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Abstract

Continuous gravitational waves have a longer duration than the observation period, an
almost monochromatic frequency, and a constant amplitude. In the theory of gravitational
waves, various sources (e.g., rotating neutron stars and axion clouds around black holes)
are expected to emit continuous gravitational waves. After the three observation runs
of the advanced LIGO and the advanced Virgo, continuous gravitational waves have not
been detected. In the data analysis context, the detection of continuous gravitational
waves is a still challenging task. The coherent matched filtering is the optimal detection
method because the continuous gravitational waves can be modeled by relatively simple
waveforms. The waveforms depend on the source location through the Doppler modulation
caused by the detector’s motion associated with the rotation and the orbital motion of the
Earth. This Doppler modulation increases the number of templates, and, as a result,
the computational cost of the coherent matched filtering becomes desperately expensive.
On the other hand, semi-coherent methods employed for the real data analysis by the
LIGO/Virgo collaboration are computationally efficient. However, their performances are
significantly degraded from that of the coherent matched filtering. We proposed a new
method by combining the excess power method and the deep learning method, which are
computationally cheap. The workflow is as follows: 1) preprocessing the data strain, 2)
candidate selection by the excess power method, 3) predicting the source location by the
deep learning method, 4) the follow-up analysis by the coherent matched filtering. We
assess the ability of our method with the assumptions that the sources are monochromatic,
the extrinsic parameters are fixed to be (ψ, cos ι, φ0) = (0, 1, 0) and a priori known, the
100% duty cycle single detector, and the detector noise is stationary and Gaussian. We
show that our method is worthy for further study for analyzing the signal with the duration
of O(107)sec.
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Chapter 1

Introduction

1.1 Gravitational wave astronomy

From the first direct detection of GW150914 [1], the advanced Laser Interferometer Gravitational-
wave Observatory (aLIGO) and the advanced Virgo (AdV) have detected about fifty events
which are confirmed as the signal originating from compact binary mergers [2, 3]. These
events have given us tremendous information about astrophysics, cosmology, and theories
of gravity. GW150914 is the coalescence of two orbiting black holes whose masses are
36M� and 29M�, respectively. The formation scenario of such a stellar mass black hole
binary is under discussion [4]. Also, by using detected waveform, various types of tests of
general relativity have been done [5]. So far, all results are consistent with the predictions
of general relativity. Other exotic phenomena like black hole echoes also are explored.
GW170817 is the first gravitational wave event from a binary neutron star merger [6]. It is
crucial to observe the same source by gravitational waves and electromagnetic waves [7, 8].
As a result, the unified picture connecting the binary neutron star merger, a short gamma-
ray burst, and a kilonova is established. Comparing the arrival times of the gamma-ray
photons and the gravitational waves, we obtain a strict limit of the propagation speed
of gravitational waves [8]. By identifying the host galaxy, the Hubble parameters can be
estimated [9]. Recently, the LIGO and Virgo collaboration reports a new catalog of the
gravitational wave events [2, 3]. With this catalog, the population of black holes is started
to be discussed statistically [10]. In near future, new ground-based gravitational wave de-
tectors like KAGRA [11, 12] and LIGO India [13] will join the gravitational wave detector
network [14]. The observation by the multiple detectors is useful to improve the precision
of estimation of source location and to test the polarization of gravitational waves. As a
future plan, Einstein Telescope [15, 16] and Cosmic Explorer [17] are proposed.

The ground-based detectors are sensitive to gravitational waves of the frequency band
from 10 to 103Hz. Besides, the space-borne detectors, which are proposed as future ob-
servation plans, would be sensitive to a frequency band from 1 to 100 mHz. The Laser
Interferometer Space Antenna (LISA) [18, 19] is planned to be launched by ESA in the
early 2030s. LISA consists of three satellites. They are placed at the vertex of a triangle
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CHAPTER 1. INTRODUCTION

of the arm length 2,500,000 km and their center of mass orbits around the Sun. Similar
projects named Taiji [20] and TianQin [21] are proposed by China. The correlation anal-
ysis with LISA and Taiji is also investigated actively (e.g., [22]). These detectors’ targets
are mergers of supermassive black hole binaries, extreme mass ratio inspirals (EMRIs), the
stochastic signals generated in the Early universe, and so on. A Japanese research group
has proposed a project named B-DECIGO [23]. Similarly to LISA, it consists of three
satellites and form a triangle. But, the size of the triangle is 1,000 km and the satellites
will orbit the Earth. B-DECIGO has sensitivity at a frequency band from 100 mHz to
10Hz.

The pulsar timing array (PTA) [24] uses pulsars as accurate clocks and taking correla-
tions between the shifts of the pulse arrival timing of different pulsars. PTA is sensitive to
gravitational waves whose frequency is few nHz. Recently, the NANOGrav collaboration
reports that the stochastic signal which is not consistent with noise is found [25]. Although
this stochastic signal is not confirmed as an astrophysical event, further investigation will
elucidate the astrophysics behind the signal.

Gravitational waves become an essential tool in astronomy. The gravitational wave
astronomy is believed to open the window to understanding our Universe.

1.2 Continuous gravitational waves and difficulty of its

detection

All events detected by the ground-based interferometers so far are the signals originating
from compact binary mergers. The signals have short durations and rapidly increasing
frequencies and are called chirp signals. On the other hand, various astrophysical and cos-
mological origins are theoretically expected to be the sources of gravitational waves, and,
correspondingly, the waveforms of the expected signals are varied (Ref. [26] as review).
For example, rotating deformed neutron stars are possible sources of gravitational waves
(Ref. [27] as review). Rotating neutron stars are already discovered as pulsars by radio
astronomy [28]. Their rotation frequencies and spin-down rates are precisely estimated by
the arrival times of pulse signals. If neutron stars are deformed to break the rotational
symmetry, they emit gravitational waves of frequencies twice of the rotation frequency.
The wave emission is expected to last longer than the observation period. Such kind of
signal is called continuous gravitational waves. They are characterized by 1) longer dura-
tion than the observation period, 2) small change rate of frequencies, 3) almost constant
amplitudes. Not only rotating neutron stars but also some exotic sources are expected to
radiate continuous gravitational waves.

In the context of data analysis, the detection of continuous gravitational waves is still
a challenging research area [29]. The difficulty in data analysis of continuous gravitational
waves arises from the Doppler modulation due to the detector’s motion. Even if the source
is monochromatic, the observed signal is modulated because of the relative motion between
the detector and the sources. The detector’s motion is modeled with the assumption that
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CHAPTER 1. INTRODUCTION

it is associated with the rotation and the orbital motion of the Earth. Therefore, the
matched filtering, which is the optimal method when we can model the waveforms theo-
retically, can be applied to detect continuous gravitational waves. The waveform models
are characterized not only by the source properties (e.g., gravitational wave frequency at
the reference time) but also by the source location on the Celestial sphere. Because the
signal strength (signal-to-noise ratio) is susceptible to the source location, we need many
templates to keep the maximum loss of the significance of the signal by the mismatch
between the source location and the predicted location below an acceptable level. As a
result, it takes an unrealistically long computational time to coherently analyze the entire
strain data of O(1) year duration. Usually, the strain data is divided into many small
segments, and SNRs of these segments are appropriately integrated. This method is called
a semi-coherent method. There are various semi-coherent methods, e.g., stack slide [30],
Hough transform [31]. They are computationally reasonable methods, but the detection
efficiency is significantly reduced compared with the coherent matched filtering.

The semi-coherent analysis is carried out for the strain data obtained during Observa-
tion run one (O1) and two (O2) of the collaboration of aLIGO and AdV [32–34]. Despite
tremendous efforts to detect continuous gravitational waves, continuous gravitational waves
have not been detected so far.

1.3 Brief summary of the thesis

In this thesis, we propose a new method for detecting continuous gravitational waves and
show the proof-of-principle of our method using the monochromatic waves. Our method
consists of several stages, 1) preprocessing the strain data by using the time resampling
technique, the short-time Fourier transform, and another Fourier transform, 2) candidate
selection by the excess power method, 3) narrowing down the possible locations of sources
by the deep learning method, 4) following-up analysis by the coherent matched filtering.

In Chap. 2, we briefly review the fundamental facts of gravitational waves. Chapter. 3
is devoted to the review of the matched filtering method. We will see the difficulty of the
matched filtering in the detection of continuous gravitational waves. In Chap. 4, we explain
our new method in detail. It includes a brief review of the deep learning. Comparing with
the coherent matched filtering, we also show the performance of our method. Chapter. 5
is devoted to summarizing our work and future works.

This thesis is mainly based on our work Ref. [35].

1.4 Notation

Greek indices µ, ν . . . indicate spacetime coordinates and run over 0, 1, 2, and 3. Latin
indices i, j, . . . indicate sptial coordinates and run over 1,2, and 3. We work with a mostly
positive signature. The Cartesian coordinates are

x0 = ct , x1 = x , x2 = y , x3 = z . (1.1)
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CHAPTER 1. INTRODUCTION

The metric of Minkowski spacetime on the Cartesian coordinates is written as

ηµν =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (1.2)

Einstein’s contraction rule is employed. The partial derivative with respect to a coordinate
xµ:

∂µ =
∂

∂xµ
.

The inner product of 4-vectors p and q is denoted by

p · q := gµνp
µqν = pµq

µ .

The inner product of 3-vectors a and b is denoted by

a · b := δija
ibj = aib

i .

The Fourier transform of the function s(t) is defined by

s̃(f) :=

∫

∞

−∞

dt s(t)e−2πift .

The inverse Fourier transform is defined by

s(t) =

∫

∞

−∞

df s̃(f)e2πift .
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Chapter 2

Gravitational waves

2.1 Linearized Einstein equation

2.1.1 Linearized Einstein equation

In general relativity, the gravitational field is expressed by the metric tensor gµν which is
directly related with the geometry of the spacetime. The line element is written as

ds2 = gµνdx
µdxν . (2.1)

The dynamics of the gravitational field is governed by the Einstein equation

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (2.2)

where Rµν is the Ricci tensor, R := gµνRµν is the Ricci scalar and Tµν is the energy-
momentum tensor of the matter.

Let us consider the metric perturbation hµν on the flat spacetime ηµν . The metric
tensor is written as

gµν = ηµν + hµν . (2.3)

In the Cartesian coordinate, the condition,

|hµν | � 1 , (2.4)

is valid for every component of hµν . The meaning of the condition Eq. (2.4) is that there
exists the reference frame in which Eq. (2.4) is valid. General relativity has the covariance
with respect to the general coordinate transformation and it can be employed to move to
such a reference frame.

Expanding the Einstein equation up to the first order of the perturbation hµν , we get
the linearized Einstein equation,

�ψµν + ηµν∂
ρ∂σψρσ − ∂µ∂

ρψρν − ∂ν∂
ρψµρ = −16πG

c4
Tµν . (2.5)

9



CHAPTER 2. GRAVITATIONAL WAVES

Here, � is d’Alambertian in the flat spacetime and

ψµν := hµν −
1

2
ηµνh , (2.6)

with

h := ηµνhµν . (2.7)

2.1.2 Gauge transformation

By using the degrees of freedom originating from the general covariance, we can move to
a reference frame in which Eq. (2.4) holds. However, there is a residual gauge degrees of
freedom. Let us consider the following infinitesimal coordinate transformation,

xµ → x′µ = xµ + ξµ(x) , (2.8)

with

|∂µξν | ∼ |hµν | � 1 . (2.9)

Under the transformation given in Eq. (2.8), the metric perturbation hµν is transformed
as

hµν(x) → h′µν(x
′) = hµν(x)− (∂µξν + ∂νξµ) . (2.10)

By virtue of this gauge degrees of freedom, we can impose the additional gauge condition,
which is called Lorentz gauge,

∂νψµν = 0 . (2.11)

With the Lorentz gauge, the linearized Einstein equation (Eq. (2.5)) becomes

�ψµν = −16πG

c4
Tµν . (2.12)

This is nothing but the wave equation with a source. Thus, the wave-like function can exists
as the solution of the linearlized Einstein equation. This solution is called gravitational
waves. Considering that the metric tensor has the geometrical meaning, the gravitational
waves can be interpreted as “the ripple of the spacetime”.

2.2 Propagation of gravitational waves

2.2.1 Transverse-traceless gauge

Let us consider the gravitational waves propagating in vacuum, hence we set Tµν = 0 in
Eq. 2.12. The Lorentz gauge (2.11) does not completely fix the degree of freedom. In fact,
the Lorentz gauge condition is valid as long as the infinitesimal vector ξµ satisfies �ξµ = 0 .
Therefore, a vector ξ̃µ that satisfies �ξ̃µ = 0 can be added to the vector ξµ. Additional
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conditions can be imposed to ψµν by using the residual gauge. In order to figure out the
properties of the gravitational waves, we impose the following conditions,

ψ := ηµνψµν = 0 , (2.13)

h0i = 0 . (2.14)

These conditions and the Lorentz gauge conditions are collectively called transverse-traceless

gauge (TT gauge). The number of the TT gauge conditions is eight and the metric pertur-
bation hµν has ten components. Therefore, the gravitational waves have two independent
degrees of freedom. We refer hTT

µν to the gravitational wave metric in the TT gauge.
For later convenience, let us rewrite the conditions of TT gauge. First of all, the equality

ψTT
µν = hTT

µν holds because of Eq. (2.13). By using Eq. (2.14), the µ = 0 components of the
Lorentz gauge can be transformed as

0 = ∂νhTT
0ν = ∂0hTT

00 + ∂jhTT
0j = ∂0hTT

00 . (2.15)

Therefore, hTT
00 is constant in time. The static part of the perturbation corresponds to

the Newton potential generated by the matter. The gravitational waves we pursuing is
non-static part of the perturbation. From these discussions, we can set the constant to be
zero, i.e.,

hTT
00 = 0 . (2.16)

By substituting Eq. (2.16) to Eqs. (2.13) and (2.11), we obtain

δijhTT
ij = 0 , (2.17)

and
∂jhTT

ij = 0 . (2.18)

The meanings of Eqs. (2.17) and (2.18) are the traceless condition and the transverse
condition. The independent gauge conditions are Eqs. (2.14), (2.16), (2.17) and (2.18).

2.2.2 Monochromatic, plane wave

In the TT gauge, the linearized Einstein equation becomes the wave equation, i.e.,

�hTT
ij = 0 . (2.19)

Let us impose an ansatz representing the monochromatic plane wave, that is,

hTT
ij (t,x) = Aije

−iωt+ik·x . (2.20)

with the constant tensor Aij, the wave vector k and the angular frequency ω. For simplicity,
we assume that the gravitational waves propagate along with the z-axis. Then, the wave
vector k becomes k = (0, 0, kz) and

hTT
ij (t,x) = Aije

−iωt+ikzz . (2.21)
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The TT gauge condition becomes

Axz = Ayz = Azz = 0 , (2.22)

and
Axx + Ayy = 0 . (2.23)

Corresponding to the two degrees of freedom, the polarization tensors are defined by

e+ij =





1 0 0
0 −1 0
0 0 0





ij

, (2.24)

and

e×ij =





0 1 0
1 0 0
0 0 0





ij

. (2.25)

The amplitude Aij can be written as the linear combination of two polarizations,

Aij = h+e
+
ij + h×e

×

ij , (2.26)

and the monochromatic plane wave solution becomes

hij =





h+ h× 0
h× −h+ 0
0 0 0





ij

× e−iωt+ikzz . (2.27)

The similar discussion can be extended to the case of the gravitational waves propa-
gating along with an arbitrary direction. We define the unit vector n by

n :=
k

|k| . (2.28)

For imposing the TT gauge conditions, it is useful to introduce a projection operator

Λij,kl(n) = PikPjl −
1

2
PijPkl , (2.29)

with
Pij(n) = δij − ninj . (2.30)

The operator Λij,kl has the following properties.

• Λij,klΛkl,mn = Λij,mn,

• transverse, niΛij,kl = njΛij,kl = 0,

• traceless, Λii,kl = Λij,kk = 0,

• symmetric, Λij,kl = Λkl,ij.

Using this projection operator, we can easily move to TT gauge like

hTT
ij (t,x) = Λij,kl(n)hkl(t,x) . (2.31)
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2.3 Generation of gravitational waves

2.3.1 Quadrupole formula

In this section, we solve the linearized Einstein equation with the source

�ψµν = −16πG

c4
Tµν , (2.32)

under the Lorentz gauge
∂µψ

µν = 0 . (2.33)

Due to the Lorentz gauge condition, the energy-momentum tensor automatically satisfies
the conservation law in the flat-space time,

∂µT
µν = 0 . (2.34)

By defining a Green function by

�xG(x− x′) = δ4(x− x′) , (2.35)

the solution of Eq. (2.32) is

ψµν(x) = −16πG

c4

∫

d4x′ G(x− x′)Tµν(x
′) . (2.36)

As a solution of Eq. (2.35), we choose the retarded Green function,

G(x− x′) =
1

4π|x− x′|δ(x
0
ret − x′0) , (2.37)

with the retarded time defined by

tret = t− |x− x′|
c

. (2.38)

Using the projection operator Eq. (2.29), we obtain the solution

hTT
ij (t,x) =

4G

c4
Λij,kl(n)

∫

dx′3
1

|x− x′|Tkl
(

t− |x− x′|
c

,x′

)

. (2.39)

We denote the typical size of the source by d. Assuming the distance between the
source and the detector r is longer than d, we expand the solution Eq. (2.39) as

hTT
ij (t,x) =

1

r

4G

c4
Λij,kl(n)

∫

d3x′ Tkl

(

t− r

c
+

x′ · n̂
c

,x′

)

. (2.40)

Here, we introduce the low-velocity approximation, that is,

v

c
� 1 , (2.41)
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with the typical velocity of the source v. This assumption is equivalent to the condition

d� λ

2π
, (2.42)

where ω = c/2πλ is the typical angular frequency of the source motion and the source
velocity v is roughly v ∼ ωd. Under these assumptions, the energy-momentum tensor can
be expanded as

Tkl

(

t− r

c
+

x′ · n
c

,x′

)

' Tkl

(

t− r

c
,x′

)

+
x′ini

c
∂0Tkl +

1

2c2
x′ix′jninj∂20Tkl + · · · . (2.43)

Substituting this into Eq. (2.40) and taking only the leading term, we obtain

hTT
ij (t,x) ' 1

r

4G

c4
Λij,kl(n)Skl(t− r/c) , (2.44)

where

Sij(t) :=

∫

d3x T ij(t,x) . (2.45)

We define

M ij(t) :=
1

c2

∫

d3x T 00(t,x)xixj . (2.46)

Then, we rewrite Sij as

Sij(t) =
1

2
M̈ij(t) , (2.47)

by virtue of the integral by part and the conservation law of the energy-momentum tensor.
Using this relation, we obtain

hTT
ij (t,x) =

1

r

2G

c4
Λij,kl(n)M̈

kl(t− r/c) . (2.48)

Because the projection tensor Λij,kl has the traceless property, i.e,. Λij,klδ
kl = 0, the trace

component of Mkl vanishes. Defining the quadrupole moment by

Qij(t) :=M ij(t)− 1

3
δijMkk(t) =

∫

d3x ρ(t,x)

(

xixj − 1

3
r2δij

)

, (2.49)

with ρ := T 00/c2, we obtain the quadrupole formula

hTT
ij (t,x) =

1

r

2G

c4
Λij,kl(n)Q̈kl(t− r/c) . (2.50)

If the gravitational wave propagates to the direction of z-axis,

h+(t,x) =
1

r

G

c4

{

Q̈11(t− r/c)− Q̈22(t− r/c)
}

, (2.51)

h×(t,x) =
2

r

G

c4
Q̈12(t− r/c) . (2.52)
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2.3.2 Energy-momentum tensor of gravitational waves

To discuss the energy of the gravitational waves, we move to the situation where the
background metric ḡµν is curved. The metric tensor is written as

gµν = ḡµν + hµν . (2.53)

Generally speaking, we cannot separate the metric tensor into the background and the
perturbation. Splitting the background and the perturbation can be done only when the
length scale of these curvatures have hierarchy. We refer L̄ and λgw to the length scales
of the curvatures of the background and the perturbations, respectively. We consider the
situation where the hierarchy

λgw � L̄ , (2.54)

is satisfied.
The background metric is assumed to be low-frequency components and the high-

frequency components are regarded as the perturbation. The Ricci tensor is expanded
up to the second order of h,

Rµν = R̄µν +R(1)
µν +R(2)

µν + · · · , (2.55)

where R̄µν does not contain h and R
(i)
µν is the i-th order terms of h. The zero-th order

term R̄µν consists of only low frequency modes and the first order term R
(1)
µν has only high

frequency modes. The higher order term R
(i)
µν for i ≤ 2 contain both low and high frequency

modes. Splitting the Ricci tensor into the high frequency and the low frequency modes,
we get

R̄µν = −
[

R(2)
µν

]low
, R(1)

µν = −
[

R(2)
µν

]high
, (2.56)

where [· · · ]low/high is the quantity having low/high frequency terms. The energy of the grav-
itational waves is measured by the effect to the background. Therefore, the low frequency
modes gives us the energy of the gravitational waves.

To extract the low frequency modes by the systematic way, we introduce a length scale
Lavg which satisfies,

λgw � Lavg � L̄ , (2.57)

and integrate out the high frequency modes by taking the spatial average over the region
of Lavg. Then we obtain

R̄µν = −〈R(2)
µν 〉 , (2.58)

where the bracket 〈· · · 〉 means the spatial average. We rewrite it as

R̄µν −
1

2
ḡµνR̄ =

8πG

c4
tGW
µν , (2.59)

where

tGW
µν := − c4

8πG

〈

R(2)
µν − 1

2
ḡµνR

(2)

〉

, (2.60)
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where
R(2) := ḡµνR(2)

µν . (2.61)

This can be interpreted as the energy-momentum tensor of the gravitational waves.
In the distant region from the source (i.e., the region where Tµν vanishes), we can

approximate ḡµν is flat. After taking the Lorentz gauge, the energy-momentum tensor tGW
µν

is

tGW
µν =

c4

32πG
〈∂µhαβ∂νhαβ〉 . (2.62)

We can take TT gauge without changing the form of tGW
µν . Thus, the energy-momentum

tensor of the gravitational waves is rewritten as

tGW
µν =

c4

32πG
〈∂µhTT

ij ∂νh
ij
TT〉 . (2.63)

Especially, the (0j)-component corresponds to the energy flux. We obtain the luminos-
ity of the gravitational waves as

LGW = r2c

∮

dΩ nktGW
0k =

r2c5

32πG

∮

dΩ nk〈∂0hTT
ij ∂kh

ij
TT〉 . (2.64)

where the surface integral is done over a spherical surface of the radius r. Assuming that
the spherical wave propagating outward, the spatial derivative can be recast into

nk∂kh
TT
ij (t− r/c) = −∂0hTT

ij (t− r/c) . (2.65)

Then, the luminosity can be written as

LGW =
c3r2

32πG

∮

dΩ 〈ḣTT
ij ḣ

TT
ij 〉 . (2.66)

Due to the energy conservation, the luminosity should be balanced the change rate of the
energy of the source, i.e.,

dEsource

dt
= −LGW . (2.67)

2.3.3 Example 1: Rotating triaxial ellipsoid

Let us consider the gravitational waves emitted from a rotating triaxial ellipsoid as a
model of rotating neutron stars. We take the coordinates where the moment of inertia is
diagonalized. The rotation axis is assumed to coincide with one of the principal axes of
inertia. In the co-rotating frame where the ellipsoid is at rest, the quadrupole moment can
be written in the form

Q′

ij =





Qx 0 0
0 Qy 0
0 0 Qz



 . (2.68)
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Figure 2.1: The schematic picture of a rotating triaxial ellipsoid. The coordinate {x′, y′, z′}
is the co-rotating frame where the ellipsoid is at rest. Also, each axis of the co-rotating
frame coincides with each principal axis of inertia. The ellipsoid rotates around the z′-axis
with the angular frequency Ω.

Using the matrix

Rij(t) =





cosΩt − sinΩt 0
sinΩt cosΩt 0
0 0 1



 , (2.69)

we obtain the quadrupole moment in the laboratory frame as

Qij(t) = Rik(t)Rj`(t)Q
′

k` . (2.70)

Because of the quadrupole formula, the gravitational waves from rotating triaxial unequal
ellipsoid can be calculated as

h+(t) =
1

r

G

c4
4Ω2(Qy −Qx) cos 2Ωt̃ , (2.71)

h×(t) =
1

r

G

c4
4Ω2(Qy −Qx) sin 2Ωt̃ , (2.72)

with the retarded time t̃ defined by

t̃ := t− r

c
. (2.73)

The ellipticity ε is defined by

ε :=
Qy −Qx

Qz

, (2.74)
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and characterizes the asymmetry between each axis of inertia. The gravitational waveform
can be rewritten in the form

h+(t) = h0 cos 2πfgwt̃ , (2.75)

h×(t) = h0 sin 2πfgwt̃ , (2.76)

with the gravitational wave frequency 2πfgw = 2Ω and the amplitude of the gravitational
wave

h0 :=
4π2G

c4
Qzf

2
gw

r
ε . (2.77)

Using typical parameters of neutron stars, we can estimate the gravitational wave ampli-
tude to be

h0 ' 10−27

(

Qz

1.1× 1045g cm2

)(

r

10kpc

)−1(
fgw

100Hz

)2
( ε

10−6

)

. (2.78)

2.3.4 Example 2: Compact binary inspiral

Figure 2.2: The schematic picture of an inspiraling compact binary. The orbital plane is
located within the xy-plane. Thus, the orbital angular momentum is directed along the z-
axis. The inclination angle ι is the angle between the z-axis and the propagation direction
of the gravitational waves.

Second example is two compact objects orbiting around each other. The masses of two
compact objects are denoted by m1 and m2, respectively. The (x, y)-plane is set on the
orbital plane and the z-axis is directed along the orbital angular momentum (see Fig. 2.2).
The coordinate origin is set to the center of mass. We approximate the orbit is Keplerian
and the compact objects are regarded as point particles. The quadrupole moment of such
system is

Qij =
2m1m2a

Mtot





1
6
+ 1

2
cos 2Ωt 1

2
sin 2Ωt 0

1
2
sin 2Ωt 1

6
− 1

2
cos 2Ωt 0

0 0 −1
3



 , (2.79)
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where Ω is an angular velocity of the binary, a is the separation and Mtot := m1 +m2 is
the total mass of the binary. Therefore, the gravitational waves from the inspiraling binary
can be calculated as

hij(t,x) =
4Gµ

c4r
[πGMtotfgw]

2/3





cos 2πfgwt̃ sin 2πfgwt̃ 0
sin 2πfgwt̃ − cos 2πfgwt̃ 0

0 0 0





ij

, (2.80)

with fgw = Ω/π and the reduced mass µ := m1m2/Mtot. The waveform depends on the
masses through their specific combination. The chirp mass is defined by

Mc := µ3/5M
2/5
tot , (2.81)

and the waveform can be written as

hij(t,x) =
4

r

(

GMc

c2

)5/3(
πfgw
c

)2/3




cos 2πfgwt̃ sin 2πfgwt̃ 0
sin 2πfgwt̃ − cos 2πfgwt̃ 0

0 0 0





ij

. (2.82)

This expression is the model of the gravitational waves propagating to the direction per-
pendicular to the orbital plane. We introduce the inclination angle ι, which is the angle
between the propagation direction and the orbital angular momentum of the binary. Taking
into account of the angular dependence, we obtain

hij(ι) =
[

R2(ι) · h ·RT
2 (ι)

]

ij
, (2.83)

where R2(ι) is the matrix representing the rotation around the y-axis by the angle ι, i.e.,

R2(ι) =





cos ι 0 − sin ι
0 1 0

sin ι 0 cos ι



 . (2.84)

Therefore, the waveform becomes

h+(t,x) = h0
1 + cos2 ι

2
cos(2πfgwt̃) , h×(t,x) = h0 cos ι sin(2πfgwt̃) , (2.85)

with

h0 =
4

r

(

GMc

c2

)5/3(
πfgw
c

)2/3

. (2.86)

Assuming that the binary is Keplerian, the binary has the energy

Ebinary = −Gm1m2

2a
= −1

2
ν2/3Mcc

2 , (2.87)

where

ν :=
πGMcfgw

c3
. (2.88)
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is the dimensionless parameter. The average 〈· · · 〉 in the expression of the luminosity LGW

is replaced with the time-average. Then the luminosity of the gravitational waves is

LGW =
32

5

(

c5

G

)

ν10/3 . (2.89)

Rewriting the energy balance equation as

dEbinary

dt
=
dν

dt

dEbinary

dν
=
ḟgw
fgw

· ν · dEbinary

dν
= −LGW , (2.90)

we obtain the change rate of the frequency

ḟgw =
96

5

(

c3

GMc

)

ν8/3fgw =
96

5
π8/3

(

GMc

c3

)5/3

f 11/3
gw . (2.91)

2.4 Continuous gravitational waves

The continuous gravitational waves is the type of gravitational waves having the following
properties,

• duration longer than the observational period,

• small change rate of the frequency,

• almost constant amplitude.

In this section, we briefly review the expected sources of continuous gravitational waves.

2.4.1 Rotating neutron stars

Rotating neutron stars are the main target of the continuous wave search (Ref. [27] as a
review). We already know that a lot of rotating neutron stars exist in our Galaxy from radio
observations. They are known as pulsars which periodically emit radio pulses. The pulsars
detected so far are shown in Fig. 2.3. Especially, tens of millisecond pulsars, which rotate
with a period P ∼ 102 sec and the change rate of the frequency is about |Ṗ | ∼ 10−20, are
the typical sources of continuous gravitational waves. The change rate of the gravitational
wave frequency can be estimated by

˙fgw ∼ f 2
gw|Ṗ | ∼ 10−16Hz/sec

(

|Ṗ |
10−20sec/sec

)

(

fgw
102Hz

)2

. (2.92)

As we have seen in the previous section, a rotating deformed rigid body emits grav-
itational waves. The amplitude of the gravitational waves depends on the deformation
parameter ε. There are many scenarios to deform neutron stars.
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Figure 2.3: The P -Ṗ plot of the pulsars. From this figure, we can roughly classify all pulsars
into three types, 1) normal pulsars, 2) millisecond pulsars, and 3) magnetars. Possible
sources of gravitational waves that can be detected by the ground-based detectors are
millisecond pulsars, which have a period ∼ O(10−2)sec. The pulsar catalog is obtained from
ATNF catalog. (https://www.atnf.csiro.au/research/pulsar/psrcat/) The figure is
plotted with the module psrqpy and slightly modified.

• “Mountain” on neutron stars. If there is a mountain on the neutron star, it can
produce quadrupole moment. The ellipticity ε is estimated by

ε . 2× 10−5
(ubreak

0.1

)

,

where ubreak is the crustal breaking strain.

• Magnetic fields. Neutron stars are believed to have strong magnetic field. It causes
the deformation of neutron stars. For the case of toroidal magnetic field, the ellipticity
can achieve

ε ∼ 3× 10−11

(

RNS

10km

)4(
MNS

1.4M�

)−2(
B

1012G

)2

.
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2.4.2 Axion clouds around black holes

According to the QCD or the string theory, ultra-light bosons can exist in the Universe
while they have not been detected. These bosons are called QCD/string axions. These
scalar fields may extract the energy and the angular momentum from the Kerr black hole
by the superradiance, and the bound state can be formed around the black hole. This
bound state is called “axion cloud”, and the coupled system of the black hole and the
cloud is regarded as the “gravitational atoms”. Because the cloud is formed by a number
of boson particles, the reactions of small event rates can be occurred in the cloud. In
BH-cloud systems, the pair annihilation of two axion particles and the level transition of
the clouds can emit the gravitational waves [36].

The system is characterized by the parameter α which is defined by the ratio of the
Schwarzschild radius of the black hole and the Compton wavelength of the axion, i.e,

α :=
RSch

λaxion
∼ 7.5× 10−2

(

MBH

10M�

)

( maxion

10−12 eV

)

. (2.93)

where MBH is the black hole mass and maxion is the axion mass. The cloud is expected to
emit gravitational waves via various processes. Roughly speaking, the leading order of the
gravitational wave frequency is

fgw ∼ 2maxionc
2

h
∼ 2.5× 102 Hz

( maxion

10−12 eV

)

. (2.94)

For α � 1, the luminosity of the gravitaional waves from the axion cloud is estimated by
[37]

LGW ∼ 0.025
c5

G
α14

(

Mcloud

MBH

)2

. (2.95)

Here, Mcloud is the mass of the axion cloud around the black hole and is estimated by

Mcloud ∼ αMBH . (2.96)

By roughly rewriting Eq. (2.66) as

LGW ∼ c3

G
r2ω2

GWh
2
0 , (2.97)

the characteristic strain is estimated by

h0 ∼ 2.1× 10−25
( α

0.075

)7
(

MBH

10M�

)(

1kpc

r

)

. (2.98)

The duration τGW is estimated by

τGW ∼ Mcloudc
2

LGW

∼ 1.9× 1011 sec
( α

0.075

)−15
(

MBH

10M�

)

. (2.99)

Therefore, the gravitational waves lasts much longer than the observation period.
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2.4.3 Sub-solar mass black hole binaries

Stellar mass black holes are believed to be formed by supernovae of massive stars. On the
other hand, it is theoretically expected that black holes are also generated at over density
regions in the early era of the Universe. Black holes that are formed in the early Universe
are called primordial black holes (PBHs) (Ref. [38] as a review). Theoretically, PBHs can
become flyweight while black holes originating from supernovae of massive stars cannot be
less massive than several M�. Using Eq. (2.91), we obtain

ḟgw = 1.3× 10−14Hz/sec

( Mc

10−9M�

)5/3(
fgw

100Hz

)11/3

. (2.100)

Therefore, the frequency is almost constant during the observation period.

2.5 Gravitational wave detectors

2.5.1 Michelson interferometer

We can directly detect gravitational waves with two free-falling test masses. In this section,
we consider the detection of the gravitational waves with a Michelson interferometer (see
Figure 2.4). The Michelson interferometer consists of a photon emitter, a photo detector,
a beam splitter and two mirrors. After two photons propagate different paths in the
existence of gravitational waves, they would have different phases even if initially their
phases coincide. In order to prepare two photons having a same phases, a photon emitted
by a photon emitter is separated into two photons by a beam splitter. These photons are
reflected by mirrors and collected into a photo detector.

The distance between the beam splitter and the mirror A (B) is denoted by LA (LB).
In this thesis, we assume that two arms have an equal length, i.e.,

LA = LB =: L . (2.101)

For simplicity, we here assume that gravitational waves arriving at the detector are ap-
proximated by a plane wave.

First, we calculate the frequency shift of the photon traveling between the emitter
and the mirror A. The mirror is treated as the test mass and is rest with respect to the
emitter. The unit vector pointing from the emitter to the mirror A is denoted by p̂A. The
gravitational waves propagate along with the direction of the unit vector n̂. We take the
Cartesian coordinate where p̂A lies on the xy plane and the origin is set to be the position
of the emitter. The unperturbed 4-vector of the photon traveling from the emitter to the
mirror A is written as

k̄µA =
ν

c
(1, p̂A) . (2.102)

The perturbed vector is denoted by kµA = k̄µA+δk
µ
A. In the following calculation, we neglect

higher-order terms of hµν and δkµA. The change of the photon frequency ν is determined
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Figure 2.4: The rough sketch of a Michelson interferometer. It consists of a photon emitter,
a photo detector, a beam splitter, and two mirrors. The unit vector pointing from the beam
splitter to the mirror A (B) is denoted by p̂A (p̂B). The distance between the beam splitter
and the mirror A (B) is denoted by LA (LB). A photon is emitted from the photo emitter
and splitted into two photons by the beam splitter. Each photon propagates to each mirror
and reflected photons are collected by the photo detector. The phase deviation between
two photons caused by the gravitational waves is detected by the photo detector.

by the geodesic equation of kµA. The zeroth component of the geodesic equation is

dk0A
dξ

=
1

2
k̄iAk̄

j
A∂0hij , (2.103)

where ξ is the affine parameter. From

dhij
dξ

=
dx0

dξ
∂0hij +

dxk

dξ
∂khij =

ν(1− p̂A · n̂)
c

∂0hij , (2.104)

we get
dk0A
dξ

=
c

2ν(1− p̂A · n̂)
dhij
dξ

(ν

c

)2

p̂iAp̂
j
A . (2.105)

The redshift of the frequency is obtained by integrating the geodesic equation,

νA − ν0
ν0

' ln(νA/ν0) =

∫ ξ0

ξA

dξ
1

ν

dν

dξ
=

1

2

p̂iAp̂
j
A

1− p̂A · n̂
[

hTT
ij (x0)− hTT

ij (xA)
]

, (2.106)

where
hTT
ij (x0) := hTT

ij (t0) , (2.107)
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and
hTT
ij (xA) := hTT

ij (t0 + L(1− p̂A · n̂)/c) . (2.108)

with some reference time t0. Therefore, the redshift is
The photon is reflected by the mirror A and goes back to the emitter. The reflected

photon has the frequency ν0A and it can be calculated as

ln(ν0A/νA) =

∫ ξA

ξ0A

dξ
1

ν

dν

dξ
=

1

2

p̂iAp̂
j
A

1 + p̂A · n̂
[

hTT
ij (xA)− hTT

ij (x0A)
]

, (2.109)

where
hTT
ij (x0A) = hTT

ij (t0 + 2L/c) . (2.110)

We impose the long-wavelength approximation that the detector size is much smaller
than the wavelength of the gravitational waves. This assumption is justified for the case
of the ground-based detectors. The typical size of the ground-based interferometer is
L ∼ O(1) km and the ground-based detector is sensitive to the gravitational waves of the
wavelength λgw ∼ c · (100Hz)−1 ∼ 3× 103 km. Therefore,

L� λgw (2.111)

is valid for ground-based interferometers. This condition can be rewritten as

L

c
· 1

ωgw

� 1 , (2.112)

where ωgw = 2πc/λgw. The Taylor expansion of hTT
ij is carried out, and we obtain

hTT
ij (t0 + L(1− p̂A · n̂)/c) = hTT

ij (t0) +
L(1− p̂A · n̂)

c
ḣTT
ij (t0) + · · · . (2.113)

This expansion is interpreted as the expansion by the small parameter L/cωgw. From
Eq. (2.106), the redshift can be written as

νA − ν0
ν0

' − L

2c
p̂iAp̂

j
Aḣ

TT
ij (t0) , (2.114)

up to the first order of h. The redshift of the reflected photon is computed in the same
manner as

νA0 − νA
ν0

' − L

2c
p̂iAp̂

j
Aḣ

TT
ij (t0) . (2.115)

The phase of the photon at the time when the photon gets back to the emitter is calculated
by

φA(t) = 2πν0

∫

dt
νA0

ν0
= 2πν0

(

1− L

2c
p̂iAp̂

j
Ah

TT
ij (t)

)

. (2.116)

Similarly, the phase of the photon reflected by the mirror B is obtained as

φB(t) = 2πν0

(

1− L

2c
p̂iBp̂

j
Bh

TT
ij (t)

)

. (2.117)
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The difference of the photon phases is

∆φ(t) := φB − φA =
2πν0L

c
· 1
2
(p̂iAp̂

j
A − p̂iBp̂

j
B)h

TT
ij (t) . (2.118)

The phase fluctuation can be detected by a photo detector. In this sense, what we directly
observe is not hTT

ij itself but

hobs(t) =
1

2
(p̂iAp̂

j
A − p̂iBp̂

j
B)h

TT
ij (t) . (2.119)

The detector tensor is defined by

dij :=
1

2
(p̂iAp̂

j
A − p̂iBp̂

j
B) , (2.120)

and the detected strain is written as

hobs(t) = dijhTT
ij (t) . (2.121)

Using the polarization tensor, the gravitational waves can be decomposed into

hTT
ij (t) = h+(t)e

+
ij + h×(t)e

×

ij . (2.122)

In general situation, the vectors p̂A and p̂B change in time. Then, the observed signal is
written as

hobs(t) = F+(t)h+(t) + F×(t)h×(t) , (2.123)

with the antenna pattern functions defined by

F+(t) := dij(t)e+ij , F×(t) := dij(t)e×ij . (2.124)

The detail of the antenna pattern functions is shown in Appendix. A.
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Matched filtering and continuous

gravitational waves

Gravitational wave detectors have complicated structures consisting of many components.
All of these components are possible sources of the noise. Improving data analysis tech-
niques is an important research area for the gravitational wave astronomy. When the
gravitational waveform expected to be observed is a priori known and the detector noise
is stationary and Gaussian, the matched filtering is the optimal method for detection and
the parameter estimation. In this chapter, we explain the fundamentals of the matched
filtering and its application to the continuous gravitational waves.

3.1 Matched filtering

3.1.1 Statistical properties of detector noise

Let us assume that the detector noise n(t) is stationary and Gaussian. The average of
noise is assumed to be zero, i.e.,

〈n(t)〉 = 0 , 〈ñ(f)〉 = 0 , (3.1)

where 〈· · · 〉 is the ensemble average. The probability density function of the noise n(t) can
be written as

pnoise[n(t)] ∝ exp

[

−1

2
· 4
∫

∞

0

df
|ñ(f)|2
Sn(f)

]

. (3.2)

Here, Sn(f) is called the power spectral density of the noise and defined by

〈ñ(f)ñ∗(f ′)〉 = 1

2
Sn(f)δ(f − f ′) . (3.3)

Defining the noise weighted inner product by

(a|b) = 4Re

[

∫

∞

0

df
ã(f)b̃∗(f)

Sn(f)

]

, (3.4)
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we can rewrite pnoise[n(t)] as

pnoise[n(t)] ∝ exp

[

−(n|n)
2

]

. (3.5)

3.1.2 Matched filter as optimal statistic

Let us consider to test two hypotheses,

{

H0 : s(t) = n(t) , (only detector noise exist),

H1 : s(t) = n(t) + h(t) , (signal exists),
(3.6)

for an observed strain data s(t). The match is defined by the inner product between the
observed strain s(t) and the waveform h(t), i.e.,

(s|h) = 4Re

[

∫

∞

0

df
s̃(f)h̃∗(f)

Sn(f)

]

. (3.7)

The match is employed as a detection statistic, i.e., we regard the hypothesis H1 is correct
when the match (s|h) exceeds a threshold value.

When the hypothesis H0 is true, from Eq. (3.5), we can derive a likelihood

p[s(t)|H0] = pnoise[s(t)] ∝ exp

[

−(s|s)
2

]

. (3.8)

Similarly, when the hypothesis H1 is true, a likelihood can be calculated as

p[s(t)|H1] = pnoise[s(t)− h(t)] ∝ exp

[

−(s− h|s− h)

2

]

(3.9)

Generally speaking, the likelihood ratio gives us the most powerful unbiased test under
a given significant level (the Neyman-Pearson lemma). Using Eqs. (3.8) and (3.9), the
likelihood ratio is obtained as

Λ[s(t)] :=
p[s(t)|H1]

p[s(t)|H0]
= exp

[

(s|h)− 1

2
(h|h)

]

. (3.10)

Because the likelihood ratio monotonically increases with (s|h), the likelihood ratio test is
equivalent to the test where we use the match (s|h) as the detection statistic.

Let us examine the statistical properties of the match (s|h). When the signal h(t) is
absent, the expected value and the variance of (s|h) are calculated as

〈(s|h)〉 = 0 , (3.11)

Var[(s|h)] = 〈(s|h)2〉 − 〈(s|h)〉2 = (h|h) . (3.12)
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Here, we use

〈(s|h)2〉 = 〈(n|h)2〉

=

∫

∞

−∞

df

∫

∞

−∞

df ′

〈

(ñ(f)h̃∗(f) + h̃(f)ñ∗(f))(ñ(f ′)h̃∗(f ′) + h̃(f ′)ñ∗(f ′))
〉

Sn(|f |)Sn(|f ′|)

= 4 ·
∫

∞

−∞

df

∫

∞

−∞

df ′
1

2

Sn(f)δ(f + f ′)h̃(f)h̃∗(f ′)

Sn(|f |)Sn(|f ′|)

= 2

∫

∞

−∞

df
|h̃(f)|2
Sn(f)

= (h|h) . (3.13)

Because we assume that the detector noise n(t) is Gaussian and the match is linear in n(t),
the match (s|h) follows a Gaussian distribution with mean 0 and variance (h|h) when the
strain data contains only detector noise. When the signal exists, we obtain

〈(s|h)〉 = (h|h) , (3.14)

Var[(s|h)] = 〈(s|h)2〉 − 〈(s|h)〉2 = (h|h) . (3.15)

Therefore, when the signal exists in the strain data, the match (s|h) follows a Gaussian
distribution with mean (h|h) and variance (h|h). Here, we define the signal-to-noise ratio
(SNR) ρMF by

ρMF :=
(s|h)
√

(h|h)
. (3.16)

From the above discussion, ρMF follows a Gaussian distribution with mean 0 and variance
1 when the signal is absent, and a Gaussian distribution with mean

√

(h|h) and variance
1 when the signal exists. In literature, 〈ρMF〉 is also referred to as a signal-to-noise ratio
and implies how large SNR can be expected with the given detector configuration.

Generally speaking, gravitational wave signals depend on various parameters (e.g., the
masses of the compact binary). We denote them by θ. Correspondingly, we need to set
the alternative hypothesis as

Hθ : s(t) = n(t) + h(t;θ) . (3.17)

The maximum likelihood statistic is defined by

Λ[s(t)] := max
θ

Λ̃[s(t);θ] (3.18)

where

Λ̃[s(t);θ] :=
p[s(t)|Hθ]

p[s(t)|H0]
=
pnoise[s(t)− h(t;θ)]

pnoise[s(t)]
. (3.19)

We refer θML to the value of θ which maximizes Λ̃, i.e.,

θML := arg max
θ

Λ̃[s(t);θ] = arg max
θ

p[s(t)|Hθ] . (3.20)
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It is called the maximum likelihood estimator and is used as the predicted value of the
parameter. Here, we treat the amplitude A separately. The waveform model is rewritten
as

h(t;θ) = Ah0(t;Θ) , (3.21)

with θ = Θ ∪ {A}. From Eq. (3.20), the maximum likelihood estimator of the amplitude
is calculated by

∂

∂A
Λ̃[s(t);A,Θ]

∣

∣

∣

∣

AML

= 0 . (3.22)

Solving this for AML, we get

AML =
(s|h0(Θ))

(h0(Θ)|h0(Θ))
. (3.23)

Thus, the maximum likelihood estimator of the amplitude is derived analytically. Sub-
stituting AML into Eq. (3.19), we obtain the log likelihood ratio marginalized over the
amplitude as

log Λ̃[s(t);AML,Θ] = AML(s|h0(Θ))− A2
ML

2
(h0(Θ)|h0(Θ)) =

1

2
· (s|h0(Θ))2

(h0(Θ)|h0(Θ))
. (3.24)

A marginalized signal-to-noise ratio ρMF is defined by

ρMF(Θ) =
(s|h0(Θ))

√

(h0(Θ)|h0(Θ))
. (3.25)

Then, the log likelihood can be written as

log Λ̃[s(t);AML,Θ] =
1

2
ρ2MF(Θ) . (3.26)

The maximum likelihood estimator ΘML, which is defined by Eq. (3.20), can also be ob-
tained by

ΘML = arg max
Θ

ρ2MF(Θ). (3.27)

As a remark, we comment the difference between the frequentist approach and the
Bayesian approach. The formalism we explained is so-called frequentist approach. In this
approach, the parameter θ is a deterministic number. On the other hand, in Bayesian ap-
proach, the parameter θ is assumed to follow some distribution. Given a prior distribution
π(Hθ), we can predict the posterior distribution as

p[Hθ|s(t)] =
p[s(t)|Hθ]π(Hθ)

∫

dθ p[s(t)|Hθ]π(Hθ)
. (3.28)

The parameter value at which the posterior distribution (3.28) has its maximum,

θMAP := arg max
θ

p[Hθ|s(t)] , (3.29)

is called the maximum posterior estimator. When the signal is large, two estimators, (3.20)
and (3.29), are equivalent.
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3.1.3 Matched filtering in time domain

Let us assume that the strain data s(t) has a duration T . Over the duration T , the
template h(t) is assumed to be almost monochromatic. The inner product Eq. (3.7) can
be calculated without carrying out the Fourier transform to the strain s(t) and template
h(t) as

(s|h) ' 2

Sn(ftemp)

∫ T/2

−T/2

dt s(t)h∗(t) . (3.30)

In the following, the expression (3.30) is used as the inner product.

3.2 Continuous gravitational waves

3.2.1 Waveform model

In this section, we explain the geometrical configuration of the source and the detector
and its effect on the observed gravitational wave signal. Because the detector moves with
respect to the source, the phase of the gravitational wave we observe gets modulated. If
the source is at rest with respect to the solar system barycenter (SSB), the relative motion
between the source and the detector is caused by the Earth’s rotation and the orbital
motion around the Sun. It is convenient to introduce two time coordinates, the SSB time
τ and the detector time t, for describing the phase modulation. The SSB time is used for
describing the waveform emitted from the source. The waveform is modeled by

hsource(τ) = h0e
2πifgwτ+iφ0 , (3.31)

with the amplitude h0 and the initial phase φ0. We use the SSB reference frame as a spatial
coordinate. In the SSB reference frame, the x-axis points toward the vernal equinox, and
the z-axis is parallel to the orbital angular momentum of the Earth. In the SSB reference
frame, the unit vector n(α, δ) pointing towards a point indicating the right ascension α
and the declination δ can be written as

n(α, δ) =





1 0 0
0 cos ε sin ε
0 − sin ε cos ε









cosα cos δ
sinα cos δ

sin δ



 , (3.32)

where ε ' 23.44◦ is the tilt angle between the ecliptic and the celestial equator. When the
source is located at the sky position (αs, δs), the detector time t is defined by

τ =: t+
r(t) · ns

c
, (3.33)

where the vector ns := n(αs, δs) is the normal vector pointing from the SSB to the source,
and the vector r(t) is the detector’s location with respect to the SSB. The vector r(t) can
be decomposed into

r(t) = r�(t) + r⊕(t) , (3.34)

31



CHAPTER 3. MATCHED FILTERING AND CONTINUOUS GRAVITATIONAL
WAVES

where r�(t) points from the SSB to the center of the Earth, and r⊕(t) is the location of
the detector with respect to the center of the Earth. In the SSB reference frame, r�(t) is
written as

r�(t) = RES





cos(ϕ� + Ω�t)
sin(ϕ� + Ω�t)

0



 , (3.35)

where RES, Ω�, and ϕ� are the distance between the Earth and the Sun, the angular
velocity of the orbital motion, and the initial phase, respectively. The vector r⊕(t) can be
described by

r⊕(t) = RE





1 0 0
0 cos ε sin ε
0 − sin ε cos ε



 ·





cosλ cos(ϕ⊕ + Ω⊕t)
cosλ sin(ϕ⊕ + Ω⊕t)

sinλ



 , (3.36)

with the Earth’s radius RE, the latitude of the detector’s cite λ, the initial phase ϕ⊕,
and the rotational angular frequency of the Earth Ω⊕. From Eqs. (3.31) and (3.33), the
modulated waveform can be described as

h(t) = h0e
iΦ(t) , (3.37)

with

Φ(t) = 2πfgwt+ 2πfgw
r(t) · ns

c
. (3.38)

Although the waveform Eq. (3.37) has a complex value, the observed signal has a real
value and is affected by the antenna pattern functions. In this thesis, the inclination angle
and the polarization angle are set to be zero, i.e.,

ι = 0 , ψ = 0 , (3.39)

for simplicity. The complex-valued antenna pattern function is defined by

G(t) :=
F+(t) + iF×(t)

2
, (3.40)

where

F+(t) =
1

16
sin 2γ(3− cos 2λ)(3− cos 2δ) cos(2(α− ϕ⊕ − Ω⊕t))

− 1

4
cos 2γ sinλ(3− cos 2δ) sin(2(α− ϕ⊕ − Ω⊕t))

+
1

4
sin 2γ sin 2λ sin 2δ cos(α− ϕ⊕ − Ω⊕t)

− 1

2
cos 2γ cosλ sin 2δ sin(α− ϕ⊕ − Ω⊕t)

+
3

4
sin 2γ cos2 λ cos2 δ , (3.41)
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and

F×(t) = cos 2γ sinλ sin δ cos(2(α− ϕ⊕ − Ω⊕t))

+
1

4
sin 2γ(3− cos 2λ) sin δ sin(2(α− ϕ⊕ − Ω⊕t))

+ cos 2γ cosλ cos δ cos(α− ϕ⊕ − Ω⊕t)

+
1

2
sin 2γ sin 2λ cos δ sin(α− ϕ⊕ − Ω⊕t) . (3.42)

(see Appendix. A). The observed signal hobs(t) (Eq. (2.123)) is obtained as

hobs(t) = G(t)h(t) +G∗(t)h∗(t) . (3.43)

Taking into account the detector noise n(t), we can describe the strain data by

s(t) = hobs(t) + n(t) . (3.44)

We assume that the detector noise is stationary and Gaussian and the strain data has no
gaps in time.

3.2.2 Time resampling technique

The time resampling technique [39] enables us to rapidly search the predicted value of the
continuous gravitational wave frequency fgw, when the source location is specified. Here, we
assume that the source location is known a priori. By inverting the relation Eq. (3.33), the
demodulation of the signal can be done precisely enough that the monochromatic waveform
(Eq. (3.31)) can be used as the template of the matched filtering. For the time-domain
matched filtering (3.30), the SNR is obtained by

ρMF(fgw) =
(s|h(fgw))

√

(h(fgw)|h(fgw))
'
√

2h0
Sn(fgw)T

∫ T/2

−T/2

dτ s(t(τ))e−2πifgwτ . (3.45)

This has the same form as that of the Fourier transform of s(t(τ)). Therefore, the rapid
algorithm, i.e., the Fast Fourier Transform (FFT), can be employed, and the search over
the gravitational wave frequency fgw can be performed by a single Fourier transformation.

3.2.3 Difficulty in all-sky search of continuous gravitational waves

Let us consider the all-sky search of monochromatic gravitational waves. Because we don’t
know the source location, we need to distribute a lot of grid points to cover the whole sky.
Before applying the matched filtering, we introduce the new time coordinate ζ as

ζ := t+
r(t) · ng

c
, (3.46)

33



CHAPTER 3. MATCHED FILTERING AND CONTINUOUS GRAVITATIONAL
WAVES

with a chosen grid point ng. If the grid point ng is sufficiently close to the source direction,
the signal is almost demodulated. Then, the matched filtering with the monochromatic
waveforms is applicable. On the other hand, if the grid point ng largely deviates from
the source location ns, the SNR will be drastically reduced. In order to reduce the false
dismissal probability, a lot of grid points need to be placed so that the maximum loss of the
SNR is suppressed below a certain acceptable level. The number of grid points Ngrid,coh is
roughly determined by the angular resolution (δθ)coh. The angular resolution is estimated
by the ratio between the wavelength of the gravitational waves λgw and the diameter of
the Earth’s orbit around the Sun. Therefore, we obtain

(δθ)coh ∼ λgw
2RES

∼ 10−5 [rad] , (3.47)

where the frequency of the gravitational wave is assumed to be 100 Hz. Hence, the necessary
number of the grid points is

Ngrid,coh ∼ 4π

(δθ)2coh
∼ 1.3× 1011 . (3.48)

As we see the previous subsection, the time-domain matched filtering between the time-
resampled strain and a monochromatic waveform is equivalent to the Fourier transform of
the time-resampled strain. Therefore, the computational cost of the all-sky coherent search
is dominated by the cost of the Fourier transform. The required number of floating point
operations is estimated by

Ncoh ∼ Ngrid,coh · NFFT,coh , (3.49)

where NFFT,coh is the number of floating point operations required for the Fourier transfrom.
For the strain data of the duration 107 sec and the sampling rate 1024 Hz, the number of
data can be estimated by

Ndata,coh ∼ 1010 , (3.50)

and the number of the floating point operations required for carrying out FFT is

NFFT,coh ∼ 5Ndata,coh log2Ndata,coh ∼ 1.7× 1012 . (3.51)

Therefore, the required number of floating point operations is estimated by

Ncoh ∼ 2.2× 1023 . (3.52)

Even if computational resource with 1TFlops is available, the computational time becomes
∼ 2.2 × 1011 sec. Therefore, it is unrealistic to employ a naive coherent method with
the time resampling even for the simplest case of monochromatic sources (see [***] for
alternative coherent method).
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Chapter 4

New method of all-sky searches for

continuous gravitational waves

4.1 Overview

In this chapter, we explain and assess our method of all-sky search of continuous grav-
itational waves. Figure. 4.1 shows the workflow of our detection method. In the first
step, we remove the phase modulation due to the Earth’s rotation by the time resampling
with the grid points placed coarser than that of the coherent matched filtering (Sec. 4.2).
The short-time Fourier transform is applied to the partially demodulated strains. Regard-
ing the short-time Fourier transform of each frequency bin as a time series data, we take
the Fourier transform. By doing this, we can prevent the dispersion of the signal power
(Sec. 4.3). Although a similar idea of the double Fourier transform is already proposed
in Refs. [40, 41], this is the first time to incorporate it in a detection algorithm. The ex-
cess power method is employed to select the candidates (Sec. 4.4), and the deep learning
method restricts the source’s possible location (Sec. 4.5). As a follow-up analysis, the co-
herent matched filtering is carried out for the selected candidates (Sec. 4.6). We examine
the computational cost and the detection ability of our method in Sec. 4.7.

4.2 Subtracting the effect due to the Earth’s rotation

We employ the time resampling technique to subtract the modulation caused by the Earth’s
rotation. By using a resampled time coordinate ζ with a representative grid point ng, the
phase can be rewritten as

Φ(t) = 2πfgwt+ Φ⊕(t) + Φ�(t) = 2πfgwζ + δΦ⊕(t) + δΦ�(t) , (4.1)

where

δΦ⊕(t) := 2πfgw
r⊕(t) ·∆n

c
, (4.2)
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Figure 4.1: Flowchart of our method.

δΦ�(t) := 2πfgw
r�(t) ·∆n

c
, (4.3)

and ∆n := ns − ng is the deviation between the directions of the source location and the
representative grid point. Setting a threshold value δΦε, we place the grid points so that
the condition,

min
ng

max
t

|δΦ⊕(t)| < δΦε , (4.4)

is satisfied for any arbitrary source location. Here, we expand the residual phase up to the
first order of ∆α := αs − αg and ∆δ := δs − δg. Then, we get

δΦ⊕(t) '
2πfgw
c

RE cosλ [−∆δ sin δg cos(αg − ϕ⊕ − Ω⊕t)−∆α cos δg sin(αg − ϕ⊕ − Ω⊕t)] ,

(4.5)
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where the constant term independent of ∆α and ∆δ is neglected because it degenerates
with the initial phase φ0. Therefore,

max
t

|δΦ⊕(t)| =
2πfgw
c

RE cosλ
√

(∆δ)2 sin2 δg + (∆α)2 cos2 δg . (4.6)

The residual phase (4.6) is invariant under the transformation δg → −δg. Therefore,
the grid points on the plane of negative δg can be generated by flipping the sign of the
grid points on the plane of positive δg. In the following, we consider how to place the grid
points covering only a half plane of 0 ≤ δg ≤ π/2.

In the vicinity of the pole δg = π/2, the residual phase (4.6) does not depend on αg.
Owing to this fact, the vicinity of the pole can be covered by a single grid. At δg = π/2,
the residual phase (4.6) becomes

max
t

|δΦ⊕(t)| =
2πfgw
c

RE|∆δ| cosλ . (4.7)

Because the condition (4.4) gives

|∆δ| =
∣

∣

∣
δs −

π

2

∣

∣

∣
≤ δΦε ×

c

2πfgw

1

RE cosλ
, (4.8)

the grid point (αg, δg) = (0, π/2) can cover the region

{(α, δ)| − π ≤ α ≤ π, δ1 ≤ δ ≤ π/2} ,

where

δ1 :=
π

2
− δΦε ×

c

2πfgw

1

RE cosλ
. (4.9)

The region

{(α, δ)| − π ≤ α ≤ π, 0 ≤ δ ≤ δ1} (4.10)

is covered by plural patches. The 2-dimensional metric dσ2 corresponding to the residual
phase (4.6) is introduced by

dσ2 = cos2 δdα2 + sin2 δdδ2 . (4.11)

Defining the new variables

X := α, Y := − log | cos δ| , (4.12)

we can transform the metric (4.11) into a conformally flat metric as

dσ2 = e−2Y (dX2 + dY 2) . (4.13)

In the space that admits a conformally flat metric, the contour becomes a circle. Ref. [42]
provides an efficient placement of grid points on 2-dimensional parameter space. By using
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the coordinate transformation (4.12), the region given by Eq. (4.10) is transformed into
the rectangular region on (X, Y )-plane,

{(X, Y ) | Xmin ≤ X ≤ Xmax, Ymin ≤ Y ≤ Ymax} , (4.14)

with Xmin = −π, Xmax = π, Ymin = − log cos δ1, and Ymax = 0. Because the conformal
factor of the metric (4.13) depends only on Y , circles placed on the line Y = constant
have the same radius. At first, we consider the placement of circles along the line Y =
constant and start from the vicinity of the corner point (Xmax, Ymax). Figure 4.2 shows the
schematic picture of template placement in the vicinity of the line Y = Ymax. Two circles
centered at the point (x11, y1) and the point (x12, y1) = (x11 − ∆x1, y1) will be placed to
cover a part of the region around the line Y = Ymax. These circles have a radius

r21 = e2y1dσ2
max , (4.15)

where

dσ2
max =

(

c

2πfgw
· δΦε

RE cosλ

)2

, (4.16)

(see Eq. (4.6).) The intersections of two circles are denoted by (x11 −∆x1/2, y1 ± d) with

d(r1,∆x1) =

√

r21 −
(

∆x1
2

)2

. (4.17)

Two circles are placed so that the upper intersection (x11 −∆x1/2, y1 + d) lies on the line
Y = Ymax. Therefore,

y1 = Ymax − d(r1,∆x1) . (4.18)

To determine the parameter ∆x1, we impose the condition that the area of a square formed
by the two intersections and the origins of the neighbouring circles are maximized. The
condition can be written as

∆x1 = arg max
∆x′

∆x′ · d(r1,∆x′) . (4.19)

Using Eq. (4.17), we obtain
∆x1 =

√
2r1 , (4.20)

and
d(r1,∆x1) =

r1√
2
. (4.21)

With Eqs. (4.15) and (4.18), the relation

r21 = exp
[

2Ymax −
√
2r1

]

dσ2
max , (4.22)

is valid, and we determine r1 by solving this relation numerically. As a result, the location
of two circles are determined by

(x11, y1) = (Xmax −∆x1/2, Ymax − d(r1,∆x1)) =

(

Xmax −
r1√
2
, Ymax −

r1√
2

)

, (4.23)
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and

(x12, y1) =

(

Xmax −
3r1√
2
, Ymax −

r1√
2

)

. (4.24)

Carrying out the above procedures recursively, we can obtain the origin of the n-th circle
as

(x1n, y1) =

(

Xmax −
(2n− 1)r1√

2
, Ymax −

r1√
2

)

. (4.25)

The number of circles lying along the line Y = Ymax is

N1 =

⌈

Xmax −Xmin

∆x1

⌉

, (4.26)

where dxe is the minimum integer larger than x.

Figure 4.2: Image of grids placement on 2-dimensional parameter space. Each origin of a
circle corresponds to each grid point. The orange region indicates the whole region covered
by N1 circles.

Next, we consider the second line Y = Y1 = constant (see Fig. 4.3). The constant Y1
should be set to

Y1 := Ymax −
r1√
2
− d(r1,∆x1) = Ymax −

√
2r1 . (4.27)

The first circle on the second line is centered at

(x21, y2) =

(

Xmax −
r2√
2
, Y1 −

r2√
2

)

, (4.28)

where the radius of the circle r2 is determined by

r22 = exp
[

2Y1 −
√
2r2

]

dσ2
max . (4.29)

The distance between the origins of neighbouring circles is determined by

∆x2 =
√
2r2 . (4.30)
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The number of circles lying along the line Y = Y1 is

N2 =

⌈

Xmax −Xmin

∆x2

⌉

. (4.31)

Figure 4.3: Template spacing along the line Y = Y1. The bright orange region indicates
the region already covered by circles lying on the line Y = Ymax. The dark orange region
is the region to be covered by circles lying on the line Y = Y1.

These procedures are repeated until the whole region shown in Eq. (4.14) are completely
covered. The total number of circles to cover the half of the sky except for the vicinities
of two poles is

Ngrid/half =
M
∑

m=1

Nm , (4.32)

where M is the minimum integer satisfying the condition

yM − d(rM ,∆xM) = yM − rM√
2
≤ Ymin . (4.33)

Finally, the total number of grid points on the sky is obtained as

Ngrid = 2×Ngrid/half + 2 . (4.34)
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Figure 4.4: M -th sequence of grid points. The thick region is covered by circles centered at
(xMi, yM) for i = 1, 2, · · · , NM . The brighter region is already covered by other grid points.
No more grid points is required because the rectangular region is completely covered.

In this work, we set the value of the threshold δΦε as

δΦε = 0.058. (4.35)

For fgw = 100 Hz, the total number of grid points to cover the entire sky is

Ngrid = 352, 436 . (4.36)

Figure. 4.5 shows an enlarged view of the grid points.

4.3 Double Fourier transform

After subtracting the modulation due to the Earth’s rotation, only the effect of the Earth’s
orbital motion remains. Assuming the subtraction error is negligibly small, we obtain

Φ(t) = 2πfgwζ + δΦ�(t) , (4.37)

with an optimal grid point. After the time resampling, we obtain the time-resampled strain
data

s(ζ) = hobs(ζ) + n(ζ) . (4.38)

In the following, we consider only the time-resampled data. Therefore, we can denote each
term in Eq. (4.38) by the same character without confusion. Before moving to the next
process, we evaluate how large the phase modulation δΦ� is. With the set of grid points
explained in the previous section, the norm of the deviation vector |∆n| is estimated by

|∆n| ∼ c

2πfgwRE

δΦε , (4.39)
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Figure 4.5: Enlarged view of the grid points placed on the sky. Black dots are grid points
and gray lines are contours of δΦ⊕. The region {(α, δ) | δ1 ≤ δ ≤ π/2} is covered by the
single grid point (α, δ) = (0.0, π/2).

when the source location is near the reference grid point. Therefore, the

δΦ�(t) ∼
2πfgwRES

c
|∆n| cos(Ω�t) ∼

RES

RE

δΦε cos(Ω�t) . (4.40)

This phase modulation induces the frequency modulation as

δf� ∼ 1

2π

∣

∣

∣

∣

dδΦ�

dt

∣

∣

∣

∣

∼ RESΩ�

2πRE

δΦε ∼ 3.9× 10−5 Hz . (4.41)

First, we carry out the short-time Fourier transform (STFT) to the resampled strain (4.38).
The resampled strain data s(ζ) is divided into Nseg segments having the duration Tseg. The
start time of each segment is ζj := jTseg for j = 0, 1, · · ·Nseg − 1. Before carrying out the
Fourier transform to each segment, the window function w(ζ) is applied to suppress fic-
titious high frequency components. In this thesis, the tukey window function, which is
defined by

w(ζ) =
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(
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cos
(
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2
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≤ 1
)

,

(4.42)

is employed. Here, the parameter αtw characterizes the steepness of the edge of the window,
and we set αtw = 1/8. The output of the STFT is denoted by

sSTFT
j,k = hSTFT

j,k + nSTFT
j,k , (4.43)
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where

hSTFT
j,k =

1

Tseg

∫ ζj+Tseg

ζj

dζ ′ w(ζ ′ − ζj)hobs(ζ
′)e−2πifkζ

′

, (4.44)

nSTFT
j,k =

1

Tseg

∫ ζj+Tseg

ζj

dζ ′ w(ζ ′ − ζj)n(ζ
′)e−2πifkζ

′

, (4.45)

and fk := k∆f = k/Tseg is the frequency of the k-th bin. We focus on the positive frequency
modes, fk > 0. Then, the second term of Eq. (3.43) can be neglected and the STFT of
h(ζ) can be approximated by

hSTFT
j,k ' 1

Tseg

∫ ζj+Tseg

ζj

dζ ′ w(ζ ′ − ζj)G(t(ζ
′))e2πiδfkζ

′

eiδΦ�(ζ′) . (4.46)

Because the difference between Ω⊕ζ and Ω⊕t(ζ) is negligibly small, we can replace G(t(ζ ′))
with G(ζ ′). The duration of each segment Tseg is chosen so that G(ζ) can be regarded as
a constant in each segment. In this work, we choose

Tseg = 32 sec . (4.47)

With this choice of Tseg, the factor related with the residual phase, eiδΦ� , can also be
treated as a constant in each segment. Therefore, Eq (4.46) can be approximated by

hSTFT
j,k ' h0e

iδΦ�(ζj)G(ζj)Wk(ζj) , (4.48)

with

Wk(ζj) :=
1

Tseg

∫ ζj+Tseg

ζj

dζ ′ w(ζ ′ − ζj)e
2πiδfkζ

′

. (4.49)

Substituting Eq. (4.42), we obtain

Wk(ζj) = e2πiδfkζj × (1 + eiπαβk)(1− e2πiβk(1−α/2))

4πiβk(α2β2
k − 1)

, (4.50)

with
βk := δfkTseg . (4.51)

The factor eiδΦ�(ζj) can be expanded by virtue of the Jacobi-Anger expansion,

eiz cos θ =
∞
∑

`=−∞

i`J`(z)e
i`θ , (4.52)

where J`(z) is the Bessel function of the first kind. Using Eq. (4.52), we obtain

eiδΦ�(ζj) =
∞
∑

`=−∞

i`J`(X)ei`Ω�ζjei`(ϕ�−φX) , (4.53)
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with

X :=
2πfgw
c

RE

√

(∆nx)2 + (∆ny)2 , (4.54)

and

eiφX :=
1

√

(∆nx)2 + (∆ny)2
(∆nx + i∆ny) . (4.55)

Equation (4.46) can be expressed as

hSTFT
j,k ' h0G(ζj)Wk(0)e

2πiδfkζj

∞
∑

`=−∞

i`J`(X)ei`(ϕ�−φX)ei`Ω�ζj . (4.56)

Because the frequency modulation δf� given in Eq. (4.41) is smaller than the frequency
resolution ∆f = 1/Tseg ∼ 3.1× 10−2Hz, the signal is expected to be confined into a single
frequency bin. Therefore, we can analyze each frequency bin of STFT independently. After
applying STFT, we take the Fourier transform to the STFT output sSTFT

j,k with a fixed k
and we refer to the output of second Fourier transform as `-domain strain. The Fourier
transform of sSTFT

j,k is denoted by S`,k, i.e.,

S`,k =
1

Nseg

Nseg−1
∑

j=0

sSTFT
j,k e−2πij`/Nseg . (4.57)

In the same manner, H`,k and N`,k are defined by the followings,

H`,k =
1

Nseg

Nseg−1
∑

j=0

hSTFT
j,k e−2πij`/Nseg , (4.58)

and

N`,k =
1

Nseg

Nseg−1
∑

j=0

nSTFT
j,k e−2πij`/Nseg . (4.59)

They are clearly related by
S`,k = H`,k + N`,k . (4.60)

The advantage of taking another Fourier transform is that the signal power can be made
concentrated in a limited number of data points. From Eq. (4.56), the `-domain signal H`,k

is approximated by
H`,k ' h0Wk(0)i

`′J`′(X)ei`
′(ϕ�−φX) , (4.61)

with `′ ∼ ` + 2πΩ−1
� δfk. Assuming that the duration of the original strain data is 1 year,

an `-domain strain has Nseg ∼ 1yr/Tseg ∼ O(106) data points (see Eq. (4.47)). Because
J`(X) ' 0 for |X| . |`| and X . O(103) for fgw = 100 Hz, the gravitational wave signal
is concentrated into only few thousand bins in `-domain. Although the antenna pattern
function blurs the localization of the signal power, the qualitative feature does not change.
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Figure 4.6: Example of an `-domain signal. The width of the signal is almost O(103).

Figure. 4.6 shows an example of an `-domain signal. One can find an `-domain signal is
localized within a few thousand bins of `-domain.

Before moving to the next section, let us examine the statistical properties of noise in
`-domain. The variance of the STFT of the noise can be calculated from the definition of
the spectral density (3.3). Taking into account the window function, we obtain

〈(nSTFT
j,k )(nSTFT

j′,k′ )∗〉 = 1

2Tseg

N−1
∑

r=0

Sn(fr)w̃[k − r]w̃∗[k′ − r]δjj′ , (4.62)

where

w̃[k] :=
1

N

N−1
∑

m=0

w(m∆T )e−2πikm/N , (4.63)

and N is the number of the data points contained in one segment. Here, we need care
about the factor T−1

seg existing in the definition of nSTFT
j,k (see Eq. (4.45)). The variance of

N`,k is

〈N`,kN
∗

`′,k′〉 =
1

2TsegNseg

N−1
∑

r=0

Sn(fr)w̃[k − r]w̃∗[k′ − r]δ``′ . (4.64)

Because the Fourier transform of the window function has a sharp peak at zero frequency,
we can approximate

〈N`,kN
∗

`′,k′〉 =
Sn(fk)

2TsegNseg

N−1
∑

r=0

|w̃[k − r]|2δkk′δ``′ =:
Sn(fk)

2TsegNseg

Wδkk′δ``′ , (4.65)
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where W is the power of the window function. For the case of the tukey window, we get

W = 0.921875 . (4.66)

For convenience, we introduce σ̃k by

σ̃2
k :=

Sn(fk)

TsegNseg

W , (4.67)

and obtain

〈N`,kN
∗

`′,k〉 =
1

2
σ̃2
kδkk′δ``′ . (4.68)

4.4 Excess power method

The excess power method [43] is one of the unmodeled detection methods, i.e., the precise
predictions of the waveforms are not required. When the signal we want to detect is
localized to a narrower region than the total data points, the vast data points contain
only noise. Therefore, the signal power can be collected efficiently by summing up limited
data points where the signal is expected to exist. As we see in the previous section, the
`-domain signal is well localized. Therefore, the excess power method is suitable to select
candidates rapidly.

An `-domain strain is divided into short chunks. The length of each chunk is denoted by
δ`, and neighboring chunks are overlapped by (δ`)slide. In this work, we set δ` = 2048, and
(δ`)slide = 128. The number of chunks obtained from one `-domain strain is Nchunk/signal =
(Nseg − δ`)/(δ`)slide. For the c-th chunk in a `-domain strain data obtained from the k-th
frequency bin of STFT and the grid point ng, the detection statistic E is defined by

E(ng, fk, c) := 4
δ`−1
∑

`=0

|S`+c(δ`)slide,k|2
σ̃2
k

, (4.69)

where c is the index specifying a chunk (c = 0, 1, · · · , Nchunk/signal − 1).
When the signal is absent, E becomes

E = 4
δ`−1
∑

`=0

|N`+c(δ`)slide,k|2
σ̃2
k

, (4.70)

where we omit the arguments of E , for brevity. It coincides with the sum of 2δ` variables
that independently follow a Gaussian distribution with mean 0 and variance 1. Rigorously
speaking, the distribution of E in the absence of a signal is a chi-square distribution with
2δ` degrees of freedom. However, it can be approximated by a Gaussian distribution with
mean 2δ` and standard deviation 2

√
δ` because here we choose δ` to be large. The average

and the standard deviation of E in the case when only the noise exists are denoted by 〈E〉n
and σn(E), respectively. Namely,

〈E〉n = 2δ`, σn(E) = 2
√
δ` . (4.71)
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The SNR of the excess power method ρEP is defined by

ρEP :=
E − 〈E〉n
σn(E)

. (4.72)

From Eq. (4.71), the distribution of ρEP when the signal is absent is a standard normal
distribution, i.e.,

〈ρEP〉 = 0 , σn(ρEP) = 1 . (4.73)

Setting the threshold value ρ̂EP so that the number of the false alarm events is suppressed
below a certain level, we select the candidate set of parameter values {ng, fk, c} when

ρEP(ng, fk, c) > ρ̂EP . (4.74)

In the same manner, the distribution of the SNR under the condition that the signal also
exists can be approximated by a Gaussian distribution. Its mean and standard deviation
are derived as

µEP(ξ) =
2Pk(ξ)

σ̃2
k

√
δ`
, (4.75)

and

σEP(ξ) =

√

1 +
4Pk(ξ)

σ̃2
kδ`

, (4.76)

with
Pk(ξ) :=

∑

`

|H`,k(ξ)|2 . (4.77)

Here, ξ denotes a set of parameters ξ := (h0, ~ξ) = (h0, fgw, αs, δs).

4.5 Deep learning

4.5.1 Fundamentals

Deep learning (Ref. [44] as a textbook) is one of the approaches for extracting features
being hidden in the data. Artificial neural networks (ANNs) are the architectures playing
the central role in deep learning. Originally, an ANN is invented as a mathematical model
of the human brain, which is formed from a lot of neurons interconnected with each other
[45]. Nowadays, an ANN is mainly used as a mathematical tool for analyzing big data,
and its structure has less relation with neuroscience.

An ANN consists of consecutive layers, and each layer is formed by a lot of units
(“neurons”). Each layer takes inputs from the previous layer and passes the processed data
to the next layer. As a simple example, the process occurring in each layer can be written
as the combination of affine transformation and a non-linear transformation, i.e.,

x
(l)
i = g(l)





N(l−1)
∑

j=1

w
(l)
ij x

(l−1)
j + b(l)



 (i = 1, 2, · · · , N (l)) , (4.78)
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where x(l) is a set of input data on the l-th layer, N (l) is the number of units in the l-th
layer and g(l) is a nonlinear function called an activation function. Each unit (neuron)

corresponds to each element of the vector x
(l)
i . A whole structure of ANN is formed by

accumulated layers and ANN transforms the input data xin sequentially,

xin = x(0) → x(1) → · · · → x(L−1) → x(L) = y , (4.79)

where y is the output of the ANN. The parameters w and b are, respectively, called weights
and biases. They are tunable parameters and optimized to capture the features of data.
The optimization of the weights and the biases is called training. Frequently, the affine
transformation and the non-linear transformation are divided into two layers, called a
linear layer and a non-linear transformation layer, respectively. Typically, the activation
functions except for that of the last layer are set to be the same. We use a rectified linear
unit function (ReLU) [46], which is defined by

g(l)(z) = max[z, 0] , (l = 1, 2, · · · , L− 1) . (4.80)

The activation function of the last layer is properly chosen so that the output y is suitable
for the problem we want to solve. For the example of a regression problem, the identity
function

g(L)(z) = z , (4.81)

is usually employed. The model (4.78) is called a “multi-layer perceptron” (MPL). With
appropriately adjusted parameters, an MPL model can approximate arbitrary functions in
principle. This fact is called “universal approximation theory” [47, 48] and is believed to
be one reason why an ANN works well.

In practice, various types of layers are employed depending on the properties of the
data we want to analyze. In this work, we use also one-dimensional convolutional layers
[49] and max-pooling layers [50]. The input of a convolutional layer, denoted by xci , is a
set of vectors. For example, in a color image, each pixel has three channels corresponding
to three primary colors of light. Therefore, the input data is a set of three two-dimensional
arrays. In our case, the real part and the imaginary part of `-domain signals consist of two
channels. Therefore, the input data is regarded as a set of two one-dimensional arrays. In
a convolutional layer, the discrete convolution, which is represented as

oc
′

i =
C
∑

c=1

K
∑

k=1

f c,c′

k xci+k + bc
′

, (4.82)

is calculated. Here, x is the input, and o is the output data of the layer. C and K are
the number of channels and the width of the kernel, respectively. Each pixel of the data
is specified by an index i. The parameters f and b are optimized during the training. A
max pooling layer is defined by

oci = max
k=1,2,··· ,K

[xcsi+k] , (4.83)
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with the stride s and the kernel size K. This layer reduces the length of the data and
hence the computational cost.

In supervised learning, the trainable parameters of the ANN (weights, biases and filters)
are adjusted by using a given dataset D consisting of many pairs of an input data and a
target value,

D = {(x1,y1), (x2,y2), · · · (xNtrain
,yNtrain

)} . (4.84)

The dataset used for optimizing the adjustable parameters and the biases is called the
“training dataset”. An ANN learns the relation between input data and target values from
the training dataset and predicts the target values corresponding to newly given input
data. In order to train an ANN, the deviation between the target value and the predicted
value is quantified by a loss function. For a regression problem, the square loss,

L[y(x;w), t] = 1

2

N(L)
∑

i=1

{yi(x;w)− ti}2 , (4.85)

is often used. The predicted value y depends on the adjustable parameters of the neural
network, which are collectively denoted by w, for brevity. An ANN is optimized so as to
minimize the average of the loss function taken over the training dataset D,

L[w|D] =
1

|D|
∑

(x,t)∈D

L[y(x;w), t] . (4.86)

Because an ANN is a highly complicated function of w, the minimization of L[w] cannot
be done analytically. Therefore, the optimization of w is done by an iterative method. In
the simplest way, the adjustable parameters w are updated by the algorithm

w → w − η∇wL[w|D] , (4.87)

where the parameter η characterizing the strength of each update is called a learning rate.
The algorithm (4.87) seems reasonable, but in practice, it does not work well because the
loss function L[w] has a lot of local minima. The mini-batch training is usually employed
to prevent to stack the training. In the mini-batch training, a subset of the training
dataset (“mini-batch”) is randomly chosen at the beginning of each iteration. We denote a
mini-batch by

Dbatch = {(x̃1, t̃1), (x̃2, t̃2), · · · , (x̃Ñ , t̃Ñ)} . (4.88)

It must be satisfies Dbatch ⊂ D. The update algorithm (4.87) is replaced with the one using
the average of the loss function over a mini-batch. It is called stochastic gradient descent
and can be written as

w → w − η∇wL[w|Dbatch] , (4.89)

So far, many variants (e.g., momentum [51], RMSProp [52], Adam [53]) are proposed.
Regardless of the update algorithm, the gradients of a loss function are required, and they
can be quickly calculated by the backpropagation scheme [54].
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In the training process, we optimize a neural network so that the loss function is
minimized for a dataset. However, there are two problems which need to be concerned
seriously. The first one is a problem called overfitting. The trained ANN fits well with
the training dataset, but the predictions for newly given inputs are not accurate. This
situation is called overfitting. We cannot find the neural network is in overfitting by
monitoring only the loss function of the training data. Second, we do not know a priori
which structure of ANN nor which update procedure is plausible. The performance of
the trained neural network depends not only on the adjustable parameters but also on
the number of neurons of each layer and the learning rate, and so on. These parameters,
so-called hyperparameters, are not optimized during the training process. In order to
overcome these problems, another dataset that is independent of the training dataset is
needed to be prepared. We refer to the additional dataset as a validation dataset. In
order to prevent the overfitting, the training process should be stopped when the loss for
the validation dataset tends to deviate from that for the training dataset (early stopping).
In order to optimize the hyperparameters, many neural network models having various
structures are trained with different training schemes. The validation data is used to
monitor the training process and assess which model is better for the problem that the
user wants to solve. Among these ANNs, we choose the one performing with the smallest
loss for the validation dataset.

4.5.2 Application to gravitational wave data

Before we explain our neural network setup, the recent studies of its application to the
gravitational wave data analysis are briefly reviewed.

Since the pioneering work done by George and Huerta, deep learning methods are
widely applied to gravitational wave data analysis. In Ref. [55], the ANN optimized for
the detection and the parameter estimation of the binary black hole coalescence. Their
ANN is trained with the mock signals generated by injecting the waveforms of non-spinning
BBH into simulated Gaussian noise data. Each data has a duration of 1 second and a
sampling frequency of 8192 Hz. Employing the matched filtering as the benchmark, they
examined the detection efficiency and the parameter estimation accuracy. Their ANN
exhibits comparable performance to the matched filtering. The incredible result is that the
ANN can complete the parameter estimation and the detection for one data only within
535 microseconds with a GPU, in contrast to the matched filtering that takes 1.1 seconds
with a CPU. Their result indicates that the deep learning method will promote the real-
time analysis of the gravitational waves. This work is extended to a wider class of binaries,
e.g., spinning binaries [56, 57], eccentric binaries [58].

The deep learning methods are also applied to classify glitch noises [59], model wave-
forms rapidly [60], and predict the posterior distributions [61–64]. As for the continu-
ous gravitational waves, several groups already applied deep learning. Dreissigacker et

al. [65, 66] applied neural networks to the all-sky search of signals with the duration of 105

and 106 seconds. For the case of a duration of 105 sec, their neural network works well.
On the other hand, for 106 sec case, their ANN cannot show the competitive performance
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to the matched filtering. In [67, 68], it is shown that the combination of deep learning and
the existing methods is useful.

4.5.3 ANNs in our work

Table 4.1 shows the architecture of the neural network we used. The real part and the
imaginary part of a short chunk are used as input data of our ANN. It is empirically
known that the input data should be normalized to take the value of O(1) for successful
training the neural network. We normalized each input data by subtracting its average and
dividing by its standard deviation. The output of the neural network is to be interpreted as
the predicted sky position. The `-domain waveform, H`,k, depends mainly on the residual
phase δΦ�, and it depends on the sky position (αs, δs) through the vector ∆n. Because we
approximate the orbital motion of the Earth so that z� = 0, only x and y components of ∆n

affect the residual phase δΦ�. Therefore, it is reasonable to label `-domain waveforms with
the values of ∆nx and ∆ny. As well as the input data, the target values are also normalized.
The absolute values of ∆nx and ∆ny is . O(10−3). Therefore, we use ∆n′

x = 103∆nx and
∆n′

y = 103∆ny as the label. The neural network outputs the predicted values of ∆n′
x

and ∆n′
y, and they are converted into the predicted values of the right ascension and the

declination angle of the source after multiplying 10−3. The neural network is applied to
each candidate, which is selected by the excess power method. By narrowing down the
possible region where the source is likely to be located, we aim to reduce the computational
cost of the follow-up analysis. We introduce a parameter rNN to quantify how large the
area to be followed up by the coherent matched filtering is. At this time, we leave rNN as a
free parameter, and it will be determined by considering the computational time and the
detection probability.

To generate datasets, we use the Fourier transform of Eq. (4.48) as the waveform model.
We assume that the observation period is 224 seconds, and the frequency of the gravitational
waves is less than 100Hz. We assume that the strain data is obtained from a single detector.
The geometrical information (e.g., the latitude of the detector’s site) of the LIGO Hanford
is used for calculating the antenna pattern function. In this work, the parameter space is
restricted to a narrow region, for simplicity. Specifically, the gravitational wave frequency
fgw is uniformly distributed on

fgw ∈
[

100− 1

2Tseg
, 100 +

1

2Tseg

]

Hz . (4.90)

Also the source location is sampled only from the vicinity of a reference grid point shown
in Table. 4.2. We introduce the normalized amplitude ĥ0 by

ĥ0 := h0

(

Sn(fk)

1Hz−1

)−1/2

. (4.91)

We have to train the neural network with signals having various amplitudes, but it is
not efficient to store all signals. Thus, the amplitudes of waveforms are normalized to be
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Table 4.1: Table of the architecture of the neural network we used. For convolutional
layers and max-pooling layers, the input and the output are characterized by a pair of two
values (C,N) where C is the number of channels, and N is the data length. The kernel
sizes of the convolutional layers are 16, 16, 8, 8, 4, and 4 from the earlier to the later layer.
For all of the max-pooling layers, the kernel sizes are set to be 4.

Layer Input output
1-d convolution (2, 2048) (64, 2033)

ReLU (64, 2033) (64, 2033)
1-d convolution (64, 2033) (64, 2018)

ReLU (64, 2018) (64, 2018)
max pooling (64, 2018) (64, 504)

1-d convolution (64, 504) (128, 497)
ReLU (128, 497) (128, 497)

1-d convolution (128, 497) (128, 490)
ReLU (128, 490) (128, 490)

max pooling (128, 490) (128, 122)
1-d convolution (128, 122) (256, 119)

ReLU (256, 119) (256, 119)
1-d convolution (256, 119) (256, 116)

ReLU (256, 116) (256, 116)
max pooling (256, 116) (256, 29)

Dense 256×29 64
ReLU 64 64
Dense 64 64
ReLU 64 64
Dense 64 2

ĥ0 = 1, and they are used as the reference waveforms. In the process of the training, we
randomly sample the amplitudes {ĥ0} for each iteration step and multiply them to the
reference waveforms. The amplitudes {ĥ0} are sampled from the uniform distribution on

− 2.1 ≤ log10 ĥ0 ≤ −1.0 . (4.92)

Thus, the injected waveform is the `-domain signal normalized by the square-root of the
power spectral density of the noise with fixed frequency which we set f = fk = 100Hz.
The variance of the real part and the imaginary part of the Gaussian noise to which the
`-domain waveforms are injected should be set to

σ2 =
W

4TsegNseg

, (4.93)

because the variance of the noise in `-domain is given by Eq. (4.68) and the noise is
also normalized by Sn(fk). The numbers of waveforms in the training dataset and the
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validation dataset are 200,000 and 10,000, respectively. The auxiliary setups are listed in
the following.

• We employ the mini-batch training with a batch size 256.

• A GPU GeForce 1080Ti is used for the training.

• The updating algorithm is the Adam with the learning rate 10−4.

• PyTorch [69], the python library for deep learning, is used for implementing our code.

Table. 4.2 summarizes parameter values we used.

Table 4.2: List of the parameter values we used in this work.
Symbol Parameters Value
Tobs Observation period 224 sec
fs Sampling frequency 1024 Hz
Ngrid The number of grids 352436
Nbin The number of frequency bins of STFT 3200
Tseg Duration of a STFT segment 32 sec
δ` Length of chunk 2048

(δ`)slide Dilation of chunk 128
fk Fixed frequency bin 100 Hz
fs,coh Sampling frequency of the heterodyned strain 1/Tseg
αg Right ascension of grid -0.158649 rad
δg Declination of grid 1.02631 rad

4.6 Follow-up analysis by the matched filtering

After the selection of the candidates by the excess power method and the specification of
the possible source location by the neural network, we take the matched filtering to each
candidate as a follow-up analysis. For the follow-up analysis, we refine the grid points
so that the possible region of the candidate is entirely covered by the new grid points.
The time-resampling process is applied to the original detector strain with each grid point.
Each candidate is assigned by the frequency bin of STFT. It means that, if the candidate
is the real event, the gravitational wave frequency fgw satisfies

fk −
1

2Tseg
≤ fgw ≤ fk +

1

2Tseg
. (4.94)

Using this information, we can reduce the computational cost of the matched filtering.
Heterodyning is the widely used method in the signal processing and is already applied
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to the search of continuous gravitational waves from known sources [70]. The resampled
strain Eq. (4.38) is multiplied by the factor e−2πifkζ and we obtain heterodyned strain as

s(ζ) · e−2πifkζ = h0e
2πi(fgw−fk)ζ+iδΦ� + n(ζ) · e−2πifkζ (4.95)

With Eq. (4.41) and (4.94), the frequency of the heterodyned gravitational wave signal is
obtained as

|fhet| . |fgw − fk|+
∣

∣

∣

∣

1

2π

dδΦ�

dt

∣

∣

∣

∣

.
1

Tseg
+ δf� ∼ 1

Tseg
. (4.96)

This means that the gravitational waves become the near DC components after the het-
erodyning. Thus, we can reduce the data points by the downsampling without the loss of
the signal power. It is reasonable to set the sampling frequency of the downsampled strain
to be ∼ 1/Tseg.

4.7 Results

4.7.1 Computational cost

First of all, the computational cost of the excess power method is estimated. To calculate
the excess power statistics E for all chunks obtained from one `-domain signal, we need
2Nseg multiplications and 2Nseg additions of real numbers. Because we have Nbin × Ngrid

`-domain signals, the computational cost of the excess power method is evaluated as

NEP = 4Nseg ×Nbin ×Ngrid ∼ 4.7× 1015 , (4.97)

in the unit of the number of floating point operations. As shown in later, this cost is
negligibly small comparing with the computational costs of the preprocess and the follow-
up.

Next, we assess the computational time of the neural network. A GPU is used for
the calculation of the neural network. Therefore, it is not straightforward to compare the
computational cost of the neural network with others. Here, we estimate the computational
time of the neural network by measuring the elapsed time for analyzing test data. Using a
single GPU (GeForce 1080Ti), it takes 1.4sec to process ten thousand chunks. The neural
network is applied to all candidates selected by the excess power method. The number of
candidates Ncandidate is estimated by

Ncandidate = Nchunk×FAPEP = Ngrid·Nbin·
Nseg

(δ`)slide
×FAPEP ' 4.6×1010

(

FAPEP

10−2

)

. (4.98)

Therefore, the computational time of the neural network is estimated by

TNN = Ncandidate ×
1.4sec

104data
' 6.4× 106sec

(

FAPEP

10−2

)

. (4.99)
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Here, we focus on FAPEP ≤ 10−2. Then, the computational time of the neural network is
suppressed to an acceptable level. In addition, if multiple GPUs are available, the neural
network analysis of many candidates can be parallelized. In this thesis, we, therefore,
neglect the computational time of the neural network.

The computational cost of the preprocess is originated mainly from STFTs and FFTs.
STFTs are carried out for all grid points on the sky, and FFTs are performed for all STFT
frequency bins lower than 100Hz and all grid points. Therefore, we can estimate

Npreprocess = Ngrid × (NSTFT +NFFT ×Nbin) . (4.100)

We stress that Npreprocess is constant. With the values listed in Table. 4.2, we obtain

Npreprocess ' 2.3× 1018 . (4.101)

Comparing it with NEP given in Eq. (4.97), we can neglect NEP.

At last, we estimate Nfollow−up, i.e., the computational cost of the follow-up analysis.
The cost of the follow-up analysis is dominated by that of taking match by the Fourier
transform. Therefore, we can estimate Nfollow−up as

Nfollow−up = Ncandidate ×
π(rNN)

2

(δθ)2coh
×NFFT,coh . (4.102)

Let us remind that the typical size of the region where each grid point covers is given by
(δθ)2coh (see Eq. (3.47)). Thus, the second factor on the right-hand side is the required num-
ber of grid points to cover the region predicted by the neural network for each candidate.
Multiplying it and Ncandidate, we obtain the total number of grid points for the coherent
matched filtering. The third factor is the computational cost of FFT for each candidate
and can be estimated by

NFFT,coh = 5(Tobsfs,coh) log2(Tobsfs,coh) ' 5.0× 107 . (4.103)

Finally, we get the estimated value of Nfollow−up as

Nfollow−up ' 7.2× 1022
( rNN

10−3rad

)2
(

FAPEP

10−2

)

. (4.104)

Using Eqs. (4.101) and (4.104), we obtain the estimation of the total computational cost
as

Ncomp = Npreprocess +Nfollow−up , (4.105)

as a function of (FAPEP, rNN). Figure. 4.7 shows the computational cost of our entire
analysis. Depending on an available computational resources, we can read the suitable
combination of (FAPEP, rNN).
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Figure 4.7: Logarithm of the computational cost of the entire analysis. In the cyan
hatched region, the preprocess dominates the computational cost, and Ncomp is almost
constant.

4.7.2 False alarm probability

The false alarm probability of the entire analysis is given by multiplying the false alarm
probabilities of each analysis stage (see [71, 72]), that is,

pfa(ρ) =
{

1− (Prob [ρEP < ρ̂EP | ρEP ∼ N (0, 1)])Nchunk

}

×
{

1− (Prob [ρMF < ρ̂MF | ρMF ∼ N (0, 1)])Nt

}

, (4.106)

with ρ := (FAPEP, rNN, ρ̂MF). Here, Nt denotes the number of templates required for the
coherent matched filtering, and it can be calculated by

Nt = Ncandidate ×
π(rNN)

2

(δθ)2coh
×Nbin,coh , (4.107)

where Nbin,coh is the number of frequency bins appeared in the coherent matched filtering.
Substituting the values shown in Table. 4.2, we obtain

Nt ' 5.6× 1021
( rNN

10−3rad

)2
(

FAPEP

10−2

)

. (4.108)

The false alarm probability of the entire process is determined by that of the follow-up
stage. Therefore, we can approximate the false alarm probability as

pfa(ρ) ' {1−( Prob[ρMF < ρ̂MF | ρMF ∼ N (0, 1)]
)

Nt
}

. (4.109)
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In addition, because Nt � 1, the false alarm probability is

pfa(ρ) ' Nt · Prob [ρMF > ρ̂MF | ρMF ∼ N (0, 1)] . (4.110)

In this thesis, ρ̂MF is chosen so that pfa(ρ) = 0.01. As a remark, Nt is a function of FAPEP

and rNN, and , hence, ρ̂MF also depends on them.
Before discussing the detection probability, the statistical properties of the excess power

statistic are checked. Because it is difficult to simultaneously treat a whole signal of a
duration Tobs ∼ O(107)sec, we generate Nseg strain data with the duration of Tseg which
contain only noise with assuming Sn(f) = 1. We carry out the Fourier transform to each
short strain after applying the window function. The k-th frequency bin is picked up and

regarded as an element of
{

nSTFT
j,k

}Nseg

j=1
. We divide them into Nseg/δ` chunks. Repeating

this procedure 80 times, we obtain 10,240 chunks. The excess power statistics E and the
SNR ρEP are calculated for each chunk. Figure. 4.8 shows the histogram of ρEP. As stated
in Sec. 4.4, ρEP should follow a standard normal distribution. From Fig. 4.8, this property
seems to be valid. In order to confirm it more quantitatively, the Kolmogorov-Smirnov
(KS) test is carried out. The p-value of the KS test is 0.753254 and means the SNR of
noise data follows the standard normal distribution.
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Figure 4.8: Histogram of the SNR of the excess power method. Black solid line indicates
the standard normal distribution. The theoretical prediction and the recovered distribution
match well.

4.7.3 Detection probability

The detection probability of the entire process is also estimated by multiplying those of
all stages. If the signal with the amplitude of h0 exists, the detection probability can be
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estimated as

pdet(h0;ρ) = 〈pdet(ξ;ρ)〉~ξ
=

〈

Prob [ρEP > ρ̂EP | ρEP ∼ N (µEP(ξ), σEP(ξ))]

× Prob [source is located in a predicted region | ξ, rNN]

× Prob [ρMF > ρ̂MF | ρMF ∼ N (µMF(ξ), 1)]

〉

~ξ

, (4.111)

where 〈· · · 〉~ξ is the average over the parameter ~ξ, i.e.,

〈· · · 〉~ξ :=
∫

d~ξ(· · · )π(~ξ) , (4.112)

with a prior distribution π(~ξ). In principle, we need to take an average over the possible
parameter regions, e.g., source position on the entire sky. However, we trained the neural
network with the dataset containing the signals that are located only in the vicinity of the
reference grid point. The gravitational wave frequencies are also sampled from the narrow
frequency band (see Eq. (4.90)). It is reasonably envisaged that the trained neural network
does not work well for signals outside of the parameter region where the training data are
sampled. Therefore, in this thesis, we only take the average over the same parameter region
as the training data.

In order to quantify the detection power, we define the sensitivity depth D95% by

D95% :=
1

h95%0

(

Sn(fk)

1Hz−1

)1/2

, (4.113)

where h95%0 satisfies the following relation,

pdet(h
95%
0 ;ρ) = 0.95 . (4.114)

Eq. (4.114) means that the signal having the amplitude h95%0 is expected to be detected
with the detection probability of 95%. We optimize (FAPEP, rNN) by comparing the values
of D95% for each combination of (FAPEP, rNN). In order to explore the parameter space of
(FAPEP, rNN), the regular grid is placed on log10 FAPEP from -8 to -2 by a step of 1, and
on log10 rNN from -4.5 to -3.0 by a step of 0.05. The values of D95%

0 are calculated by the
following procedure. First of all, a regular grid on log10 ĥ0 is placed from -2.3 to -1.0 by a

step of 0.05. For each sample of ĥ0, the parameters ~ξ are randomly sampled for 1,024 times.
These samples are denoted by {~ξ(i)}1024i=1 . We analytically estimate the detection probabil-
ities of the excess power method and the follow-up analysis by assuming the Gaussian
distribution. The detection probability of the neural network is estimated by applying it
to simulated signals. To prepare simulated signals, we generate 1024 `-domain waveforms
corresponding to the parameters {~ξ(i)}1024i=1 . In order to estimate the detection probability
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for each parameter ~ξ(i), 512 noise realizations are generated by assuming Gaussian noise,
same as the generation of the training data set. The detection probability of the neural
network is estimated by the fraction of events which the source position is located within
the predicted region. Multiplying the detection probabilities of all stages, we obtain the
estimated values of pdet(h0, ~ξ

(i);ρ). Finally, the detection probability of the entire process
is approximated by the ensemble average, i.e.,

pdet(h0;ρ) '
1

1024

1024
∑

i=1

pdet(h0, ~ξ
(i);ρ) . (4.115)

Repeating these procedure with changing the values of ĥ0, or correspondingly, D := ĥ−1
0 ,

we obtain the estimated detection probability for each value of D. Using the sigmoid-like
function,

ς(D; a, b) :=
1

1 + exp[(D − a)/b]
, (4.116)

we carry out the curve fitting to the detection probability. By inverting the fitted curve,
we obtain D95% as

D95%(FAPEP, rNN) = a∗ − b∗ ln
1− 0.95

0.95
, (4.117)

with the optimized parameters a∗ and b∗. An example of the fitting procedure is shown
in Figure. 4.9. Estimated values of D95% for each combination (FAPEP, rNN) are shown in
Figure. 4.10. For example, let us assume that a 1TFlops computer is available and the
computational time of 107sec is acceptable. Then, the total computational cost should be
below 1019. From Fig. 4.7, we can read a feasible parameter space where the computational
cost is suppressed to 1019. Among them, we can pick up the combination (FAPEP, rNN)
with which our method is the most sensitive. Figure 4.10 gives us that when we set
(FAPEP, rNN) = (10−5, 10−3.6rad) the sensitivity depth reaches D95% ∼ 90.

To check our estimation of the detection probability is appropriate, the injection test
is performed. The excess power method and the neural network stage are tested with
`-domain signals injected into simulated Gaussian noise data. For reducing the computa-
tional cost, the detection probability of the coherent matched filtering is estimated analyt-
ically. We prepare ten thousand signals for each combination of (FAPEP, rNN), and count
the number of detected events. Figure. 4.11 shows the recovered values of pdet. They match
with the error of a few percent, and we, therefore, conclude that our estimation of D95% is
reliable.

4.7.4 Applicability of our method

In this thesis, the deep learning methods are demonstrated with a bit simplified setup.
The training data, which is used for the training of the neural network, consists of chunks
containing the signals. When the signals are generated, we pick up a grid point as a
reference. We uniformly sample the locations of signals from the region where the reference
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Figure 4.9: An example of the fitting procedure. Orange squares are the samples of the
detection probabilities. Black solid line is the fitted curve. Black dashed line indicates
pdet = 0.95. The intersection between the black solid line and the black dashed line
corresponds to the point of D95%.

grid point covers. The gravitational wave frequencies of our signals are uniformly sampled
from

fgw ∈
[

100− 1

2Tseg
, 100 +

1

2Tseg

]

Hz . (4.118)

These two assumptions seem to make the applicable situation is strictly limited. Neverthe-
less, we expect our method can be applied for all-sky searches of monochromatic sources
of fgw . 100 Hz for the following reasons. The important point of our method is that the
signal power is concentrated into a few thousand bins in an `-domain signal of O(106) data
points. The width of the localization does not become worse as long as we consider lower
frequency. The width of the localization depends on the strength of the residual phase X,
which can be written as

X ∼ 2πfgw
RES

c
δθ . (4.119)

This expression leads that if the gravitational wave frequency becomes lower, the signal
tends to localize within a narrower region in `-domain. Therefore, lowering the gravitational
wave frequency does not affect the efficiency of the excess power method. As for the source
location, the phase modulation and the antenna pattern depend on it. But the phase
modulation is partly subtracted by the time resampling procedure, and typical values
of δθ appearing in X are almost the same for any source locations. The effect on the
antenna pattern function changes only the shape of the `-domain signal and does not
affect the localization of the signal power in the `-domain. Because of these reasons, the
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Figure 4.10: Estimated values of D95%. In white blank region, the detection probability
does not exceed 95% with the range of the amplitude we varied. Combining with Fig 4.7,
one can estimate plausible values of (FAPEP, rNN).

demonstration of the deep learning methods can be extrapolated into the all-sky search
of monochromatic sources of fgw . 100 Hz. Of course, the neural network used in this
demonstration cannot be directly applied to extended situations. The model of the neural
network is needed to be fine-tuned with more reasonably generated datasets. Moreover,
the structure of the neural network may be required to be changed. Nevertheless, our setup
in this thesis is enough to provide the proof-of-principle.
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Figure 4.11: Recovered detection probabilities. For every combinations of (FAPEP, rNN),
the recovered detection probability coincides with 95% in a few percent error.
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Chapter 5

Summary and future work

5.1 Summary

We proposed a new detection method of continuous gravitational waves by combining the
excess power method and the deep learning method. First, the strain data is resampled
with the new time coordinate, which is defined for each grid point on the sky. Then, a set of
time-resampled strain is obtained. Second, the short-time Fourier transform is applied to
each resampled strain, and the Fourier transform of the time series data in each frequency
bin is taken. We obtain an `-domain signal for each grid point for each frequency of STFT.
Third, the excess power method is applied to each `-domain signal. Forth, the deep learning
method is employed to constrain the possible location of the source further. The chunk
whose excess power exceeds the threshold value is used as the input of the artificial neural
network, and the ANN estimates the source location. Finally, as the follow-up analysis,
the coherent matched filtering is applied to all candidates.

We examined the computational cost and the detection power of our method. We
assume that the single detector with a duty cycle of 100%, and the stationary and Gaussian
noise. The sources are assumed to be monochromatic, located within the only vicinity of
the reference grid point, and have the frequency is within a narrow frequency band. Also,
the extrinsic parameters are assumed to have specific values and a priori known, that is,
ψ = 0, cos ι = 1, and φ0. The false alarm probability and the detection probability of the
excess power method, and the coherent follow-up search are analytically estimated. As
for the deep learning method, the artificial neural network is applied to the mock data
generated by modeling `-domain signals and injected them into Gaussian noise data. The
expected computational time to analyze all candidates is estimated from the elapsed time
to process ten thousand mock data. As a result, the computational time for the neural
network is negligibly small if we appropriately set the false alarm probability of the excess
power. The total computational cost is dominated by those of the preprocessing and the
follow-up analysis. The parameters characterizing our method, (FAPEP, rNN), is restricted
by the total computational cost and the available computational power. The detection
power is estimated in terms of the sensitivity depth. We calculate the sensitivity depth
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with the detection probability of 95% for various pairs of (FAPEP, rNN). If we assume that
a 1TFlops machine is available, the sensitivity depth achieves ∼ 90. Therefore, the new
method we proposed can become an alternative method for the all-sky search of continuous
gravitational waves.

5.2 Future work

Besides employing more realistic conditions of the detectors (e.g., non-Gaussianity and non-
stationarity of the detector noise, the detector’s duty cycle, use of strains from multiple
detectors), there are two works remaining as future works.

In our work, the artificial neural network is trained by using the dataset generated by
the limited parameter space. Namely, their source locations are uniformly sampled from the
vicinity of the reference grid point, and their gravitational wave frequencies are uniformly
sampled from a very narrow band (see Eq. (4.118)). Therefore, without some modifications,
the neural network cannot be applied to the all-sky and broader frequency band. One naive
modification is preparing many neural networks and training each network by a dataset
corresponding to the reference grid point and the reference frequency. However, it is
computationally too expensive. A less expensive way is to prepare one trained neural
network as the reference and train the network with a new dataset. This process is called
fine-tuning and can reduce the computational cost to train the neural network. Another
way is to modify the neural network structure to make it applicable to all-sky and a wide
frequency band. This approach requires only one neural network, while this requires more
training data than the presented case.

In this work, the source is assumed to be monochromatic. In order to apply our method
to more comprehensive types of waveforms, the time derivative of the frequency ḟ should
be taken into account in the waveform model. With such a waveform model, the track
on the spectrogram that indicates the time evolution of the gravitational wave frequency
would sweep inside the frequency bin. For a worse case, the frequency track would cross
several bins. In such a case, our method loses its detection power. It remains as future
works to extend our method to the situation where the frequency change is not negligible.
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Appendix A

Derivation of antenna pattern function

A.1 Detected strain

Gravitational waves have two polarization, plus and cross modes. The metric perturbation
tensor can be written as the sum of these modes, i.e.,

hij = h+e
+
ij + h×e

×

ij , (A.1)

where e+ij and e×ij are the polarization tensors of the plus and the cross modes, respectively.
Here, we assume that the gravitational waves propagate along with the direction of the
vector ki. The tensors e+ij and e×ij are symmetric,

e+ij = e+ji , e
×

ij = e×ji , (A.2)

traceless,
δije+ij = δije×ij = 0 , (A.3)

and transverse to the wave vector k,

kie+ij = kie×ij = 0 . (A.4)

The projection tensor Λij,kl can be rewritten as

Λij,kl =
1

2
(e+ije

+
kl + e×ije

×

kl) . (A.5)

Therefore, the quadrupole formula becomes

hij =
1

2
(e+ije

+
kl + e×ije

×

kl)
2G

rc4
Q̈kl , (A.6)

with the quadrupole moment Qkl. With Eq. (A.1), the plus and cross mode of gravitational
waves are

h+ =
G

rc4
e+ijQ̈

ij , h× =
G

rc4
e×ijQ̈

ij . (A.7)
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We define two unit vectors p̂iA and p̂iB to represent the directions of the two-arms of
the interferometer. The vector wi := εijkp̂

j
Ap̂

k
B directed to the outward from the Earth’s

surface. The detector tensor dij is defined by

dij :=
1

2
(p̂iAp̂

j
A − p̂iBp̂

j
B) . (A.8)

The observed signal h is obtained by the contraction between the perturbation tensor hij
and the detector tensor dij,

h = hijd
ij = h+e

+
ijd

ij + h×e
×

ijd
ij . (A.9)

The antenna pattern functions, F+ and F×, are given by

F+ := e+ijd
ij , F× := e×ijd

ij . (A.10)

Here, we introduce three frames. The source frame is the frame where it is easy to
calculate the quadrupole tensor. The wave frame is the frame where the polarization
tensors can be written as

e+ij =





1 0 0
0 −1 0
0 0 0



 , e×ij =





0 1 0
1 0 0
0 0 0



 . (A.11)

Therefore, in the wave frame, the metric perturbation is expressed by

hij =





h+ h× 0
h× −h+ 0
0 0 0



 . (A.12)

The detector frame is the frame where the vectors p̂iA and p̂iB can be written as

p̂iA =





1
0
0



 , p̂iB =





cos ζ
sin ζ
0



 , (A.13)

where ζ is the angle between two arms of the detector. To calculate Eqs. (A.9) and (A.10),
we need to carry out the coordinate transformation appropriately.

A.2 From source frame to wave frame

The Cartesian coordinates of the source frame and the wave frame are denoted by {xs, ys, zs}
and {xw, yw, zw}, respectively. The transformation from the source frame to the wave frame
is characterized by the initial phase of the gravitational waves φ0 and the inclination angle
ι. The relation between two coordinates, {xs, ys, zs} and {xw, yw, zw}, is written as





xw
yw
zw



 = R1(ι) ·R3(φ0) ·





xs
ys
zs



 , (A.14)
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where RI(θ) for I = 1, 2, 3 is the rotation matrix representing the rotation around the I-th
axis by the angle θ. Namely,

R1(θ) :=





1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 , (A.15)

R2(θ) :=





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



 , (A.16)

R3(θ) :=





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 . (A.17)

The inclination angle is the angle between the line of sight and the zs-axis. The source
frame is taken so that the calculation of the (time derivative of the) quadrupole moment
can be easily done. Assuming that the time derivative of the quadrupole moment in the
source frame is written as

Q̈ = −(2πf)2Q





cos 2πft sin 2πft 0
sin 2πft − cos 2πft 0

0 0 0



 , (A.18)

the plus and the cross modes of the gravitational waves are

h+ = h0
1 + cos2 ι

2
cos(2πft− 2φ0) , h× = h0 cos ι sin(2πft− 2φ0) , (A.19)

with

h0 :=
2GQ
rc4

(2πf)2 . (A.20)

A.3 Celestial sphere frame

The celestial sphere frame {xc, yc, zc} is useful to take into account the geometrical infor-
mation of the source location. Therefore, from the wave frame, we go to the detector frame
after moving to the celestial sphere frame. In the celestial sphere frame, the xc-axis points
towards the vernal equinox and the zc-axis is directed to the spin angular momentum of
the Earth.

The transform from the wave frame to the celestial sphere frame is determined by three
angles, the polarization angle ψ, the right ascension of the source α and the declination
of the source δ. The polarization angle ψ represents the relation between the wave frame
and the Earth. The right ascension α and the declination δ represent the source location
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with respect to the Earth’s center. The unit vector pointing from the center of the Earth
to the position of the source is denoted by n and it can be written in

n =





cos δ cosα
cos δ sinα

sin δ



 , (A.21)

in the celestial sphere frame. The transformation matrix from the wave frame to the
celestial sphere frame is denoted by M (1) and the metric perturbation in the celestial
sphere frame is

hCij =M
(1)
ik hklM

(1)
jl . (A.22)

First, the polarization angle ψ is measured from the line of node to the xw-axis counter-
clockwise around zw-axis (see Fig. A.1). This transformation is represented by the matrix

R3(−ψ) =





cosψ − sinψ 0
sinψ cosψ 0
0 0 1



 . (A.23)

The coordinate after the transformation is denoted by {x1, y1, z1}. Second, we rotate the
axis around the x1-axis to make the z1-axis pointing to the North celestial pole. From
Fig.A.2, the rotation matrix is written in

R1(3π/2− δ) =





1 0 0
0 cos(3π/2− δ) sin(3π/2− δ)
0 − sin(3π/2− δ) cos(3π/2− δ)



 . (A.24)

The new coordinate is denoted by {x2, y2, z2}. Third, we rotate the frame around the
z2-axis so that the x2-axis points towards the vernal equinox (see Fig. A.3). The rotation
matrix is

R3(π/2− α) =





cos(π/2− α) sin(π/2− α) 0
− sin(π/2− α) cos(π/2− α) 0

0 0 1



 . (A.25)

Finally, the matrix transforming from the wave frame {xw, yw, zw} to the celestial sphere
frame {xc, yc, zc} is obtained as

M (1) = R3(π/2− α) ·R1(3π/2− δ) ·R3(ψ) . (A.26)

A.4 Detector frame

The detector is located on the Earth and is co-rotating with the Earth’s rotation. The
longitude L of the detector’s site is measured from the Greenwich Meridian to the local
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Figure A.1: Definition of the polarization angle ψ.

meridian with counter-clockwise around the North celestial pole. In the celestial sphere
coordinate, the right ascension of the detector’s site can be obtained by

αdet(t) = Ω⊕(t− t0) + L , (A.27)

where t0 is the reference time when the meridian of longitude 0◦ is at sidereal midnight
and Ω⊕ is the Earth’s rotation frequency. We rotate the frame around the zc-axis by the
angle αdet(t) and the corresponding rotation matrix is

R3(αdet(t)) =





cos(Ω⊕(t− t0) + L) sin(Ω⊕(t− t0) + L) 0
− sin(Ω⊕(t− t0) + L) cos(Ω⊕(t− t0) + L) 0

0 0 1



 . (A.28)

By this rotation, the celestial sphere coordinate {xc, yc, zc} goes to the new coordinate
{x3, y3, z3} (see Fig. A.4). In the new coordinate, the x3-axis points to the intersection be-
tween the celestial equator and the great circle passing through the poles and the detector’s
site.

The latitude λ of the detector’s site is measured from the celestial equator to the North
celestial pole and takes a value in [−π/2, π/2] (see Fig. A.5. We rotate the frame around
the y3-axis so that the z3-axis becomes parallel the direction from the Earth’s center to the
detector’s site. This rotation is represented by

R2(π/2− λ) =





cos(π/2− λ) 0 − sin(π/2− λ)
0 1 0

sin(π/2− λ) 0 cos(π/2− λ)



 . (A.29)
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Figure A.2: Definition of the declination angle δ. “NP” is short for the North Pole. The
figure is shown in the plane defined by the center of the Earth, the North pole, and the
source location.

The new coordinate is called the cardinal coordinate and is denoted by {x4, y4, z4}. The
transformation matrix from the celestial sphere coordinate to the cardinal coordinate is

M (2) := R2(π/2− λ) ·R3(αdet(t)) . (A.30)

In the detector coordinate {xd, yd, zd}, the (xd, yd)-plane is tangent to the Earth’s sur-
face and the xd-axis along to one detector’s arm. The another arm lies in the first or second
quadrant. The unit vectors along with two arms are written in

p̂A =





1
0
0



 , p̂B =





cos ζ
sin ζ
0



 , (A.31)

where ζ ∈ [0, π] is the angle between the two arms. The mutual position of the detector’s
arms are specified by the angle γ which is measured counter-clockwise from East to the
bisector of the detector’s arms. From Fig. A.6, the transformation from the cardinal
coordinate and the detector coordinate is

M (3) := R3(γ − ζ/2 + π/2) =





cos(γ − ζ/2 + π/2) sin(γ − ζ/2 + π/2) 0
− sin(γ − ζ/2 + π/2) cos(γ − ζ/2 + π/2) 0

0 0 1



 . (A.32)

Finally, we obtain the matrix transforming from the wave coordinate to the detector
coordinate is

M :=M (3) ·M (2) ·M (1) . (A.33)
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Figure A.3: Definition of the right ascension α.

A.5 The antenna pattern function

The polarization tensor, which is written as Eq. (A.11) in the wave coordinate, is trans-
formed into the detector coordinate by

e+ =M ·





1 0 0
0 −1 0
0 0 0



 ·MT , e× =M ·





0 1 0
1 0 0
0 0 0



 ·MT , (A.34)

The explicit forms of the antenna pattern functions are

F+(t) = sin ζ[a(t) cos 2ψ + b(t) sin 2ψ] , (A.35)

F×(t) = sin ζ[b(t) cos 2ψ − a(t) sin 2ψ] , (A.36)

with

a(t) =
1

16
sin 2γ(3− cos 2λ)(3− cos 2δ) cos[2(α− ϕ⊕ − Ω⊕t)]

− 1

4
cos 2γ sinλ(3− cos 2δ) sin[2(α− ϕ⊕ − Ω⊕t)]

+
1

4
sin 2γ sin 2λ sin 2δ cos[α− ϕ⊕ − Ω⊕t]

− 1

2
cos 2γ cosλ sin 2δ sin[α− ϕ⊕ − Ω⊕t]

+
3

4
sin 2γ cos2 λ cos2 δ , (A.37)
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Figure A.4: Definition of the detector longitude L.

and

b(t) = cos 2γ sinλ sin δ cos[2(α− ϕ⊕ − Ω⊕t)]

+
1

4
sin 2γ(3− cos 2λ) sin δ sin[2(α− ϕ⊕ − Ω⊕t)]

+ cos 2γ cosλ cos δ cos[α− ϕ⊕ − Ω⊕t]

+
1

2
sin 2γ sin 2λ cos δ sin[α− ϕ⊕ − Ω⊕t] . (A.38)

Here, we define ϕ⊕ := −Ω⊕t0 + L.
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Figure A.5: Definition of the detector’s latitude λ

Figure A.6: Definition of the detector frame. The angle γ is the angle measured from the
North-South axis to the bisector of the detector’s arms. The angle ζ is the angle between
two arms.
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