algorithm, i.e., for a vector (a, b, c), a’s index is set to 1, b’s index to 2, and c’s index to 3. On the
other hand, in the separate setting, an index set is attached to a vector and encryption and key
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generation are executed correspondingly to its index set. In other words, a vector (a, b, c) is indexed
by some set, e.g., {1, 5, 6}, and the indices of a, b and c are set to 1,5, and 6, respectively. A separate
scheme obviously implies a consecutive scheme with respect to encryption or key generation. Next,
we focus on the conditions of decryption. Similar to [OT12b], we can classify the decryptable
condition of IPFE schemes into three types: ct-dominant, sk-dominant, and equal. Let Sct be an
index set of a ciphertext ct and Ssk be an index set of a secret key sk. Then ct is decryptable
with sk iff Sct ⊇ Ssk in ct-dominant schemes, Sct ⊆ Ssk in sk-dominant schemes, and Sct = Ssk in
equal schemes. We denote the type of the schemes described above as (E:xx, K:yy, D:zz) where xx,
yy ∈ {con, sep}, and zz ∈ {ct-dom, sk-dom, eq}, which means that encryption is xx setting, key
generation is yy setting, and decryption is zz setting. It is not difficult to observe that the setting
(E:sep, K:con, D:ct-dom) is meaningless because only the consecutive part of separate ciphertexts
can be decrypted with any consecutive secret key. For example, for a ciphertext with an index set
{1, 2, 4}, the element indexed as 4 is never used for decryption in the K:con setting. Hence, it is
the same as the (E:con, K:con, D:ct-dom) setting. Similarly, (E:con, K:sep, D:sk-dom), (E:con,
K:sep, D:eq), and (E:sep, K:con, D:eq) are also meaningless. Thus, we can consider eight types of
UIPFE schemes.

In this paper, we focus on the D:ct-dom setting because we believe it is the most convenient
for real applications. Consider the situation where Alice holds a huge encrypted database in an
untrusted server. When she wants the server to make some computation over the database, she can
obtain the result by sending a corresponding secret key to the server. If the necessary part of the
database for the computation is very small, the D:ct-dom setting allows Alice to issue a compact
secret key. This is because the size of a secret key of IPFE schemes typically grows linearly to the
length of the corresponding vector. In the other settings, Alice needs to issue a secret key that
is at least larger than some constant multiple of the size of the database, and this incurs a big
efficiency loss.

Both our schemes are the (E:con, K:sep, D:ct-dom) setting, which implies (E:con, K:con, D:ct-
dom). Some readers may wonder why we do not consider the most general setting of D:ct-dom,
(E:sep, K:sep, D:ct-dom), which implies all D:ct-dom schemes. The reason is we can prove the
security of our schemes against adaptive adversaries only in the (E:con, K:sep, D:ct-dom) setting.
The intuitive reason for this limitation is that, in security proofs, reduction algorithms need to
guess the contents of an index set with which an adversary queries an encryption oracle. This is
possible in the E:con setting because the length of vectors queried by an adversary is a polynomial
and a reduction algorithm can correctly guess the length with a non-negligible probability. In
the E:sep setting, however, the possibility of index sets is exponential and is unpredictable for
reduction algorithms. For this reason, our schemes are secure against selective adversaries in the
(E:sep, K:sep, D:ct-dom) setting. In particular, our public-key scheme is semi-adaptively secure in
the (E:sep, K:sep, D:ct-dom) setting, which means that the adversary declares a challenge message
right after obtaining a public key in a security game [CW14]. Note that the fully function-hiding
private-key IPFE scheme in the (E:sep, K:con, D:sk-dom) setting is trivial with our scheme because
the roles of ciphertexts and secret keys are the same in fully function-hiding private-key IPFE. In
addition, the fully function-hiding private-key IPFE in the (E:sep, K:sep, D:eq) setting is easily
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Table 2.3: Summary of our result. The asterisk indicates that the scheme is not explicitly demon-
strated in this paper, but trivially implied by our result. A symbol ⊥ indicates that the scheme is
meaningless.

private-key scheme
E:con, K:con E:sep, K:con E:con, K:sep E:sep, K:sep

D:ct-dom full∗ ⊥ full (Sec.5.2.1) selective (Sec.5.2.3)
D:sk-dom full∗ full∗ ⊥ selective∗

D:eq full∗ ⊥ ⊥ full (Sec.5.2.4)

public-key scheme
E:con, K:con E:sep, K:con E:con, K:sep E:sep, K:sep

D:ct-dom adaptive∗ ⊥ adaptive (Sec.5.3.1) semi-adaptive (Sec.5.3.4)
D:sk-dom open open ⊥ open
D:eq open ⊥ ⊥ open

constructible. We summarize our result in Table 2.3.

Concurrent Work. Concurrently with our work [TT18], Dufour Sans and Pointcheval also
presented UIPFE schemes [DP19]. In our terminology, they proposed public-key (E:sep, K:sep,
D:eq) and (E:sep, K:sep, D:ct-dom) schemes in their paper. Their schemes have short secret keys,
meaning that they contain one group element and a corresponding vector. However, their schemes
rely on the random oracle model and achieve only the selective security, and their (E:sep, K:sep,
D:ct-dom) scheme also relies on a new interactive assumption. More precisely, they assume that a
kind of problem is hard for all PPT adversaries even if they are allowed to access some oracles. In
addition, their (E:sep, K:sep, D:ct-dom) scheme does not have collusion resistance of illegitimate
secret keys, which means that a combination of illegitimate keys can become a legitimate key.

2.2.3 Tightly Secure Inner Product Functional Encryption

In [Tom20], the conference version of which is [Tom19], we study tight security of IPFE and
propose the first tightly secure IPFE scheme including function-hiding and multi-input schemes.
We present this contribution in Chapter 6.

Tight security. As explained in Chapter 1, when we try to prove the security of a cryptographic
scheme, we typically construct a reduction algorithm that solves a problem assumed to be hard by
utilizing a PPT adversary that breaks the security of the scheme. Then, breaking the security of
the scheme immediately implies solving the hard problem. It is both theoretically and practically
important to evaluate how difficult breaking the scheme is compared with solving the problem.
More formally, when the reduction algorithm equipped with an adversary that breaks the scheme
with probability ε in time t solves the underlying problem with probability ε/L in roughly the same
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time t, it is important to evaluate the security loss L. This is because if we require the scheme
to have (t, ε)-security, which means that no probabilistic algorithms can break the scheme with
probability more than ε within t steps, we need the assumption that no algorithms can break the
underlying problem with probability more than ε/L within about t steps. Thus, the assumption
becomes weaker and more desirable as ε/L becomes larger, which means that the smaller L the
better.

When we consider public-key primitives such as public-key encryption (PKE) or identity-based
encryption (IBE), we usually prove their security in the single-challenge setting. This is because
the security of public-key primitives in the single-challenge setting normally implies that in the
multi-user and multi-challenge setting via hybrid argument, which is more realistic setting where
an adversary can make polynomially many challenge queries against multiple users. However, such
a hybrid argument increases the security loss by the factor of µq, where µ is the number of users
and q is the maximum number of challenge queries for each users [BBM00]. Since it is difficult to
assume the numbers of users and ciphertexts that will be involved with the scheme at deployment
time, we strongly desire cryptographic schemes whose security is not so affected by those numbers.
We often say that the security reduction is tight if the security loss is constant, i.e., L = O(1), and
almost tight if L = O(λ) or L = O(log q) where λ is a security parameter and q is the number of
queries made by an adversary.

Motivated by the above reason, (almost) tightly secure cryptographic schemes have been ex-
tensively studied in various fields, especially on chosen-ciphertext secure PKE (CCA-secure PKE),
IBE, and signatures, e.g, [HJ12,CW13,LPJY15,AHY15,GHKW16,Hof16,Hof17,GHK17]. In spite
of such a great deal of effort, tightly secure schemes in the context of advanced encryption are
known only for IBE except the very recent result on broadcast encryption by Gay et al. [GKW18].
Hence, it is an important and interesting task to explore what kind of cryptographic schemes can
achieve tight security.

Tight security for IPFE. We would like to discuss the importance of tightly secure IPFE in
more detail. We consider that the most significant situation where we need a tightly secure IPFE
scheme is when a function-hiding scheme is needed. This is because the only way that we know
to realize function-hiding IPFE schemes requires bilinear groups, which is relatively susceptible
to security loss. The one solution to compensate for security loss caused by loose reduction is to
increase the parameter size of underlying primitives, e.g., bilinear groups, which will reinforce the
difficulty of underlying problems, e.g., the matrix Diffie-Hellman problem. As observed by Abe
et al. [AHN+17], however, this is not an easy task for bilinear groups because there are many
factors that involve the security and efficiency of them such as the choice of curves, pairings, and
various parameters like embedding degrees. Hence, we typically adopt one from existing well-
studied settings, which are investigated only for standard parameters such as 128, 192, and 256-bit
security. The main problem of this fact is that there is no intermediate instantiation among these
parameters, and one have to hop to the next standard level if stronger security is necessary. A
pairing computation is especially influenced by this hop; for instance, they state that a pairing in
the 192-bit security takes 6 to 7 times more time than in the 128-bit security on ordinary personal
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computers [BCM+15,EM14].
Additionally, it is not unrealistic that an adversary obtains a large amount of ciphertexts so

that we need to consider the security loss of IPFE schemes. Let us consider the case to use a
function-hiding IPFE scheme for DNA analysis. Suppose a national institution holds a database
consisting of a certain part of the human’s DNA sequence. It is rational to assume that the part
consists of 213 bases and the number of the samples is 220; actually, GenBank operated by the
National Center for Biotechnology Information has more than 227 sequences [Gen]. Each sample
is encoded to a binary vector setting as A=(1,0,0,0), T=(0,1,0,0), and so on, and stored in a cloud
server with an encrypted form. We can check the number of the same bases between encrypted
sequences and a target sequence by decrypting with a secret key for the target sequence. Because
DNA sequences have a correlation with phenotypes, the DNA similarity check will be useful for
genetical research, medical diagnosis, etc. We need the function-hiding property because target
sequences are also personal data and thus sensitive. In this situation, the possibly untrusted server
has q = 220 ciphertexts, large enough to consider the security loss of the scheme. Decryption
of all known schemes involves the same number of pairings as the order of the vector length:
m = 4 × 213 = 215 per one sample in our case. Thus, the choice of the security level significantly
affects the efficiency of the system, and we can conclude that tight security is a very important
concept in the context of IPFE as well as other cryptosystems.

Our Contributions. We extend the realm of tightly secure cryptography to IPFE and present
a series of the first tightly secure (M)IPFE schemes. Our first main contribution is to construct the
two first tightly secure public-key IPFE schemes in the multi-user and multi-challenge setting. Note
that previous IPFE schemes are tightly reduced to underlying assumptions in the single-challenge
setting [ALS16], which means that their security is independent from the number of secret key
queries. To our knowledge, however, there are no results on tight security of IPFE in the multi-user
and multi-challenge setting. Our tightly secure IPFE schemes are constructible from a pairing-free
group and its security is based on the matrix decisional Diffie-Hellman (MDDH) assumption, which
is a generalization of the well-studied decisional Diffie-Hellman (DDH) assumption. The security
of the first scheme is reduced to the MDDH assumption with a small-constant security loss. The
second scheme has smaller ciphertexts and secret keys than the first one, while its security loss
depends on the vector length of the scheme (but does not on the number of ciphertexts that an
adversary obtains). Thus, the second scheme is effective if the vector length is small.

Our result can be easily extended to the multi-input setting. Recently, Abdalla et al. proposed
a generic conversion from an IPFE scheme into a MIPFE scheme [AGRW17, ACF+18]. Their
conversion employs parallel execution of µ instances of the underlying IPFE scheme that is secure
in the multi-challenge setting. By this construction, their conversion incurs a security loss of
O(µq) if we apply it to an IPFE scheme that is secure in the single challenge setting, where µ

is the number of slots of the converted scheme and q is the maximum number of adversary’s
ciphertext queries for each slot. Interestingly, this construction is precisely compatible with an
IPFE scheme that is secure in the multi-user and multi-challenge setting. In other words, the
security of the converted MIPFE scheme is tightly reduced to that of the underlying IPFE scheme
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if the underlying scheme is secure in the multi-user and multi-challenge setting. Additionally, our
schemes satisfy the requirement for the conversion. Thus, we can obtain the first tightly secure
MIPFE schemes.

Another important issue is the realization of tightly secure function-hiding (M)IPFE schemes.
All previous function-hiding schemes suffer from a security loss of L = O(qct+qsk), where qct (resp.
qsk) refers to the total number of ciphertext (resp. secret key) queries [BJK15, DDM16, TAO16,
Lin17]. To achieve tight security, we utilize Lin’s technique, who presented a simple paradigm to
construct a function-hiding (private-key) IPFE scheme from a (public-key) IPFE scheme [Lin17].
Applying her paradigm to our IPFE schemes, we can obtain the first tightly secure function-hiding
IPFE schemes that are based on bilinear groups. However, the naive application of her paradigm
to our schemes results in redundant schemes. Thus, we optimize the schemes by reducing the
unnecessary part.

The final target is to construct a tightly secure function-hiding MIPFE scheme. Unfortunately,
there is no known generic technique to achieve a function-hiding MIPFE scheme. In fact, Abdalla
et al. mention that a powerful conversion to achieve a function-hiding MIPFE scheme is a very
interesting open problem [ACF+18]. Furthermore, the techniques used in the rather specific con-
structions of known function-hiding MIPFE schemes [DOT18,ACF+18] are not applicable to our
situation. Roughly speaking, this is because our schemes require the selective setting in a certain
step of the proof, if we naively try to prove the security similarly to [DOT18,ACF+18].

Our second main contribution is overcoming this problem by solving the open problem posed by
Abdalla et al., that is, we introduce a new powerful and generic conversion. It converts a (weakly)
function-hiding IPFE scheme into a (fully) function-hiding MIPFE scheme. Our conversion is
as general as that for constructing non-function-hiding MIPFE by Abdalla et al. [ACF+18]: the
requirements for an underlying scheme are essentially the same. Hence, if new function-hiding IPFE
schemes are proposed in the future, e.g., based on lattices, we may utilize our conversion to obtain
new function-hiding MIPFE schemes though some modification will be necessary. Additionally,
we can obtain (non-tightly-secure) function-hiding MIPFE schemes in a more modular way than
the previous ones [DOT18,ACF+18] by utilizing our conversion to function-hiding IPFE schemes,
e.g., our scheme in Chapter 4. Applying our conversion to our tightly secure function-hiding IPFE
schemes, we can finally achieve the first tightly secure function-hiding MIPFE schemes.

Similarly to all previous IPFE schemes based on a cyclic group or bilinear groups, the decryption
algorithms of our schemes require to solve the discrete logarithm problem on a decryption value.
As pointed out in [ABDP15, KLM+18], however, this step is not so problematic in many cases.
This is mainly because decryption values will not become exponentially large in real applications.
Additionally, although there are some IPFE schemes that allow exponentially large outputs, they
are either inefficient due to the large modulus [ALS16] or based on a non-standard assumption
[CLT18].

We summarize the comparison of our schemes with previous ones in Tables 2.4 to 2.7. In these
tables, we count the numbers of elements assuming that a matrix distribution Dk is a uniform one
over Z(k+1)×k

p . Some readers may be concerned about the increase of the key and ciphertext sizes,
which may slow the efficiency of the system even after the compensation of security loss. However,

22



we would like to emphasize that our contribution is a theoretically and technically significant
step in tightly secure cryptography. Furthermore, our schemes may outperform previous ones in
some situations. For example, when we instantiate our first function-hiding IPFE scheme from
the SXDH, it takes almost 5 times more pairings in decryption than the state-of-the-art scheme
(Table 2.6). As discussed in the previous subsection, the difference of security level possibly affects
pairings by the factor of 6 to 7 in practice, and thus there is a possibility that the decryption, the
most important process of IPFE, of our scheme is faster than those of previous ones in the same
security level.

2.3 Organization
We show the organization of the rest of this thesis. In Chapter 3, we introduce basic cryptographic
tools and definitions necessary to present our contributions. In Chapters 4 to 6, we present our
contributions. We conclude our thesis and show some open problems related to IPFE in Chapter 7.
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Table 2.4: Comparison of adaptively secure IPFE schemes in the multi-user and multi-challenge
setting. The columns |pk| and |ct| refer to the number of group elements. The columns |msk| and
|sk| refer to the number of Zp elements. The number m refers to the vector length. The number
k refers to the parameter of the MDDH assumption. The number qct refers to the total number of
ciphertext queries by an adversary. Note that we omit the group description from |pk|.

IPFE schemes
scheme |pk| |msk| |ct| |sk| sec. loss assumption

ALS16 [ALS16] m+ 1 2m m+ 2 m+ 2 O(qct) DDH
AGRW17 [AGRW17] km+ k2 + k (k + 1)m m+ k + 1 m+ k + 1 O(qct) Dk-MDDH
Ours 1 m2 + 1 2m2 3m 3m O(1) DDH

k2m2 + k2 + k (k2 + k)m2 (k2 + k + 1)m (k2 + k + 1)m O(1) Dk-MDDH
Ours 2 2m+ 1 m2 +m 2m+ 1 2m+ 1 O(m2) DDH

(k2 + k)m+ k2 km2 +m (k + 1)m+ k (k + 1)m+ k O(m2) Dk-MDDH

Table 2.5: Comparison of MIPFE schemes based on a pairing-free group. The columns |msk| and
|sk| refer to the number of Zp elements. The column |ct| refers to the number of group elements.
The number m refers to the vector length. The number k refers to the parameter of the MDDH
assumption. The number µ refers to the number of slots. The number qct refers to the total number
of ciphertext queries for all slots by an adversary.

MIPFE schemes
scheme |msk| |ct| |sk| sec. loss assumption

ACFGU18 [ACF+18] {k2 + k + (k + 2)m}µ m+ k + 1 (m+ k + 1)µ+ 1 O(qct) Dk-MDDH
Ours 1 (k2m+ km+ 1)mµ (k2 + k + 1)m (k2 + k + 1)mµ+ 1 O(1) Dk-MDDH
Ours 2 (km+ 2)mµ (k + 1)m+ k {(k + 1)m+ k}µ+ 1 O(m2) Dk-MDDH

Table 2.6: Comparison of fully function-hiding IPFE schemes in the standard model. Lin17 [Lin17]
refers to the scheme obtained by applying her paradigm to the IPFE scheme AGRW17 [AGRW17].
The column |msk| refers to the number of Zp elements. The columns |ct| and |sk| refer to the
number of group elements in G1 and G2 respectively. The number m refers to the vector length.
The number k refers to the parameter of the MDDH assumption. The numbers qct and qsk refer
to the total numbers of ciphertext queries and secret key queries by an adversary respectively.

function-hiding IPFE schemes
scheme |msk| |ct| |sk| sec. loss assumption

DDM16 [DDM16] 8m2 + 12m+ 28 4m+ 8 4m+ 8 O(qctqsk) SXDH
TAO16 [TAO16] 4m2 + 18m+ 20 2m+ 5 2m+ 5 O(qct + qsk) XDLIN
Lin17 [Lin17] (k + 1)(4m+ 3k + 1) 2m+ 2k + 2 2m+ 2k + 2 O(qct + qsk) Dk-MDDH
Ours 1 32m2 10m 10m O(1) SXDH

(4k4 + 8k3 + 12k2 + 8k)m2 (4k2 + 4k + 2)m (4k2 + 4k + 2)m O(1) Dk-MDDH
Ours 2 12m2 + 8m+ 1 6m+ 2 6m+ 2 O(m2) SXDH

(4k2 + 8k)m2 + (4k2 + 4k)m+ k2 (4k + 2)m+ 2k (4k + 2)m+ 2k O(m2) Dk-MDDH
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Table 2.7: Comparison of fully function-hiding MIPFE schemes. The column |msk| refers to the
number of Zp elements. The columns |ct| and |sk| refer to the number of group elements in G1 and
G2 respectively. The number m refers to the vector length. The number k refers to the parameter
of the MDDH assumption. The number µ refers to the number of slots. The numbers qct and qsk

refer to the total numbers of ciphertext queries for all slots and secret key queries by an adversary
respectively.

function-hiding MIPFE schemes
scheme |msk| |ct| |sk|

DOT18 [DOT18] (2m+ 2k + 1)2µ 2m+ 2k + 1 (2m+ 2k + 1)µ

ACFGU18 [ACF+18] {(k + 1)(4m+ 5k + 1) + k}µ 2m+ 3k + 2 (2m+ 3k + 2)µ(+|GT |)
Ours 1 {(k4 + 2k3 + 3k2 + 2k)(2m+ 1)2 +m}µ (2k2 + 2k + 1)(2m+ 1) (2k2 + 2k + 1)(2m+ 1)µ

Ours 2 {(k2 + 2k)(2m+ 1)2 + (2k2 + 2k)(2m+ 1) + k2 +m}µ (4k + 2)m+ 3k + 1 {(4k + 2)m+ 3k + 1}µ
scheme sec. loss assumption

DOT18 [DOT18] O(qct + qsk) k-Lin
ACFGU18 [ACF+18] O(qct + µqsk) Dk-MDDH
Ours 1 O(m2) Dk-MDDH
Ours 2 O(m2) Dk-MDDH
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Chapter 3

Preliminaries

In this chapter, we introduce basic notions and definitions that are used to present our contribu-
tions.

3.1 Notations
We denote the string 0, . . . , 0 where the number of 0 is n by 0n and 1, . . . , 1 by 1n similarly.
For a natural number n ∈ N, Zn denotes a ring Z/nZ and [n] denotes a set {1, . . . , n}. For
natural numbers n,m ∈ N, [n] denotes a set {1, . . . , n}, and [m,n] denotes a set {m, . . . , n} (if
m > n, [m,n] := φ). For a set S, s ← S denotes that s is uniformly chosen from S. For a
random variable D, d← D denotes that d is chosen following the distribution of D. For a vector
x, ||x||∞ denotes its infinity norm. For vectors v1,v2, . . . ,vn, (v1,v2, . . . ,vn) denotes a vector
generated by the vertical concatenation of these vectors. For matrices (including vectors) with
the same number of rows A1,A2, . . . ,An, (A1||A2|| · · · ||An) denotes a matrix generated by the
horizontal concatenation of these matrices. For a field K, Mn(K) and GLn(K) denote a set of
all n × n matrices and all n × n regular matrices whose elements are in K, respectively. We use
a bold upper-case letter to denote a matrix, e.g., A, and a bold lower-case version of the same
letter with subscript i to denote the i-th row of the matrix, e.g., ai. For example, ai denotes
the i-th row of A. For a regular matrix A, A∗ denotes (A−1)>. A matrix In denotes the n × n

identity matrix. A matrix Om×n denotes the m × n zero matrix. For a generator gι of a cyclic
group Gι, a matrix A, and vector a, [A]ι and [a]ι denote the corresponding matrix and vector
on the exponent of gι, respectively. For vectors x := (x1, . . . , xn) and y := (y1, . . . , yn) ∈ Zn

p ,
let e([x]1, [y]2) := e(g1, g2)

〈x,y〉 be a function that computes the inner product on the exponent
by
∏

i∈[n] e([xi]1, [yi]2). A function f : N → R is called negligible if f(λ) = λ−ω(1) and denotes
f(λ) ≤ negl(λ). For families of distributions X := {Xλ}λ∈N and Y := {Yλ}λ∈N, we say that X

and Y are computationally indistinguishable if, for all PPT adversaries A and λ ∈ N, we have
|Pr[1← A(1λ, x) | x← Xλ]− Pr[1← A(1λ, y) | y ← Yλ]| ≤ negl(λ). X ≈c Y means that they are
computationally indistinguishable.
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3.2 Basic Tools and Assumptions
In this section, we define basic cryptographic tools and assumptions that our schemes presented
in this thesis are based on.

Definition 3.1 (Pseudorandom Functions). A pseudorandom function (PRF) family F:={FK}K∈Kλ

with a key space Kλ, a domain Xλ, and a range Yλ is a function family that consists of functions
FK : Xλ → Yλ. Let Rλ be a set of functions consisting of all functions whose domain and range
are Xλ and Yλ respectively. For any PPT adversary A, the following condition holds,

AdvPRFA (λ) :=
∣∣∣Pr[1← AFK(·)]− Pr[1← AR(·)]

∣∣∣ ≤ negl(λ),

where K ← Kλ and R←Rλ.

Definition 3.2 (Cyclic Group). A description of a cyclic group GCG:=(p,G, g) consists of a prime
p, a cyclic group G of order p, and a generator g. A cyclic group generator GCG(1λ) takes security
parameter 1λ and outputs a description of a cyclic group GCG with a λ-bit prime p.

Definition 3.3 (Bilinear Groups). A description of bilinear groups GBG:=(p,G1, G2, GT , g1, g2, e)

consist of a prime p, cyclic groups G1, G2, GT of order p, generators g1 and g2 of G1 and G2

respectively, and a bilinear map e : G1 ×G2 → GT , which has two properties.

• (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(h
a
1 , h

b
2) = e(h1, h2)

ab.

• (Non-degeneracy): For generators g1 and g2, gT := e(g1, g2) is a generator of GT .

A bilinear group generator GBG(1λ) takes security parameter 1λ and outputs a description of
bilinear groups GBG with a λ-bit prime p.

Definition 3.4 (Dk-MDDH Assumption [EHK+17]). Let Dk be a matrix distribution over full
rank matrices in Z(k+1)×k

p . We can assume that, wlog, the first k rows of a matrix A chosen from
Dk forms an invertible matrix. We consider the following distribution:

GCG ← GCG(1λ), GBG ← GBG(1λ),

A← Dk, v← Zk
p, t0 := Av, t1 ← Zk+1

p .

We say that the Dk-matrix decisional Diffie-Hellman (MDDH) assumption holds with respect to
GCG if, for any PPT adversary A,

AdvDk-MDDH
A,CG (λ) := |Pr[1← A(GCG, [A], [t0])]− Pr[1← A(GCG, [A], [t1])]| ≤ negl(λ),

and with respect to GBG if, for any PPT adversary A and both i ∈ {1, 2},

AdvDk-MDDH
A,BG,i (λ) := |Pr[1← A(GBG, [A]i, [t0]i)]− Pr[1← A(GBG, [A]i, [t1]i)]| ≤ negl(λ).

We denote maxi Adv
Dk-MDDH
A,BG,i (λ) by AdvDk-MDDH

A (λ).
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Random self-reducibility. By the random self-reducibility, we can obtain arbitrarily many in-
stances of the Dk-MDDH problem without additional security loss. For any n ∈ N, we additionally
define the following distribution:

V← Zk×n
p , T0 := AV, T1 ← Z(k+1)×n

p .

The advantages of A against n-fold Dk-MDDH assumption with respect to GCG and GBG are defined
as:

Advn-Dk-MDDH
A,CG (λ) := |Pr 1← A(GCG, [A], [T0])]− Pr[1← A(GCG, [A], [T1])]|,

Advn-Dk-MDDH
A,BG,i (λ) := |Pr[1← A(GBG, [A]i, [T0]i)]− Pr[1← A(GBG, [A]i, [T1]i)]|.

Then, for any PPT adversaries A1,A2 and both i ∈ {1, 2}, there exist PPT adversaries B1,B2 and
we have

Advn-Dk-MDDH
A1,CG

(λ) ≤ AdvDk-MDDH
B1,CG

(λ) + 2−Ω(λ),

Advn-Dk-MDDH
A2,BG,i

(λ) ≤ AdvDk-MDDH
B2,BG,i

(λ) + 2−Ω(λ),

Time(Bj) ≈ Time(Aj) + npolyj(λ) for both j ∈ {1, 2},

where polyj(λ) is independent from Time(Aj).

k-Lin Assumption. The k-Lin assumption is well-known as a concrete instance of the MDDH
assumption. For k ∈ N, a1, . . . , ak ∈ Zp, the k-Lin assumption is define as the Dk-MDDH assump-
tion with Dk being the uniform distribution of matrices with the following form:

A =


1 · · · 1

a1
. . .

ak

 ∈ Z(k+1)×k
p

Especially, the 1-Lin assumption (the k-Lin assumption where k = 1) is called the symmetric ex-
ternal Diffie-Hellman (SXDH) assumption in bilinear groups. Observe that the SXDH assumption
says that (G, [a], [v], [av]) ≈c (G, [a], [v], [t]) where a, v, t ← Zp. We use the SXDH assumption in
this form in Chapter 5.

Definition 3.5 (Dual Pairing Vector Spaces [OT10]). For a natural number n ∈ N, we choose
random dual orthonormal bases (B,B∗) as B ← GLn(Zp) and B∗ := (B−1)>. Then [B]1 and
[B∗]2 are dual orthonormal bases of vector spaces V := Gn

1 and V ∗ := Gn
2 respectively. Observe

that the following two properties hold.

1. For any vectors x,y ∈ Zn
p , e([xB]1, [yB

∗]2) = e(g1, g2)
〈x,y〉.

2. For any vectors x1, . . . ,xk,y1, . . . ,y` ∈ Zn
p and any matrix M ∈ GLn(Zp), ({xiB}i∈[k],

{yiB
∗}i∈[`]) and ({xiMB}i∈[k], {yiM

∗B∗}i∈[`]) are identically distributed. More gener-
ally, for any set S ⊆ [n] s.t. ∀i ∈ S,bi = M−1bi, ({bi}i∈S , {xiB}i∈[k], {yiB

∗}i∈[`])
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and ({bi}i∈S , {xiMB}i∈[k], {yiM
∗B∗}i∈[`]) are also identically distributed. This is because

(D,D∗) := (M−1B,M>B∗) are also random dual orthonormal bases and ({bi}i∈S , {xiB}i∈[k],

{yiB
∗}i∈[`]) = ({di}i∈S , {xiMD}i∈[k], {yiM

∗D∗}i∈[`]).

In Chapter 5, we use the fact that randomly chosen matrices whose elements are in Zp have
a high probability of being invertible. More concretely, we have the following lemma for DPVS,
which is implicitly shown in [DOT18].

Lemma 3.1. Let p be a Ωλ-bit prime. For any polynomial m := m(λ) and n := n(λ), we have

Pr[∃i,detBi = 0|B1, . . . ,Bm ← Mn(Zp)] = 2−Ω(λ).

3.3 Functional Encryption
In this section, we define functional encryption. Specifically, we define public-key/private-key func-
tional encryption and private-key multi-input functional encryption. Note that we only consider
private-key schemes for multi-input functional encryption in this thesis.

3.3.1 Definitions for Functional Encryption

Multi-User and Multi-Challenge. We first clarify the two settings that are related to security
models of cryptographic schemes, namely, multi-user and multi-challenge. The multi-user setting is
a security model where an adversary can attack multiple instances of a cryptographic scheme. The
multi-challenge setting is a security model where an adversary can attack multiple ciphertexts of
a cryptographic scheme. In the real world, it is natural to assume that adversaries obtain multiple
ciphertexts generated by multiple users. Hence, we should consider the security of cryptographic
schemes in the multi-user and multi-challenge setting.

It is known that a public-key cryptographic scheme is basically secure in the multi-user and
multi-challenge setting if it is secure in the single-user and single-challenge setting [BBM00]. Sim-
ilarly, it is known that a private-key cryptographic scheme is basically secure in the multi-user
and multi-challenge setting if it is secure in the single-user and multi-challenge setting. Therefore,
we normally consider the single-user and single-challenge setting for public-key schemes and the
single-user and multi-challenge setting for private-key schemes. However, it is also known that
these implications require amplification of security loss [BBM00]. Thus, when we consider tight
security, we need to directly handle the multi-user and multi-challenge setting.

In this section, we define security definitions in the multi-user and multi-challenge setting, since
this thesis contains the chapter where we consider tight security (Chapter 6). On the other hand,
we consider the single-user (and single-challenge for public-key FE) setting for the schemes of which
we do not care about the security loss (Chapters 4 and 5). Note that we can treat the single-XX
setting as a special case of the multi-XX setting.

Definition 3.6 (Public-Key Functional Encryption). Let X be a domain and F be a function
class. Public-key functional encryption (Pub-FE) for F consists of five algorithms.
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Par(1λ): It takes a security parameter 1λ and outputs a public parameter pp.

Setup(pp): It takes pp and outputs a public key pk and a master secret key msk.

Enc(pk, x): It takes pk and x ∈ X and outputs a ciphertext ct.

KeyGen(pk,msk, f): It takes pk,msk, and f ∈ F and outputs a secret key sk.

Dec(pk, ct, sk): It takes pk, ct and sk and outputs a decrypted value d or a symbol ⊥.

This syntax is one for the multi-user setting. In the single-user setting, we can combine Par and
Setup into Setup, which takes 1λ and outputs pk,msk. This also goes for a private-key scheme
(Definition 3.7).

Correctness. Pub-FE is correct if it satisfies the following condition. For all λ ∈ N, x ∈ X , f ∈ F ,
we have

Pr

d = f(x)

pp← Par(1λ)

(pk,msk)← Setup(pp)

ct← Enc(pk, x)

sk← KeyGen(pk,msk, f)

d := Dec(pk, ct, sk)

 ≥ 1− negl(λ).

Security. Let µ ∈ N be a natural number that represents the number of users. Pub-FE is
adaptively secure in the multi-user and multi-challenge setting if it satisfies the following condition.
That is, the advantage of A against Pub-FE defined as follows is negligible in λ for any constant
µ ∈ N, and PPT adversary A,

AdvPub-FE
A (λ) :=

∣∣∣∣∣∣∣2Pr

β = β′
β ← {0, 1}, pp← Par(1λ)

{pki,mski}i∈[µ] ← Setup(pp)

β′ ← AOct(β,·,·),Osk(·,·)({pki}i∈[µ])

− 1

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

β′=1

pp← Par(1λ)

{pki,mski}i∈[µ] ← Setup(pp)

β′ ← AOct(0·,·),Osk(·,·)({pki}i∈[µ])


−Pr

β′=1

pp← Par(1λ)

{pki,mski}i∈[µ] ← Setup(pp)

β′ ← AOct(1,·,·),Osk(·,·)({pki}i∈[µ])



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The description of the oracles Oct and Osk is presented in Fig 3.1. We refer to queries to Oct and Osk

as a ciphertext query and a secret key query respectively. To avoid a trivial attack of A, we have
the following condition on A’s queries. Let qct,i and qsk,i be the total number of ciphertext queries
and secret key queries for index i respectively. Then, for all i ∈ [µ], ji ∈ [qct,i], and `i ∈ [qsk,i], we
have

fi,`i(x
0
i,ji) = fi,`i(x

1
i,ji). (3.1)
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Oct(β ∈ {0, 1}, i ∈ [µ], (x0, x1) ∈ X 2)

cti ← Enc(pki, x
β)

return cti

Osk(i ∈ [µ], f ∈ F)
ski ← KeyGen(pki,mski, f)

return ski

Fig 3.1: The description of oracles in the security game for Pub-FE.

We can define semi-adaptive security similarly to adaptive security. We impose an additional
condition on A, that is, A cannot query Oct after querying Osk even once. Pub-FE is semi-
adaptively secure if the advantage of A that has the additional condition is negligible for all A.

We can also define the adaptive or semi-adaptive security in the single-user and single-challenge
setting similarly. That is, µ = 1, and the adversary can query Oct at most once in this setting.

Definition 3.7 (Private-Key Functional Encryption). Let X be a domain and F be a function
class. Private-key functional encryption (Priv-FE) consists of five algorithms.

Par(1λ): It takes a security parameter 1λ and outputs a public parameter pp.

Setup(pp): It takes pp and outputs a master secret key msk.

Enc(pp,msk, x): It takes pk and x ∈ X and outputs a ciphertext ct.

KeyGen(pp,msk, f): It takes pp,msk, and f ∈ F and outputs a secret key sk.

Dec(pp, ct, sk): It takes pp, ct and sk and outputs a decrypted value d or a symbol ⊥.

Correctness. Priv-FE is correct if it satisfies the following condition. For all λ ∈ N, x ∈ X , f ∈
F , we have

Pr

d = f(x)

pp← Par(1λ)

(pk,msk)← Setup(pp)

ct← Enc(pk, x)

sk← KeyGen(pk,msk, f)

d := Dec(pk, ct, sk)

 ≥ 1− negl(λ).

Security. Let µ ∈ N be a natural number that represents the number of users. Priv-FE is
fully function-hiding in the multi-user setting if it satisfies the following condition. That is, the
advantage of A against Priv-FE defined as follows is negligible in λ for any constant µ ∈ N and
any PPT adversary A,

AdvPriv-FE
A,f-fh (λ) :=∣∣∣∣∣∣∣Pr

β′=1

pp← Par(1λ)

{mski}i∈[µ] ← Setup(pp)

β′ ← AOct(0·,·),Osk(0,·,·)(pp)

−Pr

β′=1

pp← Par(1λ)

{mski}i∈[µ] ← Setup(pp)

β′ ← AOct(1,·,·),Osk(1,·,·)(pp)


∣∣∣∣∣∣∣ .

The description of the oracles Oct and Osk is presented in Fig 3.2. To avoid a trivial attack of
A, we have the following condition on A’s queries. Let qct,i and qsk,i be the total numbers of
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Oct(β ∈ {0, 1}, i ∈ [µ], (x0, x1) ∈ X 2)

cti ← Enc(pp,mski, xβ)

return cti

Osk(β ∈ {0, 1}, i ∈ [µ], (f0, f1) ∈ F2)

ski ← KeyGen(pp,mski, fβ)

return ski

Fig 3.2: The description of oracles in the security game for Priv-FE.

ciphertext queries and secret key queries for index i respectively. Then, for all i ∈ [µ], ji ∈ [qct,i],
and `i ∈ [qsk,i], we have

f0
i,`i(x

0
i,ji) = f1

i,`i(x
1
i,ji). (3.2)

Similarly to the public-key scheme, we say the scheme is fully function-hiding in the single-user
setting when µ = 1.

We say that Priv-FE is weakly function-hiding in the multi-user setting if it satisfies the above
definition except that the query condition of A is more restricted as follows. That is, for all i ∈ [µ],
ji ∈ [qct,i], and `i ∈ [qsk,i], we have

f0
i,`i(x

0
i,ji) = f0

i,`i(x
1
i,ji) = f1

i,`i(x
1
i,ji). (3.3)

We denote the advantage of A in the weakly function-hiding game by AdvPriv-FE
A,w-fh (λ).

We can define the selective security similarly to the fully function-hiding security. We impose
an additional condition on A, that is, A cannot query Oct after querying Osk even once. Priv-FE
is selectively function-hiding if the advantage of A that has the additional condition is negligible
for all A.

Definition 3.8 (Private-Key Multi-Input Functional Encryption). Let X1, . . . ,Xµ be domains
and F be a function class. Private-key multi-input functional encryption (MIFE) consists of four
algorithms.

Setup(1λ, 1µ): It takes a security parameter 1λ and a number of slots 1µ. Then, it outputs a public
parameter pp and a master secret key msk.

Enc(pp,msk, i, xi): It takes pp, msk, an index i ∈ [µ], and xi ∈ Xi and outputs a ciphertext cti.

KeyGen(pp,msk, f): It takes pp,msk, and f ∈ F , and outputs a secret key sk.

Dec(pp, ct1, . . . , ctµ, sk): It takes pp, ct1, . . . , ctµ and sk and outputs a decrypted value d or a symbol
⊥.

In what follows, we refer to private-key MIFE just as MIFE.

Correctness. MIFE is correct if it satisfies the following condition. For any λ, µ ∈ N, we have

Pr

d = f(x1, . . . , xµ)

pp,msk← Setup(1λ, 1µ)

cti ← Enc(pp,msk, i, xi)

sk← KeyGen(pp,msk, f)

d := Dec(pp, ct1, . . . , ctµ, sk)

 ≥ 1− negl(λ).
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Oct(β ∈ {0, 1}, i ∈ [µ], (x0
i , x

1
i ) ∈ X 2

i

cti ← Enc(pp,msk, i, xβ
i )

return cti

Osk(β ∈ {0, 1}, (f0, f1) ∈ F2)

sk← KeyGen(pp,msk, fβ)

return sk

Fig 3.3: The description of oracles in the security game for MIFE.

Security. MIFE is fully function-hiding if it satisfies the following condition. That is, the ad-
vantage of A against MIFE defined as follows is negligible in λ for any constant µ ∈ N and any
PPT adversary A,

AdvMIFE
A,f-fh(λ) :=

∣∣∣∣∣∣∣2Pr

β = β′
β ← {0, 1},
(pp,msk)← Setup(1λ, 1µ)

β′ ← AOct(β,·,·),Osk(β,·)(pp)

− 1

∣∣∣∣∣∣∣ .
The description of the oracles Oct and Osk is presented in Fig 3.3. To avoid a trivial attack of
A, we have the following condition on A’s queries. Let qct,i be the total number of ciphertext
queries for index i and qsk be the total number of secret key queries. Then, for all (j1, . . . , jµ) ∈
[qct,1]× · · · × [qct,µ], and ` ∈ [qsk],

f0
` (x

0
1,j1 , . . . , x

0
µ.jµ) = f1

` (x
1
1,j1 , . . . , x

1
µ.jµ). (3.4)

In this thesis, we assume that qct,i ≥ 1 for all i ∈ [µ] and qsk ≥ 1. Note that this condition can be
easily removed by simply utilizing symmetric key encryption [AGRW17,DOT18].

We say that MIFE is adaptively secure if it satisfies the above definition except that there is
an additional query condition of A. That is, for all ` ∈ [qsk],

f0
` = f1

` .

We denote the advantage ofA in the adaptive-security game by AdvMIFE
A,ad (λ). This security definition

captures only the message privacy of MIFE schemes, i.e., the scheme is non-function-hiding. Note
that this security definition of the adaptive security is identical to many-AD-IND security in
[AGRW17,ACF+18].

3.3.2 Function Classes for Inner Products

In this thesis, we handle various kinds of function classes related to inner products. We formally
define them in the following. First, we define inner products over Z and its extension to the multi-
input case, which are related to Chapters 4 and 6. We need to bound infinity norms of vectors
in all classes used for correctness of our schemes. This is because decryption algorithms needs to
solve the discrete logarithm problem on the decryption value. Note that this is common in all
previous IPFE schemes based on a cyclic group or bilinear groups. As pointed out in [KLM+18],
however, this step does not affect efficiency so much in many practical applications.

Definition 3.9 (Bounded-Norm Inner Product over Z). This function family F IP
m,X,Y , where

m,X, Y ∈ N, consists of functions fy : X → Z, where y ∈ Zm s.t. ||y||∞ ≤ Y and X = {x | x ∈
Zm, ||x||∞ ≤ X}. For all x ∈ X we define the function as

fy(x) := 〈x,y〉.
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Definition 3.10 (Multi-Input Bounded-Norm Inner Product over Z). This family FMIP
m,µ,X,Y , where

m,µ,X, Y ∈ N, consists of functions fy1,...,yµ
: X µ → Z, where yi ∈ Zm s.t. ||yi||∞ ≤ Y and X is

defined the same as above. For all (x1, . . . ,xµ) ∈ X µ, we define the function as

fy1,...,yµ
(x1, . . . ,xµ) :=

∑
i∈[µ]

〈xi,yi〉.

Next, we define a function class for unbounded (single-input) inner products, which is related
to Chapter 5.

Definition 3.11 (Bounded-Norm Unbounded Inner Product over Z). Here, we define the (E:con,
K:sep, D:ct-dom) setting. This function family FUIP

X,Y , where X,Y ∈ N, consists of functions
fS,y : X → Z ∪ {⊥}, where S ⊂ N, y := (yi)i∈S ∈ ZS s.t. ||y||∞ ≤ Y , and X = {x | x ∈⋃

i∈N Zi, ||x||∞ ≤ X}. We define the function for all x ∈ X as

fS,y(x) :=


∑

i∈S xiyi (S ⊆ [m])

⊥ (S * [m])
,

where m is the number of elements of x.

The correctness and security of our schemes follow Definitions 3.6 to 3.8 by adapting them
to function classes for inner products defined above. We remark one thing on the security game
for unbounded inner products. The straightforward adaptation of the restriction Eq. (3.1) to
unbounded inner products results in the following restriction. For all j ∈ [qct] and ` ∈ [qsk], if
S` ⊆ [mj ], then ∑

i∈S`

x0
j,iy`,i =

∑
i∈S`

x1
j,iy`,i (for public-key FE), (3.5)

∑
i∈S`

x0
j,iy

0
`,i =

∑
i∈S`

x1
j,iy

1
`,i (for private-key FE). (3.6)

However, our unbounded IPFE schemes do not hide the length of an underlying vector. Thus, we
additionally assume that x0

j and x1
j have the same length in the security game for FE schemes in

Chapter 5.
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Chapter 4

Efficient Function-Hiding Inner
Product Functional Encryption

In this chapter, we present our contribution in [TAO20], which proposes a more efficient function-
hiding IPFE scheme from a weaker assumption than previous ones.

4.1 Technical Overview
From a technical view point, it is generally difficult to achieve more efficient cryptographic schemes
from weaker assumptions. In our case, however, we achieve a more efficient scheme from the weaker
assumption than those by Datta et al. [DDM16]. We have overcome this difficulty by developing
a new security proof strategy. A bit more precisely, we refine the process of the hybrid argument
based on DPVS framework. It allows us to prove the security of the scheme in a compact space,
and the number of elements in the scheme become small. Datta et al. employ more complicated
but unnecessary steps in the hybrid argument, which requires a large space to prove the security.

One of the main ingredients of the new strategy is the change of the way to reduce the k-Lin
problem to game changes. Consider the SXDH assumption (the case of k = 1). Roughly speaking,
the SXDH assumption says that it is difficult for efficient adversaries to distinguish whether given
two two-dimensional vectors span a whole space or not. We use the assumption to argue that it
is difficult to distinguish whether a certain ciphertext or secret key is distributed in an (m + 1)-
dimensional space or an (m + 2)-dimensional space, whereas Datta et al. use it to argue that
whether one is distributed in an m-dimensional space or a 2m-dimensional space. Thus, we can
reduce m dimensions from their scheme. We save further m dimensions by the refinement of hybrid
argument design, but we refrain from going into detail here.
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4.2 Efficient Function-Hiding Inner Product Functional En-
cryption

4.2.1 Construction

In this section, we present our effcient fully function-hiding private-key IPFE scheme (FE for
F IP

m,X,Y ). Let Xλ and Yλ be norm-bounds, which are polynomials in λ.

Setup(1λ, 1m): : The setup algorithm takes a security parameter 1λ and a vector length 1m and
outputs (pp,msk), where

G← GBG(1λ), B← GL2m+2k+1(Zp)

pp := G, msk :=

(
b1, . . . ,bm,b2m+1, . . . ,b2m+k,

b∗
1, . . . ,b

∗
m,b∗

2m+k+1, . . . ,b
∗
2m+2k

)
.

In the above, bi and b∗
i denote the i-th rows of B and B∗, respectively.

Enc(pp,msk,x): : The encryption algorithm takes pp,msk, and x ∈ Zm and outputs a ciphertext
ct as

s← Zk
p, x̃ := (x, 0m, s, 0k, 0) ∈ Z2m+2k+1

p ,

ct := [x̃B]1.

KeyGen(pp,msk,y): : The key generation algorithm takes pp,msk, and y ∈ Zm and outputs a
secret key sk as

r← Zk
p, ỹ := (y, 0m, 0k, r, 0) ∈ Z2m+2k+1

p ,

sk := [ỹB∗]2.

Dec(pp, ct, sk): : The decryption algorithm computes the pairing of a secret key and a ciphertext
as z := e(ct, sk). Then it searches for d such that gdT = z in the range from −mXY to mXY .
If it finds d that satisfies gdT = z, outputs d. Otherwise, outputs ⊥.

Correctness. Observe that d := e(ct, sk) = [x̃BB−1ỹ>]T = [〈x,y〉]T . Therefore, d that the
decryption algorithm outputs is 〈x,y〉.

4.2.2 Security

Lemmas for the Security Proof. We consider the following problems and use them to prove
the security of our scheme.
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Definition 4.1 (Problem 1). Problem 1 is to guess a bit β ∈ {0, 1}, given (P, Tβ), where

G← GBG(1λ), B← GL2m+2k+1(Zp),

P :=

(
G, [b1]1, . . . , [b2m+k]1,

[b∗
1]2, . . . , [b

∗
2m]2, [b

∗
2m+k+1]2, . . . , [b

∗
2m+2k]2

)
,

β ← {0, 1}, s← Zk
p, u← Zp,

Tβ := [(02m, s, 0k, βu)B]1.

Definition 4.2 (Problem 2). Problem 2 is to guess a bit β ∈ {0, 1}, given (P, Tβ), where

G← GBG(1λ), B← GL2m+2k+1(Zp),

P :=

(
G, [b1]1, . . . , [b2m+k]1,

[b∗
1]2, . . . , [b

∗
2m]2, [b

∗
2m+k+1]2, . . . , [b

∗
2m+2k]2

)
,

β ← {0, 1}, r← Zk
p, u← Zp,

Tβ := [(02m, 0k, r, βu)B∗]2.

For a PPT algorithm A, the advantage for Problem n (n = 1, 2) is defined as

AdvPnA (λ) := |Pr[A(P, T0)→ 1]− Pr[A(P, T1)→ 1]| .

Then the following lemmas hold.

Lemma 4.1. For any PPT adversary A for Problem 1, there exists a PPT adversary B for the
k-Lin problem such that AdvP1A (λ) ≤ Advk-Lin

B (λ) + 2−Ω(λ).

Lemma 4.2. For any PPT adversary A for Problem 2, there exists a PPT adversary B for the
k-Lin problem such that AdvP2A (λ) ≤ Advk-Lin

B (λ) + 2−Ω(λ).

Proof of Lemma 4.1. We show that we can construct a PPT adversary B for the k-Lin problem
from any PPT adversary A for Problem 1. B is given an instance of the k-Lin problem with i = 1,
i.e., (G, [A]1, [tβ ]1). Let M := (A||e1)>, where e1 = (1, 0, . . . , 0)> ∈ Zk+1

p . Observe that t0 and
t1 are distributed as t0 = (v, 0)M and t1 = (v, u)M, respectively, where v ← Zk

p, u ← Zp. For
M∗ ∈ Z(k+1)×(k+1)

p , we denote the upper submatrix of M∗ with k rows by M∗ and the lower
submatrix with 1 row by M∗. Then B sets a random basis B as

W← GL2m+2k+1(Zp),

B :=


I2m

A>

Ik

e>1

W ∈ Z2m+2k+1
p .

It is not difficult to see that B is invertible iff M is invertible, and M is invertible with the
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overwhelming probability. In this case, we have

B∗ =


I2m

M∗

Ik

M∗

W∗ ∈ Z2m+2k+1
p .

Then, B can compute P from [A]1:

P :=

(
G, [b]1, . . . , [b2m+k]1,

[b∗
1]2, . . . , [b

∗
2m]2, [b

∗
2m+k+1]2, . . . , [b

∗
2m+2k]2

)
.

Finally, B sets

Tβ := [(02m, t>β , 0
k)W]1 = [(02m,v, 0k, βu)B]1.

Observe that P and Tβ are identically distributed to the instance of Problem 1 unless A is singular
or u = 0, which occurs with the probability 2−Ω(λ). This is because A is singular iff at least one
of {ai}i∈[k] equals to 0, which occurs with probability 1 − (1 − 1/p)k ≤ k/p. Note that k = O(1)

and p = 2Ω(λ). Hence, the lemma holds.

Proof of Lemma 4.2. We omit the proof of Lemma 4.2 because it is similar to that of Lemma
4.1.

Security Proof of Our Scheme. The proposed scheme is fully function-hiding under the k-Lin
assumption. More precisely, the following theorem holds.

Theorem 4.1. The proposed Priv-IPVE scheme Π is fully function-hiding under the k-Lin as-
sumption. For any PPT adversary A, there exists a PPT adversary B for the k-Lin problem such
that

AdvFHS,Π
A (λ) ≤ 2q1Adv

k-Lin
B (λ) + 4q2Adv

k-Lin
B (λ) + 2−Ω(λ),

where q1 is the number of A’s secret key queries, and q2 is the number of A’s ciphertext queries.

Proof of Theorem 4.1. For the proof of Theorem 4.1, we use a hybrid argument over a series
of games that differ in the construction of the challenge ciphertexts and secret keys. The game
sequence proceeds as Table 4.1. It also shows the structures of ciphertexts and secret keys in the
end of each game. In the Game 1 sequence, we generate the term x1 in the (m + 1)-th to 2m-th
elements of x̃ for all ciphertexts. In the Game 2 sequence, for all secret keys, we gradually change
y0 in the 1st to m-th elements of ỹ, to y1 in the (m + 1)-th to 2m-th elements. The remaining
games are almost the reverse steps of the Game 1 sequence.

Next, we formally describe each game. We frame a part by a box that was changed from a
previous game.
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Game x̃ in Ciphertexts ỹ in Secret Keys
Game 0 (x0, 0m, s, 0k, 0) (y0, 0m, 0k, r, 0)

Game 1-1-1
...

...
...

Game 1-q2-3 (x0,x1, s, 0k, 0) (y0, 0m, 0k, r, 0)

Game 2-1-1
...

...
...

Game 2-q1-3 (x0,x1, s, 0k, 0) (0m,y1, 0k, r, 0)

Game 3 (x1,x0, s, 0k, 0) (y1, 0m, 0k, r, 0)

Game 4 (x1, 0m, s, 0k, 0) (y1, 0m, 0k, r, 0)

Table 4.1: Game sequence with the structures of ciphertexts and secret keys.

Game 0: This game is the real one where the challenger selects 0 as a random bit. That is, for
all j = 1, . . . , q1 and all ` = 1, . . . , q2, ỹj and x̃` in the replies for the j-th secret key query
and the `-th ciphertext query correspond to

ỹj := (y0
j , 0

m, 0k, rj , 0),

x̃` := (x0
` , 0

m, s`, 0
k, 0).

Game 1-µ-1(µ = 1, . . . , q2): Game 1-0-3 is defined to be Game 0. This game is the same as Game
1-(µ-1)-3 except that x̃µ in the reply for the µ-th ciphertext query corresponds to

x̃µ := (x0
µ, 0

m, sµ, 0
k, u ),

where u← Zp.

Game 1-µ-2(µ = 1, . . . , q2): This game is the same as Game 1-µ-1 except that x̃µ in the reply for
the µ-th ciphertext query corresponds to

x̃µ := (x0
µ, x1

µ , sµ, 0
k, u).

Game 1-µ-3(µ = 1, . . . , q2): This game is the same as Game 1-µ-2 except that x̃µ in the reply for
the µ-th ciphertext query corresponds to

x̃µ := (x0
µ,x

1
µ, sµ, 0

k, 0 ).

Game 2-ν-1(ν = 1, . . . , q1): Game 2-0-3 is defined to be 1-q2-3. This game is the same as Game
2-(ν-1)-3 except that ỹν in the reply for the ν-th secret key query corresponds to

ỹν := (y0
ν , 0

m, 0k, rν , u ),

where u← Zp.
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Game 2-ν-2(ν = 1, . . . , q1): This game is the same as Game 2-ν-1 except that ỹν in the reply for
the ν-th secret key query corresponds to

ỹν := ( 0m,y1
ν , 0k, rν , u).

Game 2-ν-3(ν = 1, . . . , q1): This game is the same as Game 2-ν-2 except that ỹν in the reply for
the ν-th secret key query corresponds to

ỹν := (0m,y1
ν , 0

k, rν , 0 ).

Game 3: This game is the same as Game 2-q2-3 except that, for all j = 1, . . . , q1 and all ` =

1, . . . , q2, ỹj and x̃` in the replies for the j-th secret key query and the `-th ciphertext query
correspond to

ỹj := ( y1
j , 0

m , 0k, rj , 0),

x̃` := ( x1
` ,x

0
` , s`, 0

k, 0).

Game 4: This game is the same as Game 3 except that, for all ` = 1, . . . , q2, x̃` in the reply for
the `-th ciphertext query corresponds to

x̃` := (x1
` , 0m , s`, 0

k, 0).

Note that this game is the real one where the challenger selects 1 as a random bit.

In the following, we denote the event that A outputs 1 in Game X as EX .

Lemma 4.3. For any PPT distinguisher A between Game 1-(µ-1)-3 and Game 1-µ-1, there exists
a PPT algorithm B for Problem 1, such that for any security parameter λ,∣∣Pr[E1-(µ−1)-3]− Pr[E1-µ-1]

∣∣ ≤ AdvP1B (λ).

Proof. We show that it is possible to construct a PPT algorithm B for Problem 1 using any PPT
distinguisher A between Game 1-(µ-1)-3 and Game 1-µ-1 as a blackbox. B takes a role to A as a
challenger of the security game.

1. B is given a Problem 1 instance (P, Tβ).

2. B gives G to A as pp.

3. B computes skj using vectors in P when A makes a query on (y0
j ,y

1
j ).

4. B computes ct`(` 6= µ) using vectors in P when A makes a query on (x0
` ,x

1
`).

5. B computes ctµ when A makes a query on (x0
µ,x

1
µ) as

ctµ := [(x0
µ, 0

m+2k+1)B]1 + Tβ = [(x0
µ, 0

m, sµ, 0
k, βu)B]1,

where sµ := s. Observe that [(x0
µ, 0

m+2k+1)B]1 is computable with the vectors in P .
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6. When A outputs β′, B outputs β′ as it is.

If β = 0, A’s view is the same as that in Game 1-(µ-1)-3, and if β = 1, B’s view is the same as
that in Game 1-µ-1.

Lemma 4.4. For any PPT distinguisher A between Game 1-µ-1 and Game 1-µ-2,

Pr[E1-µ-1] = Pr[E1-µ-2].

Proof. We demonstrate that A’s view in Game 1-µ-1 is the same as that in Game 1-µ-2. For the
purpose, we define a new basis and its dual (D,D∗) as

D :=

 I2m+2k

0m −x1
µ

u 02k 1

B, D∗ :=


0m

I2m+2k
x1>
µ

u

02k

1

B∗.

Observe that (D,D∗) are random dual orthonormal bases because (B,B∗) are random dual or-
thonormal bases. Then, the coefficients of the secret keys and ciphertexts except the µ-th one are
not changed;

skj =[(y0
j , 0

m, 0k, rj , 0)B
∗]2 = [(y0

j , 0
m, 0k, rj , 0)D

∗]2,

ct` =

[(x0
` ,x

1
` , s`, 0

k, 0)B]1 = [(x0
` ,x

1
` , s`, 0

k, 0)D]1 (` < µ)

[(x0
` , 0

m, s`, 0
k, 0)B]1 = [(x0

` , 0
m, s`, 0

k, 0)D]1 (` > µ)
.

On the other hand, the µ-th ciphertext is written as

ctµ = [(x0
µ, 0

m, sµ, 0
k, u)B]1

=

(x0
µ, 0

m, sµ, 0
k, u)

 I2m+2k

0m
x1
µ

u 02k 1

D


1

= [(x0
µ,x

1
µ, sµ, 0

k, u)D]1.

Therefore, A’s views in both games are information-theoretically identical.

Lemma 4.5. For any PPT distinguisher A between Game 1-µ-2 and Game 1-µ-3, there exists a
PPT algorithm B for Problem 1, such that for any security parameter λ,

|Pr[E1-µ-2]− Pr[E1-µ-3]| ≤ AdvP1B (λ).

Proof. The proof of Lemma 4.5 is similar to that of Lemma 4.3, so we omit the proof.

Lemma 4.6. For any PPT distinguisher A between Game 2-(ν-1)-3 and Game 2-ν-1, there exists
a PPT algorithm B for Problem 2, such that for any security parameter λ,∣∣Pr[E2-(ν−1)-3]− Pr[E2-ν-1]

∣∣ ≤ AdvP2B (λ).
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Proof. We demonstrate that it is possible to construct a PPT algorithm B for Problem 2 using
any PPT distinguisher A between Game 2-(ν-1)-3 and Game 2-ν-1 as a blackbox. B takes a role
to A as a challenger of the security game.

1. B is given a Problem 2 instance (P, Tβ).

2. B gives G to A as pp.

3. B computes ct` using vectors in P when A makes a query on (x0
` ,x

1
`).

4. B computes skj(j 6= ν) using vectors in P when A makes a query on (y0
j ,y

1
j ).

5. B computes skν when A makes a query on (y0
ν ,y

1
ν) as

skν := [(y0
ν , 0

m+2k+1)B∗]2 + Tβ = [(y0
ν , 0

m, 0k, rν , βu)B
∗]2,

where rν := r. Observe that [(y0
ν , 0

m+2k+1)B∗]2 is computable with the vectors in P .

6. When A outputs β′, B outputs β′ as it is.

If β = 0, A’s view is the same as that in Game 2-(ν-1)-3, and if β = 1, A’s view is the same as
that in Game 2-ν-1.

Lemma 4.7. For any PPT distinguisher A between Game 2-ν-1 and Game 2-ν-2,

Pr[E2-ν-1] = Pr[E2-ν-2].

Proof. We demonstrate that A’s view in Game 2-ν-1 is the same as that in Game 2-ν-2. For that
purpose, we define new basis and its dual (D,D∗) as

D :=


−y0>

ν

u

I2m+2k
y1>
ν

u

02k

1

B, D∗ :=

 I2m+2k

y0
ν

u −y1
ν

u 02k 1

B∗.

Observe that (D,D∗) are random dual orthonormal bases because (B,B∗) are random dual or-
thonormal bases. Then, the coefficients of the secret keys except the ν-th one are not changed;

skj =

[(0m,y1
j , 0

k, rj , 0)B
∗]2 = [(0m,y1

j , 0
k, rj , 0)D

∗]2 (j < ν)

[(y0
j , 0

m, 0k, rj , 0)B
∗]2 = [(y0

j , 0
m, 0k, rj , 0)D

∗]2 (j > ν)
.

Next, we observe the ν-th secret key;

skν =[(y0
ν , 0

m, 0k, rν , u)B
∗]2

=

(y0
ν , 0

m, 0k, rν , u)

 I2m+2k

−y0
ν

u
y1
ν

u 02k 1

D∗


2

=[(0m,y1
ν , 0

k, rν , u)D
∗]2.
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Lastly, we check that the coefficients of ciphertexts are not changed;

ct` =[(x0
` ,x

1
` , s`, 0

k, 0)B]1

=

(x0
` ,x

1
` , s`, 0

k, 0)


y0>
ν

u

I2m+2k −y1>
ν

u

02k

1

D


1

=

[(
x0
` ,x

1
` , s`, 0

k,
x0
` · y0

ν − x1
` · y1

ν

u

)
D

]
1

=[(x0
` ,x

1
` , s`, 0

k, 0)D]1.

In the fifth line, we use the query restriction on A, i.e., x0
` · y0

ν = x1
` · y1

ν . Therefore, A’s views in
both games are information-theoretically identical.

Lemma 4.8. For any PPT distinguisher A between Game 2-ν-2 and Game 2-ν-3, there exists a
PPT algorithm B for Problem 2, such that for any security parameter λ,

|Pr[E2-ν-2]− Pr[E2-ν-3]| ≤ AdvP2B (λ).

Proof. The proof of Lemma 4.8 is similar to that of Lemma 4.6, so we omit the proof.

Lemma 4.9. For any PPT distinguisher A between Game 2-q1-3 and Game 3,

Pr[E2-q1-3] = Pr[E3].

Proof. We demonstrate that A’s view in Game 2-q1-3 is the same as that in Game 3. For that
purpose, we define new basis and its dual (D,D∗) as

D :=

 Im

Im

I2k+1

B, D∗ :=

 Im

Im

I2k+1

B∗.

Observe that (D,D∗) are random dual orthonormal bases because (B,B∗) are random dual or-
thonormal bases. These bases are dual orthonormal. Then we can see that

skj = [(0m,y1
j , 0

k, rj , 0)B
∗]2 = [(y1

j , 0
m, 0k, rj , 0)D

∗]2,

ct` = [(x0
` ,x

1
` , s`, 0

k, 0)B]1 = [(x1
` ,x

0
` , s`, 0

k, 0)D]1.

Thus, A’s views in both games are identical.

Lemma 4.10. For any PPT distinguisher A between Game 3 and Game 4, there exists a PPT
algorithm B for Problem 1, such that for any security parameter λ,

|Pr[E3]− Pr[E4]| ≤ 2q2Adv
P1
B (λ).

Proof. The difference between Game 3 and Game 4 is almost the same as that between Game 0
and Game 1-q2-3, just switching x0

` with x1
` , and y0

j with y1
j .

Thanks to Lemma 4.1 to Lemma 4.10, Theorem 4.1 holds.
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4.3 Conclusion of Chapter 4
In Chapter 4, we constructed a function-hiding IPFE scheme that is more efficient than previous
ones. The function-hiding property is essential when not only an objective data but also a delegated
computation is sensitive. Prior to our work, there were two function-hiding IPFE schemes: one
satisfies only a weaker security definition [BJK15] and the other is inefficient [DDM16]. We refined
the previous proof techniques and proved the fully function-hiding property in the more efficient
scheme. Additionally, we use the weaker k-Lin assumption instead of the SXDH assumption, which
is used in the previous works [BJK15,DDM16].
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Chapter 5

Unbounded Inner Product
Functional Encryption

In this chapter, we present our contribution in [TT20], which defines unbounded inner product
functional encryption and constructs first concrete schemes in both private-key and public-key
settings.

5.1 Technical Overview

5.1.1 Private-key Unbounded Inner Product Functional Encryption

Our starting point is the fully function hiding unbounded multi-input IPFE (MIPFE) scheme
proposed by Datta et al. [DOT18]. In an unbounded MIPFE scheme, an index space for slots
are not determined in the setup phase. Then, roughly speaking, an encryption algorithm can
generate a ciphertext that corresponds to a vector x and an arbitrary index i ∈ N. Also, a key
generation algorithm can issue a secret key that is associated with indexed vectors (S, {yi}i∈S) for
an arbitrary set S ⊂ N. Only if a decryptor has all ciphertexts corresponding to elements of the
set S, i.e., {cti := MIPFE.Enc(pp,msk, i,xi)}i∈S , the secret key for S can be used for legitimate
decryption and reveals

∑
i∈S〈xi,yi〉. Their scheme is based on the dual pairing vector spaces

(DPVS) framework introduced by Okamoto and Takashima [OT10] and utilizes a pseudorandom
function (PRF) to handle an unbounded index space. Consider the unbounded MIPFE scheme in
which the vector length is set to 1 and observe that such a scheme already serves the function of
UIPFE in the D:ct-dom setting. More precisely, to encrypt x := (x1, . . . , xm) ∈ Zm, the encryption
algorithm computes cti := MIPFE.Enc(pp,msk, i, xi) for all i ∈ [m] and set ct := (ct1, . . . , ctm).
In key generation for an indexed vector (S,y := (yi)i∈S ∈ ZS), the key generation algorithm
computes sk := MIPFE.KeyGen(pp,msk, S,y). Then MIPFE.Dec(pp, ct, sk) outputs

∑
i∈S xiyi.

However, this construction allows recomposition of ciphertexts due to the property of MIPFE.
That is, for ct1 := (ct1,1, . . . , ct1,m) and ct2 := (ct2,1, . . . , ct2,m), we can decrypt a ciphertext like
(ct1,1, ct2,2, . . . , ct2,m) correctly whereas UIPFE should not allow such recomposition of ciphertexts.
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To prevent such recomposition, each ciphertext of our scheme has a unique randomness that all
elements in a ciphertext share. Decryption is possible only if an input ciphertext has a consistent
randomness, so this unique randomness prevents recomposed ciphertexts from being decrypted
correctly. Essentially, a ciphertext for index i of the MIPFE scheme by Datta et al. has a form like
[ci]1 := [(xi, 1)Bi]1 and each element of a secret key has a form like [ki]2 := [(yi, ri)B

∗
i ]2, where Bi

is a 2×2 regular matrix, B∗
i := (B−1

i )>, and ri are random elements in Zp s.t.
∑

i∈S ri = 0. Bases
Bi are generated unboundedly with a PRF. A decryption algorithm computes [

∑
i∈S〈ci,ki〉]T and

it reveals the inner product
∑

i∈S(xiyi+ ri) =
∑

i∈S xiyi. In this construction, switching elements
of one ciphertext that have the same indices as others does not affect the correct decryption. On
the other hand, an element of one ciphertext corresponding to index i of our scheme has a form
like [ci]1 := [(xi, z)Bi]1 where z is a unique randomness for each ciphertext, whereas each element
of a secret key is the same as in the MIPFE scheme. Then it is easy to confirm that unless all ci
for i ∈ S have the same randomness, [

∑
i∈S〈ci,ki〉]T does not reveal the inner product

∑
i∈S xiyi

and this construction prevents recomposition of ciphertexts.
Although the concept of the construction is simple, the security proof of the scheme is rather

complicated. The basic proof strategy of our scheme is the same as that by Tomida et al. [TAO16],
who proposed a fully function hiding bounded IPFE scheme, and this strategy is also employed
in [DOT18]. In the case of unbounded MIPFE and UIPFE, however, we encounter a new chal-
lenging problem that does not appear in bounded IPFE: how to prove collusion resistance against
illegitimate secret keys queried by an adversary. More precisely, in the D:ct-dom setting, secret
keys whose index sets are not included in the index set of a ciphertext must be useless to decrypt
the ciphertext even if their owners collude. For example, an owner of a ciphertext ct1 for a index
set {1,2,3} and two secret keys sk1 and sk2 for index sets {1,2,4} and {3,4} respectively must not
learn any information about underlying vectors in the ciphertext and secret keys.

In the context of unbounded MIPFE, the problem was solved by cleverly utilizing symmetric
key encryption (SKE). Briefly, ciphertexts for index i contain a secret key of SKE that is unique
to the index i. On the other hand, a secret key of unbounded MIPFE for an index set S is
iteratively encrypted by SKE with all secret keys of SKE in the set S. Then, unless an owner of
the secret key for a set S has all ciphertexts in the set S, he or she cannot decrypt the secret key
of unbounded MIPFE encrypted by SKE and the secret key is useless to derive information from
ciphertexts corresponding to any proper subset of S. Due to UIPFE not allowing the recomposition
of ciphertexts, however, we cannot apply a similar technique to UIPFE schemes.

To solve this problem, we introduce a new proof strategy. In fully function hiding scheme,
we consider an adversary that can query many ciphertexts and secret keys. First, we generate a
situation where it is sufficient to consider only one ciphertext and all secret keys by using hidden
spaces of DPVS framework. We can consider that this is a kind of dual system methodology by
Waters [Wat09], which allows us to reduce the problem of a security for many keys to that for
one key [Wee14]. Then what we need to do next is to ensure that illegitimate keys are useless
to decrypt the ciphertext. For the purpose, we randomize all elements in illegitimate secret keys
whose indices are out of the index set of the ciphertext by computational argument. That is, the
randomization is indistinguishable for all probabilistic polynomial time (PPT) adversaries under
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the SXDH assumption. In the above simple example, it means that the elements for index 4 in
both secret keys are randomized. The intuitive reason to take this step is to ensure that partial
decryption does not leak any information on underlying vectors. That is, in the above example,
one can correctly compute the term xiyi for indices 1 and 2 with sk1 and 3 with sk2, which is
masked by the term zri. What we want to prove here is that the all zri terms are indistinguishable
from independently random elements in Zp and they completely hide the terms xiyi. Recall that
elements in each secret key contain the random numbers ri such that

∑
i∈S ri = 0. Then, if at least

one of ris in each secret key is randomized, entire ris become completely random elements in Zp.
At this point, partial decryption with illegitimate secret keys reveals no meaningful information
and we can complete the proof.

5.1.2 Public-key Unbounded Inner Product Functional Encryption

Our public-key UIPFE scheme is technically more intricate than our private-key one. Because we
do not need to publish any information for encryption in the private-key UIPFE scheme, we can
utilize PRFs to generate dual orthonormal bases unboundedly, which is necessary for encryption.
More precisely, an encryption algorithm generates a basis for index i as FK(i) where FK is a PRF,
and encode the i-th element of the vector using the basis. In the public-key setting, however, a
setup algorithm needs to publish information that is needed to encrypt vectors. Thus an encryptor
cannot utilize PRFs to generate bases because if a key of a PRF is public, the output is no longer
pseudorandom.

Our approach to overcome this problem is an indexing technique [OT12b], which is introduced
to construct unbounded inner product encryption and attribute based encryption (ABE) schemes.
Briefly, we add a two-dimensional prefix that specifies an index to a vector to be encoded, and
only if the indices of a ciphertext and a secret key are equal, the correct inner product value is
computable. In a ciphertext side, an encoding of the i-th element of a vector x := (x1, . . . , xm) is
the form like [ci]1 := [(πi(1, i), xi, z)B]1 and in a secret key side, the index j of an indexed vector
(S,y := (yj)j∈S) is encoded as [kj ]2 := [(ρj(−j, 1), yj , rj)B∗]2. Then, although all indices share
the same dual orthonormal bases, [〈ci,kj〉]T reveals the meaningful value only if i = j. By this
construction, each element in ciphertexts and secret keys is encoded as if dual orthonormal bases
that are unique to each index were used.

The basic concept of the security proof of our public-key scheme is also similar to that in
[OT12b]. That is, we prove lemmas that say that normal ciphertexts and secret keys are indis-
tinguishable from ones encoded on “somewhat” random dual orthonormal bases for each index
by amplifying the entropy of the two-dimensional prefix. More concretely, we use a kind of the
following relation in the security proof. Note that it is just a toy example for an intuitive expla-
nation and an informal one. That is, for any polynomial m := m(λ), we have the computational
indistinguishability:{

[(πi(1, i), xi, z, . . .)B]1

[(ρi(−i, 1), yi, ri, . . .)B∗]2

}
i∈[m]

≈c

{
[(πi(1, i), xi, z, . . .)Di]1

[(ρi(−i, 1), yi, ri, . . .)D∗
i ]2

}
i∈[m]

,
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where {πi}i∈[m], {ρi}i∈[m]
U←− Zp and Di := WiB. LHS represents normal elements of a cipher-

text and secret key, and RHS represents elements of ones encoded on “somewhat” random dual
orthonormal bases for each index. Here, each Wi need not be a completely random matrix, and
it is sufficient if Wi is chosen from some specific distribution for our security proof. This is why
we call Di “somewhat” random. At this point, we can use the proof strategy similar to that of
the private-key IPFE scheme because dual orthonormal bases are generated somewhat randomly
for each index and we have a similar situation to the private-key IPFE scheme. Although the
top-level concept of the techniques are similar to [OT12b], i.e., indexing and entropy amplification,
we cannot directly use their techniques because the security proof of our scheme is completely dif-
ferent from that of their scheme. Therefore, we managed to tailor lemmas of entropy amplification
suitable for our scheme.

5.1.3 Discussion

In this thesis, we cannot achieve the schemes that have the following two features. We quickly
discuss the difficulty about them.

Public-key UIPFE schemes without pairing. We briefly explain why constructing un-
bounded public-key IPFE schemes without pairing is difficult. Differently from bounded IPFE
schemes, unbounded IPFE schemes have a kind of functionality that ABE schemes support. That
is, a ciphertext and secret key are associated with sets U and S, respectively, and decryption is
possible only when U and S satisfy some inclusive relation, e.g., U ⊇ S. Because we know that
ABE schemes based on cyclic groups need pairings, unbounded IPFE schemes seem to require
pairings similarly.

Adaptively secure (E:sep, K:sep) UIPFE schemes. As we mentioned, our proof strategy
needs to guess an index set of a ciphertext and inherently we cannot apply it to (E:sep, K:sep)
schemes with adaptive security. We consider that this difficulty is similar to that to prove adaptive
security of multi-use KP-ABE from static assumptions (this problem is solved in the semi-adaptive
setting [CW14]). That is, the reduction algorithm needs to embed the instance of an underlying
problem into secret keys depending on the instance that the adversary outputs in the challenge
phase. Hence, the difficulty disappears in the semi-adaptive setting because the reduction knows
the challenge instance before it simulates secret keys. We know that we can obtain adaptively
secure multi-use KP-ABE from so-called q-type assumptions [Att14,Att16], then we might be able
to obtain adaptively secure (E:sep, K:sep) schemes from q-type assumptions similarly.

5.2 Private-Key Unbounded Inner Product Functional En-
cryption

We present our main private-key unbounded IPFE scheme, that is, a FE scheme for FUIP
X,Y . Our

schemes are based on the DPVS framework (Definition 3.5) introduced by Okamoto and Takashima
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[OT10]. We note that our scheme requires that vector lengths are bounded by some polynomials,
denoted by m(λ) and s(λ) in the construction, but they do not have to be fixed at the setup phase.
This also goes for our public-key scheme (Section 5.3).

5.2.1 Construction

In the following scheme, norm limits Xλ, Yλ are some polynomials. Let F := {FK}K∈Kλ
be a PRF

family with a key space Kλ consisting of functions FK : {0, 1}λ → M4(Zp).

Setup(1λ): Takes a security parameter 1λ and chooses bilinear groups G ← GBG(1λ) and a PRF
key K ← Kλ. Outputs

pp := G, msk := K.

Enc(pp,msk,x): Takes pp,msk and x := (x1, . . . , xm) ∈ Zm where m := m(λ) is any polynomial.
Sets Bi := FK(i) and ci := (xi, 0, z, 0)Bi ∈ Z4

p for all i ∈ [m], where z ← Zp. Outputs

ctm := ([c1]1, . . . , [cm]1).

If there exists i ∈ [m] such that Bi is a singular matrix, outputs ⊥.

KeyGen(pp,msk, S,y): Takes pp, msk, a non-empty index set S ⊆ [s] where s := s(λ) is any
polynomial, and an indexed vector y := (yi)i∈S ∈ ZS . Chooses {ri}i∈S ← Zp s.t.

∑
i∈S ri =

0. Sets Bi := FK(i) and ki := (yi, 0, ri, 0)B
∗
i ∈ Z4

p for all i ∈ S. Outputs

skS := (S, {[ki]2}i∈S).

If there exists i ∈ S such that Bi is a singular matrix, outputs ⊥.

Dec(pp, ctm, skS): Takes pp, a ciphertext ctm for m dimensional vector, and a secret key skS for a
index set S. If S ⊆ [m], then computes

h :=
∏
i∈S

e([ci]1, [ki]2),

and searches for d s.t. e(g1, g2)
d = h exhaustively in the range of −|S|XλYλ to |S|XλYλ. If

such d is found, outputs d. Otherwise, outputs ⊥.

Correctness. Our Priv-UIPFE scheme is correct if F is a PRF family. We consider the case
where for a natural number m ∈ N, Bi := FK(i) for all i ∈ [m] is invertible. Then, we observe
that if S ⊆ [m],

h =
∏
i∈S

e([ci]1, [ki]2) = e(g1, g2)
∑

i∈S〈ci,ki〉 = e(g1, g2)
∑

i∈S(xiyi+zri).

Here we have
∑

i∈S ri = 0, then h = e(g1, g2)
∑

i∈S xiyi . If ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ,
|
∑

i∈S xiyi| ≤ |S|XλYλ and Dec outputs
∑

i∈S xiyi. Hence, if Bi for all i ∈ [m] is invert-
ible without a negligible probability, our scheme is correct. Let m := m(λ) be any polyno-
mial. For i ∈ [m], we have Pr[∃i,detBi = 0|Bi ← M4(Zp)] = 2−Ω(λ) from Lemma 3.1 and
|Pr[∃i,detBi = 0|Bi ← M4(Zp)] − Pr[∃i,detBi = 0|K ← Kλ,Bi := FK(i)]| ≤ negl(λ) from the
definition of PRF. Consequently, Pr[∃i,detBi = 0|K ← Kλ,Bi := FK(i)] ≤ negl(λ).
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5.2.2 Security

Theorem 5.1. Assume that the SXDH assumption holds and F is a PRF family, then our Priv-
UIPFE is fully function-hiding. More formally, let mmax be the maximum length of vectors with
which A makes a query to the encryption oracle, then for any PPT adversary A and security
parameter λ, there exists a PPT adversary B1 for the SXDH and B2 for the PRF family, we have

AdvPriv-UIPFE
A (λ) ≤ {4qsk + 2(mmax + 1)qct + 2}AdvSXDH

B1
(λ) + 2AdvPRFB2

(λ) + 2−Ω(λ).

Proof outline. The top-level strategy of the proof is similar to that of the proof by Tomida
et al. [TAO16], although the order of changing the forms of ciphertexts and secret keys is the
opposite. In the security proof, we employ a usual hybrid argument and gradually change the
forms of ciphertexts and secret keys queried by an adversary from the case of β = 0 to β = 1

defined in Definition 3.7. We use the spaces not used in the actual function, i.e., the second and
fourth spaces, for the security proof. Intuitively, the second space is a kind of a working space to
handle intermediate states between β = 0 and β = 1, and the fourth space is utilized to make a
situation where we can focus on only one query even if an adversary makes multiple queries. In
other words, we can see the fourth space as a semi-functional space of dual system methodology
proposed by Waters [Wat09]. First, the form of secret keys is changed from [(y0`,i, 0, r`,i, 0)B

∗
i ]2

to [(y0`,i, y
1
`,i, r`,i, 0)B

∗
i ]2 in the Game 1 sequence. Next, we change the form of ciphertexts from

[(x0
j,i, 0, zj , 0)Bi]1 to [(0, x1

j,i, zj , 0)Bi]1 in the Game 3 sequence, and here we leverage the game
condition Eq. (3.6). Then we switch the first space with the second space as [(x1

j,i, 0, zj , 0)Bi]1

and [(y1`,i, y
0
`,i, r`,i, 0)B

∗
i ]2. Finally, the form of secret keys is changed from [(y1`,i, y

0
`,i, r`,i, 0)B

∗
i ]2 to

[(y1`,i, 0, r`,i, 0)B
∗
i ]2 as the reverse of the Game 1 sequence. The most complicated and important

part is the Game 3 sequence, in which we need to deal with the ciphertexts and secret keys that
do not satisfy the condition Eq. (3.6). In Game 3 sequence, we change the ciphertexts from 0-side
to 1-side one by one, and in the ν-th iteration of Game 3 sequence, we change the ν-th ciphertexts
from 0-side to 1-side. For the ν-th ciphertext, we can classify secret keys queried by an adversary
into three types. Let mν be the length of the ciphertext.

1. The index set S of the secret key is included in [mν ], i,e., maxS ≤ mν .

2. A part of the index set S is included in [mν ], i.e., (maxS > mν) ∧ (minS ≤ mν).

3. The index set S and [mν ] are disjoint, i.e., minS > mν .

The cumbersome secret keys are type 2 keys because they can correctly decrypt a part of the
ciphertext even though they may not satisfy the condition Eq. (3.6). We want to change the form
of the ν-th ciphertext from 0-side to 1-side by information-theoretical change in Game 3-ν-1-4, but
it does not work without any treatment due to the above property of type 2 keys. Therefore, we
manage to randomize type 2 keys from Game 3-ν-1-1 to Game 3-ν-1-3.

Proof. We prove Theorem 5.1 by a series of games. For each game transition, we prove that the
difference between probabilities that the adversary A outputs 1 in both games is negligible.
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Game 0: This game is the same as the real security game when β = 0 in Definition 3.7. That is,
the j-th ciphertext query with a pair of vectors (x0

j ,x
1
j ) ∈ (Zmj )2 is replied as

cj,i := (x0
j,i, 0, zj , 0)Bi for all i ∈ [mj ]

ctj,mj
:= ([cj,1]1, . . . , [cj,mj

]1).

The `-th secret key query with an index set S` and a pair of vectors (y0
` ,y

1
`) ∈ (ZS`)2 is

replied as

k`,i := (y0`,i, 0, r`,i, 0)B
∗
i for all i ∈ S`

sk`,S`
:= (S`, {[k`,i]2}i∈S`

).

Game 0’: This game is the same as Game 0 except for the way of making dual orthonormal
bases. In Game 0, the dual orthonormal bases for the i-th element are made as (Bi,B

∗
i )

where Bi := FK(i), but in Game 0’, they are made as Bi ← GL4(Zp). More precisely, the
cipertext oracle and secret key oracle have the same list L for bases. When the oracle needs
a basis for the i-th element, it searches for (i,Bi) from L. If the oracle find it, the oracle
uses the bases, and if not, it generates Bi ← GL4(Zp) and records them as (i,Bi) into L.

Game 1-µ-1 (µ ∈ [qsk]): We define Game 1-0-3 as equivalent to Game 0’. This game is the same
as Game 1-(µ− 1)-3 except that in the µ-th secret key query, kµ,i is set as

w ← Zp, kµ,i := (y0µ,i, 0, rµ,i, wrµ,i )B
∗
i for all i ∈ Sµ.

Game 1-µ-2 (µ ∈ [qsk]): This game is the same as Game 1-µ-1 except that in the µ-th secret key
query, kµ,i is set as

w ← Zp, kµ,i := (y0µ,i, y1µ,i , rµ,i, wrµ,i)B
∗
i for all i ∈ Sµ.

Game 1-µ-3 (µ ∈ [qsk]): This game is the same as Game 1-µ-2 except that in the µ-th secret key
query, kµ,i is set as

kµ,i := (y0µ,i, y
1
µ,i, rµ,i, 0 )B∗

i for all i ∈ Sµ.

Game 2: This game is the same as Game 1-qsk-3 except that in all secret key queries, k`,i for all
` ∈ [qsk] is set as

k`,i := (y0`,i, y
1
`,i, r`,i, r̃`,i )B

∗
i for all i ∈ S`,

where r̃`,i ← Zp s.t.
∑

i∈S`
r̃`,i = 0.

Game 3-ν-1 (ν ∈ [qct]): Game 2 is equivalent to Game 3-0-3. This game is the same as Game
3-(ν − 1)-3 except that in the ν-th ciphertext query, cν,i is set as

z̃ν ← Zp, cν,i := (x0
ν,i, 0, zν , z̃ν )Bi for all i ∈ [mν ].
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Game 3-ν-2 (ν ∈ [qct]): This game is the same as Game 3-ν-1 except that in the ν-th ciphertext
query, cν,i is set as

z̃ν ← Zp, cν,i := ( 0, x1
ν,i , zν , z̃ν)Bi for all i ∈ [mν ].

Game 3-ν-3 (ν ∈ [qct]): This game is the same as Game 3-ν-2 except that in the ν-th ciphertext
query, cν,i is set as

cν,i := (0, x1
ν,i, zν , 0 )Bi for all i ∈ [mν ].

Game 4: This game is the same as Game 3-qct-5 except that in all ciphertext and secret key
queries, cj,i and k`,i are set as

cj,i := ( x1
j,i, 0 , zj , 0)Bi for all i ∈ [mj ],

k`,i := ( y1`,i, y
0
`,i , r`,i, r̃`,i)B

∗
i , for all i ∈ S`.

Game 5: This game is the same as the real security game when β = 1 in Definition 3.7. That is,
the j-th ciphertext query with a pair of vectors (x0

j ,x
1
j ) ∈ (Zmj )2 is replied as

cj,i := (x1
j,i, 0, zj , 0) Bi for all i ∈ [mj ]

ctj,mj := ([cj,1]1, . . . , [cj,mj ]1).

The `-th secret key query with an index set S` and a pair of vectors (y0
` ,y

1
`) ∈ (ZS`)2 is

replied as

k`,i := (y1`,i, 0 , r`,i, 0 ) B∗
i for all i ∈ S`

sk`,S`
:= (S`, {[k`,i]2}i∈S`

).

Note that Bi is generated as Bi := FK(i) in Game 5.

Thanks to Lemma 5.1 to Lemma 5.16, we can conclude the proof of Theorem 5.1.

In the following, we denote the event that A outputs 1 in Game ι by Eι.

Lemma 5.1. For any PPT adversary A, there exists a PPT adversary B for PRFs s.t.

|Pr[E0]− Pr[E0′ ]| ≤ AdvPRFB (λ) + 2−Ω(λ).

Proof. First, we consider Game 0M, which is the same as Game 0 except that Bi is generated as
Bi ← M4(Zp) for each i. The following inequality directly follows from the property of PRF s.t.
|Pr[E0]−Pr[E0M ]| ≤ AdvPRFB (λ). Next, we have |Pr[E0M ]−Pr[E0′ ]| ≤ 2−Ω(λ) from Lemma 3.1. Then
Lemma 5.1 holds.

Lemma 5.2. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E1-(µ − 1)-3]− Pr[E1-µ-1]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).
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Proof. We show that we can make a reduction algorithm B for the SXDH using A. B obtains an
instance of SXDH with ι := 2, i.e., (G, [a]2, [e]2, [tβ ]2), and sets pp := G. B defines random dual
orthonormal bases Bi,B

∗
i as follows,

Wi ← GL4(Zp), Bi :=


1

1

0 1

1 −a

Wi, B∗
i :=


1

1

a 1

1 0

W∗
i ∈ GL4(Zp).

Then B simulates all ciphertext queries and all secret key queries except the µ-th one as follows.

[cj,i]1 := [(x0
j,i, 0, zj,i, 0)Bi]1 for all i ∈ [mj ],

[k`,i]2 :=

[(y0`,i, y
1
`,i, r`,i, 0)B

∗
i ]2 for all i ∈ S` (` < µ)

[(y0`,i, 0, r`,i, 0)B
∗
i ]2 for all i ∈ S` (` > µ).

Note that B cannot compute [bi,4]1 because it does not know [a]1, but the above instances are
computable without [bi,4]1. For the µ-th secret key query, B replies to A for all i ∈ Sµ as

r′i ← Zp s.t.
∑
i∈Sµ

r′i = 0,

[kµ,i]2 := [(y0µ,i, 0, 0, 0)B
∗
i + r′i(0, 0, tβ , e)W

∗
i ]2 = [(y0µ,i, 0, er

′
i, βfr

′
i)B

∗
i ]2.

Observe that we can implicitly set rµ,i := er′i and w := f/e unless e = 0, then A’s view is the same
as in Game 1-(µ− 1)-3 (resp. Game 1-µ-1) if β = 0 (resp. β = 1).

Lemma 5.3. For any PPT adversary A, we have

|Pr[E1-µ-1]− Pr[E1-µ-2]| ≤ 2−Ω(λ).

Proof. We define (Di,D
∗
i ) as

Di :=


1 0

1
y1
µ,i

wrµ,i

1 0

1

Bi, D∗
i :=


1

1

1

0 − y1
µ,i

wrµ,i
0 1

B∗
i ∈ GL4(Zp).

Observe that (Di,D
∗
i ) are random dual orthonormal bases. Then, for all j ∈ [qct] and ` ∈ [qsk], we
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have

cj,i = (x0
j,i, 0, zj,i, 0)Bi = (x0

j,i, 0, zj,i, 0)


1 0

1 − y1
µ,i

wrµ,i

1 0

1

Di = (x0
j,i, 0, zj,i, 0)Di,

k`,i = (y0`,i, β`y
1
`,i, r`,i, β̂`wrµ,i)B

∗
i = (y0`,i, β`y

1
`,i, r`,i, β̂`wrµ,i)


1

1

1

0
y1
µ,i

wrµ,i
0 1

D∗
i

= (y0`,i, (β` + β̂`)y
1
`,i, r`,i, β̂`wrµ,i)D

∗
i ,

where β` = 0 if ` ≥ µ and β` = 1 if ` < µ, and β̂` = 0 if ` 6= µ and β̂` = 1 if ` = µ. Then if w 6= 0

and rµ,i 6= 0, A’s view is identically distributed in Game 1-µ-2 and Game 1-µ-3.

Lemma 5.4. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E1-µ-2]− Pr[E1-µ-3]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

This lemma can be proven almost the same as Lemma 5.2, so we omit the proof.

Lemma 5.5. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E1-qsk-3]− Pr[E2]| ≤ AdvSXDH
B (λ) + 2−Ω(λ)

Proof. We show that we can make a reduction algorithm B for the SXDH using A. B obtains an
instance of SXDH with ι := 2, i.e., (G, [a]2, [e]2, [tβ ]2), and sets pp := G. B defines random dual
orthonormal bases Bi,B

∗
i as follows,

Wi ← GL4(Zp), Bi :=


1

1

0 1

1 −a

Wi, B∗
i :=


1

1

a 1

1 0

W∗
i ∈ GL4(Zp).

Then B simulates all ciphertext queries and all secret key queries as follows.

[cj,i]1 := [(x0
j,i, 0, zj,i, 0)Bi]1 for all i ∈ [mj ],

r′`,i, r
′′
`,i ← Zp s.t.

∑
i∈S`

r′`,i =
∑
i∈S`

r′′`,i = 0,

[k`,i]2 := [(y0`,i, y
1
`,i, r

′
`,i, 0)B

∗
i + r′′`,i(0, 0, tβ , e)W

∗
i ]2

= [(y0`,i, y
1
`,i, r

′
`,i + er′′`,i, βfr

′′
`,i)B

∗
i ]2 for all i ∈ S`.

Note that B cannot compute [bi,4]1 because it does not know [a]1, but the above instances are
computable without [bi,4]1. Observe that we can implicitly set r`,i := r′`,i + er′′`,i and r̃`,i := fr′′`,i
unless f = 0, then A’s view is the same as in Game 1-qsk-3 (resp. Game 2) if β = 0 (resp.
β = 1).
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Lemma 5.6. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E3-(ν − 1)-3]− Pr[E3-ν-1]| ≤ AdvSXDH
B (λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using A. B obtains an
instance of SXDH with ι := 1, i.e., (G, [a]1, [e]1, [tβ ]1), and sets pp := G. B defines random dual
orthonormal bases Bi,B

∗
i as follows,

Wi ← GL4(Zp), Bi :=


1

1

a 1

1 0

Wi, B∗
i :=


1

1

0 1

1 −a

W∗
i ∈ GL4(Zp).

Then B simulates all ciphertext queries except the ν-th one and all secret key queries as follows,

[cj,i]1 :=

[(0, x1
j,i, zj,i, 0)Bi]1 for all i ∈ [mj ] (j < ν)

[(x0
j,i, 0, zj,i, 0)Bi]1 for all i ∈ [mj ] (j > ν),

r′`,i, r
′′
`,i ← Zp s.t.

∑
i∈S`

r′`,i =
∑
i∈S`

r′′`,i = 0,

[k`,i]2 := [(y0`,i, y
1
`,i, r

′
`,i, 0)B

∗
i + (0, 0, r′′`,i, 0)W

∗
i ]2

= [(y0`,i, y
1
`,i, r

′
`,i + ar′′`,i, r

′′
`,i)B

∗
i ]2 for all i ∈ S`.

Note that B cannot compute [b∗
i,4]2 because it does not know [a]2, but the above instances are

computable without [b∗
i,4]2. Observe that we can implicitly set r`,i := r′`,i + ar′′`,i and r̃`,i := r′′`,i,

so B correctly simulates the answer for queries. For the ν-th ciphertext query, B replies to A for
all i ∈ [mν ] as

[cν,i]1 := [(x0
ν,i, 0, 0, 0)Bi + (0, 0, tβ , e)Wi]1 = [(x0

ν,i, 0, e, βf)Bi]1.

Observe that we can implicitly set zν := e and z̃ν := f , then A’s view is the same as in Game
3-(ν − 1)-3 (resp. Game 3-ν-1) if β = 0 (resp. β = 1).

Lemma 5.7. Let mmax be the maximum length of vectors with which A makes a query to the
encryption oracle. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E3-ν-1]− Pr[E3-ν-2]| ≤ 2mmaxAdv
SXDH
B (λ) + 2−Ω(λ).

Proof. To prove Lemma 5.7, we consider the following intermediate games between Game 3-ν-1
and 3-ν-2. In each intermediate game, the challenger chooses a random element m′

ν ← [mmax] as
a guess of mν at the beginning of the games.

Game 3-ν-1-1 (ν ∈ [qct]): This game is the same as Game 3-ν-1 except that the challenger aborts
the game immediately if the vector length of the ν-th ciphertext query is not m′

ν i.e., m′
ν 6=

mν . We define that A’s output is ⊥ when the game is aborted.
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Game 3-ν-1-2 (ν ∈ [qct]): This game is the same as Game 3-ν-1-1 except the following. In the
`-th secret key query for all ` s.t. whose index set S` contains both elements that are greater
than m′

ν and not greater than m′
ν , i.e., (maxS` > m′

ν) ∧ (minS` ≤ m′
ν), k`,i is set as

k`,i :=

(y0`,i, y
1
`,i, r`,i, r̃`,i)B

∗
i (i ∈ S`, i ≤ m′

ν)

(y0`,i, y
1
`,i, r`,i, ar̃`,i )B

∗
i (i ∈ S`, i > m′

ν)

where a← Zp, r̃`,i ← Zp s.t.
∑

i∈S`
r̃`,i = 0.

Game 3-ν-1-3 (ν ∈ [qct]): This game is the same as Game 3-ν-1-2 except that in the `-th secret
key query for all ` s.t. (maxS` > m′

ν) ∧ (minS` ≤ m′
ν), k`,i is set as

r̄`,i ← Zp, k`,i := (y0`,i, y
1
`,i, r`,i, r̄`,i )B

∗
i for all i ∈ S`.

Game 3-ν-1-4 (ν ∈ [qct]): This game is the same as Game 3-ν-1-3 except that in the ν-th cipher-
text query, cν,i is set as

z̃ν ← Zp, cν,i := ( 0, x1
ν,i , zν , z̃ν)Bi for all i ∈ [m′

ν ].

Game 3-ν-1-5 (ν ∈ [qct]): This game is the same as Game 3-ν-1-4 except that in all secret key
queries, k`,i are set as

k`,i := (y0`,i, y
1
`,i, r`,i, r̃`,i )B

∗
i for all i ∈ S`,

where r̃`,i ← Zp s.t.
∑

i∈S`
r̃`,i = 0.

Next we consider the probability that A outputs 1 in each game. Thanks to Lemma 5.8 to
Lemma 5.13, we have

|Pr[E3-ν-1]− Pr[E3-ν-2]| = mmax|Pr[E3-ν-1-1]− Pr[E3-ν-1-5]|

≤ 2mmaxAdv
SXDH
B (λ) + 2−Ω(λ)

This concludes the proof of Lemma 5.7.

Lemma 5.8. For any PPT adversary A, we have

Pr[E3-ν-1-1] =
1

mmax
Pr[E3-ν-1]

Proof. First, we consider the game (denoted by Game X) that is the same as Game 3-ν-1 except
that A’s output is defined as ⊥ when m′

ν 6= mν . Note that the challenger does not abort the game
in Game X in contrast to Game 3-ν-1-1. It is obvious that the probabilities that A outputs 1 are
equal in Game X and Game 3-ν-1-1 respectively. Then, we have

Pr[E3-ν-1-1] = Pr[EX ] =
∑

i∈[mmax]

Pr[m′
ν = i]Pr[mν = i ∧ E3-ν-1|m′

ν = i]

=
1

mmax

∑
i∈[mmax]

Pr[mν = i ∧ E3-ν-1]

=
1

mmax
Pr[E3-ν-1].
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The second line follows from the fact that m′
ν is chosen independently from A’s view in Game X

and its value does not affect A’s behavior.

Lemma 5.9. For any PPT adversary A, we have

|Pr[E3-ν-1-1]− Pr[E3-ν-1-2]| ≤ 2−Ω(λ).

Proof. For i > m′
ν , we define (Di,D

∗
i ) as

Di :=


1

1

1

a

Bi, D∗
i :=


1

1

1

1/a

B∗
i ∈ GL4(Zp).

Ciphertexts except the ν-th one and secret keys that have indices greater than m′
ν are changed as

cj,i = (βjx
0
j,i, (1− βj)x

1
j,i, zj , 0)Bi = (βjx

0
j,i, (1− βj)x

1
j,i, zj , 0)


1

1

1

1/a

Di

= (βjx
0
j,i, (1− βj)x

1
j,i, zj , 0)Di for all i > m′

ν ,

k`,i = (y0`,i, y
1
`,i, r`,i, r̃`,i)B

∗
i = (y0`,i, y

1
`,i, r`,i, r̃`,i)


1

1

1

a

D∗
i

= (y0`,i, y
1
`,i, r`,i, ar̃`,i)D

∗
i for all i > m′

ν ,

where βj = 0 if j < ν and βj = 1 if j ≥ ν. Note that secret keys whose all indices are greater
than m′

ν are not affected by the basis change because {r̃`,i}i∈S`
s.t.

∑
i∈S`

r̃`,i = 0 and {ar̃`,i}i∈S`

s.t.
∑

i∈S`
r̃`,i = 0 are identically distributed. Finally, when m′

ν = mν , this basis change does not
affect ctν,mν

because it is applied only for the bases with indices i > mν . Hence, in Game 3-ν-1-1
and Game 3-ν-1-2, A’s view is identically distributed unless a = 0.

Lemma 5.10. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E3-ν-1-2]− Pr[E3-ν-1-3]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using A. In the
beginning of the simulation, B chooses a m′

ν ← [mmax] as a guess of mν . If the guess is incorrect,
B aborts and outputs 0. Otherwise, B outputs A’s output as it is. B obtains an SXDH instance
with ι := 2, i.e., (G, [a]2, [e]2, [tβ ]2) and gives pp := G to A. B defines dual orthonormal bases
as Bi ← GL4(Zp) for each index i. Then, all ciphertexts and the `-th secret key s.t. (maxS` ≤
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m′
ν)∨ (minS` > m′

ν) can be generated by using Bi and B∗
i . For the `-th secret key s.t. (maxS` >

m′
ν) ∧ (minS` ≤ m′

ν), B computes secret keys as follows.

u`,i, u
′
`,i ← Zp s.t.

∑
i∈S`

u`,i =
∑
i∈S`

u′
`,i = 0,

[k`,i]2 :=


[(y0`,i, y

1
`,i, r`,i, eu`,i + u′

`,i)B
∗]2 (i ∈ S`, i ≤ m′

ν)

[(y0`,i, y
1
`,i, r`,i, tβu`,i + au′

`,i)B
∗]2

= [(y0`,i, y
1
`,i, r`,i, a(eu`,i + u′

`,i) + βfu`,i)B
∗]2

(i ∈ S`, i > m′
ν)

Then, we can define r̃`,i := eu`,i + u′
`,i. In the case of β = 0, [k`,i]2 is distributed identically to

Game 3-ν-1-2. Next, we consider the case β = 1. First, {r̃`,i}i∈S`
and {u`,i}i∈S`

are independently
distributed because the information of {u`,i}i∈S`

in {r̃`,i}i∈S`
is completely hidden by {u′

`,i}i∈S`
.

Therefore, we can set r̄`,i :=

r̃`,i (i ∈ S`, i ≤ m′
ν)

ar̃`,i + fu`,i (i ∈ S`, i > m′
ν)

, unless f = 0. Hence, [k`,i]2 is

distributed identically to Game 3-ν-1-3 if β = 1.

Lemma 5.11. For any PPT adversary A, we have

|Pr[E3-ν-1-3]− Pr[E3-ν-1-4]| ≤ 2−Ω(λ).

Proof. Here, we denote the event such that m′
ν = mν in Game ι by Xι. By the game definition,

we have

|Pr[E3-ν-1-3]− Pr[E3-ν-1-4]|

=|Pr[X3-ν-1-3]Pr[E3-ν-1-3|X3-ν-1-3]− Pr[X3-ν-1-4]Pr[E3-ν-1-4|X3-ν-1-4]|

=|Pr[X3-ν-1-3](Pr[E3-ν-1-3|X3-ν-1-3]− Pr[E3-ν-1-4|X3-ν-1-4])|.

In the third line, we use the fact that A’s view is identical before the ν-th ciphertext query, and
we have Pr[X3-ν-1-3] = Pr[X3-ν-1-4]. Therefore, it is sufficient to prove that |Pr[E3-ν-1-3|X3-ν-1-3] −
Pr[E3-ν-1-4|X3-ν-1-4])| ≤ 2−Ω(λ). For the purpose, we analyze A’s view under the condition such
that m′

ν = mν .
We define (Di,D

∗
i ) for all i ∈ [mν ] as

Di :=


1

1

1
x0
ν,i

z̃ν
−x1

ν,i

z̃ν
0 1

Bi, D∗
i :=


1 −x0

ν,i

z̃ν

1
x1
ν,i

z̃ν

1 0

1

B∗
i ∈ GL4(Zp).
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Observe that (Di,D
∗
i ) are random dual orthonormal bases. Then, for all j ∈ [qct], we have

cj,i = (βjx
0
j,i, (1− βj)x

1
j,i, zj , β̂j z̃ν)Bi

= (βjx
0
j,i, (1− βj)x

1
j,i, zj , β̂j z̃ν)


1

1

1

−x0
ν,i

z̃ν

x1
ν,i

z̃ν
0 1

Di

= ((βj − β̂j)x
0
j,i, (1− βj + β̂j)x

1
j,i, zj , β̂j z̃ν)Di,

where βj = 0 if j < ν and βj = 1 if j ≥ ν, and β̂j = 0 if j 6= ν and β̂j = 1 if j = ν. On the other
hand, for all ` s.t. maxS` ≤ mν , we have

k`,i = (y0`,i, y
1
`,i, r`,i, r̃`,i)B

∗
i = (y0`,i, y

1
`,i, r`,i, r̃`,i)


1

x0
ν,i

z̃ν

1 −x1
ν,i

z̃ν

1 0

1

D∗
i

= (y0`,i, y
1
`,i, r`,i, r̃`,i +

1

z̃ν
(x0

ν,iy
0
`,i − x1

ν,iy
1
`,i))D

∗
i .

Here, we have the condition Eq. (3.6) s.t.
∑

i∈S`
(x0

ν,iy
0
`,i − x1

ν,iy
1
`,i) = 0, because S` ⊆ [mν ].

Hence, we can set r̃′`,i := r̃`,i +
1
z̃ν
(x0

ν,iy
0
`,i − x1

ν,iy
1
`,i). Observe that r̃′`,i is randomly distributed s.t.∑

i∈S`
r̃′`,i = 0. In the same way, for all ` s.t. (maxS` > mν) ∧ (minS` ≤ mν), we have

k`,i =

(y0`,i, y
1
`,i, r`,i, r̄`,i +

1
z̃ν
(x0

ν,iy
0
`,i − x1

ν,iy
1
`,i))D

∗
i (i ≤ mν)

(y0`,i, y
1
`,i, r`,i, r̄`,i)B

∗
i (i > mν)

In this case, there is no condition on (x0
ν,iy

0
`,i−x1

ν,iy
1
`,i). However, because r̄`,i are chosen randomly

from Zp, then r̄′`,i := r̄`,i +
1
z̃ν
(x0

ν,iy
0
`,i − x1

ν,iy
1
`,i) are also random elements in Zp. Note that for

all ` s.t. minS` > mν , this basis change does not affect sk`,S`
because we only change the bases

for i ≤ mν . Then, in Game 3-ν-1-3 and Game 3-ν-1-4, A’s view is identically distributed unless
z̃ν = 0 under the condition such that m′

ν = mν .

Lemma 5.12. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E3-ν-1-4]− Pr[E3-ν-1-5]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Lemma 5.12 can be proven by just the reverse of Game 3-(ν − 1)-1-1 to Game 3-ν-1-3, so we
omit the proof.

Lemma 5.13. For any PPT adversary A, we have

Pr[E3-ν-1-5] =
1

mmax
Pr[E3-ν-2]

The difference between Game 3-ν-1-5 and 3-ν-2 is just the existence of the abort condition
introduced in Game 3-ν-1-1. Then, we can prove Lemma 5.13 similarly to Lemma 5.8.
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Lemma 5.14. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E3-ν-2]− Pr[E3-ν-3]| ≤ AdvSXDH
B (λ).

This lemma can be proven by just the reverse of Game 3-(ν − 1)-3 to Game 3-ν-1, so we omit
the proof.

Lemma 5.15. For any PPT adversary A, we have

Pr[E3-qct-3] = Pr[E4].

Proof. We define (Di,D
∗
i ) as

Di :=


1

1

1

1

Bi, D∗
i :=


1

1

1

1

B∗
i ∈ GL4(Zp).

Observe that (Di,D
∗
i ) are random dual orthonormal bases. Then, for all j ∈ [qct] and ` ∈ [qsk], we

have

cj,i = (0, x1
j,i, zj , 0)Bi = (x1

j,i, 0, zj , 0)Di for all i ∈ [mj ],

k`,i = (y0`,i, y
1
`,i, r`,i, r̃`,i)B

∗
i = (y1`,i, y

0
`,i, r`,i, r̃`,i)D

∗
i for all i ∈ S`.

Then, in Game 3-qct-3 and Game 4, A’s view is identically distributed.

Lemma 5.16. For any PPT adversary A, there exists a PPT adversary B1 for the SXDH and B2
for PRF s.t.

|Pr[E4]− Pr[E5]| ≤ (2qsk + 1)AdvSXDH
B1

(λ) + AdvPRFB2
(λ) + 2−Ω(λ).

This lemma can be proven by just the reverse of Games 0 to 2, so we omit the proof.

5.2.3 Selectively Function-Hiding Scheme for (E:sep, K:sep, D:ct-dom)

In this section, we explain our selectively function-hiding Priv-UIPFE scheme for the (E:sep, K:sep,
D:ct-dom) setting, of which the function class is defined as follows.

Definition 5.1 (Bounded-Norm Unbounded Inner Product over Z (E:sep, K:sep, D:ct-dom)).
This function family FUIP2

X,Y , where X,Y ∈ N, consists of functions fS,y : X → Z ∪ {⊥}, where
S ⊂ N, y := (yi)i∈S ∈ ZS s.t. ||y||∞ ≤ Y , and X = {(x, U) | (x, U) ∈

⋃
i∈N Zi × Ui, ||x||∞ ≤ X},

where Ui = {U | U ⊂ N, |U | = i}. We define the function for all (x, U) ∈ X as

fS,y(x, U) :=


∑

i∈S xiyi (S ⊆ U)

⊥ (S * U)
.
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The syntax of UIPFE for (E:sep, K:sep, D:ct-dom) is the same as that of UIPFE for (E:con,
K:sep, D:ct-dom) except that vectors to be encrypted can be a separate one. More precisely, a
vector to be encrypted has a form such that x := (xi)i∈U for a index set U rather than x :=

(xi)i∈[m]. The construction of our selectively function-hiding scheme for (E:sep, K:sep, D:ct-dom)
is the same as our E:con scheme (Section 5.2.1) except that the form of vectors to be encrypted
is x := (xi)i∈U rather than x := (xi)i∈[m], where U ⊆ [u] for any polynomial u := u(λ). The
correctness holds in the same manner as our E:con scheme. The security statement is somewhat
different from that of our E:con scheme as follows.

Theorem 5.2. Assume that the SXDH assumption holds and F is a PRF family, then our Priv-
UIPFE is selectively function-hiding in the (E:sep, K:sep, D:ct-dom) setting. More formally, for
any PPT adversary A and security parameter λ, there exists a PPT adversary B1 for the SXDH
and B2 for the PRF family, we have

AdvPriv-UIPFE
A (λ) ≤ (4qsk + 4qct + 2)AdvSXDH

B1
(λ) + 2AdvPRFB2

(λ) + 2−Ω(λ).

Proof. The proof of Theorem 5.2 is almost the same as that of Theorem 5.1 except the Game 3
sequence. That is, instead of guessing the index set of the ν-th ciphertext between Game 3-ν-1 and
3-ν-2, which incurs exponential security loss in the adaptive E:sep setting, the reduction obtains
the index set before it generates the secret keys in the selective setting. Concretely, the game
transition is changed to the following way.

Game 3-ν-1 (ν ∈ [qct]): Game 2 is equivalent to Game 3-0-5. This game is the same as Game
3-(ν − 1)-5 except that in the ν-th ciphertext query, cν,i is set as

z̃ν ← Zp, cν,i := (x0
ν,i, 0, zν , z̃ν )Bi for all i ∈ Uν .

Game 3-ν-2 (ν ∈ [qct]): This game is the same as Game 3-ν-1 except the following. In the `-th
secret key query for all ` s.t. whose index set S` contains both elements that are contained
in Uν and not contained in Uν , i.e., (S` ∩ Uν 6= φ) ∧ (S`\Uν 6= φ), k`,i is set as

k`,i :=

(y0`,i, y
1
`,i, r`,i, r̃`,i)B

∗
i (i ∈ S`, i ∈ Uν)

(y0`,i, y
1
`,i, r`,i, ar̃`,i )B

∗
i (i ∈ S`, i 6∈ Uν)

where a← Zp, r̃`,i ← Zp s.t.
∑

i∈S`
r̃`,i = 0.

Game 3-ν-3 (ν ∈ [qct]): This game is the same as Game 3-ν-2 except that in the `-th secret key
query for all ` s.t. (S` ∩ Uν 6= φ) ∧ (S`\Uν 6= φ), k`,i is set as

r̄`,i ← Zp, k`,i := (y0`,i, y
1
`,i, r`,i, r̄`,i )B

∗
i for all i ∈ S`.

Game 3-ν-4 (ν ∈ [qct]): This game is the same as Game 3-ν-3 except that in the ν-th ciphertext
query, cν,i is set as

v ← Zp, cν,i := ( 0, x1
ν,i , zν , z̃ν)Bi for all i ∈ Uν .
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Game 3-ν-5 (ν ∈ [qct]): This game is the same as Game 3-ν-4 except that in the ν-th ciphertext
query and all secret key queries, cν,i and k`,i are set as

cν,i := (0, x1
ν,i, zν , 0 )Bi for all i ∈ Uν ,

k`,i := (y0`,i, y
1
`,i, r`,i, r̃`,i )B

∗
i for all i ∈ S`,

where r̃`,i ← Zp s.t.
∑

i∈S`
r̃`,i = 0.

In the E:sep setting, we can classify secret keys into three types for ν-th ciphertext in the same
way as the E:con setting. Namely,

1. The index set S of the secret key is included in Uν , i,e., S ⊆ Uν .

2. A part of the index set S is included in Uν , i.e., (S` ∩ Uν 6= φ) ∧ (S`\Uν 6= φ).

3. The index set S and Uν are disjoint, i.e., S ∩ Uν = φ.

Observe that the way of the classification is the same as the E:con case. In addition, proofs of
lemmas in the game transition are almost the same because the treatment of each type of keys is
not changed. Note that the reduction from the difference between Game 3-ν-1 and 3-ν-2 to the
SXDH problem in the E:con case does not need guess. Then we have

|Pr[E3-(ν − 1)-5]− Pr[E3-ν-5]| ≤ 4AdvSXDH
B (λ) + 2−Ω(λ).

5.2.4 Fully Function-Hiding Scheme for (E:sep, K:sep, D:eq)

In this section, we explain our fully function-hiding Priv-UIPFE scheme for the (E:sep, K:sep,
D:eq) setting, of which the function class is defined as follows.

Definition 5.2 (Bounded-Norm Unbounded Inner Product over Z (E:sep, K:sep, D:eq)). This
function family FUIP3

X,Y , where X,Y ∈ N, consists of functions fS,y : X → Z ∪ {⊥}, where S ⊂ N,
y := (yi)i∈S ∈ ZS s.t. ||y||∞ ≤ Y , and X = {(x, U) | (x, U) ∈

⋃
i∈N Zi × Ui, ||x||∞ ≤ X}, where

Ui = {U | U ⊂ N, |U | = i}. We define the function for all (x, U) ∈ X as

fS,y(x, U) :=


∑

i∈S xiyi (S = U)

⊥ (S 6= U)
.

Construction. In the following scheme, norm limits Xλ, Yλ are some polynomials. Let F :=

{FK}K∈Kλ
be a PRF family with a key space Kλ consisting of functions FK : {0, 1}∗ → Zp. Note

that a PRF family with variable length is constructible from one-way functions in the standard
model [BR05].

Setup(1λ): Takes a security parameter 1λ and chooses bilinear groups G ← GBG(1λ) a PRF key
K ← Kλ. Outputs

pp := G, msk := K.
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Enc(pp,msk, U,x): Takes pp,msk, U, and x := (xi)i∈U ∈ ZU . Sets bi,j := FK(U ||$||i(2|U |+5)+ j),
BU := (bi,j)i,j∈[2|U |+5] ∈ M2|U |+5(Zp), and cU := (x, 0|U |, r, 0, 0, 0)BU ∈ Z2|U |+5

p where
r← Z2

p. Outputs
ctU := (U, [cU ]1).

If BU is a singular matrix, outputs ⊥. Note that $ is a special symbol that is not used to
encode U and i(2|U |+ 5) + j.

KeyGen(pp,msk, S,y): Takes pp,msk, S, and y := (yi)i∈S ∈ ZS . Sets bi,j := FK(S||$||i(2|S|+5)+j)

and BS := (bi,j)i,j∈[2|S|+5] ∈ M2|S|+5(Zp). Then computes kS := (y, 0|S|, 0, 0, s, 0)B∗
S ∈

Z2|S|+5
p where s← Z2

p. Outputs
skS := (S, [kS ]2).

If BS is a singular matrix, outputs ⊥.

Dec(pp, ctU , skS): Takes pp, a ciphertext ctU , and a secret key skS . If U = S, then computes

h := e([cU ]1, [kS ]2),

and searches for d s.t. e(g1, g2)
d = h exhaustively in the range of −|U |XλYλ to |U |XλYλ. If

such d is found, outputs d. Otherwise, outputs ⊥.

Correctness. This scheme is correct if F is a PRF family. We consider the case where BU is
invertible. Observe that if U = S,

h = e([cU ]1, [kS ]2) = e(g1, g2)
∑

i∈U xiyi .

If ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, then |〈x,y〉| ≤ |U |XλYλ and Dec outputs
∑

i∈U xiyi. Hence, if
BU is invertible without a negligible probability, our scheme is correct. By the similar logic to our
Priv-UIPFE scheme in Section 5.2.1, the above statement holds.

Security. We briefly explain the proof idea. The challenger first changes the way to generate a
matrix BU as BU ← GL2|U |+5(Zp). A PPT adversary cannot distinguish this change similarly to
Lemma 5.1. At this point, the situation is the same as one where the fully function hiding bounded
IPFE schemes by Tomida et al. [TAO16] are executed in parallel for each index set. Hence, the
security of the above scheme is reduced to that of their scheme.

5.3 Public-Key Unbounded Inner Product Functional En-
cryption

We present our main public-key unbounded IPFE scheme, that is, a FE scheme for FUIP
X,Y . In the

following scheme, norm limits Xλ, Yλ are some polynomials.
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5.3.1 Construction

Setup(1λ): Takes a security parameter 1λ and generates G← GBG(1λ) and B← GL7(Zp). Outputs

pk := (G, [b1]1, . . . , [b4]1), msk := (b∗
1, . . . ,b

∗
4),

where bi (resp. b∗
j ) denotes the i-th row of B (resp. j-th row of B∗).

Enc(pk,x): Takes pk and x := (x1, . . . , xm) ∈ Zm where m = m(λ) is any polynomial. Defines
ci := (πi(1, i), xi, z, 0, 0, 0)B ∈ Z7

p for all i ∈ [m], where πi, z ← Zp. Outputs

ctm := ([c1]1, . . . , [cm]1).

KeyGen(pk,msk, S,y): Takes pk, msk, a non-empty index set S ⊆ [s] where s = s(λ) is any
polynomial, and an indexed vector y := (yi)i∈S ∈ ZS . Chooses {ri}i∈S ← Zp s.t.

∑
i∈S ri =

0 and ρi ← Zp, and defines ki := (ρi(−i, 1), yi, ri, 0, 0, 0)B∗ ∈ Z7
p for all i ∈ S. Outputs

skS := (S, {[ki]2}i∈S).

Dec(pk, ctm, skS): Takes pk, a ciphertext ctm for m dimensional vector, and a secret key skS for a
index set S. If S ⊆ [m], then computes

h :=
∏
i∈S

e([ci]1, [ki]2),

and searches for d s.t. e(g1, g2)
d = h exhaustively in the range of −|S|XλYλ to |S|XλYλ. If

such d is found, outputs d. Otherwise, outputs ⊥.

Correctness. Observe that if S ⊆ [m],

h =
∏
i∈S

e([ci]1, [ki]2) = e(g1, g2)
∑

i∈S〈ci,ki〉 = e(g1, g2)
∑

i∈S(xiyi+zri).

Here we have
∑

i∈S ri = 0, then h = e(g1, g2)
∑

i∈S xiyi . If ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, then
|
∑

i∈S xiyi| ≤ |S|XλYλ and Dec outputs
∑

i∈S xiyi.

5.3.2 Security

Theorem 5.3. Assume that the SXDH assumption holds, then our Pub-UIPFE is adaptively
secure. More formally, let mmax be the maximum length of the challenge vector that A outputs
and smax be the maximum index with which A queries the key generation oracle, then for any PPT
adversary A and security parameter λ, there exists a PPT adversary B for the SXDH s.t.

AdvPub-UIPFE
A (λ) ≤ {16m2

max + 8mmax(smax − 1) + 4}AdvSXDH
B (λ) + 2−Ω(λ).
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Proof Outline. The top-level strategy of the security proof is simple. Consider a world where
an encryption algorithm could magically generate unbounded random dual orthonormal bases for
each index. Then we observe that only one loop of the Game 3 sequence in the Priv-UIPFE
scheme suffices for the Pub-UIPFE scheme because there is one challenge ciphertext query and
no challenge secret key query. To generate such a situation, we utilize an entropy-amplification
technique like [OT12b] and show that PPT adversaries cannot distinguish the real world from
the “magical” world under the SXDH assumption. In the following, we provide a more concrete
overview of the proof. Similarly to the Game 3 sequence in the Priv-UIPFE scheme, we first change
the challenge ciphertext and all secret keys into the following form,

z̃, {r̃`,i}i∈S`
← Zp s.t.

∑
i∈S`

r̃`,i = 0,

ci := (πi(1, i), x
0
i , z, z̃ , 0, 0)B, k`,i := (ρ`,i(−i, 1), y`,i, r`,i, r̃`,i , 0, 0)B

∗.

Next, we change k`,i for all ` s.t. (maxS` > m′) ∧ (minS` ≤ m′), where m′ is the guess of the
vector length for the challenge ciphertext, as

{r̄`,i}i∈S`
← Zp, k`,i := (ρ`,i(−i, 1), y`,i, r`,i, r̄`,i , 0, 0)B

∗. (5.1)

Then, we change ci as

ci := (πi(1, i), x1
i , z, z̃, 0, 0)B, (5.2)

similar to Priv-UIPFE. The remaining sequence is just the reverse. In the case of the Priv-UIPFE
scheme, recall that we perform distinct basis changes for each index in the steps of Eq. (5.1) and
Eq. (5.2). However, we cannot perform such basis changes in Pub-UIPFE, because all indices
share the same dual orthonormal bases. To overcome this difficulty, we conduct this step by
computational change on the basis of the SXDH assumption. Specifically, we introduce the Lemmas
5.17 and 5.18 and use them in the proof as a kind of basis change in Priv-UIPFE. Especially, it
is relatively easy to see that Lemma 5.18 can be used for showing that PPT adversaries cannot
distinguish the real world, i.e., β = 0, from the “magical” world, i.e., β = 1, where dual orthonormal
bases for each index are “somewhat” random. In other words, in the case of β = 1, dual orthonormal
bases for index i is generated as

Di :=


I2

1

1

wi 1

I2

B, D∗
i :=


I2

1 −wi

1

1

I2

B∗. (5.3)

Lemma 5.17 is used for the step of Eq. (5.1), which corresponds to Games 3-ν-2 and 3-ν-3 in
the proof of Priv-UIPFE, and Lemma 5.18 is used for the step of Eq. (5.2), which corresponds to
Game 3-ν-4 in the proof of Priv-UIPFE. In our Pub-UIPFE scheme, there are three-dimensional
subspaces that are not used in the actual function: the 5-7th spaces. The fifth space is a kind of
a semi-functional space that is similar to the fourth space of our Priv-UIPFE scheme. The sixth
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and seventh spaces are necessary to amplify the entropy of the two dimensional prefix for the proof
of the lemmas. Similar to here, adding extra spaces other than the semi-functional space and
amplifying the entropy in the space are also done in [LW11,OT12b,CGKW18].

Lemma 5.17. For any polynomial m := m(λ) and n := n(λ), we define the following distribution,

G← GBG(1λ), B← GL7(Zp), {πi}i∈[m], z̃ ← Zp,

ui := (πi(1, i), 0, 0, z̃, 0, 0)B for all i ∈ [m],

D := (G, [b1]1, . . . , [b4]1, [b
∗
1]2, . . . , [b

∗
5]2, [u1]1, . . . , [um]1),

{ρ′i}i∈[m+1,n], {r′i}i∈[m+1,n] ← Zp,

u∗
i,β := (ρ′i(−i, 1), 0, 0, βr′i, 0, 0)B

∗ for all i ∈ [m+ 1, n],

Uβ := {[u∗
i,β ]2}i∈[m+1,n].

For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

AdvP1A (λ) :=|Pr[1← A(D,U0)]− Pr[1← A(D,U1)]| ≤ 4(n−m)AdvSXDH
B (λ) + 2−Ω(λ).

Lemma 5.18. For any polynomial m := m(λ) and n := n(λ), we define the following distribution,

G← GBG(1λ), B← GL7(Zp), {ρ′i}i∈[m+1,n] ← Zp,

u∗
i := (ρ′i(−i, 1), 1, 0, 0, 0, 0)B

∗ for all i ∈ [m+ 1, n],

D := (G, [b1]1, . . . , [b4]1, [b
∗
1]2, [b

∗
2]2, [b

∗
4]2, [b

∗
5]2, {[u∗

i ]2}i∈[m+1,n]),

{π′
i}i∈[m], {ρ′i}i∈[m], {wi}i∈[m] ← Zp,

ui,β := (π′
i(1, i), βwi, 0, 1, 0, 0)B for all i ∈ [m],

u∗
i,β := (ρ′i(−i, 1), 1, 0,−βwi, 0, 0)B

∗ for all i ∈ [m],

Uβ := {[ui,β ]1, [u
∗
i,β ]2}i∈[m].

For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

AdvP2A (λ) := |Pr[1← A(D,U0)]− Pr[1← A(D,U1)]| ≤ 8mAdvSXDH
B (λ) + 2−Ω(λ).

The proofs of Lemmas 5.17 and 5.18 are presented in Section 5.3.3.

Proof of Theorem 5.3. We prove Theorem 5.3 by a series of games. For each game transition,
we evaluate the probabilities that the adversary A outputs 1 in both games. In each game, the
challenger chooses a random element m′ ← [mmax] as a guess of m∗ at the beginning of the games.

Game 0: This game is the same as the real security game where the challenge ciphertext is the
encryption of x0 as described in Definition 3.6. That is, the challenge ciphertext for a pair
of vectors (x0,x1) ∈ (Zm∗

)2 is replied as

ci := (πi(1, i), x
0
i , z, 0, 0, 0)B for all i ∈ [m∗]

ctm∗ := ([c1]1, . . . , [cm∗ ]1).
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The `-th secret key query with an index set S` and vector y` ∈ ZS` is replied as

k`,i := (ρ`,i(−i, 1), y`,i, r`,i, 0, 0, 0)B∗ for all i ∈ S`

sk`,S`
:= (S`, {[k`,i]2}i∈S`

).

Game 1: This game is the same as Game 0 except that ci in the challenge ciphertext is set as

z̃ ← Zp, ci := (πi(1, i), x
0
i , z, z̃ , 0, 0)B for all i ∈ [m∗].

Game 2: This game is the same as Game 1 except that in all secret key queries, k`,i for all ` ∈ [qsk]

is set as

r̃`,i ← Zp s.t.
∑
i∈S`

r̃`,i = 0,

k`,i := (ρ`,i(−i, 1), y`,i, r`,i, r̃`,i , 0, 0)B
∗ for all i ∈ S`.

Game 3: This game is the same as Game 2 except that the challenger aborts the game immediately
if the vector length of the ν-th ciphertext query is not m′ i.e., m′ 6= m∗. We define that A’s
output is ⊥ when the game is aborted.

Game 4: This game is the same as Game 3 except that in the `-th secret key query for all ` s.t.
(maxS` > m′) ∧ (minS` ≤ m′), k`,i is set as

r̄`,i ← Zp,

k`,i := (ρ`,i(−i, 1), y`,i, r`,i, r̄`,i , 0, 0)B
∗ for all i ∈ S`.

Game 5: This game is the same as Game 4 except that ci and k`,i in the challenge ciphertext
and the `-th secret key for all ` s.t. minS` ≤ m′ are generated as

wi, r̃`,i, r̄`,i ← Zp s.t.
∑
i∈S`

r̃`,i = 0,

ci := (πi(1, i), x0
i + wiz̃ , z, z̃, 0, 0)B for all i ∈ [m′],

k`,i:=

(ρ`,i(−i, 1), y`,i, r`,i, r̃`,i − wiy`,i , 0, 0)B
∗ (i ∈ [m′],maxS` ≤ m′)

(ρ`,i(−i, 1), y`,i, r`,i, r̄`,i − wiy`,i , 0, 0)B
∗ (i ∈ [m′],maxS` > m′)

.

Observe that the above instances also can be written as

ci := (πi(1, i), x
0
i , z, z̃, 0, 0) Di for all i ∈ [m′],

k`,i :=

(ρ`,i(−i, 1), y`,i, r`,i, r̃`,i, 0, 0) D∗
i (i ∈ [m′],maxS` ≤ m′)

(ρ`,i(−i, 1), y`,i, r`,i, r̄`,i, 0, 0) D∗
i (i ∈ [m′],maxS` > m′),

where Di and D∗
i are the same as Eq. (5.3).
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Game 6: This game is the same as Game 5 except that ci in the challenge ciphertext is set as

wi, z̃ ← Zp, ci := (πi(1, i), x1
i + wiz̃ , z, z̃, 0, 0)B for all i ∈ [m′].

Game 7: This game is the same as Game 6 except that in challenge ciphertext and all secret key
queries, k`,i for all ` ∈ [qsk] is set as

z̃, r̃`,i ← Zp s.t.
∑
i∈S`

r̃`,i = 0,

ci := (πi(1, i), x1
i , z, z̃, 0, 0)B for all i ∈ [m′]

k`,i := (ρ`,i(−i, 1), y`,i, r`,i, r̃`,i , 0, 0)B
∗ for all i ∈ S`.

Game 8: This game is the same as Game 7 except that the abort condition defined in Game 3 is
removed.

Game 9: This game is the same as the real security game where the challenge ciphertext is the
encryption of x1 as described in Definition 3.6. That is, the challenge ciphertext for a pair
of vectors (x0,x1) ∈ (Zm∗

)2 is replied as

ci := (πi(1, i), x
1
i , z, 0 , 0, 0)B for all i ∈ [m∗]

ctm∗ := ([c1]1, . . . , [cm∗ ]1).

The `-th secret key query with an index set S` and vector y` ∈ ZS` is replied as

k`,i := (ρ`,i(−i, 1), y`,i, r`,i, 0 , 0, 0)B∗ for all i ∈ S`

sk`,S`
:= (S`, {[k`,i]2}i∈S`

).

Thanks to Lemma 5.19 to Lemma 5.27, we can conclude the proof of Theorem 5.3.

In the following, we denote the event that A outputs 1 in Game ι by Eι,

Lemma 5.19. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E0]− Pr[E1]| ≤ AdvSXDH
B (λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using A. B obtains an
instance of SXDH with ι := 1, i.e., (G, [a]1, [e]1, [tβ ]1), and sets pp := G. B defines random dual
orthonormal bases B,B∗ as follows,

W← GL7(Zp), B :=


I3

a 1

1 0

I2

W, B∗ :=


I3

0 1

1 −a
I2

W∗ ∈ GL7(Zp).

Then B simulates all secret key queries as follows.

[k`,i]2 := [(ρ`,i(−i, 1), y`,i, r`,i, 0, 0, 0)B∗]2 for all i ∈ S`.
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Note that B cannot compute [b∗
5]2 because it does not know [a]2, but the above instances are

computable without [b∗
5]2. For the challenge, B set [ci]1 for all i ∈ [m∗] in the challenge ciphertext

as

[ci]1 :=[(πi(1, i), x
0
i , 0, 0, 0, 0)B+ (0, 0, 0, tβ , e, 0, 0)W]1

=[(πi(1, i), x
0
i , e, βf, 0, 0)B]1.

Observe that we can implicitly set z := e and z̃ := f , then A’s view is the same as in Game 0
(resp. Game 1) if β = 0 (resp. β = 1).

Lemma 5.20. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E1]− Pr[E2]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using A. B obtains an
instance of SXDH with ι := 2, i.e., (G, [a]2, [e]2, [tβ ]2), and sets pp := G. B defines random dual
orthonormal bases B,B∗ as follows,

W← GL7(Zp), B :=


I3

0 1

1 −a
I2

W, B∗ :=


I3

a 1

1 0

I2

W∗ ∈ GL7(Zp).

Then B simulates challenge ciphertext as follows.

ζ, η ← Zp, [ci]1 :=[(πi(1, i), x
0
i , 0, 0, 0, 0)B+ (0, 0, 0, ζ, η, 0, 0)W]1

=[(πi(1, i), x
0
i , η + aζ, ζ, 0, 0)B]1.

Note that B cannot compute [b5]1 because it does not know [a]1, but the above instances are
computable without [b5]1. Observe that we can implicitly set z := η + aζ and z̃ := ζ, then B
correctly simulates the challenge ciphertext. For the `-th secret key query for ` ∈ [qsk], B replies
to A for all i ∈ S` as

r′`,i, r
′′
`,i ← Zp s.t.

∑
i∈S`

r′`,i =
∑
i∈S`

r′′`,i = 0,

[k`,i]2 := [(ρ`,i(−i, 1), y`,i, r′`,i, 0, 0, 0)B
∗ + r′′`,i(0, 0, 0, tβ , e, 0, 0)W

∗]2

= [(ρ`,i(−i, 1), y`,i, r′`,i + er′′`,i, βfr
′′
`,i, 0, 0)B

∗]2.

We can implicitly set r`,i := r′`,i + er′′`,i and r̃`,i := fr′′`,i unless f = 0, and A’s view is the same as
in Game 1 if β = 0 and Game 2 if β = 1.

Lemma 5.21. For any PPT adversary A, we have

Pr[E3] =
1

mmax
Pr[E2].
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Proof. First, we consider the game (denoted by Game X) that is the same as Game 2 except that
A’s output is defined as ⊥ when m′ 6= m∗. Note that the challenger does not abort the game in
Game X in contrast to Game 3. It is obvious that the probabilities that A outputs 1 are equal in
Game X and Game 3 respectively. Then, we have

Pr[E3] = Pr[EX ] =
∑

i∈[mmax]

Pr[m′ = i]Pr[m∗ = i ∧ E2|m′ = i]

=
1

mmax

∑
i∈[mmax]

Pr[m∗ = i ∧ E2]

=
1

mmax
Pr[E2].

The second line follows from the fact that m′ is chosen independently from A’s view in Game X

and its value does not affect A’s behavior.

Lemma 5.22. Let mmax be the maximum length of the challenge vector and smax be the maximum
index with which A queries the key generation oracle. For any PPT adversary A, there exists a
PPT adversary B for the SXDH s.t.

|Pr[E3]− Pr[E4]| ≤ 4(smax − 1)AdvSXDH
B (λ) + 2−Ω(λ).

Proof. We show that we can make a reduction algorithm B that distinguishes the instance of
Lemma 5.17 using A. B first chooses m′ ← [mmax] as a guess of m∗. If the guess is incorrect, i.e.,
m′ 6= m∗, then B outputs 0. Otherwise, B outputs A’s output as it is. B obtains an instance of
Lemma 5.17 with n := smax and m := m′, and sets pk := (G, [b1]1, . . . , [b4]1). For the challenge, B
sets [ci]1 for all i ∈ [m∗] in the challenge ciphertext as

z ← Zp, [ci]1 := [ui + x0
ib3 + zb4]1 = [(πi(1, i), x

0
i , z, z̃, 0, 0)B]1.

On the other hand, B generates the `-th secret key for all ` s.t. (maxS` ≤ m′)∨ (minS` > m′) by
using [b∗

1]2, . . . , [b
∗
5]2,

ρ`,i, r`,i, r̃`,i ← Zp s.t.
∑
i∈S`

r`,i =
∑
i∈S`

r̃`,i = 0,

[k`,i]2 := [(ρ`,i(−i, 1), y`,i, r`,i, r̃`,i, 0, 0)B∗]2 for all i ∈ S`.

B generates the `-th secret key for all ` s.t. (maxS` > m′) ∧ (minS` ≤ m′) as

ρ`,i ← Zp for i ≤ m′, α`,i, ρ̃`,i ← Zp for i > m′,

r`,i, r̃`,i ← Zp s.t.
∑
i∈S`

r`,i =
∑
i∈S`

r̃`,i = 0,

[k`,i]2 :=


[(ρ`,i(−i, 1), y`,i, r`,i, r̃`,i, 0, 0)B∗]2 (i ≤ m′)

[α`,iu
∗
i,β + (ρ̃`,i(−i, 1), y`,i, r`,i, r̃`,i, 0, 0)B∗]2

=[((ρ̃`,i + α`,iρ
′
i)(−i, 1), y`,i, r`,i, r̃`,i + βα`,ir

′
i, 0, 0)B

∗]2.
(i > m′)
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for all i ∈ S`. Observe that we can set ρ`,i := ρ̃`,i + α`,iρ
′
i for i > m′. We can also set

r̄`,i :=

r̃`,i (i ∈ S`, i ≤ m′)

r̃`,i + α`,ir
′
i (i ∈ S`, i > m′).

unless r′i = 0. This is because the information of α`,i in ρ`,i is hidden by ρ̃`,i, then {r̃`,i}i∈S`,i≤m′

and {α`,ir
′
i}i∈S`,i>m′ are independently random elements in Zp. Hence, A’s view is the same as in

Game 3 if β = 0 and Game 4 if β = 1, and we have

|Pr[E3]− Pr[E4]|=

∣∣∣∣∣∣
∑

i∈[mmax]

(Pr[m′ = i]Pr[E2|m′ = i]− Pr[m′ = i]Pr[E3|m′ = i])

∣∣∣∣∣∣
≤

∑
i∈[mmax]

Pr[m′ = i]× 4(smax − i)AdvSXDH
B (λ) + 2−Ω(λ)

≤ 1

mmax

∑
i∈[mmax]

4(smax − 1)AdvSXDH
B (λ) + 2−Ω(λ)

= 4(smax − 1)AdvSXDH
B (λ) + 2−Ω(λ). �

Lemma 5.23. Let mmax be the maximum length of the challenge vector. For any PPT adversary
A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E4]− Pr[E5]| ≤ 8mmaxAdv
SXDH
B (λ) + 2−Ω(λ).

Proof. We show that we can make a reduction algorithm B that distinguishes the instance of
Lemma 5.18 using A. B first chooses m′ ← [mmax] as a guess of m∗. If the guess is incorrect, i.e.,
m′ 6= m∗, then B outputs 0. Otherwise, B outputs A’s output as it is. B obtains an instance of
Lemma 5.18 with n := smax and m := m′ and sets pk := (G, [b1]1, . . . , [b4]1). Recall that smax is
the maximum index with which A queries the key generation oracle. For the challenge, B sets [ci]1
for all i ∈ [m∗] in the challenge ciphertext as

z, z̃ ← Zp,

[ci]1 := [z̃ui,β + (0, 0, x0
i , z, 0, 0, 0)B]1 = [(z̃π′

i(1, i), x
0
i + βwiz̃, z, z̃, 0, 0)B]1.

Observe that we can set πi := z̃π′
i unless z̃ = 0. On the other hand, for the `-th secret key query

s.t. maxS` ≤ m′, B replies to A for all i ∈ S` as

ρ′′`,i, r`,i, r̃`,i ← Zp s.t.
∑
i∈S`

r`,i =
∑
i∈S`

r̃`,i = 0,

k`,i := [y`,iu
∗
i,β + (ρ′′`,i(−i, 1), 0, r`,i, r̃`,i, 0, 0)B

∗]2

= [((y`,iρ
′
i + ρ′′`,i)(−i, 1), y`,i, r`,i, r̃`,i − βwiy`,i, 0, 0)B

∗]2.
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For the `-th secret key query s.t. (maxS` > m′) ∧ (minS` ≤ m′), B replies to A for all i ∈ S` as

r`,i, r̄`,i, ρ
′′
`,i ← Zp s.t.

∑
i∈S`

r`,i = 0,

k`,i :=


[y`,iu

∗
i,β + (ρ′′`,i(−i, 1), 0, r`,i, r̄`,i, 0, 0)B

∗]2

= [((y`,iρ
′
i + ρ′′`,i)(−i, 1), y`,i, r`,i, r̄`,i − βwiy`,i, 0, 0)B

∗]2
(i ≤ m′)

[y`,iu
∗
i + (ρ′′`,i(−i, 1), 0, r`,i, r̄`,i, 0, 0)B

∗]2

= [((y`,iρ
′
i + ρ′′`,i)(−i, 1), y`,i, r`,i, r̄`,i, 0, 0)B

∗]2.
(i > m′)

For the `-th secret key query s.t. minS` > m′, B replies to A for all i ∈ S` as

ρ′′`,i, r`,i, r̃`,i ← Zp s.t.
∑
i∈S`

r`,i =
∑
i∈S`

r̃`,i = 0,

k`,i := [y`,iu
∗
i + (ρ′′`,i(−i, 1), 0, r`,i, r̃`,i, 0, 0)B

∗]2

= [((y`,iρ
′
i + ρ′′`,i)(−i, 1), y`,i, r`,i, r̃`,i, 0, 0)B

∗]2.

Observe that we can set ρ`,i := y`,iρ
′
i + ρ′′`,i. Hence, if m′ = m∗, A’s view is the same as in Game

4 if β = 0 and Game 5 if β = 1, and we have

|Pr[E4]− Pr[E5]|=

∣∣∣∣∣∣
∑

i∈[mmax]

(Pr[m′ = i]Pr[E4|m′ = i]− Pr[m′ = i]Pr[E5|m′ = i])

∣∣∣∣∣∣
≤

∑
i∈[mmax]

Pr[m′ = i]× 8iAdvSXDH
B (λ) + 2−Ω(λ)

≤ 1

mmax

∑
i∈[mmax]

8mmaxAdv
SXDH
B (λ) + 2−Ω(λ)

= 8mmaxAdv
SXDH
B (λ) + 2−Ω(λ). �

Lemma 5.24. For any PPT adversary A, we have

|Pr[E5]− Pr[E6]| ≤ 2−Ω(λ).

Proof. Here, we denote the event such that m′ = m∗ in Game ι by Xι. By the game definition,
we have

|Pr[E5]− Pr[E6]|

=|Pr[X5]Pr[E5|X5]− Pr[X6]Pr[E6|X6]|

=|Pr[X5](Pr[E5|X5]− Pr[E6|X6])|

In the third line, we use the fact that A’s view is identical before the ν-th ciphertext query, and
we have Pr[X5] = Pr[X6]. Therefore, it is sufficient to prove that |Pr[E5|X5]− Pr[E6|X6]| ≤ 2−Ω(λ).
For the purpose, we analyze A’s view under the condition such that m′ = m∗.
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We can define w′
i := wi− x1

i−x0
i

z̃ for i ∈ [m∗] unless z̃ = 0 and observe that w′
i are independently

random elements in Zp. Then we have

ci = (πi(1, i), x
0
i + wiz̃, z, z̃, 0, 0)B = (πi(1, i), x

1
i + w′

iz̃, z, z̃, 0, 0)B.

Next, we check the secret keys. The `-th key for all ` s.t. maxS` ≤ m∗ is

k`,i = (ρi,`(−i, 1), y`,i, r`,i, r̃`,i − wiy`,i, 0, 0)B
∗

=

(
ρi,`(−i, 1), y`,i, r`,i, r̃`,i − w′

iy`,i −
y`,i(x

1
i − x0

i )

z̃
, 0, 0

)
B∗.

By the condition Eq. (3.5), we have
∑

i∈S`
y`,i(x

1
i − x0

i ) = 0. Hence we can set r̃′`,i := r̃`,i −
y`,i(x

1
i−x0

i )
z̃ . Observe that r̃′`,i is randomly distributed s.t.

∑
i∈S`

r̃′`,i = 0. In the same way, the
`-th key for all ` s.t. (maxS` > m∗) ∧ (minS` ≤ m∗) is

k`,i =


(
ρi,`(−i, 1), y`,i, r`,i, r̄`,i − w′

iy`,i −
y`,i(x

1
i−x0

i )
z̃ , 0, 0

)
B∗ (i ≤ m∗)

(ρi,`(−i, 1), y`,i, r`,i, r̄`,i, 0, 0)B∗ (i > m∗)

In this case, we have no condition on y`,i(x
1
i − x0

i ) but r̄`,i are independently random elements in
Zp. Then r̄′`,i := r̄`,i− y`,i(x

1
i−x0

i )
z̃ for i ≤ m∗ are also independently random elements in Zp. Finally,

the `-th key for all ` s.t. minS` > m∗ is not related to this conceptual change. From the above
observation, A’s views in Game 5 and Game 6 are identical except the negligible probability.

Lemma 5.25. Let mmax be the maximum length of the challenge vector and smax be the maximum
index with which A queries the key generation oracle. For any PPT adversary A, there exists a
PPT adversary B for the SXDH s.t.

|Pr[E6]− Pr[E7]| ≤ {8mmax + 4(smax − 1)}AdvSXDH
B (λ) + 2−Ω(λ).

We can prove Lemma 5.25 by just the reverse of Games 3 to 5.

Lemma 5.26. For any PPT adversary A, we have

Pr[E7] =
1

mmax
Pr[E8].

We can prove Lemma 5.26 similarly to Lemma 5.21.

Lemma 5.27. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E8]− Pr[E9]| ≤ 2AdvSXDH
B (λ) + 2−Ω(λ).

We can prove Lemma 5.27 by just the reverse of Games 0 to 2.

5.3.3 Proofs of Lemma 5.17 and Lemma 5.18

We present the proofs that we deferred in the previous section.
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Proof of Lemma 5.17. We consider a series of games to prove Lemma 5.17. For each game
transition, we show that the difference of probabilities that A outputs 1 in both games is negligible.

Game 0: This game is the same as the case of β = 0, i.e., A is given an instance (D,U0).

Game 1-µ-1(µ ∈ [m+ 1, n]): We define Game 0 as Game 1-0-4. This game is the same as Game
1-(µ− 1)-4 except that

γ ← Zp, u∗
µ := (ρ′µ(−µ, 1), 0, 0, 0, γ , 0)B∗.

That is, A is given (D,U) where

G← GBG(1λ), B← GL7(Zp), {πi}i∈[m], z̃ ← Zp,

ui := (πi(1, i), 0, 0, z̃, 0, 0)B for all i ∈ [m],

D := (G, [b1]1, . . . , [b4]1, [b
∗
1]2, . . . , [b

∗
5]2, [u1]1, . . . , [um]1),

{ρ′i}i∈[m+1,n], {r′i}i∈[m+1,n] ← Zp,

u∗
i :=


(ρ′i(−i, 1), 0, 0, r′i, 0, 0)B

∗ if i ∈ [m+ 1, µ− 1],

(ρ′i(−i, 1), 0, 0, 0, γ, 0)B
∗ if i = µ,

(ρ′i(−i, 1), 0, 0, 0, 0, 0)B
∗ if i ∈ [µ+ 1, n],

U := {[u∗
i ]2}i∈[m+1,n].

Game 1-µ-2(µ ∈ [m+ 1, n]): This game is the same as Game 1-µ-1 except that for all i ∈ [m],

δi ← Zp, ui := (πi(1, i), 0, 0, z̃, δi , 0)B.

Game 1-µ-3(µ ∈ [m+ 1, n]): This game is the same as Game 1-µ-2 except that

r′µ ← Zp, u∗
µ := (ρ′µ(−µ, 1), 0, 0, r′µ , γ, 0)B∗.

Game 1-µ-4(µ ∈ [m+ 1, n]): This game is the same as Game 1-µ-3 except that

u∗
µ := (ρ′µ(−µ, 1), 0, 0, r′µ, 0 , 0)B∗,

ui := (πi(1, i), 0, 0, z̃, 0 , 0)B for all i ∈ [m].

Observe that Game 1-n-4 is the same as the case of β = 1, i.e., A is given an instance (D,U1).

In the following, we denote the event that A outputs 1 in Game ι by Eι,

Lemma 5.28. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E1-(µ − 1)-4]− Pr[E1-µ-1]| ≤ AdvSXDH
B (λ).
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Proof. We show that we can make a reduction algorithm B for the SXDH using A. B obtains an
instance of SXDH with ι := 2, i.e., (G, [a]2, [e]2, [tβ ]2). B defines random dual orthonormal bases
B,B∗ as follows,

W← GL7(Zp),

B :=



−µ 1

1

1

1

1

1 −a
1


W, B∗ :=



1

a 1 µ

1

1

1

1

1


W∗ ∈ GL7(Zp).

Observe that (B,B∗) are random dual orthonormal bases. B can compute [B]1 and [B∗]2 except
[b6]1 because B does not know [a]1. Hence, B can compute all vectors in D and {[u∗

i ]2}i∈[m+1,n],i6=µ.
Finally, B computes

[u∗
µ]2 := [(tβ , e, 0, 0, 0, 0, 0)W

∗]2 = [(e(−µ, 1), 0, 0, 0, βf, 0)B∗]2.

We can define ρ′µ := e and γ := f , then if β = 0 (resp. β = 1), A obtains the instance of Game
1-(µ− 1)-4 (resp. Game 1-µ-1).

Lemma 5.29. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E1-µ-1]− Pr[E1-µ-2]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using A. B obtains an
instance of SXDH with ι := 1, i.e., (G, [a]1, [e]1, [tβ ]1). B define a matrix R ∈ GL7(Zp) as

R :=

 1 1

−1 −µ
I5

 , R∗ :=
1

1− µ

−µ 1

−1 1

(1− µ)I5

 .

Then B defines random dual orthonormal bases (B,B∗) as follows,

W← GL7(Zp),

B := R−1


a 1

1
1
1
1

1
1

W =
1

1− µ


−µa −µ −1
a 1 1

1−µ
1−µ

1−µ
1−µ

1−µ

W,

B∗ := R>


1

1
1
1
1

1 −a
1

W∗ =


1 −1
1 −µ

1
1
1

1 −a
1

W∗.
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Observe that B can compute [B]1, [B
∗]2 except [b∗

6]2. Hence, B can compute [u∗
i ]2 for all i s.t.

(i ∈ [m+ 1, n]) ∧ (i 6= µ). Next B computes [u∗
µ]2 as

ζ, η ← Zp,

[u∗
µ]2:=[(ζ, η, 0, 0, 0, 0, 0)W∗]2=


(η + aζ, 0, 0, 0, 0, ζ, 0)



1

1

1

1

1

1 −a
1


W∗


2

= [(η + aζ, 0, 0, 0, 0, ζ, 0)R∗B∗]2 =

[(
η + aζ

1− µ
(−µ, 1), 0, 0, 0, 0, ζ, 0

)
B∗
]
2

.

We can implicitly set ρ′µ := η+aζ
1−µ and γ := ζ. Hence, B can simulate all elements in U . Finally, B

computes [ui]1 for all i ∈ [m] as,

z̃, π′
i, π

′′
i ← Zp, ei := eπ′

i + π′′
i ,

[ui]1 :=

[(
tβπ

′
i + aπ′′

i , ei,
(i− 1)ei
i− µ

, 0, 0, z̃, 0

)
W

]
1

=

(ei, (i− 1)ei
i− µ

, 0, 0, z̃, βfπ′
i, 0

)
a 1

1
1
1
1

1
1

W


1

=

[(
ei,

(i− 1)ei
i− µ

, 0, 0, z̃, βfπ′
i, 0

)
RB

]
1

=

[(
(1− µ)ei
i− µ

(1, i), 0, 0, z̃, βfπ′
i, 0

)
B

]
1

.

Observe that ei and π′
i are independent because the information of π′

i in ei is hidden by π′′
i . Then,

we can define πi :=
(1−µ)ei

i−µ and δi := fπ′
i unless f = 0. We can see that if β = 0 (resp. β = 1), A

obtains the instance of Game 1-µ-1 (resp. Game 1-µ-2).

Lemma 5.30. For any PPT adversary A, we have

|Pr[E1-µ-2]− Pr[E1-µ-3]| ≤ 2−Ω(λ).

Proof. We define (D,D∗) as

r′µ ← Zp, D :=


I4

1
r′µ
γ

1

1

B, D∗ :=


I4

1

− r′µ
γ 1

1

B∗ ∈ GL7(Zp).
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Observe that (Di,D
∗
i ) are random dual orthonormal bases and this basis change does not affect

the public vectors, namely, b1, . . . ,b4,b
∗
1, . . . ,b

∗
5. That is, we have

di =

bi i ∈ {1, 2, 3, 4, 6, 7}

b5 +
r′µ
γ b6 i = 5

d∗
i =

b∗
i i ∈ {1, 2, 3, 4, 5, 7}

− r′µ
γ b∗

5 + b∗
6 i = 6

Next, we check ui for all i ∈ [m].

ui =(πi(1, i), 0, 0, z̃, δi, 0)B = (πi(1, i), 0, 0, z̃, δi, 0)


I4

1 − r′µ
γ

1

1

D

=

(
πi(1, i), 0, 0, z̃, δi −

r′µz̃

γ
, 0

)
D.

Observe that we can define δ′i := δi −
r′µz̃

γ , then δ′i for all i ∈ [m] are distributed randomly in Zp.
Finally, we check u∗

i for all i ∈ [m+ 1, n].

u∗
i=(ρ′i(−i, 1), 0, 0, βir

′
i, β̂iγ, 0)B

∗=(ρ′i(−i, 1), 0, 0, βir
′
i, β̂iγ, 0)


I4

1
r′µ
γ 1

1

D∗

= (ρ′i(−i, 1), 0, 0, βir
′
i + β̂ir

′
µ, β̂iγ, 0)D

∗

where βi = 0 if i ≥ µ and βi = 1 if i < µ, and β̂i = 0 if i 6= µ and β̂i = 1 if i = µ. From
the above observation, the instances that A obtains are identically distributed in Game 1-µ-2 and
Game 1-µ-3 unless γ = 0.

Lemma 5.31. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E1-µ-3]− Pr[E1-µ-4]| ≤ 2AdvSXDH
B (λ).

This lemma can be proven by just the reverse of Game 1-(µ− 1)-4 to Game 1-µ-2, so we omit
the proof.

From above lemmas, Lemma 5.17 holds.

Proof of Lemma 5.18. We consider a series of games to prove Lemma 5.18. For each game
transition, we show that the difference of probabilities that A outputs 1 in both games is negligible.

Game 0: This game is the same as the case of β = 0, i.e., A is given an instance (D,U0).
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Game 1-µ-1(µ ∈ [m]): We define Game 0 as Game 1-0-6. This game is the same as Game 1-(µ−1)-
6 except that

γ ← Zp, uµ := (π′
µ(1, µ), 0, 0, 1, γ , 0)B.

That is, A is given (D,U) where

G← GBG(1λ), B← GL7(Zp), {ρ′i}i∈[m+1,n] ← Zp,

u∗
i := (ρ′i(−i, 1), 1, 0, 0, 0, 0)B

∗ for all i ∈ [m+ 1, n],

D := (G, [b1]1, . . . , [b4]1, [b
∗
1]2, [b

∗
2]2, [b

∗
4]2, [b

∗
5]2, {[u∗

i ]2}i∈[m+1,n]),

{π′
i}i∈[m], {ρ′i}i∈[m], {wi}i∈[m] ← Zp,

ui :=


(π′

i(1, i), wi, 0, 1, 0, 0)B if i ∈ [µ− 1],

(π′
i(1, i), 0, 0, 1, γ, 0)B if i = µ,

(π′
i(1, i), 0, 0, 1, 0, 0)B if i ∈ [µ+ 1,m],

u∗
i :=

(ρ′i(−i, 1), 1, 0,−wi, 0, 0)B
∗ if i ∈ [µ− 1],

(ρ′i(−i, 1), 1, 0, 0, 0, 0)B
∗ if i ∈ [µ,m],

U := {[ui]1, [u
∗
i ]2}i∈[m].

Game 1-µ-2(µ ∈ [m]): This game is the same as Game 1-µ-1 except that for all i s.t. (i ∈
[n]) ∧ (i 6= µ),

δi ← Zp, u∗
i := (ρ′i(−i, 1), 1, 0,−βiwi, δi , 0)B

∗,

where βi = 0 if i > µ and βi = 1 if i < µ.

Game 1-µ-3(µ ∈ [m]): This game is the same as Game 1-µ-2 except that,

γ′ ← Zp, u∗
µ := (ρ′µ(−µ, 1), 1, 0, 0, 0, γ′ )B∗.

Game 1-µ-4(µ ∈ [m]): This game is the same as Game 1-µ-3 except that for all i s.t. (i ∈
[m]) ∧ (i 6= µ),

δ′i ← Zp, ui := (π′
i(1, i), βiwi, 0, 1, 0, δ′i )B,

where βi = 0 if i > µ and βi = 1 if i < µ.

Game 1-µ-5(µ ∈ [m]): This game is the same as Game 1-µ-4 except that,

γ, γ′, wµ ← Zp, uµ := (π′
µ(1, µ), wµ , 0, 1, γ, 0)B,

u∗
µ := (ρ′µ(−µ, 1), 1, 0, −wµ , 0, γ′)B∗.

Game 1-µ-6(µ ∈ [m]): This game is the same as Game 1-µ-5 except that

wi ← Zp, ui := (π′
µ(1, i), βiwi, 0, 1, 0, 0 )B for all i ∈ [m]

u∗
i := (ρ′i(−i, 1), 1, 0,−βiwi, 0, 0 )B∗ for all i ∈ [n],
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where βi = 0 if i > µ and βi = 1 if i ≤ µ. Observe that Game 1-m-6 is the same as the case
of β = 1, i.e., A is given an instance (D,U1).

In the following, we denote the event that A outputs 1 in Game ι by Eι,

Lemma 5.32. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E1-(µ − 1)-6]− Pr[E1-µ-1]| ≤ AdvSXDH
B (λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using A. B obtains an
instance of SXDH with ι := 1, i.e., (G, [a]1, [e]1, [tβ ]1). B defines random dual orthonormal bases
B,B∗ as follows,

W← GL7(Zp),

B :=



a 1 −µ
1

1

1

1

1

1


W, B∗ :=



1

µ 1

1

1

1

1 −a
1


W∗ ∈ GL7(Zp).

Observe that (B,B∗) are random dual orthonormal bases. B can compute [B]1 and [B∗]2 except
[b∗

6]2 because B does not know [a]2. Hence, B can compute all vectors in D, {[ui]1}i∈[m],i6=µ, and
{[u∗

i ]2}i∈[m]. Finally, B computes

[uµ]1 := [(tβ , e, 0, 0, 0, 0, 0)W]1 = [(e(1, µ), 0, 0, 0, βf, 0)B]1.

We can define π′
µ := e and γ := f , then if β = 0 (resp. β = 1), A obtains the instance of Game

1-(µ− 1)-6 (resp. Game 1-µ-1).

Lemma 5.33. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E1-µ-1]− Pr[E1-µ-2]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof. We show that we can make a reduction algorithm B for the SXDH using A. B obtains an
instance of SXDH with ι := 2, i.e., (G, [a]2, [e]2, [tβ ]2). B define a matrix R ∈ GL7(Zp) as

R :=

 1 µ

−1
I5

 , R∗ :=
1

µ

 1

−µ 1

µI5

 .
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Then B defines random dual orthonormal bases (B,B∗) as follows,

W← GL7(Zp),

B := R−1


1

1
1
1
1

1 −a
1

W =
1

µ


−µ

1 1
µ

µ
µ

µ −µa
µ

W,

B∗ := R>


a 1

1
1
1
1

1
1

W∗ =


a 1 −1

µ
1
1
1

1
1

W∗.

Observe that B can compute [B]1, [B
∗]2 except [b6]1. Then B can compute {[ui]1}i∈[m],i6=µ and

[u∗
µ]2. Next B computes [uµ]1 as

ζ, η ← Zp,

[uµ]1:=[(ζ, η, 0, 0, 0, 0, 0)W]1=


(η + aζ, 0, 0, 0, 0, ζ, 0)



1

1

1

1

1

1 −a
1


W


1

= [(η + aζ, 0, 0, 0, 0, ζ, 0)RB]1 = [((η + aζ)(1, µ), 0, 0, 0, 0, ζ, 0)B]1 .

We can implicitly set π′
µ := η+aζ and γ := ζ. Finally, B computes [u∗

i ]2 for all i s.t. (i ∈ [n])∧(i 6=
µ) as,

wi, σi, σ
′
i ← Zp, ei := eσi + σ′

i,

[u∗
i ]2 :=

[(
tβσi + aσ′

i, ei,
iei

µ− i
, 1, 0,−βiwi, 0

)
W∗

]
2

=

(ei, iei
µ− i

, 1, 0,−βiwi, βfσi, 0

)
a 1

1
1
1
1

1
1

W∗


2

=

[(
ei,

iei
µ− i

, 1, 0,−βiwi, βfσi, 0

)
R∗B∗

]
2

=

[(
µei
µ− i

(−i, 1), 1, 0,−βiwi, βfσi, 0

)
B∗
]
2

.

Observe that ei and σi are independent because the information of σi in ei is hidden by σ′
i. Then,

we can define ρ′i :=
µei
µ−i and δi := fσi unless f = 0. We can see that if β = 0 (resp. β = 1), A

obtains the instance of Game 1-µ-1 (resp. Game 1-µ-2).

Lemma 5.34. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E1-µ-2]− Pr[E1-µ-3]| ≤ AdvSXDH
B (λ).
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We can prove Lemma 5.34 almost the same way as Lemma 5.32, so we omit the proof.

Lemma 5.35. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E1-µ-3]− Pr[E1-µ-4]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

We can prove Lemma 5.35 almost the same way as Lemma 5.33, so we omit the proof.

Lemma 5.36. For any PPT adversary A, we have

Pr[E1-µ-4]− Pr[E1-µ-5] ≤ 2−Ω(λ).

Proof. We define (D,D∗) as

wµ ← Zp,

D :=



1

1

1

1

1 −wµ

γ′

−wµ

γ 1
wµ

γγ′

1


B, D∗ :=



1

1

1
wµ

γ

1

1

1
wµ

γ′ − wµ

γγ′ 1


B∗ ∈ GL7(Zp).

Observe that (Di,D
∗
i ) are random dual orthonormal bases and this basis change does not affect

the public vectors, namely, b1, . . . ,b4,b
∗
1,b

∗
2,b

∗
4,b

∗
5. That is, we have

di =


bi i ∈ {1, 2, 3, 4, 7}

b5 − wµ

γ′ b7 i = 5

−wµ

γ b3 + b6 +
wµ

γγ′b7 i = 6

d∗
i =


b∗
i i ∈ {1, 2, 4, 5, 6}

b∗
3 +

wµ

γ b∗
6 i = 3

wµ

γ′ b
∗
5 −

wµ

γγ′b
∗
6 + b∗

7 i = 7

Then, we check ui for all i ∈ [m] and u∗
i for all i ∈ [n],

ui =(π′
i(1, i), βiwi, 0, 1, β̂iγ, (1− β̂i)δi)B

=(π′
i(1, i), βiwi, 0, 1, β̂iγ, (1− β̂i)δi)



1

1

1

1

1
wµ

γ′
wµ

γ 1 − wµ

γγ′

1


D

=

(
π′
i(1, i), βiwi + β̂iwµ, 0, 1, β̂iγ, (1− β̂i)

(
δi +

wµ

γ′

))
D,
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u∗
i =(ρ′i(−i, 1), 1, 0,−βiwi, (1− β̂i)δ

′
i, β̂iγ

′)B∗

=(ρ′i(−i, 1), 1, 0,−βiwi, (1− β̂i)δ
′
i, β̂iγ

′)



1

1

1 −wµ

γ

1

1

1

−wµ

γ′
wµ

γγ′ 1


D∗

=

(
ρ′i(−i, 1), 1, 0,−βiwi − β̂iwµ, (1− β̂i)

(
δ′i −

wµ

γ

)
, β̂iγ

′
)
D∗,

where βi = 0 if i ≥ µ and βi = 1 if i < µ, and β̂i = 0 if i 6= µ and β̂i = 1 if i = µ. Observe that
we can define δ̃i := δi +

wµ

γ′ and δ̃′i := δ′i −
wµ

γ if γ 6= 0 and γ′ 6= 0, and δ̃i and δ̃′i are independently
random elements in Zp. From the above observation, the instances that A obtains are identically
distributed in Game 1-µ-4 and Game 1-µ-5 except the negligible probability.

Lemma 5.37. For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

|Pr[E1-µ-5]− Pr[E1-µ-6]| ≤ 4AdvSXDH
B (λ) + 2−Ω(λ).

We can prove Lemma 5.37 by just the reverse of Game 1-(µ− 1)-1 to Game 1-µ-4. so we omit
the proof.

From the above lemmas, Lemma 5.18 holds.

5.3.4 Semi-Adaptively Secure Scheme for (E:sep, K:sep, D:ct-dom)

We present our semi-adaptively secure scheme for (E:sep, K:sep, D:ct-dom), of which the function
class is defined in Definition 5.1. The construction is the same as our E:con scheme (Section 5.3.1)
except that x := (xi)i∈[m] is replaced by x := (xi)i∈U , where U ⊆ [u] for any polynomial u := u(λ).
The correctness holds in the same manner as our E:con scheme. The security statement is somewhat
different from that of our E:con scheme as follows.

Theorem 5.4. Assume that the SXDH assumption holds, then our Pub-UIPFE is semi-adaptively
secure. More formally, let umax be the maximum cardinality of challenge index set that A outputs
and smax be the maximum index with which A queries the key generation oracle, then for any PPT
adversary A and security parameter λ, there exists a PPT adversary B for the SXDH s.t.

AdvPub-UIPFE
A (λ) ≤ {16umax + 8(smax − 1) + 4}AdvSXDH

B (λ) + 2−Ω(λ).

Proof. The idea is the same as the private-key based scheme in the selective E:sep setting. That
is, instead of guessing the index set of the challenge ciphertext, the reduction algorithm knows it
before simulating secret keys by considering semi-adaptive setting. Then the game sequence after
Game 3 is modified from the E:con scheme as follows. Let U∗ be the index set of the challenge
vector, and [m∗] is changed to U∗ in all games other than the games below.
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Game 3: This game is the same as Game 2 except that in the `-th secret key query for all ` s.t.
(S` ∩ U∗ 6= φ) ∧ (S`\U∗ 6= φ), k`,i is set as

r̄`,i ← Zp,

k`,i := (ρ`,i(−i, 1), y`,i, r`,i, r̄`,i , 0, 0)B
∗ for all i ∈ S`.

Game 4: This game is the same as Game 3 except that ci and k`,i in the challenge ciphertext
and the `-th secret key for all ` s.t. (S` ∩ U∗ 6= φ) are generated as

wi, r̃`,i, r̄`,i ← Zp s.t.
∑
i∈S`

r̃`,i = 0,

ci := (πi(1, i), x0
i + wiz̃ , z, z̃, 0, 0)B for all i ∈ U∗,

k`,i:=

(ρ`,i(−i, 1), y`,i, r`,i, r̃`,i − wiy`,i , 0, 0)B
∗ (i ∈ U∗, S` ⊆ U∗)

(ρ`,i(−i, 1), y`,i, r`,i, r̄`,i − wiy`,i , 0, 0)B
∗ (i ∈ U∗, S`\U∗ 6= φ)

.

Game 5: This game is the same as Game 4 except that ci in the challenge ciphertext is set as

wi, z̃ ← Zp, ci := (πi(1, i), x1
i + wiz̃ , z, z̃, 0, 0)B for all i ∈ U∗.

Game 6: This game is the same as the real security game where the challenge ciphertext is the
encryption of x1 as described in Definition 3.6. That is, the challenge ciphertext for a pair
of vectors (x0,x1) ∈ (Zm∗

)2 is replied as

ci := (πi(1, i), x1
i , z, 0 , 0, 0)B for all i ∈ U∗

ctm∗ := ([c1]1, . . . , [cm∗ ]1).

The `-th secret key query with an index set S` and vector y` ∈ ZS` is replied as

k`,i := (ρ`,i(−i, 1), y`,i, r`,i, 0 , 0, 0)B∗ for all i ∈ S`

sk`,S`
:= (S`, {[k`,i]2}i∈S`

).

We modify the lemmas 5.17 and 5.18 to be suitable for the E:sep setting.

Lemma 5.38. For any polynomial n := n(λ) and any set M ⊆ [m] with any polynomial m := m(λ),
we define the following distribution,

G← GBG(1λ), B← GL7(Zp), {πi}i∈M , z̃ ← Zp,

ui := (πi(1, i), 0, 0, z̃, 0, 0)B for all i ∈M,

D := (G, [b1]1, . . . , [b4]1, [b
∗
1]2, . . . , [b

∗
5]2, {[ui]1}i∈M ),

{ρ′i}i∈[n]\M , {r′i}i∈[n]\M ← Zp,

u∗
i,β := (ρ′i(−i, 1), 0, 0, βr′i, 0, 0)B

∗ for all i ∈ [n]\M,

Uβ := {[u∗
i,β ]2}i∈[n]\M .

For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.
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AdvP1A (λ) :=|Pr[1← A(D,U0)]− Pr[1← A(D,U1)]|

≤4|[n]\M |AdvSXDH
B (λ) + 2−Ω(λ).

Lemma 5.39. For any polynomial n := n(λ) and any set M ⊆ [m] with any polynomial m := m(λ),
we define the following distribution,

G← GBG(1λ), B← GL7(Zp), {ρ′i}i∈[n]\M ← Zp,

u∗
i := (ρ′i(−i, 1), 1, 0, 0, 0, 0)B

∗ for all i ∈ [n]\M,

D := (G, [b1]1, . . . , [b4]1, [b
∗
1]2, [b

∗
2]2, [b

∗
4]2, [b

∗
5]2, {[u∗

i ]2}i∈[n]\M ),

{π′
i}i∈[m], {ρ′i}i∈[m], {wi}i∈M ← Zp,

ui,β := (π′
i(1, i), βwi, 0, 1, 0, 0)B for all i ∈M,

u∗
i,β := (ρ′i(−i, 1), 1, 0,−βwi, 0, 0)B

∗ for all i ∈M,

Uβ := {[ui,β ]1, [u
∗
i,β ]2}i∈M .

For any PPT adversary A, there exists a PPT adversary B for the SXDH s.t.

AdvP2A (λ) := |Pr[1← A(D,U0)]− Pr[1← A(D,U1)]| ≤ 8|M |AdvSXDH
B (λ) + 2−Ω(λ).

The proofs of Lemma 5.38 and Lemma 5.39 is similar to those of Lemma 5.17 and Lemma 5.18
respectively.

Applying these lemmas, we have

|Pr[E2]− Pr[E3]| ≤ 4(smax − 1)AdvSXDH
B (λ) + 2−Ω(λ),

|Pr[E3]− Pr[E4]| ≤ 8umaxAdv
SXDH
B (λ) + 2−Ω(λ).

|Pr[E4]− Pr[E5]| ≤ 2−Ω(λ),

|Pr[E5]− Pr[E6]| ≤ {8umax + 4(smax − 1) + 2}AdvSXDH
B (λ) + 2−Ω(λ).

5.4 Conclusion of Chapter 5
In Chapter 5, we constructed the first unbounded IPFE schemes. Previously, all known IPFE
schemes are bounded, that is, we need to fix a vector length in the setup phase and can use only
vectors with the fixed length in the scheme. Our unbounded IPFE scheme enables us to use vectors
with any length for encryption and key generation. We provides a function-hiding unbounded IPFE
scheme and public-key unbounded IPFE scheme. The former utilizes pseudorandom functions
and the latter utilizes the entropy amplification technique to achieve unboundedness. The proof
strategy is inspired by that for our efficient function-hiding IPFE scheme in Chapter 4.
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Chapter 6

Tightly Secure Inner Product
Functional Encryption

In this chapter, we present our contribution in [Tom20], which proposes first tightly secure IPFE
schemes including function-hiding and multi-input schemes.

6.1 Technical Overview

6.1.1 Tightly Secure Inner Product Functional Encryption

Our scheme is secure in the multi-user and multi-challenge setting under the MDDH assumption,
but here we describe our first scheme based on the DDH assumption in the single-user and multi-
challenge setting to ease the exposition. Note that the second scheme is also constructed based on
the same idea. Our starting point is the adaptively secure IPFE scheme by Agrawal et al. [ALS16].
We briefly describe their scheme below. Let m be a vector length in the scheme.

Setup(1λ, 1m): a← Zp, W← Zm×2
p , a := (a, 1), pk := ([a], [Wa]), msk := W.

Enc(pk,x): s← Zp, ct := ([sa], [sWa+ x]).

KeyGen(pk,msk,y): sk := (−W>y,y).

Dec(pk, ct, sk): −y>W[sa] + y>[sWa+ x] = [〈x,y〉].

Next, we explain the security proof of this scheme by Abdalla et al. [AGRW17], which is somewhat
different from the original proof by Agrawal et al. and roughly goes as follows. First, the form of the
challenge ciphertext is changed from ct := ([sa], [sWa+xβ ]) to ct := ([sa+s′b], [W(sa+s′b)+xβ ]),
where s′ ← Zp, b := (1, 0)>, and β ← {0, 1}. This change is computationally indistinguishable
under the DDH assumption. At this point, we redefine W as

W := W̃ + u(x1 − x0)a⊥
>
, (6.1)
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where u← Zp, W̃← Zm×2
p , and a⊥ := (1,−a)>, and note that a⊥>

b = 1. In fact, x0 and x1 may
depend on W̃ because the information of W̃ is leaked to the adversary from the public key and
queried secret keys. However, we can assume that x0 and x1 do not depend on W̃ (and formally
we use complexity leveraging to argue that). Then, redefined W is also a random element in Zm×2

p

and we have

Wa = W̃a, (6.2)

W>y` = W̃
>
y` (` is an index for the query number), (6.3)

W(sa+ s′b) + xβ = W̃(sa+ s′b) + us′(x1 − x0) + xβ

= W̃(sa+ s′b) + (us′ + β)(x1 − x0) + x0.
(6.4)

In the indistinguishability-based security game, we impose a query condition on the adversary to
avoid a trivial attack. That is, for all secret key queries, we have x0y` = x1y`. Eq. (6.3) follows
from this condition. Finally, from Eq. (6.4), we can argue that the information of β is hidden from
the adversary by the term us′ unless s′ = 0, because u is a fresh randomness from the viewpoint
of the adversary. Thus, the scheme is secure under the DDH assumption. In the multi-challenge
setting, however, this proof strategy needs a hybrid argument for each challenge and incurs the
security loss of O(qct), where qct is the number of the ciphertext challenges. Intuitively, this is
because the matrix W is shared in all challenge ciphertexts and we cannot redefine W suitable for
all challenge ciphertexts simultaneously in Eq. (6.1).

The first attempt to obtain a tight reduction is setting W in Eq. (6.1) as

u1, . . . , uL ← Zp, W := W̃ +
∑
ι∈[L]

uιxιa
⊥>

,

where L(≤ m) is the dimension of the space V spanned by x1
j − x0

j ∈ Zm
p for all j ∈ [qct], and

{xι}ι∈[L] are a basis of V . In this case, Eq. (6.2) and Eq.(6.3) do not change and Eq.(6.4) becomes

W(sja+ s′jb) + xβ
j = W̃(sja+ s′jb) + s′j

∑
ι∈[L]

uιxι + β(x1
j − x0

j ) + x0
j ,

where j is the index of challenge queries. If we can say that {[s′juι]}j∈[qct],ι∈[L] are indistinguish-
able from {[rj,ι]}j∈[qct],ι∈[L], which are qctL random elements in G, we can conclude that the
term s′j

∑
ι∈[L] uιxι hides the information of β. This is because x1

j − x0
j ∈ V for all j ∈ [qct],

and each
∑

ι∈[L] rj,ιxι is a completely random element in V . Fortunately, it is well known that
{s′juι}j∈[qct],ι∈[L] on the exponent forms a synthesizer [NR99], and they are computationally indis-
tinguishable from qctL random group elements with the security loss being either qct or L. Thus,
we can prove the security of the scheme by Agrawal et al. with the security loss of O(m), which is
independent from the adversaries’ behavior.

However, the above proof contains two deficiencies. The first is that the security reduction is still
not tight. The second is that the above strategy is useful against only selective adversaries. This
is because the reduction algorithm needs to know about V to simulate each challenge ciphertext,
but V depends on all challenge queries that the adversary makes. Thus, we have to overcome these
two problems.
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Toward tight security. The solution for the first problem (and partly for the second problem
as a result) is to increase the column of the part a, which allows us to embed more randomness
into ciphertexts. That is, we modify the scheme as

Setup(1λ, 1m):

a← Zp, W← Zm×2m
p , a := (a, 1), A := Im ⊗ a =

m vectors︷ ︸︸ ︷
a

a
. . .

a

 ∈ Z2m×m
p ,

pk := ([a], [WA]), msk := W.

Enc(pk,x): s := (s1, . . . , sm)← Zm
p , ct := ([As], [WAs+ x]).

KeyGen(pk,msk,y): sk := (−W>y,y).

Dec(pk, ct, sk): −y>W[As] + y>[WAs+ x] = [〈x,y〉].

The security proof goes as follows. First, the form of all challenge ciphertexts is changed to

B := Im ⊗ (1, 0) ∈ Z2m×m
p , s′j := (s′j,1, . . . , s

′
j,m)← Zm

p ,

ct := ([Asj +Bs′j ], [W(Asj +Bs′j) + xβ
j ]).

(6.5)

The DDH problem is tightly reduced to the problem of distinguishing this change by the random
self-reducibility. Next, we redefine W as

u← Zp, W := W̃ + u
∑
ι∈[L]

xιa
⊥>

ι , (6.6)

where a⊥ι ∈ Z2m
p is the ι-th column of A⊥ := Im ⊗ a⊥. Then, we have

WA = W̃A,

W>y` = W̃
>
y`,

W(Asj +Bs′j) + xβ
j = W̃(Asj +Bs′j) + u

∑
ι∈[L]

s′j,ιxι + β(x1
j − x0

j ) + x0
j . (6.7)

In this case, we can see that {[us′j,ι]}j∈[qct],ι∈[L] ≈c {[rj,ι]}j∈[qct],ι∈[L], where the left-hand side
consists of qctL random elements in G, and this indistinguishability is tightly reduced to the DDH
assumption by the random self-reducibility. Then, the information of β is completely hidden by
the same argument as before in the selective security model.

Toward adaptive security. In this paragraph, we refer to the computational change from Asj

to Asj +Bs′j as the first step and that from {[us′j,ι]}j∈[qct],ι∈[L] to {[rj,ι]}j∈[qct],ι∈[L] as the second
step. The main obstacle to achieve the adaptive security is that the reduction algorithm needs to
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know about the space V before seeing all challenge queries in the second step. Our observation is
that we do not need a random element in V to hide the information of β in each ciphertext. Let Vj

be a space spanned by x1
ι − x0

ι ∈ Zm
p for all ι ∈ [j]. Then, a random element in Vj suffices to hide

the information of β in the j-th ciphertext. Fortunately, the reduction algorithm knows about Vj

when it simulates the j-th ciphertext because it already receives vectors that span Vj .
To do so, we modify the first step. In particular, we change the way of choosing s′j in Eq. (6.5)

as
s′j,1, . . . , s

′
j,φ(j) ← Zp, s′j := (s′j,1, . . . , s

′
j,φ(j), 0

m−φ(j)) ∈ Zm
p ,

where φ(j) := dimVj . Next, we modify the definition of xι as xι := x1
ρ(ι) − x0

ρ(ι) ∈ Zm
p for all

ι ∈ [L], where ρ(ι) := minφ−1(ι). It is not difficult to confirm that {xι}ι∈[φ(j)] form a basis of Vj .
Then, Eq. (6.7) is changed to

W(Asj +Bs′j) + xβ
j = W̃(Asj +Bs′j) + u

∑
ι∈[φ(j)]

s′j,ιxι + β(x1
j − x0

j ) + x0
j .

Observe that the reduction algorithm can compute xι for ι ∈ [φ(j)] when it simulates the j-
th ciphertext. As explained in the previous paragraph, {[us′j,ι]}j∈[qct],ι∈[φ(j)] are computationally
indistinguishable from {[rj,ι]}j∈[qct],ι∈[φ(j)], and the term

∑
ι∈[φ(j)] rj,ιxι hides the information of β

in the j-th ciphertext. Thus, we can achieve the adaptive security.

6.1.2 Conversion from Function-Hiding IPFE to Function-Hiding MIPFE

Similarly to previous MIPFE schemes, our conversion utilizes parallel execution of an underlying
function-hiding IPFE scheme. The construction of our conversion can be seen as the combination of
the non-function-hiding MIPFE scheme by Abdalla et al. [ACF+18] and the function-hiding MIPFE
scheme by Datta et al. [DOT18]. For simplicity, we consider the IPFE scheme over Zn for some inte-
ger n, which means that the functionality of FE is inner product over Zn. Let m be a vector length
and µ be a number of slots of the converted scheme, and IPFE := (Setup′,Enc′,KeyGen′,Dec′) be an
underlying weakly function-hiding IPFE scheme. Then, our conversion invokes Setup′ with setting
the vector length as 2m+1 and generates µ master secret keys msk′1, . . . ,msk′µ (we omit public pa-
rameters here). In addition, it chooses µ random vectors u1, . . . ,uµ ← Zm

n and sets a master secret
key of the converted scheme as msk := (msk′1, . . . ,msk′µ,u1, . . . ,uµ). To encrypt a vector xi for the
index i, it encrypts x̃i := (xi+ui, 0

m, 1) as ct′i ← Enc′(mski, x̃i) and outputs ct′i. To generate a se-
cret key for {yi}i∈[µ], it first generates secret shares of −

∑
i∈[µ]〈yi,ui〉 as r1, . . . , rµ ← Zn such that∑

i∈[µ] ri = −
∑

i∈[µ]〈yi,ui〉 (mod n). These shares prevent the leakage of partial inner product
values. Then, our conversion generates a secret key for ỹi := (yi, 0

m, ri) as sk′i ← KeyGen′(msk′i, ỹi)

for all i ∈ [µ] . Finally, it sets the secret key for converted scheme as sk := (sk′1, . . . , sk
′
µ). The

decryption algorithm simply computes
∑

i∈[µ] Dec
′(ct′i, sk

′
i) (mod n). The correctness of the con-

verted scheme is not difficult to confirm because
∑

i∈[µ]〈x̃i, ỹi〉 =
∑

i∈[µ]〈xi,yi〉.
Although our conversion is as simple as that by Abdalla et al. [ACF+18], the security proof

needs a more ingenious technique. To see this, we briefly recall the proof strategy of their conversion
and show that the naive application of their strategy to our conversion does not work. Here, we
assume that the converted MIPFE scheme is weakly function-hiding, meaning that an adversary
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against the converted scheme has the following condition on the queries in the security game. Let
qct,i be the total number of ciphertext queries for index i and qsk be the total number of secret key
queries. Then, for all (j1, . . . , jµ) ∈ [qct,1]× · · · × [qct,µ], and ` ∈ [qsk], we have∑

i∈[µ]

〈x0
i,ji ,y

0
i,`〉 =

∑
i∈[µ]

〈x0
i,ji ,y

1
i,`〉 =

∑
i∈[µ]

〈x1
i,ji ,y

1
i,`〉. (6.8)

The proof employs a series of games, and the goal is that the adversary does not obtain any
information about a random bit β in the final game. The first step is to redefine ui := ũi+x0

i,1−x
β
i,1,

where ũi ← Zn. This information-theoretic change does not affect secret keys because
∑

i∈[µ]〈x0
i,1−

xβ
i,1,y

β
i,`〉 = 0 from Eq. (6.8). The second step is to change x̃i,ji from (xβ

i,ji
+ ũi+x0

i,1−xβ
i,1, 0

m, 1)

to (x0
i,ji

+ũi, 0
m, 1). This change is justified by the security of the underlying IPFE scheme because

〈xβ
i,ji
− xβ

i,1,y
β
i,`〉 = 〈x0

i,ji
− x0

i,1,y
β
i,`〉 for all i ∈ [µ], which can be derived from Eq. (6.8). Finally,

we want to change ỹi,` from (yβ
i,`, 0

m, ri,`) to (y0
i,`, 0

m, r′i,`) to hide the information of β. However,
we cannot make this change in the adaptive setting. The reason is that the reduction algorithm
needs to set r′i,` := ri,` + ∆i,`, where ∆i,` := 〈x0

i,ji
+ ui,y

β
i,` − y0

i,`〉 = 〈x0
i,1 + ui,y

β
i,` − y0

i,`〉 (the
second equality follows from Eq. (6.8)), to keep the inner product value when it simulates the `-th
secret key. If the adversary makes a secret key query before it makes the first ciphertext query for
some index i, the reduction algorithm cannot simulate a secret key because it does not know the
value 〈x0

i,1,y
β
i,` − y0

i,`〉. Hence, this strategy does not work.
To circumvent this problem, we introduce another proof strategy. Recall that this problem

occurs in the second step, where yβ
i,` is changed to y0

i,`, whereas the first step goes well, where
xβ
i,ji

is changed to x0
i,ji

. Intuitively, our solution for this problem is to make both changes in
one-shot in the same manner as the first step. That is, we do not take the intermediate step where
the inner product values of queried vectors are

∑
i∈[µ]〈x0

i,ji
,yβ

i,`〉, and we change the replies such
that the inner product values of queried vectors are directly changed from

∑
i∈[µ]〈x

β
i,ji

,yβ
i,`〉 to∑

i∈[µ]〈x0
i,ji

,y0
i,`〉. This means that our conversion allows us to directly achieve a fully function-

hiding MIPFE scheme. This is possible if we prepare 2n+1 dimensions for the underlying scheme
and use the similar technique to that by Tomida et al. [TAO16]. To do so, we want to create a
situation where x̃i,ji := (xβ

i,ji
+ ũi − xβ

i,1,x
0
i,1, 1) and ỹi,` := (yβ

i,`,y
0
i,`, r

′
i,`). This is because if we

have the above situation, we can change x̃i,ji to (ũi,x
0
i,ji
− x0

i,1 + x0
i,1, 1) = (ũi,x

0
i,ji

, 1) by the
security of the underlying scheme and the relation 〈xβ

i,ji
− xβ

i,1,y
β
i,`〉 = 〈x0

i,ji
− x0

i,1,y
0
i,`〉, which

also can be derived from Eq. (6.8).
To reach the situation starting from the real game, however, we need one more trick. This

is because the reduction algorithm needs to compute the value ∆i,` := 〈x0
i,1,y

0
i,`〉 to adjust inner

products with the term r′i,` when it simulates the `-th secret key. Thus, the same problems as
above occurs. To solve this problem, we take the intermediate step where x̃i,ji := (xβ

i,ji
+ui,vi, 1)

and ỹi,` := (yβ
i,`,y

0
i,`, ri,`), where vi ← Zm

n is randomly chosen at the beginning of the game. This
is possible because computing ∆i,` := 〈vi,y

0
i,`〉 suffices for the reduction algorithm to reach the

step. After the step, we redefine ui := ũi − xβ
i,1 and vi := ṽi + x0

i,1 where ũi, ṽi ← Zm
n . This

change is information-theoretic and we do not need to care about when the adversary makes the
first ciphertext query. By these steps, our proof strategy goes well since there are no steps where
reduction algorithms need to compute values related to x0

i,1 when it simulates secret keys.
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The interesting points of our technique are to crucially utilize the blank space, namely the n+1

to 2n-th dimensions, and directly construct a fully function-hiding MIPFE scheme from a weakly
function-hiding IPFE scheme. This is in contrast to the function-hiding scheme in [ACF+18],
where they first construct a weakly function-hiding MIPFE scheme, setting a vector length of an
underlying IPFE scheme as almost n. Then, they convert it into a fully function-hiding scheme by
doubling the vector length of the scheme.

6.2 Tightly Secure (Multi-Input) Inner Product Functional
Encryption

In this section, we present two our tightly secure Pub-IPFE schemes (FE for F IP
m,X,Y ) and non-

function-hiding MIPFE schemes (MIFE for FMIP
m,µ,X,Y ), the latter is obtained by applying the

conversion by Abdalla et al. [ACF+18] to our IPFE scheme.

6.2.1 First scheme

Construction. The security of the first scheme is tightly reduced to the Dk-MDDH assumption.
Let Dk be a matrix distribution over full rank matrices in Z(k+1)×k

p and norm bounds Xλ and Yλ

be polynomials in λ.

Par(1λ): It takes a security parameter 1λ and outputs pp as follows.

GCG ← GCG(1λ), Ã← Dk, pp := (GCG, [Ã])

Setup(1m, pp): It takes a vector length 1m and a public parameter pp. Then, it outputs a public
key pk and a master secret key msk as follows.

W← Zm×k(k+1)m
p , A :=

km matrices︷ ︸︸ ︷
Ã

Ã
. . .

Ã

 ∈ Zk(k+1)m×k2m
p , (6.9)

pk := (GCG, [Ã], [WA]), msk := W.

Enc(pk,x): It takes pk and x ∈ Zm and outputs a ciphertext ct as follows.

s← Zk2m
p , c1 := As ∈ Zk(k+1)m

p , c2 := WAs+ x ∈ Zm
p , ct := ([c1], [c2]).

KeyGen(pk,msk,y): It takes pp, msk, and y ∈ Zm and outputs a secret key sk as follows.

k1 := −W>y ∈ Zk(k+1)m
p , k2 := y ∈ Zm

p , sk := (k1,k2).

Dec(pk, ct, sk): It takes pk, ct, and sk. Then it computes [d] := [k>
1 c1 + k>

2 c2] and searches for d

exhaustively in the range of −mXλYλ to mXλYλ. If such d is found, it outputs d. Otherwise,
it outputs ⊥.
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Correctness. Observe that if ct is an encryption of x and sk is a secret key of y,

d = −y>WAs+ y>WAs+ y>x = 〈x,y〉.

Therefore, if ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, the output of the decryption algorithm is d = 〈x,y〉.

Security. For security, we have the following theorem.

Theorem 6.1. Assume that the Dk-MDDH assumption holds with respect to GCG, then our Pub-
IPFE scheme is adaptively secure in the multi-user and multi-challenge setting. More formally,
let µ be a number of users, qct :=

∑
i∈[µ] qct,i be the total number of the ciphertext queries by A,

qsk :=
∑

i∈[µ] qsk,i be the total number of the secret key queries by A, and m be a vector length.
Then, for any PPT adversary A and security parameter λ, there exist PPT adversaries B1 and B2
for the Dk-MDDH and we have

AdvPub-IPFE
A (λ) ≤ 2AdvDk-MDDH

B1,CG
(λ) + 2AdvDk-MDDH

B2,CG
(λ) + 2−Ω(λ),

max{Time(B1),Time(B2)} ≈ Time(A) + (µ+ qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. We employ a series of games and evaluate the advantage of the adversary in each game. In
this chapter, we use the variable i to denote the index of users and ji (resp. `i) to denote the index
of ciphertext (resp. secret key) queries for user i. For example, a vector s in ji-th ciphertext for
user i will be denoted by si,ji . In the security proof, however, we change the forms of ciphertexts
and secret keys for every user in the same way simultaneously. Thus, we do not need to specify
users when we consider adversary’s queries. For conciseness, we omit the index i from (i, ji) and
(i, `i), and just use j and ` to denote the indices of queries (but j and ` are implicitly associated
with i).

Game 0: This game is the same as the real game. Then, for all j ∈ [qct,i], the j-th ciphertext
that A obtains from the oracle corresponds to

sj ← Zk2m
p , cj,1 := Asj , cj,2 := WiAsj + xβ

j .

Game 1: The reply for ciphertext queries is changed as follows. For j ∈ [qct,i], we define xj :=

x1
j −x0

j ∈ Zm
p . Let φi : [qct,i]→ [m] be a map such that φi(j) := rank(x1|| · · · ||xj). Then, for

all j ∈ [qct,i], the j-th ciphertext that A obtains from the oracle corresponds to

b← Zk+1
p \span(Ã), B :=

km vectors︷ ︸︸ ︷
b

b
. . .

b

 ∈ Zk(k+1)m×km
p , (6.10)

s̃j,1, . . . , s̃j,φi(j) ← Zk
p, s′j := (̃sj,1, . . . , s̃j,φi(j), 0

k(m−φi(j))) ∈ Zkm
p ,

cj,1 := Asj + Bs′j , cj,2 := Wi(Asj + Bs′j ) + xβ
j .
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Game 2: The reply for ciphertext queries is changed as follows. Let ρi : [φi(qct,i)] → [qct,i] be a
map such that ρi(ι) := minφ−1

i (ι). In other words, on an input ι, ρi returns the first query
number j such that the rank of the matrix (x1|| · · · ||xj) equals ι. Then, for all j ∈ [qct,i], the
j-th ciphertext that A obtains from the oracle corresponds to

u← Zk
p,

cj,1 := Asj +Bs′j , cj,2 := Wi(Asj +Bs′j) + xβ
j +

∑
ι∈[φi(j)]

〈u, s̃j,ι〉xρi(ι) .

Note that s̃j,ι is defined in Game 1.

Game 3: The reply for ciphertext queries is changed as follows. For all j ∈ [qct,i], the j-th
ciphertext that A obtains from the oracle corresponds to

rj,1, . . . , rj,φi(j) ← Zp,

cj,1 := Asj +Bs′j , cj,2 := Wi(Asj +Bs′j) + xβ
j +

∑
ι∈[φi(j)]

rj,ιxρi(ι) .

Game 4: The reply for ciphertext queries is changed as follows. For all j ∈ [qct,i], the j-th
ciphertext that A obtains from the oracle corresponds to

rj,1, . . . , rj,φi(j) ← Zp,

cj,1 := Asj +Bs′j , cj,2 := Wi(Asj +Bs′j) + x0
j +

∑
ι∈[φi(j)]

rj,ιxρi(ι).

Thanks to Lemma 6.1 to Lemma 6.5, Theorem 6.1 holds.

In the following, we denote the event that A’s output is equal to β, i.e., β = β′, in Game ι by
Eι.

Lemma 6.1. For any PPT adversary A, there exists a PPT adversary B1 for the Dk-MDDH s.t.

|Pr[E0]− Pr[E1]| ≤ AdvDk-MDDH
B1

(λ) + 2−Ω(λ),

Time(B1) ≈ Time(A) + (µ+ qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. We describe a PPT adversary B1 that solves a Dk-MDDH problem using A internally.
B1 takes an n-Dk-MDDH problem (GCG, [Ã], [Tδ]) with n := kmqct, where δ ∈ {0, 1}. Note that
the number n = kmqct corresponds to the maximum possible instance usage of B1. Therefore,
the number of instances that B1 utilizes depends on A’s behavior and B1 does not utilize all
instances necessarily. B1 generates random matrices W1, . . . ,Wµ ← Zm×k(k+1)m

p and sets pki :=

(GCG, [Ã], [WiA]) for all i ∈ [µ], where A is defined in the same way as Eq. (6.9). Then, B1 inputs
{pki}i∈[µ] to A. Because B1 generates mski := Wi for all i by itself, it can easily simulate Osk.
Thus, the remaining task is simulating Oct.
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First, B1 selects a bit β ← {0, 1}. Let tδ,ι ∈ Zk+1
p be the ι-th column of Tδ. When A queries

Oct on (i, (xj,0,xj,1)) as the j-th query for user i, B1 computes a reply as follows:

sj,kφi(j)+1, . . . , sj,km ← Zk
p,

cj,1 := (tδ,km(
∑

ι∈[i−1] qct,ι+j−1)+1, . . . , tδ,km(
∑

ι∈[i−1] qct,ι+j−1)+kφ(j), Ãsj,kφi(j)+1, . . . , Ãsj,km),

cj,2 := Wicj,1 + xβ
j ,

ctj := ([cj,1], [cj,2]).

We check that B1 correctly simulates Oct. Recall that the columns of Ã and b are linearly
independent and form a basis of Zk+1

p . Thus, we can rewrite cj,1 as:

sj,1, . . . , sj,km ← Zk
p, s′j,1, . . . , s

′
j,kφi(j)

← Zp,

cj,1 = (Ãsj,1 + δs′j,1b, . . . , Ãsj,kφi(j) + δs′j,kφi(j)
b, Ãsj,kφi(j)+1, . . . , Ãsj,km)

= Asj + δBs′j ,

where sj := (sj,1, . . . , sj,km) and s′j := (sj,1, . . . , sj,kφi(j), 0
k(m−φi(j))). Then, if δ = 0, A’s view

corresponds to Game 0 and otherwise, it corresponds to Game 1. Finally, B1 outputs the truth
value of (β = β′) where β′ is the output of A. This proves Lemma 6.1.

Lemma 6.2. For any PPT adversary A, we have

Pr[E1] = Pr[E2].

Proof. Lemma 6.2 follows from Claim 6.1 and Claim 6.2. To prove Lemma 6.2, we use a kind
of complexity leveraging argument. In the following, we randomly choose vectors independently
from the security game as {x̃j}i∈[µ],j∈[qct,i] ← Zm

p . The purpose is to assure that x̃j is independent
from W̃i in Eq. (6.12).

Claim 6.1. For any PPT adversary A and both ι ∈ {1, 2}, we have

Pr[Eι] = Pr[Eι|{x̃j}i∈[µ],j∈[qct,i] ← Zm
p ,∀i, j, x̃j = xj (mod p)].

Proof. Vectors {x̃j}i∈[µ],j∈[qct,i] are chosen independently from A’s view. Then, the event [∀i, j,
x̃j = xj (mod p)] does not affect A’s behavior.

Claim 6.2. For any PPT adversary A, we have

Pr[E1|{x̃j}i∈[µ],j∈[qct,i] ← Zm
p ,∀i, j, x̃j = xj (mod p)]

=Pr[E2|{x̃j}i∈[µ],j∈[qct,i] ← Zm
p ,∀i, j, x̃j = xj (mod p)].

Proof. We denote the ι-th column of the matrix B by bι for ι ∈ [km], where B is defined in
Eq. (6.10). We define that B∗ :=

(
(A||B)−1

)> ∈ Zk(k+1)m×k(k+1)m
p and denote the (k2m + ι)-th

column of B∗ by b∗
ι for ι ∈ [km]. Then the following equations hold:

b∗>

ι A = 0>, b∗>

ι bι′ =

1 (ι = ι′)

0 (ι 6= ι′)
for all ι, ι′ ∈ [km]. (6.11)
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Next, we redefine Wi as

u← Zk
p, W̃i ← Zm×k(k+1)m

p ,

Wi := W̃i +
∑

ι∈[φi(qct,i)]

x̃ρi(ι)u
>
(
b∗
k(ι−1)+1|| . . . ||b

∗
k(ι−1)+k

)>
.

(6.12)

Observe that Wi is identically distributed to the original one, i.e., Wi ← Zm×k(k+1)m
p . This is

because x̃j is determined independently from W̃i. Under the condition such that ∀i, j, x̃j = xj

(mod p), we have

(In the public key)

WiA = W̃iA for all i ∈ [µ] , (6.13)

(In the secret keys)

W>
i y` = W̃

>
i y` for all i ∈ [µ] and ` ∈ [qsk,i], (6.14)

(In the challenge ciphertexts)

Wi(Asj +Bs′j) =

W̃i +
∑

ι∈[φi(qct,i)]

x̃ρi(ι)u
>
(
b∗
k(ι−1)+1|| . . . ||b

∗
k(ι−1)+k

)> (Asj +Bs′j)

= W̃i(Asj +Bs′j) +
∑

ι∈[φi(qct,i)]

x̃ρi(ι)u
> (Ok×k(ι−1)||Ik||Ok×k(m−ι)

)
s′j

= W̃i(Asj +Bs′j) +
∑

ι∈[φi(j)]

〈u, s̃j,ι〉x̃ρi(ι) for all i ∈ [µ] and j ∈ [qct,i].

(6.15)

Here, Eq. (6.13) and Eq. (6.15) follow from Eq. (6.11), and Eq. (6.14) follows from Eq. (3.1). Then,
from Eq. (6.13), Eq. (6.14), and Eq. (6.15), A’s views in Game 1 and Game 2 are identical if
∀i, j, x̃j = xj (mod p). Then, Claim 6.2 holds.

Lemma 6.3. For any PPT adversary A, there exists a PPT adversary B2 for the Dk-MDDH s.t.

|Pr[E2]− Pr[E3]| ≤ AdvDk-MDDH
B2

(λ) + 2−Ω(λ),

Time(B2) ≈ Time(A) + (µ+ qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. First, we prove the following claim.

Claim 6.3. We consider the following distribution for any n ∈ N:

GCG ← GCG(1λ), S← Zk×n
p , u← Zk

p, t0 := S>u, t1 ← Zn
p .

Then, for any PPT adversary A, there exists a PPT adversary B and we have

AdvProblemA (λ) := |Pr[1← A(GCG, [S], [t0])]− Pr[1← A(GCG, [S], [t1])]| ≤ Advn-Dk-MDDH
B,CG (λ),

Time(B) ≈ Time(A) + npoly(λ),

where poly(λ) is independent from Time(A).
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Proof. For a matrix A in the n-Dk-MDDH problem, we can define that A :=

(
A0

a>1

)
, where

A0 ∈ GLk(Zp) and a1 ∈ Zk
p. Then, we can rewrite an instance of n-Dk-MDDH problem as

S← Zk×n
p , t̃0 := S>(A−1

0 )>a1, t̃1 ← Zn
p ,(

GCG, A :=

(
A0

a>1

)
, T0 :=

(
S

t̃
>
0

)
or T1 :=

(
S

t̃
>
1

))
.

B chooses r ← Zk
p, sets tβ := S>r + t̃β for β ∈ {0, 1}, and inputs (GCG, [S], [tβ ]) to A. Observe

that S and tβ defined above are identically distributed to those defined in Claim 6.3.

We describe a PPT adversary B2 that solves a problem defined in Claim 6.3 using A internally.
B2 takes an instance (GCG, [S], [tδ]) with n := mqct, where δ ∈ {0, 1}. Note that the number n =

mqct corresponds to the maximum possible instance usage of B2. Therefore, the number of instances
that B2 utilizes depends on A’s behavior, and B2 does not utilize all instances necessarily. B2
chooses Ã← Dk and sets pp := (GCG, [Ã]). B2 generates key pairs as (pki,mski)← Setup(1m, pp)

for all i ∈ [µ]. Then, B2 inputs {pki}i∈[µ] to A. Because B2 generates mski for all i by itself, it can
easily simulate Osk. Then, the remaining task is simulating Oct.

First, B2 selects a bit β ← {0, 1}. Let s̃ι ∈ Zk
p be the ι-th column of S ∈ Zk×n

p and tδ,ι ∈ Zp be
the ι-th element of tδ ∈ Zn

p . When A queries Oct on (i, (xj,0,xj,1)) as the j-th query for user i, B2
computes a reply as follows:

sj ← Zk2m
p , s′j :=

(
s̃m(

∑
ι∈[i−1] qct,ι+j−1)+1, . . . , s̃m(

∑
ι∈[i−1] qct,ι+j−1)+φi(j), 0

k(m−φi(j))
)
,

cj,1 := Asj +Bs′j , cj,2 := Wicj,1 + xβ
j +

∑
κ∈[φi(j)]

tδ,m(
∑

ι∈[i−1] qct,ι+j−1)+κxρi(κ),

ctj := ([cj,1], [cj,2]),

where A and B are defined as Eq. (6.9) and Eq. (6.10). Recall that t0,m(
∑

ι∈[i−1] qct,ι+j−1)+κ =

〈u, s̃m(
∑

ι∈[i−1] qct,ι+j−1)+κ〉 and t1,m(
∑

ι∈[i−1] qct,ι+j−1)+κ is a random element in Zp for κ ∈ [φi(j)].
Then, A’s view corresponds to Game 2 if δ = 0, and it corresponds to Game 3 otherwise. Finally,
B2 outputs the truth value of (β = β′) where β′ is the output of A. This proves Lemma 6.3.

Lemma 6.4. For any PPT adversary A, we have

Pr[E3] = Pr[E4].

Proof. For any i ∈ [µ] and j ∈ [qct,i], we can see that the term
∑

ι∈[φi(j)]
rj,ιxρi(ι) is a com-

pletely random element in span({xρi(ι)}ι∈[φi(j)]). From the definition of the maps φi and ρi,
xj ∈ span({xρi(ι)}ι∈[φi(j)]). Therefore, we have

xβ
j +

∑
ι∈[φi(j)]

rj,ιxρi(ι) = βxj + x0
j +

∑
ι∈[φi(j)]

rj,ιxρi(ι)

≡ x0
j +

∑
ι∈[φi(j)]

rj,ιxρi(ι) for all i ∈ [µ] and j ∈ [qct,i].
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In the above equation, the relation ≡ indicates that LHS and RHS are identically distributed.
Thus, A’s views in Game 3 and Game 4 are identical.

Lemma 6.5. For any PPT adversary A, we have

Pr[E4] = 1/2.

Lemma 6.5 is trivial because A does not obtain any information about β in Game 4.

6.2.2 Second Scheme

Construction. The security of the second scheme is reduced to the Dk-MDDH assumption with
a security loss of O(m2), whereas the numbers of group elements in ciphertexts and secret keys are
smaller than the first one. Let norm bounds Xλ and Yλ be polynomials in λ.

Par(1λ): It takes a security parameter 1λ and outputs pp as follows.

GCG ← GCG(1λ), A← Zk(m+1)×k
p , pp := (GCG, [A])

Setup(1m, pp): It takes a vector length 1m and a public parameter pp. Then, it outputs a public
key pk and a master secret key msk as follows.

W← Zm×k(m+1)
p , pk := (GCG, [A], [WA]), msk := W.

Enc(pk,x): It takes pk and x ∈ Zm and outputs a ciphertext ct as follows.

s← Zk
p, c1 := As ∈ Zk(m+1)

p , c2 := WAs+ x ∈ Zm
p , ct := ([c1], [c2]).

KeyGen(pk,msk,y): It takes pp, msk, and y ∈ Zm and outputs a secret key sk as follows.

k1 := −W>y ∈ Zk(m+1)
p , k2 := y ∈ Zm

p , sk := (k1,k2).

Dec(pk, ct, sk): It takes pk, ct, and sk. Then it computes [d] := [k>
1 c1 + k>

2 c2] and searches for d

exhaustively in the range of −mXλYλ to mXλYλ. If such d is found, it outputs d. Otherwise,
it outputs ⊥.

Correctness. Observe that if ct is an encryption of x and sk is a secret key of y,

d = −y>WAs+ y>WAs+ y>x = 〈x,y〉.

Therefore, if ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, the output of the decryption algorithm is d = 〈x,y〉.
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Security. For security, we have the following theorem.

Theorem 6.2. Assume that the Dk-MDDH assumption holds with respect to GCG, then our Pub-
IPFE scheme is adaptively secure in the multi-user and multi-challenge setting. More formally,
let µ be a number of users, qct :=

∑
i∈[µ] qct,i be the total number of the ciphertext queries by A,

qsk :=
∑

i∈[µ] qsk,i be the total number of the secret key queries by A, and m be a vector length.
Then, for any PPT adversary A and security parameter λ, there exists a PPT adversary B for the
Dk-MDDH and we have

AdvPub-IPFE
A (λ) ≤ (km(m+ 1) + 2)AdvDk-MDDH

B,CG (λ) + 2−Ω(λ),

Time(B) ≈ Time(A) + (µ+ qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. We employ a series of games and evaluate the advantage of the adversary in each game.

Game 0: This game is the same as the real game. Then, for all j ∈ [qct,i], the j-th ciphertext
that A obtains from the oracle corresponds to

sj ← Zk
p, cj,1 := Asj , cj,2 := WiAsj + xβ

j .

Game 1: The reply for ciphertext queries is changed as follows. For j ∈ [qct,i], we define xj :=

x1
j −x0

j ∈ Zm
p . Let φi : [qct,i]→ [m] be a map such that φi(j) := rank(x1|| · · · ||xj). Then, for

all j ∈ [qct,i], the j-th ciphertext that A obtains from the oracle corresponds to

B← Zk(m+1)×km
p s.t. (A||B) is invertible,

s̃j,1, . . . , s̃j,φi(j) ← Zk
p, s′j := (̃sj,1, . . . , s̃j,φi(j), 0

k(m−φi(j))) ∈ Zkm
p ,

cj,1 := Asj + Bs′j , cj,2 := Wi(Asj + Bs′j ) + xβ
j .

Games 2 to 4 are defined the same as those in the security proof of the first scheme (Section 6.2.1).
Thanks to Lemma 6.6 to Lemma 6.11, Theorem 6.2 holds.

In the following, we denote the event that A’s output is equal to β, i.e., β = β′, in Game ι by
Eι.

Lemma 6.6. For any PPT adversary A, there exists a PPT adversary B for the Dk-MDDH s.t.

|Pr[E0]− Pr[E1]| ≤
km(m+ 1)

2
AdvDk-MDDH

B,CG (λ) + 2−Ω(λ),

Time(B) ≈ Time(A) + (µ+ qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

To prove Lemma 6.6, we use the following lemma.
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Lemma 6.7. Let q1, . . . , qm ∈ N be any natural numbers and q =
∑

i∈[m] qi. Consider the following
distribution.

GCG ← GCG(1λ), M← GLk(m+1)(Zp), S̃0 ← Zk×q
p , S̃i ← Zk(i+1)×qi

p ,

S0 :=

(
S̃0

Okm×q

)
∈ Zk(m+1)×q

p , S′
i :=

(
S̃i

Ok(m−i)×qi

)
∈ Zk(m+1)×qi

p ,

S1 := (S′
1|| · · · ||S

′
m) ∈ Zk(m+1)×q

p ,

T0 := MS0, T1 := MS1.

Then, for any PPT adversary A, there exists a PPT adversary B for the Dk-MDDH s.t.

Advlemma
A (λ) := |Pr[1← A(GCG, [M], [T0])]− Pr[1← A(GCG, [M], [T1])]|

≤ km(m+ 1)

2
AdvDk-MDDH

B,CG (λ) + 2−Ω(λ)

Time(B) ≈ Time(A) + qpoly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof of Lemma 6.7. We consider a series of hybrid games, Game j for j ∈ {0, . . . ,m}. In
Game j, A is given (GCG, [M], [Hj ]) where

GCG ← GCG(1λ), M← GLk(m+1)(Zp),

S̃i ← Zk(i+1)×qi
p for i ∈ [j], S̃i ← Zk×qi

p for i ∈ [m]\[j],

S′
i :=

(
S̃i

Ok(m−i)×qi

)
for i ∈ [j], S′

i :=

(
S̃i

Okm×qi

)
for i ∈ [m]\[j],

H′
i := MS′

i, Hj := (H′
1|| · · · ||H

′
m).

It is easy to see that H0 = T0 and Hm = T1. Thus, it is sufficient for the proof to show that
(GCG, [M], [Hj−1]) and (GCG, [M], [Hj ]) are computationally indistinguishable for j ∈ [m] under
the MDDH assumption. More precisely, we show that, for any PPT adversary A, there exists a
PPT adversary B such that

|Pr[1← A(GCG, [M], [Hj−1])]− Pr[1← A(GCG, [M], [Hj ])]| ≤ Adv
qj-Uk(j+1),k-MDDH

B,CG (λ) + 2−Ω(λ).

B works as follows:

1. B obtains a qj-fold Uk(j+1),k-MDDH instance (GCG, [A], [Tβ ]).
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2. B defines

V← GLk(m+1)(Zp), B :=

(
A Ok×kj

A Ikj

)
∈ Zk(j+1)×k(j+1)

p ,

M := V

(
B Ok(j+1)×k(m−j)

Ok(m−j)×k(j+1) Ik(m−j)

)
∈ Zk(m+1)×k(m+1)

p ,

S̃i ← Zk(i+1)×qi
p for i ∈ [j − 1], S̃i ← Zk×qi

p for i ∈ [m]\[j],

S′
i :=

(
S̃i

Ok(m−i)×qi

)
for i ∈ [j − 1], S′

i :=

(
S̃i

Okm×qi

)
for i ∈ [m]\[j],

H′
i := MS′

i for i ∈ [m]\j, H′
j := V

(
Tβ

Ok(m−j)×qj

)
, H := (H′

1|| · · · ||H
′
m)

where A is the matrix consisting of the first k rows of A, and A is that consisting of the last
kj rows of A.

3. B gives (GCG, [M], [H]) to A and outputs A’s output as it is.

Since B is invertible with overwhelming probability, M is distributed statistically close to uniform
in GLk(m+1)(Zp). Observe that H is identically distributed to Hj−1 if β = 0 and is to Hj if β = 1.
We remark that due to the random self-reducibility of the MDDH assumption, we have

Adv
qj-U(j+1)k,k-MDDH

B,CG (λ) ≤ kjAdvDk-MDDH
B′,CG (λ).

This concludes the proof.

Proof of Lemma 6.6. We prove that ∀A∃B, |Pr[E0] − Pr[E1]| ≤ Advlemma
B (λ). Let qι := |{(i, j) |

φi(j) = ι}| for ι ∈ [m]. B works as follows. B takes an instance of Lemma 6.7, (GCG, [M], [Tδ]),
where δ ∈ {0, 1}. B defines A as the matrix consisting of the first k columns of M. B generates
random matrices W1, . . . ,Wµ ← Zm×k(m+1)

p and sets pki := (GCG, [A], [WiA]) for all i ∈ [µ].
Then, B inputs {pki}i∈[µ] to A. Because B generates mski := Wi for all i by itself, it can easily
simulate Osk. Thus, the remaining task is simulating Oct.

First, B selects a bit β ← {0, 1}. Let Tδ,i be the matrix consisting of the (
∑

j∈[i−1] qj + 1)

to (
∑

j∈[i−1] qj + qi)-th columns. Let tδ,i,j be the j-th column of Tδ,i. When A queries Oct on
(i, (xj,0,xj,1)) as the j-th query for user i, B computes a reply as follows:

cj,1 := tδ,φi(j),σi,j(i,j), cj,2 := Wicj,1 + xβ
j ∈ Zm

p ,

ctj := ([cj,1], [cj,2]).

where σi,j : {(`, κ) | φ`(κ) = φi(j)} → [qφi(j)] be any bijective function.
We check that B correctly simulates Oct. We can define (A||B) := M since (A||B) is invertible

with overwhelming probability. From the definition of Lemma 6.7, tδ,φi(j),σi,j(i,j) is uniformly
distributed in the space spanned by columns of A if δ = 0, and it is in the space spanned by the
first to k(φi(j) + 1)-th columns of M if δ = 1. Hence, if δ = 0, A’s view corresponds to Game 0
and otherwise, it corresponds to Game 1. Finally, B outputs the truth value of (β = β′) where β′

is the output of A. This proves Lemma 6.6.
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Lemma 6.8. For any PPT adversary A, we have

Pr[E1] = Pr[E2].

Proof. Lemma 6.8 follows from Claim 6.4 and Claim 6.5. To prove Lemma 6.8, we use a kind
of complexity leveraging argument. In the following, we randomly choose vectors independently
from the security game as {x̃j}i∈[µ],j∈[qct,i] ← Zm

p . The purpose is to assure that x̃j is independent
from W̃i in Eq. (6.17).

Claim 6.4. For any PPT adversary A and both ι ∈ {1, 2}, we have

Pr[Eι] = Pr[Eι|{x̃j}i∈[µ],j∈[qct,i] ← Zm
p ,∀i, j, x̃j = xj (mod p)].

Proof. Vectors {x̃j}i∈[µ],j∈[qct,i] are chosen independently from A’s view. Then, the event [∀i, j,
x̃j = xj (mod p)] does not affect A’s behavior.

Claim 6.5. For any PPT adversary A, we have

Pr[E1|{x̃j}i∈[µ],j∈[qct,i] ← Zm
p ,∀i, j, x̃j = xj (mod p)]

=Pr[E2|{x̃j}i∈[µ],j∈[qct,i] ← Zm
p ,∀i, j, x̃j = xj (mod p)].

Proof. We denote the ι-th column of the matrix B by bι for ι ∈ [km]. We define that B∗ :=(
(A||B)−1

)> ∈ Zk(m+1)×k(m+1)
p and denote the (k + ι)-th column of B∗ by b∗

ι for ι ∈ [km]. Then
the following equations hold:

b∗>

ι A = 0>, b∗>

ι bι′ =

1 (ι = ι′)

0 (ι 6= ι′)
for all ι, ι′ ∈ [km]. (6.16)

Next, we redefine Wi as

u← Zk
p, W̃i ← Zm×k(m+1)

p ,

Wi := W̃i +
∑

ι∈[φi(qct,i)]

x̃ρi(ι)u
>
(
b∗
k(ι−1)+1|| . . . ||b

∗
k(ι−1)+k

)>
.

(6.17)

Observe that Wi is identically distributed to the original one, i.e., Wi ← Zm×k(m+1)
p . This is

because x̃j is determined independently from W̃i. Under the condition such that ∀i, j, x̃j = xj
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(mod p), we have

(In the public key)

WiA = W̃iA for all i ∈ [µ] , (6.18)

(In the secret keys)

W>
i y` = W̃

>
i y` for all i ∈ [µ] and ` ∈ [qsk,i], (6.19)

(In the challenge ciphertexts)

Wi(Asj +Bs′j) =

W̃i +
∑

ι∈[φi(qct,i)]

x̃ρi(ι)u
>
(
b∗
k(ι−1)+1|| . . . ||b

∗
k(ι−1)+k

)> (Asj +Bs′j)

= W̃i(Asj +Bs′j) +
∑

ι∈[φi(qct,i)]

x̃ρi(ι)u
> (Ok×k(ι−1)||Ik||Ok×k(m−ι)

)
s′j

= W̃i(Asj +Bs′j) +
∑

ι∈[φi(j)]

〈u, s̃j,ι〉x̃ρi(ι) for all i ∈ [µ] and j ∈ [qct,i].

(6.20)

Here, Eq. (6.18) and Eq. (6.20) follow from Eq. (6.16), and Eq. (6.19) follows from Eq. (3.1). Then,
from Eq. (6.18), Eq. (6.19), and Eq. (6.20), A’s views in Game 1 and Game 2 are identical if
∀i, j, x̃j = xj (mod p). Then, Claim 6.5 holds.

Lemma 6.9. For any PPT adversary A, there exists a PPT adversary B for the Dk-MDDH s.t.

|Pr[E2]− Pr[E3]| ≤ AdvDk-MDDH
B (λ) + 2−Ω(λ),

Time(B) ≈ Time(A) + (µ+ qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Lemma 6.10. For any PPT adversary A, we have

Pr[E3] = Pr[E4].

Lemma 6.11. For any PPT adversary A, we have

Pr[E4] = 1/2.

The proofs of Lemma 6.9 to Lemma 6.11 are almost the same as those of Lemma 6.3 to
Lemma 6.5, respectively.

6.2.3 Application to Multi-Input Inner Product Functional Encryption

We can obtain an adaptively secure MIPFE scheme whose security is tightly reduced to the Dk -
MDDH assumption by applying the generic conversion by Abdalla et al. [ACF+18] to our scheme.
Let Pub-IPFE be a Pub-IPFE scheme that is adaptively secure in the multi-user and multi-challenge
setting. It is not difficult to see that the security of the MIPFE scheme obtained by applying the
conversion to Pub-IPFE is reduced to that of Pub-IPFE with the security loss being 1. For the
completeness, we describe their conversion in a slightly modified way so that it is sufficient for our
purpose.
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Property. Let Pub-IPFE := (Par,Setup,Enc,KeyGen,Dec) be a Pub-IPFE scheme. In their con-
version, we require that Pub-IPFE has the following properties.

1. Pub-IPFE is adaptively secure in the multi-challenge and multi-user setting.

2. A public parameter pp defines an order n, a group G of order n with group law ◦, and an
encoding function E : Zn → G.

3. A decryption algorithm Dec correctly works even if it takes pp instead of pk. Moreover,
the decryption algorithm Dec can be divided into the two algorithms Dec1 and Dec2 with
the following properties. For any λ,m ∈ N, any x,y ∈ Zm, and any z ∈ Zn such that
|z| ≤ mXλYλ, we have

Pr

d = E(〈x,y〉 mod n)

pp← Par(1λ)

(pk,msk)← Setup(1m, pp)

ct← Enc(pk,x)

sk← KeyGen(pk,msk,y)

d := Dec1(pp, ct, sk)

 = 1, Dec2(pp, E(z)) = z.

4. For any a, b ∈ Zn, we have E(a) ◦ E(b) = E(a+ b).

5. Given pp and any z ∈ Zn, one can efficiently compute E(−z).

Conversion by Abdalla et al. [ACF+18]. Let Pub-IPFE := (Par′,Setup′,Enc′,KeyGen′,Dec′

:= (Dec′1,Dec
′
2)) be a Pub-IPFE scheme with the property defined above. Let MIPFE := (Setup,Enc,

KeyGen,Dec) be a converted MIPFE scheme. Let Xλ := X ′
λ/µ be a norm bound of MIPFE, where

X ′
λ is a norm bound of Priv-IPFE.

Setup(1λ, 1m, 1µ): It takes a security parameter 1λ, a vector length 1m, and a number of slots 1µ.
Then, it outputs a public parameter pp and a master secret key msk as follows.

pp′ ← Par′(1λ), {pk′i,msk′i}i∈[µ] ← Setup′(1m, pp′), {ui}i∈[µ] ← Zm
n ,

pp := pp′, msk := ({pk′i,msk′i}i∈[µ], {ui}i∈[µ]).

Enc(pp,msk, i,x): It takes pp, msk, i ∈ [µ] and x ∈ Zm and outputs a ciphertext cti as follows.

x̃ := x+ ui ∈ Zm
n , ct′i ← Enc′(pk′i, x̃), cti := ct′i.

KeyGen(pp,msk, {yi}i∈[µ]): It takes pp, msk, and {yi}i∈[µ] ∈ Zm and outputs a secret key sk as
follows.

ỹi := yi ∈ Zm
n , sk′i ← KeyGen′(pk′i,msk′i, ỹi) for all i ∈ [µ],

z :=
∑
i∈[µ]

〈yi,ui〉 ∈ Zn, sk := ({sk′i}i∈[µ], z).
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Dec(pp, {cti}i∈[µ], sk): It takes pp, {cti}i∈[µ], and sk. Then, it computes decryption value d as
follows.

di := Dec′1(pp
′, ct′i, sk

′
i) ∈ G for all i ∈ [µ], d := Dec′2(pp, d1 ◦ · · · ◦ dµ ◦ E(−z)).

By the conversion, we obtain the following corollary.

Corollary 6.1. Let MIPFE be the MIPFE scheme obtained by applying the conversion in [ACF+18]
to our Pub-IPFE scheme. Then MIPFE is adaptively secure. More formally, let µ be a number of
slots, qct :=

∑
i∈[µ] qct,i be the total number of the ciphertext queries by A, qsk be the total number

of the secret key queries by A, and m be a vector length. Then, for any PPT adversary A and
security parameter λ, there exist PPT adversaries B1 and B2 for the Dk-MDDH and we have

AdvMIPFE
A,ad (λ) ≤ 2AdvDk-MDDH

B1
(λ) + 2AdvDk-MDDH

B2
(λ) + 2−Ω(λ),

max{Time(B1),Time(B2)} ≈ Time(A) + (µ+ qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

6.3 Function-Hiding Inner Product Functional Encryption
Lin proposed a simple framework that allows us to construct a function-hiding IPFE scheme from
a public key IPFE scheme [Lin17]. We can apply her framework to our schemes and obtain a
tightly function-hiding IPFE scheme in the multi-user setting. Although we consider to apply
her framework to the first scheme in this section, we can similarly apply it to the second scheme.
Informally, her framework is as follows.

First, we can see that a ciphertext and a secret key in our IPFE scheme consist of vectors, and
decryption involves inner product of these vectors. That is, a ciphertext of a vector x corresponds
to a vector cin := (cin,1, cin,2) := (As,WAs + x) ∈ Z(k2+k+1)m

p and a secret key of a vector
y corresponds to a vector kin := (kin,1,kin,2) := (−W>y,y) ∈ Z(k2+k+1)m

p . Decryption just
computes 〈cin,kin〉. We call the scheme described above an inner scheme.

To ensure the confidentiality of secret keys, we “encrypt” secret keys in the same way as
ciphertexts in our IPFE scheme. That is, a secret key of the function-hiding IPFE scheme is
generated as sk := (cout,1, cout,2) :=

(
Dr ∈ Zk(k+1)(k2+k+1)m

p ,VDr+ kin ∈ Z(k2+k+1)m
p

)
, where

V, D, and r correspond to W, A, and s respectively in our scheme presented in Section 6.2.1.
We call the scheme utilized to encrypt secret keys an outer scheme. We also need to transform
ciphertexts to make them compatible with sk, which can be done by “generating a secret key” of
cin in the outer scheme. That is, we define a ciphertext of the function-hiding IPFE scheme as
ct := (kout,1,kout,2) := (−V>cin ∈ Zk(k+1)(k2+k+1)m

p , cin ∈ Z(k2+k+1)m
p ). Observe that 〈ct, sk〉 =

〈cin,kin〉 = 〈x,y〉.
To achieve the security, of course we need to encode both ct and sk on the exponent of group

elements. We employ bilinear groups that allow us to compute inner product over the group
elements, which is necessary for decryption. Then, the confidentiality of ciphertexts is assured by
the inner scheme and that of secret keys is assured by the outer scheme.
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6.3.1 Actual Scheme and Optimization

As described above, if we directly apply Lin’s framework to our scheme, the first components of a
ciphertext and a secret key will consist of k(k+1)(k2+ k+1)m group elements. Recall the reason
we need k(k + 1)m group elements in the first components of a ciphertext and a secret key in the
original scheme. That is, the maximum dimension of the space spanned by the vectors xj = x1

j−x0
j

is m, and this fact directly affects the number of group elements in the first components. Because
the vector length handled in the outer scheme is (k2 + k + 1)m, the first components seem to
require k(k + 1)(k2 + k + 1)m group elements. However, observe that the maximum dimension of
the space spanned by the vectors kout,` := k1

out,` − k0
out,` := (−W>y1

` ,y
1
`) − (−W>y0

` ,y
0
`) for all

` ∈ [qsk] is m, not (k2 + k + 1)m. Hence, we can reduce the number of group elements in the first
components to k(k + 1)m, and the resulting scheme is given as follows.

Construction. Let Dk be a matrix distribution over full rank matrices in Z(k+1)×k
p and norm

bounds Xλ and Yλ be polynomials in λ.

Par(1λ): It takes a security parameter 1λ and outputs pp as follows.

GBG ← GBG(1λ), Ã, D̃← Dk, pp := (GBG, [Ã]1, [D̃]2).

Setup(1m, pp): It takes a vector length 1m and a public parameter pp. Then, it outputs a master
secret key msk as follows.

W
U←− Zm×k(k+1)m

p , V
U←− Z(k2+k+1)m×k(k+1)m

p , msk := (W,V).

Enc(pp,msk,x): It takes pp, msk, and x ∈ Zm and outputs a ciphertext ct as follows.

A :=

km matrices︷ ︸︸ ︷
Ã

Ã
. . .

Ã

 ∈ Zk(k+1)m×k2m
p , s

U←− Zk2m
p , cin := (As,WAs+ x),

kout,1 := −V>cin ∈ Zk(k+1)m
p , kout,2 := cin, ct := ([kout,1]1, [kout,2]1).

KeyGen(pp,msk,y): It takes pp, msk, and y ∈ Zm and outputs a secret key sk as follows.

D :=

km matrices︷ ︸︸ ︷
D̃

D̃
. . .

D̃

 ∈ Zk(k+1)m×k2m
p , r

U←− Zk2m
p , kin := (−W>y,y),

cout,1 := Dr, cout,2 := VDr+ kin, sk := ([cout,1]2, [cout,2]2).

Dec(pp, ct, sk): It takes pp, ct, and sk. Then it computes [d]T := e([kout,1]1, [cout,1]2)e([kout,2]1, [cout,2]2)

and searches for d exhaustively in the range of −mXλYλ to mXλYλ. If such d is found, it
outputs d. Otherwise, it outputs ⊥.
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Correctness. Observe that if ct is an encryption of x and sk is a secret key of y,

d = −c>inVDr+ c>inVDr+ c>inkin = 〈cin,kin〉 = 〈x,y〉.

Therefore, if ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, the output of the decryption algorithm is d = 〈x,y〉.

Security. For security, we have the following theorem.

Theorem 6.3. Assume that the Dk-MDDH assumption holds with respect to GBG, then our Priv-
IPFE scheme is weakly function-hiding in the multi-user setting. More formally, let µ be a number
of users, qct :=

∑
i∈[µ] qct,i be the total number of the ciphertext queries by A, qsk :=

∑
i∈[µ] qsk,i

be the total number of the secret key queries by A, and m be a vector length. Then, for any PPT
adversary A and security parameter λ, there exist PPT adversaries B1, . . . ,B4 for the Dk-MDDH,
and we have

AdvPriv-IPFE
A,w-fh (λ) ≤ 2

∑
ι∈{1,2}

AdvDk-MDDH
Bι,BG,1

(λ) + 2
∑

ι∈{3,4}

AdvDk-MDDH
Bι,BG,2

(λ) + 2−Ω(λ),

max
ι∈[4]
{Time(Bι)} ≈ Time(A) + (µ+ qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Theorem 6.3 follows from Theorem 6.1 and Lin’s observation [Lin17]. That is, the following
relations hold: {

{ct0j}j∈[qct,i], {sk
0
`}`∈[qsk,i]

}
i∈[µ]

≈c

{
{ct1j}j∈[qct,i], {sk

0
`}`∈[qsk,i]

}
i∈[µ]

≈c

{
{ct1j}j∈[qct,i], {sk

1
`}`∈[qsk,i]

}
i∈[µ]

.

The first indistinguishability follows from the security of the inner scheme and Eq. (3.3), and
the second indistinguishability follows from the security of the outer scheme and Eq. (3.3). More
precisely, we use the relations 〈x0

i,ji
,y0

i,`i
〉 = 〈x1

i,ji
,y0

i,`i
〉 for the inner scheme and 〈c1in,i,ji ,k

0
in,i,`i〉 =

〈c1in,i,ji ,k
1
in,i,`i〉 for the outer scheme. Both relations can be derived from Eq. (3.3). Note that

because our scheme is adaptively secure, the above relations hold even if ciphertexts and secret
keys are queried by an adversary adaptively.

Remark 6.1. Although the above scheme is weakly function-hiding in the multi-user setting, we
can easily convert it into one that is fully function-hiding in the multi-user setting by the conversion
proposed by Lin and Vaikuntanathan [LV16]. The conversion is very simple and works by only
doubling vector lengths. When encrypting x ∈ Zm, we just encrypt (x, 0m) in the original scheme.
Key generation is also done in the same way. In addition, this conversion is tight. That is, for any
PPT adversary A and security parameter λ, there exist PPT adversaries B1,B2,B3 and we have

AdvPriv-IPFE
A,f-fh (λ) ≤

∑
ι∈[3]

AdvPriv-IPFE
Bι,w-fh (λ),

max
ι∈[3]
{Time(Bι)} ≈ Time(A) + (µ+ qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).
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6.4 From Single to Multi-Input Function-Hiding Inner Prod-
uct Functional Encryption

In this section, we present a generic conversion from weakly function-hiding single-input IPFE
to fully function-hiding multi-input IPFE. Because all known function-hiding single-input IPFE
schemes are based on bilinear groups, we design the conversion to be compatible with group based
schemes. As in [ACF+18], however, we believe that our conversion is so generic that we can easily
modify it to be suitable to schemes based on other primitives if constructed.

6.4.1 Conversion

Property. Let Priv-IPFE := (Par,Setup,Enc,KeyGen,Dec) be a Priv-IPFE scheme. In our con-
version, we require that an underlying scheme has the following properties.

1. Priv-IPFE is weakly function-hiding in the multi-user setting.

2. A public parameter pp defines an order n, a group G of order n with group law ◦, and an
encoding function E : Zn → G.

3. A decryption algorithm Dec can be divided into the two algorithms Dec1 and Dec2 with
the following properties. For any λ,m ∈ N, any x,y ∈ Zm, and any z ∈ Zn such that
|z| ≤ mXλYλ, we have

Pr

d = E(〈x,y〉 mod n)

pp← Par(1λ)

msk← Setup(1m, pp)

ct← Enc(pp,msk,x)

sk← KeyGen(pp,msk,y)

d := Dec1(pp, ct, sk)

 = 1, Dec2(pp, E(z)) = z.

4. For any a, b ∈ Zn, we have E(a) ◦ E(b) = E(a+ b).

Conversion. Let Priv-IPFE :=
(
Par′,Setup′,Enc′,KeyGen′,Dec′ := (Dec′1,Dec

′
2)
)

be a Priv-IPFE
scheme with the property defined above. Let MIPFE := (Setup,Enc,KeyGen,Dec) be a converted
MIPFE scheme. Let Xλ := X ′

λ/µ be a norm bound of MIPFE, where X ′
λ is a norm bound of

Priv-IPFE. Our conversion is performed as follows.

Setup(1λ, 1m, 1µ): It takes a security parameter 1λ, a vector length 1m, and a number of slots 1µ.
Then, it outputs a public parameter pp and a master secret key msk as follows.

pp′ ← Par′(1λ), {msk′i}i∈[µ] ← Setup′(12m+1, pp′), {ui}i∈[µ]
U←− Zm

n ,

pp := pp′, msk := ({msk′i}i∈[µ], {ui}i∈[µ]).

Enc(pp,msk, i,x): It takes pp, msk, i ∈ [µ] and x ∈ Zm and outputs a ciphertext cti as follows.

x̃ := (x+ ui, 0
m, 1) ∈ Z2m+1

n , ct′i ← Enc′(pp′,msk′i, x̃), cti := ct′i.
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KeyGen(pp,msk, {yi}i∈[µ]): It takes pp, msk, and {yi}i∈[µ] ∈ Zm and outputs a secret key sk as
follows.

{ri}i∈[µ−1]
U←− Zn, rµ := −

 ∑
i∈[µ−1]

ri +
∑
i∈[µ]

〈yi,ui〉

 ∈ Zn,

ỹi := (yi, 0
m, ri) ∈ Z2m+1

n , sk′i ← KeyGen′(pp′,msk′i, ỹi) for all i ∈ [µ],

sk := {sk′i}i∈[µ].

Dec(pp, {cti}i∈[µ], sk): It takes pp, {cti}i∈[µ], and sk. Then, it computes decryption value d as
follows.

di := Dec′1(pp
′, ct′i, sk

′
i) ∈ G for all i ∈ [µ], d := Dec′2(pp

′, d1 ◦ · · · ◦ dµ).

Correctness. From property 3, we have

di = E(〈xi + ui,yi〉+ ri mod n).

From property 4, we have

d1 ◦ · · · ◦ dµ = E

∑
i∈[µ]

(〈xi + ui,yi〉+ ri) mod n

 = E

∑
i∈[µ]

〈xi,yi〉 mod n

 .

Then, from property 3 and the correctness of Priv-IPFE, we have d := Dec′2(d1 ◦ · · · ◦ dµ) =∑
i∈[µ]〈xi,yi〉.

Remark 6.2. Typically, we define Priv-IPFE as consisting of four algorithms (Setup,Enc,KeyGen,
Dec) and Setup outputs pp and msk when we consider Priv-IPFE in the single-user setting. To
apply our conversion to such a Priv-IPFE scheme, just setting pp := pp′1, . . . , pp

′
µ suffices in the

setup algorithm. In the security proof, however, we need a hybrid argument for each slot similarly
to [ACF+18]. Thus, the security reduction will not become tight.

6.4.2 Security

Theorem 6.4. Let Priv-IPFE be a Priv-IPFE scheme that satisfies the properties described above.
Then converted scheme, MIPFE, is a fully function-hiding MIPFE scheme. More formally, let µ

be a number of slots, qct :=
∑

i∈[µ] qct,i be the total number of the ciphertext queries by A, qsk be
the total number of the secret key queries by A, and m be a vector length. Then, for any PPT
adversary A and security parameter λ, there exist PPT adversaries B1,B2 for Priv-IPFE and we
have

AdvMIPFE
A,f-fh (λ) ≤ 2

∑
ι∈[2]

AdvPriv-IPFE
Bι,w-fh (λ),

max
ι∈[2]
{Time(Bι)} ≈ Time(A) + (µ+ qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).
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game x̃i,j in ct ỹi,` in sk −
∑

ri,` justification

0 (real) (xβ
i,j + ui, 0

m, 1) (yβ
i,`, 0

m, ri,`)
∑

〈yβ
i,`,ui〉 -

1 (xβ
i,j + ui, vi , 1) (yβ

i,`, 0
m, ri,`)

∑
〈yβ

i,`,ui〉 w-fh

2 (xβ
i,j + ui,vi, 1) (yβ

i,`, y0
i,` , ri,`)

∑
(〈yβ

i,`,ui〉+ 〈y0
i,`,vi〉) w-fh

3 (xβ
i,j −xβ

i,1 + ui, x0
i,1 + vi, 1) (yβ

i,`,y
0
i,`, ri,`)

∑
(〈yβ

i,`,ui〉+ 〈y0
i,`,vi〉) info.

4 (ui, x0
i,j + vi, 1) (yβ

i,`,y
0
i,`, ri,`)

∑
(〈yβ

i,`,ui〉+ 〈y0
i,`,vi〉) w-fh

5 (final) (ui,x
0
i,j + vi, 1) ( 0m ,y0

i,`, ri,`)
∑

〈y0
i,`,vi〉 w-fh

Table 6.1: Overview of the game change. In justification, w-fh stands for the weakly function-hiding
security of Priv-IPFE and info. stands for an information-theoretic change.

Proof. We employ a series of games and evaluate the advantage of the adversary in each game.
For ease of exposition, we first consider six games: Games 0 to 5, and show that the each transi-
tion of games is justified by the security of the underlying scheme (or an information-theoretical
argument). Then, we explain that the transition from Game 0 to 2 and that from Game 3 to 5 can
be done in one-shot. We summarize forms of ciphertexts and secret keys in each game in Table 6.1.
A formal description of each game is given as follows. Similarly to in Section 6.2.1, we omit index
i from index ji and just denote it by j.

Game 0: This game is the same as the real game. Then, for all i ∈ [µ], j ∈ [qct,i], and ` ∈ [qsk],
the j-th ciphertext and the `-th secret key that A obtains from the oracles correspond to

{ri,`}i∈[µ−1]
U←− Zn, rµ,` := −

 ∑
i∈[µ−1]

ri,` +
∑
i∈[µ]

〈yβ
i,`,ui〉

 ∈ Zn, (6.21)

x̃i,j := (xβ
i,j + ui, 0

m, 1) ∈ Z2m+1
n , ỹi,` := (yβ

i,`, 0
m, ri,`) ∈ Z2m+1

n .

Game 1: This game is the same as Game 0 except that x̃i,j in the ciphertext queries is defined
as follows:

{vi}i∈[µ]
U←− Zm

n , x̃i,j := (xβ
i,j + ui, vi , 1) ∈ Z2m+1

n for all i ∈ [µ] and j ∈ [qct,i].

Game 2: This game is the same as Game 1 except that ỹi,` in the secret key queries is defined
as follows:

{r′i,`}i∈[µ−1]
U←− Zn, r′µ,` := −

 ∑
i∈[µ−1]

r′i,` +
∑
i∈[µ]

(
〈yβ

i,`,ui〉+ 〈y0
i,`,vi〉

) ∈ Zn, (6.22)

ỹi,` := (yβ
i,`, y0

i,`, r
′
i,` ) ∈ Z2m+1

n for all i ∈ [µ] and ` ∈ [qsk].

Game 3: This game is the same as Game 2 except that x̃i,j in the ciphertext queries is defined
as follows:

x̃i,j := (xβ
i,j −x

β
i,1 + ui, x0

i,1 + vi, 1) ∈ Z2m+1
n for all i ∈ [µ] and j ∈ [qct,i].
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Game 4: This game is the same as Game 3 except that x̃i,j in the ciphertext queries is defined
as follows:

x̃i,j := (ui, x0
i,j + vi, 1) ∈ Z2m+1

n for all i ∈ [µ] and j ∈ [qct,i].

Game 5: This game is the same as Game 4 except that ỹi,` in the secret key queries is defined
as follows:

{r′′i,`}i∈[µ−1]
U←− Zn, r′′µ,` := −

 ∑
i∈[µ−1]

r′′i,` +
∑
i∈[µ]

〈y0
i,`,vi〉

 ∈ Zn, (6.23)

ỹi,` := ( 0m ,y0
i,`, r′′i,` ) ∈ Z2m+1

n for all i ∈ [µ] and ` ∈ [qsk].

Thanks to Lemma 6.12 to Lemma 6.17 and the observation in Section 6.4.2, Theorem 6.4 holds.

In the following, we denote the event that A’s output is equal to β, i.e., β = β′, in Game ι by
Eι.

Lemma 6.12. For any PPT adversary A, there exists a PPT adversary B1 for Priv-IPFE s.t.

|Pr[E0]− Pr[E1]| ≤ AdvPriv-IPFE
B1,w-fh (λ),

Time(B1) ≈ Time(A) + (µ+ qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. Let δ ∈ {0, 1} be a random coin that corresponds to β, chosen by the game for weakly
function-hiding Priv-IPFE. B1 behaves as follows.

1. B1 chooses a bit β
U←− {0, 1} and vectors {ui}i∈[µ], {vi}i∈[µ]

U←− Zm
n .

2. B1 obtains pp′ from the game and inputs it to A as pp.

3. When A makes a ciphertext query for (i, (x0
i,j ,x

1
i,j)), B1 first sets x̃0

i,j := (xβ
i,j + ui, 0

m, 1) ∈
Z2m+1
n and x̃1

i,j := (xβ
i,j + ui,vi, 1) ∈ Z2m+1

n . Then, B1 queries Oct on (i, (x̃0
i,j , x̃

1
i,j)) and

obtains ct′i,j from it. Finally, B1 replies cti,j := ct′i,j to A.

4. When A makes a secret key query for ({y0
i,`}i∈[µ], {y1

i,`}i∈[µ]), B1 first sets ỹ0
i,` = ỹ1

i,` :=

(yβ
i,`, 0

m, ri,`) ∈ Z2m+1
n where ri,` is generated as Eq. (6.21). Then, B1 queries Osk on

(i, (ỹ0
i,`, ỹ

1
i,`)) and obtains sk′i,` from it for all i ∈ [µ]. Finally, B1 replies sk` := {sk′i,`}i∈[µ] to

A.

5. Finally, when A outputs β′, B1 outputs the truth value of (β = β′).

In the above description, for all i ∈ [µ], j ∈ [qct,i], and ` ∈ [qsk], we have

〈x̃0
i,j , ỹ

0
i,`〉 = 〈x̃0

i,j , ỹ
1
i,`〉 = 〈x̃1

i,j , ỹ
1
i,`〉 = 〈x

β
i,j + ui,y

β
i,`〉+ ri,`.

Then, B1 follows the condition Eq. (3.3). It is not difficult to confirm that A’s view corresponds
to Game 0 if δ = 0 and Game 1 if δ = 1. This concludes the proof.
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Lemma 6.13. For any PPT adversary A, there exists a PPT adversary B2 for Priv-IPFE s.t.

|Pr[E1]− Pr[E2]| ≤ AdvPriv-IPFE
B2,w-fh (λ),

Time(B2) ≈ Time(A) + (µ+ qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. Let δ ∈ {0, 1} be a random coin that corresponds to β, chosen by the game for weakly
function-hiding Priv-IPFE. B2 behaves as follows.

1. B2 chooses a bit β
U←− {0, 1} and vectors {ui}i∈[µ], {vi}i∈[µ]

U←− Zm
n .

2. B2 obtains pp′ from the game and inputs it to A as pp.

3. When A makes a ciphertext query for (i, (x0
i,j ,x

1
i,j)), B2 first sets x̃0

i,j = x̃1
i,j := (xβ

i,j +

ui,vi, 1) ∈ Z2m+1
n . Then, B2 queries Oct on (i, (x̃0

i,j , x̃
1
i,j)) and obtains ct′i,j from it. Finally,

B2 replies cti,j := ct′i,j to A.

4. When A makes a secret key query for ({y0
i,`}i∈[µ], {y1

i,`}i∈[µ]), B2 first computes

{ri,`}i∈[µ−1]
U←− Zn, rµ,` := −

 ∑
i∈[µ−1]

ri,` +
∑
i∈[µ]

〈yβ
i,`,ui〉

 ∈ Zn,

r′i,` := ri,` − 〈y0
i,`,vi〉, ỹ0

i,` := (yβ
i,`, 0

m, ri,`) ∈ Z2m+1
n , ỹ1

i,` := (yβ
i,`,y

0
i,`, r

′
i,`) ∈ Z2m+1

n

for all i ∈ [µ].

Then, B2 queries Osk on (i, (ỹ0
i,`, ỹ

1
i,`)) and obtains sk′i,` from it for all i ∈ [µ]. Finally, B2

replies sk` := {sk′i,`}i∈[µ] to A.

5. Finally, when A outputs β′, B2 outputs the truth value of (β = β′).

In the above description, for all i ∈ [µ], j ∈ [qct,i], and ` ∈ [qsk], we have

〈x̃0
i,j , ỹ

0
i,`〉 = 〈x̃0

i,j , ỹ
1
i,`〉 = 〈x̃1

i,j , ỹ
1
i,`〉 = 〈x

β
i,j + ui,y

β
i,`〉+ ri,`.

Then, B2 follows the condition Eq. (3.3). Observe that {ri,`}i∈[µ−1] are chosen randomly from Zn,
then {r′i,`}i∈[µ−1] are also random elements in Zn from the viewpoint of the adversary. Additionally,
we have

r′µ,` = rµ,` − 〈y0
µ,`,vµ〉 = −

 ∑
i∈[µ−1]

ri,` +
∑
i∈[µ]

〈yβ
i,`,ui〉

− 〈y0
µ,`,vµ〉

= −

 ∑
i∈[µ−1]

r′i,` +
∑
i∈[µ]

(
〈yβ

i,`,ui〉+ 〈y0
i,`,vi〉

) .

Then, A’s view corresponds to Game 1 if δ = 0 and Game 2 if δ = 1. This concludes the proof.
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Lemma 6.14. For any PPT adversary A, we have

Pr[E2] = Pr[E3].

Proof. Lemma 6.14 follows from Claim 6.6 and Claim 6.7. To prove Lemma 6.14, we use a kind
of complexity leveraging argument. In the following, we randomly choose vectors independently
from the security game as {x̂γ

i,1}γ∈{0,1},i∈[µ]
U←− Zm

n . The purpose is to assure that x̂0
i,1 and x̂1

i,1

are independent from ũi and ṽi in Claim 6.7.

Claim 6.6. For any PPT adversary A and both ι ∈ {2, 3}, we have

Pr[Eι] = Pr[Eι|{x̂γ
i,1}γ∈{0,1},i∈[µ]

U←− Zm
n ,∀γ, i, x̂γ

i,1 = xγ
i,1 (mod n)],

where xγ
i,1 ∈ Zm for γ ∈ {0, 1} and i ∈ [µ] is the γ-side vector queried at A’s first ciphertext query

for slot i.

Proof. Vectors {x̂γ
i,1}γ∈{0,1},i∈[µ] are chosen independently from A’s view. Then, the event

[∀γ, i, x̂γ
i,1 = xγ

i,1 (mod n)] does not affect A’s behavior.

Claim 6.7. For any PPT adversary A, we have

Pr[E2|{x̂γ
i,1}γ∈{0,1},i∈[µ]

U←− Zm
n ,∀γ, i, x̂γ

i,1 = xγ
i,1 (mod n)]

=Pr[E3|{x̂γ
i,1}γ∈{0,1},i∈[µ]

U←− Zm
n ,∀γ, i, x̂γ

i,1 = xγ
i,1 (mod n)].

Proof. We redefine ui and vi as ui := ũi − x̂β
i,1 and vi := ṽi + x̂0

i,1 where ũi, ṽi
U←− Zm

n for all
i ∈ [µ]. Observe that ui and vi are identically distributed to the original ones, i.e., ui,vi

U←− Zm
n .

This is because x̂0
i,1 and x̂1

i,1 are chosen independently from ũi and ṽi. Under the condition such
that ∀γ, i, x̂γ

i,1 = xγ
i,1 (mod n), we have

(In the secret keys)

r′µ,` = −

 ∑
i∈[µ−1]

r′i,` +
∑
i∈[µ]

(
〈yβ

i,`,ui〉+ 〈y0
i,`,vi〉

)
= −

 ∑
i∈[µ−1]

r′i,` +
∑
i∈[µ]

(
〈yβ

i,`, ũi〉+ 〈y0
i,`, ṽi〉

)
+
∑
i∈[µ]

(
−〈yβ

i,`, x̂
β
i,1〉+ 〈y

0
i,`, x̂

0
i,1〉
)

= −

 ∑
i∈[µ−1]

r′i,` +
∑
i∈[µ]

(
〈yβ

i,`, ũi〉+ 〈y0
i,`, ṽi〉

) for all ` ∈ [qsk],

(6.24)

(In the ciphertexts)

x̃i,j = (xβ
i,j + ui,vi, 1) = (xβ

i,j − x̂β
i,1 + ũi, x̂

0
i,1 + ṽi, 1) for all i ∈ [µ] and j ∈ [qct,i]. (6.25)

Eq. (6.24) follows from the condition Eq. (3.4) because
∑

i∈[µ]

(
−〈yβ

i,`, x̂
β
i,1〉+ 〈y0

i,`, x̂
0
i,1〉
)

= 0.
Then, from Eq.(6.24) and Eq.(6.25), A’s views are identical in Game 2 and Game 3 if ∀γ, i, x̂γ

i,1 =

xγ
i,1 (mod n). This proves Claim 6.7.
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Lemma 6.15. For any PPT adversary A, there exists a PPT adversary B3 for Priv-IPFE s.t.

|Pr[E3]− Pr[E4]| ≤ AdvPriv-IPFE
B3,w-fh (λ),

Time(B3) ≈ Time(A) + (µ+ qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. We use the following claim in the proof of Lemma 6.15.

Claim 6.8. For all i ∈ [µ], j ∈ [qct,i], and ` ∈ [qsk], we have

〈xβ
i,j − xβ

i,1,y
β
i,`〉 = 〈x

0
i,j − x0

i,1,y
0
i,`〉.

Proof. From Eq. (3.4), we have

〈xβ
i,j ,y

β
i,`〉+

∑
ι∈[µ],
ι 6=i

〈xβ
ι,1,y

β
ι,`〉 = 〈x

0
i,j ,y

0
i,`〉+

∑
ι∈[µ],
ι6=i

〈x0
ι,1,y

0
ι,`〉 (6.26)

〈xβ
i,1,y

β
i,`〉+

∑
ι∈[µ],
ι6=i

〈xβ
ι,1,y

β
ι,`〉 = 〈x

0
i,1,y

0
i,`〉+

∑
ι∈[µ],
ι6=i

〈x0
ι,1,y

0
ι,`〉 (6.27)

Then Eq. (6.26) − Eq. (6.27) yields Claim 6.8.

Next, we describe B3’s behavior. Let δ ∈ {0, 1} be a random coin that corresponds to β, chosen
by the game for weakly function-hiding Priv-IPFE.

1. B3 chooses a bit β
U←− {0, 1} and vectors {ui}i∈[µ], {vi}i∈[µ]

U←− Zm
n .

2. B3 obtains pp′ from the game and inputs it to A as pp.

3. When Amakes a ciphertext query for (i, (x0
i,j ,x

1
i,j)), B3 first sets x̃0

i,j := (xβ
i,j−x

β
i,1+ui,x

0
i,1+

vi, 1) ∈ Z2m+1
n and x̃1

i,j := (ui,x
0
i,j + vi, 1) ∈ Z2m+1

n . Then, B3 queries Oct on (i, (x̃0
i,j , x̃

1
i,j))

and obtains ct′i,j from it. Finally, B3 replies cti,j := ct′i,j to A.

4. When A makes a secret key query for ({y0
i,`}i∈[µ], {y1

i,`}i∈[µ]), B3 first sets ỹ0
i,` = ỹ1

i,` :=

(yβ
i,`,y

0
i,`, r

′
i,`) ∈ Z2m+1

n where r′i,` is generated as Eq. (6.22). Then, B3 queries Osk on
(i, (ỹ0

i,`, ỹ
1
i,`)) and obtains sk′i,` from it for all i ∈ [µ]. Finally, B3 replies sk` := {sk′i,`}i∈[µ] to

A.

5. Finally, when A outputs β′, B3 outputs the truth value of (β = β′).

In the above description, for all i ∈ [µ], j ∈ [qct,i], and ` ∈ [qsk], we have

〈x̃0
i,j , ỹ

0
i,`〉 = 〈x̃0

i,j , ỹ
1
i,`〉

= 〈xβ
i,j − xβ

i,1,y
β
i,`〉+ 〈ui,y

β
i,`〉+ 〈x

0
i,1 + vi,y

0
i,`〉+ r′i,`

= 〈ui,y
β
i,`〉+ 〈x

0
i,j − x0

i,1,y
0
i,`〉+ 〈x0

i,1 + vi,y
0
i,`〉+ r′i,`

= 〈ui,y
β
i,`〉+ 〈x

0
i,j + vi,y

0
i,`〉+ r′i,`

= 〈x̃1
i,j , ỹ

1
i,`〉.
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In the third line, we use Claim 6.8. Then, B3 follows the condition Eq. (3.3). It is not difficult to
confirm that A’s view corresponds to Game 3 if δ = 0 and Game 4 if δ = 1. This concludes the
proof.

Lemma 6.16. For any PPT adversary A, there exists a PPT adversary B4 for Priv-IPFE s.t.

|Pr[E4]− Pr[E5]| ≤ AdvPriv-IPFE
B4,w-fh (λ),

Time(B4) ≈ Time(A) + (µ+ qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. Let δ ∈ {0, 1} be a random coin that corresponds to β, chosen by the game for weakly
function-hiding Priv-IPFE. B4 behaves as follows.

1. B4 chooses a bit β
U←− {0, 1} and vectors {ui}i∈[µ], {vi}i∈[µ]

U←− Zm
n .

2. B4 obtains pp′ from the game and inputs it to A as pp.

3. When A makes a ciphertext query for (i, (x0
i,j ,x

1
i,j)), B4 first sets x̃0

i,j = x̃1
i,j := (ui,x

0
i,j +

vi, 1) ∈ Z2m+1
n . Then, B4 queries Oct on (i, (x̃0

i,j , x̃
1
i,j)) and obtains ct′i,j from it. Finally, B4

replies cti,j := ct′i,j to A.

4. When A makes a secret key query for ({y0
i,`}i∈[µ], {y1

i,`}i∈[µ]), B4 first computes

{r′i,`}i∈[µ−1]
U←− Zn, r′µ,` := −

 ∑
i∈[µ−1]

r′i,` +
∑
i∈[µ]

(
〈yβ

i,`,ui〉+ 〈y0
i,`,vi〉

) ∈ Zn,

r′′i,` := r′i,` + 〈y
β
i,`,ui〉, ỹ0

i,` := (yβ
i,`,y

0
i,`, r

′
i,`) ∈ Z2m+1

n , ỹ1
i,` := (0m,y0

i,`, r
′′
i,`) ∈ Z2m+1

n

for all i ∈ [µ].

Then, B4 queries Osk on (i, (ỹ0
i,`, ỹ

1
i,`)) and obtains sk′i,` from it for all i ∈ [µ]. Finally, B4

replies sk` := {sk′i,`}i∈[µ] to A.

5. Finally, when A outputs β′, B4 outputs the truth value of (β = β′).

In the above description, for all i ∈ [µ], j ∈ [qct,i], and ` ∈ [qsk], we have

〈x̃0
i,j , ỹ

0
i,`〉 = 〈x̃0

i,j , ỹ
1
i,`〉 = 〈x̃1

i,j , ỹ
1
i,`〉 = 〈y

β
i,`,ui〉+ 〈x0

i,j + vi,y
0
i,`〉+ r′i,`.

Then, B4 follows the condition Eq. (3.3). Observe that {r′i,`}i∈[µ−1] are chosen randomly from Zn,
then {r′′i,`}i∈[µ−1] are also random elements in Zn from the viewpoint of the adversary. Additionally,
we have

r′′µ,` = r′µ,` + 〈y
β
µ,`,uµ〉 = −

 ∑
i∈[µ−1]

r′i,` +
∑
i∈[µ]

(
〈yβ

i,`,ui〉+ 〈y0
i,`,vi〉

)+ 〈yβ
µ,`,uµ〉

= −

 ∑
i∈[µ−1]

r′′i,` +
∑
i∈[µ]

〈y0
i,`,vi〉

 .

Then, A’s view corresponds to Game 4 if δ = 0 and Game 5 if δ = 1. This concludes the proof.
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Lemma 6.17. For any PPT adversary A, we have

Pr[E5] = 1/2.

Lemma 6.17 is trivial because A does not obtain any information about β in Game 5.

Optimization

On Lemma 6.12 and Lemma 6.13, we define that

x̃0
i,j := (xβ

i,j + ui, 0
m, 1), x̃1

i,j := (xβ
i,j + ui,vi, 1),

ỹ0
i,` := (yβ

i,`, 0
m, ri,`), ỹ1

i,` := (yβ
i,`,y

0
i,`, r

′
i,`).

Then, we have 〈x̃0
i,j , ỹ

0
i,j〉 = 〈x̃1

i,j , ỹ
0
i,j〉 = 〈x̃1

i,j , ỹ
1
i,j〉 for all i ∈ [µ], j ∈ [qct,i], and ` ∈ [qsk], which

satisfies the condition Eq. (3.3). Hence, we do not need Game 1 actually and can prove that

|Pr[E0]− Pr[E2]| ≤ AdvPriv-IPFE
B1,w-fh (λ).

Similarly, we can also prove that

|Pr[E3]− Pr[E5]| ≤ AdvPriv-IPFE
B2,w-fh (λ).

6.4.3 Application to Our Scheme

Applying the conversion to our scheme presented in Section 6.3.1, we can obtain a tightly secure
fully function-hiding MIPFE scheme. First, we confirm that our scheme satisfies the property
presented in Section 6.4.1.

1. Theorem 6.3 says that our scheme is weakly function-hiding.

2. We can define that n := p, G := GT , and E : a ∈ Zp → [a]T ∈ GT . The group law ◦
corresponds to the multiplication over GT .

3. We can define that Dec1 computes [d]T and Dec2 searches for the discrete logarithm of [d]T .

4. It is obvious that gaT · gbT = ga+b
T .

Then, from Theorem 6.3 and Theorem 6.4, we obtain the following corollary.

Corollary 6.2. Let MIPFE be the MIPFE scheme obtained by applying the conversion in Sec-
tion 6.4.1 to our weakly function-hiding Priv-IPFE scheme. Then MIPFE is fully function-hiding.
More formally, let µ be a number of slots, qct :=

∑
i∈[µ] qct,i be the total number of the ciphertext

queries by A, qsk be the total number of the secret key queries by A, and m be a vector length.
Then, for any PPT adversary A and security parameter λ, there exist PPT adversaries B1, . . . ,B4
for the Dk-MDDH and we have

AdvMIPFE
A,f-fh (λ) ≤ 8

∑
ι∈{1,2}

AdvDk-MDDH
Bι,BG,1

(λ) + 8
∑

ι∈{3,4}

AdvDk-MDDH
Bι,BG,2

(λ) + 2−Ω(λ),

max
ι∈[4]
{Time(Bι)} ≈ Time(A) + (µ+ qct + µqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).
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6.5 Conclusion of Chapter 6
In Chapter 6, we studied the tight security of IPFE. Tight security guarantees that the security of
the scheme is not degraded even when an adversary obtains many ciphertexts. Since adversaries
often obtain many ciphertexts in the real world, tight security is theoretically and practically
important. In this work, we first constructed public-key tightly secure IPFE scheme. Using the
previous conversion techniques [Lin17,ACF+18], we can convert them into a tightly secure function-
hiding scheme and multi-input scheme. To achieve a tightly secure function-hiding multi-input
scheme, we devised a new conversion that transforms function-hiding IPFE into function-hiding
MIPFE. Applying the conversion to our tightly secure function-hiding IPFE scheme, we finally
obtained a tightly secure function-hiding MIPFE scheme.

115



Chapter 7

Conclusion

7.1 Summary of This Thesis
One of essential roles of cryptography is to hide data from adversaries, and traditional encryption
such as public-key encryption (PKE) and symmetric-key encryption (SKE) suffice for the purpose.
Due to recent increase in cloud services and interest to privacy issues, demand for computation
over encrypted data has been increasing. Unfortunately, PKE and SKE do not allow us to make
a computation over encrypted data.

Functional encryption (FE) is an advanced cryptographic paradigm, which allows us to compute
function values from encrypted data. Thus, it is expected to be helpful for delegating computation
to cloud servers. A problem in this application of FE is that all FE schemes that can handle general
functions are too heavy to implement and impractical. Inner Product Functional Encryption
(IPFE), introduced to deal with the impracticality, is FE that only supports inner product as a
function class. Inner Product Functional Encryption can be efficiently constructed from standard
assumptions and has several applications. This is why IPFE has received attention. In this thesis,
we proposed methodologies to enhance the efficiency, functionality, and security of IPFE towards
the goal of making IPFE more practical.

In Chapter 4, we proposed a more efficient function-hiding IPFE scheme than previous schemes.
The function-hiding property is important when computing sensitive functions over encrypted data.
To achieve an efficient scheme, we developed a new security proof technique. Our technique has
been widely applied to various function-hiding schemes [DOT18,TT18,Tom19]. Concretely, we used
an extended proof technique to construct an efficient unbounded IPFE schemes in Chapter 5, and
the technique also inspired us to achieve a tightly secure function-hiding IPFE scheme in Chapter 6.
Furthermore, the asymptotic efficiency (in vector length) of our scheme in the standard model is
still the best. Thus, we consider that our security proof technique is fundamental to achieve
efficient function-hiding IPFE schemes.

In Chapter 5, we proposed public-key and private-key unbounded IPFE schemes, which have
no bound on vector lengths. We believe that unbounded IPFE schemes are very useful when data
to be encrypted have various sizes, e.g., DNA sequences. Since inner product allows us to compute
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similarity of two sequences, unbounded IPFE is useful for similarity check over encrypted DNA
sequences, which may help to solve some privacy issues in genome research. We also believe that
there are many other cases where unboundedness of IPFE make a profit.

In Chapter 6, we developed a methodology to construct tightly secure IPFE schemes. Tight
security guarantees that the probability that an adversary breaks a cryptosystem is independent
of the number of ciphertexts that the adversary obtains, which is not the case in general. Tight
security is practically important because it is natural that an adversary obtains many cipher-
texts in the real world. Although it had been unclear whether we can construct tightly secure
IPFE schemes, we solved the question affirmatively. We believe that our result makes IPFE more
practical because we achieved IPFE schemes that are secure against the realistic threat.

While our technique to construct efficient function-hiding IPFE scheme could be widely used,
our results on unboundedness and tight security are incompatible. However, both properties are
important towards the goal of obtaining a more practical IPFE scheme. We could not obtain such
a scheme in this thesis, and thus this is an important future direction.

We also remark that inner product is a quite simple function class and insufficient for many
cases. For instance, when we make a statistical computation, we can compute weighted mean but
cannot compute standard deviation via inner product. When we compute similarity of two strings,
we can compute the Hamming distance but cannot compute the Levenshtein distance via inner
product. Thus, it is also important to explore efficient functional encryption that supports a richer
function class than inner product. We hope that our results will help to study such richer FE
schemes.

7.2 Other Open Questions
We exhibit other open questions related IPFE in the last part of this thesis.

We proposed unbounded IPFE schemes and tightly secure IPFE schemes based on the MDDH
assumptions. A natural question is whether we can construct them from other assumptions such
as LWE or DCR, from which (not unbounded or not tightly secure) IPFE schemes have already
been constructed. Our techniques are not straightforwardly applicable to LWE or DCR, and thus
devising new techniques will need to be devised. They are important because an LWE-based
scheme is post-quantum secure, and a DCR-base scheme can handle exponentially large values.

The next question is whether we can construct function-hiding IPFE schemes without pairings.
This is important since such a scheme is more efficient than the scheme that uses pairings. So
far, no function-hiding schemes have been proposed, and an impossibility result is also known
for function-hiding IPFE schemes from LWE [Üna20]. If new function-hiding IPFE schemes are
proposed, then our conversion from function-hiding IPFE to MIPFE may be applicable. Thus,
solving this question may lead to new instantiations for function-hiding MIPFE schemes.

Finally, considering unboundedness or tight security in quadratic FE is another interesting
open question. Since constructions of quadratic FE are rather different from those of IPFE, we
probably need new techniques to achieve these properties in quadratic FE.
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