
Extracting Rules from Trained Machine
Learning Models with Applications in

Bioinformatics

機械学習モデルからの知識抽出と生命情報学へ
の応用

Pengyu Liu

劉鵬宇

Abstract

Machine learning methods have been successfully applied to various areas. However,
some machine learning-based models are not explainable (e.g., Artificial Neural
Networks), which may prevent massive applications in related biological fields. In
this study, we try to make the model interpretable by extracting explicit rules
between the inputs and outputs.

We first propose two approaches to extracting rules from a trained neural net-
work consisting of linear threshold functions. The first one leads to an algorithm
that extracts rules in the form of Boolean functions. Compared with an existing one,
this algorithm outputs much more concise rules if the threshold functions correspond
to 1-decision lists, majority functions, or certain combinations of these. The second
one extracts probabilistic rules representing relations between some of the input
variables and the output using a dynamic programming algorithm. The algorithm
runs in pseudo-polynomial time if each hidden layer has a constant number of neu-
rons. We demonstrate the effectiveness of these two approaches by computational
experiments.

Then we consider applying an explainable machine learning model to predict
human Dicer cleavage sites.

Human Dicer is an enzyme that cleaves pre-miRNAs into miRNAs. Several
models have been developed to predict human Dicer cleavage sites, including PHD-
Cleav and LBSizeCleav. Given an input sequence, these models can predict whether
the sequence contains a cleavage site. However, these models only consider each se-
quence independently and lack interpretability. Therefore, it is necessary to develop
an accurate and explainable predictor, which employs relations between different
sequences, to enhance the understanding of the mechanism by which human Dicer
cleaves pre-miRNA.

In this part, we develop an accurate and explainable predictor for human Dicer
cleavage site – ReCGBM. ReCGBM is based on lightGBM, which can output the
relationship between the features and outputs inherently. We design relational fea-
tures and class features as inputs to a lightGBM model. Computational experiments
show that ReCGBM achieves the best performance compared with the existing
methods. Further, we find that features in close proximity to the center of pre-

i

ii

miRNA are more important and make a significant contribution to the performance
improvement of the developed method.

The results of this study show that ReCGBM is an interpretable and accurate
predictor. Besides, the analyses of the relationship between the feature importance
and the output labels show that it might be of particular interest to consider more
informative features close to the center of the pre-miRNA in future predictors.

Acknowledgments

During my career at Kyoto University, I have received support and help from many
people.

First of all, I would like to express my gratitude to my supervisor, Professor
Tatsuya Akutsu, for your valuable comments, which always helped me building my
research ideas. I have also benefited a lot from your advice on writing skills as well
as mathematical proofs. I will always keep these things in mind.

I appreciate Professor Akihiro Yamamoto and Professor Hisashi Kashima for
being my co-advisor. Your valuable comments greatly improved my thesis and
presentations.

I want to thank Professor Avraham Melkman at Ben-Gurion University. Al-
though you only visited our lab for several months in my Ph.D. career, your advice
and encouragement are treasures to me.

Thank you to Professor Jiangning Song at Monash University and Professor
Chun-yu Lin at National Chiao Tung University for providing me so much interest-
ing insights into bioinformatics.

I want to thank all members, former members, and visiting students in the
Akutsu lab for their encouragement and help at Kyoto University. It’s my pleasure
to work with you.

Finally, I would like to appreciate my father–Manyuan Liu, my mother–Min
Guo, and my wife–Xiaohui Huang. Without your support, I cannot get my degree
smoothly.

iii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . 1
1.2 Contribution . 2
1.3 Organization . 3

2 Preliminaries 5
2.1 Artificial Neural Networks . 5

2.1.1 Neurons . 5
2.1.2 Feedforward Neural Networks 5

2.2 Boosting . 6
2.2.1 AdaBoost . 7
2.2.2 Additive Model . 8
2.2.3 Gradient Boosting . 9
2.2.4 Implementations . 10

3 Extracting Boolean and Probabilistic Rules from Trained Neural
Networks 11
3.1 Background . 11
3.2 Preliminaries . 12

3.2.1 Neural Networks . 12
3.2.2 Majority and Nested Canalyzing Functions 14

3.3 Extraction of Boolean Functions . 15
3.3.1 Extraction of a Nested Canalyzing Function or a Majority

Function . 15
3.3.2 Extraction of a general Boolean Function 19

3.4 Extraction of Probabilistic Rules from a Neural Network 22
3.4.1 Problem Definition . 22

v

vi CONTENTS

3.4.2 NP-hardness . 22
3.4.3 Probabilistic Rule Extraction from a Linear Threshold Function 24
3.4.4 Probabilistic Rule Extraction: Network with One Hidden Layer 26
3.4.5 Probabilistic Rule Extraction: Network with Multiple Hidden

Layers . 29
3.5 Computational Experiments . 30

3.5.1 Computational Experiments with Boolean Rule Extraction . 30
3.5.2 Computational Experiments with Probabilistic Rule Extraction 33

3.6 Discussions . 41

4 ReCGBM: a Gradient Boosting-based Method for Predicting Hu-
man Dicer Cleavage Sites 43
4.1 Background . 43
4.2 Methods . 44

4.2.1 Data Preparation . 44
4.2.2 Relational Features . 47
4.2.3 Class Features . 47
4.2.4 LightGBM . 50
4.2.5 Evaluation Metrics . 51

4.3 Results . 51
4.3.1 Predictive Performance . 51
4.3.2 Sequence Logo Representations 58
4.3.3 Feature Importance . 58

4.4 Discussion . 63

5 Conclusion 67

Bibliography 71

List of Figures

1.1 Supervised learning and unsupervised learning 1

2.1 A artificial neuron (perceptron) . 5
2.2 A feedforward neural network . 6
2.3 An illustration of intuitions behind the Boosting methods 7

3.1 Example of a neural network. 13
3.2 A network with two layers (left) and a network with one hidden layer

(right). 22
3.3 Reduction from a 3-SAT instance {v1∨v3∨v4, v1∨v2∨v3, v2∨v3∨v4}

to probabilistic rule extraction. 23
3.4 Architectures of the Neural Networks. 31
3.5 Quantization of weights and threshold. 35
3.6 Rules with the Top 20 Highest Probabilities (Vote) 38
3.7 Rules with the Top 20 Highest Probabilities (Moral Reasoner) . . . 39
3.8 Rules with the Top 20 Highest Probabilities (Chess) 40

4.1 Flowchart of the data preprocessing, feature extraction, model train-
ing and evaluation of the developed ReCGBM approach. (a) shows
the design and evaluation process of ReCGBM. (b) describes how to
generate relational features and class features. 45

4.2 An example of data preprocessing. The sequence ’UAUAGUUU-
UAGGGU’ between the two red bars in the RNA structure repre-
sents the cleavage pattern of the 5p-arm. The complementary strand
of this cleavage pattern is ’AUAUCAAOOOCCCO’, which can be
constructed by the sequences in the green boxes and loops/bulges. 46

4.3 An example of calculating the edit distance by matrix. 48
4.4 Performance comparison between different models based on the

datasets with secondary structures predicted by quickfold. 52
4.5 Performance comparison between different models based on the

datasets with secondary structures predicted by RNAFold. 54

vii

viii LIST OF FIGURES

4.6 Average number of classes for different data types. The terms qf and
rf represent quickfold and RNAFold, respectively. 55

4.7 Results of affinity propagation. (a), (b), (c) and (d) plot the rela-
tionships between the average number of classes and different labels
for the 5p-arm dataset (qf), 3p-arm dataset (qf), 5p-arm dataset (rf)
and 3p-arm dataset (rf), respectively where qf represents secondary
structures predicted by quickfold server and rf denotes secondary
structures predicted by RNAFold. (e), (f), (g) and (h) show the rela-
tionships between the average number of samples and different labels
for the 5p-arm dataset (qf), 3p-arm dataset (qf), 5p-arm dataset (rf)
and 3p-arm dataset (rf), respectively. 57

4.8 Sequence logo representations of cleavage sites and non-cleavage sites.
(a) and (b) are sequence logo representations of the 5p-arm cleavage
sites and the 5p-arm non-cleavage sites. (c) and (d) are sequence
logo representations of the 3p-arm cleavage sites and the 3p-arm non-
cleavage sites. 59

4.9 Results of feature importance on the 5p-arm datasets. The secondary
structures of (a) and (b) are predicted by quickfold and RNAFold,
respectively. 60

4.10 Results of feature importance on the 3p-arm datasets. The secondary
structures of (a) and (b) are predicted by quickfold and RNAFold,
respectively. 61

4.11 Comparisons of feature importance between p1, . . . , p7 and
p8, . . . , p14. (a) is the result on 5p-arm data with secondary struc-
tures predicted by quickfold; (b) is the result on 5p-arm data with
secondary structures predicted by RNAFold; (c) is the result on 3p-
arm data with secondary structures predicted by quickfold; (d) is the
result on 3p-arm data with secondary structures predicted by RNAFold. 62

4.12 Positions of relational features in the secondary structure of pre-miRNA 64

List of Tables

3.1 Results for the 5-out-of-10 majority function. PE is the probabilistic
rule extraction algorithm. PA refers to Algorithm 5. Consult the
text for the definitions of P1, . . . , P5. 36

3.2 Results for the conjunction of two 2-out-of-5 majority functions. PE
is the probabilistic rule extraction algorithm. PA refers to Algorithm
5. Consult the text for the definitions of P1, . . . , P5. 36

3.3 Results for Maj2(x1, . . . , x5) ∨ (x6 ∨ (x7 ∧ (x8 ∨ (x9 ∧ x10)))). PE is
the probabilistic rule extraction algorithm. PA refers to Algorithm
5. Consult the text for the definitions of P1, . . . , P5. 37

4.1 Performance comparison between different models based on the
datasets with secondary structures predicted by quickfold. Best re-
sults are highlighted in bold. Sn, Sp, Acc and MCC represent sensi-
tivity, specificity, accuracy and Matthews correlation coefficient, re-
spectively . 53

4.2 Performance comparison between different models based on the
datasets with secondary structures predicted by RNAFold. Best
results are highlighted in bold. Sn, Sp, Acc and MCC represent
sensitivity, specificity, accuracy and Matthews correlation coefficient,
respectively . 54

4.3 Performance comparison between ReCGBM with different secondary
structures. Sn, Sp, Acc and MCC represent sensitivity, specificity,
accuracy and Matthews correlation coefficient, respectively 55

ix

Chapter 1

Introduction

1.1 Background
With the rapid growth of data, it is crucial to analyze data to help us make con-
clusions in different studies. Therefore, methods that can analyze data, such as
machine learning, play an essential role in many fields.

According to the types of data, studies on machine learning can mainly be
divided into two types:

• Unsupervised learning: Given a dataset with N samples {x1, ..., xN}, un-
supervised learning is trying to divide the data into different classes.

• Supervised learning: Given a dataset with N paired samples
{(x1, y1), ..., (xN , yN)}, supervised learning learns a function with input xi and
output yi, where the available sample xi in a supervised learning task has a
corresponding label yi for 1 ≤ i ≤ N .

!"#$% !"#$%

! "#$ %# $ & '"($ %()*

& '()*+,") !-./ " +" %

!"# $& $ "(*

0%-// %-1$% "' "+ '"2 , - . - /

3).(+

4(+.(+

5(.$26,/$# %$-2),)7 8)/(.$26,/$# %$-2),)7

Figure 1.1: Supervised learning and unsupervised learning

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1 shows the difference between supervised learning and unsupervised
learning. In this study, we will focus on methods and applications for supervised
learning.

In supervised learning, there are two kinds of tasks: classifications and regres-
sions.

In classification tasks, each yi for a given xi is a class label. One example is the
classification task on MNIST dataset [LBBH98]. In this dataset, there are some
figures of handwritten digits. Each figure has a label (from 1 to 9). The task aims
to train a model so that given an input xi, the model outputs the correct label yi.
In regression tasks, each yi for a given xi is a continuous number. An example is
the Boston housing dataset [HJR78].

There are plenty of methods that can be used to finish these tasks. One choice
is artificial neural networks. The artificial neural network has recently become a
compelling method with the development of deep neural networks [LBH15]. A
deep neural network can build an accurate model when enough data are available.
However, overfitting is a serious problem when we employ neural network-based
methods [CLG01]. To learn more about overfitting in trained neural networks and
how a trained neural network makes decisions, we can find some explicit relation-
ships between the inputs and outputs of a trained neural network. Therefore, it
is necessary to develop methods to extract explicit rules between the inputs and
outputs.

Another good choice is gradient boosting. Gradient boosting shows powerful
performance in the Kaggle competition and the KDD Cup. Popular implementa-
tions such as XGBoost [CG16], LightGBM [KMF+17] make it convenient to use.
One advantage of this method is that rule extraction is inherently possible. That is,
feature importance related to the outputs can be extracted directly from a trained
model.

1.2 Contribution

In this study, our contributions mainly include two parts.
First, we propose two algorithms for rule extractions in trained neural networks.

One algorithm is based on Boolean operations. It can extract a Boolean function
representing the relationship between the inputs and outputs of a trained neural
network. However, complicated Boolean functions may be obtained when there are
no simple Boolean functions representing the target neural network. To partially
solve this problem, we develop a rule extraction algorithm based on conditional
probability and dynamic programming. This algorithm can extract probabilistic
rules for trained neural networks with a proper size.

Second, we apply the gradient boosting algorithm to identify the human Dicer

1.3. ORGANIZATION 3

cleavage sites. In this part, we develop a predictor – ReCGBM based on gradient
boosting and affinity propagation. The proposed method shows better performance
comparing with some existed methods. Besides, some biological rules have been
found through the feature importance of the trained model.

1.3 Organization
In Chapter 2, we give a brief introduction about the models and methods which
will be used in later chapters.

In Chapter 3, we introduce methods of rule extractions for artificial neural net-
works. In this study, we propose two rule extraction methods. The first one extracts
Boolean rules. The second one extracts probabilistic rules. We show the effective-
ness of these methods by computational experiments.

In Chapter 4, we introduce gradient boosting for the human Dicer cleavage
sites prediction. In this study, we train a classifier – ReCGBM, which is based on
gradient boosting. ReCGBM makes accurate predictions. Besides, it outputs the
relationship between the feature importance and the output labels, which leads to
the discovery of biological meanings.

Finally, Chapter 5 summarizes the methods and applications.

Chapter 2

Preliminaries

2.1 Artificial Neural Networks

2.1.1 Neurons

The basic unit in a artificial neural network is artificial neurons (or perceptrons).
A neuron is a function f(x):

!

!

!

!!"#$%&'#(&)*+#&,-.+/ 01/2

Figure 2.1: A artificial neuron (perceptron)

where x is the k-dimensional input and f(x) is the output.

2.1.2 Feedforward Neural Networks

A feedforward neural network (or multilayer perceptron) is a directed acyclic graph
that consists of many neurons. The neurons without indegrees are input neurons .
Similarly, the neurons without outdegrees are output neurons. The input neurons
are situated in the input layer, while the output neurons are located in the output
layer. The other neurons belong to the middle layers. Figure 2.2 gives an example.

5

6 CHAPTER 2. PRELIMINARIES

Given a 4-dimensional input x, the output of this neural network is f3([f1(x), f2(x)]),
where [f1(x), f2(x)] is the 2-dimensional input of f3.

!"

!#

!$
!%&'()*+',*-./'*012 /3

Figure 2.2: A feedforward neural network

The training procedure of a feedforward neural network is mostly conducted by
some variants of gradient descent such as Adam [KB14], AdaGrad [DHS11].

The choice of function f(x) in each neuron may affect the performance and
training speed of a neural network. A fundamental choice is the linear threshold
function. It is a binary function that usually appears in the theoretical analyses
of a neural network. The problem with the linear threshold function is that it is
challenging to be trained by gradient-based methods. A more advanced choice is
the sigmoid function. It is widely used in different neural networks. However, it
suffers from gradient vanishing in deep neural networks. Another popular choice is
the ReLU function. In this study, we focus on the theoretical analyses of artificial
neural networks. Therefore, our algorithms assume that f(x) is the linear threshold
function. The formal definition of linear threshold function is given in Chapter 3.

2.2 Boosting

Boosting is a group of machine learning methods that build a strong learner through
some weak learners. Figure 2.3 shows how a boosting-based algorithm works. In
this part, we will first introduce the AdaBoost [FS97] algorithm. Then we will talk
about Gradient Boosting and some famous implementations.

2.2. BOOSTING 7

!"#$ %"#&'"&(

)*&+', %"#&'"&

-++(*.',

!

!

!

!

!

!

!

!

"

"
"

"

"

!

!

!

!

!

!

!

!

"

"
"

"

"

!

!

!

!

!

!

!

!

"

"
"

"

"

!

!

!

!

!

!

!

!

"

"
"

"

"

Figure 2.3: An illustration of intuitions behind the Boosting methods

2.2.1 AdaBoost

Given a training set T = {(x1, y1), (x2, y2), ..., (xN , yN)} where xi ∈ X ⊆ Rn and
yi ∈ Y = {−1,+1}, and the algorithm to learn the weak learners (e.g. decision
trees). The AdaBoost algorithm [FS97] learn a classifier G(x) through the following
procedures:

1. Initialize distribution D1 as:

D1 = (w11, ..., w1i, ..., w1N), w1i =
1

N
, i = 1, 2, ..., N

2. For m = 1, ..., M:

(a) Train weak learner Gm(x) using distribution Dm:

Gm(x) : X → {−1,+1}

(b) Compute the error ϵm of Gm(x) on the training set:

ϵm =
N∑
i=1

P (Gm(xi) ̸= yi) =
N∑
i=1

wmiI(Gm(xi) ̸= yi)

8 CHAPTER 2. PRELIMINARIES

(c) Compute the coefficient of Gm(x):

αm =
1

2
log

1− ϵm
ϵm

where log is natural logarithm.
(d) Update

Dm+1 = (wm+1,1, ..., wm+1,i, ..., wm+1,N)

wm+1,i =
wmi

Zm

exp(−αmyiGm(xi)) for 1 ≤ i ≤ N

where Zm is a normalization factor of Dm+1:

Zm =
N∑
i=1

wmi exp(−αmyiGm(xi))

3. Output the final classifier:

G(x) = sign(
M∑

m=1

αmGm(x))

2.2.2 Additive Model

The additive model is in the following form:

f(x) =
M∑

m=1

βmb(x; γm)

where b(x; γm) is the mth weak learner and βm is the corresponding coefficient.
The additive model can be solved by Forward Stagewise Additive Modeling:

1. Initialize f0(x) = 0.

2. For 1 ≤ m ≤M :

(a) Compute

(βm, γm) = argmin
β,γ

N∑
i=1

L(yi, fm−1(xi) + βb(xi; γ)).

(b) fm(x) = fm−1(x) + βmb(x; γm)

L(yi, fm−1(xi) + βb(xi; γ)) represent the loss function. The AdaBoost algorithm
can be regarded as a special case of the additive model with an exponential loss
function [FHT+00] in the following form:

L(y, f(x)) = exp (−yf(x))

2.2. BOOSTING 9

2.2.3 Gradient Boosting

The AdaBoost algorithm is efficient. However, this method is sensitive to noise
data since the usage of the exponential loss function. Jerome H. Friedman [Fri01]
developed the gradient boosting algorithm, which is more robust since many loss
functions can be applied.

Given a training set T = {(x1, y1), (x2, y2), ..., (xN , yN)}. Assume a differentiable
loss function L(x, f(x)) is choosen. the gradient boosting algorithm works in the
following procedure:

1. Initialize model with a constant value:

f0(x) = argmin
γ

N∑
i=1

L(yi, γ)

2. For 1 ≤ m ≤M :

(a) Compute the pseudo-residuals:

rim = −[∂L(yi, f(xi))

∂f(xi)
]
f(x)=fm−1(x)

where 1 ≤ i ≤ N .
(b) Train a weak learner Gm(x) on the training set
{(x1, r1m), (x2, r2m), ..., (xN , rNm)}.

(c) Compute γm by solving the following problem:

γm = argmin
γ

N∑
i=1

L(yi, fm−1(xi) + γGm(xi))

(d) Update the model:

fm(x) = fm−1(x) + γmGm(x)

3. Output the classifier fM(x).

For two-class classification task, the loss function is:

L(y, f(x)) = log(1 + exp(−2yf(x)))

where y ∈ {−1, 1}.
Compare with the AdaBoost algorithm, the Gradient Boosting algorithm is more

flexible. It is suitable for both regression tasks and classification tasks. Besides, the
versatile choice of loss functions makes this algorithm more robust with noise data.

Usually, decision trees are chosen as the weak learners in the Gradient Boosting
algorithm. Therefore, we call this GBDT (Gradient Boosting Decision Tree).

10 CHAPTER 2. PRELIMINARIES

2.2.4 Implementations

XGBoost

XGBoost [CG16] is one of the most famous implementations of the gradient boosting
algorithm. It made many improvements compared with previous methods: First,
they proposed a theoretically justified weighted quantile sketch for efficient proposal
calculation; Second, to handle sparse structures and missing values in practical
datasets, they developed a novel sparsity-aware algorithm for parallel tree learning;
Third, to make the algorithm works faster, they proposed an effective cache-aware
block structure for out-of-core tree learning.

LightGBM

LightGBM [KMF+17] is a famous implementation of the gradient boosting algo-
rithm. It is even faster than XGBoost. Besides, categorical features can be used
directly with one-hot encoding. We will briefly introduce the advantage of Light-
GBM in Chapter 4.

Chapter 3

Extracting Boolean and Probabilistic
Rules from Trained Neural Networks

3.1 Background
Recent developments in deep learning technologies have demonstrated the power
of artificial neural networks in making predictions in various areas. It is therefore
of great interest to develop a methodology for interpreting how a trained neural
network arrives at its predictions: better understanding makes for greater trust.
There are two major approaches to the interpretation of trained networks: mecha-
nism explanation and behavior explanation. The former sees the network as a white
box and aims to explain its inner workings. The latter settles for explaining what
outputs will be obtained from the different inputs, viewing the network as if it were
a black box. Many studies adopt the latter approach because it is easier and useful.

Different methodologies can be broadly divided as follows:

• Boolean function extraction: Extract a Boolean function from a trained neural
network [Tsu00].

• Activation maximization: Create an input to maximize the network output
and show a representative example of a specific category [Le13].

• Sensitivity analysis: Examine the sensitivity of the network against changes
of each input [STK+17].

• Deconvolution: Trace the path from the output to the input and analyze
attributes learned by a convolutional neural network [SDBR14].

• LIME: Explain the predictions by approximation with an interpretable model
[RSG16].

11

12
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

We focus here on Boolean function extraction. Most such extraction algorithms
fall into of two categories: decompositional or pedagogical algorithms.

Decompositional algorithms such as [Tsu00] extract a Boolean function for each
individual neuron, and merge these rules into a set of rules describing the behavior of
the neural network . Such algorithms generate their results in terms of the structure
of the network so that we can understand how each neuron works.

Pedagogical algorithms, such as [AK12] and [SWI07], view rule extraction as the
task of learning a Boolean function from data samples. Although these methods
generate accurate results, the results may not reflect the function of each neuron.

This study is motivated by Tsukimoto’s work [Tsu00]. His algorithm extracts
Boolean functions in disjunctive normal form from each of the neurons indepen-
dently and then combines these functions. It works in polynomial time if the size of
each term is bounded by a constant. In this study we explore several extensions and
modifications of this pioneering work, motivated by the following considerations.

First, Tsukimoto’s algorithm requires the specification of the maximum size of a
term; if that size is too small the algorithm may fail to extract a Boolean function,
and if it is large, the running time may be too long. Second, for a neural network
with hidden layers the size of the Boolean function may be large.

To begin addressing these issues we propose two algorithms; admittedly, further
refinements will be needed to make them practical for large-scale neural networks.
The first one extracts Boolean functions in the form of nested canalyzing functions
(equivalent to 1-decision lists), majority functions, or certain combinations of the
two. This algorithm is useful if each neuron indeed has such a form. Otherwise,
as for Tsukimoto’s algorithm, the algorithm may output large Boolean functions.
This phenomenon is inevitable if exact prediction rules are to be extracted in the
form of Boolean functions. The second algorithm extracts rules in the form of
conditional probabilities. Each conditional probability represents a relation between
an input attribute, or a combination of input attributes, and an output. Although
the prediction rules obtained by this approach are usually not exact they can be
concise. The potential usefulness of these two algorithms are demonstrated by
means of computational experiments.

3.2 Preliminaries

3.2.1 Neural Networks

In this study a neuron is a linear threshold function [O’D14], with the exception of
Section 3.5.2, in which we consider also neurons that are sigmoid functions.

3.2. PRELIMINARIES 13

Definition 1. Given θ, w1, · · · , wn ∈ R, a linear threshold function is a Boolean-
valued function f : {0, 1}n → {0, 1} defined by

f(x) = H(w1x1 + · · ·+ wnxn − θ)

where H(z) is the Heaviside function

H(z) =

{
1 z ≥ 0,

0 z < 0.

We will assume that all weights and threshold values are integers. This is a
reasonable assumption in practice inasmuch as a computer handles only rational
numbers, and a threshold function with rational weights can be transformed into
an equivalent threshold function with integer weights.

A sigmoid function is in general characterised by its “S"-shaped curve, but here
we limit it to the logistic function:

Definition 2. The one-dimensional sigmoid function is

S(x) =
1

1 + e−x
.

More generally, given θ, w1, · · · , wn ∈ R, the n-dimensional sigmoid function is
S(w1x1 + · · ·+ wnxn − θ).

Definition 3. In this study, a neural network is a directed acyclic graph with neu-
rons situated at the vertices. The neurons with zero indegree are input neurons,
which receive signals only from the outside world, and those with zero outdegree are
output neurons.

Figure 3.1: Example of a neural network.

14
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

Fig. 3.1 shows an example of a neural network in which x1, x2, x3, x4 are the
input neurons and z is the output neuron. Since the input values are 0 or 1 the
output value is determined by a Boolean function of the input values. The problem
we address is the extraction of this Boolean function in a simple form from a given
neural network.

3.2.2 Majority and Nested Canalyzing Functions

For Boolean variables x and y, x̄, x∧ y, x∨ y denote the negation of x, conjunction
of x and y, and disjunction of x and y, respectively. A literal is either a Boolean
variable or its negation. A term is a conjunction of literals, and a conjunction of k
literals is called a k-term.

Definition 4. Given n literals ℓ1, . . . , ℓn and k ∈ {1, . . . , n}, the k-out-of-n major-
ity function Majk(ℓ1, . . . , ℓn) is the Boolean function that is the disjunction of all
conjunctions of exactly k out of the n literals. Thus its output is 1 when k or more
literals are 1, and 0 otherwise.

Definition 5. A Boolean function f(x) is nested canalyzing if it can be represented
as

f(x) = ℓ1 ∨ · · · ∨ ℓk1−1 ∨ (ℓk1 ∧ · · · ∧ ℓk2−1 ∧ (ℓk2 ∨ · · · ∨ ℓk3−1 ∨ (· · ·)))

where ℓi ∈ {x1, x̄1, · · · , xn, x̄n} and 1 ≤ k1 < k2 < · · · . It can be assumed that each
xi appears at most once in f(x) either positively or negatively.

It has been reported that many biologically relevant functions are nested can-
alyzing ones [HSWK02, JRL07]. Therefore, extracting rules in the form of nested
canalyzing functions is meaningful. Next we define the decision list [Ant10]:

Definition 6. Let M be a set of Boolean functions on {0, 1}n. The decision list f
on M is a finite sequence:

f = ⟨(f1, c1), (f2, c2), · · · , (fr, cr)⟩,

such that fi ∈ M and ci ∈ {0, 1} for i = 1, . . . , r. The value of f is defined by
f(y) = cj where j = min{i|fi(y) = 1}, or 0 if there is no i such that fi(y) = 1.

A 1-decision list is a decision list in which each fi is a literal.

The decision list f is like a sequence of “if then else” commands:

if f1(y) = 1 then f(y) = c1
else if f2(y) = 1 then f(y) = c2
.
.
else if fr(y) = 1 then f(y) = cr
end if

3.3. EXTRACTION OF BOOLEAN FUNCTIONS 15

Proposition 7 (Theorem 2.8 of [JRL07].). The class of 1-decision lists is equivalent
to the class of nested canalyzing functions.

Proposition 8. The number of nested canalyzing functions on n variables is
bounded above by n! · 5n.

Proof. There are n! possible orderings of variables. Consider a particular order,
say x1, x2, x3, · · · , xn. The number of functions with this order, can be bounded
recursively from the following five possibilities for f(x1, · · · , xn):

• x1 ∧ g(x2, · · · , xn),

• x̄1 ∧ g(x2, · · · , xn),

• x1 ∨ g(x2, · · · , xn),

• x̄1 ∨ g(x2, · · · , xn),

• x1 is not used.

Therefore, there are at most n! · 5n possibilities in total. □

A more precise but more complicated bound is given in [JRL07]. Since every
nested canalyzing function can be represented as a linear threshold function [Ant01],
and the number of linear threshold functions on the Boolean domain is at least
2n(n−1)/2 [Ant01], what these bounds show is that the class of nested canalyzing
functions is a proper subset of the class of linear threshold functions.

3.3 Extraction of Boolean Functions

3.3.1 Extraction of a Nested Canalyzing Function or a Ma-
jority Function

In this subsection, we consider first the extraction of a rule having the form of a
nested canalyzing function, and then the extraction of a rule in the form of a nested
majority function. Notice that we also use the expression wixi + · · ·+ wnxn ≥ θ to
represents a linear threshold function H(wixi + · · ·+ wnxn − θ).

When analyzing the running times of algorithms we will use O∗(f(N)) to repre-
sent O(f(N)poly(N)), where N is the total size of input data. We assume that the
size of each parameter is polynomially bounded with respect to n, where n denotes
the number of input variables. Recall that addition, subtraction, and multiplication
can be done in time polynomial in the total size of the terms involved.

But first let us present a simple but very useful Lemma.

16
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

Lemma 9. For the purpose of rule extraction from a linear threshold function it
can be assumed without loss of generality that the threshold function has the form
H(w1x1 + · · ·+ wnxn − θ) with w1 ≥ · · · ≥ wn > 0.

Proof. Repeat the following step until no negative weights remain: if wi < 0 for
some i, replace θ by θ−wi, wi by −wi, and xi by x̄i. These two threshold functions
are clearly equivalent.

Next, reorder the resulting linear threshold function so that the terms wixi

appear in descending order of wi.

Finally, for convenience, replace each xi by xi. After extraction of the rule this
replacement can be reversed. □

To illustrate the procedure described in the proof, consider the linear threshold
function:

3x1 − 5x2 + 6x3 ≥ 5.

Dealing with the negative weight and reordering of the terms yields

6x3 + 5x̄2 + 3x1 ≥ 10.

Summarizing, we assume w.l.o.g. that the input to the rule-extracting algorithms
is a canonical linear threshold function

Definition 10. A linear threshold function t(x) = H(w1x1 + · · ·+ wnxn − θ) is in
canonical form if w1 ≥ w2 ≥ · · · ≥ wn > 0.

3.3. EXTRACTION OF BOOLEAN FUNCTIONS 17

Algorithm 1 ExtractNC - Extracts a Nested Canalyzing Function, if possible
Input: A canonical threshold function t ≡ wixi + · · ·+ wnxn ≥ θ, 1 ≤ i ≤ n.
Output: An NC-function equivalent to t if there is one, else NONE.
ExtractNC(wixi + · · ·+ wnxn ≥ θ):
if θ ≤ 0 then

return 1;
else if

∑n
j=i wj < θ then

return 0;
end if/* 0 < θ ≤

∑n
j=i wj */

if i = n then
return xn;

end if ; /* i < n and 0 < θ ≤
∑n

j=iwj */
if wi ≥ θ then
g(xi+1, . . . , xn)← ExtractNC(wi+1xi+1 + · · ·+ wnxn ≥ θ);
return xi ∨ g(xi+1, · · · , xn);

else if
∑n

j=i+1wj < θ then
g(xi+1, . . . , xn)← ExtractNC(wi+1xi+1 + · · ·+ wnxn ≥ θ − wi);
return xi ∧ g(xi+1, · · · , xn);

else
return NONE;

end if

Note that 1, 0 and NONE satisfy 1∨g(· · ·) = 1, 1∧g(· · ·) = g(· · ·), 0∧g(· · ·) = 0,
0 ∨ g(· · ·) = g(· · ·), NONE ∧ g(· · ·) = NONE, and NONE ∨ g(· · ·) = NONE.

Theorem 11. ExtractNC takes polynomial time to extract a nested canalyzing
function from a given canonical threshold function if possible, outputting NONE if
there is no such function.

Proof. It is straightforward to see that ExtractNC works in polynomial time. We
prove the correctness of ExtractNC by induction on the number of variables.

Clearly ExtractNC returns a correct nested canalyzing function when the
threshold function consists of a single variable. For the induction step suppose
i is given and that ExtractNC returns a correct solution (possibly NONE) given
any canonical threshold function of the form w′

i+1xi+1 + · · · + w′
nxn ≥ θ. We will

show that then a correct solution is returned for any canonical threshold function
wixi + · · ·+ wnxn ≥ θ.

When wi ≥ θ, the threshold function has value 1 on an assignment (ai, . . . , an)
to (x1, . . . , xn), i.e. wiai+ · · ·+wnan ≥ θ, if and only if either ai = 1 or both ai = 0
and wi+1ai+1 + · · · + wnan ≥ θ. Therefore, wixi + · · · + wnxn ≥ θ corresponds to
a nested canalyzing function iff wi+1xi+1 + · · ·+ wnxn ≥ θ corresponds to a nested
canalyzing function g(xi+1, . . . , xn), and if so it corresponds to xi ∨ g(xi+1, . . . , xn).

18
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

In case
∑n

j=i+1 wj < θ the threshold function has value 1 on an assignment
(ai, . . . , an) if and only if ai = 1 and wi+1ai+1 + · · · + wnan ≥ θ − wi. Thus xi ∧
g(xi+1, . . . , xn) is the nested canalyzing function corresponding to the threshold
function, where g(xi+1, . . . , xn) corresponds to wi+1xi+1 + · · ·+ wnxn ≥ θ − wi.

To prove that the the algorithm is correct also when it returns NONE, we prove
that if there is a nested canalyzing function f that is equivalent to the canonical
threshold function t(x) ≡ wixi+· · ·+wnxn ≥ θ) then either wi ≥ θ or

∑n
j=i+1 wj < θ.

As stated in the algorithm we can assume that i < n and

0 < θ <

n∑
j=i

wj. (3.1)

Suppose first that f has the form f(xi, . . . , xn) = ℓk ∨ g(xi, . . . , xn), for some
i ≤ k ≤ n, and g not a function of xk. Although ℓk could in general be xk or xk,
here ℓk = xk is impossible: otherwise f(0) = 1, whereas t(0) = 0 since 0 < θ.

Thus f = 1 whenever xk = 1. Consider the assignment a with values ak = 1,
and aj = 0 for j ̸= k. Then from t(a) = 1 it follows that wk ≥ θ.

If f is of the form f(x) = xk ∧ g then f(a) = 0 for any assignment a such that
ak = 0. Arguing analogously to the above it follows that

∑
j ̸=k wj < θ.

Finally, we prove that the index k appearing in the argument above can in fact
be taken to be i, because t is in canonical form. Consider, for example, the case that
f has the form xk∨g(xi, . . . , xn), with i ̸= k and g(xi, . . . , xn) not dependent on xk.
We saw that then wk ≥ θ. From wi ≥ wk it follows that wi+wi+1ai+1+· · ·+wnan ≥ θ
for any ai+1, . . . , an, i.e. t(a) = 1, whenever ai = 1. Thus in fact f = xi ∨ xk ∨ g′.

Similarly, if f has the form xk ∧ g(xi, . . . , xn) then
∑

j>i wj ≤
∑

j ̸=k wj < θ, so
that t(a) = 0 whenever ai = 0. Consequently f = xi ∧ xk ∧ g′. □

Next we present an algorithm to test whether a canonical threshold function is
equivalent to the k-out-of-n majority function, Majk(x1, . . . , xn). Although several
methods have been developed for the simplification of a linear threshold function
into a set of majority functions [Bar93], it is unclear whether any of these methods
is directly applicable to the extraction of a majority function, and our algorithm
has the virtue of being very simple.

3.3. EXTRACTION OF BOOLEAN FUNCTIONS 19

Algorithm 2 ExtractMF - Extracts a Majority Function if possible
Input: A canonical threshold function t with weights w1 ≥ · · · ≥ wn > 0.
Output: Majk(x1, . . . , xn), k > 1, if it is equivalent to t, else NONE.

ExtractMF(w1x1 + · · ·+ wnxn ≥ θ):
for k = 2 to n do

if wn−k+1 + · · ·+ wn ≥ θ and w1 + · · ·+ wk−1 < θ then
return Majk(x1, . . . , xn);

end if
end for
return NONE;

Proposition 12. ExtractMF returns the correct answer in polynomial time.

Proof. The algorithm clearly takes polynomial time, computing no more than n
times two sums of no more than n terms. To prove correctness assume first that t
does correspond to Majk for some k > 1. Since Majk(x1, . . . , xn) is the disjunction
of all conjunctions consisting of k variables it has the value 1 for the assignment
a1 = · · · = an−k = 0, an−k+1 = · · · = an = 1, meaning that wn−k+1 + · · · + wn ≥ θ.
But it has the value 0 for the assignment a1 = · · · = ak−1 = 1, ak = · · · = an = 0,
as each conjunction contains at least one 0 multiplicand. Since t(a) = 0 means that
w1 + · · ·+ wk−1 < θ, this Majk will be output by ExtractMF.

Conversely, assume that ExtractMF returns Majk, so that wn−k+1+ · · ·+wn ≥ θ.
Because w1 ≥ · · · ≥ wn > 0 this implies that

∑k
j=1wij ≥ θ for any 1 ≤ i1 ≤ · · · ≤

ik ≤ n, i.e. that t(a) = 1 for any assignment a that contains at least k 1’s.
Furthermore, w1 +w2 + · · ·+wk−1 < θ also holds for this k, which similarly implies
that t(a) = 0 for any assignment a that contains at most k− 1 1’s. Thus, the input
canonical threshold function is equivalent to MFk. □

3.3.2 Extraction of a general Boolean Function

If the given canonical threshold function is equivalent to a nested canalyzing function
or a k-out-of-n majority function then the algorithms of the previous section are
able to construct a concise rule. What to do if the algorithms are unsuccessful is
the question we address in this section. The basic idea is to break the threshold
function up into two threshold functions, using the following equivalence, and to
recurse :

w1x1 + · · ·+ wnxn ≥ θ ⇐⇒
(x1 ∧ (w2x2 + · · ·+ wnxn ≥ θ − w1)) ∨ (x̄1 ∧ (w2x2 + · · ·+ wnxn ≥ θ)).

20
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

In order to avoid as much as possible the potentially exponential size of the
resulting Boolean function, the Algorithm tries at each stage to extract a concise
Boolean function using Algorithm 1 and Algorithm 2.

Algorithm 3 ExtractBF - extracts a Boolean Function
Input: A canonical threshold function.
Output: A Boolean function.
ExtractBF (wixi + · · ·+ wnxn ≥ θ):
g ← ExtractNC(wixi + · · ·+ wnxn ≥ θ);
if g is not NONE then

return g;
end if
g ← ExtractMF(wixi + · · ·+ wnxn ≥ θ);
if g is not NONE then

return g;
end if
return (xi∧ExtractBF (wi+1xi+1+· · ·+wnxn ≥ θ−wi))∨ExtractBF (wi+1xi+1+
· · ·+ wnxn ≥ θ);

Proposition 13. ExtractBF transforms any linear threshold function into a Boolean
function composed of disjunctions, conjunctions, and majority functions of literals
in O∗(2n) time.

In the worst case, the algorithm may output an exponential size Boolean function
using exponential time. However, the algorithm works in polynomial time with
respect to the output size, and the output size is expected to be small if the given
threshold function can be represented as a composition of majority functions, nested
canalyzing functions, disjunctions and conjunctions.

Let us briefly compare our algorithm with Tsukimoto’s algorithm [Tsu00], which
outputs the DNF form of a Boolean function, and works in polynomial time if the
size of each term is bounded by a constant. Otherwise it is an exponential time
algorithm, or an approximate one. Our algorithm is exact and works in polynomial
time if a given linear threshold function corresponds to a nested canalyzing function
or a k-out-of-n majority function.

In all cases that we checked our algorithm outputs a Boolean function that is
more concise than the one output by Tsukimoto’s algorithm. For example, given
a linear threshold function 0.5x1 + 0.4x2 + 0.1x3 + 0.1x4 + 0.1x5 + 0.1x6 ≥ 1, our
algorithm outputs x1x2(x3 ∨ x4 ∨ x5 ∨ x6), whereas Tsukimoto’s algorithm outputs
x1x2x3 ∨ x1x2x4 ∨ x1x2x5 ∨ x1x2x6. For another example, given a linear thresh-
old function 0.5x1 + 0.5x2 + 0.4x3 + 0.4x4 + 0.4x5 ≥ 0.8, our algorithm outputs

3.3. EXTRACTION OF BOOLEAN FUNCTIONS 21

Maj2(x1, . . . , x5). whereas Tsukimoto’s algorithm outputs x1x2∨x1x3∨x1x4∨x1x5∨
x2x3 ∨ x2x4 ∨ x2x5 ∨ x3x4 ∨ x3x5 ∨ x4x5.

However, the rule extracted by our algorithm can be longer than necessary, even
if the rule is a majority function but not on all n variables. Consider the function
whose weights are 12,11,11,10,10,10,1 and its threshold is θ = 29. This function is
equivalent to Maj3(x1, . . . , x6), but our algorithm outputs

(x1 ∧ ((x2 ∧ (x3 ∨ x4 ∨ x5 ∨ x6)) ∨ (x3 ∧ (x4 ∨ x5 ∨ x6)) ∨ (x4 ∧ (x5 ∨ x6))

∨(x5 ∧ x6)))

∨(x2 ∧ ((x3 ∧ (x4 ∨ x5 ∨ x6)) ∨ (x4 ∧ (x5 ∨ x6)) ∨ (x5 ∧ x6)))

∨(x3 ∧ ((x4 ∧ (x5 ∨ x6)) ∨ (x5 ∧ x6)))

∨(x4 ∧ x5 ∧ x6).

If it is important to extract a concise (and therefore more informative) rule, even if it
may take considerably more time, one can modify the above algorithm by replacing
its last line by the following:

g1 ← (xi ∧ ExtractBF (wi+1xi+1 + · · ·+ wnxn ≥ θ − wi))

∨ ExtractBF (wixi + · · ·+ wn−1xn−1 ≥ θ);

g2 ← (xn ∧ ExtractBF (wixi + · · ·+ wn−1xn−1 ≥ θ − wn))

∨ ExtractBF (wi+1xi+1 + · · ·+ wn−1xn−1 ≥ θ);

if |g1| ≤ |g2| return g1 else return g2;

In the above, we considered the problem of extracting a Boolean function from
a single neuron. We consider next a network with hidden layers. In this case
the extraction of the Boolean function corresponding to a given neuron involves
combining the Boolean functions extracted for all its input neurons, which may
result in a very complicated function.

We propose two methods for alleviating this problem. The first one is to add
constraints on the length of the generated Boolean functions. Computational ex-
periments using this approach are presented in Section 3.5.1. The second one is to
extract rules that are conditional probabilities, rather than deterministic ones. In
the next section we describe this probabilistic rule extraction algorithm.

22
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

3.4 Extraction of Probabilistic Rules from a Neural
Network

3.4.1 Problem Definition

Figure 3.2: A network with two layers (left) and a network with one hidden layer
(right).

In this section, we consider the problem of extracting conditional probabilities given
a combination of some input nodes values. Suppose that z is the output neuron
directly connected to n input neurons x1, . . . , xn (see Fig. 3.2, left). We assume
that the input neurons obey independent distributions, meaning that the value
Pr(xi = 1) depends only on i. We also assume that the representation of Pr(xi = 1)
uses only O(1) bits, as is the case for the uniform distribution Pr(xi = 1) = 0.5.
The Probabilistic Rule Extraction problem is to compute the probabilities Pr(z = a),
Pr(z = a|xi = b), Pr(z = a|xi1 = b1, xi2 = b2), · · · for a, b, bi ∈ {0, 1}, up to a fixed
number of input nodes. The problem can be extended to neural networks having
hidden layers (Fig. 3.2, right).

3.4.2 NP-hardness

We prove that probabilistic rule extraction is NP-hard, even for a neural network
with one hidden layer.

Theorem 14. Deciding whether Pr(z = 1) > 0 is NP-hard for a neural network
with one hidden layer.

Proof. The proof consists of a polynomial time reduction from 3SAT [GJ79]. Let
v1, . . . , vN be the variables of the 3-SAT formula, and let c1, . . . , cL be its clauses,
each clause being a logical OR of at most three literals, ci = ℓi1 ∨ ℓi2 ∨ ℓi3 where ℓij
is either vij or v̄ij . 3SAT is the problem of deciding whether or not there exists an

3.4. EXTRACTION OF PROBABILISTIC RULES FROM A NEURAL
NETWORK 23

Figure 3.3: Reduction from a 3-SAT instance {v1 ∨ v3 ∨ v4, v1 ∨ v2 ∨ v3, v2 ∨ v3 ∨ v4}
to probabilistic rule extraction.

assignment of 0-1 values to v1, . . . , vN which satisfies all the clauses (i.e., all clauses
evaluate to 1).

From an instance of 3SAT, we construct a neural network as follows (see also
Fig. 3.3).

The input nodes are X = {x1, . . . , xN}, and the hidden layer nodes are Y =
{y1, . . . , yL}, where we assume the uniform 0-1 distribution for each of the xi. Node
yi in the hidden layer corresponds to clause ci, and its weights are wi,ij = 1 if
ℓij = vij , and wi,ij = −1 if ℓij is v̄ij , with wi,k = 0 for k ̸= i1, i2, i3. The threshold of
node yi is θyi = 1− |{ℓij |ℓij = x̄ij}|. The weights assigned to node z are w1 = w2 =
· · · = wL = 1 and its threshold is θ = L.

It is straightforward to verify that Pr(z = 1) > 0 iff there exists an assignment
such that all c1, . . . , cL evaluate to 1. The reduction clearly takes polynomial time.

□

In this reduction the number of nodes in the hidden layer is not bounded, whereas
the weights are restricted to be -1, 0, and 1. The next Theorem points out that
the problem remains NP-hard even if the number of nodes in the hidden layer is
restricted to be at most 2, provided the weights can be arbitrary integers.

24
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

Theorem 15. Deciding whether Pr(z = 1) > 0 is NP-hard for a neural network
with one hidden layer with two neurons if O(n) bits integer weights can be assigned.

Proof. As in the proof of the co-NP hardness of testing the equivalence of two
threshold functions [MCCA18], we use a polynomial-time reduction from the subset
sum problem. Recall that the subset sum problem asks: given a set of positive
integers A = {a1, a2, . . . , aN} and an integer b, is there a 0-1 assignment (v1, . . . , vN)
such that a1v1 + a2v2 + · · ·+ aNvN = b?

From an instance (A, b) of the subset sum problem, we construct a neural network
similar to the one used in the proof of Theorem 14, with only two nodes y1 and y2
in the hidden layer. The weights associated with these two nodes are wi,j = aj, i =
1, 2, j = 1, . . . , N , and their thresholds are θ1 = b, and θ2 = b + 1. The weights of
the output node z are w1 = 1 and w2 = −1, and θz = 1.

Clearly Pr(z = 1) > 0 iff there exists a 0-1 assignment (v1, . . . , vN) such that
a1v1 + a2v2 + · · · + aNvN ≥ b and a1v1 + a2v2 + · · · + aNvN < b + 1. Furthermore,
the time taken by the reduction is polynomial in the total number of bits used to
represent the instance of the Subset Sum problem. □

3.4.3 Probabilistic Rule Extraction from a Linear Threshold
Function

Let us turn now to developing an algorithm for calculating Pr (z = 1) given a linear
threshold function. As a first step consider the case that the threshold function is
a nested canalyzing function.

Let ncf(x) be a nested canalyzing function on the variables x and let pi denote
the probability

pi = Pr(xi = 1). (3.2)

We assume that a constant number of bits suffices to specify pi. According to Lemma
9 we can assume that the threshold function is in canonical form, and therefore its
nested canalyzing form contains no negated variables, and the variables appear
ordered by non-increasing weights (cf. Algorithm 1). Here is the pseudo-code for
calculating Pr(ncf(x) = 1).

3.4. EXTRACTION OF PROBABILISTIC RULES FROM A NEURAL
NETWORK 25

Algorithm 4 Probability Extraction Algorithm for a nested canalyzing function
Input: A canonical threshold function in the form of a nested canalyzing function

ncf(xi, · · · , xn); probabilities pj, j = i, . . . , n;
Output: Pr(ncf(xi, . . . , xn) = 1);

ExtractP(ncf(xi, · · · , xn)):
if i = n then return pn = 1;
end if
if ncf(xi, · · · , xn) = xi ∧ g(xi+1, · · · , xn) then

return pi ∗ ExtractP(g(xi+1, · · · , xn));
else if ncf(xi, · · · , xn) = xi ∨ g(xi+1, · · · , xn) then

return pi + (1− pi) ∗ ExtractP(g(xi+1, · · · , xn));
end if

Proposition 16. A probabilistic rule can be extracted from a nested canalyzing
function in polynomial time.

Proof. The correctness of Algorithm 4 is self-evident. Since by assumption the
probabilities pi are represented with a constant number of bits, each call makes at
most one multiplication, and the number of calls is linear in n, the algorithm works
in time polynomial in n. □

Note that Pr(z = 1|xi1 = ai1 , . . . , xik = aik) can be computed by applying
Algorithm 4 after setting (xi1 , . . . , xik) to (ai1 , . . . , aik).

Next, we present an algorithm for a general canonical threshold function. It is
based on the following straightforward recursion.

Pr(f(x1, . . . , xn) = 1) = p1Pr(f(x1, . . . , xn) = 1|x1 = 1)

+ (1− p1))Pr(f(x1, . . . , xn) = 1|x1 = 0). (3.3)

To implement the recursion efficiently we use dynamic programming, as in
[MCCA18]. Given a canonical threshold function w1x1 + · · · + wnxn ≥ θ with
positive integer weights wi and threshold θ, define T (i, s) by

T (i, s) = Pr(
n∑

j=i

wjxj ≥ s).

From recursion 3.3 we get a recursion for T (i, s):

T (i, s) = piT (i+ 1, s− wi) + (1− pi)T (i+ 1, s). (3.4)

Note that the value we are after is Pr(z = 1) = T (1, θ); it is obtained by computing
recursively, with memorization, the values T (i, s), i = 1, . . . , n, for appropriate

26
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

values of s. Since all weights are positive, the smallest and largest values of s of
possible interest are 0 and θ. The table is initialized by T (i, s) = 1 if s ≤ 0 and

T (n, s) = 1 if s ≤ 0, T (n, s) = pn if 0 < s ≤ wn, T (n, s) = 0 if wn < s. (3.5)

Theorem 17. Given a canonical threshold function the value Pr(z = 1) can be
computed in O∗(nθ) time.

Proof. The correctness of the dynamic programming procedure is self evident.
The number of table entries T (i, s) needed for the computation is nθ. The size

of each entry is polynomially bounded, so that the computations of Equations (3.4)
and (3.5) take polynomial time. □

Since θ may be exponentially large in terms of the input size, this algorithm
runs in pseudo-polynomial time, although if θ is polynomially large then so is the
running time.

Here is an example illustrating the working of the algorithm. Suppose that we
are requested to compute Pr(2x1 + 3x2 + x3 − 2x4 ≥ 2) where Pr(xi = 1) = 0.5 for
i = 1, . . . , 4. The canonical form of the threshold function is 3x1+2x2+2x3+x4 ≥ 4.
According to Equation (3.5) the initial values are

T (4, s) = 1 if s ≤ 0,
1

2
if 0 < s ≤ 1, 0 if 1 < s.

A straightforward computation using Equation (3.4) yields

Pr(2x1 + 3x2 + x3 − 2x4 ≥ 2) = T (1, 4) = p1T (2, 1) + (1− p1)T (2, 4) = · · · =
9

16
.

Only 8 values were computed, half of the table.

3.4.4 Probabilistic Rule Extraction: Network with One Hid-
den Layer

Here we extend the dynamic programming algorithm presented above to a neural
network with one hidden layer; the next subsection describes how to handle multiple
hidden layers. In these subsections ni denotes the number of input nodes in layer i,
with n = n1 being the number of input nodes. The right side of Fig. 3.2 shows the
structure of a network with one hidden layer.
Caution: In these two subsections we consider two or more functions simultane-
ously. Therefore we do not assume that all threshold functions are given in canonical
form. Using the method of Lemma 9 we can still assume that the weights of the
threshold functions are all non-negative; the price we pay is that the threshold func-
tions are combinations of literals rather than of variables. Given an assignment a

3.4. EXTRACTION OF PROBABILISTIC RULES FROM A NEURAL
NETWORK 27

to the variables x of a threshold function w1ℓ1 + · · ·+ wnℓn ≥ Γ, we will denote by
ℓj(aj) the value given to ℓj by the assignment xj = aj; for example, if ℓj = xj and
aj = 1 then ℓj(aj) = 0.

Consider to begin with the simplest case of a neural network having one hidden
layer with two nodes y1 and y2. The values of y1 and y2 are determined by the
threshold functions

wk,1ℓk,1 + · · ·+ wk,nℓk,n ≥ Γk, k = 1, 2, (3.6)

with wk,j ≥ 0, k = 1, 2, 1 ≤ j ≤ n. The value of the output node z is 1 iff
wy1ℓy1 +wy2ℓy2 ≥ T with wy1 , wy2 ≥ 0, and 0 < T < w2,1+w2,2 (otherwise the value
is constant). For simplicity we will assume in the following that ℓyk = yk, k = 1, 2;
the other possibilities are handled similarly.

We describe next two ways to compute the probability Pr(z = 1).

1. The first method starts by initializing P3(1) to 0. Then it considers all assign-
ments a to the variables of the input layer, and for each it computes

(a) the resulting assignment (b1, b2) to (y1, y2):

bk = (wk,1ℓk,1(a) + · · ·+ wk,nℓk,n(a) ≥ Γk) , k = 1, 2;

(b) the resulting value of z: c = (wy1ℓy1(b1) + wy2ℓy2(b2) ≥ T);

(c) adds Pr(x = a) to P3(1) if c = 1.

Since the input node variables are independent Pr(x = a) =
n∏

j=1

Pr(xj = aj).

Pr(z = 1) equals the final value of P3(1). The total computation time is
O(n2n).

This computation is easily generalized to a network with n1 input nodes and
a hidden layer containing n2 nodes y: (1a) computes the assignment b to

y in time O(n1n2), and (1b) computes c =

(
n2∑
j=1

wyjℓyj(bj) ≥ T

)
. Thus the

computation time is
O(n1n22

n1). (3.7)

2. The basic idea of the second method is to compute the joint probabilities of
the two nodes in the hidden second layer, P2(b1, b2) = Pr(y1 = b1, y2 = b2),
b1, b2 ∈ {0, 1}. With these values in hand the probability that z = 1 is

Pr(z = 1) = H(wy1 − T)P2(1, 0) +H(wy2 − T)P2(0, 1) + P2(1, 1). (3.8)

28
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

The method first computes the matrix F (i, s1, s2), 1 ≤ i ≤ n, 0 ≤ sk ≤ Γk,
defined by

F (i, s1, s2) = Pr(
n∑

j=i

w1,jℓ1,j ≥ s1 and
n∑

j=i

w2,jℓ2,j ≥ s2).

Once all of F has been computed, the value of P2(1, 1) is given by P2(1, 1) =
F (1,Γ1,Γ2). Although the other values needed for Equation 3.8, P2(1, 0) and
P2(0, 1), do not themselves appear in F , they can be derived from values
that do appear: P2(1, ∗) = Pr(y1 = 1) = P2(1, 1) + P2(1, 0) = F (1,Γ1, 0),
and P2(∗, 1) = F (1, 0,Γ2). Note that the computation accessed all values
P2(c1, c2), c1, c2 ∈ {0, 1, ∗}.
F can be computed using a recursion similar to the one for T .

F (i, s1, s2) = piF (i+ 1, s1 − ℓ1,i(1)w1,i, s2 − ℓ2,i(1)w2,i)

+ (1− pi)F (i+ 1, s1 − ℓ1,i(0)w1,i, s2 − ℓ2,i(0)w2,i),
(3.9)

with the initialization
F (n, s1, s2) = pnH((ℓ1,n(1)w1,n − s1)H((ℓ2,n(1)w2,n − s2)

+ (1− pn)H((ℓ1,n(0)− s1)H((ℓ2,n(0)− s2).
(3.10)

In particular, F (n, s1, s2) = pnH(ℓ1,n(1)w1,n− s1)+ (1−pn)H(ℓ1,n(0)− s1) for
s2 ≤ 0, and F (n, s1, s2) = 1 when both s1 and s2 are non-positive.
The time complexity of the resulting algorithm is pseudo-polynomial,
O∗(nΓ1Γ2).
To extend these ideas to a neural network with a single hidden layer containing
n2 nodes, define the matrix F (i, s1, . . . , sn2); it can be computed recursively
using the analogs of Equations (3.9) and (3.10). From this matrix we derive
the values P2(c) with c ∈ {0, 1, ∗}n2 in n2 stages, where at stage r we consider
those c containing exactly r 0’s. For such a c let jr be the first index such
that cjr = 0, and define t and u by tj = uj = cj if j ̸= jr, 1 ≤ j ≤ n2

and tjr = ∗, ujr = 1. Then P2(c) = P2(t) − P2(u). Each such computation
subtracts one already computed value from another and takes constant time.
The initialization stage of the computation is to copy the values of P2(c) for
c ∈ {1, ∗}n2 from F : P2(c) = F (1, t), where tj = Γj if cj = 1, tj = 0 if cj = ∗,
1 ≤ j ≤ n2.
On completing the computation of P2 from F we know all 3n2 values P (c)
with c ∈ {∗, 0, 1}n2 . Consequently the time to compute all of P2 is O(3n2),

and the overall computation time for this method is O(n1

n2∏
k=1

Γk + 3n2). Thus

this method is much faster than the first naive method, Equation (3.7), if
n1 ≫ max{log2 3 · n2,

∑n2

k=1 log2 Γk}.

3.4. EXTRACTION OF PROBABILISTIC RULES FROM A NEURAL
NETWORK 29

3.4.5 Probabilistic Rule Extraction: Network with Multiple
Hidden Layers

To extend the approach of the previous subsection further to multilayer neural
networks, we assume that our computation model is the real RAM (random access
machine) [Sha78]. The real RAM is an idealized model in which it is assumed
that any real number can be stored in a word and that each arithmetic operation
takes constant time. This model has been widely used for analyzing algorithms in
computational geometry [PS85]. In actual computers, real numbers are of course
represented as finite precision floating point numbers. Therefore, when implemented
on actual computers, our algorithms may output approximate probabilities.

Consider a neural network with L (L ≥ 4) layers, the first one being the input
layer, the last one consisting of the lone output node z, and the ith layer having ni

nodes for i = 1, . . . , L. We briefly indicate how to generalize the algorithms of the
previous sections to the current setting.

The first generalized method computes, for each assignment a to the variables of
the input layer, the assignment generated to the variables of the i+1-st layer by the
assignment that was generated to the variables of the i-th layer, i = 1, . . . , L − 1.
If the resulting assignment to z is 1, then Pr(a) is added to the current value of
PL(1). At the completion of the computation Pr(z = 1) = PL(1). The total time

taken by the computation is O(2n1

L−1∑
i=1

nini+1).

The second generalized method is a combination of the previous two methods: it
begins by applying the second method to compute all joint probabilities for the first
hidden layer, Next it essentially uses the first generalized method just described,
but starts it from the second layer. Thus, for each assignment b, whose probability
Pr(b) was just calculated, the method traces the assignment it generates to the
variables of the i-th layer, i = 3, . . . , L − 1. If the resulting assignment to z is 1,
then Pr(b) is added to the current value of PL(1). Upon termination this method
returns PL(1) as the value of Pr(z = 1). Thus the running time is

O(n1

n2∏
k=1

Γk + 3n2 + 2n2

L−1∑
i=2

nini+1). (3.11)

Then the following Theorem summarizes the foregoing description.

Theorem 18. Given a neural network with L (L ≥ 4) layers, suppose n1 ≥
max{log2 3 ·n2,

n2∑
k=1

log2 Γk}. Then Pr(z = 1) can be computed in time O(n1

n2∏
k=1

Γk+

3n2 + 2n2
∑L−1

i=2 nini+1).

Theorem 11 means that the second method is at least as fast as the first naive
enumeration based method if n1 ≥ max{log2 3 ·n2,

∑n2

k=1 log2 Γk} and is much faster

30
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

if n1 ≫ max{log2 3 · n2,
∑n2

k=1 log2 Γk}. Although many neurons are used in hidden
layers in recent applications, there are several practical cases in which only a few
neurons are used in hidden layers [ZT00] [MHZ+08]. In such cases, the second
method might work much faster than the naive method. At least this result gives a
theoretical advance over the native method.

The analyses above are all for binary classifications. It might be possible to
extend this probabilistic rule extraction to multiclass classification. A possible way
is to compute P (z1 = 1), P (z2 = 1), . . . , P (zp = 1) separately for neural networks
with p outputs.

3.5 Computational Experiments

3.5.1 Computational Experiments with Boolean Rule Ex-
traction

In addition to the theoretical analyses of the Boolean rules extraction, we performed
computational experiments to demonstrate its potential usefulness.

Although the algorithms presented in Section 3.3 are applicable only to single
neurons, they can be extended to neural networks with hidden layers, using a strat-
egy similar to the one given in [Tsu00]. Namely, starting with the first layer, and
proceeding layer by layer, the Boolean functions for all neurons in a layer are com-
puted. The Boolean function so obtained for the single neuron in the final layer is
the function for the output .

To study the performance of our proposed method, different neural networks
were trained on one synthetic dataset and two real datasets, all with sigmoid func-
tions using the Adam optimizer in PyTorch version 1.0.0 [PGCC17]. Binary cross-
entropy is selected as our loss function. Since we want to see how well our Boolean
rules approximate the neural networks we used in each case all of the dataset after
samples with missing attributes were removed. The training was terminated once
the training loss was less than 0.02.

In order to obtain concise Boolean rules, we ceased the generation of terms at the
third order, where a term is of order i if it has the form

∏i
k=1 xk. Therefore, the rules

contain only first, second and third order terms. Technically this meant adding to
Algorithms 1 and 3 an order parameter r ≥ 0 which indicates the highest order to be
generated by the algorithm. For example, the heading of Algorithm 1 was changed to
ExtractNC(wixi+· · ·+wnxn ≥ θ; r), to its body we added another base case "if r =
0 return 0" as a first statement, and the order parameter was decreased as necessary
in other statements. For simplicity in this part the procedure ExtractMF was
deleted from Algorithm 3. Here is an example of this order-capped Boolean function
generation: the threshold function 5x1 + 3x2 + 3x3 + 2x4 + 2x5 ≥ 10 with order

3.5. COMPUTATIONAL EXPERIMENTS 31

parameter r = 3 yields the function x1 ∧ ((x2 ∧ (x3 ∨ x4 ∨ x5)) ∨ (x3 ∧ (x4 ∨ x5))).

1. Regulation of the Mammalian Cell Cycle

As mentioned in Section 3.2.2, many biologically important functions are re-
ported to be nested canalyzing. For example, the following rule is used in a
logical model of the mammalian cell cycle network [FNCT06]:

UbcH10 : (Cdh1) ∨ (Cdh1 ∧ Ubc ∧ (Cdc20 ∨ CycA ∨ CycB))

In order to examine whether our algorithm can reconstruct this rule from
samples, we generated at random a dataset of 16384 samples with the 15
binary attributes Cdh1, Ubc, Cdc20, CycA, CycB and 10 noise attributes.
Classes were UbcH10 and UbcH10.

These data were then used to train each one of the three neural networks
shown in Fig. 3.4.

Figure 3.4: Architectures of the Neural Networks.

Applying our Boolean rule extraction algorithm to the resulting trained neural
networks yielded the correct nested canalyzing function for UbcH10 in each
case.

2. The Votes Data

The votes data set consists of 232 out of the 435 voting records of congressmen
in 1984, as they appear in the UCI Machine Learning Repository [DG17],
after entries with missing data were removed. Each sample has 16 binary
attributes (the votes of the congressman on 16 issues). Classes are Democrat

32
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

and Republican. Each extracted Boolean variable is of the form ’a:v’, meaning
that a has value v.

We trained each of the three neural networks depicted in Fig. 3.4 on these
data. Then we tested our Boolean rule extraction algorithm on each of the
resulting neural networks. In all three cases the following Boolean rule was
obtained:

Democrat : (physician-fee-freeze:n) ∨ ((adoption-of-the-budget-resolution:y)
∧ (anti-satellite-test-ban:n)
∧ (synfuels-corporation-cutback:y))

The accuracy of the rule is 98.3%. This rule is the same as the one obtained
for the votes data by Tsukimoto [Tsu00] (with initial weight parameters 1).

3. The Mushroom Data

This dataset, also taken from the UCI Machine Learning Repository [DG17],
consists of 5644 mushrooms (after removal of samples with missing val-
ues), each with 22 discrete physical characteristics. Classes are edible and
poisonous. The following Boolean rule was obtained for all three networks
depicted in Fig. 3.4:

edible : ¬(spore-print-color:green) ∧ ((odor:none)
∨ (odor:almond)
∨ (odor:anise))

The accuracy of this Boolean rule is 99.7%.

The rule that Tsukimoto [Tsu00] extracted for the mushroom data is:

edible : (gill-size:board) ∧ ((odor:none)
∨ (odor:almond)
∨ (odor:anise))

and its 95.6% accuracy for the 4062 mushrooms that Tsukimoto used is not
as good as ours. Its accuracy on the full dataset of 5644 mushrooms is even
slightly less, 94.5%.

3.5. COMPUTATIONAL EXPERIMENTS 33

Applying the C4.5 algorithm of [Qui93] to our dataset yields the following
rule:

(odor:none) ∨ (odor:almond) ∨ (odor:anise)→ edible

with an accuracy of 98.7%, slightly less than ours.

The best rule that extracted from the mushroom dataset is [Ish00]:

edible : ((gill-size:board) ∧ ¬(stalk-surface-below-ring:scaly) ∧ ¬(population:clustered))∧
¬(spore-print-color:green) ∧ ((odor:none)

∨ (odor:almond)
∨ (odor:anise))

The accuracy of this rule is 100%. Therefore, the method by Ishikawa [Ish00]
might be useful in practice. However, there is no theoretical guarantee on
what kinds of rules are extracted by his method. Therefore, we continued our
experiments on our proposed methods.

We tested architecture 1 on this dataset using mean square error with different
values. When the loss is 0.0228, we obtained the same rule as the experiments
using binary cross-entropy loss even if we ceased the generation of terms at
the sixth order. We continued the training until the loss achieved 0.00258.
We got the same rule as previous. However, when the loss achieved 0.00086,
we obtained a rule with more than 20 literals even we ceased the generation of
terms at the third order. These experiments indicate that use of very small loss
values might lead to overfitting and generation of complex rules. Therefore,
the stopping condition should be carefully chosen in practice.

The above experiments are all focus on binary classifications. It might be
possible to extend this Boolean rule extraction to multiclass classifications.
One way is to consider neurons connected to each output as individual neural
networks. Then Boolean rules can be obtained for each output.

3.5.2 Computational Experiments with Probabilistic Rule
Extraction

This subsection has three parts. First, we examine the differences between the
rules extracted by our algorithm as compared with the rules extracted directly
from the trained sigmoid network. Second, we demonstrate that our algorithm

34
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

can extract probabilistic rules with very small probabilities through experiment.
Finally, we study the possibility of extracting important attributes from trained
neural networks.

The probabilistic rule extraction algorithm outputs accurate probabilities for
neural networks consisting of linear threshold functions. However, in practice sig-
moid functions are often used in neural networks in order to enable training with
sample data. For such networks, our algorithm outputs approximate probabilities.
We report here on computational experiments aimed at examining the differences
between the rules extracted by our algorithm as compared with the rules extracted
directly from the trained sigmoid network.

In the experiments we trained a neural network consisting of ten input neurons,
one output neuron, and one hidden layer with two neurons, all with sigmoid ac-
tivation functions using the Adam optimizer in PyTorch version 1.0.0 [PGCC17].
Three sets of training samples with 500, 1024, 1024 samples respectively, ten at-
tributes and one output label (all binary valued), were randomly generated from
the following three Boolean functions:

1. 5-out-of-10 majority function (Maj5(x1, . . . , x10)),

2. conjunction of two majority functions (Maj2(x1, . . . , x5)∨Maj2(x6, . . . , x10)),

3. Maj2(x1, . . . , x5) ∨ (x6 ∨ (x7 ∧ (x8 ∨ (x9 ∧ x10)))),

where we used Pr(xi = 1) = 0.5 for all i = 1, . . . , n. The weights and thresholds of
the resulting trained network were converted to integers by the quantization method
shown in Fig. 3.5.

Here wmax and wmin represent the maximum and the minimum values among
w1 · · ·wn and b, respectively. The constant d was set to 200.

The quantized weights were used to construct a linear threshold network, the
derived linear threshold network. From this network five probabilistic rule values
(P1, . . . , P5, to be shown in the following paragraphs) were extracted by the Prob-
abilistic Rule Extraction Algorithm, PE, as follows. Using the threshold functions
(3.6) for the hidden nodes, the matrix F was computed by means of the recursion
(3.9) and the initialization (3.10); the value of the target is deduced from F by
equation (3.8). We compare these target values with the exact probability com-
puted from the original Boolean functions and the ones obtained by the following
simple sampling-based algorithm for extracting probabilistic rules directly from the
trained sigmoid network.

3.5. COMPUTATIONAL EXPERIMENTS 35

Figure 3.5: Quantization of weights and threshold.

Algorithm 5 Probabilistic Rule Extraction by Sampling
count = 0
for i = 1 to m do

generate a random 0-1 assignment to the variables in the input layer;
compute the 0-1 value of node z output by the trained neural network;
if z = 1 then count++;

end for
output count/m as an approximation of Pr(z = 1)

For the 5-out-of-10 majority function the targets were P1 = Pr(z = 1|x1 = 1),
P2 = Pr(z = 1|x1 = 1, x2 = 1), P3 = Pr(z = 1|x1 = 1, x2 = 1, x3 = 0), P4 =
Pr(z = 1|x1 = 1, x2 = 1, x3 = 0, x4 = 0), and P5 = Pr(z = 1|x1 = 1, x2 = 1, x3 =
0, x4 = 0, x5 = 1), and for each target the comparison value was obtained by running
Algorithm 5 100 times with m = 100 samples.

The results, displayed in Table 3.1, show that the values output by our algorithm
are essentially exact, whereas the results of Algorithm 5 depend on the samples that
were generated. The small differences between the exact probabilities and those by
PE are due to that the latter ones were computed using the linear threshold network
obtained from the trained neural network.

36
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

Algorithms Parameters P1 P2 P3 P4 P5

exact probability 0.74609 0.85547 0.77344 0.65625 0.8125
PE 0.7461 0.8555 0.7734 0.6563 0.8125

PA Mean 0.7488 0.8601 0.7727 0.6588 0.8084
STD 0.0451 0.0347 0.0423 0.0507 0.0314

Table 3.1: Results for the 5-out-of-10 majority function. PE is the probabilistic rule
extraction algorithm. PA refers to Algorithm 5. Consult the text for the definitions
of P1, . . . , P5.

For the second Boolean function the targets were P1 = Pr(z = 1|x1 = 1),
P2 = Pr(z = 1|x1 = 1, x2 = 0), P3 = Pr(z = 1|x1 = 1, x2 = 0, x3 = 1), P4 = Pr(z =
1|x1 = 1, x2 = 0, x3 = 1, x4 = 0), and P5 = Pr(z = 1|x1 = 1, x2 = 0, x3 = 1, x4 =
0, x5 = 1). The results, displayed in Table 3.2, show that again the values output
by our algorithm are essentially exact, and those of Algorithm 5 depend on the set
of samples.

Algorithms Parameters P1 P2 P3 P4 P5

exact probability 0.76172 0.71094 0.8125 0.8125 0.8125
PE 0.7617 0.7109 0.8125 0.8125 0.8125

PA Mean 0.7631 0.7088 0.8129 0.8155 0.8121
STD 0.0437 0.0401 0.0380 0.0373 0.0383

Table 3.2: Results for the conjunction of two 2-out-of-5 majority functions. PE is
the probabilistic rule extraction algorithm. PA refers to Algorithm 5. Consult the
text for the definitions of P1, . . . , P5.

For the third Boolean function the targets were P1 = Pr(z = 1|x1 = 0), P2 =
Pr(z = 1|x1 = 0, x2 = 1), P3 = Pr(z = 1|x1 = 0, x2 = 1, x3 = 0), P4 = Pr(z =
1|x1 = 0, x2 = 1, x3 = 0, x4 = 0), and P5 = Pr(z = 1|x1 = 0, x2 = 1, x3 = 0, x4 =
0, x5 = 1). The results, displayed in Table 3.3, show that our algorithm gives more
accurate values than PA gives.

3.5. COMPUTATIONAL EXPERIMENTS 37

Algorithms Parameters P1 P2 P3 P4 P5

exact probability 0.89258 0.95703 0.91406 0.82813 1
PE 0.8828 0.9570 0.9141 0.8281 1

PA Mean 0.8802 0.9602 0.9157 0.8249 1.0
STD 0.0347 0.0196 0.0305 0.0385 0.0

Table 3.3: Results for Maj2(x1, . . . , x5) ∨ (x6 ∨ (x7 ∧ (x8 ∨ (x9 ∧ x10)))). PE is the
probabilistic rule extraction algorithm. PA refers to Algorithm 5. Consult the text
for the definitions of P1, . . . , P5.

One advantage of our algorithm is that it is deterministic, so that its results do
not depend on random samples. Another advantage is that it can extract proba-
bilistic rules with very small probabilities.

In order to verify this property, we performed the following experiment. We
designed a neural network with one hidden layer of 2 neurons and sigmoid activation
functions for the Boolean function x1 ∧ · · · ∧ x20 since it is hard to train a neural
network for this function. From the designed network we constructed the derived
threshold network with integer weights and threshold, and extracted from it Pr(z =
1) as 9.53674×10−7, which is in fact the exact value of that probability. In contrast,
100 trials of Algorithm 5 on the sigmoid network, each with 100 samples, were
unable to find this non-zero probability, because the number of samples is too small.
Possibly using a large number of samples will yield a non-zero probability, but it is
difficult to estimate in advance the required number of samples.

Finally, we examine the possibility of extracting important attributes from
trained neural networks using our probabilistic rule extraction algorithm. In this
experiment, we train a neural network with n binary inputs xi for 1 ≤ i ≤ n and
one binary output z. We would like to compute p(z = 1|xi = 0) and p(z = 1|xi = 1)
for all xi using our probabilistic rule extraction algorithm. We assume the trained
neural network has one hidden layer (3 hidden neurons).

We tested our proposed algorithm on three different datasets.

1. The Votes Data

This is the same dataset we considered in Sect. 3.5.1. The training was ter-
minated once the loss was less than 0.02. The results in Fig. 3.6 show that
physician-fee-freeze:n is significantly more important than others. In fact, the
accuracy of using only physician-fee-freeze:n is 96.9%.

38
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

Figure 3.6: Rules with the Top 20 Highest Probabilities (Vote)

2. The Moral Reasoner Data

3.5. COMPUTATIONAL EXPERIMENTS 39

Figure 3.7: Rules with the Top 20 Highest Probabilities (Moral Reasoner)

This dataset, also part of the UCI Machine Learning Repository [DG17], con-
tains 202 samples each having 23 attributes, of which 21 are binary. The other
two discrete attributes are mental_state : neither/negligent/reckless/intend
and foreseeability : n/low/high. The classes are guilty and not guilty.

We consider mental_state : neither/negligent/reckless/intend as 4 binary
attributes mental_state_neither : n/y, mental_state_negligent : n/y,

mental_state_reckless : n/y and mental_state_intend : n/y. Discrete at-
tribute foreseeability : n/low/high can be converted to 3 binary attributes in
a similar way. Therefore there are 28 binary attributes. Training was halted
once the training loss fell below 0.02.

It is fairly easy to construct from a few of the attributes that predict "guilty"
with highest probabilities, as shown in Fig. 3.7, a rule with high accuracy.

40
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

The following rule, for example, has an accuracy of 96%.

guilty : (benefit_victim : n) ∧ (external_force : n) ∧ (severity_harm : y)

Interestingly, although the attribute mental_state_intend : y has higher
probability than external_force : n, it does not participate in this rule.

The above results show that if the training loss is small, that is, the neural
network approximates the corresponding dataset well, it is possible to obtain
important rules through the probabilistic rule extraction algorithm. Next, we
test whether it is possible to obtain some important rules when the training
loss is not so small.

3. The Chess (King-Rook vs. King-Pawn) Data

Figure 3.8: Rules with the Top 20 Highest Probabilities (Chess)

This dataset, also from the UCI Machine Learning Repository [DG17], includes
3196 samples. Each sample consists of the description of a legal initial board for
this chess endgame and whether it is won by white, assuming optimal play by both
sides. There are 36 discrete attributes of which 35 are binary. The discrete attribute
katri : b/n/w was converted into 3 binary attributes katri_b : n/y, katri_n : n/y,
katri_w : n/y. So there are 38 binary attributes. Classes are won and nowin.
The training process is terminated when the training loss is 0.02. Fig. 3.8 shows

3.6. DISCUSSIONS 41

rules with the top 20 highest probabilities. Among these rules, we found that the
following Boolean rule achieved an accuracy of 90.4%.

won : (rimmx : t) ∨ (wknck : f) ∧ (bxqsq : f)

3.6 Discussions

In this study we presented several theoretical results for extracting knowledge from
trained neural networks.

We described first an algorithm for extracting a Boolean function from a trained
neural network. The algorithm is efficient if the linear threshold functions in the
neural network can be represented as nested canalyzing functions, k-out-of-n ma-
jority functions, or some combinations of the two. If that is not the case, or if the
neural network has hidden layers, the extracted Boolean function may turn out to
be very large.

In order to cope with hidden layers, we limited the generation of rule terms to
the third order. Computational experiments show that even if there are three hid-
den layers, the extracted Boolean functions approximate the corresponding neural
networks well. Since banning high-order terms may not be appropriate in some
applications, one important future direction of work is to obtain small size Boolean
functions by combining our algorithm with simplification algorithms for Boolean
functions such as [EBM09]. Although this modification may lead to generation of
simple and understandable rules, the computational complexity in the first phase
remains the same. Consequently, reduction of the computational complexity of the
first phase is another important future work.

We also proposed an algorithm that extracts probabilistic relations between
the input values and the output value in the form of conditional probabilities.
Although this problem is NP-hard in general, our proposed algorithm works in
pseudo-polynomial time if the number of neurons in hidden layers is bounded by
a constant. Compared with a naive sampling-based algorithm, our algorithm has
the advantages that it is deterministic, it outputs the exact probabilities if linear
threshold functions are assigned to all nodes, and it does not miss rare relations.
The potential usefulness of the algorithm was demonstrated by means of computa-
tional experiments. One disadvantage of this algorithm is that it needs to perform
an exhaustive search for the second layer (i.e., the first hidden layer). Therefore,
this algorithm is not practical if there are many neurons in the second layer and
thus some improvements should be done. Use of sparse modeling [RG14] might
be useful to find important input attributes without exhaustive search. Therefore,
incorporation of sparse modeling into our proposed methods is important future

42
CHAPTER 3. EXTRACTING BOOLEAN AND PROBABILISTIC RULES

FROM TRAINED NEURAL NETWORKS

work. Another problem is that we assume that the input neurons obey indepen-
dent distributions. Although computational experiments show the effectiveness of
this algorithm under the independence assumption, dependencies between input at-
tributes is almost inevitable in real world data. It might be useful to study the
quantitative relation between the difference and the degree of dependencies. Thus
we leave it as an open problem.

Chapter 4

ReCGBM: a Gradient
Boosting-based Method for
Predicting Human Dicer Cleavage
Sites

4.1 Background

Human Dicer is an RNase III enzyme that cleaves double-stranded RNA (dsRNA)
and pre-miRNA into short small interfering RNA and microRNA (miRNA), respec-
tively. It consists of six domains: Helicase, DUF283, PAZ, RNase IIIa, RNase IIIb,
and dsRBD. Among these domains, the RNase IIIa domain and RNase IIIb domain
cleave the 3p-arm and 5p-arm of a pre-miRNA, leading to two miRNAs.

MicroRNA (miRNA) is a class of 20-22nt long, noncoding RNA molecules. They
play an important role in the posttranscriptional regulation of gene expression.
Usually, one miRNA can regulate the expressions of several proteins. They are
necessary for a myriad of cellular processes, such as cell differentiation, cell cycle
progression, and apoptosis [TOB12]. Several studies [IFL+05, TKY+04, HJL+05]
show that miRNAs are related to different types of cancers such as breast, lung, and
thyroid cancers. Understanding how Dicer specifically selects cleavage sites may
help us interpret the effects of mutations in miRNA coding genes [GMUTN+19].
Therefore, it is of great interest to investigate how Dicer selects cleavage sites from
the 3p-arm and the 5p-arm of a pre-miRNA.

Recently, machine learning-based approaches such as support vector machine
[WTR06, WTR07, OSM+11, PLN+10], support vector regression [STS+10, STP+12,
WZT+14], deep neural networks [SS16, LYD+19] and conditional random fields
[FZS13] have been widely used for cleavage site predictions. However, these methods

43

44
CHAPTER 4. RECGBM: A GRADIENT BOOSTING-BASED METHOD FOR

PREDICTING HUMAN DICER CLEAVAGE SITES

mainly aim at predicting protein cleavage sites. To predict human Dicer cleavage
sites, different feature encoding schemes and feature extraction methods are needed.

There are some existing studies on human Dicer cleavage sites. Ahmed et al.
[AKR13] developed an SVM-based model (PHDCleav) of Dicer cleavage site pre-
diction. The inputs to this model are extracted from pre-miRNA nucleotide se-
quences with loop/bulge structures, and the output is whether an input pattern is
a correct Dicer cleavage site. They demonstrated this method outperformed other
approaches such as Random Forest, CART, and Naïve Bayes by computational
experiments. Bao et al. [BHA16] combined the loop/bulge size with pre-miRNA
nucleotide sequences as inputs and proposed another SVM-based prediction model
(LBSizeCleav). However, there are some shortcomings with these methods. First,
they only considered each sequence with its loop/bulge independently. Second, their
models are not explainable.

To address the above issues, we propose an explainable predictor based on the
gradient boosting machine [Fri01]—ReCGBM. Our main contributions include: (i)
extract relational features to combine each sequence and its complementary strand;
(ii) design class features through affinity propagation, and (iii) identify some rules
from the feature importance of ReCGBM. We summarize the design and evaluation
process of ReCGBM in Figure 4.1a.

4.2 Methods

4.2.1 Data Preparation

In this study, we extracted the cleavage pattern and non-cleavage pattern from
each pre-miRNA sequence. First, we collected 956 validated pre-miRNA sequences
from miRBase (Version 22.1) [GJSvDE07]. To obtain the structural information
for each pre-miRNA sequence, we employed quickfold [MZK] and RNAFold from
ViennaRNA [Hof03] to generate RNA secondary structure. We chose these two
RNA secondary structure prediction methods because both are powerful tools for
RNA secondary structure prediction. Besides, previous methods like PHDCleav
and LBSizeCleav all employed these tools to predict RNA secondary structures.
Then, we generated a cleavage pattern for each pre-miRNA sequence. Each cleavage
pattern consisted of a 14 nt long sequence with the cleavage site located at the center.
Finally, we extracted each non-cleavage pattern that was a 14 nt long sequence with
the center 6 nt away from the corresponding cleavage site. Figure 4.2 illustrates how
to obtain cleavage pattern and non-cleavage pattern. In this figure, the cleavage
pattern of 5p-arm is the sequence between the two red bars in the structure of the
pre-miRNA sequence, which is ’UAUAGUUUUAGGGU’. The non-cleavage pattern
of 5p-arm is ’AGGUUGUAUAGUUU’ according to our selection rules.

4.2. METHODS 45

!"#"$%&'%&()'** +'"#,&'$'-./-''&/-. 0(1'2$3&"/-/-. 45"2,"#/(-$"-1$"-"26*'*

!"#$%&'

!"#$

%&'()*+,-$

%.,/'./,&$

0,&*1'.(,

2,&0,('&%%&*$

*+.+

!&3+.1()+3$

4&+./,&%$

5&)&,+.1()

63+%%

4&+./,&%

5&)&,+.1()

7)*&0&)*&).

.&%. *+.+%&.

63+%%

4&+./,&%

7)*&0&)*&).

.&%. *+.+%&.

!&3+.1()+3

4&+./,&%

8,+1)1)5

*+.+%&.

!&3+.1()+3

4&+./,&%

8,+1)1)5

*+.+%&.

63+%%

4&+./,&%

()%&& *'%+,-'&

.'/'-%+"0/

#')%+"0/%) *'%+,-'&

.'/'-%+"0/

7)*&0&)*&).

.&%. *+.+%&.

63+%%

4&+./,&%

!&3+.1()+3

4&+./,&%

8,+1)1)5

*+.+%&.

63+%%

4&+./,&%

!&3+.1()+3

4&+./,&%

915:.;<=

>1.:

;,1*%&+,':'?

2&,4(,@+)'&

&?+3/+.1()

A&+./,&

1@0(,.+)'&

+)+3-%&%

(a)

!"!"#!!!!"###! "!"!$""%%%$$$%

!"#$%&'($#)"$%*+"

♦�✁ ✂✄☎ ✆✝✞ ✟✠✡ ☛☞✌ ✍✎✏ ✑✒✓ ✔✕✖ ✗✘✙ ✚✛✜✢ ✣✤✥✦ ✧★✩✪ ✫✬✭✮ ✯✰✱✲

✳

♣

✴

✵

✶

✷

✸

✹

✺

✻

✼

✽

✾

✿

❀

❁

❂

❃

❄

❅

❆

❇

❈

❉

❊

❋

●

❍

■

❏

❑

▲

▼

◆

❖

P

◗

❘

❙

❚

❯

❱

!"##$%& '()*+$)$&#"%, -#%"&.

/01 2$+"#3(&"+ 4$"#5%$- 6$&$%"#3(& /71 '+"-- 4$"#5%$- 6$&$%"#3(&

❲❳❨❩❬❭❪❫❴❵❛

❜❝❞❡ ❢❣❤✐❥❦❧

♠♥qrst✉✈

✇①②③④⑤⑥

⑦⑧⑨⑩❶❷❸❹

❺❻❼❽❾❿➀➁➂➃➄

➅➆➇➈➉➊➋

➌➍➎➏➐➑➒

➓➔→➣↔↕➙➛➜➝

➞➟➠➡➢➤

➥➦➧➨➩➫➭➯
➲➳➵➸➺➻➼

➽➾➚➪➶
➹➘➴➷➬➮➱✃

❐❒❮❰ÏÐÑÒÓÔÕ
Ö×ØÙ ÚÛÜÝÞßà

áâãäå
æçèéêëìí

,-&% -&.%$(/"

îïðñòóôõö÷øù
úûüý

(b)

Figure 4.1: Flowchart of the data preprocessing, feature extraction, model training
and evaluation of the developed ReCGBM approach. (a) shows the design and
evaluation process of ReCGBM. (b) describes how to generate relational features
and class features.

46
CHAPTER 4. RECGBM: A GRADIENT BOOSTING-BASED METHOD FOR

PREDICTING HUMAN DICER CLEAVAGE SITES

!
"#
$
%
&
'

!
"
#
$

%$
&
'
$
!
(
$

)
*
+
"
,#

-
*
+
"
,#

!
"#
$
%&
'$
(
#
$)

*
+
+
+
,
*
+
,
+
+
*
,
+
*
,
+
+
*
*
+
*
,
*
,
+
*
*
*
*
,
+
+
+
*
-
,
-
,
-
-
-

,
-
-
,
-
*
+
+
+
,
+
,
*
,
,
-
*
,
*
,
-
,
,
*
-
*
,
-
*
+
*
-
*
*
*
-
-
*
,

-
*
,
*
,
-
,
,
*
-
*
,
-
*
+
*
-
*
*
*
-

*
+
,
+
+
*
,
+
*
,
+
+
*
*
+
*
,
*
,
+
*
*

!
"
#
$

(.$
"
/
+
)
*

!
0
!
+
(
.$
"
/
+
)
*

(.$
"
/
+
-
*

!
0
!
+
(.$
"
/
+
-
*

!
"#
$
%&
'$
(
#$)

+
,
+
,
*
,
,
-
*
,
*
,

-
,

,
-
*
,
*
,
-
,
,
*
-

*
,
-

*
,
*
,
+
*
*
*
*
,
+

+
+
*

,
+
+
*
*
+
*
,
*
,
+
*

*
*

(
)
"*
+
,-
./

*
"
11$
,!

(
0
#
*
.$
#
$
!
1"
,2

%
1,"
!
3

."
4
$
.

+
,
+
,
*
,
,
-
*
,
*
,
-
,

-
.
.
.
.
*
*
+
,
*
,
*
+
*

/
%&
#
0
#
1
&
"2'&

,
-
*
,
*
,
-
,
,
*
-
*
,
-

*
+
,
*
,
*
+
*
*
+
+
,
*
+

3
4
3
$
/
%&
#
0
#
1
&
"2'&

*
"
11$
,!

(
0
#
*
.$
#
$
!
1"
,2

%
1,"
!
3

."
4
$
.

*
,
*
,
+
*
*
*
*
,
+
+
+
*

,
*
,
*
-
,
,
.
.
.
-
-
-
.

/
%&
#
0
#
1
&
"2'&

,
+
+
*
*
+
*
,
*
,
+
*
*
*

*
-
*
,
,
-
,
*
,
*
-
,
,
.

3
4
3
$
/
%&
#
0
#
1
&
"2'&

0
1
2%
3!
/
%
4%
&
'
4

5
1
2%
3!
/
%
4%
&
'
4

(
.$
"
/
+
)
*

!
0
!
+
(
.$
"
/
+
)
*

(
.$
"
/
+
-
*

!
0
!
+
(
.$
"
/
+
-
*

!
"#
$
%&
'$
(
#
$
)

5
#
''&
63

+
,
+
,
*
,
,
-
*
,
*
,
-
,

,
-
*
,
*
,
-
,
,
*
-
*
,
-

*
,
*
,
+
*
*
*
*
,
+
+
+
*

,
+
+
*
*
+
*
,
*
,
+
*
*
*

/
4
7
5
%&
7
&
3
'#
68
"'6#
3
9

-
.
.
.
.
*
*
+
,
*
,
*
+
*

*
+
,
*
,
*
+
*
*
+
+
,
*
+

,
*
,
*
-
,
,
.
.
.
-
-
-
.

*
-
*
,
,
-
,
*
,
*
-
,
,
.

*
.'
%
6
25
1

Figure 4.2: An example of data preprocessing. The sequence ’UAUAGUUU-
UAGGGU’ between the two red bars in the RNA structure represents the cleav-
age pattern of the 5p-arm. The complementary strand of this cleavage pattern is
’AUAUCAAOOOCCCO’, which can be constructed by the sequences in the green
boxes and loops/bulges.

4.2. METHODS 47

To incorporate structural information of each pattern, we first obtained the
structure of each pre-miRNA through quickfold or RNAFold. Then, we extracted
the complementary strands for each cleavage pattern and non-cleavage pattern from
the structural information of each pre-miRNA. Notice that if a nucleotide in a pat-
tern did not have a complementary nucleotide according to the structural informa-
tion, we would define it as a ’loop/bulge’. To combine ’loop/bulge’ in our data, we
represented a ’loop/bulge’ as ’O’ and considered it as a complementary nucleotide of
the corresponding nucleotide in a pattern. In Figure 4.2, the complementary strand
of the cleavage pattern of 5p-arm is given by the complementary nucleotides in the
green boxes and loops/bulges (’O’). The complementary strand of the non-cleavage
pattern of 5p-arm is given in the same way.

An example of data preprocessing is shown in Figure 4.2. Since structural infor-
mation was generated through quickfold or RNAFold, four datasets were obtained
after the preprocessing: 3p-arm with quickfold structure, 5p-arm with quickfold
structure, 3p-arm with RNAFold structure and 5p-arm with RNAFold structure.

4.2.2 Relational Features

In previous studies [AKR13, BHA16], each pattern and its complementary strand
were encoded by one-hot encoding separately. However, nucleotides in a pattern
may also form a base pair with nucleotides in the corresponding complementary
strand.

To better encode the relation between each pattern and its complementary
strand, we considered relational features. For example, given a pattern ’UAUAGU-
UUUAGGGU’ and its complementary strand ’AUAUCAAOOOCCCO’, the rela-
tional features can be obtained according to (1) shown in Figure 4.1b. An advan-
tage of relational features is that it offers the important base-pairing information
between each pattern and its complementary strand.

4.2.3 Class Features

Previous methods [AKR13] and [BHA16] considered each input independently to
make predictions. However, similar inputs may lead to the same prediction outputs.
In this study, we made an assumption that similar inputs will lead to the same
prediction results and accordingly designed the class feature, which assigned similar
inputs to the same class.

To obtain class features, we first defined the pairwise similarities between differ-
ent inputs based on the edit distance (Figure 4.3). Then, an unsupervised learning
method — affinity propagation [FD07] was used to cluster the inputs to obtain the
class features.

48
CHAPTER 4. RECGBM: A GRADIENT BOOSTING-BASED METHOD FOR

PREDICTING HUMAN DICER CLEAVAGE SITES

� ✁ ✂ ✄ ☎ ✆ ✝ ✞ ✟ ✠ ✡ ☛ ☞ ✌

✍ ✎ ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✗ ✘✙ ✚✛ ✜✢ ✣✤ ✥✦

✧ ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯ ✰ ✱ ✲ ✳✴ ✵✶ ✷✸ ✹✺

✻ ✼ ✽ ✾ ✿ ❀ ❁ ❂ ❃ ❄ ❅ ❆ ❇ ❈❉ ❊❋ ●❍

■ ❏ ❑ ▲ ▼ ◆ ❖ P ◗ ❘ ❙ ❚ ❯ ❱ ❲❳ ❨❩

❬ ❭ ❪ ❫ ❴ ❵ ❛ ❜ ❝ ❞ ❡ ❢ ❣ ❤ ✐ ❥❦

❧ ♠ ♥ ♦ ♣ q r s t ✉ ✈ ✇ ① ② ③ ④

⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ ➊ ➋ ➌ ➍ ➎ ➏

➐ ➑ ➒ ➓ ➔ → ➣ ↔ ↕ ➙ ➛ ➜ ➝ ➞ ➟ ➠

➡ ➢ ➤ ➥ ➦ ➧ ➨ ➩ ➫ ➭ ➯ ➲ ➳ ➵ ➸ ➺

➻ ➼➽ ➾ ➚ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮ ➱ ✃ ❐ ❒

❮ ❰Ï ÐÑ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ

ß àá âã äå æ ç è é ê ë ì í î ï ð ñ

ò óô õö ÷ø ùú û ü ý þ ÿ � ✁ ✂ ✄ ☎ ✆

✝ ✞✟ ✠✡ ☛☞ ✌✍ ✎✏ ✑ ✒ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✚

Figure 4.3: An example of calculating the edit distance by matrix.

Edit Distance

In order to measure the pairwise similarities between different sequences, we used
the edit distance [Lev66].

Given two strings A and B, suppose that the lengths of A and B are |A| and
|B|, respectively. The edit distance between A and B is given by Dedit(|A|, |B|) as
follows

Dedit(i, j) =

max(i, j), if min(i, j) = 0;

min

Dedit(i− 1, j) + 1

Dedit(i, j − 1) + 1

Dedit(i− 1, j − 1) + 1ai ̸=bj

otherwise.

where i represents the first i characters of A and j represents the first j characters
of B, respectively, where i, j ≥ 1.

1ai ̸=bj is an indicator function where

1ai ̸=bj =

{
0 if ai = bj;

1 otherwise.

Since our inputs are 14 nt RNA sequences, the similarity between two se-
quences can be calculated by the edit distance. For example, given two sequences
’UAUAGUUUUAGGGU’ and ’UAUGGUUUAGAGUU’, the edit distance between
them can be calculated through a distance matrix (Figure 4.3).

4.2. METHODS 49

As Figure 4.3 shows, the edit distance between these two sequences is 4.
In this study, each input consisted of a pattern and its complementary strand.

Therefore, the similarity between the two inputs E and F can be defined as follows:

Dsimilar(E,F) = Dedit(|E1|, |F1|) +Dedit(|E2|, |F2|)

where E2 and F2 are the complementary strands of E1 and F1 respectively.
Given a dataset that includes n samples, we define a n × n similarity matrix

S where the entry in the ith row and jth column s(i, j) = −di,j. Notice that di,j
denotes the similarity Dsimilar(i, j) between the ith training sample and the jth
training sample.

Affinity Propagation

Affinity Propagation [FD07] is a clustering algorithm based on message passing. It
identifies classes of similar inputs. Given n data points x1, . . . , xn, the algorithm
works as follows:

• Define an n×n similarity matrix S with s(i, j) = −di,j for 1 ≤ i ≤ n, 1 ≤ j ≤
n. di,j is the distance between xi and xj;

• Define an n × n responsibility matrix R with r(i, j) = 0 for 1 ≤ i ≤ n, 1 ≤
j ≤ n;

• Define an n×n availability matrix A with a(i, j) = 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ n;

• Iteratively execute the follow steps:

1. Responsibility updates:

r(i, k)← s(i, k)−max
k′ ̸=k
{a(i, k′) + s(i, k′)}

2. Availability updates:

a(i, k)← min(0, r(k, k) +
∑

i′∈{i,k}

max(0, r(i′, k))) for i ̸= k

a(k, k)←
∑
i′ ̸=k

max(0, r(i′, k))

until A+R remain unchanged over a number of steps, or after some predefined
numbers of steps. For each point xi, the data point xk that maximizes a(i, r)+
r(i, k) gives us the class information of xi.

50
CHAPTER 4. RECGBM: A GRADIENT BOOSTING-BASED METHOD FOR

PREDICTING HUMAN DICER CLEAVAGE SITES

We chose affinity propagation to generate class features as it only requires a few
hyperparameters. More importantly, affinity propagation does not need to choose
the number of classes. To employ affinity propagation, we used the edit distance to
generate similarity matrices.

Given a training set and a test set, we first calculated the similarity matrix of
the training set. Then we applied affinity propagation to the similarity matrix. The
affinity propagation will assign each sample in the training set a cluster label, which
is our class features. Besides, the number of clusters and the center of each cluster
were also obtained from the results of affinity propagation (Figure 4.6). We then
measured the edit distance between each sample in the test set and these cluster
centers. Finally, we assigned each test sample the same cluster label as the cluster
center with the minimum edit distance. The whole procedure is given by (2) in
Figure 4.1b.

4.2.4 LightGBM

Gradient boosting machine [Fri01] is a machine learning algorithm that uses a group
of weak prediction models (often decision trees) to make predictions. In this study,
we utilized a gradient boosting machine-based framework — lightGBM.

LightGBM [KMF+17] is an efficient implementation of gradient boosting ma-
chine. It has been widely used in the field of bioinformatics and compuational
biology since it has the following advantages:

• High speed and low memory cost: LightGBM uses a histogram-based algo-
rithm [RS98, JA03, LWB07]. Such algorithm can assign continuous feature
values into discrete bins, thereby leading to high training speed and low mem-
ory cost.

• High accuracy: Traditional decision tree-based learning algorithms generate
trees level-wise. However, lightGBM generates trees leaf-wise. This strategy
usually causes lower loss than level-wise algorithms.

• Support categorical features: One-hot encoding is an efficient encoding scheme
for categorical features. However, for tree-based learning algorithms, one-
hot features tend to generate very unbalanced trees, which may prevent the
prediction model from achieving good accuracy. Instead of one-hot encoding,
lightGBM allows users to input categorical features directly to train the model,
which may lead to more balanced trees and more accurate results.

We built a lightGBM-based model — termed ReCGBM with relational features
and class features as inputs. The outputs were cleavage sites or non-cleavage sites.

4.3. RESULTS 51

4.2.5 Evaluation Metrics

To assess the performance of our prediction model, we used several different metrics
including sensitivity (Sn), specificity (Sp), accuracy (Acc) and Matthews correlation
coefficient (MCC):

Sn =
TP

TP + FN

Sp =
TN

TN + FP

Acc =
TP + TN

TP + TN + FP + FN

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

where TP, TN, FP and FN denote the numbers of true positives, true negatives,
false positives, and false negatives, respectively.

4.3 Results

4.3.1 Predictive Performance

The main goal of this study is to develop an accurate prediction model for the Dicer
cleavage sites. In this section, we show the predictive performance of ReCGBM and
compare our results with other existing models.

We built prediction models for the 5p-arm dataset and 3p-arm dataset with
secondary structures predicted by quickfold and RNAFold respectively.

To ensure the effectiveness of our model, we trained 10 models for each dataset,
where we only considered the cases in which the affinity propagation converged. For
each model, we randomly divided our preprocessed dataset into two subsets. The
first subset that included 800 cleavage patterns and 800 non-cleavage patterns was
used as the training set. The other subset was used as the independent test set,
which included 156 cleavage patterns and 156 non-cleavage patterns. We computed
the average sensitivity (Sn), specificity (Sp), accuracy (Acc), and MCC of the 10
models for each dataset.

We compared the predictive performance of ReCGBM with the existing meth-
ods, PHDCleav and LBSizeCleav. Since the performance of LBSizeCleav highly
depends on the variable k, which represents the effect of length of loops/bulges
on the kernel computation, we trained LBSizeCleav with k = 1, 2, 3, 4, 5 as previ-
ously described [BHA16]. All models were trained on the same 10 training sets and
evaluated on the same 10 test sets for each dataset.

52
CHAPTER 4. RECGBM: A GRADIENT BOOSTING-BASED METHOD FOR

PREDICTING HUMAN DICER CLEAVAGE SITES

In order to tune the hyperparameters, we performed grid search on the
training set for each models with GridSearchCV in scikit-learn [PVG+11]. For
ReCGBM, we performed a grid search with max_depth ∈ [10, 20, 30, 40, 50, 60] ,
learning_rate ∈ [0.05, 0.1, 0.15], and num_leaves ∈ [200, 300, 400], respectively.
For PHDCleav and LBSizeCleav-based models, we performed grid search with
C ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], and gamma ∈ [0.1, 0.01, 0.001]. After the best hy-
perparameters were chosen, the models with the best hyperparameters were trained
on each training set.

ReC
GB
M

ReC
GB
M(r

ela
tion

al)

ReC
GB
M(c

las
s)

PH
DC
lea
v

LBS
ize
Cle
av

(k=
1)

LBS
ize
Cle

av
(k=

2)

LBS
ize
Cle

av
(k=

3)

LBS
ize
Cle

av
(k=

4)

LBS
ize
Cle

av
(k=

5)
0.60

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

(a) 5p-arm

ReC
GB
M

ReC
GB
M(r

ela
tion

al)

ReC
GB
M(c

las
s)

PH
DC
lea
v

LBS
ize
Cle
av

(k=
1)

LBS
ize
Cle

av
(k=

2)

LBS
ize
Cle

av
(k=

3)

LBS
ize
Cle

av
(k=

4)

LBS
ize
Cle

av
(k=

5)
0.60

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

(b) 3p-arm

Figure 4.4: Performance comparison between different models based on the datasets
with secondary structures predicted by quickfold.

We use ReCGBM(relational) and ReCGBM(class) represent ReCGBM with only
relational features and ReCGBM with only class features. The predictive perfor-
mance of different models is illustrated in Figure 4.4 and Table 4.1 for both the
5p-arm dataset and the 3p-arm dataset with secondary structures predicted by
quickfold. For the 5p-arm dataset with secondary structures predicted by quick-
fold, ReCGBM(relational) achieved a sensitivity of 0.881, a specificity of 0.846, an
accuracy of 0.863 and an MCC of 0.728, respectively, which outperformed all other
predictors in terms of three out of the four evaluation metrics. For the 3p-arm
dataset with secondary structures predicted by quickfold, ReCGBM achieved the
best sensitivity, specificity, accuracy, and MCC of 0.883, 0.899, 0.891, and 0.783,
respectively. Therefore, ReCGBM with only relational features achieved the best
performance for the 5p-arm dataset with secondary structures predicted by quick-
fold. ReCGBM with only relational features did not show better performance com-
pared with other methods. However, ReCGBM, which includes class features and

4.3. RESULTS 53

Table 4.1: Performance comparison between different models based on the datasets
with secondary structures predicted by quickfold. Best results are highlighted in
bold. Sn, Sp, Acc and MCC represent sensitivity, specificity, accuracy and Matthews
correlation coefficient, respectively

Method 5p-arm 3p-arm
Sn Sp Acc MCC Sn Sp Acc MCC

ReCGBM 0.863 0.846 0.854 0.709 0.883 0.899 0.891 0.783
ReCGBM(relational) 0.881 0.846 0.863 0.728 0.883 0.890 0.887 0.774

ReCGBM(class) 0.729 0.824 0.777 0.556 0.746 0.810 0.778 0.558
PHDCleav 0.853 0.831 0.842 0.685 0.875 0.874 0.874 0.749

LBSizeCleav (k=1) 0.865 0.823 0.844 0.689 0.869 0.877 0.873 0.747
LBSizeCleav (k=2) 0.864 0.828 0.846 0.693 0.869 0.874 0.871 0.744
LBSizeCleav (k=3) 0.870 0.822 0.846 0.693 0.863 0.871 0.867 0.735
LBSizeCleav (k=4) 0.863 0.822 0.842 0.686 0.851 0.868 0.860 0.720
LBSizeCleav (k=5) 0.863 0.819 0.841 0.684 0.854 0.868 0.861 0.723

relational features, achieved the best performance for the 3p-arm dataset with sec-
ondary structures predicted by quickfold. Thus, it might be better to apply both
relational features and class features for the 3p-arm dataset with secondary struc-
tures predicted by quickfold.

Figure 4.5 and Table 4.2 show the average specificity, sensitivity, accuracy, and
MCC of models on both the 5p-arm dataset and the 3p-arm dataset with sec-
ondary structures predicted by RNAFold. For the 5p-arm dataset with secondary
structures predicted by RNAFold, ReCGBM achieved the best specificity (0.862),
accuracy (0.873) and MCC (0.747). In contrast, LBSizeCleav (k=3) achieved the
best sensitivity (0.888). For the 3p-arm dataset with secondary structures predicted
by RNAFold, ReCGBM(relational) achieved the best specificity (0.892), accuracy
(0.897) and MCC (0.795), while PHDCleav achieved the best sensitivity (0.904).

Overall, ReCGBM and ReCGBM(relational) outperformed the other models,
highlighting the effectiveness of this model for predicting human Dicer cleavage
sites.

To further investigate whether different RNA secondary structures affect our pre-
diction accuracy, we also generated relational features and class features using the
RNAstructure package [BRSM13, LHK+13]. For ∼ 70nt RNA structure, RNAstruc-
ture predicts secondary structures of the pre-miRNA-size RNAs with the accuracy
near 100% .We trained 5 models for each dataset, where we only considered the
cases in which the affinity propagation converged. For each model, we randomly
divided our preprocessed dataset into two subsets. The first subset that included
800 cleavage patterns and 800 non-cleavage patterns was used as the training set.
The other subset was used as the independent test set, which included 156 cleav-

54
CHAPTER 4. RECGBM: A GRADIENT BOOSTING-BASED METHOD FOR

PREDICTING HUMAN DICER CLEAVAGE SITES

ReC
GB

M

ReC
GB

M(re
lati

ona
l)

ReC
GB

M(cla
ss)

PH
DC

lea
v

LBS
ize

Cle
av

(k=
1)

LBS
ize

Cle
av

(k=
2)

LBS
ize

Cle
av

(k=
3)

LBS
ize

Cle
av

(k=
4)

LBS
ize

Cle
av

(k=
5)

0.60

0.65

0.70

0.75

0.80

0.85

ac
cu

ra
cy

(a) 5p-arm

ReC
GB
M

ReC
GB
M(r

ela
tion

al)

ReC
GB
M(c

las
s)

PH
DC
lea
v

LBS
ize
Cle
av

(k=
1)

LBS
ize
Cle

av
(k=

2)

LBS
ize
Cle

av
(k=

3)

LBS
ize
Cle

av
(k=

4)

LBS
ize
Cle

av
(k=

5)
0.60

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

(b) 3p-arm

Figure 4.5: Performance comparison between different models based on the datasets
with secondary structures predicted by RNAFold.

Table 4.2: Performance comparison between different models based on the datasets
with secondary structures predicted by RNAFold. Best results are highlighted in
bold. Sn, Sp, Acc and MCC represent sensitivity, specificity, accuracy and Matthews
correlation coefficient, respectively

Method 5p-arm 3p-arm
Sn Sp Acc MCC Sn Sp Acc MCC

ReCGBM 0.884 0.862 0.873 0.747 0.888 0.892 0.890 0.781
ReCGBM(relational) 0.887 0.856 0.871 0.744 0.903 0.892 0.897 0.795

ReCGBM(class) 0.737 0.827 0.782 0.568 0.739 0.809 0.774 0.550
PHDCleav 0.878 0.845 0.862 0.724 0.904 0.884 0.894 0.789

LBSizeCleav (k=1) 0.886 0.855 0.871 0.743 0.895 0.885 0.890 0.780
LBSizeCleav (k=2) 0.887 0.847 0.867 0.736 0.890 0.879 0.885 0.770
LBSizeCleav (k=3) 0.888 0.837 0.863 0.727 0.890 0.877 0.883 0.767
LBSizeCleav (k=4) 0.876 0.844 0.860 0.721 0.892 0.878 0.885 0.770
LBSizeCleav (k=5) 0.879 0.831 0.855 0.712 0.883 0.874 0.879 0.758

age patterns and 156 non-cleavage patterns. The results are shown in Table 4.3.
The performance of ReCGBM with RNAstructure is close to the performance of
ReCGBM with RNAFold.

4.3. RESULTS 55

Table 4.3: Performance comparison between ReCGBM with different secondary
structures. Sn, Sp, Acc and MCC represent sensitivity, specificity, accuracy and
Matthews correlation coefficient, respectively

Structures 5p-arm 3p-arm
Sn Sp Acc MCC Sn Sp Acc MCC

quickfold 0.855 0.862 0.858 0.717 0.881 0.890 0.885 0.771
RNAFold 0.879 0.869 0.874 0.749 0.901 0.895 0.898 0.797

RNAstructure 0.874 0.871 0.872 0.745 0.896 0.897 0.897 0.794

5p-
arm

 (q
f)

3p-
arm

 (q
f)

5p-
arm

 (rf
)

3p-
arm

 (rf
)

0

25

50

75

100

125

150

175

200

av
er
ag

e
nu

m
be

r o
f c

la
ss
es

185.7 197.4
184.6 195.9

Figure 4.6: Average number of classes for different data types. The terms qf and rf
represent quickfold and RNAFold, respectively.

Affinity Propagation

The goal of this experiment is to explore the relationship between class features
and cleavage/non-cleavage sites. To address this, we applied affinity propagation
to each training set of 3p-arm and 5p-arm with secondary structures predicted by
quickfold and RNAFold.

Figure 4.6 shows the average cluster results of 10 training sets of 3p-arm and
5p-arm with secondary structures predicted by quickfold and RNAFold.

To further investigate the relationship between the class features and the
cleavage/non-cleavage sites, we defined ratioi(cleavage) for each class i in Figure 4.6

56
CHAPTER 4. RECGBM: A GRADIENT BOOSTING-BASED METHOD FOR

PREDICTING HUMAN DICER CLEAVAGE SITES

as follows:

ratioi(cleavage) =
Ni(cleavage)

Ni(non-cleavage) +Ni(cleavage)

where Ni(cleavage) and Ni(non-cleavage) represent the number of cleavage
patterns and the number of non-cleavage patterns in class i, respectively. If
ratioi(cleavage) is close to 0, the samples in class i are almost non-cleavage pat-
terns. On the other hand, if ratioi(cleavage) is close to 1, the samples in class i are
almost cleavage patterns. Classes with very high ratio(cleavage) and classes with
very low ratio(cleavage) are desirable as these classes reflect that the class features
have the potential to distinguish cleavage sites from non-cleavage sites.

We assume class i belongs to label 1, 2, 3, 4, 5 if ratioi(cleavage) ∈ [0, 0.2],
(0.2, 0.4], (0.4, 0.6], (0.6, 0.8], (0.8, 1.0], respectively.

4.3. RESULTS 57

1 2 3 4 5
label

0

10

20

30

40

50

60

70

nu
m
be

r o
f c

la
ss
es

(a) 5p-arm (qf)

1 2 3 4 5
label

0

10

20

30

40

50

60

70

nu
m
be

r o
f c

la
ss
es

(b) 3p-arm (qf)

1 2 3 4 5
label

0

10

20

30

40

50

60

70

nu
m
be

r o
f c

la
ss
es

(c) 5p-arm (rf)

1 2 3 4 5
label

0

10

20

30

40

50

60

70

nu
m
be

r o
f c

la
ss
es

(d) 3p-arm (rf)

Relation with the Number of Classes

1 2 3 4 5
label

0

100

200

300

400

500

nu
m
be

r o
f s

am
pl
es

(e) 5p-arm (qf)

1 2 3 4 5
label

0

100

200

300

400

500

nu
m
be

r o
f s

am
pl
es

(f) 3p-arm (qf)

1 2 3 4 5
label

0

100

200

300

400

500

nu
m
be

r o
f s

am
pl
es

(g) 5p-arm (rf)

1 2 3 4 5
label

0

100

200

300

400

500

nu
m
be

r o
f s

am
pl
es

(h) 3p-arm (rf)

Relation with the Number of Samples

Figure 4.7: Results of affinity propagation. (a), (b), (c) and (d) plot the relation-
ships between the average number of classes and different labels for the 5p-arm
dataset (qf), 3p-arm dataset (qf), 5p-arm dataset (rf) and 3p-arm dataset (rf), re-
spectively where qf represents secondary structures predicted by quickfold server
and rf denotes secondary structures predicted by RNAFold. (e), (f), (g) and (h)
show the relationships between the average number of samples and different labels
for the 5p-arm dataset (qf), 3p-arm dataset (qf), 5p-arm dataset (rf) and 3p-arm
dataset (rf), respectively.

58
CHAPTER 4. RECGBM: A GRADIENT BOOSTING-BASED METHOD FOR

PREDICTING HUMAN DICER CLEAVAGE SITES

In Figure 4.7, (a), (b), (c) and (d) show the relationships between the average
number of classes and each label for the 5p-arm dataset(qf), 3p-arm dataset(qf), 5p-
arm dataset(rf) and 3p-arm dataset(rf) in Figure 4.6, respectively. The commonality
in these four figures is that the numbers of classes in label 1 and label 5 were much
higher than others. (e), (f), (g), and (h) in Figure 4.7 describe the relationships
between the average number of samples and each label for four datasets. It is
obvious that the numbers of samples in label 1 and label 5 were much higher than
others.

Thus, the results of affinity propagation show that the majority of classes are
overwhelmed by either only cleavage sites or non-cleavage sites, which indicates that
the clusters based on edit distance may improve the prediction of the cleavage site.

4.3.2 Sequence Logo Representations

To explore the difference between cleavage sites and non-cleavage sites at the RNA
sequence level, we draw the sequence logo representations (Figure 4.8) of the 5p-
arm cleavage sites, 5p-arm non-cleavage sites, 3p-arm cleavage sites and 3p-arm
non-cleavage sites by WebLogo 3 [CHCB04].

As can be seen from Figure 4.8, the 5p-arm cleavage sites and 5p-arm non-
cleavage sites show different preferences for the neighboring nucleotides. For cleav-
age sites, sequence motifs associated with over-represented nucleotides at the po-
sitions 3-11 (Figure 4.8 (a)) can be easily observed, while for non-cleavage sites,
no specific nucleotides were found to be over-represented at the positions 7 and 8
(Figure 4.8 (b)). For the 3p-arm cleavage sites (Figure 4.8 (c)), nucleotides at two
specific positions 7 and 8 showed most distinctive preferences, compared with the
3p-arm non-cleavage sites (Figure 4.8 (d)). There also exist subtle differences in
other positions such as the positions 5, 9, 10, and 11 between the 3p-arm cleavage
sites and non-cleavage sites. Altogether, the nucleotide preferences shown in Fig-
ure 4.8 represent patterns important for distinguishing the Dicer cleavage sites from
non-cleavage sites.

4.3.3 Feature Importance

Gradient boosting machine typically uses decision trees as the base learners. An
advantage of the decision tree is that it is an explainable model. Therefore, it is
also possible to interpret a gradient boosting machine as an ensemble of decision
trees. Fortunately, lightGBM has a built-in module that provides a score to describe
the usefulness of each feature for a trained model. Here we will discuss the feature
importance of ReCGBM.

4.3. RESULTS 59

✵�✁

✂✄☎
❜✆✝
✞

❆❯❈●✟✠✡☛☞✌✍
✎
✏✑✒
✓

✺
✔✕
✖
✗

✘✙
✚✛
✜✢✣✤✥✦✧
★
✩✪
✫✬

✶✭
✮✯
✰
✱
✲✳✴
✷
✸✹✻✼✽✾✿❀❁❂❃❄

(a) 5p-arm cleavage sites

❅❇❉

❊❋❍
■❏❑
▲

▼◆❖P◗❘
❙❚
❱❲❳
❨
❩❬
❭❪

❫
❴❵❛
❝
❞❡❢
❣
❤✐❥❦❧♠♥♦♣qr
s
t✉
✈✇①
②
③④
⑤
⑥

⑦⑧
⑨⑩
❶❷❸❹❺❻❼
❽

(b) 5p-arm non-cleavage sites

❾❿➀

➁➂➃

➄➅➆

➇➈➉
➊

➋➌➍➎➏➐➑➒➓➔→➣↔↕➙➛
➜
➝➞➟➠➡➢➤➥➦➧

➨
➩
➫➭
➯
➲

➳➵➸➺
➻➼
➽➾➚➪➶➹➘➴ ➷➬➮

➱
✃❐❒❮

(c) 3p-arm cleavage sites

❰ÏÐ

ÑÒÓ

ÔÕÖ

×ØÙ
Ú

ÛÜ
Ý
Þ
ßà
á
â

ãäåæçèéê
ë
ìíîï ðñò

ó
ôõö÷øùúû

üý
þÿ❈
❯
❆●
�
✁

✂✄☎
✆
✝✞✟
✠
✡☛
☞✌

(d) 3p-arm non-cleavage sites

1

Figure 4.8: Sequence logo representations of cleavage sites and non-cleavage sites.
(a) and (b) are sequence logo representations of the 5p-arm cleavage sites and the
5p-arm non-cleavage sites. (c) and (d) are sequence logo representations of the
3p-arm cleavage sites and the 3p-arm non-cleavage sites.

60
CHAPTER 4. RECGBM: A GRADIENT BOOSTING-BASED METHOD FOR

PREDICTING HUMAN DICER CLEAVAGE SITES

p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9 p_10 p_11 p_12 p_13 p_14 class_features
Feature name

20

30

40

50

60

70

80

Fe
at
ur
e
im
po
rta
nc
e

Features importance on 5p-arm dataset with quickfold

(a)

p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9 p_10 p_11 p_12 p_13 p_14 class_features
Feature name

20

40

60

80

Fe
at
ur
e
im
po
rta

nc
e

Features importance on 5p-arm dataset with RNAFold

(b)

Figure 4.9: Results of feature importance on the 5p-arm datasets. The secondary
structures of (a) and (b) are predicted by quickfold and RNAFold, respectively.

4.3. RESULTS 61

p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9 p_10 p_11 p_12 p_13 p_14 class_features
Feature name

20

30

40

50

60

70

80

90

100

Fe
at
ur
e
im
po
rta
nc
e

Features importance on 3p-arm dataset with quickfold

(a)

p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9 p_10 p_11 p_12 p_13 p_14 class_features
Feature name

20

30

40

50

60

70

80

90

100

Fe
at
ur
e
im
po
rta

nc
e

Features importance on 3p-arm dataset with RNAFold

(b)

Figure 4.10: Results of feature importance on the 3p-arm datasets. The secondary
structures of (a) and (b) are predicted by quickfold and RNAFold, respectively.

Since we trained 10 models for each dataset, we list the average feature impor-
tance of the 10 trained models for each dataset.

Let p1, . . . , p14 denote the 14 pairs of the relational features (Figure 4.1b (1)).
Figure 4.9 and Figure 4.10 show the results of feature importance for different

62
CHAPTER 4. RECGBM: A GRADIENT BOOSTING-BASED METHOD FOR

PREDICTING HUMAN DICER CLEAVAGE SITES

datasets.

p_1, ... , p_7 p_8, ... ,p_14
Feature name

20

30

40

50

60

70

80

Fe
at
ur
e
im

po
rta

nc
e

(a)

p_1, ... , p_7 p_8, ... ,p_14
Feature name

20

40

60

80

Fe
at
ur
e
im

po
rta

nc
e

(b)

p_1, ... , p_7 p_8, ... ,p_14
Feature name

20

30

40

50

60

70

80

90

100

Fe
at
ur
e
im

po
rta

nc
e

(c)

p_1, ... , p_7 p_8, ... ,p_14
Feature name

20

30

40

50

60

70

80

90

100

Fe
at
ur
e
im

po
rta

nc
e

(d)

Figure 4.11: Comparisons of feature importance between p1, . . . , p7 and p8, . . . , p14.
(a) is the result on 5p-arm data with secondary structures predicted by quickfold;
(b) is the result on 5p-arm data with secondary structures predicted by RNAFold;
(c) is the result on 3p-arm data with secondary structures predicted by quickfold;
(d) is the result on 3p-arm data with secondary structures predicted by RNAFold.

Figure 4.9 gives the feature importance of the 5p-arm datasets with the sec-
ondary structures predicted by quickfold and RNAFold, respectively. It can be seen

4.4. DISCUSSION 63

that p8, . . . , p14 were more important than p1, . . . , p7. Figure 4.11a and 4.11b shows
the relationships between p8, . . . , p14 and p1, . . . , p7 on 5p-arm dataset directly.

Figure 4.10 shows the feature importance of the 3p-arm datasets with the sec-
ondary structures predicted by quickfold and RNAFold, respectively. For the 3p-arm
datasets, p1, . . . , p7 were more important than p8, . . . , p14. Figure 4.11c and 4.11d
shows the relationships between p8, . . . , p14 and p1, . . . , p7 on the 3p-arm dataset
directly.

4.4 Discussion

Although ReCGBM showed a better performance on three of the four datasets,
PHDCleav achieved the best performance on the 3p-arm dataset with the secondary
structures predicted by RNAFold. There are several potential reasons. First, the
performance of ReCGBM highly depends on the predicted secondary structures. To
obtain relational features and class features, the secondary structure information is
necessary. However, the secondary structure generated by quickfold or RNAFold
may include several structures. In ReCGBM, only one structure can be included in
our input features, which might affect the prediction performance.

Second, some class features generated by the affinity propagation may not be
accurate. As shown in Figure 4.6, the number of classes given by the affinity prop-
agation for each dataset was over 180. However, the number of samples in each
dataset was 1912. Thus such classes may exist: the distance between each sample
in this class may not be so close. The distance between samples in this class and
samples in other classes is relatively farther. The affinity propagation may fail to
find data that are ’close enough’ to each sample in such classes. By ’close enough’
we mean different samples are close enough such that they share some common
properties.

The feature importance of ReCGBM also shows some connections between the
RNA secondary structures and human Dicer cleavage site prediction. Considering
the position of relational features in the secondary structure of pre-miRNA (Fig-
ure 4.12), p8, . . . , p14 of 5p-arm and p1, . . . , p7 of 3p-arm are closer to the center
of the pre-miRNA. Therefore, relational features close to the center of pre-miRNA
may contribute more to human Dicer cleavage sites prediction.

Another observation is that class features are more important in the 5p-arm
datasets, which can be concluded based on the results shown in Figure 4.9 and
Figure 4.10.

64
CHAPTER 4. RECGBM: A GRADIENT BOOSTING-BASED METHOD FOR

PREDICTING HUMAN DICER CLEAVAGE SITES

!
"

#
$

%
&

'

(
)

!
*

!
!

!
"

!
#

!
$

!
"

#
$

%

&
'

(
)

!
*

!
!

!
"

!
#

!
$

+
,
-
./
.,
0
,
1
2
3
!
45
6
45
2
3
!
$
5.0
57
89
:
;
<%
2

+
,
-
./
.,
0
,
1
2
3
!
45
6
45
2
3
!
$
5.0
57
89
:
;
<#
2

Figure 4.12: Positions of relational features in the secondary structure of pre-miRNA

In summary, we have introduced a lightGBM-based model—termed as ReCGBM

4.4. DISCUSSION 65

for accurate prediction of human Dicer cleavage sites and analyzed the feature im-
portance of ReCGBM. Computational experiments demonstrated the effectiveness
of this model. However, possible improvements can be achieved in the future. First,
affinity propagation finds the number of clusters automatically. However, in some
cases it is hard to converge on small datasets. Thus, an easy-to-converge cluster
algorithm is desirable. Second, the predictive performance of this model highly
depends on the predicted secondary structures of pre-miRNA. Therefore, a feature
encoding strategy that can combine several secondary structures given by quickfold
or RNAFold for a pre-miRNA is desirable. Finally, the analyses of feature impor-
tance showed that the relational features that are localized in close proximity to the
center of the pre-miRNA are more important than the other features. Accordingly,
it might be potentially useful to consider more informative features close to the
center of the pre-miRNA in future predictors.

Chapter 5

Conclusion

In Chapter 3, we aim to design algorithms that can extract simple rules from trained
neural networks. Based on this motivation, we develop two algorithms to extract
rules from trained neural networks. The first algorithm extracts Boolean rules from
a trained neural network. If the trained neural network can be represented by
a k-out-of-n majority function or a nested canalyzing function, this algorithm can
rapidly output the corresponding Boolean rules. For other cases, this algorithm may
output the related Boolean rules with exponential size. Therefore, to conduct this
algorithm in practice, we ban the generation of high-order rules. Computational
experiments show that this approximating algorithm outputs simple and concise
Boolean rules even we only allow the generation of rule terms to the third order.
However, if there is no simple Boolean rule that can represent the trained neural
network, or if the trained neural network has multiple hidden layers, our algorithm
may output nothing if we ban the high-order rules.

To solve the above issue, we propose a probabilistic rule extraction algorithm.
This algorithm can output the relationship between input values and output val-
ues in the form of conditional probabilities given a trained neural network. Our
theoretical analyses and computational experiments show that this algorithm can
extract simple probabilistic rules from neural networks with multiple hidden layers.
Another merit is that this algorithm does not assume any simple Boolean represen-
tations for a trained neural network. It extracts probabilistic rules from any trained
neural networks with a proper size. However, the computational cost is high for
neural networks with many computational neurons since this algorithm performs
an exhaustive search in the second layer of a neural network.

Although our algorithms have partially solved some issues in previous methods,
there are still many problems. Thus, future work can consider the following aspects.

First, the time cost of the probabilistic rule extraction algorithm is very high
due to the exhaustive search for the second layer of a trained neural network. To
accelerate this procedure, we may consider combining the algorithm with sparse

67

68 CHAPTER 5. CONCLUSION

modeling.
Second, in our algorithms, we assume that the input neurons are mutually inde-

pendent. However, in some real-world datasets, different input features may have
some correlations. Therefore, it is necessary to develop rule extraction algorithms
that consider the correlations between different input features.

Third, our Boolean rule extraction algorithm and probabilistic rule extraction
algorithm assume each neuron’s activation function is a linear threshold function.
Therefore, it is reasonable to apply these algorithms in trained neural networks with
sigmoid functions since linear threshold functions are similar to sigmoid functions.
In many recent studies, rectified linear unit (ReLU) is considered as the activation
function because of the good performance in very deep neural networks. However,
there is a big difference between rectified linear units and linear threshold functions.
Thus, it is interesting to consider algorithms to extract simple rules from trained
neural networks with rectified linear units.

Finally, our algorithms in this study focus on feedforward neural networks for
supervised learning. Recent studies in neural networks also focus on unsupervised
learning. Therefore, it is also interesting to explore the rule extraction algorithms
of neural networks for unsupervised learning tasks.

Chapter 4 introduces an explainable gradient boosting model to predict human
Dicer cleavage sites – ReCGBM. In this model, we first construct relational features
by combining the sequences and its complementary strands into pairs. Then we
create class features using edit distance and affinity propagation. Finally, we train
a gradient boosting model by LightGBM. ReCGBM has two advantages: First,
it makes more accurate predictions than previous methods. Second, ReCGBM
can output the feature importance, which can partially explain how the model
makes decisions. For RNA sequence data, this may also lead to some biological
explanations. In our experiments, the feature importance in the ReCGBM shows
that relational features close to the center of pre-miRNA may contribute more to
human Dicer cleavage site prediction.

Despite the fact that ReCGBM performs better than previous methods, some
improvements can be made in the following directions.

First, we consider the affinity propagation to cluster our samples and assign
class labels to the corresponding samples in the construction of class features. One
advantage of affinity propagation is that it does not need to set the number of
classes. However, sometimes the algorithm can not converge. Therefore, it might
be better to try some easy-to-converge cluster algorithms.

Second, although our features include the secondary structure information, only
one secondary structure can be included in a sample. However, the number of
possible secondary structures of a sample may be more than one. Therefore, to
improve the prediction performance, a feature engineering method that can include
multiple potential secondary structures in one sample is desirable.

69

Third, we generate the negative samples through a fixed way. However, the
real negative samples may be diverse. Instead of considering all kinds of negative
samples, it might be interesting to consider PU learning, which is the abbreviation
for positive-unlabeled learning. In the miRBase dataset, pre-miRNA with a known
cleavage site can be used as positive samples. Other pre-miRNA with unknown
cleavage sites can be considered as unlabeled samples. This is more reasonable
since positive samples, and unlabeled samples are known. Instead of throwing all
unlabeled samples away, it might be a better choice to consider these samples as
the training data in PU learning.

Bibliography

[AK12] M Gethsiyal Augusta and Thangairulappan Kathirvalavakumar. Re-
verse engineering the neural networks for rule extraction in classifi-
cation problems. Neural Processing Letters, 35(2):131–150, 2012.

[AKR13] Firoz Ahmed, Rakesh Kaundal, and Gajendra PS Raghava. Phd-
cleav: a svm based method for predicting human dicer cleavage sites
using sequence and secondary structure of mirna precursors. BMC
Bioinformatics, 14(14):1–11, 2013.

[Ant01] Martin Anthony. Discrete Mathematics of Neural Networks: Selected
Topics. SIAM, Philadelphia, PA, USA, 2001.

[Ant10] Martin Anthony. Decision lists and related classes of boolean func-
tions. In Crama, Yves and Hammer, Peter L., Boolean Models and
Methods in Mathematics, Computer Science, and Engineering, pages
577–598, New York, NY, USA, 2010. Cambridge University Press.

[Bar93] Peter Barth. Linear 0–1 inequalities and extended clauses. In Inter-
national Conference on Logic for Programming Artificial Intelligence
and Reasoning, pages 40–51. Springer, 1993.

[BHA16] Yu Bao, Morihiro Hayashida, and Tatsuya Akutsu. Lbsizecleav: im-
proved support vector machine (svm)-based prediction of dicer cleav-
age sites using loop/bulge length. BMC Bioinformatics, 17(1):487,
2016.

[BRSM13] Stanislav Bellaousov, Jessica S Reuter, Matthew G Seetin, and
David H Mathews. Rnastructure: web servers for rna sec-
ondary structure prediction and analysis. Nucleic Acids Research,
41(W1):W471–W474, 2013.

[CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International

71

72 BIBLIOGRAPHY

Conference on Knowledge Discovery and Data Mining, pages 785–
794. ACM, 2016.

[CHCB04] Gavin E Crooks, Gary Hon, John-Marc Chandonia, and Steven E
Brenner. Weblogo: a sequence logo generator. Genome Research,
14(6):1188–1190, 2004.

[CLG01] Rich Caruana, Steve Lawrence, and Lee Giles. Overfitting in neural
nets: Backpropagation, conjugate gradient, and early stopping. Ad-
vances in Neural Information Processing Systems, 13:402–408, 2001.

[DG17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12:2121–2159, 2011.

[EBM09] Hazem M El-Bakry and Nikos Mastorakis. A fast computerized
method for automatic simplification of boolean functions. In WSEAS
International Conference. Proceedings. Mathematics and Computers
in Science and Engineering. WSEAS, 2009.

[FD07] Brendan J Frey and Delbert Dueck. Clustering by passing messages
between data points. Science, 315(5814):972–976, 2007.

[FHT+00] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive
logistic regression: a statistical view of boosting (with discussion
and a rejoinder by the authors). Annals of Statistics, 28(2):337–407,
2000.

[FNCT06] Adrien Fauré, Aurélien Naldi, Claudine Chaouiya, and Denis Thief-
fry. Dynamical analysis of a generic boolean model for the control of
the mammalian cell cycle. Bioinformatics, 22(14):e124–e131, 2006.

[Fri01] Jerome H Friedman. Greedy function approximation: a gradient
boosting machine. Annals of Statistics, 29(5):1189–1232, 2001.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting. Journal
of Computer and System Sciences, 55(1):119–139, 1997.

[FZS13] Yong-Xian Fan, Yang Zhang, and Hong-Bin Shen. Labcas: label-
ing calpain substrate cleavage sites from amino acid sequence using
conditional random fields. Proteins: Structure, Function, and Bioin-
formatics, 81(4):622–634, 2013.

BIBLIOGRAPHY 73

[GJ79] Michael R Garey and David S Johnson. Computers and Intractabil-
ity: a Guide to the Theory of NP-completeness (Series of Books in
the Mathematical Sciences). WH Freeman, 1979.

[GJSvDE07] Sam Griffiths-Jones, Harpreet Kaur Saini, Stijn van Dongen, and
Anton J Enright. mirbase: tools for microrna genomics. Nucleic
Acids Research, 36(suppl_1):D154–D158, 2007.

[GMUTN+19] Paulina Galka-Marciniak, Martyna Olga Urbanek-Trzeciak,
Paulina Maria Nawrocka, Agata Dutkiewicz, Maciej Giefing,
Marzena Anna Lewandowska, and Piotr Kozlowski. Somatic
mutations in mirna genes in lung cancer–potential functional
consequences of non-coding sequence variants. Cancers, 11(6):793,
2019.

[HJL+05] Huiling He, Krystian Jazdzewski, Wei Li, Sandya Liyanarachchi,
Rebecca Nagy, Stefano Volinia, George A Calin, Chang-gong Liu,
Kaarle Franssila, Saul Suster, et al. The role of microrna genes in
papillary thyroid carcinoma. Proceedings of the National Academy
of Sciences, 102(52):19075–19080, 2005.

[HJR78] David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices
and the demand for clean air. Journal of Environmental Economics
and Management, 5(1):81–102, 1978.

[Hof03] Ivo L Hofacker. Vienna rna secondary structure server. Nucleic Acids
Research, 31(13):3429–3431, 2003.

[HSWK02] Stephen E. Harris, Bruce K. Sawhill, Andrew Wuensche, and Stuart
Kauffman. A model of transcriptional regulatory networks based on
biases in the observed regulation rules. Complexity, 7(4):23–40, 2002.

[IFL+05] Marilena V Iorio, Manuela Ferracin, Chang-Gong Liu, Angelo
Veronese, Riccardo Spizzo, Silvia Sabbioni, Eros Magri, Massimo
Pedriali, Muller Fabbri, Manuela Campiglio, et al. Microrna gene
expression deregulation in human breast cancer. Cancer Research,
65(16):7065–7070, 2005.

[Ish00] Masumi Ishikawa. Rule extraction by successive regularization. Neu-
ral Networks, 13(10):1171–1183, 2000.

[JA03] Ruoming Jin and Gagan Agrawal. Communication and memory
efficient parallel decision tree construction. In Proceedings of the

74 BIBLIOGRAPHY

2003 SIAM International Conference on Data Mining, pages 119–
129. SIAM, 2003.

[JRL07] Abdul Salam Jarrah, Blessilda Raposa, and Reinhard Laubenbacher.
Nested canalyzing, unate cascade, and polynomial functions. Physica
D: Nonlinear Phenomena, 233(2):167–174, 2007.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. ArXiv Preprint ArXiv:1412.6980, 2014.

[KMF+17] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient
gradient boosting decision tree. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[Le13] Quoc V Le. Building high-level features using large scale unsuper-
vised learning. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8595–8598. IEEE,
2013.

[Lev66] Vladimir I Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10(8):707–710,
1966.

[LHK+13] Christopher W Leonard, Christine E Hajdin, Fethullah Karabiber,
David H Mathews, Oleg V Favorov, Nikolay V Dokholyan, and
Kevin M Weeks. Principles for understanding the accuracy of shape-
directed rna structure modeling. Biochemistry, 52(4):588–595, 2013.

[LWB07] Ping Li, Qiang Wu, and Christopher J Burges. Mcrank: Learning to
rank using multiple classification and gradient boosting. In Advances
in Neural Information Processing Systems, volume 20, pages 897–
904, 2007.

[LYD+19] Zexian Liu, Kai Yu, Jingsi Dong, Linhong Zhao, Zekun Liu, Qingfeng
Zhang, Yimeng Du, Shihua Li, and Han Cheng. Precise prediction
of calpain cleavage sites and their aberrance caused by mutations in
cancer. Frontiers in Genetics, 10:715, 2019.

BIBLIOGRAPHY 75

[MCCA18] Avraham A Melkman, Xiaoqing Cheng, Wai-Ki Ching, and Tatsuya
Akutsu. Identifying a probabilistic boolean threshold network from
samples. IEEE Transactions on Neural Networks and Learning Sys-
tems, 29(4):869–881, 2018.

[MHZ+08] Maciej A Mazurowski, Piotr A Habas, Jacek M Zurada, Joseph Y
Lo, Jay A Baker, and Georgia D Tourassi. Training neural network
classifiers for medical decision making: The effects of imbalanced
datasets on classification performance. Neural networks, 21(2-3):427–
436, 2008.

[MZK] NR Markham, M Zuker, and JM Keith. Unafold: software for nucleic
acid folding and hybridization. Bioinformatics, 453:3–31.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge Univer-
sity Press, New York, NY, USA, 2014.

[OSM+11] Yasuko Ono, Hiroyuki Sorimachi, Hiroshi Mamitsuka, et al. Cal-
pain cleavage prediction using multiple kernel learning. PloS ONE,
6(5):e19035, 2011.

[PGCC17] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan.
PyTorch. https://pytorch.org/get-started/locally/, 2017.
Accessed: 2018-12-17.

[PLN+10] Mirva Piippo, Niina Lietzén, Olli S Nevalainen, Jussi Salmi, and
Tuula A Nyman. Pripper: prediction of caspase cleavage sites from
whole proteomes. BMC Bioinformatics, 11(1):320, 2010.

[PS85] Franco P Preparata and Michael I Shamos. Computational Geome-
try: an Introduction. Springer, New York, NY, USA, 1985.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Ma-
chine learning in python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[Qui93] J Ross Quinlan. C4. 5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[RG14] Irina Rish and Genady Grabarnik. Sparse Modeling: Theory, Algo-
rithms, and Applications. CRC press, 2014.

76 BIBLIOGRAPHY

[RS98] Sanjay Ranka and V Singh. Clouds: A decision tree classifier for
large datasets. In Proceedings of the 4th Knowledge Discovery and
Data Mining Conference, volume 2, pages 2–8, 1998.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why
should i trust you?": Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1135–1144. ACM,
2016.

[SDBR14] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and
Martin Riedmiller. Striving for simplicity: The all convolutional
net. ArXiv Preprint ArXiv:1412.6806, 2014.

[Sha78] Michael Ian Shamos. Computational geometry. Ph. D. thesis, Yale
University, 1978.

[SS16] Onkar Singh and Emily Chia-Yu Su. Prediction of hiv-1 protease
cleavage site using a combination of sequence, structural, and physic-
ochemical features. BMC Bioinformatics, 17:279–289, 2016.

[STK+17] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and
Martin Wattenberg. Smoothgrad: removing noise by adding noise.
ArXiv Preprint ArXiv:1706.03825, 2017.

[STP+12] Jiangning Song, Hao Tan, Andrew J Perry, Tatsuya Akutsu, Geof-
frey I Webb, James C Whisstock, and Robert N Pike. Prosper: an
integrated feature-based tool for predicting protease substrate cleav-
age sites. PloS ONE, 7(11):e50300, 2012.

[STS+10] Jiangning Song, Hao Tan, Hongbin Shen, Khalid Mahmood, Sarah E
Boyd, Geoffrey I Webb, Tatsuya Akutsu, and James C Whisstock.
Cascleave: towards more accurate prediction of caspase substrate
cleavage sites. Bioinformatics, 26(6):752–760, 2010.

[SWI07] Emad W Saad and Donald C Wunsch II. Neural network explanation
using inversion. Neural Networks, 20(1):78–93, 2007.

[TKY+04] Junichi Takamizawa, Hiroyuki Konishi, Kiyoshi Yanagisawa, Shuta
Tomida, Hirotaka Osada, Hideki Endoh, Tomoko Harano, Yasushi
Yatabe, Masato Nagino, Yuji Nimura, et al. Reduced expression of
the let-7 micrornas in human lung cancers in association with short-
ened postoperative survival. Cancer Research, 64(11):3753–3756,
2004.

BIBLIOGRAPHY 77

[TOB12] Cristiana Tanase, Irina Ogrezeanu, and Corin Badiu. Molecular
Pathology of Pituitary Adenomas. Elsevier, 2012.

[Tsu00] Hiroshi Tsukimoto. Extracting rules from trained neural networks.
IEEE Transactions on Neural Networks, 11(2):377–389, 2000.

[WTR06] Lawrence JK Wee, Tin Wee Tan, and Shoba Ranganathan. Svm-
based prediction of caspase substrate cleavage sites. BMC Bioinfor-
matics, 7(S5):S14, 2006.

[WTR07] Lawrence JK Wee, Tin Wee Tan, and Shoba Ranganathan. Casvm:
web server for svm-based prediction of caspase substrates cleavage
sites. Bioinformatics, 23(23):3241–3243, 2007.

[WZT+14] Mingjun Wang, Xing-Ming Zhao, Hao Tan, Tatsuya Akutsu,
James C Whisstock, and Jiangning Song. Cascleave 2.0, a new ap-
proach for predicting caspase and granzyme cleavage targets. Bioin-
formatics, 30(1):71–80, 2014.

[ZT00] Liang Zhao and Charles E Thorpe. Stereo-and neural network-based
pedestrian detection. IEEE Transactions on Intelligent Transporta-
tion Systems, 1(3):148–154, 2000.

Publication Notes

Pengyu Liu, Avraham A Melkman, Tatsuya Akutsu. (2020) Extracting boolean
and probabilistic rules from trained neural networks, Neural Networks, 126, 300
– 311.

Pengyu Liu, Jiangning Song, Chun-Yu Lin, Tatsuya Akutsu. (2021) ReCGBM:
a gradient boosting-based method forpredicting human Dicer cleavage sites,
BMC Bioinformatics, in press.

The thesis is based on the above two papers. You can find the permissions to
reuse the contents in the following links:

1. Neural Networks: www.elsevier.com/about/policies/copyright/permissions

2. BMC Bioinformatics: www.biomedcentral.com/about/policies/reprints-and-
permissions

Publications not Relevant to the Thesis

Yu Bao, Morihiro Hayashida, Pengyu Liu, Masayuki Ishitsuka, Jose C. Nacher
and Tatsuya Akutsu. (2018) Analysis of Critical and Redundant Ver-
tices in Controlling Directed Complex Networks Using Feedback Vertex Sets,
Journal of Computational Biology, 25, 1071-1090.

Sini Guo, Pengyu Liu, Wai-Ki Ching and Tatsuya Akutsu. (2021)
On the Distribution of Successor States in Boolean Threshold Networks,
IEEE Transactions on Neural Networks and Learning Systems, in press.

Avraham A Melkman, Sini Guo, Wai-Ki Ching, Pengyu Liu, Tatsuya Akutsu.
(2020) On the Compressive Power of Boolean Threshold Autoencoders,
https://arxiv.org/abs/2004.09735, in revision.

79

