
Informatics Approaches for Understanding

Human Facial Attractiveness Perception

and Visual Attention

by

Song Tong

A thesis submitted for the degree of

Doctor of Philosophy

in

Psycho-informatics

in the

Graduate School of Informatics

of the

Kyoto University

2021

Supervisors:
Prof. Taketsune KUMADA, Main Supervisor

Prof. Xuefeng LIANG, Co-Supervisor





Acknowledgments

Firstly, I would like to thank my advisors Xuefeng Liang and Takatsune Kumada.

Prof. Liang brought me to Kyoto University, taught me how to be a scientist, and

gave me a lot of help in research and life abroad. Prof. Kumada supported me

financially over the past two years and lent me a great research vision for exploring

frontier research questions in psychology. I’d also like to thank the members of

my thesis and qualifying exam committees: Shohei Nobuhara, Ryoichi Nakashima,

Shin’ya Nishida, and Jun Saiki.

My sincere thank also goes to my collaborators who made working on my research

such a pleasure: Sunao Iwaki, Cheeseng Chan, Yuenpeng Loh, Yinghua Tan, and

Yang Liu. I’d like to thank Ryoichi Nakashima, Ayumi Takemoto, Atsushi Nakazawa,

Yong Yang, Yuming Fang, and Satoshi Tsujimoto, who gave me invaluable comments

during my research. I am also thankful to the faculty members in the psycho-

informatics lab, Takako Kowada, Natsuhiro Ichinose, who helped me a lot in daily

life, Te Chi Huang, Qiang Zhang, Jumpei Yamashita, Byungju Kim, Xiangyue Zhao,

Ran Wang, Wenqing Zhou, Ritsuko Iwaki, Ryuta Iseki, Saori Kajima, Ryuta Iseki,

and Yoko Higuchi, who willingness to discuss research ideas, and for making it such

a great hub to work. I especially thank Guanyu Chen, who collected data for my

research, Jian Guo, and Yuyu Zhang, who encouraged me greatly during my study.

I got some life-long friends during this study experience. Zhicheng Huang, Yan

Gu, Meng-Yu Kuo, Guochang Xu, Yun Zhou, and Siyang Yu, who colorful my

university life. I especially appreciate Longfei Chen, who is my best friend, and his

family. They accompanied my family to spend a lot of free time. I also enjoyed the

Kyoto University and Japan, which provide related agencies to made my abroad life

more accessible, such as KI-ZU-NA, KOKOKA, Townhall, Himawari Nursery, and St

Mary’s Kindergarten. I sincerely thank the staff in these agencies. Their hard work

also inspired me a lot. In KI-ZU-NA, I recognized my Japanese teacher Machiko

Ishimaru, who told me a lot about Japanese stories and cultures. Besides, I thank

China Scholarship Council, which provided financial support for my study from

i



2016 to 2019, the Chinese embassy, and the Chinese association for international

students, which cared about my life and mental health during the study.

Lastly, I’d like to thank my wonderful big family for indulging and supporting

me, especially my wife, Zhili Wu, who is the love of my life and a staunch supporter

of my research. Meanwhile, I appreciate the research topics, which improved my

art of living, such as the broaden-and-build theory taught me to keep openness to

face challenges. With these topics, I could travel worldwide to share my progress. I

got many friends and mentors during the travel experience: Yan Zhang, Thomhert

Siadari, Yifan Zuo, Xiaoqing Lyu, Liansheng Zhuang, Sung-En Chien, Zhengan Zhu,

Hsiu-Ping Yueh, Weijane Lin, and Suling Yeh. They gave me valuable comments to

improve my research.

ii



Abstract

Informatics Approaches for Understanding Human Facial Attractiveness Perception
and Visual Attention

by

Song Tong

Doctor of Philosophy in Psycho-informatics

Kyoto University

The majority of psychological theories have been investigated in the laboratory

under a well-controlled experimental setting, such as using a small number of

participants from a specific population and a limited number of well-controlled

stimuli. However, the generalization of psychological theories to the outside of

the laboratory is sometimes difficult because the real world is diverse, having a

wide variety of individual differences and including complex stimuli. Recently, the

advances in informatics approaches, e.g., machine learning and big data analysis,

provide potential opportunities to complement the current psychological experiments

and to investigate human cognition outside the laboratory. Firstly, deep neural

networks (DNNs), a specific class of machine learning methods, learn effective

representations from real-world data. Since some of the learned representations are

biologically plausible, interpreting the representations gives a way to study human

cognition outside the laboratory through the examination of DNNs. Secondly, social

media platforms potentially contain data related to human action and cognition that

are difficult to collect in laboratory settings. These large-scale behavior data, refers

to as naturally occurring data sets (NODS), have the potential for understanding

human cognition or complementing psychological theories.

However, a relatively small number of studies used the above informatics ap-

proaches to examine human cognition. Thus, this dissertation aims to forge these

approaches into tools that psychologists can apply to complement and extend the

current psychological experiments or theories. In Chapter 1, we discuss the issues of
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external validity in the laboratory experiments that may be partially circumvented

by examination of DNN and construction of NODS. In the following chapters, we

propose two complementary frameworks to apply DNN and NODS to understand

human cognition, respectively.

In the first study, we investigate facial attractiveness cognition through the

internal representations learned by DNN. DNNs lock interpret-ability since they

have millions of parameters, which is unexplained. Thus, how to train and evaluate

the human-relevant representations of DNN is challenged. In Chapter 2, we train a

DNN for facial attractiveness (namely FADNN) and interpret the representation

learned by the FADNN. A dataset of facial images is constructed and used for training

the FADNN to classify the attractiveness using four category-specific neurons (CSNs).

Then, we calculate the activation values of CSNs for an external dataset and find

a significant relationship of the values with human-rated scores of the dataset.

Moreover, four face-like images are generated by deconvolution of the FADNN. The

generated images depict attributes corresponding to the face categories, and some

ideal arrangements of facial features related to facial attentiveness (putative ratios)

are observed from these images. In Chapter 3, we measure the putative ratios

on the generated images, revealing certain consistencies with results in previous

psychological studies. In addition, simulated psychophysics-like experiments show

that face images with varying putative ratios change the activity of the CSNs. These

results are similar to those of human judgments reported in previous psychological

studies. The results indicate that the FADNN can learn putative ratios as relevant

features for the representation of facial attractiveness, based only on categorical

annotation in which no annotated facial features for attractiveness were explicitly

given. This finding advances our understanding of cognition of facial attractiveness

via DNN-based approaches.

In the second study, we investigate the broaden-and-build theory by constructing

and examining NODS. In general, there are many challenges in constructing the

NODS, e.g., determine the target behaviors, minimize bias in the data, and structure

the data into formats useful for testing an existing psychological theory, because the
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online data may be incomplete and possibly erroneous. For the collected data, we

develop machine learning methods to extract relevant features for human behaviors

based on the theory. In concrete, we construct NODS from travel photos with tourist

satisfaction and their attentional scopes (wide-view vs. narrow-view) detected by

the machine learning model. Based on the theory, we assume that there is a causal

relationship between tourist mood (i.e., satisfaction) and natural behaviors (i.e.,

attentional scope). In Chapter 4, we propose a machine learning model for classifying

the attentional scopes (wide-view vs. narrow-view) from travel photos. In Chapter

5, we use the proposed model to detect the attentional scopes in a large number

of travel photos and construct NODS. For 94 scenic spots, there is a significant

correlation between the average tourist satisfaction and the percentage of wide-view

photos. Tourists seem to prefer shooting wide-views at scenic spots with a higher

rating of satisfaction, consistent with the broaden-and-build theory. We showed

that the broaden-and-build theory is applied to real-world data with a variety of

participants who perform photo-shooting in a natural setting.

In Chapter 6, we summarize the results and discuss the benefits of our framework

to both psychology and informatics study. In addition, the limitations and the

future directions of applying DNNs and NODS for understanding human cognition

are discussed. To conclude, in this dissertation, we provide the two frameworks for

implementing informatics approaches to study human cognition based on psycholog-

ical theories. By two frameworks, we demonstrated possibilities to verify existing

psychological theories in real-world settings, which can improve the external validity

of the theory. In addition, informatics research can be benefited by psychological

theories.
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Chapter 1

Introduction
The majority of psychological theories have been investigated in the laboratory

under a well-controlled experimental setting, such as using a small number of

participants from a specific population and a limited number of well-controlled

stimuli. However, the generalization of psychological theories to the outside of the

laboratory is sometimes difficult because the real-world is diverse, having a wide

variety of individual differences and including complex stimuli. Recently, the advances

in informatics approaches, e.g., machine learning and big data analysis, provide

potential opportunities to complement the current psychological experiments and

to investigate human cognition outside the laboratory. Two potentials are claimed.

(1) Machine learning algorithms learn effective representations from real-world data

and perform some perception tasks at the human performance level (Battleday

et al., 2020; Paxton, 2020; Ritter et al., 2017). Moreover, several specific algorithms

(especially deep neural networks, DNNs) learned representations with biological

plausibility (Güçlü et al., 2016; Kagian et al., 2008; Rafegas & Vanrell, 2018),

e.g., similar representation to visual object recognition in the human visual cortex

(Cichy et al., 2017; Cichy et al., 2016). Thus, some psychologists claimed that the

ability of feature representations gives a way to study human cognition outside the

laboratory through the examination of DNNs (Kriegeskorte, 2015; Peterson et al.,

2017; VanRullen, 2017; Y. Wang & Kosinski, 2018). (2) The social media platforms

aggregate large amounts of data more richly and diversely than previously imagined.

The new data streams potentially contain information about human action and

cognition that are difficult to collect in laboratory settings (Adjerid & Kelley, 2018;

1



Griffiths, 2015). Paxton and Griffiths (2017) claimed to create naturally occurring

data sets (NODS) with large-scale behaviors from social media platforms, which

have the potential for providing insight into human cognition or refining existing

psychological theories.

However, the process of applying the above informatics approaches to the studies

of human cognition encounters some difficulties. One of the characteristics of data

used for DNN training and big data analysis is variety. The data in classical

psychological experiments are required to be controlled as well as possible. The

critical reason is the paradigm gap between the experimental purposes of informatics

and psychological studies. On the psychological side, the purpose is to understand

human cognition and demonstrate what they measure for affording the highest

internal validity with the control in laboratory settings. Thus, psychologists often

encourage to control, carefully examine, resulting in the trade-off of the measurement

results with high internal validity, while having to lose some parts of external validity.

On the side of informatics research, especially for task-driven research, the purpose

is to implement the data to specific tasks and functions, demonstrating the practical

usability (ecological validity) with diverse data. For example, some DNNs are trained

for specific tasks (e.g., face and object recognition) to obtain high accuracy. The

recommendation systems target practical and accurate recommendations. Thus,

informatics researchers often collect data with diverse features, while little of them

look back to humans and provide insights into human cognition. The paradigm gap

is the main barrier for applying these informatics approaches to psychology, which

makes psychologists challenging to be deeply involved (e.g., of performing statistical

data analysis and testing theories) in the analysis of a large amount of diverse data

and makes the informatics researchers challenging to apply their computational and

data resources for understanding human cognition.

To bridge the paradigm gap, we proposed two complementary frameworks,

targeting to understand human cognition through the perspectives of DNN and

NODS, respectively. (1) The first framework focuses on investigating how similar

are the representations learned by DNN to human cognition. (2) The second
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framework focuses on testing the existing psychological theory through NODS

created from social media platforms. These frameworks combined a large number

of data, machine learning models (or DNNs), and psychological theories in two

different ways and extended the scopes of psychological experiments based on these

informatics approaches.

1.1 Current Issue to Laboratory Experiments

To increase the understanding of perception and cognition, psychological ex-

periments in the laboratory often encourage controlling, carefully examining, and

isolating the specific effects on the measures of task performance. Thus, a psycho-

logical experiment often uses a theory-driven approach. As shown in Figure 1.1, a

theory-driven approach is usually described as (Maass et al., 2018): (1) formulating

hypotheses from an existing theory; (2) designing experiments to minimize the

confounding effects (stimuli, participants and tasks); (3) collecting the behavior data

through experiments; and (4) analyzing data using statistical methods (e.g., analysis

of variance and linear regression) to draw inferences. The majority of psychological

theories were built, developed, and even rejected by insights from the results of such

experiments. However, the generalization of psychological theories to the outside

of the laboratory is sometimes difficult because most laboratory settings can not

represent the natural environments, leading to a low external validity (Proctor &

Xiong, 2020).

The typical laboratory experiments are restricted by time, space, effort, and cost.

A laboratory experiment is often performed using a small number of participants

and well-controlled stimuli, which are barriers to establish ecological validity. For

example, using the Navon-letter task (Navon, 1977) shown in Figure 1.1, which

is a widely-used task in the studies of visual attention, Navon (1977) found that,

compared with local letters, global letters should be processed first. Such task leads

to many interesting results, such as visual attention affects emotions (Fredrickson

& Branigan, 2005; Srinivasan & Hanif, 2010). However, the stimuli have low
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Figure 1.1: Investigate human cognition based on theory-driven approaches, for the
Navon-letter task (Navon, 1977) as an example. The stimuli is a large letter made
up of certain small letters. In the task, participants would press the key according
which letter they recognized, e.g., ‘H’ or ‘F’. Employ the actions to investigate the
precedence between global processing and local processing.

generalizability, such as, Kinchla and Wolfe (1979) found the local letters would be

processed prior to global letters, when the sizes of the stimuli change. To improve

the generalizability, Ji et al. (2019) use the global-local of the landscape images

(as shown in Figure 1.2) to replace the Navon-letter task in their study, which

explores the association between emotion and global-local processing. In addition,

psychological experiments usually are conducted by a small number of a specific

population (such as college students), which provides a limited amount of human

behavior data, which constrained the validity of the theories. Some researchers

(Arnett, 2008; Henrich et al., 2010) criticized that most psychological theories of

deriving from participants that are Western, educated, industrialized, rich, and

democratic.

The advances in informatics approaches bring with the changes and opportunities.

(1) The current DNNs learned object recognition have a similar level of perception as

humans and make predictions from real-world stimuli with complex representations.

(2) The social media platforms record human experiences and actions anytime,
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Figure 1.2: The redrawn landscape stimuli from a recent study (Ji et al., 2019)
used for exploring the association between emotion and global-local processing
with higher generalizability. In the task, the participants would give some descrip-
tions about what they see on the entire landscape image (left), or the area with
a bounding box. The image is downloaded from https://www.tripadvisor.com/
LocationPhotoDirectLink-g189541-i265673288-Copenhagen_Zealand.html.

anywhere, making the data acquisitions breakthrough time and space limitations.

A large-scale behavior data can be easily acquired from diverse participants, and

the behavior is always naturally occurred. We will make these opportunities more

concrete in the next section.

1.2 Opportunities and Challenges

This section provides opportunities and challenges to understanding human

cognition via applying the approaches of DNN and NODS, respectively.

1.2.1 Deep neural network (DNN)

The DNN approaches or exceeds human performance in many essential perception

tasks, such as object recognition (Krizhevsky et al., 2017) and face recognition

(Parkhi et al., 2015; Y. Wang & Kosinski, 2018), because of their ability to learn

relevant representations from natural images (real-world stimuli). These internal

representations express the association between the real-world stimuli and outputs

(target concepts). Some specific approaches can manipulate the representations

(e.g., fully convolutional neural networks, FCN, and generative adversarial network,

GAN), such as localizing the object concepts in the image space (e.g., semantic

segmentation: Long et al., 2015) and generating the concepts within the images
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(e.g., manipulating the ‘age’ or ‘expression’ of a face image: Goodfellow et al., 2014;

VanRullen, 2017). All the above indicate that the DNNs accurately distinguished

the target concept and noise (confounding effects) in the real-world stimuli.

Moreover, some similarities have recently been observed between DNNs and

biological vision systems in terms of their operations (Cadieu et al., 2014; Cichy et al.,

2016; Kietzmann et al., 2019; O’Toole et al., 2018; Seeliger et al., 2018; P. Wang &

Cottrell, 2017; Yamins & DiCarlo, 2016). For example, Cichy et al. (2016) showed

that the DNN could capture the stages of human visual processing in both time and

space, from the early visual areas to the dorsal and ventral streams. Rafegas and

Vanrell (2018) reported that DNNs could capture hierarchical representations of

color for object recognition correlating to human vision, such as the middle layers

of the DNN show a denser sampling of hue than other layers, which suggests some

correlation with hue maps in V2 (Conway, 2003; Shapley & Hawken, 2011). In

addition, some research (Kriegeskorte, 2015; VanRullen, 2017) has proposed that

DNNs can be used as a new tool to gain insight into biological visual perception,

which provide practical and biological-plausible representations of real-world stimuli.

Therefore, it may contain some internal similarities between the representations

of DNN and human perception. The relationship between the representation of

DNN to human perception would extend the link from the real-world stimuli to

human perception because representations learned by DNN are effectively correlated

to real-world stimuli and the target concept.

However, comparing the representations of DNN with human perception has

two challenges: (1) how to interpret the representations of DNN, and (2) how to

evaluate the similarity between the representations of DNN and human. DNNs

lock interpret-ability since they have millions of parameters, which is unexplained

(Bau et al., 2017). One solution is inspired by neuroscience, which discovered

brain neurons from response to specific concepts (A. Nguyen et al., 2016; Quiroga

et al., 2005). Some informatics techniques (e.g., activation maximization: Erhan

et al., 2009, and deconvolution method: Zeiler and Fergus, 2014) can generate the

preferred images (stimuli) that highly active a specific neuron (DNN), which is
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accomplished by changing the input of DNN. The generated stimuli would make the

implicit representation explicit and bring convenience to observation. In addition,

to evaluate the similarity between the representation of DNN and human, we

propose to implement psychological experiments in the specific neurons of DNN

and then analyzing the behaviors of DNN. If DNN shows the human-like behaviors

by manipulating stimuli as humans, this might evidence the similarity between the

representations of DNN and human perception.

1.2.2 Naturally occurring data sets (NODS)

The social media platforms aggregate large amounts of data more richly and

diversely than previously imagined. For example, TripAdvisor collects large numbers

of experience ratings, reviews, and travel photos from worldwide, which features

859 million reviews by 2019 1. From a psychologist’s perspective, the social media

platforms provide diverse participants and massive actions that are difficult to acquire

in laboratory experiments. In addition, these data usually occur spontaneously or

describe people’s daily life. In contrast, laboratory experiments essentially involve

researchers intervening in the experimental process, which may cause some biases,

e.g., social desirability and experimenter effects (Shah et al., 2015). For instance, the

experimenters may unintentionally treat experimental subjects in different ways to

shape their responses. Therefore, if the data collected from social media platforms

can be used for study human cognition, it would advance the ecological validation

of the measurements, because of the diverse and naturally occurring data.

In the past, most NODS might be called ‘wild’ data, typically gathered as

observations of people, behaviors, or events for nonscientific purposes (Paxton &

Griffiths, 2017). However, some recent works focus on the utility of naturally

occurring data from the internet to complement the psychological experiments or

refine the psychological theories (Goldstone & Lupyan, 2016; M. N. Jones, 2016;

Paxton & Griffiths, 2017). Comparing to the past ‘wild’ data, the NODS collected

from the internet is bigger, e.g., tera- or petabytes. In addition, the NODS for
1https://en.wikipedia.org/wiki/Tripadvisor
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psychological purposes is different from the dataset of big data. The big data required

to create the dataset with ‘Four Vs’ (Data & Hub, 2013), i.e. volume, variety, velocity,

and veracity. In contrast, Paxton and Griffiths (2017) augured that the NODS for

psychological purposes only requires veracity and variety, and a medium size of

volume. The reason is the NODS requires considerable controls of the main effects

constrained by a psychological hypothesis, which would decrease the volume of data.

There are two main challenges to use the NODS from the social media platforms

to study human cognition: (1) how to determine the main effects (target behaviors)

and construct the NODS with minimizing bias in the data, and (2) how to analyze

these NODS, such as to clean the data contents and to structure into formats usable

for testing an existing theory (Endel & Piringer, 2015). To study human cognition

using NODS, we have to look back to the theory-driven approach and start from

hypotheses from an existing theory. The hypotheses would help us determine the

target behaviors and acquire the data source. However, the collected data may be

incomplete and possibly erroneous, which requires methods to extract meaningful

information and prediction from the massive data (Proctor & Xiong, 2020). To

solve this question, we pay more attention to computational modeling, i.e., training

machine learning or DNN models to extract meaningful concepts or behaviors (main

effects or confounding effects) from the collected data.

1.3 The Proposed Frameworks

This dissertation proposes two frameworks to study human cognition through

the applications of DNN and NODS, respectively. The first framework, as shown

in Figure 1.3a, investigates the similarity between the representations of DNN

and human perception. The research process is divided into the training phase

and testing phase of a DNN. The training phase aims to acquire the hypothesized

human-relevant neurons by the DNN. In Chapter 2, we trained a DNN to detect face

(un)attractiveness while evaluating the DNN in a dataset with continuous human-

rated scores of attractiveness, which estimates whether the learned neurons include
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(a)

(b)

Figure 1.3: The proposed complementary frameworks of studying human cognition
through informatics approaches. (a) Deep neural network (DNN): The training
phase would get the hypothesized human-relevant neurons. In the testing phase, we
first interpret and visualize the human-relevant neuron, and then, we implement
psychological experiments in the DNN by controlled stimuli as the input of DNN. (b)
Naturally occurring data sets (NODS): Firstly, determine the main effects (behaviors
included in photos and rating behavior) according to an existing psychological theory.
Secondly, we develop machine learning-based models to refine the data to the main
effects. Thirdly, analyzing the relationship between rating behavior and detected
behaviors, then drawing an inference to extend the existing psychological theory.
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informative representation to face attractiveness. The testing phase interprets

and visualizes the human-relevant neurons’ representations. The observation of

the visualized representations may associate with some existing theories. For a

further investigation, we implement experiments similar to psychological ones on

the DNN and examine the neurons’ output in Chapter 3, which estimates whether

the association exists between theory and the learned representations.

Figure 1.3b shows the second framework of understanding human cognition

through constructing NODS from social network platforms. This research process

consists of three steps. Firstly, the existing psychological theory determines experi-

ence and main effects (target behaviors) and guides the data collection. In Chapters

4 and 5, we examine the hypothesis that tourist satisfaction correlates with visual

attention according to an exiting psychological theory. Thus, we collect the tourism

experience ratings and shared photos from social media platforms. Secondly, we

focus on constructing machine learning-based models to identify the photo-shooting

behaviors which reflect tourists’ visual attention from the posted photos. Thirdly,

we analyze the relationship between experience ratings and target photo-shooting

behaviors, then drawing an inference to extend the exiting psychological theory.

1.4 An Overview of This Dissertation

The proposed complementary frameworks are proofs-of-concept designed to

understand human cognition through informatics approaches. For the proofs-of-

concept, this dissertation provides two case studies described as following.

1.4.1 Understanding facial attractiveness in deep feature
representations

Chapters 2 and 3 provide the first study of applying representations learned

by DNN for investigating human facial attractiveness perception. In this study,

we investigate facial attractiveness for the following three reasons. (1) Facial

attractiveness has significant social consequences, thus it stimulates great interests
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from diverse fields, e.g., arts, philosophy, biology, more recently, psychology (Perrett

et al., 1994) and artificial intelligence (Eisenthal et al., 2006). (2) Although some

individual differences and cultural differences have been noted, a large number of

studies provide empirical evidence that people use similar criteria to determine facial

attractiveness perception (Perrett et al., 1998; Perrett et al., 1994; Rubenstein et al.,

2002). For example, it is showed that there is an ideal arrangement of facial features

(ideal ratios) that can optimize the attractiveness of a person’s face (Jefferson, 2004;

Pallett et al., 2010; Valenzano et al., 2006). (3) Emerging research has successfully

used DNNs for facial attractiveness prediction and enhancement (J. Li et al., 2015;

Rothe et al., 2016; S. Wang et al., 2014), which indicates that DNNs can learn

internal representations to formulate facial attractiveness. However, few studies

have investigated whether the internal representation of DNN is interpretable based

on the theory of human perception, leave much think of these DNNs as black boxes.

Chapter 2 trained a DNN for facial attractiveness and interpreting the represen-

tations learned by the DNN. Firstly, the DNN model is trained to recognize the

attractiveness and gender (female/male × high/low attractiveness) of the face in

the images using four category-specific neurons (CSNs) and achieves an accuracy of

0.9805. Secondly, the DNN model is tested on an external dataset with human-rated

attractive scores, which showed a high correlation between the activate values of

CSNs and human-rated scores. Thirdly, four face-like images are generated by

using deconvolution of FADNN. The generated images depict intuitive attributes

corresponding to the four face categories. In addition, the face-like images suggest

that the putative ratios of facial attractiveness could be learned in the DNN. For

further investigation, in Chapter 3, we measure the putative ratios in the face-like

images, which reveal certain consistencies with reported evidence. In addition, simu-

lated psychophysics-like experiments show that face images with varying putative

ratios change the activity of the CSNs. These results are similar to those of human

judgments reported in previous psychological studies. Thus, we conclude that the

FADNN can learn putative ratios as relevant features for the representation of

facial attractiveness, based only on categorical annotation in which no annotated
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facial features for attractiveness were explicitly given. This finding advances our

understanding of human facial attractiveness perception via DNN-based perspective

approaches.

1.4.2 Understanding tourist satisfaction through
photo-shooting behaviors

Chapters 4 and 5 provide the second study to investigate the broaden-and-build

theory (Fredrickson, 2004) by constructing and examining NODS from the travel

experience. For the following three reasons, we focus on the travel experience in

this study. (1) To remind their travel experiences, tourists often take photography

to capture gaze and record attention (Osborne, 2000; Urry, 1992; Zeiler & Fergus,

2014). In addition, the broaden-and-build theory showed that visual attention affects

emotion (Fredrickson & Branigan, 2005; Ji et al., 2019; Srinivasan & Hanif, 2010).

Thus, it is possible to estimate the tourists’ affective quality by the attentional scopes

(wide-view vs. narrow-view) reflected from photos. (2) Current social networks

(such as Flickr and TripAdvisor) record large numbers of user-generated content,

such as travel photos and experience ratings (tourist satisfaction). (3) There are

many computing resources for object recognition (Deng et al., 2009) and scene

understanding (Zhou et al., 2017), which provide the potential for detecting behavior

patterns from travel photos.

In this study, we propose the hypothesis that emotion affects photo-shooting

behaviors. That is, positive emotion broadens visual attention, triggering the

preference to take more wide-view photos. Then, we aim to the non-trivial task

of the classification of narrow-view and wide-view images by machine learning

algorithm in Chapter 4. In Experiment 1, we present a machine learning model

to classify images inspired by the human visual system. We found two cues that

can represent visual attention, i.e., focus cue and scale cue. The focus cue is

modeled in the frequency domain. The scale cue is modeled by defining the spatial

size and conceptual sizes of an object in the image. The experimental results

on a newly established dataset with 5,050 images show the proposed model has

12



better performance than the related methods. However, the proposed model is not

suitable for extensive testing since it is difficult to implement in the GPU. Thus, we

implement the focus cue and scale cue in an end-to-end DNN, which cumulative

feature of the convolutional neural network (CFCNN) to learn both high-level and

low-level features to represent the shooting patterns in Experiment 2. The newly

proposed CFCNN obtains a considerable improvement in computational efficiency

and accuracy.

In Chapter 5, we use the CFCNN to detect the attentional scopes detected

from travel photos and construct the NODS with attentional scopes and tourist

satisfaction. Firstly, we collect 39,099 photos from 30 popular scenic spots. We find a

significant difference of wide percentage exists in 30 spots between high-rated scenic

spots and low-rated scenic spots. At high-rated scenic spots, tourists prefer to take

wide-view photos to capture wide landscapes (e.g., mountains, lakes, tall buildings).

Secondly, we collect 549,772 photos from 94 popular scenic spots. In addition, to

rule out the confounding factors, we use subgroup analysis to divide the scenic spots

into different continents and scenic types. Moreover, we divide the photos into

different visual contents, i.e., green, water, and building perceptions. Under the

scenic spot and visual content conditions mentioned above, the experimental results

still indicate a significant correlation between tourist satisfaction and photo-shooting

behaviors, which is consistent with the broaden-and-build theory. At last, we discuss

the cognitive process in the scenario of tourist experience evaluation. We hope that

the results revealed in this study would provide a new perspective for psychologists

to study human behaviors and cognition by employing the advantages of NODS in

tandem with machine learning methods.

Chapter 6 summarizes the results reported in Chapters 2-5, and discusses im-

plication of them in terms of the paradigm gap of research fields. Furthermore, we

discuss the limitations and future directions for applying the informatics approaches

for understanding human cognition.
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Understanding Facial

Attractiveness in Deep Feature

Representations
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Chapter 2

Learning Facial Attractiveness Rep-
resentations Using DNN

This part aims to study facial attractiveness through the representations learned

by DNN, demonstrating a case study of the complex facial attractiveness cognition

applying the proposed framework shown in 1.3a. In Chapter 2, our purpose is to

investigate the following issues: (1) learning the facial attractiveness representation

using DNN and (2) interpreting the representations learned by DNN.

2.1 Introduction

Facial attractiveness has significant social consequences, thus stimulating great

interests in diverse fields, including art, philosophy, biology, psychology (Burleson

et al., 2016), and artificial intelligence (Gan et al., 2014). In psychology, for example,

there is a debate that attractiveness is explained by some physical facial features

or not (Cunningham, 1986). Some researchers believed that there were no cross-

culturally universal standards for what constituted an attractive face. Some studies

suggested that the local cultures affect the facial attractiveness evaluation across

various social organizations, schools, families, and media(Coetzee et al., 2014). In

addition, the individual differences for facial preference were also found across

nations and ages (Cooper et al., 2006; Geldart et al., 1999; Penton-Voak et al., 2004).

For instance, Penton-Voak et al. (2004) found the Jamaican preferred masculine

faces more than Britain and Japanese due to their particular living conditions.

Marcinkowska et al. (2014) showed that the facial attractiveness judgment varied
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across 28 countries and found a correlation between the femininity preference

index and the national health index. Moreover, Perrett et al. (2002) showed that

attractiveness judgment reflected the learning of parental characteristics. Reber et al.

(2004) assumed that people would form a set of facial attractiveness ‘prototypes’ and

consciously match the perceived face to their prototypes for attractiveness judgment.

However, variability in some aspects of facial attractiveness judgment does not

preclude the possibility of other universally attractive characteristics. For example,

Perrett et al. (1994) found that the average face is more attractive than individuals,

and suggested the average face includes the attractive shape across different cultures.

Cunningham et al. (1995) found even if the faces were judged by the participants

from same or different cultural groups (i.e., Asians, Spaniards, white Americans and

black Americans), the ratings by the groups showed strong consistency (Pearson

correlation: r > 0.9). Notably, some studies (Langlois et al., 1987; Samuels & Ewy,

1985) showed that infants could distinguish attractive faces from unattractive faces

rated by adults. Thus, some universal characteristics of facial attractiveness are

proposed based on feature cues (e.g., eye size and chin shape) (Rhodes, 2013), the

configurational cue (ratios between facial landmarks) (Danel & Pawlowski, 2007;

Pallett et al., 2010), the skin cue (i.e., skin health and color) (Fink et al., 2001),

and sexual characteristics (masculinity and femininity) (Little et al., 2011). For

instance, Danel and Pawlowski (2007) proposed the eye-mouth-eye angle measuring

the vertex in the middle of the mouth and the sides of the vertex crossing the centers

of pupils as a configurational feature of attractiveness. Marquardt and Stephen

(2002) also developed a front line contour map based on the golden decagon matrices

for the standard of facial attractiveness, named golden facial mask, which was widely

applied in plastic surgery (Bashour, 2006; Holland, 2008).

Most informatics researchers were inspired by universal characteristics of facial

attractiveness and designed geometric features (Eisenthal et al., 2006; Kagian et

al., 2007) and appearance features (Altwaijry & Belongie, 2013; Gray et al., 2010;

Whitehill & Movellan, 2008) to compute the facial attractiveness. The geometric

structure can represent the harmonious parts of the face and their ratios based on the
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(a) (b)

Figure 2.1: Geometric features for facial attractiveness: (a) Eye-Month-Eye angle
(Danel & Pawlowski, 2007); (b) golden facial mask (Marquardt & Stephen, 2002).

Figure 2.2: The geometric features based method for the enhancement of facial
attractiveness. From left to right: face feature points; face triangulation; original
and beautified face (Leyvand et al., 2008).

distances among some key fiducial points, and ratios between distances. Eisenthal

et al. (2006) used 36-dimensional feature vectors and ratio vectors extracted from

92 face images to measure facial attractiveness, achieving a correlation of 0.6 with

manual measurement. Kagian et al. (2007) utilized 90 principal components of 6972

distance vectors among 84 fiducial points of a face image and reported a correlation

of 0.82 between the attractive scores rated by human and predicted scores. In

addition, Leyvand et al. (2008) proposed a face triangulation to beautify faces based

on 84 landmark points and 234 vectors with normalized lengths, as shown in Figure

2.1. However, geometric features require a large amount of manual workload for

marking the points and lack the fine details, e.g., rippling muscles and structure

transition of organs and expressions.
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(a)

(b)

Figure 2.3: Summary of the methods. (a) Four category-specific neurons (CSNs) were
trained using thousands of face images and their attractiveness-related annotations.
(b) The feature representations learned by the CSNs were projected to four face-like
images by deconvolution method.

Additionally, appearance features usually refer to the texture information, e.g.,

local binary patterns, the histogram of oriented gradients, color histograms, and scale-

invariant feature transform, representing the local appearances of faces. Whitehill and

Movellan (2008) employed Gabor filters, eigenface projections, and edge orientation

histograms as features for a support vector regression to predict facial attractiveness.

However, the method only reached a correlation between the attractive scores

rated by human and predicted scores with 0.45 . Altwaijry and Belongie (2013)

implemented a personalized beauty ranking system that utilized the histogram of

oriented gradients, gist features, color histograms, and dense scale-invariant feature

transform, and resulted in an average accuracy of 0.63.
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Recently, emerging studies applied deep neural networks (DNNs) for facial

attractiveness analysis due to the success of deep learning for visual recognition

(LeCun et al., 2015; Rothe et al., 2016; S. Wang et al., 2014). In contrast to methods

using handcrafted features, DNNs learn higher-level features from a large number of

face images to yield more precise predictions of attractiveness (F. Chen et al., 2016;

S. Wang et al., 2014). For example, Rothe et al. (2016) constructed a convolutional

neural network (CNN) to learn facial attractiveness from thousands of images by

relying on millions of ratings from the internet. The computational performance

of DNNs has led to their use in smartphones, such as for face beautification (J.

Li et al., 2015) and facial makeup recommendation (T. V. Nguyen & Liu, 2017).

All the above suggest that DNNs could learn highly abstract and implicit feature

representations to formulate facial attractiveness better than conventional features.

However, little research investigated the intuitive and interpretable representations

learned by DNNs, which are consistent with human attractiveness cognition, which

leaves much thought of these models as black boxes.

In this chapter, we investigate interpretable representations learned by DNNs

for facial attractiveness judgment. In concrete, we address the following issues: (1)

training DNN for learning representation for the facial attractiveness judgment; (2)

visualizing and interpreting the feature representations learned by DNNs.

To this end, we conducted two experiments. In Experiment 1, we trained a DNN

model for gender and facial attractiveness (FADNN) classification (female/male ×

(un)attractiveness). In this model, four category-specific neurons (CSNs) were learned

to represent four attractiveness categories from 4000 annotated face images, as shown

in Figure 2.3a. The experimental results demonstrated that the FADNN learned

more discriminating features and better performance for attractiveness classification

than the traditional methods. In Experiment 2, to evaluate the robustness of

the feature representations, we tested the FADNN using the other image dataset

with attractiveness scores rated by human subjects. The results showed that the

FADNN predicted human-rated scores with high accuracy, showing learned intended

features contribute to the facial attractiveness classification. Furthermore, we used
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the deconvolution method (Mahendran & Vedaldi, 2015; Zeiler & Fergus, 2014)

to visualize the learned representations, as shown in Figure 2.3b. The implicit

features of the CSNs were projected to four face-like images by reversing FADNN

(i.e., deconvolution: Yosinski et al., 2015). The face-like images made the implicit

features of attractiveness explicit. This suggested that some configurational cues

of facial attractiveness exist on the face-like images, which are consistent with the

findings in previous psychological studies (e.g., Feser et al., 2007; Marquardt and

Stephen, 2002; Valenzano et al., 2006).

2.2 Experiment 1: Train a DNN for Facial At-
tractiveness

In Experiment 1, we trained a DNN model for gender and facial attractiveness

classification (FADNN). Figure 2.3a shows the concept of this experiment. The

goal of FADNN is to extract feature representation across categories using its four

CSNs. To train FADNN for facial attractiveness, the training dataset of FADNN

must have sufficient representative instances and be diverse, i.e., large amounts of

high and low attractive face images that contain a variety of attributes specific to

each category. High and low attractive samples ensure the DNN model focusing

on learning the intended features of facial attractiveness. The diverse data would

prevent some shortcut features (Geirhos et al., 2020) from learning for classification.

Here, the shortcut features denote the image properties correlated to the task while

they are irrelevant to facial attractiveness. However, most open datasets are either

too small (Altwaijry & Belongie, 2013; Eisenthal et al., 2006; Kagian et al., 2008) or

contain mostly neutrally attractive faces (Rothe et al., 2016; Zhang et al., 2017). To

address this issue, we collected the attractive set from celebrities while collected the

unattractive set from mugshots, which provide sufficient representative instances and

diverse data sources. The constructed dataset comprises 4,512 face images divided

into four categories (female/male × high/low attractiveness).

However, images collected from two distinct data sources may introduce some
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confounding factors, which may also be learned by the FADNN model. To alleviate

this issue, we took the following two steps to mitigate the influence of potentially

confounding factors. Firstly, a strict selection process has been carried out to exclude

low-quality images, such as cropping faces using a unified identification method (face

localization) and three steps of subjective evaluations (see section 2.2.1.1 for details).

Secondly, we applied transfer learning based on the VGG-Face model (Parkhi et al.,

2015), which trained on millions of face images for face identification. The VGG-Face

model can be used as a feature extractor and is similar to the traditional scoring keys

that accompany psychometric tests. A traditional scoring key involves converting

responses to test questions into a set of psychometric scores, while here the VGG-

Face translates a face image into a score with 4,096 dimensions which well-trained for

face identification. Each dimension might subsume differences in multiple features

in the convolution layers. The VGG-Face offers two main advantages in the context

of this study. (1) Successful facial recognition depends on robust facial features.

The VGG-Face aims to represent a given face as a feature vector of identity, which

is invariant under various changes in the facial expression, background, lighting, and

head orientation, and such properties of the image as brightness and contrast. (2)

Transferring the parameters of a well-trained DNN to a different but related task

reduces the risk of overfitting (Y. Wang & Kosinski, 2018).

We designed the output layer of FADNN to consist of four neurons corresponding

to the four categories (CSNs). Because the VGG-Face translates a face image into

a feature vector, the training process on the collected dataset involved optimizing

the weights of the connections between the feature vector and the four CSNs.

Furthermore, each of CSNs needs to be strongly activated by face images from the

corresponding category. We compared the feature representation of FADNN with

two traditional features used for facial attractiveness computing, i.e., geometric

(Kagian et al., 2008) and Gabor features (Y. Chen et al., 2010).
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2.2.1 Materials and methods

2.2.1.1 Dataset

To collect candidates for the attractive sets, we focused on celebrities and their

publicly available images (Zhang et al., 2017). The image data was collected from

two websites, TC Candler 1 and TB World 2. These sites listed millions of suggestions

in terms of images of attractive people every year. In this study, a name list with

406 females and 247 males was created according to the rankings of these websites

in recent years, and 65,300 photos of these person were crawled via Google Image

Search (100 photos/person).

Considering the accessibility of the dataset, we select the unattractive set from

criminal mugshot images, because the mugshot images is public and contain relative

larger variety of face images from attractive to unattractive (MacLin & MacLin,

2004), comparing with celebrities. In this study, we collected 39,764 mugshot

images from the “St. Louis Arrests and Mugshots website” 3 as the resource for the

unattractive set.

Because the locations of the facial regions varied in images, at first, they were

detected and cropped using the Deformable Part Model proposed in Mathias et al.

(2014) and normalized to 224×224 (Parkhi et al., 2015). To ensure image quality,

we cleaned up the raw dataset using the following two steps: (1) Two informatics

researchers (male: aged 25 and 41 years) scrutinized all face images and filtered

out erroneously tagged, side-view, and duplicate photos. (2) Three males and three

females (average age: 27.3 years, SD = 2.7) rated their agreement (agree or disagree)

with the attractiveness of the faces in the sets of highly attractive and unattractive

face images. Finally, we separated the two sets into four categories: highly attractive

females (HAFs), unattractive females (UAFs), highly attractive males (HAMs), and

unattractive males (UAMs). For each category, we chose 1,128 face images that had

secured the agreement of at least three participants to construct a dataset of facial
1https://www.facebook.com/independentcritics/
2https://www.facebook.com/topbeautyworld.d/
3http://www.stlmugshots.com/
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Figure 2.4: Attractiveness ratings of images in the constructed dataset. ****:
p < 0.00001.

attractiveness, consisting of 4,512 face images with four categories.

To ensure that the images are extremely (un)attractive, we conducted an experi-

ment where participants rated the attractiveness of these data. First, 240 images (60

per category) were randomly selected from the dataset. Each image was displayed

on the screen for 1.5 s, and then participants were given 3.5 s to rate it by one of

five categories (as “Very Attractive”, “Attractive”, “Neutral”, “Unattractive”, or

“Very Unattractive”). Fifteen participants were recruited for this experiment (all

male, average age: 22.9 years, SD = 2.4). The rating results of 13 participants were

valid, and these results are shown in Figure 2.4. A significant difference (unpaired

t-test: t(118) = 52.002, p = 3.387× 10−83) exists between attractive females (Mean

± SD: 4.073 ± 0.308) and unattractive females (1.576 ± 0.208). Analogously, a

significant difference (unpaired t-test: t(118) = 39.769, p = 3.399× 10−70) also exists

between attractive males (4.110 ± 0.359) and unattractive males (1.731 ± 0.293).

This study was approved by the Ethics Committee in the Unit for Advanced Studies

of the Human Mind, Kyoto University. Participants provided their written informed

consent to participate in this study.

2.2.1.2 Training the category-specific neurons (CSNs)

The VGG-Face has six convolutional layers and three fully connected layers.

Hierarchical computation was used to repeatedly stack the following operations:

(1) a set of learned two-dimensional convolution operators that extract features
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hierarchically from the input stimuli and the output of previous convolutional layers;

(2) spatial maximum pooling applied to a small local region of the feature maps

obtained from the convolutional operation, which reduces their dimensionality and

gains some degree of translational invariance; and (3) nonlinear activation functions

applied to the pooled responses. The learned low-level features (i.e., edges, corners,

and contours) are represented in the initial layers whereas the subsequent layers

represent high-level object-related representations (i.e. parts of objects or entire

objects) (Zeiler & Fergus, 2014). The fully connected layers (i.e., fc6, fc7, and fc8)

are typically on top of these stacked convolutional operations and generate more

abstract and task-dependent features. The fc6 layer transforms the two-dimensional

feature map into a 4,096-dimensional feature vector. The fc7 layer is a hidden layer

with the same number of dimensions, and could be considered as a middle-level

feature vector. The fc8 layer has 2,622 neurons, each of which represents an identity.

Finally, the output layer is a softmax layer with a cross-entropy objective function

that calculates the probability of the target category of the input. In this study,

we replaced the fc8 layer of VGG-Face with a layer consisting of four neurons for

attractiveness classification, that is, FADNN.

The collected dataset (4,512 face images) was split into a training set and a

testing set, where the former consisted of 4,000 images, (1,000 per category), and

the latter contained 512 images (128 per category). FADNN was fine-tuned on the

last fully connected layer while other parameters were fixed. The model was trained

by minibatch gradient descent with a batch size of 20 (owing to memory-related

constraints) for 30,000 iterations to ensure convergence. The learning rate of the

last layer was set to 0.001, the weight decay was set to 5× 10−4, and the momentum

was 0.9. The process was conducted using the Caffe deep learning framework (Y. Jia

et al., 2014) on an NVIDIA Tesla K40 GPU 12 GB.

2.2.1.3 Traditional feature-based models for facial attractiveness

Geometric features are defined by a set of landmarks on the face (Zhang et

al., 2017) that include shape information. The face landmarks were automatically
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Figure 2.5: Graphical illustration of the facial landmarks (green dots, n=68) and
their indices produced by the Active Shape Model (ASM). (The sample image, used
for illustration only, is of S. Tong and is presented with his full consent.)

extracted using the Active Shape Model (ASM) (Cootes et al., 1995; B. C. Jones et al.,

2007; Sagonas et al., 2013). Figure 2.5 shows the output of the ASM in a graphical

format. Here, the geometrical features were generated from the extracted landmarks,

composed of 2,346 pairwise distances. A Support Vector Machine (SVM) was then

used as the classifier to distinguish images using these extracted features (Mao et al.,

2009). The SVM is a robust classifier that constructs an n-dimensional hyperplane

to optimally separate the data into different categories. The radial-basis function

kernel (Chang & Lin, 2011) was used as well, K (x, y) = exp (−γ ‖x− y‖) , γ > 0,

where γ is a kernel parameter. Gabor features are appearance features encoding

facial shape and texture information over a range of spatial scales (M. Yang et al.,

2013) and are formed by convolution of the image with a family of Gabor kernels.

These kernels had five scales and eight orientations with a size of 39 × 39 pixels

(L. Shen & Bai, 2006; Zou et al., 2007). The results of convolution were vectorized

as a 2,560-D vector (M. Yang et al., 2013) and classified by the SVM.
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Figure 2.6: Comparison of the separability of models using three kinds of features
through PCA-based dimensional reduction. The visualization of the extracted
features illustrates the distribution of the facial features in the four categories
(marked by different colors). Blue dots represent highly attractive female faces;
green dots represent unattractive female faces; yellow dots represent highly attractive
male faces; and red dots represent unattractive male faces.

Table 2.1: Comparison of separability of the three feature models using within-class
and between-class distances.

Methods Within-class distance (WD) Between-class distance (BD)
Geometric feature 1.660 0.633
Gabor feature 1.284 1.527
VGG-Face feature 0.923 1.910

2.2.2 Results and discussion

To evaluate the feature representations learned by FADNN, we compared the

FADNN with traditional feature-based models for facial attractiveness, including

those based on geometric and appearance-based features. We then used Principal

Component Analysis (PCA) to visualize the high-dimensional features extracted by

the models for intuitive analysis of the separability of the 512 test images (Barshan

et al., 2011). These test images were not presented to FADNN in the training phase.

Figure 2.6 shows the distributions of the extracted features in the two-dimensional

space of PCA. In the model that used geometric features, the four categories were

mixed with one another, thus having low separability. The model using Gabor

features has better separability than the geometric feature model, but it was difficult

to show enough separability. In contrast, the VGG-Face feature (fc6) exhibits the

best separability, which indicates it has the ability to classify different attractiveness

categories.
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Table 2.2: Comparison of the classification accuracy of different models.

Methods Accuracy
Geometric features model 0.906
Gabor features model 0.928
FADNN 0.981

In addition, the within-class and between-class distances (WD and BD) were

used to quantitatively evaluate the separability of these features. WD and BD

denote the distances between features within a category and between categories

respectively. Thus, smaller the values of WD and larger the values of BD indicate

that the features are more separable. The DW and DB are and defined as follows:

DW =
∑J

j=1
∑K

k=1(d̄(xj,k, c))
J ×K

,

DB =
∑J

j=1 d(x̄j, c)
J

,

(2.1)

where xj,k represents the k-th instance in the j-th class, d̄(xj,k, c) represents the

average Euclidean distance between instance xj,k and all other k− 1 instances in the

j-th class, and d(x̄j, c) represents the mean Euclidean distance between the center

of the j-th class and the center of the other j − 1 classes.

Table 2.1 shows the quantitative results of the models. The VGG-Face feature

model obtains the smallest WD and largest BD, which suggests that it is more

discriminating than the other feature models and more representative of the attrac-

tiveness categories. Moreover, we compared the models in terms of the predictive

accuracy of the 512 test images, as shown in Table 5.1. Both the geometric feature-

based and Gabor feature-based models achieve accuracies over 0.90, but FADNN

outperforms them with an accuracy of 0.981. These results indicate that FADNN

can learn more discriminative information from the different categories than the

traditional feature-based models.
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2.3 Experiment 2: Interpret the Deep Feature
Representations

Experiment 1 indicated that the FADNN learned compelling features to discrim-

inate the facial attractiveness categories, outperforming traditional feature-based

models. However, the FADNN is in a data-driven way, which may capture whatever

information that was varying across given categories in the training images (M. Q.

Hill et al., 2019). To examine the possibility that the captured representation

consists of physiognomic features contributing to (un)attractiveness, we designed an

additional experiment that interprets feature representations learned by FADNN,

discovering the association between the feature representations with attractiveness.

Firstly, we tested the FADNN on another dataset (L. Liang et al., 2018) without

using faces from the dataset for training. This dataset constructed using face images

with continuous attractiveness scores given by humans, the same race and neutral

expression without backgrounds. The result demonstrates that the scores of CSNs

correlated with attractiveness scores, which is a shred of converging evidence that

FADNN learns feature representations correlating with facial attractiveness.

Secondly, to intuitively interpret the feature representations for attractiveness

categories, we used the deconvolution method (Mahendran & Vedaldi, 2015; Zeiler

& Fergus, 2014) to visualize the learned representations of CSNs as face-like images.

Figure 2.3b shows the flowchart of the visualization. The deconvolution method was

proposed to interpret the intrinsic functions of DNNs. The face-like image showed

in Figure 2.3b is an example generated by the neuron representing the category

of attractive females. This method can generate an image that maximizes the

activation of a specific neuron by inputting a content-free (noise) image (X. Liang

et al., 2019). Because the CSNs are located in the fully connected layer, the position

information of the preferred patterns is lost (Horikawa & Kamitani, 2017). Instead

of a content-free image, we used the mean of all faces as input. Thus, the features

learned by a CSN can be projected back into a facial space (Grant et al., 2016).
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2.3.1 Methods

2.3.1.1 Dataset with attractiveness scores

The SCUT-FBP5500 dataset (J. Zhao et al., 2019) contains 5,500 facial images.

Each image was rated by 60 volunteers. The average score was used as the ground

truth to remove personal preference bias. The dataset has been used for studies of

facial attractiveness analysis in both computer vision studies (Shi et al., 2019; Xu

et al., 2019) and the psychological studies (J. Zhao et al., 2019), which was divided

into four subsets with diverse races and both genders, including 2,000 Asian females,

2,000 Asian males, 750 Caucasian females, and 750 Caucasian males. Because the

FADNN trained using dataset with mostly Caucasian faces, only face images of 750

Caucasian females and 750 Caucasian males were used for this experiment. Note

that the training data included none of the faces in the SCUT-FBP5500 dataset.

2.3.1.2 Method to generate mean face images

The mean face images were generated by three sequential processes: face landmark

detection, coordinate transforms, and averaging. First, the facial landmarks of all

faces were extracted by the ASM, as shown in Figure 2.5. Second, landmarks on the

coordinate system of the input face were transferred to the average face coordinate

system by the following similarity transform matrix:

S =

sxcos(θ) sin(θ) tx

−sin(θ) sycos(θ) ty

 , (2.2)

where the first two columns of this matrix encode rotation (θ) and scale (sx,sy),

respectively, and the last column encodes translation (tx,ty) in the x and y directions.

Third, the mean face image was generated by taking the mean of the pixel intensities

of all warped face images.

2.3.1.3 Generating face-like images for CSNs

The deconvolution method (Mahendran & Vedaldi, 2016; A. Nguyen et al., 2016)

was employed to visualize the learned representation for the CSNs of FADNN. The

31



technique was used to project the learned representation of a particular neuron onto

an input image by maximizing the activation of this neuron (Erhan et al., 2009) (as

an optimization problem). A mean face image was first propagated through FADNN,

and the derivative of a target CSN activation was then calculated with respect to

each pixel of the input image 4. Then, changed the pixel values of the input image to

increase the activation of the target CSN. The total variation and jitter (described in

the study: Mahendran and Vedaldi, 2016) were used in the optimization process to

improve the quality of the generated images. The optimizer was implemented using

the source code provided by A. Nguyen et al. (2016). Finally, four face-like images

corresponding to the four CSNs (categories) were generated by the deconvolution

method.

2.3.2 Results and discussion

2.3.2.1 Test deep feature representations on another dataset

To evaluate the robustness of our model, we used PCA to visualize the high-

dimensional features extracted by the model on the data in the SCUT-FBP5500

dataset. However, the SCUT-FBP5500 dataset lacks categorical labels, which is

different from our constructed dataset. Thus, we chose the 10% highest/lowest

scoring faces for testing, i.e., 75 images for each category. Figure 2.7 shows the

distribution of the VGG-Face features of these 300 images, which is highly similar

to the distribution shown in Figure 2.6.

In addition, we compared the correlation between the activation of the CSNs

and the attractiveness scores. Before the analysis, it should be noted that the

distribution of the attractiveness scores of the SCUT-FBP5500 dataset is unbalanced

(see Figure 2.8), which may affect the correlation analysis. Thus, we re-balanced

the dataset as follows. First, the female and male facial sets were each divided
4We only use one mean face as input without cluster one category into various aspects, which

is different from the original setting in A. Nguyen et al. (2016). A. Nguyen et al. (2016) aims to
observe the variance within the category from various aspects. However, we target to compare the
variance between categories. Thus, we average the faces of images from different categories and
use the same image as input for a fair comparison.
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Figure 2.7: Distribution of the facial features of the SCUT-FBP5500 dataset. Blue
dots represent the 75 female images with the highest attractiveness scores (top
10%); green dots represent the 75 female images with the lowest attractiveness
scores (bottom 10%); yellow dots represent the 75 male images with the highest
attractiveness scores (top 10%); and red dots represent the 75 male images with the
lowest attractiveness scores (bottom 10%).

into 20 subsets according to the attractiveness scores (i.e., from lowest score to

highest score in 20 steps). Second, 10 face images were randomly selected from

every subset. All images would be selected if the subset had no more than 10

faces. We performed 10 repeated sampling phases. In each sampling phase, 173

female face images and 180 male images were selected. Figure 2.8 (right) shows

the distribution of the attractiveness scores of a sampling phase (353 face images).

Finally, the face stimuli were fed to FADNN, which outputted the scores of the four

CSNs in the last fully connected layer (fc8): the highly attractive female neuron

(Neuron-HAF), unattractive female neuron (Neuron-UAF), highly attractive male

neuron (Neuron-HAM), and unattractive male neuron (Neuron-UAM). For each

sampling phase, the scores of Neuron-HAF and Neuron-UAF were recorded for the

173 Caucasian females. Analogously, the scores of Neuron-HAM and Neuron-UAM

were recorded for the 180 Caucasian males.

Pearson correlation was used as the metric to evaluate the relationship between

the CSN scores and human-rated attractiveness scores. For the female faces, the

average correlation coefficient (of the ten repeated sampling phases) between the

scores of Neuron-HAF and the attractiveness scores was r = 0.7583 ± 0.0198, all
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Figure 2.8: Distribution of the attractiveness scores of the SCUT-FBP5500 dataset.
The left figure illustrates the distribution of the attractiveness scores (3,000 face
images). The right figure illustrates the distribution of the attractiveness scores
after re-balancing (353 face images).

(a) (b)

Figure 2.9: The correlation between the activation of the CSNs and the attractive-
ness scores. (a) Correlation between the Neuron-HAF scores and attractiveness
scores of 173 female images. (b) Correlation between the Neuron-HAM scores and
attractiveness scores of 180 male images.

p <0.00001 (see Figure 2.9a), whereas the average correlation coefficient between

the scores of Neuron-UAF and the attractiveness scores was r = −0.5655± 0.0217,

all p < 0.00001. For the male faces, the average correlation coefficient between the

scores of Neuron-HAM and the attractiveness scores was r = 0.6653± 0.0161, all

p < 0.00001 (see Figure 2.9b), whereas the average correlation coefficient between

the scores of Neuron-UAM and the attractiveness scores was r = −0.6221± 0.0202,
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all p < 0.00001. Xu et al. (2019) found that the handcrafted feature-based models

can predict attractiveness scores with Pearson correlations of [0.6, 0.7], whereas the

DNN-based models can predict attractiveness scores with Pearson correlations of

[0.8, 0.9]. Unlike these models, even though that our FADNN was not trained on

the SCUT-FBP5500 dataset, Neuron-HAF and Neuron-HAM achieve performances

that are comparable with those of handcrafted feature-based models. This result

demonstrates that the four trained CSNs subsume the main features associated with

facial categories and can be used as metrics to determine the membership of an

image in a category.

2.3.2.2 Visualize the deep feature representations

The four generated face-like images are shown in Figure 2.10 that present mainly

facial features. In addition, these images illustrate the different visual features

of the four categories. For instance, the generated image for Neuron-HAF has a

pointed chin and standard arched eyebrows. On the contrary, the generated image

for Neuron-UAF has a short chin and short eyebrows. These features are consistent

with the shape analysis in terms of the attractiveness of female faces (Feser et al.,

2007; Valenzano et al., 2006). Moreover, the image generated for Neuron-HAM has

a square chin, which correlates with the analysis of attractive male faces (Rhodes,

2006).

Moreover, Figure 2.11 shows the face-like image generated from Neuron-HAF

covered with the golden facial mask, which was proposed by Marquardt and Stephen

(2002) that derived from Golden Decagon Matrices composed of the complicated

relationship of the Golden ratio phi. It seems that the attractive face generally

conforms to the golden facial mask. However, the claim that attractive faces should

conform to the golden facial mask could not be tested in real-world faces due to

the difficulty in defining the facial landmarks to make measurements corresponding

to the geometrical lines of the golden facial mask. The result suggests that the

FADNN capture golden facial mask from the real world face images as features for

classification.
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(a) (b)

(c) (d)

Figure 2.10: Generated face-like images illustrating the discriminating features
learned from raw face data. The images were generated using methods using
different CSNs: (a) highly attractive female neuron (Neuron–HAF), (b) unattractive
female neuron (Neuron-UAF), (c) highly attractive male neuron (Neuron–HAM),
and (d) unattractive male neuron (Neuron-UAM).

Therefore, the generated images showed the learned feature representation of

the CSNs for different categories of attractiveness. Notably, Some configurational

features observed in the generated images were consistent with the insights of

psychophysical research (Marquardt & Stephen, 2002; Rhodes, 2006; Valenzano

et al., 2006).
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Figure 2.11: The face-like image generated from Neuron-HAF is found covered with
golden facial mask (Marquardt & Stephen, 2002).

2.4 Discussion

In this chapter, we proposed FADNN to learn facial attractiveness and inves-

tigated the implicit representations that could be learned by FADNN associating

with facial attractiveness. In Experiment 1, we built a dataset containing 4512

extremely attractive/unattractive face images and trained the FADNN only using

gender and attractiveness (2 × 2) categories. The FADNN used four CSNs as

feature representations of facial attractiveness and gender in each category. Compar-

ing with traditional features (Geometric features and Gabor features), the feature

representations learned by FADNN showed the best discrimination performance,

which achieved accuracy up to 0.981 on classifying attractive/unattractive faces.

In Experiment 2, we tested and interpreted the implicit representations learned by

FADNN. To test the robustness of the FADNN, we used the image dataset out of the

training set to test the FADNN. The experimental results showed that the activation

of four CSNs was correlated to the subjective rating scores by human participants

ranged between 0.5655 and 0.7583. This suggested that the four CSNs subsume the

main features associated with facial categories and learn the intended features to

represent different facial attractiveness categories. Furthermore, the CSNs projected
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the attractive features of different categories onto four face-like images, which make

the hidden representations to intuitive representations. We observed that some

configurational cues of facial attractiveness exist on the generated images consistent

with the suggested cues by previous studies, such as pointed chin and standard

arched eyebrows for attractive female (Feser et al., 2007; Valenzano et al., 2006),

square chin (Rhodes, 2006) for attractive male and golden facial mask (Marquardt

& Stephen, 2002).

This chapter makes the following three contributions. (1) We created a novel

dataset with 4,512 face images that belong to two extreme categories of facial

attractiveness. It is different from others that either has a small set or include a

relatively large proportion of neutral faces. Using the new dataset, FADNN learns

features that represent extreme categories, which makes it possible for us to compare

the differences between categories from the feature domain. (2) We proposed the

FADNN model to recognize facial attractiveness, which directly learns the facial

attractiveness representation directly from the data without manual intervention.

The manual intervention such as annotated the landmarks aims to use landmarks

to drive the model but also constrains the model to only learning the landmarks.

However, data-driven DNN provides opportunities to observe the strategy of DNN

extracting from the real world images for the task and explore new representations

for psychology. (3) We interpreted the feature representation learned by FADNN.

The results suggested some visible features associated with the configurational cues

of facial attractiveness found in the previous psychological studies.
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Chapter 3

Putative Ratios in DNN for Facial
Attractiveness

Empirical evidence (Pallett et al., 2010) has shown that there is an ideal arrange-

ment of facial features (ideal ratios) that can optimize the attractiveness of a person’s

face. These putative ratios describe facial attractiveness in terms of spatial relations

and provide important rules for measuring the attractiveness of a face. In Chapter

2, the experimental results suggested that the proposed FADNN learned effective

representations for attractiveness categories, including configurational cues of facial

attractiveness. In Chapter 3, we examine whether the putative ratios are learned by

FADNN, where no annotated facial features for attractiveness are explicitly given.

Two experiments are conducted to compare the output of the FADNN with the

performance of human cognition to answer this question.

3.1 Introduction

Attractiveness is one of the significant properties of human faces (Frieze et al.,

1991; Pashos & Niemitz, 2003). A large body of studies suggested that people

implicitly use the same criteria for determining facial attractiveness, although some

individual and cross-cultural differences have been noted (detailed information can

be found in section 2.1). One criterion of facial attractiveness is measured using

ideal ratios (Valenzano et al., 2006), such as neoclassical canons (Jayaratne et al.,

2012; Schmid et al., 2008), golden proportions (Borissavliévitch & Hautecœr, 1958;

Jefferson, 2004), facial thirds (Farkas & Kolar, 1987; Farkas & Schendel, 1995),
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and new golden ratios (Bóo et al., 2013; Pallett et al., 2010). These putative rules

describe a physical measure for facial attractiveness using spatial relations between

parts of the face. For example, the ancient Greeks believed that the golden ratio

represents the essence of beauty (Rhodes, 2006). Leonardo da Vinci’s painting

Mona Lisa also illustrates the golden ratio of facial beauty (Atiyeh & Hayek, 2008;

Jefferson, 2004).

Empirical evidence provides support for the association between putative ratios

and the human perception of facial attractiveness. For example, the golden ratio

is an irrational value (0.618) and a commonly accepted metric for measuring the

harmoniousness of proportions in aesthetics. The golden ratio has also been proposed

as a universal standard of facial attractiveness (Jefferson, 2004), especially as a

standard in plastic surgery (Holland, 2008), and has been used to compute facial

attractiveness (Schmid et al., 2008). In addition, Pallett et al. (2010) has reported

that ideal facial ratios, called the new golden ratios, can optimize the attractiveness

of face images. These new golden ratios consist of two ratios: a vertical ratio of the

eye–mouth distance to the height of the face is approximately 0.36, and a horizontal

ratio of the distance between the eyes to the width of the face is approximately 0.46.

Furthermore, H. Shen et al. (2016) found that the facial attractiveness induced by

facial proportions evokes a neural response in some regions related to the reward

system in the brain, such as the orbitofrontal cortex and amygdala. This suggests

that the putative ratios contain high-level information about facial attractiveness.

The rules of putative ratios have also been used to construct computer models

for the assessment of the attractiveness of face images (F. Chen & Zhang, 2014;

Gunes & Piccardi, 2006; Schmid et al., 2008). Some of these models relied on a set of

putative ratios such as the golden proportions and facial thirds as features of the face

images and used them to calculate attractiveness scores. For instance, Schmid et al.

(2008) used a feature vector comprising 77 putative ratios to build a computer model

for facial attractiveness. Results of experiments revealed a significant correlation

between the scores predicted facial attractiveness by the computer model and those

rated by human subjects. Other approaches (Kagian et al., 2008; Zhang et al., 2017)
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used only geometric features based on the automatic detection of facial landmarks

and all the ratios among them as discussed in Section 2.1. For example, Kagian

et al. (2008) used 6,972 distance vectors of 84 facial landmarks as features to predict

the attractiveness of faces. They reported that these geometric features implicitly

capture the basic human characteristics for the perception of facial attractiveness,

such as averageness (Langlois & Roggman, 1990) and symmetry (Rhodes et al., 1999).

However, these ratio-based models require the annotation of the facial landmarks,

which incurs high labor costs. These landmarks also lack hierarchical, high-level

semantic information (S. Wang et al., 2014).

In Chapter 2, we proposed a DNN model for facial attractiveness (FADNN) and

found the model captured more effective representation, comparing with handcrafted

features. The DNNs learn higher-level features from a large number of face images.

Recently, some similarities have been observed between DNNs and biological vision

systems in terms of their operation (Cadieu et al., 2014; Cichy et al., 2016; Kietzmann

et al., 2019; O’Toole et al., 2018; Seeliger et al., 2018; P. Wang & Cottrell, 2017;

Yamins & DiCarlo, 2016). Cichy et al. (2016) showed that the DNN could capture

the similar stages of human visual processing in both time and space, from the early

visual areas to the dorsal and ventral streams. Seeliger et al. (2018) reported that

DNNs could capture hierarchical representations of color for object recognition that

rivals the performance of primates. For instance, the middle layers of the DNN

show a denser sampling of hue that suggests some correlation with hue maps in

V2 (Conway, 2003). Thus, some researchers (Kriegeskorte, 2015; VanRullen, 2017)

have proposed using DNNs as a new tool to gain insights into visual perception

in human. However, the above studies mainly concentrated on object recognition

tasks to explain the association between DNNs and human visual perception. In

addition, little research has explored the implicit feature representations learned by

DNNs that are associated with high-level perception. For example, the studies of

McCurrie et al. (2018) and Parde et al. (2019) are examples in which implicit feature

representations learned by DNNs are used for understanding subjective social traits

(e.g., trustworthiness, dominance, and anxiety) of human face perception.
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In the previous chapter, we visualized the learn representations of FADNN.

The generated images suggest that the configurational cues of facial attractiveness

might be learned by FADNN. This chapter examines whether the putative ratios

have been learned by FADNN, which is based only on categorical annotation,

i.e., where no annotated facial features for attractiveness are explicitly given. We

conducted two experiments to address the issue of how to evaluate the implicit

feature representations in FADNN contain the putative ratios of facial attractiveness1.

In Experiment 1, we measured the putative ratios on these face-like images, which

were generated by the specific neurons representing the features subsume from raw

images. In Experiment 2, a “psychophysical-like” experiment was conducted on the

trained FADNN to examine whether the responses of the CSNs match the results of

human judgments of the putative ratios (e.g., Pallett et al., 2010). The experimental

results demonstrated that the FADNN learned putative ratios as key features for

the representation of facial attractiveness. This finding advances our understanding

of facial attractiveness via DNN-based perspective approaches.

3.2 Experiment 1: Putative Ratios in Neuron In-
terpretation

The generated face-like images in Chapter 2 contained essential features (such

as the mouth, eyes, and chin), thus we can assess the information using FADNN on

the basis of physical measures of facial attractiveness such as the golden ratio. In

Experiment 1, we employed the putative ratios of facial attractiveness, including the

golden ratio and new golden ratios, to quantify the generated images, estimating

the association between the generated images and human perception of facial

attractiveness. The rules of the golden ratio can be used to measure ratios between

facial elements to obtain the local putative ratios of facial attractiveness (Holland,

2008; Jefferson, 2004), whereas the new golden ratios give global features of these

putative ratios (Bóo et al., 2013; Pallett et al., 2010).
1It should be noted here that we examined feature representations of faces only based on

photos. These do not necessarily cover all inherent features of individual faces.
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(a) (b)

Figure 3.1: Measurement of the putative ratios on the generated face-like images.
The boxes and lines represent the rules of the golden ratio and new golden ratios,
respectively. A detailed description of the measurement of the rules of the golden
ratio is provided in Table 3.1.

3.2.1 Methods

The four generated face-like images show mainly facial features. The observation

results illustrated different visual features of the four categories. For instance, the

generated image for Neuron-HAF has a pointed chin and standard arched eyebrows.

Here, we calculated ratios between landmarks, which suppose to represent the

putative ratios (i.e., the golden ratio and new golden ratios), for the generated

images to provide quantitative measures of facial attractiveness. To measure the

rules of the golden ratio for facial attractiveness, the six ratios (rm) described in

Table 3.1 were measured, as shown by the boxes in Figures 3.1a. In addition,

the new golden ratios of facial attractiveness included a horizontal and a vertical

ratio, mathematically defined as Rh = 0.5(H1+H2)
H3

and Rv = V1
V2
, respectively. The

measurements of H1, H2, and H3, and V1 and V2 are shown in Figures 3.1b.

3.2.2 Results and discussion

Tables 3.2 and 3.3 show the results of the measurements according to the rules

of the golden and new golden ratios, respectively, for the generated images. As
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Table 3.1: Rules of the golden ratio for attractive faces (Schmid et al., 2008). The
color names in brackets represent the colors of the rectangles in Figures 3.1a. Here,
rm represents the m-th ratio for an attractive face with the golden ratio.

No. Description of Ratio
r1 Distance between the top and bottom of eyebrows to that between eyebrows and

hairline (White)
r2 Distance between the mouth and bottom of nose to that between bottom of nose

and pupil of eye (Blue)
r3 Distance between the pupil of eye and bottom of nose to that between bottom of

nose and chin (Blue)
r4 Distance between the chin and mouth to that between mouth and pupil of eye

(Blue)
r5 Distance between the side of face side and inside of eye to that between inside of

eye and side of face (Golden)
r6 Distance between the center of nose and inside of eye to that between inside of

and outside of eye (Black)

shown in Table 3.2, the numbers in the brackets describe the absolute error between

the golden ratio and the measured values. These five ratios (except for r5) of the

generated image for Neuron-HAF are closer to the golden ratio than those of the

image generated for Neuron-UAF. An analogous difference was found between the

generated images for Neuron-HAM and Neuron-UAM. The mean absolute error

(MAE), which reflects the difference between the measured ratios and the golden

ratio. Table 3.2 shows that the generated image for Neuron-HAF has a lower MAE

(0.066) than that generated for Neuron-UAF (0.183). Thus, the image for Neuron-

HAF is closer to the putative ratios of facial attractiveness according to the rules of

the golden ratio. This tendency also holds for the image of Neuron-HAM (0.175),

which has rations closer to the golden ratio than does Neuron-UAM (0.258).

Table 3.3 shows that the values of Rv of Neuron-HAF and Neuron-HAM are

close to the standard value (0.36) of the new golden ratio. Both Rh and Rv for the

image for Neuron-HAM (0.470, 0.354) are close to the new golden ratios (0.46, 0.36).

An analogous consistency was observed in the image of Neuron-HAF (0.494, 0.357).

However, neither of these consistencies appears in the images for Neuron-UAF and

Neuron-UAM. For instance, the image for Neuron-UAF has ratios of (0.339, 0.393),
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Table 3.2: Measured ratios for generated images for different CSNs. The values in
the brackets indicate the absolute error between the measured values and the golden
ratio. MAE represents the mean absolute error.

Golden Ratio r1 r2 r3 r4 r5 r6 MAE

Neuron-HAF 0.681 0.536 0.761 0.619 0.585 0.694 0.066(0.063) (0.082) (0.143) (0.001) (0.033) (0.076)

Neuron-UAF 0.755 0.416 1.032 0.551 0.639 0.360 0.183(0.137) (0.202) (0.415) (0.067) (0.021) (0.258)

Neuron-HAM 0.346 0.381 0.660 0.426 0.668 0.363 0.175(0.272) (0.237) (0.042) (0.192) (0.050) (0.255)

Neuron-UAM 1.020 0.907 0.379 1.094 0.530 0.669 0.258(0.402) (0.289) (0.239) (0.476) (0.088) (0.051)

Table 3.3: Results of the new golden ratios for generated images for the CSNs.
Here, Rh and Rv respectively represent the horizontal and vertical ratios defined by
the new golden ratios for attractive faces. The values in the brackets indicate the
absolute error between the measured values and the new golden ratios.

New Golden Ratio Rh(0.46) Rv(0.36)
Neuron-HAF 0.494 (0.034) 0.357 (0.003)
Neuron-UAF 0.339(0.121) 0.393(0.033)

Neuron-HAM 0.470(0.010) 0.354(0.006)
Neuron-UAM 0.415(0.045) 0.367(0.007)

which are far from the new golden ratios. In addition, the Rv of Neuron-HAM

(0.354) is close to the standard value. However, the standard for new golden ratio is

supposed to have a good fit for the combination of Rh and Rv, no matter which one

measurement (Rh or Rv) doesn’t fit standard value would be considered as lower

attractiveness to standard face (Pallett et al., 2010).

The quantitative result showed that the images for Neuron-HAF and Neuron-

HAM contain arrangements of facial parts close to the golden ratio and new golden

ratios. However, we did not explicitly present these shape features and rules of the

putative ratios in the learning process. Therefore, this result suggests that the rules

of the putative ratios were learned by FADNN without any cues.
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3.3 Experiment 2: Putative Ratios in Neuron Ac-
tivation

Experiment 1 showed that the rules of putative ratios might be encoded in

feature representations of four CSNs. To further explore the association between the

putative ratios and the CSNs, we conducted a psychophysical-like experiment for

FADNN. In a psychophysical experiment with human observers, Pallett et al. (2010)

distorted the original face using different horizontal and vertical ratios, and found

that faces with the optimal ratios (i.e., new golden ratios) rated as the highest facial

attractiveness. Similarly, we distorted the horizontal and vertical ratios of faces while

keeping other factors constant, and used these faces as stimuli for FADNN. Figure 3.2

shows examples of facial stimuli with different degrees of distortion. The test stimuli

were made by distorting the face images from a new dataset. When the modified

face images were fed into FADNN, if it had learned the golden ratio as feature for

attractiveness, its CSNs would be expected to generate lower attractiveness scores

for distorted face images.

3.3.1 Methods

3.3.1.1 Method of distorting face shapes

To obtain the stimuli of the distorted faces, we used a computer vision method

to manipulate the horizontal and vertical proportions of original images. First, facial

landmarks were relocated using the active shape model. Second, new landmarks were

computed by simultaneously increasing the eye–mouth distance and the distance

between the eyes to a certain extent. Third, Delaunay triangulation (W. Hong

et al., 2015) was employed to distort the faces in face images according to the new

landmarks.

For each original face image, the eye–mouth distance and the distance between

the eyes were simultaneously expanded by 4%, 8%, 12%, and 16% compared with

those in the original image. The examples of the expanded faces are shown in
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Figure 3.2: Examples of face stimuli. Original face image and four degrees of
expanded face images.

Figure 3.2. In addition, we contracted the distance between the eyes by 16%, as

shown in Figure 3.3. We selected images from two public face image datasets:

colorFERET 2 and GTAV (Tarrés, 2012). After removing low-quality images, 887

images (527 males and 360 females) were selected. In addition, we measured the

Rh and Rv (described in Experiment 2) for every original image. The mean values

and standard deviations of the Rh and Rv of the female faces are 0.465± 0.024 and

0.358± 0.020, while those of the Rh and Rv of the male faces are 0.465± 0.026 and

0.365± 0.020, respectively. Both were approximated as 0.46 and 0.36, respectively,

which is analogously consistent with the new golden ratios. Each image was cropped

and resized to 224×224 pixels.

Although the ColorFERET dataset consists of 994 face images, some of them

were images of the same person. We chose one image per person, resulting in 504

images of males and 347 images of females. The GTAV face dataset comprises 44

face images. Again, by discarding multiple images of the same person, 23 images of

males and 13 of females were obtained. In total, 887 face images were used in this

experiment.

2http://face.nist.gov/colorferet/request.html

47



Figure 3.3: Examples of original and contracted face stimuli.

3.3.1.2 Experimental procedure

The face stimuli were input into FADNN. For each image, the model assigned

scores (activations) for each of the four CSNs. The scores were used as metrics to

evaluate the extent to which an input image belongs to one of the experimental

categories. The expanded stimuli consisted of five levels of distortion: the original

photograph and four levels of expansion (887 original images: 527 males and 360

females). The contracted stimuli include two levels, the original photograph and a

level of contraction. The dependent variables were scores in the CSNs. The results

were analyzed using the SPSS 25 statistical software.

3.3.2 Results and discussion

Figure 3.4 shows the scores (mean values and standard deviations, SDs) of the

four CSNs for different degrees of expansion. As the faces were expanded, both the

scores of Neuron-HAF and Neuron-HAM decreased whereas those of Neuron-UAF

and Neuron-UAM increased.

For the original faces, the paired t-test was used to compare the scores of Neuron-

HAF with those of Neuron-UAF, as well as those of Neuron-HAM with those of

Neuron-UAM. For male faces, there was no significant difference between either

pair — Neuron-HAF vs. Neuron-UAF: t(526) = 1.385, p=0.167; Neuron-HAM vs.

Neuron-UAM: t(526) = 1.522, p=0.129. This indicates that the original images of

the male faces are close to neutral faces, and belong to neither HAM nor UAM.

For female faces, there were significant differences in both pairs — Neuron-HAF vs.

Neuron-UAF: t(359) = -7.587, p < 10−12; Neuron-HAM vs. Neuron-UAM: t(359)
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= 13.483, p < 10−33. The scores for Neuron-UAF were 10.44 higher than those for

Neuron-HAF on average, which indicates that the original images of females were

mostly predicted to be unattractive.

To examine the effects of the degree of expansion, an analysis of variance

(ANOVA, degree of expansion × gender) was used independently for each CSN,

. The main effects of the degree of expansion were significant in all neurons

— F (4, 4425) = 126.815, 102.354, 132.332, and 116.690, respectively; p<0.00001.

Multiple comparisons (Bonferroni) of the degree of expansion were significantly

different in all neurons for the original photographs, and those expanded by 4%, 8%,

and 12% (all p<0.00001). In particular, in a comparison of images expanded by 12%

and 16%, the activations of Neuron-HAM and Neuron-UAM changed significantly

— p=0.011 and p=0.029, respectively, whereas the changes in Neuron-HAF and

Neuron-UAF were more moderate — p=0.624, and p=0.720, respectively. The scores

of Neuron-HAF and Neuron-HAM decreased when the faces expanded, whereas those

of Neuron-UAF and Neuron-UAM increased, indicating that FADNN is more likely

to recognize a face as unattractive when its measures are more than the putative

ratios of facial attractiveness.

In addition, the interaction (degree of expansion × gender) is significant in

Neuron-HAF, Neuron-HAM, and Neuron-UAM — F (4, 4425)=11.405, p < 10−8,

F (4, 4425) = 3.935, p=0.003, and F (4, 4425) = 17.331, p < 10−13, respectively.

However, in Neuron-UAF, the interaction (degree of expansion × gender) is only

marginally significant — F (4, 4425)=2.113, p=0.077.

Figure 3.5 compares the scores of the four CSNs for contracted stimuli with

those of the original photographs. For male stimuli, the scores of Neuron-HAM,

Neuron-HAF, and Neuron-UAF change significantly — t(526) = 3.322, 13.231 and

-11.698, respectively; all p<0.00001. Specifically, the contracted stimuli obtain lower

Neuron-HAM scores than do the original photographs, which means the confidence

that the image was of an attractive male decreased as the distance between the eyes

contracted. For the female stimuli, the scores of Neuron-HAF, Neuron-UAF, Neuron-

HAM, and Neuron-UAM change significantly — t(359) = 15.780, -6.953, -3.662,
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Figure 3.5: Scores of the four CSNs obtained by testing the contracted stimuli
compared with the original photographs. The left figure illustrates the neuron scores
of 527 male photographs and 527 contracted male stimuli. The right figure illustrates
the neuron scores of 360 female photographs and 360 contracted female stimuli. NS:
p > 0.05; ****: p < 0.00001.

and -4.892 respectively; all p<0.00001. Analogously, the scores of Neuron-HAF

decrease and the scores of Neuron-UAF increase when the distances between eyes

are contracted. These results show that FADNN recognizes a face as unattractive

when its measures are less than the putative ratios of facial attractiveness.

Pallett et al. (2010) reported that human judgment of attractiveness decreases

when the facial arrangement strays from the new golden ratios. The above experiment

demonstrated a similar trend in the attractiveness determination of FADNN, although

it was not explicitly trained using putative ratios. This result confirms that the

putative ratios were encoded into FADNN. Moreover, the new golden ratios had a

significantly stronger effect for female faces than male faces, which suggests that

rule of the putative ratios impacts judgment of faces of females more than those of

males in FADNN. This suggest that the female faces may more sensitive than male

faces to putative ratios for human facial attractiveness perception. Although some

psychophysical studies of putative ratios with human observers have shown that the

new golden ratios can be employed to judge both female and male faces (Bóo et al.,

2013; Yoo et al., 2013), to the best of our knowledge, the difference in size effect

between female and male face images has not been studied. This suggestion can be

verified in a further rigorous psychological experiment by the researchers who are

interested in the functional significance or origin of attractiveness perception.
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3.4 Discussion

In Chapter 2, we trained FADNN only using gender and attractiveness (2 × 2)

categories, and it accurately classified images into these categories of facial attractive-

ness. The FADNN used four CSNs represented the features of facial attractiveness in

each category. The CSNs projected the facially attractive features onto four face-like

images, demonstrating the configurational cues of facial attractiveness. In addition

to the suggestions, this chapter offered a demonstration that features learned by a

FADNN include the putative ratios while only the attractiveness category is given

as a supervisory signal. In Experiment 1, we found that the generated face-like

images representing high attractiveness contain the putative ratios whereas images

representing low attractiveness do not through quantitatively analyses. To validate

this finding, we designed a psychophysical-like experiment for FADNN in Experiment

2, where face images were distorted away from the new golden ratios. The scores

given by the four CSNs showed tendencies that are similar to those observed in

human judgments of facial attractiveness in Pallett et al. (2010). These results

suggest that the rules of putative ratios are learned as the latent distinctive features

that represent facial attractive categories in FADNN.

The FADNN learned the putative ratios for attractiveness judgment similar to

the human perception of attractiveness for two reasons. First, attractiveness was

annotated by human participants in the training images. The rules of the putative

ratios are shared criteria for the perception of facial attractiveness across humans and

across participants in this study. Thus, FADNN might learn such shared criteria of

attractiveness. Second, the DNN has the capacity to learn abstract features from raw

inputs (A. Nguyen et al., 2016). For example, Zeiler and Fergus (2014) found that,

in object recognition, the initial layers of the DNN capture low-level features (i.e.,

color, edges, and corners) whereas subsequent layers capture high-level object-related

representations. In particular, the last layer captures the representation of the entire

object. The rules of the putative ratios relate to a high-level representation of facial

attractiveness (H. Shen et al., 2016). Thus, it is natural to argue that FADNN can
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learn high-level representations similar to these rules in the human perception of

attractiveness.

There is a limitation in the dataset. It is composed of non-standardized images

and the (un)attractive categories were collected from two sources (celebrity and

mugshots) even though we excluded low-quality images before the training phase.

These may introduce confounding factors to FADNN, because recent studies (Colón

et al., 2020; M. Q. Hill et al., 2019) showed that DNN retains certain features

irrelevant to the tasks (annotations). Thus, the FADNN may learn some shortcut

features, which could influence the results of this study. For example, the quality of

makeup in the face images of attractive females might have been different from those

of unattractive females. To alleviate learning shortcut features from each source,

we applied transfer learning on VGG-face model, specifically, fine-tune FADNN

based on the high-level representation of face identity. Then, we tested FADNN

on the face images out of the distribution of training data in Chapters 2 and 3,

and importantly, a highly controlled dataset with varied putative ratios was used in

Chapter 3. Under such complicated conditions, the results still suggest that FADNN

has learned putative ratios from the dataset. However, it does not mean that the

attractive scores are solely determined by the putative ratios. The other features

(e.g., symmetry and sexual dimorphism) that have been learned by FADNN require

further investigation.

Another limitation is the FADNN, which is trained for attractiveness classifica-

tion. Suppose we can train a DNN model for attractiveness rating and show some

similarities to human facial attractiveness perception. In that case, the DNN model

might be used to derive humans in a more general way. However, to train this

model is still an open question for informatics study. The difficulty is collect enough

data (facial images and attractiveness rating) to train the model. The informatics

research always focuses on rating prediction based on data-driven results while

providing little insight into human perception. In addition, it is still difficult to

know how much FADNN can be extended for studying human facial attractiveness

perception. To know this requires knowing more about the DNN. However, the

53



DNNs are always considered as the black boxes, since the interpretation of DNNs

is an underdetermined problem. In the future, we will focus on the relationship or

difference between human perception and DNN perception. However, it may require

more technological innovation for the interpretation of DNNs to be possible.

Many social factors that can be abstracted in human faces, such as first im-

pressions (Vernon et al., 2014), health (Russell et al., 2016), and sexual orientation

(Y. Wang & Kosinski, 2018), which are otherwise difficult to measure. The neural

network interpretation (the generation of face-like images) and neuronal selections

with known links to such factors and psychological traits can provide an avenue for

generating hypotheses that can be verified in experimental studies. For example, in

Experiment 2, we found that the new golden ratios impact female face in images

more than those of males in FADNN. However, there is no empirical evidence for

this in human cognition studies, even with the new golden ratios employed for both

female and male face images (Bóo et al., 2013; Yoo et al., 2013). Further research is

required to clarify this issue.

3.5 Summary of This Part

It has been suggested that some machine learning models can implicitly capture

basic human psychological characteristics, such as averageness, symmetry (Kagian

et al., 2008), and sexual dimorphism (Said & Todorov, 2011). However, they are

based on either handcrafted features or artificial stimuli. For example, the input

facial stimuli in (Said & Todorov, 2011) were generated by specific features (50

dimensions for shape and 50 dimensions for reflectance), which were well controlled.

In this part, we showed that FADNN could learn the putative ratios without knowing

any prior features annotated in the face images. This result opens up opportunities

for elucidating the origins of facial attractiveness, from basic perceptual mechanisms

to high-level human perception, via a DNN-based perspective approach. Moreover,

the discussion in this part advances the interpretation of DNN, which uncovers the

links between complex stimuli and specific tasks and demonstrates the potential

54



of our framework shown in 1.3a, which leverages the representations learned by

DNN and combines them with psychological theories to shed light on understanding

human cognition.
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Part II

Understanding Tourist

Satisfaction Through

Photo-shooting Behaviors
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Because this study (including Chapter 4 and Chapter 5) refers to multidisciplinary,

such as psychology, sociology (tourism), and informatics, we hope to clarify the

related works about visual attention, photo shooting behavior, and affection and

their relationships in related fields before going to the main works about this study.

It is crucially essential for humans to adjust the scopes of visual attention. A

fundamental distinction is whether they attend to the gestalt of a stimulus or focus

on the specific details of a stimulus, i.e., broad vs. narrow attention (Navon, 1977).

Generally, broadening attention refers to processing information in a more big-

picture way and seeing the forest, whereas narrowing attention refers to processing

information in a more detail-oriented way and seeing the trees (Förster, 2012; Navon,

1977). Narrower attention can improve the perception of spatial detail (Goodhew

et al., 2017), such as detecting the presence of a small spatial gap in a ring (Goodhew,

2020). In contrast, broader attention can improve the visual process of those invoked

in the opening of selection, such as scanning a crowd to locate a friend (Gao et al.,

2011; Macrae & Lewis, 2002) and the processing of summary scene statistics (Chong

& Treisman, 2005).

A plethora of psychological studies (Fredrickson, 2004; Ji et al., 2019; Kuhband-

ner et al., 2011; Tamir & Robinson, 2007) has documented that visual attention

moderates emotional states, whereas emotional states can influence the level of

attentional scopes. Specifically, broadening attention has an affective advantage

over narrowing attention. The representative theory for describing this human’s

characteristic is the broaden-and-build theory in positive psychology (Fredrickson,

2004; Fredrickson & Branigan, 2005). According to Fredrickson, there is a causal

relationship between emotion and attentional scopes. On the one hand, positive

emotions can broaden the individual attentional scope, while negative emotions

shrink it (Gasper & Clore, 2002). For example, when participants are asked to

attend to a central targets, induction of positive emotion results in more significant

to precept irrelevant surroundings than negative emotion (Fenske & Raymond, 2006;

Rowe et al., 2007; Schmitz et al., 2009). That is, positive emotion leads to the

processing of a wider area even if the distractors appear in the area. On the other
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hand, broadening attention can induce participants to improve positive emotions or

reduce negative emotions, while narrowing attention can reduce positive emotions

or induce more negative emotions (Gu et al., 2017; Ji et al., 2019). For example,

Gu et al. (2017) demonstrated that, the depressed participants (n=44) reduced

negative emotion, and increased the positive emotion significantly after watched

distant scenes (i.e., broadening training) for eight weeks, comparing with watching

proximal scenes (i.e., narrowing training).

The intrinsic factor of the relationship between visual attention and emotion

may also influence human social behaviors. In this study, we focus on the shooting

behavior of travel photos. Because tourists often take photos to capture their gaze,

and to record the selections in travel experience (Osborne, 2000; Urry, 1992). The

travel photos can be the notations that reflect the photographers’ feelings (Pan

et al., 2014). According to the tourism research (Ittelson, 1976; Pan et al., 2014),

when travelers experience the sightseeing environments, affect would response firstly,

then the quality of the affect would governs the following behaviors toward these

environments. In other words, the natural beauty stimulates tourists to the emotional

moment, which then directs the photo-shooting behaviors to record the moment.

Specifically, Pan et al. (2014) found that travel photos featured natural resources or

taken in a distant view may related to arousing and pleasant feelings toward the

sightseeing places. Thus, there may be an internal relationship that the tourists’

emotions are influenced by natural resources, leading the specific photo-shooting

behaviors (e.g., shooting a distant view).

Photo-shooting behaviors may relate to the social cognitive theory (Bandura,

2001; Lewin, 1951; Pan et al., 2014), which connect the human behaviors, envi-

ronment, and person’s affect with a triadic reciprocal causation. A travel photo

is the product of travelers’ behavior, which may be influenced by this theory. In

tourism research (Lawson & Baud-Bovy, 1977; Pan et al., 2014), travel photos

are the condensation of a tourism destination image — “the expression of all ob-

jective knowledge, impressions, prejudices, imaginations, and emotional thoughts

with which a person or a group judges a particular object or place”. The action of
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photo-shooting is a process to record their gaze and visual attention (Urry, 1992).

Behind the camera, tourists gaze in the beautiful sightseeing, which may arouse

momentary feelings. This is like the movie directors who use the landscape to reflect

the feelings of characters (Elsaesser & Buckland, 2002), tourists may catch the

landscape to represent their inner feelings. Thus, the landscape can transform the

affective feelings and vice versa. Similarly, there are two basic approaches (Jacobsen,

2007) in research related to landscape aesthetic estimation: one is to measure the

beauty based on the actual setting of landscape; the other is to assume the beauty

of the landscape is in the eyes of the tourists. These factors (e.g., inherent factors

and tourist gaze) may be recorded by travel photos.

Although some recent informatics research (Bartie & Mackaness, 2016; Zhuang

et al., 2014) focused on the triadic reciprocal relationships (photo-shooting behavior,

affect, and environmental characteristics), they mainly examined the relationship

between the photo-shooting behaviors (related to photographers’ attention) and the

environmental characteristics. For example, Bartie and Mackaness (2016) suggested

that visual exposure could be used to measure the scene aesthetic. The visual

exposure is defined to measure the field-of-view of the photographer occupied by an

object (Winter, 2003). Zhuang et al. (2014) applied the distinction of close-up view

and distant view as an important cue of their sightseeing discovery system. These

works applied factors in the viewing distance to measure the scenes’ quality but

lacked consideration of the internal factors of photographers. To our knowledge, work

applying the photo-shooting behaviors in explore internal factors of photographers

has been relatively limited; we only are aware of Cao and O’Halloran (2015), who

used the viewing distances detected from travel photos to explore insight into

personal characteristics. They suggested that tourists prefer to take more distant

views (lakes, wide landscape, and mountains) to remind the travel experience in

unfamiliar places, while residents use more close-up views (food, pets, and humans)

to catch the elements related to their daily life.

Considering the bidirectional emotion-attention relationship, interesting question

can be raised. Does the viewing distance or angle in photos reveals the emotional
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states of photographers, or is the tendency of the field of view of photos influenced by

broaden-and-build theory? Currently, social media platforms collected a large number

of experiences and photos from many tourists and various tourism destinations. The

star of the experience rating can be used to represent the tourist satisfaction or

sentiment (Alaei et al., 2019; Broß, 2013). In addition, the contents of travel photos

can reflect attentional scopes (wide-view vs. narrow view). Thus, we assume this

relationship between the attentional scopes detected from travel photos and tourist

rating of satisfaction is one of the real-world examples of broaden-and-build theory.

Thus, we intend to construct the NODS with photos expressed attentional scopes and

tourist satisfaction for complementing the broaden-and-build theory. To construct

the NODS, computer vision is a reasonable area to be engaged, thus triggering

the image view-type classification problem, which determines the photo-shooting

behaviors of a single photo as the research aim of Chapter 4. By using the proposed

computer vision algorithm, we examine photo-shooting behaviors by analyzing a

large number of travel photos and the association between tourists’ satisfactions and

their photo-shooting behaviors in Chapter 5.
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Chapter 4

Wide or Narrow: View-type Clas-
sification for Travel Photos

In Chapter 4, our goal is to examine the issue of detecting the photographers’

attentional scopes (wide-view vs. narrow-view) from travel photos, namely view-type

classification.

4.1 Introduction

The view-type of photos (wide-view vs. narrow-view) is defined as a measure

of the field of view of the photographer, i.e., what the photographer is seeing, or

how much of the given scene is seen by the photographer. As shown in Figure

4.1, a wide-view photo expresses the photographer sees a distant area or more of

scenes, while a narrow-view photo expresses the photographer catches a close-up

area or less of scenes. The view-type of photos has been used to manipulate the

participants’ attentional scopes in a psychological study (Gu et al., 2017). Concretely,

Gu et al. (2017) used the zoomed-in scenes (the photo transited from a wide-view

to a narrow-view) and zoom-out scenes (the photo transited from a narrow-view to

a wide-view) as broadened and narrowed attention task, respectively. The study

demonstrated that the participants in the broadened condition would significantly

relieve the negative emotion, which induced by before task, while the ones in

narrowed condition increase the negative emotion.

We aim to clarify the concept of view-type photos and their distinction with the

depth of view (e.g., close-up and distant photos) in computer vision and the angle of
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Figure 4.1: View-type perspectives of a photo (wide-view denoted by the red lines,
and narrow-view denoted by green lines). Narrow-view only records two pedestrians,
while the wide-view records the pedestrians and the entire street-view surrounding
them. The image is downloaded from https://www.flickr.com/.

view (e.g., wide- and narrow-angle) in digital photography. Depth of view is defined

as “the absolute distance between the photographer and a scene” (Torralba & Oliva,

2002). In the computer vision community, the depth estimation or reconstruction

of an image is a popular research topic (Cao & O’Halloran, 2015; Torralba &

Oliva, 2002). Most depth estimation algorithms required multiple images, such

as binocular vision (Garcia & Solanas, 2004). Because the cues of absolute depth

measurements (e.g., binocular disparity, motion, and defocus) are absent, monocular

depth estimation is challenging. One possible solution is to measure the structure

of images (Torralba & Oliva, 2002). For large-scale depth estimation, Cao and

O’Halloran (2015) simplified the depth estimation as an image classification problem,

i.e., classifying far-distant and close-up photos according to the absolute depth.

They proposed an image classification algorithm based on texture features (Gabor

features). This algorithm only took a little time to classify these two specific photo-

shooting behaviors and was used for large-scale photo analysis. In addition, the

angle of view is defined as the ways to use the camera lens, i.e., zoom-in corresponds

to the narrow-angle of view, and zoom-out corresponds to the wide-angle of view
1. The skilled use of the angle of view mainly focuses on improving the quality of

1https://inst.eecs.berkeley.edu//~ee198-4/fa07/week11_assignment.shtml
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(a)

(b)

Figure 4.2: The distinction between view-type, depth of view, and angle of view.
Shooting senses apply (a) wide-angle, or (b) narrow-angle. The depth of view
represents the the absolute distance between the photographer (eye) and a scene.
View-type represents the field of view of the photographer.

the taken photo. For example, when the angle of view and distance is adjusted,

it will result in different photo quality such as perspective and restoration effects

to the same object. Specifically, when the object is very close to the camera, a

wide-angle would distort the object but restorative its three-dimensional information,

while a narrow-angle with suitable distance would reflect the actual two-dimensional

information of the target object. Because the camera is in the middle of the eye

and the shooting scene, the view-type does not solely depend on angle of view or

depth of view, while it may be related to the combined effects of them. As shown in

Figure 4.2, the photographer may attend to football in a wide-angle with a close-up

view (As shown in Figure 4.2a) or a narrow-angle with a distant view (as shown in

Figure 4.2b), while both of them result in a narrow-view.

View-type classification is a relatively new and challenging problem in the field

of computer vision since estimating photographers’ attentional scope is a subjective

property of photography. Different from the objective tasks (e.g., face recognition

and object detection), it’s difficult for algorithms to find specific patterns for this
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(a) (b)

Figure 4.3: Image samples, (a) narrow-view photos; (b) wide-view photos. The
narrow-view or wide-view photos contain a variety of objects, locking specific patterns
for each category.

subjective task, because the natural images contain a wide variety of contexts. As

shown in Figure 4.3, similar objects may exist in both narrow- and wide-view photos,

e.g., plants and humans. For view-type classification, we conducted two experiments

by proposing two different classification algorithms. In Experiment 1, we present a

classification framework inspired by the human visual system (HVS). We propose

two cues that can represent the HVS, i.e. focus cue and scale cue. The focus cue is

modeled in the frequency domain. The scale cue is modeled by defining the spatial

size and conceptual sizes of the main objects in the photo. A newly established

dataset with 5050 natural images annotated by humans is used to evaluate the

proposed framework. The experimental results show that the proposed framework

is better than related algorithms used for depth estimation and close-up/distant

view classification. However, we note that the proposed framework contains two

drawbacks. Firstly, there are some ambiguous photos between narrow-view and

wide-view, such as the photo contains narrow-view objects during a wide-view

background. These photos may not be well detected by the proposed focus cue and

scale cue. Secondly, the framework requires expensive computing resources since it

is implemented on the CPU.
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Thus, we propose an end-to-end CNN model for view-type classification, namely

CFCNN, in Experiment 2. A larger dataset with 43,906 travel photos is established

for CFCNN training. In addition, a dataset with 3,000 images (labeled as wide-

view and narrow-view by five participants) has different view-type levels for testing

CFCNN and the performance for photos with various ambiguous levels. The results

show that the proposed CFCNN outperforms the framework proposed in Experiment

1 for classification accuracy and time-efficiency. In addition, the classification results

are similar to the human cognition for ambiguous photos. Therefore, the CFCNN

can get a considerable performance for estimating the subjective attentional scopes

of large-scale travel photos.

4.2 Experiment 1

In Experiment 1, we proposed a framework based on the focus cue and the

scale cue for view-type classification. The focus cue and the scale cue are inspired

by the human visual system because the view-type classification task is trivial for

the human vision that involves sufficient and robust features learned by effective

mechanisms. According to the visual attention mechanisms, the broaden and narrow

attention would stimulate a trade-off between the area of focus and the resolution of

this focus (Eriksen & James, 1986). Specifically, with narrowing attention, only a

small region of a scene is visible in sharp detail, while with expanding attention, a

wider field of view becomes visible at the expense of perceptual resolution (Goodhew,

2020). This process has been likened to a zoom lens of the camera (Eriksen & James,

1986), i.e., the limited focus range has been replicated by modern imaging systems,

particularly professional cameras. In addition, human vision can also estimate the

sizes of familiar objects like the human body, trees, and buildings. Therefore, we

defined two cues for modeling the human visual system mechanisms for view-type

classification, as shown in Figure 4.4. (1) Focus cue: Some narrow-view images tend

to focus on objects (in the focal point as shown in Figure 4.4a) at a short distance,

while the areas surrounding the object are out of focus and appear to be blurred
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(a)

Figure 4.4: Focus cue and scale cue for view-type classification, (a) focus cue: focal
point caused by the optical imaging for narrow-view images; and (b-e) scale cue: the
difference of the spatial size and conceptual size between narrow-view and wide-view
images.

(in the circles of confusion as shown in Figure 4.4a), i.e., exhibiting the focus and

fringe attributes. (2) Scale cue: Scale cue contains two parts, namely spatial size

evaluation and conceptual size evaluation. Spatial size is defined as the object’s

size in the observed image, whereas the conceptual size is its actual size in reality.

Figures 4.4b-4.4e illustrate the scale cue concepts, where images can be divided into

four groups by two spatial sizes (large/small) × two conceptual sizes (large/small).

Only the images where the spatial size of the object is large but its conceptual size is

small belong to narrow-view images, while the remaining cases belong to wide-view

images.

We proposed the scene focus model and size scale model to formulate the focus

cue and scale cue, respectively, as shown in Figure 4.5. The scene focus model

transforms the images into the frequency domain to extract the focus features from

the high-frequency coefficients. The frequency transformation methods, such as

discrete wavelet transform (DWT), non-sampled contourlet transform (NSCT), are

commonly used to represent the focus information (Y. Yang et al., 2015). The
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Figure 4.5: The framework of the proposed computational algorithm for view-type
classification inspired by human visual system, which contains a scene focus model
and a size scale model. (1) The scene focus model aims to distinguish whether
photos have focus and fringe attributes and filter out these narrow-view photos
(yellow triangles). (2) The size scale model aims to detect the spatial and conceptual
size of the objects of photos. The images with small spatial sizes (red circles)
will be classified as wide-view and filtered out in object evaluation. However, the
narrow-view and wide-view bounded by large boxes (yellow stars and red rectangle)
are classified by conceptual evaluation based on a convolutional neural network
(CNN).

high-frequency coefficients are beneficial to detect high contrast edges. Following the

obtained high-frequency coefficients, a feature representation method (e.g., speeded-

up robust features, SURF: Bay et al., 2006) and a binary support vector machine

(SVM) for filtering out photos has focus and fringe attributes. The size scale model

aims to detect the spatial and conceptual size of the objects of photos. An object

proposal method (e.g., EdgeBoxes: Zitnick and Dollár, 2014) is used to estimate the

spatial size of the objects of interest in the remaining images after the scene focus

model. For example, Edgeboxes model proposes object bounding boxes based on the

grouping of edges and uses the edge content of the bounding box to compute the

objectness (likelihood it is an object) score. Thus, the objects in the images would

be located with a bounding box. After filtering out the wide-view with small spatial

sizes, we classify objects within bounding boxes according to their conceptual size.

We perform this phase using a CNN model, which can learn features that represent
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the concept of objects, i.e., object recognition (Krizhevsky et al., 2017). The large

objects (e.g., buildings and mountains) in concept indicate the wide-view, while

small objects (e.g., flowers, animals, and humans) indicate the narrow-view.

To facilitate the view-type classification, we collect a dataset, AttentionShoot,

with human annotations (wide-view vs. narrow-view) that contains 5050 natural

images. We conducted experiments on this dataset to evaluate the performance

of the proposed framework and to estimate the effectiveness of the scene focus

model and scale size model, respectively. The experimental results show that the

proposed framework achieves better accuracy for view-type classification than the

current methods for depth estimation, including distant/close-up view classification

algorithms.

4.2.1 Materials and methods

4.2.1.1 Datasets

To construct the dataset, we first selected natural photos from different sources,

i.e., Google Image Search, Flickr, and the ImageNet (Russakovsky et al., 2015)

dataset, ensuring the object variety of the photos. Specifically, we used the keywords,

e.g., ‘insect’, ‘maple’, ‘tree’, and ‘prairie’ by Google Image Search and collected

travel photos from Flickr. ImageNet dataset has more than one million photos with

1000 categories. We selected photos from the natural classes of this dataset, e.g.,

animals, trees, and birds. We collected 5050 natural images to construct the dataset

named AttentionShoot.

Each photo was annotated narrow-view and wide-view by two leading informatics

researchers (male, aged 26 and 42 years) and then again by two independent persons

(a male aged 22 years and a female aged 28 years) who had been fully briefed about

the definition of view-type. The AttentionShoot contains 2598 narrow-view and

2452 wide-view photos, termed as the full-set. In addition, the narrow-view set is

separated as 1,522 narrow-view images containing the focus and fringe attributes

by an informatics researcher (a male, aged 26 years) and 1,315 randomly selected
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wide-view images, termed as the focus-set, and used for the scene focus model, i.e.,

training, and testing.

4.2.1.2 Proposed methods

Following the proposed framework inspired by the human visual system as shown

in Figure 4.5, we proposed two computational algorithms, namely HVS method and

HVS+ method.

HVS method. The scene focus model’s critical component is DWT (Pajares

& De La Cruz, 2004), while the size scale model has two components, the spatial

size evaluation based on EdgeBoxes (Zitnick & Dollár, 2014), and the conceptual

size evaluation using a CNN model. Concretely, the photos are first transferred as

high-frequency and low-frequency components using DWT. Secondly, the histogram

of the high-frequency energy (HHFE) smoothed and refined by two different windows

is used to construct feature vectors to represent the photos. Thirdly, the SVM

is trained for filtering out photos with focus and fringe attributes. Fourthly, the

EdgeBoxes model is used to locating the objects by a bounding box in the photos

remaining photos after the SVM phase. Fifthly, a threshold is used to filter out

photos with small boxes on objects. Finally, Alexnet (Krizhevsky et al., 2012)

re-trained in our dataset is used to classify the remaining photos after spatial size

evaluation. HVS method is implemented as follows.

Scene focus model of HVS method. We perform the single-level discrete two-

dimensional wavelet transform on the images to obtain the high-frequency details

to build the histogram of features with a 63-dimensional vector. We then train an

SVM classifier with the radial basis function kernel.

Size scale model of HVS method. To obtain relevant object bounding box

proposals, the box search is performed through sliding windows where the step size,

scale, and aspect ratio are determined by the overlap ratio of the current window

and the previous window. We set the ratio as 0.30 and also eliminate lower-scoring

windows that have 0.25 overlap on a higher scoring window for the low amount of

box proposals and exclude low-scoring big boxes. The box size ratio threshold is
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then set as 0.20, which means objects that take up less than 20% of the image would

be considered small spatial size (i.e., wide-view as shown in Figure 4.4). For the

Alexnet fine-tuning, we implement the model using MatConvNet toolbox (Vedaldi &

Lenc, 2014). The learning rate (η) is set to logarithmically reduce at each training

epoch from 0.001 to 0.00001 across 30 epochs. We set the learning rate for the last

layer, ηl = 10η.

HVS+ method. The key components of the scene focus model are the NSCT

and SURF, while the size scale model has two components, the spatial size evaluation

based on AdobeBING, and the conceptual size evaluation using a fine-tuned CNN

classifier. Concretely, the photos are first transferred as high-frequency and low-

frequency components using NSCT. Secondly, the SURF is used to construct feature

vectors to represent the photos. Thirdly, the SVM is trained for filtering out photos

with focus and fringe attributes. Fourthly, because the EdgeBoxes model calculates

the edge feature based on pixel information only. However, humans can “catch” an

object quickly before identifying it, and capture several object parts of significant

appearance difference from the background before the whole object is effectively

located according to these perceived parts, without necessarily knowing all the object

components. Following this principle, we apply AdobeBING, which is Binarized

Normed Gradients (BING) (Cheng et al., 2019) refined by the AdobeBoxes model

(Fang et al., 2016), to locate the objects by a bounding box in the photos remaining

photos after the SVM phase. BING is a significantly fast object proposal algorithm

based on the correlation between object boundaries and the norm of image gradients.

In contrast, AdobeBoxes model uses groups of superpixels with high contrast from

the background as the representation of object parts, named adobes, to propose

object bounding boxes. This combination may give a fast and efficient evaluation

mechanism for spatial size. The rest two steps (i.e., steps of filtering out small box

and retraining the Alexnet) are the same as HVS method.

Scene focus model of HVS+ method. For the NSCT, the decomposition scale

directions used is {1, 2, 8, 16} (NSCT-3), with the ‘9-7’ pyramidal filter and ‘pkva’

ladder directional filter (Y. Yang et al., 2015). The SURF produces feature repre-
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sentation vectors of 64-dimensions. The SURF features are quantized Fisher Vector

(FV), where the vocabulary size of Gaussian Mixture Model cluster amount for FV

was set to 50. We then train an SVM classifier with the radial basis function kernel.

Size Scale model of HVS+ method. For the AdobeBING, the normed gradients

in horizontal and vertical directions of BING were obtained using a one-dimensional

mask [−1, 0, 1], whereas, for AdobeBoxes, the minimum size for superpixel generation

is 128 pixels. The box size ratio threshold and the Alexnet in HVS+ method are

the same as HVS method.

We randomly select 2000 images from the focus-set for SVM training. The

remaining 1450 photos (focus-set) are used to build the test set applied for the

evacuation of HVS methods. For the Alexnet retraining, we select 3600 images

from full-set, which includes the training images for SVM. The remaining photos

are used to test size scale model. HVS and HVS+ methods are implemented by

MATLAB2016a on an NVIDIA K40 GPU and a 12 × 3.30GHz Intel i7-5820K CPU

with 32 GB RAM.

4.2.1.3 Related algorithms

To evaluate the performance of the proposed framework, we compared it with

the following five baselines. (1) FCRN-Depth (Laina et al., 2016): FCRN-Depth is

a Depth estimation model using FCRN, and reports remarkable results for depth

estimation. We involve depth estimation for the view-type classification task due to

the close relationship between depth of view and view-type, such as a larger depth

being associated with wide-view images and vice versa for narrow-view images. The

FCRN-Depth is used to obtain a depth map for each test image in our experimental

dataset. We represent the features by the histogram of oriented gradients, and SVM

was used as the classifier. (2) Mono-Depth (Godard et al., 2017): Mono-Depth is

another depth estimation model using fully convolutional network (Mayer et al.,

2016). Mono-Depth uses a novel training loss to model the ambiguous mapping

between monocular images, leading to improved depth estimation performance.

Similar to FCRN-Depth, the Mono-Depth was used to obtain the depth map of the
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testing images, and then the features were extracted by the histogram of oriented

gradients with SVM as the classifier. (3-4) Sobel-SVM and Canny-SVM: Zhuang

et al. (2014) proposed to use edge histogram and SVM to classify the two views

automatically. We reimplemented this algorithm using “Sobel” and “Canny” edge

detectors as the edge detection methods, respectively. We refer to them as Sobel-

SVM and Canny-SVM, which serve as two baselines. (5) Gabor-SVM: Cao and

O’Halloran (2015) proposed to use a textured pattern based on the Gabor feature to

represent the image structure for the classification of distant and close-up images. We

reimplemented this algorithm, and the structure of an input image was represented

by a 1, 536 dimensional feature vector (3 color channels × 4 scales × 8 orientations

× 16 sub-regions).

4.2.1.4 Evaluation Metrics

The prediction accuracy ∈ [0, 1] is the common assessment of a classification

algorithm. Larger value of accuracy indicates better classification performance. In

addition to the accuracy, we also applied Precision and Recall, which are based on

True Positives, False Positives, True Negatives and False Negatives, for more insights

of the evaluation of our proposed framework. These metrics have been applied

in many studies to evaluate the performance of classification algorithm (Bardou

et al., 2018; Le et al., 2019; Ning et al., 2018). All of them differentiate the correct

classification of labels within different classes (Ma et al., 2019; Yu et al., 2019),

which are defined as follows,

Precision = True Positive
Predicted Positive ,

Recall = True Positive
Actual Positive ,

(4.1)

where Precision, Recall ∈ [0, 1]; ‘Predicted Positive’ is the sum of True Positive and

False Positive; and ‘Actual Positive’ is the sum of True Positive and False Negative.

Here, we set the narrow-view as ‘Positive’. Thus, the ‘True Positive’ is the number

of photos correctly predicted as narrow-view, ‘Predicted Positive’ is the number of

photos predicted as narrow-view, ‘Actual Positive’ is the number of ground truth
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Table 4.1: The performance of the proposed framework compared with the related
algorithms on the full-set of AttentionShoot. The precision and recall are defined as
indicators of the narrow-view class.

Classification algorithms Accuracy Precision Recall
FCRN-Depth (Laina et al., 2016) 0.7034 0.7507 0.6905
Mono-Depth (Godard et al., 2017) 0.8110 0.8639 0.7794
Sobel-SVM (Zhuang et al., 2014) 0.8055 0.8351 0.8058
Canny-SVM (Zhuang et al., 2014) 0.8193 0.8583 0.8045
Gabor-SVM (Cao & O’Halloran, 2015) 0.8740 0.8652 0.8860
HVS method 0.8400 0.8538 0.8559
HVS+ method 0.9317 0.9040 0.9799

(narrow-view). Generally, the larger values of Precision, Recall indicate the better

classification performance.

4.2.2 Results and discussion

4.2.2.1 Compared with related algorithms

We compared the proposed HVS method and HVS+ method with five baselines

on the full-set of AttentionShoot. As shown in Table 4.1, most algorithms achieve

accuracies over 0.8 (expect FCRN-Depth), but only the HVS+ method achieves

accuracy over 0.9. The HVS+ method performs the best in all metrics among

competing algorithms. In addition, the depth models (FCRN-Depth and Mono-

Depth) have high precision, while low recall for narrow-view, which means the

number of predicted narrow-view images is smaller than actual narrow-view images.

This result indicates that the depth models have a considerable bias for predicting

more photos as wide-view. Oppositely, the proposed HVS+ method also has a

certain bias, and obtains a low precision for narrow-view, indicating it predicts

more photos as narrow-view. Although existing this bias, the HVS+ method shows

considerable improvements in accuracy, precision, and recall by 0.0577, 0.0388, and

0.0939, compared with the second-best algorithm, Gabor+SVM (Cao & O’Halloran,

2015). Thus, we conclude that the HVS+ method is the most suitable algorithm for

view-type classification, comparing with the five baselines and the HVS method.
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Table 4.2: The performance of the proposed scene focus model compared with depth
models (FCRN-Depth and Mono-Depth) on the focus-set.

Classification algorithms Accuracy Precision Recall
FCRN-Depth (Laina et al., 2016) 0.7145 0.8166 0.6992
Mono-Depth (Godard et al., 2017) 0.8662 0.9399 0.8391
Scene focus model of HVS method 0.7634 0.9219 0.6782
Scene focus model of HVS+ method 0.9510 0.9781 0.9425

Since the scene focus model extracts the focus and fringe attributes from original

images, we compare the proposed scene focus models with the depth models on the

focus-set of AttentionShoot, as shown in Table 4.2. We note that the Mono-Depth

achieves second place in the classification task, indicating the potential of depth

maps representing the focus characteristics of images under certain cases. However,

the HVS+ method (scene focus model) performs best, outperforming Mono-Depth

with considerable improvements of 0.0848, 0.0382, and 0.1043 for accuracy, precision,

and recall, respectively. By comparing with Table 4.1, it can be found that drops of

accuracy exist in the depth models. For example, the performance of Mono-Depth

dropped from 0.8662 to 0.8110 (accuracy). This drop may be caused by the weaker

capability of the depth models in representing the view-type of the photos without

the focus and fringe attributes. In addition, the scene focus model of the HVS

method performs worse than Mono-Depth on focus-set. However, the HVS method

performs better than Mono-Depth on full-set. This result suggests that the size

scale model is an important trait to be considered in view-type classification. The

reason for the importance of the proposed framework (HVS and HVS+ methods) is

that the focus cue and scale cue are crucial attributes of the human visual systems,

whereas depth information alone is insufficient for the view-type classification task.

4.2.2.2 Ablation studies

We conduct ablation studies on the following designs to verify the effectiveness

of varied (1) scene focus models and (2) size scale models.

The effects of different scene focus models. To evaluate the performance

of the proposed scene focus models, we compared it against the various methods of
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Table 4.3: Comparison of different scene focus models, i.e., (8 frequency transfor-
mation methods × 4 feature extraction methods). The number is the classification
accuracy of different models on the focus-set.

HHFE LBP SURF-BoVW SURF-FV
Original 0.5152 0.9092 0.8765 0.9474
DWT 0.7634 0.7649 0.8783 0.8784
NSST-1 0.7654 0.7008 0.8901 0.9116
NSST-2 0.7692 0.7367 0.8757 0.8853
NSST-3 0.7305 0.8024 0.8617 0.9271
NSCT-1 0.7544 0.7424 0.9092 0.8984
NSCT-2 0.7474 0.7964 0.8619 0.9355
NSCT-3 0.7042 0.8387 0.8857 0.9510

frequency transformation and feature extraction. (1) Frequency Transformation: The

DWT and NSCT are compared with the original domain of image and Nonsubsampled

Shearlet Transform (NSST) (Easley et al., 2008). The NSST uses {1, 8} (NSST-

1), {1, 8, 16} (NSST-2), and {1, 8, 16, 16} (NSST-3) decomposition scale directions

with the ‘maxflat’ pyramidal filter (Moonon & Hu, 2015). In addition, the NCST

performs different decomposition scale directions, i.e., {1, 2} (NSCT-1) and {1, 2, 8}

(NSCT-2), are also added to the comparison. (2) Feature Extraction: The HHFE

and SURF-FV is compared with the Local Binary Pattern (LBP) (Ojala et al.,

2002) and SURF quantized by bag of visual words (BoVW). LBP produces a feature

representation vector of 10-dimensions. The vocabulary size of the BoVW codebook

is set to 50. Thus, 32 different scene focus models (8 frequency transformation

methods × 4 feature extraction methods) are compared in this phase.

The classification accuracies of different scene focus models are shown in Table

4.3. In addition, the averaged accuracies of different frequency transformation and

feature extraction methods are shown in Figure 4.6a and 4.6b, respectively. Figure

4.6a shows that the proposed NSCT can get the best performance among the varied

frequency transformation methods except for NSCT-1. Specifically, NSCT-3 shows a

considerable improvement of the accuracy of 0.0245 from DWT, indicating that the

NSCT-3 can get a better representation to detect the blur and fringe information

than other frequency transformation models. Figure 4.6b shows that the SURF
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(a) (b)

Figure 4.6: The averaged accuracy of (a) different frequency transformation and (b)
feature extraction methods. Each averaged accuracy is achieved by averaging the
row or column of Table 4.3 for the corresponding scene focus model.

performs the best out of the other investigated feature extraction methods. For

example, the accuracy achieved by SURF-FV shows an improvement of 0.1985

compared to the accuracy achieved by HHFE. Thus, the SURF-FV can better

represent the frequency domain than the others. In addition, Table 4.3 shows that

the LBP, SURF-BoVW, and SURF-FV perform well with an accuracy above 0.8,

where the SURF-FV applied on the NSCT-3 (i.e., NSCT-3+SURF-FV) is the best

with the averaged accuracy of 0.9510. The HHFE performs the worst likely due

to the insufficiency of representation by solely relying on the spatial summation

of high-frequency signals compared to the higher-level representation provided by

SURF. From the analysis above, the NSCT-3+SURF-FV used in HVS+ method

performs better for the scene focus model than DWT+HHFE used in HVS method

with an accuracy increase of 0.1911.

In addition, we tested the selected methods, whose classification accuracies are

over 0.9, on the full-set. Table 4.4 shows a large drop, 0.1312 on average, which may

contribute by the narrow-view without focus and fringe attributes in the full-set

into the test. This result suggests the necessity of a size scale model for better

classification performance.

The influence of different scale size models. We investigated the ability

of the Edge boxes and AdobeBING to locate the spatial size of the main objects of
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Table 4.4: The difference of the selected models’ performance between testing on
the focus-set and full-set. The selected models (accuracy > 0.9) are shown in grayed
cells of Table 4.3.

Focus-set Full-set Difference
Original + LBP 0.9092 0.8152 0.0940
Original + SURF-FV 0.9474 0.8200 0.1274
NSST-1 + SURF-FV 0.9116 0.7724 0.1392
NSST-3 + SURF-FV 0.9271 0.7814 0.1457
NSCT-1 + SURF-BoVW 0.9092 0.7890 0.1202
NSCT-2 + SURF-FV 0.9355 0.7931 0.1424
NSCT-3 + SURF-FV 0.9510 0.8014 0.1496

Mean 0.9273 0.7961 0.1312

a photo. Two object proposal methods are compared, i.e., AdobeBoxes (Fang et al.,

2016) and RPN (Ren et al., 2015). RPN is an object proposal approach using Fully

Convolutional Networks, which is designed by sharing the convolution parameters of

a specified object detection network. Two different CNN detectors were tested here:

one is proposed by Zeiler and Fergus (2014), the other is a VGG16 model proposed

by Simonyan and Zisserman (2014), namely RPN1 and RPN2, respectively. The box

size ratio threshold of the competing methods is set as α = 0.2, which is the same

as the setting in HVS+ method. Size scale model serves as the secondary classifier

to address images that do not fit into the scene focus model. In other words, the

size scale model is used to pick out the narrow-view images that were misclassified

as wide-view images by the scene focus model due to the lack of depth-of-focus

attribute. Thus, all images classified as wide-view by the scene focus models are

used for the testing of the scale model, regardless of right or wrong. Additionally,

we compare the performances of different scale size models based on the selected

scene focus models with accuracy above 0.9. Thus, 35 scale size models in total (7

scene focus models × 5 object proposal models) are compared in this phase. The

subsequent conceptual size classification uses the same CNN of HVS+ method.

The accuracies of different size scale models are shown in Table 4.5, and the

averaged accuracies of size scale models are shown in Figure 4.7. Figure 4.7 shows

clearly that AdobeBING model can get the best performance out of all the size scale
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Table 4.5: Comparison of different scale size models, i.e., 7 scene focus models
× 5 object proposal models. The number is the classification accuracy of the
corresponding combination of method testing on the full-set.

EdgeBoxes AdobeBoxes RPN1 RPN2 AdobeBING
Original+LBP 0.8641 0.8221 0.8048 0.8717 0.8938
Original+SURF-FV 0.8807 0.8297 0.8290 0.8869 0.8807
NSST-1+SURF-FV 0.8559 0.7993 0.8117 0.8717 0.9138
NSST-2+SURF-FV 0.8690 0.8041 0.8221 0.8848 0.9228
NSCT-1+SURF-BoVW 0.8759 0.8200 0.8200 0.8883 0.9248
NSCT-2+SURF-FV 0.8703 0.8097 0.8193 0.8814 0.9179
NSCT-3+LBP 0.8097 0.7345 0.7917 0.8497 0.8838
NSCT-3+SURF-FV 0.8807 0.8214 0.8283 0.8945 0.9317

Figure 4.7: The averaged accuracies of different size scale models. The averaged
accuracy of each size scale model is achieved by averaging the corresponding column
of Table 4.5.

models. For example, the accuracy achieved by AdobeBING shows an increase of

0.0414 compared to the accuracy achieved by Edge boxes. This result suggests that

AdobeBING is more effective for spatial size evaluation. Table 4.5 shows that the

best performing joint model is the NSCT-3+SURF-FV and AdobeBING+CNN, at

0.9317 accuracy, and thus these settings are used in HVS+ method.

4.2.2.3 Failure cases and ambiguities

Due to the imperfections of HVS+ method and ambiguities in the constructed

dataset, the following two aspects are found to cause failures.

Algorithm errors: Figure 4.8a-4.8b show example failures of the scene focus

model. The failure cases may be caused by the confusion in the depth-of-focus

attribute of the photos. The background of the narrow-view photos in Figure 4.8a
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(a) (b)

(c) (d)

(e)

Figure 4.8: Examples of failure cases. (a) Narrow-view while misclassified by scene
focus model, (b) Wide-view while misclassified by scene focus model, (c) Narrow-view
while misclassified by spatial size evaluation, (d) Narrow-view while misclassified
by conceptual size evaluation, (e) Wide-view while misclassified by conceptual size
evaluation.

are relatively sharp, hence could generate inaccurate features, even though the

fringe is still apparent to human observation. Nevertheless, these two images were

amended by the scale model, as seen from the precise object bounding box. On the

other hand, the wide-view images in Figure 4.8b contain smooth sky regions which

could have been confused as the fringe by the model. Figure 4.8c shows examples

of narrow-view photos filtered as wide-view by AdobeBING, where there are two
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Figure 4.9: The samples of ambiguous photos on the AttentionShoot. These photos
are considered as ambiguous because they include a close-up object with a wide-view
background.

possible reasons for the error. The first reason is that the localized object has a size

that is below the threshold, while another reason is incorrect localization, shown by

the blue bounding boxes proposed.

Ambiguities: We find the majority of the misclassification is due to the am-

biguous nature of the images. In the narrow-view photos, as shown in Figure 4.8d,

the background of the image can be considered as wide-view. Moreover, the spatial

size evaluation was unable to localize the object of interest to assist the classification.

In contrast, the misclassification of narrow-view images in Figure 4.8e can be due to

the interference by objects that were not the point of interest in the images, such as

the narrow-view of the monkey found on the right of the left photo, and the chairs

localized by the AdobeBING in the right photo. Other examples of ambiguous

photos on the constructed dataset are shown in Figure 4.9. These misclassified

and ambiguous photos contain close-up objects while the background shows the

wide-view of its surroundings, which is difficult to determine the attentional scope

of the photographer and may challenging even to humans.

4.3 Experiment 2

Experiment 1 proposed a framework inspired by the human visual system (HVS

and HVS+ methods) and showed that the HVS+ method gets a considerable result

for view-type classification. However, there are two drawbacks to the HVS+ method.
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Firstly, there is a certain number of failure cases and ambiguities caused by the

imperfect setting of the HVS+ method and AttentionShoot. Secondly, the scene

focus model (e.g., NSCT) is difficult to implement in the GPU. These drawbacks

become obstacles to implement HVS+ method for estimating the attentional scopes

of extensive travel photos.

In Experiment 2, we aim to solve these drawbacks by looking into a CNN,

and using a single CNN to perform view-type classification as opposed to the

hand-designed HVS+ method. This is on account of the success shown by CNN

at covering both low- and high-level features for a variety of tasks (Donahue et

al., 2014; Lee et al., 2017; Yosinski et al., 2015; Zeiler & Fergus, 2014). However,

conventional CNNs only utilize high-level features after multiple layers of convolution.

According to the investigation of Experiment 1, both focus and scale information

is crucial for view-type classification, suggesting feature represent view-type (e.g.,

focus feature) may vanish after multiple convolutional and pooling operations in

conventional CNNs. Therefore, we designed a cumulative feature CNN (CFCNN) to

extract features from each stage and accumulate them into one representation, thus

incorporating both low and high-level features for view-type classification. Figure

4.10 illustrates the architecture of the CFCNN model, where the inputs are photos

and the outputs are their respective narrow- and wide-view photos. Specifically,

we introduce additional convolutional paths on each existing convolutional layer

to produce 1024-dimension features. The new convolutional layers are placed after

pooling layers, and if a convolutional layer is not followed by a pooling layer, an

added pooling layer would be set before the corresponding convolutional layer.

These new convolutional layers are to be trained end-to-end with all the other

convolutional layers. The kernels are expected to focus on significant features from

different levels, and then directly summed up to obtain the cumulative feature and

proceed to the subsequent fully connected layers for classification. This cumulative

feature extraction scheme is similar in spirit to the well-recognized ResNet (He et al.,

2016) bottleneck architecture. The proposed CFCNN, nevertheless, is different since

CFCNN features are summed up from multiple layers.
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Figure 4.10: The architecture of the proposed cumulative feature convolutional
neural network (CFCNN) to learn the view-type representation. The features from
each convolution layer are cumulated into one representation.

In this experiment, we constructed two datasets. Considering the potential

application of the view-type classification in tourism research, we use travel photos

to reconstruct a dataset with view-type annotations, termed as the TravelShoot

dataset. The TravelShoot contains 43,906 travel photos collected from the famous

sightseeing spots on Flickr. We use this dataset to train the CFCNN for learning

the view-type representations of travel photos. In addition, the travel photos

will inevitably be mixed with ambiguous photos. To investigate the percentile of

ambiguous photos, we randomly collected 3000 travel photos, and five participants

annotated the view-types. When two or three participants label the photo as

wide-view, while others annotated it as narrow-view, this photo will be considered

ambiguous. Since this dataset contains view-type cognition from different persons,

we name it as CognitionShoot and use it as a test set for classification performance

evaluation of CFCNN. Experimental results indicate that the CFCNN improves the

classification performance and has less computational complexity compared with

the HVS and HVS+ methods proposed in Experiment 1. Furthermore, the results

suggest that the CFCNN might learn the shared patterns with human cognition for

different ambiguous levels. Lastly, we visualize the activation maps of CFCNN and

find that the CFCNN has learned some other features beyond the focus cue and

scale cue of our proposed framework in Experiment 1.
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4.3.1 Materials and methods

4.3.1.1 Datasets

We collected raw photos from Flickr according to the geographic locations of

famous sightseeing spots provided by TripAdvisor. Firstly, we collected over 100,000

travel photos from Flickr. Secondly, two informatics researcher (male, aged 26 and

42 years) scrutinized all photos to remove the duplicated photos and meaningless

photos. Thirdly, the remaining 46,906 is automatically detected as wide-view and

narrow-view by using the HVS+ method then again by two independent persons (a

male aged 24 years and a female aged 28 years) who had been fully briefed about

the definition of view-type. Finally, we randomly selected 3,000 travel photos to

construct the CognitionShoot dataset. The remaining 43,906 travel photos, 25,776

wide-view and 18,130 narrow-view, are composed of the TravelShoot dataset.

To label the CognitionShoot dataset, we recruited five participants (3 male and 2

female, mean age = 23.2± 1.2 ) and designed a binary classification task according

to their cognition to view-type. Before the task, ten wide-view and ten narrow-view

photos were demonstrated to let participants understand the definition of view-type.

In the task, 20 photos (four rows and five columns) were simultaneously shown on

the screen to give a better visual comparison, and each participant selects photos

into wide-view or narrow-view. This procedure was iteratively carried out until

all photos were checked. The CognitionShoot dataset consists of 1480 wide-view

and 1520 narrow-view photos. According to the different ambiguous levels of the

photos, the CognitionShoot dataset has six groups. For example, if three participants

annotated a photo as wide-view, others labeled it as narrow-view, this photo would

be regarded as an ambiguous wide-view. If only four participants annotated a photo

as wide-view, this photo would be a normal wide-view. If one photo is labeled as

wide-view by all five participants, this photo would be an obvious wide-view. The

size of each group is shown in Table 4.6.
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Table 4.6: The number of different groups of CognitionShoot. Obvious wide-view,
normal Wide-view, and ambiguous wide-view represent such photo annotated as
wide-view by five, four, and three participants, respectively, where other participants
annotated as narrow-view. The same definition for obvious narrow-view, normal
narrow-view, ambiguous narrow-view.

Obvious Normal Ambiguous
Wide-view 929 300 251
Narrow-view 1031 250 239

4.3.1.2 Proposed algorithm

We design CFCNN on the basis of AlexNet (Krizhevsky et al., 2012). We

use the pooling size 3×3 for every additional pooling layer. The kernel sizes

of the convolutional layers are transferred from the AlexNet, while the additional

convolutional layers’ kernels follow the size of the feature map that is to be convolved.

For example, the feature map after the first pooling layer is 27× 27× 96. Hence the

kernel size of the first additional convolutional layer is 27× 27× 96 and mapped to

1024 neurons. These additional convolutional layers are to be trained end-to-end

with all the other convolutional layers. Hence, the feature maps from different layers

are directly summed up to obtain the cumulative feature map and then proceed

to the subsequent fully connected layers for classification. Thus the cumulative

feature representation is expected to focus on significant features from different

levels (layers).

We used 3/4 of photos in TravelShoot for training while the remaining for

validation. During the training process, each training image is augmented by resizing

the shorter side to 256 dimensions while maintaining aspect ratio, and then random

cropping and flipping are performed, followed by normalization by subtracting with

the average image of the dataset. Finally, a 227× 227× 3 dimension image is fed to

the network. CFCNN uses the stochastic gradient descend approach with a training

batch size of 230, weight decay of 0.0005, and the learning rate that logarithmically

reduces from η = 10−5 after every training epoch. In addition, we transferred

ImageNet pre-trained weights from the AlexNet for the five convolutional layers
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Table 4.7: The accuracy and time performance of different algorithms testing on
CognitionShoot. The Obvious, normal and ambiguous represent the accuracy in sets
of obvious, normal, and ambiguous wide-/narrow-view. The accuracy is compute
from CognitionShoot except for ambiguous set. Execution time is the time for
classifying 3000 photos on CognitionShoot with the methods’ own implements. The
HVS methods are implemented on MATLAB2016a with parallel processing of 6
compilers, while CFCNN is implemented PyTorch with a batch size of 10 photos.

Classification algorithm Accuracy Obvious Normal Ambiguous Execution time (h)
HVS method 0.7454 0.7985 0.5564 0.5367 0.3896
HVS+ method 0.8434 0.8959 0.6564 0.5408 1.0129
CFCNN 0.8813 0.9367 0.7182 0.5612 0.0158

to improve the generalization of the main feature extraction layers of our model.

To prevent overfitting, the training was stopped at 200 epochs, where there was no

significant reduction in the trend of the validation error. The difference between the

validation and training errors was 0.047, an acceptable range of over-fitting as the

validation performance achieved over 0.8. The CFCNN is implemented by PyTorch

on an NVIDIA K40 GPU and a 12 × 3.30GHz Intel i7-5820K CPU with 32 GB

RAM.

4.3.2 Results and discussion

To evaluate the CFCNN, we use AttentionShoot and CognitionShoot for testing.

The classification accuracies of the HVS, HVS+, and CFCNN on AttentionShoot are

0.8400, 0.9317, and 0.9752, respectively. In addition, the classification accuracies

and time performance of these algorithms on CognitionShoot are shown in Table 4.7.

Firstly, we can find that the CFCNN gets the highest accuracy and a considerable

improvement of 0.0379 compared with HVS+ method. Secondly, these algorithms

show different accuracies in the different ambiguous levels. For example, from

the obvious set (obvious wide-view vs. narrow-view) to the ambiguous set, all

algorithms get manifest drops. For example, the CFCNN decreases 0.2185 from

the obvious set to the normal set. Thirdly, the computational time of CFCNN is

lower than HVS and HVS+ methods. The reason is HVS and HVS+ methods are

implemented on MATLAB with CPU, while CFCNN is implemented on PyTorch
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Figure 4.11: The t-SNE visualization of the last hidden layer representations in the
CFCNN for view-type classification. Here we show the CFCNN’s internal representa-
tion of view-type by applying t-SNE , a method for visualizing high-dimensional data,
to the last hidden layer representation in the CFCNN of CognitionShoot dataset
(3000 photos). The ‘X’ and point clouds represent the wide-view and narrow-view,
respectively, showing how the algorithm clusters the photos. Insets show images
corresponding to various cognition groups with different colors.

with GPU. In addition, HVS+ method is most time-consuming because the NSCT

has more computational complexity than DWT. Specifically, the CFCNN only takes

0.0156 times as long as the execution time of HVS+ method to complete the test

of CognitionShoot (3000 photos). Therefore, we can conclude that the CFCNN

model is superior to the HVS+ method we previously proposed in Experiment 1 for

view-type classification and more suitable for estimating the attentional scopes of

extensive travel photos.

To better understand the view-type classification of CFCNN, we examined

the internal features learned by the CFCNN using t-SNE (t-distributed stochastic
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Figure 4.12: The statistical results of the t-SNE’s dimensions for different ambiguous
levels. The vertical value represents the first of t-SNE, which is the horizontal axis
as shown in Figure 4.11, respectively. * p, **** p <0.00001.

neighbor embedding) as shown in Figure 4.11. Each point or ‘X’ represents a travel

photo projected from the 1024-dimensional output of the CFCNN’s last hidden

layer into two dimensions. We see clusters of points and ‘X’s of the same view-type

classes. The obvious wide-view photos cluster in the left and opposite to obvious

narrow-view photos (right). The normal wide-view photos spread in the obvious

wide-view photos, while cluster in the right part. Similarly, the normal narrow-view

photos spread in the obvious narrow-view photos, while cluster in the left part. The

ambiguous set spread in the center. In addition, we showed the averaged values

of the t-SNE’s first component between different ambiguous groups in Figure 4.12.

There are significant differences (unpaired t-test) between every two groups. The

result also shows a correlation may exist between humans and CFCNN for view-type

cognition, and the t-SNE’s first component represents the attentional scopes from

narrow to wide to some extent.

For additional insight into the view-type classification of CFCNN, following Loh

and Chan (2019). We apply receptive field analysis to highlight the regions of the

image that are most salient in generating the output distribution. Specifically, we

extract the receptive field produced by the last pooling operation for each test image,
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(a)

(b)

Figure 4.13: Network receptive field analysis of photo examples, (a) wide-view photos
and (b) narrow-view photos. Given an input image (top), the output mask (bottom)
highlights image regions with the most contribution to the view-type classification
by CFCNN.

where the dimension of the map is 6 × 6 × 256. Max pooling is again performed

on the extracted maps in the third dimension to obtain an aggregated map with

6 × 6 dimension, where it is then resized to the size of the original image. This

final map is used to mask the luminance channel of the original image to obtain

a visualization of the area in which the features are used for classification. This

process leads to a salient map over the input image. The bright areas show the

most contribution to the classifier. Figure 4.13 shows several examples of receptive

field analysis. Each pair of images shows the input and the corresponding masked

photos. It can be found that the CFCNN looking at the object of interest (e.g., as

shown in left examples of Figure 4.13) for some photos, while others only focus on

the image fringe ((e.g., as shown in right examples of Figure 4.13). However, the
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proposed framework in Experiment 1 is only looking at the main object of interest —

focus cue estimates whether focus or defocus of the main object; scale cue estimates

spatial size and conceptual size of the main objects. Therefore, CFCNN goes beyond

the focus cue and scale cue designed in the HVS+ method, which may be one of

the components the CFCNN obtain a better classification performance than HVS

methods.

4.4 Discussion

This chapter discovered a novel and challenging computer vision problem —

the view-type classification, which expresses the photographers’ attentional scopes

and shooting behavior. This task is challenging because estimating the attentional

scope of the photographer is subjective processing and it is difficult to estimate

objectively. Furthermore, we found the natural photos contain ambiguous photos

that are difficult to be defined as wide-view and narrow-view even by human. To

solve the classification problem, we designed two methods corresponding to two

experiments. In experiment 1, we proposed the focus and scale cues inspired by the

human visual system for view-type classification and a framework that contains scene

focus and size scale models. In addition, we established a view-type classification

benchmark (AttentionShoot) with 5,050 natural photos to evaluate the performance

of the proposed framework. Through a large number of comparative experiments,

the results show that NSCT+SURF and AdobeBING+CNN are essential and

optimal for scene focus and size scale models, whereby the proposed algorithms

remarkably outperform the existing algorithms for related works. However, the

separated models in the proposed framework could produce classification bias,

and the ambiguous photos on the AttentionShoot may influence the classification

performance. Thus, we proposed a CFCNN which combines the low-level feature

with high-level image interpretations in Experiment 2. We established two datasets,

i.e., TravelShoot and CognitionShoot. The TravelShoot is used to train the CFCNN,

which makes the training data expanded to 10 times compared with AttentionShoot.
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The CognitionShoot had finer classifications with six levels of view-type cognition

and was used for CFCNN evaluation. The experimental results showed that the

CFCNN is outperformed the algorithms proposed in Experiment 1 with higher

classification accuracy and time effectiveness. In addition, we showed the CFCNN

might learn similar patterns from humans for different levels of view-type cognition

based on the feature visualization.

The proposed computational algorithm, CFCNN, for view-type classification is

the basis for our future works. This classification task is motivated by such visual

attention, existing relationships with sightseeing values (Bartie & Mackaness, 2016),

and emotion (Fredrickson, 2004). We intend to extend this research in two directions,

i.e., data science and psychological science. (1) Data science: The travel photos may

represent the behavior and visual attention of tourists. This chapter proposed an

algorithm that can automatically estimate the tourists’ attentional scopes from their

shared photos. Thus, the proposed algorithm can potentially be used to measure

sightseeing aesthetics and tourists’ sentiments of travel locations. We intend to

implement the proposed algorithm in a travel recommendation system in our future

work. (2) Psychological science: According to the broaden-and-build theory, scopes

of visual attention indicate the observers’ emotions. With the proposed algorithm,

we intend to analyze more data and construct NODS with attentional scopes for

expanding the broaden-and-build theory in the tourism scenario. We will make this

point more concrete in the next Chapter.
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Chapter 5

The Relationship Between Tourist
Satisfaction and Photo-shooting Be-
haviors

This part aims to estimate the broaden-and-build theory (Fredrickson, 2004;

Fredrickson & Branigan, 2005) by constructing NODS. The tourism social media

platforms (e.g., Flickr and TripAdvisor) collect big data of rating of travel experience

(satisfaction) and the travel photos related to the experience. The tourist satisfaction

with their attentional scopes revealed by travel photos is assumed as a living example

of the broaden-and-build theory, as shown in Figure 5.1a. Thus, the target behavior

of such NODS is detecting the wide or narrow shooting behaviors which reveal the

attentional scopes, named wide-view vs. narrow-view. In Chapter 4, we proposed

CFCNN model to classify the view-types from travel photos. The experimental

results showed CFCNN obtained a sufficient accuracy and time performance for

this classification task from travel photos. In Chapter 5, the CFCNN is used to

examine the attentional scopes from large numbers of travel photos and construct

the NODS including tourist satisfaction and photo-shooting behaviors for refining

the broaden-and-build theory in a natural setting.

5.1 Introduction

Recent advances in machine learning technologies in conjunction with big data

from social media platforms offer psychologists an unprecedented opportunity to

test psychological theories outside the laboratory. For example, the sequential
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(a)

(b)

(c)

Figure 5.1: Examples of travel experience ratings (satisfaction) and the travel photos
with different shooting behaviors. (a) Two examples of scenic spots with experience
ratings and travel photos. The travel photo examples of (b) wide-view and (c)
narrow-view, i.e., wide or narrow shooting behaviors which reveal the different
attentional scopes of photographers.

dependence functions in higher-order cognition were investigated on millions of

online reviews posted on Yelp (Vinson et al., 2016), a machine learning model

trained on a standard corpus of online text can result in human-like semantic biases

(Caliskan et al., 2017). Emerging studies suggested that NODS could be used as a

complement to traditional laboratory paradigms and could refine theories (Goldstone

& Lupyan, 2016; Griffiths, 2015; M. N. Jones, 2016; Paxton & Griffiths, 2017). In

this chapter, we aim to demonstrate a case study to construct NODS for testing the

broaden-and-build theory (Fredrickson, 2001, 2004) in the wild.

According to the broaden-and-build theory, positive emotions globalize the
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attentional scope of the observer and result in the processing of a global scene

picture, i.e., a big picture (Fredrickson & Branigan, 2005; Gu et al., 2017; Ji et al.,

2019), while negative emotions localize attentional scope and induce the processing

of local elements. Conversely, broadening attention leads to positive emotions, and

narrowing attention leads to negative emotions (Niedenthal & Kitayama, 2013;

Srinivasan & Hanif, 2010). The individual mood (internal factor) might influence

different perceptions and prompt different photo-shooting behaviors, i.e., wide-

view vs. narrow-view. Nonetheless, direct studies to verify and practically adopt

such psychological theory in photo-shooting behaviors are scarce, with only a few

recent attempts to suggest image view-type for scene aesthetic evaluation (Bartie &

Mackaness, 2016) and sightseeing quality assessment (Zhuang et al., 2014), i.e., image

view-type related to the environment (external factors). Moreover, the broaden-

and-build theory is supported by many laboratory experiments with restricted

environments, such as a limited number of subjects and simple stimuli, forming a low

external validity. Thus, we intend to test this theory in the tourism scenario with

NODS. A good fit of the theory using natural behaviors would lead to demonstrable

progress (Roberts & Pashler, 2000), i.e., improving the persuasion of the theory and

building the conjunction with practical applications.

For testing the relationship between emotion and attentional scopes, the mea-

surement or manipulation of the attentional scopes is crucial for experimental design.

Manipulating the attentional scope often aims to study the effect of visual attention

affects emotion (Gu et al., 2017; Ji et al., 2019), where the attentional scope is

the independent variable. When the attentional scope is the dependent variable,

it often requires measuring the attentional scope. The methods for measuring or

manipulating the attentional scopes sometimes are similar. The most commonly

used methods for both measurement and manipulation are Navon stimuli (Ji et al.,

2019; Navon, 1977) and Kimchi and Palmer stimuli (Fredrickson & Branigan, 2005;

Kimchi & Palmer, 1982), as shown in see Figures 1.1 and 5.2a, respectively. For

Kimchi and Palmer stimuli, the participants were asked to choose one from the

two comparison figures (bottom), which is more similar to the target figure (top).

95



(a) (b)

(c)

Figure 5.2: The redrawn psychological stimuli used for manipulating or measuring
the attentional scopes in the psychological studies, which intended to explore the
relationship between emotional states and attentional scopes. (a) The Kimchi
and Palmer stimuli used for measuring the attentional scopes in a behavior study
(Fredrickson & Branigan, 2005); (b) a visual stimulus applied for measuring the
attentional scopes in a brain imaging study (Schmitz et al., 2009); and (c) scene-
viewing stimuli employed for manipulating the attentional scopes in Gu et al. (2017).
Another two stimuli (i.e., Novan stimuli and global-local landscape stimuli) can be
found in Figures 1.1 and 1.2.
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Suppose participants select the left one as most similar, that is to say, they are

focusing on the local detail elements, i.e, narrowed attention. In one sense, Kimchi

and Palmer stimuli are essentially a variant of Navon stimuli (Goodhew, 2020).

Navon stimuli often use letters as the structural elements, whereas they are always

shapes for Kimchi and Palmer stimuli. The metric using Navon stimuli or Kimchi

and Palmer stimuli is often the selection of the behavioral response. Recently,

psychologists designed physiological metric for measuring attentional scopes. For

example, in a brain image (fMRI) study, Schmitz et al. (2009) designed a visual

stimulus containing a scene of a house (place information) with a face image like

Figure 5.2b is given to the participants, and the task is to answer if the face is

male or female. The reason for such design is that the fusiform face area of the

human brain specifically activates to face information while the parahippocampal

place area specifically activates to place information. When participants attended

to central face information, the surrounding place would be unattended. Thus, the

physiological metric of different attentional scopes was a valence-dependent change

in the magnitude of parahippocampal place area response to place information.

In addition, psychologists designed the stimuli (for manipulating attentional

scopes) using realistic images or scenes (Gu et al., 2017; Ji et al., 2019) to improve the

generalizability of the emotion-attention relationship. Ji et al. (2019) designed global-

local landscape stimuli as shown in Figures 1.2. The participants were being asked to

look at the entire landscape image (left) to inducing the broadening attention, while

focus on the area delimited by a box (and ignore the rest of the image) to inducing

the narrowing attention. After this phase, participants were being instructed to

describe in a few sentences what they saw. This study suggested that the landscape

stimuli showed similar affective valence to Navon stimuli for manipulating attentional

scopes. Moreover, Gu et al. (2017) designed two scene-viewing stimuli. For the first

scene-viewing stimuli, as shown in Figure 5.2c, researchers isolated original shots

from several documentaries and then converted the zoom-in (or zoom-out) scenes

into corresponding zoom-out (or zoom-in) scenes. The zoom-in scenes are expected

to narrow the attention since more details would be present in the central area, while
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the zoom-out scenes would broaden the attention since new scenes would be present

in the peripheral area. Furthermore, they designed another scene-viewing stimuli —

the real-world distant and close-up scenes — for manipulating attentional scopes.

Specifically, the participants (depressed) were asked to watch distant or proximal

scenes 20 minutes a day and write a description of the scenes. After eight weeks, the

participants significantly reduced depressed mood in broadening attention training.

In Chapter 4, we proposed CFCNN to classify the attentional scopes of tourist

(narrow-view vs. wide-view) from travel photos. Similar to the study (Gu et al., 2017)

which used scene-viewing stimuli to manipulate the attentional scope, we use image

view-type to measure the attentional scope of tourist. In this chapter, we construct

two NODS from two famous social media platforms — Flickr and TripAdvisor. The

NODS includes the attentional scopes and experience rating. That is to say, CFCNN

is used to measure the attentional scopes, and the experience rating represents the

tourist satisfaction. We estimate the relationship between proportion of wide-view

and the experience rating. For 94 scenic spots, there is a significant relationship

between average experience rating and proportion of wide-view. This suggests

that emotional states may influence the decision-making of tourists in composing

specific camera viewpoints. Tourists seem to prefer shooting wider-views at scenic

spots with higher experience rating. Our finding is consistent with the broaden-

and-build theory. Meanwhile, in contrast to the traditional laboratory paradigms,

our method substantially increases the numbers and diversity of participants by

exploiting machine learning methods to construct NODS with the vast amount of

behaviors from social media platforms. Furthermore, we show the found relationship

has potential significance for real-world applications, i.e., point-of-interest (POI)

discovery and sightseeing value assessment.

5.2 Experiment 1

In Experiment 1, we construct a NODS for testing the broaden-and-build theory.

The orginal dataset includes 39,099 geotagged images collected from Flickr of 30
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popular scenic spots across Asia, Europe, North America, and Oceania. To construct

NODS, we use CFCNN to detect the natural photo-shooting behavior, wide- or

narrow-view, inferred from a single photo. Then, we calculate the percentage

of wide-view (named wide percentage ∈ [0, 1]) concerning each scenic spot, and

analyse the relationship between wide percentage and tourist satisfaction. The

tourist satisfaction of each scenic spot is represented by the average score of travel

experience ratings for each spot provided by TripAdvisor.

In this experiment, we find a significant difference of wide percentage exists

between 15 high-rated and 15 low-rated scenic spots (unpaired t-test: t(28) = 8.460,

p < 0.0001). At high-rated scenic spots, tourists prefer to take wide-view photos to

capture wide landscapes (e.g., mountains, lakes, tall buildings), while for low-rated

scenic spots, the preference appears to be moderate or inclined towards narrow-view,

typically containing small elements (e.g., food, people, activities).

In the tourism industry, large geotagged image collections are currently used to

discover, recognize, and reconstruct the landmarks of scenicness and scenic spots

(Arase et al., 2010; Workman et al., 2017; Zhuang et al., 2017). For example, Arase

et al. (2010) presented an effective method to detect tourists’ frequent trip patterns

as well as produce descriptive tags that characterize the trip pattern using 5.7 million

geotagged photos. Thus, we map the travel photos with different shooting behavior

into the scenic spot location, and discuss the potential application of point of interest

(POI) discovery, based on found relationship between tourist satisfaction and their

photo-shooting behaviors.

5.2.1 Datasets

We made use of Flickr to gather the required image data, and TripAdvisor to

obtain the required tourist satisfaction. The outcome was a collection of 39,099

photos and tourist satisfaction taken from 30 scenic spots. The data collection was

consisted of the following three steps.

Scenic spots collection. We collected 12,482 scenic spots from TripAdvisor with

tourist satisfaction. The tourist satisfaction (Rc ∈ [1, 5], c ∈ [1, 12482]) of each scenic
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Figure 5.3: The geo-locations and representative photographs of 20 scenic spots over
4 continents, i.e., Asia, Europe, North America, and Oceania. The high-rated scenic
spots are denoted by red, while the low-rated scenic spots are denoted by blue.

spot is the average score of experience rating by various tourists, who provide review

comments. The Rc is defined as,

Rc =
∑Nc

r Rc
r

N c
r

, (5.1)

where N c
r represents the review comments number of c-th candidate, and Rc

rm ∈ [1, 5]

(5: ‘Excellent, 4: ‘Very good’, 3: ‘Average’, 2: ‘Poor’, and 1: ‘Terrible’) represents

the experience rating of different tourists at c-th scenic spot. Figure B.1 shows the

number distribution of 12,482 scenic spots w.r.t. Rc. We note that most Rc range

from 3 to 5 with a median of 4.275.

Scenic spots selection. We selected the 30 scenic spots based on the following

five criteria: (1) Popularity: Recommended by top search engines, i.e., TripAdvisor,

National Geographic, and Travel + Leisure; (2) Objectivity: Having at least 1,000

experience ratings regardless of language, age, gender, nationality, etc.; (3) Diversity:

Keeping spot types as diverse as possible, but avoid religious and political places. (4)

Independence: Having an appropriate distance from other spots to avoid cross-rating.

Among the selected spots, 10 are high-rated, and 10 are lower-rated taken from

4 continents (named worldwide spot), whereas the remaining 5 high-rated and 5

lower-rated spots are specifically selected from within the state of California, USA

(named regionwide spot) to facilitate a study based on a local region. The threshold

of rating for a high-/low-rated spot was 4.275 (the median of Rc). Figure 5.3 shows

the geolocations of the selected worldwide spots.
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Photo collection. Thousands of geotagged photos from each spot were downloaded

using the public Flickr API. Its geolocation and specified zone that was defined

based on the type of structures of the spot. For instance, we used a circling zone

for the Eiffel Tower, whose center is located at the tower, with a radius of 350

meters, whereas for the Hollywood Walk of Fame, a long strip covering the entire

street is more reasonable. Firstly, we downloaded all the photos in these specified

zones (306,000 photos in total). However, since the number of photos in each spot

is unbalanced. Secondly, a subset with 39,099 photos for 30 spots was randomly

selected. The details about the photo number of 30 scenic spots (N s
p , where s ∈ [1, 30]

is the serial number of these spots) can be found in Table B.1.

To test the validity of the proposed CFCNN for attentional scope analysis in

scenic spots, the 9,923 photos of 10 regionwide spots were manually annotated

as narrow-/wide-view by a leading informatics researcher (a male aged 27 years)

and then again by one independent person (a male aged 23 years) who had been

fully briefed about the definition of view-type. The annotations results of the 10

regionwide spots can be found in Table B.1, where N s
wp (Human) represent the

number of wide-view photos in s-th scenic spots. The experience ratings (Rs) of the

10 regionwide spots and 20 worldwide spots are shown in Table 5.1 and Table 5.2,

respectively.

5.2.2 Results and discussion

5.2.2.1 Machine vs. human

To test the validity of the CFCNN for photo-shooting behavior analysis in scenic

spots, we employed the CFCNN on the annotated photos of the regionwide scenic

spots to compare machine (CFCNN) performance with human’s. The photos were

fed to the CFCNN for classification and gathered P s
w ∈ [0, 1], which represents

percentage of the wide-view photos of s-th scenic spots and defined as,

P s
w =

N s
wp

N s
p

(5.2)
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Table 5.1: The statistical results of 10 regionwide scenic spots from California, USA.
The Rs represents averaged experience rating of the corresponding spot. The P s

wp

of Human or CFCNN represents the percentage of wide-view photos annotated by
participants or classified by CFCNN. The accuracy represents CFCNN classification
performance for each scenic spot using human annotation as ground-truth.

No. (s) Spot Name Rs Human CFCNN
P s

wp P s
wp Accuracy

1 Hollywood Walk of Fame 3.383 0.182 0.209 0.9029
2 Haight-Ashbury 3.950 0.291 0.312 0.8468
3 Cannery Row 3.926 0.379 0.419 0.8340
4 Fisherman’s Wharf 4.074 0.389 0.431 0.8543
5 Venice Beach 3.798 0.486 0.482 0.8499
6 Torrey Pines State Natural Reserve 4.733 0.627 0.643 0.8383
7 Fort Rosecrans Cemetery 4.760 0.648 0.631 0.8519
8 Carmel City Beach 4.716 0.735 0.727 0.8764
9 Yosemite Valley 4.708 0.864 0.751 0.8297
10 Dante’s View 4.796 0.872 0.878 0.9282

where N s
p and N s

wp represent the number of photos and wide-view photos in s-th

scenic spots.

Firstly, using human annotation as the ground-truth, the classification accuracy

of the model records a notable 0.8297-0.9282 (as shown in Figure 5.1). These results

for different scenic spots are close to the testing accuracy (0.8813) on CognitionShoot.

Considering there are certain ambiguous photos, these results suggest the CFCNN

has considerable validity for calculating the wide percentage for different scenic

spots. Secondly, we obtained a wide percentage for each spot as human annotations

(as shown in Table 5.2). Figure 5.4 shows the comparison of the wide percentage for

regionwide scenic spots between human and CFCNN. Remarkably, the performance

of the CFCNN model closely resembles human annotation (Pearson’s correlation

coefficient: r = 0.987, p = 1.05× 10−7; Mean absolute error: MAE = 0.052). This

result suggests the CFCNN is effective for photo-shooting behavior analysis for

different scenic spots. Therefore, we use the CFCNN in the experiments of this

chapter.
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Figure 5.4: Comparison of calculating the wide percentages (P s
wp) for 10 regionwide

scenic spots between human and machine (CFCNN).

5.2.2.2 Photo-shooting behavior analysis

The CFCNN model is used to predict the photo-shooting behaviors (wide- or

narrow-view) of a single image. We analyze the predicted results for the images of

20 worldwide spots and get P s
wp for each spot as shown in Tables 5.2. It is noted

that the spots with different ratings have different ratios. Especially, the high-rated

scenic spots have a larger wide percentage than low-rated scenic spots. For example,

scenic spots selected from worldwide, such as Khaosan Road (R15 = 3.810; P 15
wp =

0.173) has a lower wide percentage than Bryce Canyon National Park (R30 = 4.908;

P 30
wp = 0.836) with a difference of 0.663. Similar results can be found in regionwide

spots, such as Danta’s View (R10 = 4.796), with the wide percentage that is 0.689

higher than the Hollywood Walk of Fame (R1 = 3.383). More importantly, such

gaps between high and low-rated spots exist in comparing spots of similar nature.

For example, seaside type locations such as Marina Beach (R14 = 3.774) and Carmel

City Beach (R8 = 4.716) show a difference of 0.214 in favor of the higher-rated spot.

Likewise, the gap between Television Tower (R18 = 4.003) and Eiffel Tower (R24 =

4.594) is 0.163 inclined towards the Eiffel Tower. Some other same scenery type

comparisons can be found in Figure 5.5, including square areas, towers, and seasides.

Our hypothesis is that the photo-shooting behaviors are influenced by the

emotional states of tourists. For comparison, we access the preferences of photo-

shooting behaviors in an entirely random mode. An independent dataset of 1,000
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Table 5.2: The statistical results of 20 scenic spots from worldwide. The P s
wp

represents the percentage of wide-view photos classified by CFCNN.

No. (s) Spot name Country Rs P s
w

11 Manneken Pis Belgium 3.260 0.196
12 The Little Mermaid Den Lille Havfrue Denmark 3.418 0.460
13 Jungle Island USA 3.769 0.264
14 Marina Beach India 3.774 0.522
15 Khaosan Road Thailand 3.810 0.173
16 Las Ramblas Spain 3.901 0.333
17 Ho Chi Minh Mausoleum Vietnam 3.914 0.551
18 Television Tower Germany 4.003 0.608
19 Tiananmen Square China 4.027 0.601
20 National Monument Indonesia 4.113 0.367
21 Kiyomizu dera Temple Japan 4.407 0.605
22 Tower Bridge England 4.587 0.741
23 Chichen Itza Mexico 4.589 0.730
24 Eiffel Tower France 4.594 0.771
25 Colosseum Italy 4.674 0.801
26 Sydney Opera House Australia 4.674 0.797
27 Parthenon Greece 4.687 0.719
28 Golden Gate Bridge USA 4.697 0.779
29 Taj Mahal India 4.790 0.819
30 Bryce Canyon National Park USA 4.908 0.836

photos was collected from the YFCC100M dataset (Thomee et al., 2016) without

using geotag or any other keywords. YFCC100M is a subset of Flickr containing

100 million data, which has travel photos and a super-wide diversity. A close

investigation of those random photos revealed that the vast majority of narrow-view

photos were cliché photos of everyday life. The random photos represent the “normal

behavior” in composing wide vs. narrow view photos. Thus, the wide percentage of

these photos serves as a baseline and will be compared against the photos collected

from scenic spots. The 1,000 photos are annotated by two informatics researchers

(male aged 27 years and 43 years) and obtain a wide percentage of 0.397.

The wide percentages of different sightseeing groups are compared, as shown

in Figure 5.6. A significant difference (unpaired t-test: t(28) = 8.460, p < 0.0001)

exists between 15 low-rated spots (Mean±SD: 0.387 ± 0.148) and 15 high-rated

spots (Mean±SD: 0.756± 0.082). Analogously, as shown in Figure 5.6, a significant
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Figure 5.5: The comparison of wide percentage and experience ratings of same
scenery type, i.e., square areas (Tiananmen Square vs. Taj Mahal), landmarks
(Television Tower vs. Eiffel Tower), and seasides (Fisherman’s Wharf and Venice
Beach vs. Torrey Pines State Natural Reserve and Carmel City Beach).

Figure 5.6: Compare the wide percentage at different sightseeing groups, 20 world-
wide spots, and 10 regionwide spots. The wide percentage at regionwide scenic
spots used the annotations of participants for analysis. The baseline is the wide
percentage of 1,000 photos annotated by participants, which were randomly selected
from the YFCC100M dataset (Thomee et al., 2016). ***: p < 0.0001; **: p < 0.001.

difference exists in the each group of worldwide (unpaired t-test: t(18) = 6.302,

p < 0.0001) and regionwide (unpaired t-test: t(8) = 5.548, p < 0.001) spots,

respectively. Moreover, the wide percentage of the baseline is 0.397 closely resembles

the wide percentage of low-rated spots. We conjecture that this similarity might

be ascribed to when a tourist is unsatisfied that travel experience, they would
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show the similar photo-shooting behavior or attentional scopes to their daily life.

The alternative reason is that the data collection from Flickr does not distinguish

between local people and tourists. The low-rated spots may contain more photos

shared by local people because of the relatively lower popularity.

We note that wide-view photos usually capture large-scale landscape (e.g., sea-

views, tall buildings, and mountains), while narrow-view photos typically contain

small elements (e.g., food, people, activities). The intuitive belief for the chosen

perspective in photography is based on location; for example, wide natural landscapes

like beaches inspire more wide-view photos. However, our results suggest that the

spot with a high rating would inspire people to take more wide-view photos to record

the overall scenery, including the landscape and structures, while at low-rated spots,

people tend to take more narrow-view photos to record more mundane elements such

as food and activities, which is similarly done on a regular non-vacation day and

location. This finding is coincidentally consistent with the broaden-and-build theory

(Fredrickson & Branigan, 2005), suggesting that tourists’ behavior in capturing

photos while traveling to scenic spots somehow adheres to this theory.

5.2.2.3 Mapping the photo-shooting behaviors

To discover the piratical application of the relationship between photo-shooting

behavior and experience rating, we analyzed the spatial distribution of photo-shooting

behaviors across sub-regions of a scenic spot. We use the geotagged information of

a photo to find out the location in which the tourist had taken and then “place” the

shooting behaviors of this photo into a regional map of the spot. Figure 5.7 shows

the photo-shooting behavior maps of different spots (red and black for wide- and

narrow-view photos, respectively). Based on these behavior maps, we noted that

the behavior map exhibits the tourists’ attention distribution of the spots and may

partly reflect the “spatially emotion” area in the spot. For example, low-rated spots

have some locals with a high density of wide-view photos, whereas the high-rated

spots have some locals with a high density of narrow-view photos. For example, in

the map of the National Monument in Figure 5.7b, there is a concentration of red
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(a)

(b)

Figure 5.7: The photo-shooting behavior mapped on the scenic spot’s location: (a) 2
low-rated scenic spots, and (b) 2 high-rated scenic spots. Each colored dot represents
a geotagged photo with a color indicator of its shooting behaviors (red: wide-view,
black: narrow-view).

dots next to the central area of the main structure, which means this area provides

a right scenic view for tourists, and the emotional states of the tourists when they

visit here may be more positive than visit other areas.

Furthermore, a density analysis of photo-shooting behaviors by comparing two

spots of the same scenery type also yields more insights, ie., a comparison of the

beach scenic spots, namely Carmel City beach (4.716) and Marina Beach (3.774), as

shown in Figure 5.8. Both spots have famous sea-views and can provide people with
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Figure 5.8: The photo-shooting behavior mapped on the scenic spot’s location with
Point-of-interests (POI). The circles represent the POI determined by the density
of the wide percentage. POI-A, POI-B, and POI-C at Carmel City beach have
high wide percentages (> 0.80); POI-D, POI-E, and POI-F at Marina Beach have
low wide percentages (< 0.45). Each circle directs an example photo cropped from
Google Street View (https://www.google.com/streetview/) are showed for each
corresponding POI.

enough areas of opportunity to capture wide-view photos of the beaches. However,

their wide percentages are entirely different from each other, with a difference of

0.214. The density analysis on the map allows us to identify three popular point-

of-interests (POIs) for each map, as shown in Figure 5.8. In these POIs, we found

that the three regions of Carmel City beach (POI-A, POI-B, and POI-C) have high

percentages of wide-view photos (> 0.80), while the three regions of Marina Beach

(POI-D, POI-E, and POI-F) have low percentages of wide-view photos (< 0.45).

To get an unbiased understanding of the environment around these three areas, we

surveyed the regions using Google Street View and cropped sample images on a

random point at the corresponding POI. As shown on both sides of Figure 5.8, we

can see that Carmel City beach is clean and tidy with white sand and an Observation

deck (POI-C). These examples photos show that Carmel City beach provides people

the right places to enjoy the beach scenery. On the other hand, Marina Beach is

crowded with people (POI-E and POI-F) and a polluted environment (POI-D and

POI-E). These elements give a bad impression to tourists and distract their attention
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even though the seascape and beach are beautiful.

In conclusion, this experiment found a significant difference of shooting behavior

(wide- and narrow-view) choice between high-rated and low-rated scenic spots.

Concretely, people visiting high-rated scenic spots tend to shoot wide-view photos,

while at low-rated spots, they are more likely to capture elements from a narrow-view.

This preference may be influenced by the psychological notion that positive emotion

broadens visual attention and triggers a choice of wide-view photos. Moreover, we

map the photo-shooting behaviors of each spot and found it has potential significance

to tourism, such as for sightseeing planning and POI discovery.

5.3 Experiment 2

Experiment 1 suggested that the photo-shooting behaviors are correlated to the

experience ratings of scenic spots provided by tourists. However, there are two

limitations. Firstly, when collecting the dataset, we did not distinguish between

local people and tourists who took photos. That is, the people who shared the

photos are not the tourists who give experience ratings. In addition, photo-shooting

behaviors and tourist satisfaction may correlate to other confounding factors, e.g.,

environmental factors. To alleviate these issues, we collect an alternative NODS

only from TripAdvisor, where the photos and experience ratings are shared by the

same tourists. The new dataset consists of 549,772 photos and experience ratings

from a collection of 94 scenic spots. To rule out the confounding factors, we use

subgroup analysis to divide the scenic spots into different continents and scenery

types. Moreover, we divide the photos into different visual contents, i.e., green,

water, and building perceptions. Under the scenic spot and visual content conditions

mentioned above, the experimental results still indicate a significant correlation

between tourist satisfaction and photo-shooting behaviors.

To evaluate the application of the photo-shooting behaviors, we compare its

performance for the ‘visiting worth’ assessment of scenic spots with the current image

content-based methods. The visiting worth assessment of sightseeing spots is first
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proposed by (Zhuang et al., 2014), which aimed to “discover the obscure scenic spots

that are less well-known while still worth visiting”. The visiting worth is different

from the popularity, consisting of many aspects such as “visual attractiveness,

history, related government policies, and the surrounding facilities” (Ge et al., 2019).

The current methods mainly focus on the visual attractiveness of the visual object

(Ge et al., 2019; Y. Shen et al., 2018) based on the visual content analysis. The

experimental result shows that the wide percentage is a better metric compared to

recent image content-based methods for inferring tourist satisfaction. This suggests

the association between tourist satisfaction and the wide percentage could be used

for sightseeing value assessment.

5.3.1 Materials and methods

5.3.1.1 Photo dataset

We collected the travel data from TripAdvisor where the hosted scenic spots

provide travel experience ratings, travel photos, and reviews. The scenic spots

were selected based on the same criteria in Experiment 1 — popularity, objectivity,

generality, and independence. In addition, we added a criterion the photo number

of each spot required more than 300. Thus, based on the available 12,000 tourism

destinations provided by TripAdvisor, 94 scenic spots were selected. Then, we

created a dataset consisted of 947,174 travel photos associated with these spots from

TripAdvisor. After removing the photos without experience rating, we gathered a

subset with 549,772 images to construct the new NODS. The details of the location

information of each scenic spot and photo number can be found in Table B.2 and

Table B.3. These data were collected in March 2020.

To construct the NODS, we applied the CFCNN to predict the view-type of a

single image. The tourist satisfaction of scenic spots is calculated by the ratings of

the photo providers only. Table B.3 shows the experience rating (Ri) and the wide
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percentage (P i
wp) of each scenic spot. The Ri ∈ [1, 5] and P i

wp ∈ [0, 1] is defined as,

Ri =
∑N i

pp Ri
pp

N i
pp

, P i
wp =

N i
wp

N i
p

, (5.3)

where N i
pp and Ri

pp represent the photo providers’ number and their rating of i-th

scenic spots (i ∈ [1, 94]), respectively. The N i
p and N i

wp represent the number of

photos and wide-view photos at i-th scenic spots, respectively.

5.3.1.2 Image content-based methods for visiting worth assessment

The general way of using the image-content to estimate the visiting worth of

sightseeing spots consists of the following steps (Ge et al., 2019). (1) Selected (man-

ually (G. Li et al., 2019) or automatically (Y. Shen et al., 2018)) the representative

images of the sightseeing spots, removing the elements that have no relation with

the attractiveness of a sightseeing spot, such as the sky, cars; and then (2) Estimated

the image quality (Y. Shen et al., 2018) or attractiveness (Ge et al., 2019) based on

image-content based features.

We compare the wide percentage with two image-content based methods for

visiting worth assessment as follows. (1) Visual depth estimation: Visual depth

reflects the visibility of the landscape, which is proposed by Y. Shen et al. (2018)

for visiting worth assessment. The visual depth score is calculated based on the

GIST-based method (Oliva & Torralba, 2001) to estimate the visibility of a single

image. The GIST-based method is implemented by the source code provided by

(Oliva & Torralba, 2001). The score range of visual depth is from 1 to 5. (2) Natural

attractiveness estimation: (Workman et al., 2017) proposed a method to predict a

single image’s attractiveness. The training dataset includes 217,000 outdoor images

with crowdsourced ratings of natural beauty. The method for natural attractiveness

estimation is implemented by the code provided by Workman et al. (2017). The

attractiveness score is ranged from 1 to 10.

To capture the representative images of each sightseeing spot, we reproduced

the method introduced by Y. Shen et al. (2018) to get the selected images with

frequency features in the high-level layer of a VGG model (Simonyan & Zisserman,
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Figure 5.9: The correlation analysis between the wide percentages and the experience
ratings of 94 scenic spots. The details of the experience rating and the wide
percentage of each scenic spot can be found in Table B.3.

2014). For each spot, we got 20 representative images for visual-depth and visual

attractiveness estimation and used the average visual-depth or visual-attractiveness

score of these images to represent the estimations of visiting worth of corresponding

spots.

5.3.2 Results and discussion

5.3.2.1 Photo-shooting behavior analysis

Spearman’s rank-order correlation coefficient is applied to analyze the relation-

ship between the wide percentage and experience ratings. Spearman’s rank-order

correlation (rs) is a nonparametric measure, indicating the agreements between

the two sets of rankings. Figure 5.9 shows a notable positive correlation between

wide percentage and experience ratings (rs = 0.722, p <0.00001). This preference

is ascribed to the broaden-and-build theory that positive emotions broaden visual

attention and trigger wide-view photo compositions.

On the one hand, the affective quality attributed to a place governs subsequent

behavior and tourist gaze (Ittelson, 1976; Pan et al., 2014). On the other hand,

tourists use photography to capture relationships with other people, places and
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Figure 5.10: The correlation analysis between the experience rating and the wide
percentage of scenic spots grouped by different continents, i.e., Asia (22), Europe(33),
and North America (31). The details of the location information of each scenic spot
can be found in Table B.2.

cultures (Edensor, 2000). Thus, some external factors, such as cultural and environ-

mental factors, may influence photo-shooting behaviors. To rule out the confounding

factors of cultural and environmental factors, we applied the subgroup analysis

where the scenic spots were divided into different subgroups by various continents

and scenery types. Furthermore, Pan et al. (2014) showed that the image dimension

influences the tourist affect, such as travel photos feature natural resources are

frequently associated with pleasant feelings. Thus, we classify the travel photos into

conditions with different image contents (i.e., green perception, water perception,

and building perception).

Firstly, the scenic spots are selected according to their locations, i.e., Asia (22),

Europe (33), and North America (31), to control the cultural factor. The details of

the location information of each scenic spot can be found in Table B.2. As shown

in Figure 5.10, the spots in Asia, Europe showed significantly positive correlations

between the wide percentages and experience ratings (Asia: rs = 0.799, Europe:

rs = 0.804, both p < 0.00001). However, the spots in North America showed a

relatively lower correlation between them (rs = 0.541, p < 0.005).

Subsequently, the scenic spots are selected according to their types of attractions,

i.e., parks (14), historical sites (15), landmarks (29), and neighborhoods (16). The

classification of the scenery type can be found in Table B.2. As shown in Figure
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Figure 5.11: The correlation analysis between the experience rating and the wide
percentage of scenic spots grouped by different scenery types, i.e., Parks (14),
Historic Sites (15), Landmarks (29), and Neighborhoods (16). The classification of
the scenery type can be found in Table B.2.

5.11, the historical sites and parks had significantly positive correlation between the

wide percentage and experience rating (historical sites: rs = 0.779, p<0.001; parks:

rs = 0.774, p < 0.005). However, landmarks and neighborhoods showed relatively

lower correlation between them (landmarks: rs = 0.632, p < 0.0005; neighborhoods:

rs = 0.426, p = 0.099). This result suggests that the environmental characteristics

may affect the association between photo-shooting behaviors and experience rating.

Lastly, we divided the travel photos into various visual contents, i.e., green

perception, water perception, and building perception. The green perception and

water perception represent the natural resources, while the building perception

represents the cultural resources. The method uses a well-trained CNN model

provided by (L. Liu et al., 2016) to detect the 102 SUN attributes (Patterson et al.,

2014) and then groups are divided based on the related attributes to green perception,
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Figure 5.12: The correlation analysis between the experience rating and the percent-
ages of different visual contents, i.e., green, water, and building perceptions. The
method for the visual content analysis was introduced by L. Liu et al. (2016).

Figure 5.13: The correlation analysis between the experience rating and the wide
percentages in different visual contents.

water perception, and building perception (the details of the method can be found in

(L. Liu et al., 2016; Zhou et al., 2014)). Using this method, all 549,772 images had

been detected as green perception, water perception, building perception, or others.

Thus, we obtained the percentage of green perception (P ig), water perception (P iw),

and building perception (P ib) for each spot. The P ig, P iw, P ib, are defined as,

P ig =
N ig

p

N i
p

, P iw =
N iw

p

N i
p

, P ib =
N ib

p

N i
p

, (5.4)

where N ig
p , N iw

p , and N ib
p represents the numbers of photos are detected as green per-

ception, water perception, and building perception at i-th scenic spots, respectively.

The result of correlation analysis between the experience rating and the percentages

of different visual contents is showed in Figure 5.12. We found the percentages of

water perception and building perception do not correlate with experience ratings
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(water perception: rs = 0.169, p = 0.104; rs = −0.120, p = 0.248). While the

percentage of green perception weakly correlate with experience rating (rs = 0.243,

p = 0.018). Then, we obtain the wide percentages of diffident visual contents, which

are defined as,

P ig
wp =

N ig
wp

N ig
p

, P iw
wp =

N iw
wp

N iw
p

, P ib
wp =

N ib
wp

N ib
p

, (5.5)

where P ig
wp, P ig

wp, and P ig
wp represents the wide percentage of green perception, water

perception, and building perception at i-th scenic spots, respectively; N ig
wp, N iw

wp,

and N ib
wp represent the number of wide-view photos in N ig

p , N iw
p , and N ib

p at i-th

scenic spots, respectively. Figure 5.13 shows the wide percentages of diffident visual

contents correlate with the experience rating (wide percentages of green perception:

rs = 0.645, p < 0.00001; water perception: rs = 0.581, p < 0.00001; building

perception: rs = 0.435, p < 0.00001). This result reveals a notable correlation

between the preference for wide-view photos and the high rating of scenic spots by

considering the conditions of different visual contents.

5.3.2.2 Comparing with visiting worth assessment

In the previous research, informatics research often predicted the visiting worth of

sightseeing based on the visual contents of the photos, i.e., the objective or inherent

characteristics of scenic spots. In our proposal, we measure the attentional scopes of

photos and refer them to tourist satisfaction. Considering that tourist satisfaction

is an aspect of visiting worth, the attentional scopes may be a subjective metric

to measure the visiting worth. Thus, we compare the wide percentage to visual

attractiveness (Workman et al., 2017) and visual depth (Y. Shen et al., 2018) for

inferring tourist satisfaction. As shown in Figure 5.14, the visual attractiveness

and visual depth are significantly correlated to the tourist satisfaction (visual

attractiveness: rs = 0.561, visual depth: rs = 0.614, both p < 0.00001). However,

the wide percentage outperforms both methods which has a correlation of rs = 0.772.

This result suggests that the the attentional scope reflected by the shooting behavior

is more related to tourist satisfaction than current methods for visiting worth

assessment. Thus, the relationship between photo-shooting behavior and tourist
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Figure 5.14: The correlation analysis between the experience rating and visiting worth
scores based on current visual content-based methods, i.e., natural attractiveness
(Workman et al., 2017) and visual depth (Y. Shen et al., 2018).

satisfaction is potentially applied for sightseeing value assessment.

5.4 Discussion

The broaden-and-build theory (Fredrickson, 2004; Fredrickson & Branigan, 2005)

bridges emotion and attention. Specifically, the emotional states can influence the

attentional scopes (Fredrickson, 2004; Kuhbandner et al., 2011; Tamir & Robinson,

2007), and broadened attention has an affective advantage over narrowed attention

(Ji et al., 2019; Srinivasan & Hanif, 2010). This chapter aims to test the broaden-

and-build theory in the tourism scenario by constructing NODS from social media

platforms in tandem with the advantages of machine learning. We focused on the

photo-shooting behaviors and hypothesized that positive affect would induce tourists

to capture more wide-view photos than narrow-view ones and to give a high rating

for their travel experience. In Experiment 1, we applied the CFCNN proposed in

Chapter 4 for view-type classification and then analyzed 39,099 travel photos. The

experimental results indicated that people visiting high-rated spots tend to capture

wide-view photos, while at low-rated spots they are more likely to capture elements

from a narrow-view. In Experiment 2, we found a significant correlation between the

proportion of wide-view photos posted by tourists and their experience rating. This

is the first evidence, to our knowledge, that has demonstrated the broaden-and-build
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theory using NODS. Moreover, we showed two potential significance to real-world

applications by using the association between photo-shooting behaviors and tourist

satisfaction, i.e., POI discovery and sightseeing value assessment.

Figure B.2 showed the questionnaire survey provided by TripAdvisor. Firstly,

tourists make an overall rating of the travel experience — ‘Excellent, ‘Very good’,

‘Average’, ‘Poor’, ‘Terrible’. Secondly, they will be asked to leave a review to describe

— “What are your favorite part of your experience? Any tips for future travelers”.

Thirdly, they will post the photos to share this travel experience. Many tourism

studies (Alaei et al., 2019; Bjørkelund et al., 2012; Broß, 2013; Gindl et al., 2010;

Y. Liu et al., 2019) demonstrated that the content of the reviews could be used

to predict the experience rating. However, few studies used the visual contents

extracted from images to inferring the rating. In this chapter, we found that the

view-type of the images inducing tourist attention provides a significant cue to reveal

the experience rating. During the travel experience, the affective quality attributed

to the environment governs subsequent photo-shooting behaviors (Ittelson, 1976).

During the experience rating, the possible cognitive process is as follows: first,

tourists recall the scenes or emotional moments during traveling, then write reviews

and post photos according to the recalled scenes and emotional moments. Thus, the

posted photos may be related to the emotional moments of the travel experience.

Our results suggest the positive emotional moments prefer to take more wide-view

photos. In addition, the experience rating is always used to represent the subjective

sentiment or satisfaction of tourists in tourism studies (Alaei et al., 2019; Broß,

2013; Y. Liu et al., 2019). However, how the experience rating of tourists reverts

the definition of emotion in psychology requires further investigation.

Does positive affect trigger the shooting behavior of wide-view, or do the char-

acteristics of scenic spots (e.g., the object of interest) trigger wide-view shooting

behavior? The evidence is inconclusive. The assumption that fits the broaden-and-

build theory most is that a high-quality spot inspires positive emotion, which then

causes them to take more wide-view photos. However, an alternative assumption

is characteristics of scenic spots (e.g., the object of interest is a big size) directly
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inspire people to take wide-view photos to record the location. For example, in

Experiment 1, we showed that Carmel City Beach has an observation deck for

tourists (as shown in Figure 5.8), which provides convenience to take a wide-view

photo. To rule out the external factors (e.g., cultural and environmental factors),

we used the visual content analysis to control the conditions of green, water, and

building perception of tourists and divided the scenic spots into different subgroups

to the various continents and scenery types, respectively. The results still suggested

that there exists a relationship between experience rating and the wide percent-

age. There may have other factors that influence the relationship (satisfaction vs.

photo-shooting behaviors). However, controlling factors related to travel experience

using NODS would be an open question for informatics study. In the future, we

intend to purely examine this relationship by conducting a psychological study to

control the environmental factors. In addition, there may be individual or cultural

differences in the relationship. We will design the experiments using NODS for

within-subject analysis, examining the causal relationship between the emotional

states and photo-shooting behaviors detected from individual text and photo data.

With rapid development, machine learning becomes a promising methodology to

examine emotions aroused by visual contents. Most informatics scientists are apt to

explore specific features in images to infer emotions, which is objective recognition,

rather than subjective cognition, unlike our study. For example, X. Lu et al. (2012)

investigated the shape features, which could affect human emotional responses and

modeled a dimensional emotion aroused by roundness and angularity. J. Jia et al.

(2012) proposed a factor graph model using color features from the images and their

social relationships for emotion prediction. Machajdik and Hanbury (2010) designed

a richer feature set (including color, texture, composition, and content features) to

represent the emotional content of an image. An emerging work (S. Zhao et al.,

2014) explored the principles-of-art, then defined more robust and invariant visual

features, such as balance, variety, and gradation. These handcrafted features had

reported a good performance on several public visual sentiment datasets. Recently,

deep learning has demonstrated a robust and accurate ability to feature learning.
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You et al. (2016) suggested a fine-tuned CNN could outperform the state-of-the-art

handcrafted features for visual sentiment analysis. Moreover, there were studies

about image memorability (Isola et al., 2011) and image interestingness by taking

into account psychological theories (Gygli et al., 2013). Although citing psychological

inspirations, these works were invariably treated as image classification tasks and

rarely redounded upon the psychology research on observing large-scale human

behaviors.

Recent research (Zhuang et al., 2014) has focused on discovering new tourism

resources through mining text or evaluating picture quality in social media platforms.

However, few studies tried to link tourist natural behaviors and mood states with

these data, particularly the image data. In this chapter, the broaden-and-build

theory with the support of NODS may serve as a new measure for such a task and

boost tourism economics. In the mental and welfare healthcare field, researchers

are also reviewing big data resources and their use to characterize applications to

address mental illness, e.g., depression (Reece & Danforth, 2017). Our approach

may help such special populations better live by mining their provided data on social

media platforms.
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Chapter 6

General Discussion

This dissertation attempts to forge the advances in informatics approaches

into tools that psychologists can apply to complement and expand the current

psychological experiments or theories. On the one hand, the DNNs provide valuable

representations of complex stimuli with diverse effects, which can complement the

simple stimuli on classical psychological experiments. On the other hand, social

media platforms offer extensive behavior data (e.g., photos and comments posted on

a message board, number of likes, and stars of experiences), which can be applied

to extend the limited behavioral data on classical psychological experiments. In

any case, it is natural to ask how psychologists can apply the above informatics

approaches. This dissertation provided two frameworks that use the potentials in

the complementary new paradigms to study human cognition. Two case studies

demonstrate the applications of frameworks for respectively understanding human

facial attractiveness perception and visual attention.

6.1 Summary of Current Work

In chapter 1, we discussed the issues of external validity in classic psychological

experiments due to experimental purpose and demands to the time, space for

experiments. The recent informatics approaches may partially circumvent the issues

of external validity, e.g., DNN effective representations from real-world stimuli, and

NODS collected from social media platforms contain human actions that broke
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through the constraints of time and space. However, a relatively small number of

studies used these informatics approaches to examine human cognition. Thus, we

domesticate the applications of these approaches in psychological studies through

two case studies, which (1) understanding human facial attractiveness perception

from representations learned by DNN, and (2) understanding visual attention by

constructing NODS from travel photos, respectively.

Chapters 2 and 3 focused on how to train and evaluate the human-relevant

representations of DNN. In this study, we interpreted the DNN and compared

the DNN to humans in the behavior-level and theory domain. In chapter 2, we

trained the DNN for facial attractiveness (FADNN) using category annotations

(discrete) while testing specific neurons using continuous rating scores. The results

demonstrated the specific neurons subsume the main features associated with the

categories and can be used as metrics to determine an image’s membership in

a category. Furthermore, we visualized the specific neurons by deconvolution of

FADNN and generated four face-like images to interpret the representations learned

by neurons. From observation, we suggested that these neurons might learn putative

ratios of facial attractiveness. For further investigation, we measured the generated

images and implemented psychophysical-like experiments to test the specific neurons’

activation with different putative ratios in Chapter 3. The results showed that the

FADNN learned the putative ratios as critical features for the specific neurons and

suggested that DNN models can capture essential psychological characteristics from

complex stimuli. This study opens up opportunities for elucidating the origins of

facial attractiveness perception via the DNN-based approach for face recognition.

Chapters 4 and 5 aimed to test the broaden-and-build theory by constructing

NODS from social media platforms. In this study, the experiment constructed NODS

with main effects related to the theory. Specifically, the broaden-and-build theory

(Fredrickson, 2004; Ji et al., 2019; Schmitz et al., 2009) showed the relationship

between emotion and visual attention, where the positive emotion broadens the

attentional scope. We investigate the association between tourist satisfaction and

photo-shooting behaviors (narrow/wide-view) triggered by attentive processing.
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Chapter 4 focused on narrow-view and wide-view classification, which is a novel and

subjective task in computer vision. We proposed two cues to model this problem —

focus cue, and scale cue. The experimental results on a newly created dataset showed

that the proposed model’s performance (0.9317) outperformed other traditional

models based on related works (e.g., Gabor-SVM, 0.8740: Cao and O’Halloran,

2015). In addition, we implemented focus cue and scale cue in the CFCNN model,

which gets better performance (0.9752) than the model based on focus cue and

scale cue. Using CFCNN, we investigate the association between tourist satisfaction

and photo-shooting behaviors from newly scraped data from Flickr, TripAdvisor in

chapter 5. The experimental results showed that a significant relationship between

photo-shooting behaviors and tourist satisfaction, which is consistent with the

broaden-and-build theory. We showed that the broaden-and-build theory is applied

to real-world data with a variety of participants who perform photo-shooting in a

natural setting. This finding provides a new perspective for psychologists to observe

human behaviors and cognition by building NODS from social media platforms in

tandem with the advantages of machine learning.

6.2 Bridge the Paradigm Gap

The dissertation started with the motivations to apply the emerging informatics

approaches to expand psychological studies and bridge the paradigm gap between

experimental purposes of informatics and psychological studies. In this section, we

discussed the effects of the gap-filling and the contributions to both fields.

The paradigm gap is the main barrier to apply the emerging informatics ap-

proaches to psychology. Psychology aims to understand the complex human mind

and demonstrate the highest internal validity with a well-controlled experimental

setting. On the contrary, informatics studies aim to implement the data to spe-

cific tasks and functions and confirm the high ecological validity with data from

diverse situations. Thus, we proposed two complementary frameworks to bridge the

paradigm gap, i.e., applying DNNs and NODS to study human cognition, as shown
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(a)

(b)

Figure 6.1: The proposed frameworks of study human cognition through infor-
matics approaches. On the side of psychology, the theories of cognition provide
low dimension descriptions of high dimensional human cognition. On the side of
informatics, we provided two pathways to implement cognition theories for the
evaluations of frameworks. (a) The first framework interpreted the representations
learned by DNN to contain human-relevant neurons or not. The DNN trained by
real-world images, including diverse factors, while evaluating the neurons contains
human-relevant representations via neuron visualization and psychophysical-like
experiments. (b) The second framework has applied the current theory to determine
the NODS construction and target behaviors. We trained a specific machine learning
model to recognize the target behaviors from human shared images. The goal of
this framework is to obtain an extended theory from the constructed NODS.
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in Figure 6.1. The first framework interpreted the representations learned by DNN

to contain human-relevant neurons or not. The DNN trained by real-world stimuli,

including diverse factors, and then we evaluated the neurons contains human-relevant

representations through neuron visualization and psychophysical-like experiments.

Thus, the real-world stimuli are partially connected to psychological characteristics,

mediated by human-relevant representations. The second framework has applied an

existing theory to construct NODS and target behaviors derived from the theory.

We developed machine learning models to recognize the target behaviors (main

effects) from human shared images, and then we evaluated the relationship between

main effects. Thus, the found relationship would complement the existing theory to

a natural setting.

The case study using the first framework showed that features learned by a

DNN for facial attractiveness include the putative ratios while the attractiveness

category is given as a supervisory signal. The results suggested the DNN can

learn putative ratios from complex stimuli. On the other side, psychologists design

experiments with well-controlled stimuli based on extensive observations of human

behaviors and their rich knowledge or theoretical background. These experiments

look simple while accumulating with extensive observations. The putative ratios for

facial attractiveness are found by this experimental setting, e.g., (Pallett et al., 2010).

However, we showed that the well-trained DNN mirrors the psychologists, who

extract high-level representations from complex stimuli and extensive observations.

We used the techniques, including neural network interpretation and network neurons’

selections, to link the deep feature representations to the psychological characteristic.

Thus, these representations are useful, e.g., generating hypotheses that can be

verified in experimental studies. This study found that the new golden ratios impact

female faces in images more than those of males in FADNN. However, there is no

empirical evidence for this in human behavior, even with the new golden ratios

employed for both female and male face images (Bóo et al., 2013; Yoo et al., 2013).

Conversely, psychological theories also provide tools (such as psychophysical

experimental settings) for exposing implicit representations of DNNs, which remain
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poorly understood. To our knowledge, work applying theories of cognition to DNNs

for this purpose has been relatively limited. We are only aware of studies (Parde

et al., 2019; Ritter et al., 2017; P. Wang & Cottrell, 2017; Zoran et al., 2015) used

psychophysical-like experiments to understand DNN models better. In addition, the

human-relevant representations are also valuable for improving DNNs and extending

the applications of DNNs. For example, the human-relevant neurons learned by

FADNN can be used to advance facial attractiveness prediction and generation,

making the models or the generated images in line with human cognition. In concrete,

it is possible to use human-relevant neurons as the attributes to constrain the DNN

training (e.g., attribute-aware DNN: Lin et al., 2019) or guiding the generative

adversarial network (e.g., conditional GAN: Y. Lu et al., 2018). We will investigate

these extensions in the future.

The case study using the second framework showed the photo-shooting behaviors

(wide and narrow-view) of tourists related to the subjective rating of travel experience.

Tourists with positive emotions tend to share photos of wide-view, while with negative

emotions, they are more likely to narrow-view photos that captured elements. This

preference partially confirmed the broaden-and-build theory, in which positive

emotions broaden attentional scope and trigger to see a big picture. This finding is

difficult to be investigated through classical psychological experiments because of

the complex environments of tourism. In addition, informatics research does not

focus on the cause of human action but rather explores the human (mind), thus also

ignore such insights. Therefore, the proposed framework is critical for expanding

the current psychological theories through constructing NODS.

Oppositely, the theories of cognition extend the applications of online data

analysis. Understanding human cognition can become a new task for online data

analysis. Specifically, Griffiths (2015) pointed out that computer scientists hold

with most data about human behavior, exceeding psychologists while analyzing

behavior data for only behavior. For example, recommendation systems often use

collaborative filtering to predict what users will purchase based purely on their

behavior’s similarity to others’ behavior. Based on the theories of cognition, it is
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possible to demonstrate the value of postulating a mind based on NODS.

In summary, our works provide valuable examples to bridge the paradigm gap

between classical psychological experiments and informatics researches. Both of

the complementary frameworks extend the scope of both theories of cognition and

applications of informatics. The strategies of DNN extracted from complex stimuli

and natural human behavior data provide new perspectives to study human cognition.

Simultaneously, theories about human cognition provide tremendous knowledge to

understanding DNNs’ representations and novel tasks for online data analysis.

6.3 Integration of DNN and NODS

In our studies, we applied DNN and NODS for understanding human cognition,

respectively. However, there may be another way of the integration of DNN and

NODS in psychological studies. For this purpose, firstly, we discuss the possibility of

extensions of our studies. In the first part, the face image dataset was collected from

the Internet. Notably, the name list of the highly attractive face was collected from

beauty ranking websites, which intended to inform public opinion for the modern

ideal of beauty and listened to millions of suggestions from social media users. This

is a NODS to a certain extent. In the second part, we trained a DNN model to

represent the field-of-view of a photographer. The reason why this model shows

the efficiency and what representation learned by this model is also interesting. We

showed that this model learned some representations different from the focus cue and

scale cue related to human visual systems, which may be uncovered by psychologists.

Thus, the DNNs can be used to learn some rules that represent the NODS and as

a tool to clean the NODS as meaningful concepts. However, exploring the feature

domain of natural behavior and DNN representation is a choice from many factors.

Therefore, understanding the current psychological theories will help us narrow the

scope of the analysis when facing them.

Before using DNN, there is some success in applying informatics approaches with

psychological findings for psychological studies. Said and Todorov (2011) applied
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machine learning algorithms to reveal unreported components of attractiveness

perception by comparing with averageness and sexual dimorphism. In addition,

Bainbridge (2007) suggested that human behavior in online games (such as World

of Warcraft) can be used to predict a person’s personality and decision-making

tendency. Stafford and Dewar (2014) used user data (n=854064) of online games

to confirm the results of a psychological finding regarded to the effects of practice

quantity and quality on performance.

Moustafa et al. (2018) pointed out that the integration of big data analysis and

DNN can solve more complex psychological problems. However, most attempts in

previous studies focused on data-driven approaches, yielding insights on interesting

phenomena empirically depended on the available data. For example, DNNs are

utilizing to improve the classification of complex datasets using abstract feature

representations instead of the linear classification models. Thus, DNNs can be

used to improve the predict performance of some specific disorders (Choi & Jin,

2018). However, these usages of DNNs are data-driven methods, which treated

the DNNs as more powerful machine learning techniques than before (e.g., linear

classification, statistical learning, and SVM). Maass et al. (2018) claimed that the

researchers engaged in data-driven research “face the challenge of building a cohesive

body of knowledge about phenomena because relationships are determined by the

available data”. Similarly, the “data-driven” of the analytic techniques is also a

common criticism of many big data approaches (Harlow & Oswald, 2016). Landers

et al. (2016) proposed a primer on theory-driven data collection for psychological

research. In concrete, researchers should be precisely accounted for “why the data

they found exist and test the hypotheses implied by that theory with additional

analyses” (Harlow & Oswald, 2016). Analogously, for DNN representation, it is

also required to account for why the representations showed better performance

and test them connecting to theory. Therefore, the combination of strengths of

psychological research (e.g., rich theory and high-quality measurement) and those of

informatics approaches (e.g., power and flexibility) is important for understanding

human cognition.
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6.4 Limitations and Future Directions

This section discusses how to expand the suggestions in this dissertation to

bridge the paradigm gap between classical psychological experiments and informatics

research.

6.4.1 From machine representation to psychological repre-
sentation

Psychologists are perhaps the most aware of how to use the learned representations

of DNNs to study human cognition. Our proposed framework (as shown in Figure

6.1a) is essential because it provided a way to observe the representations and link

them to the theory domain. Psychologists perhaps get a source of fruit in the next

few years with the improvements in the interpretation of the representations learned

by DNNs.

For example, we visualized the implicit representation learned by the DNN model

in Chapter 2. The visualized images depicted a meaningful spatial configuration

and then hypothesized that the implicit representation might include putative ratios

for facial attractiveness. However, the visualized images cannot depict meaningful

3-d configuration and color information, which is significant for facial attractiveness

(O’Toole et al., 1999; Said & Todorov, 2011) and face perception (H. Hill et al.,

1995; Walker & Vetter, 2009). Emerging studies (M. Q. Hill et al., 2019; H. Hong

et al., 2016; Parde et al., 2017) showed that the DNNs retain a significant amount

of information about the original images. For example, M. Q. Hill et al. (2019)

demonstrated a DNN trained for face identification retained the illumination and

viewpoint information in the deep feature space. On the side of informatics, how to

reconstruct the better quality of color and 3D information from DNNs is also a hot

topic (Antipov et al., 2017; H.-Y. Chen & Lu, 2019; Jackson et al., 2017). However,

these techniques cannot directly interpret the representations because of different

research purposes.

Supposing the representations of DNNs has been well interpreted with the ad-
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vancement of techniques. These intuitive representations would become rich resources

for psychologists, although we still need to consider how these representations deviate

from humans. On the one hand, we can construct stimuli through the visualized

high-level features of DNNs, just like manipulating the simple features to construct

distorted and average faces. On the other hand, these representations would enrich

our exploration of the unknown fields of human cognition. For example, Lake et al.

(2017) pointed out that the learned representations of DNNs may potentially apply

to understand the human intuition, which has significant. For instance, how to let

an autonomous agent understand the scene to navigate and perform tasks in the

complex environment effectively or how to allow autonomous cars predict pedestrian

behavior and infer the mental states (e.g., Where do they want to go?).

6.4.2 From human daily lives to psychological studies

NODS allow psychological scientists to test and expand theories by analyzing

human behavior in the real world (Paxton, 2020). However, the purpose of NODS

is targeting to understand human cognition, which is different from the general

scientific purposes of informatics research. Our proposed framework (as shown

in Figure 6.1b) is crucial because it provided a way to complement the existing

theory with natural behaviors and experiences. The framework is applicable to many

experience domains if there is a suitable hypothesis related to current theory and

rich data. For example, with the smartphones and wearable devices, it is relatively

easy to capture various types of data that describe daily actions, e.g., experiences

of shopping, cooking, working, driving, and learning. Therefore, it is possible to

expand the framework to transmit human daily activities and experiences to study

human cognition through more and more data resources in the next few years.

Our study detected the photo-shooting behaviors from the travel images, which

partially reflect tourists’ attentional scopes. We were motivated to explore the

connection between tourist satisfaction and their attentional scopes reflected from

shooting behaviors. In reality, TripAdvisor also provides experience reviews, which

provide meaningful information for sentiment analysis (Taecharungroj & Mathay-
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omchan, 2019; Valdivia et al., 2019) and accurately refer to their experience rating

(Y. Liu et al., 2019). Thus, we consider expanding our study to combine natural

language processing with image processing for a comprehensive research about the

tourism experience feelings in the future.

Additionally, the wearable cameras record daily activities captured by the ego-

centric vision. The recorded movie data provide the potential opportunity to study

daily activities and cognition. They allow the researchers to capture the participants’

gaze that they record the moments in their interaction with environments. The data

collected from wearable cameras are used to investigate experience summarization

(L. Chen et al., 2019), memory recall (Sellen et al., 2007), and personality traits

(Blake et al., 2020). For example, L. Chen et al. (2019) focused on employing

wearable cameras to assist the manipulation of daily machines. Sellen et al. (2007)

focused on exploring how to use the images collected from wearable cameras to

increase experiential recall. However, the current insights from these data are based

on the data-driven approaches, which cannot complement the existing psychological

theories.

To use our proposed frameworks for psychological studies is required to search

the domain of theory. We hope our research would encourage more psychologists

to conduct the studies using daily activities to expand their theory of human

cognition. For example, what human activities are related to the decision-making

in the shopping experience, and what human activities are related to the teachers’

workload in the educational experience.

6.5 Concluding Remarks

There is a long history of exploring human cognition in philosophy and psychology.

However, recent advancements in informatics begins to provide a new direction in

the research of human cognition. At present, DNN provides a framework to predict

responses of human brain and behaviors. Social network platforms gather large scales

of human behavior data (e.g., mobile trajectory and human preferences). These
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informatics approaches provide computational and data resources for understanding

human cognition. In this thesis, we applied these resources to connect real-world

stimuli and natural behavior data to psychological theories. But the current works

still have some limitations. For example, real-world stimuli and naturally occurring

data have more confounding factors than data collected from laboratory experiments.

However, we believe that these presented works or approaches could supplement

psychological research and improve the external validity of existing theories or even

discover new theories in the future.
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Appendix B

Datasets

Figure B.1: The experience rating distribution of 12,482 scenic spots collected from
TripAdvisor. The median of the experience ratings among these spots is 4.275.

159



Table B.1: The downloaded Photos from Flickr. N s
p and N s

wp represent the number
of photos and wide-view photos in s-th scenic spots.

No. (s) Spot name Ns
p Ns

wp (CFCNN) Ns
wp (Human)

1 Hollywood Walk of Fame 999 209 182
2 Haight-Ashbury 999 312 291
3 Cannery Row 994 416 377
4 Fisherman’s Wharf 1,002 432 390
5 Venice Beach 986 475 479
6 Torrey Pines State Natural Reserve 1002 644 628
7 Fort Rosecrans Cemetery 918 579 595
8 Carmel City Beach 1003 729 737
9 Yosemite Valley 975 732 842
10 Dantas View 1,045 918 911

11 Manneken Pis 998 196 -
12 The Little Mermaid Den Lille Havfrue 1,997 919 -
13 Jungle Island 982 259 -
14 Marina Beach 640 334 -
15 Khaosan Road 1,006 174 -
16 Las Ramblas 990 330 -
17 Ho Chi Minh Mausoleum 1,015 559 -
18 Television Tower 844 513 -
19 Tiananmen Square 997 599 -
20 National Monument 1,033 379 -
21 Kiyomizu dera Temple 988 598 -
22 Tower Bridge 1,998 1,480 -
23 Chichen Itza 1,753 1,279 -
24 Eiffel Tower 1,982 1,529 -
25 Colosseum 1,970 1,578 -
26 Sydney Opera House 1,994 1,589 -
27 Parthenon 1,998 1,437 -
28 Golden Gate Bridge 1,993 1,553 -
29 Taj Mahal 2,000 1,638 -
30 Bryce Canyon National Park 1,998 1,671 -
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Table B.2: Regions about the downloaded scenic spots from TripAdvisor.

No. (i) Spot name Country Continent
1 Manneken Pis Belgium Europe
2 Pattaya Floating Market Thailand Asia
3 Chessington World of Adventures Resort United Kingdom Europe
4 The Little Mermaid Den Lille Havfrue Denmark Europe
5 Beijing Zoo China Asia
6 Gold and Silver Pawn Shop Colombia South America
7 Hollywood Walk of Fame United States North America
8 Hin Ta Hin Yai Rocks Thailand Asia
9 Yogyakarta Palace Indonesia Asia
10 Central Market Mercado Central Chile South America
11 Bourbon Street United States North America
12 Casa di Giulietta Italy Europe
13 Marineland France Europe
14 Brindavan Garden India Asia
15 Chiang Mai Zoo Thailand Asia
16 Pinnawala Elephant Orphanage Sri Lanka Asia
17 Poble Espanyol Spain Europe
18 Chinatown Kuala Lumpur Malaysia Asia
19 Christiania Denmark Europe
20 Temple Street Night Market China Asia
21 Parque Isla Magica Spain Europe
22 Fuente de los Candados Peru South America
23 Little Havana United States North America
24 Santa Justa Lift Portugal Europe
25 Little India Singapore Asia
26 John Lennon Wall Czech Republic Europe
27 Khao San Road Thailand Asia
28 Holy Land Experience United States North America
29 Torre del Oro Spain Europe
30 La Boca Argentina South America
31 Vaci Street Hungary Europe
32 Atomium Belgium Europe
33 Charminar Italy Europe
34 Haight Ashbury United States North America
35 Cannery Row United States North America
36 Las Ramblas Spain Europe
37 Hachiko Italy Europe
38 Dr Sun Yat Sen Classical Chinese Garden Canada North America
39 Medina of Tunis Iraq Asia
40 Tram 28 Portugal Europe
41 Prater Austria Europe
42 Arab Street Singapore Asia
43 Taipei 101 Taiwan Asia
44 Fisherman s Wharf United States North America
45 Bayside Marketplace United States North America
46 Parque Kennedy Parque Central de Miraflores Peru South America
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No. (i) Spot name Country Continent
47 Merlion Park Singapore Asia
48 Santa Monica Pier United States North America
49 Gateway of India India Asia
50 Galata Bridge Turkey Asia
51 Insadong South Korea Asia
52 Torre de Belem Portugal Europe
53 Castelo de S Jorge Portugal Europe
54 Lombard Street United States North America
55 Downtown Disney United States North America
56 Eureka Skydeck 88 Australia Oceania
57 Trevi Fountain Italy Europe
58 Trinity College Dublin Ireland Europe
59 17 Mile Drive United States North America
60 Edinburgh Castle United Kingdom Europe
61 Coronado Bridge United States North America
62 Kiyomizu dera Temple Japan Asia
63 Old Tel Aviv Port Area Israel Asia
64 Piazza Venezia Italy Europe
65 Castello Sforzesco Italy Europe
66 Victoria Harbour China Asia
67 Tower Bridge United Kingdom Europe
68 Griffith Park United States North America
69 La Jolla Cove United States North America
70 Chichen Itza Italy Europe
71 Eiffel Tower France Europe
72 Royal Botanic Garden Edinburgh United Kingdom Europe
73 Colosseum Italy Europe
74 Sydney Opera House Australia Oceania
75 Parthenon United States North America
76 Golden Gate Bridge United States North America
77 AT & T Park United States North America
78 Yosemite Valley United States North America
79 Carmel City Beach United States North America
80 Torrey Pines State Natural Reserve United States North America
81 Fort Rosecrans Cemetery United States North America
82 Centro Storico Italy Europe
83 Niagara Falls Canada North America
84 Taj Mahal India Asia
85 Old Quebec Canada North America
86 Dante s View United States North America
87 Savannah Historic District United States North America
88 Zona Arqueologica Teotihuacan Mexico North America
89 Killarney National Park Ireland Europe
90 Sassi di Matera Italy Europe
91 Grand Canyon South Rim United States North America
92 Gettysburg National Military Park United States North America
93 Iguazu Falls Brazil South America
94 Bryce Canyon National Park United States North America
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Table B.3: The averaged experience rating (Ri) and the wide percentages (P i
wp) of 94

scenic spots. Note that the ratings of scenic spots here are calculated by the photo

providers only, thus, some of the scenic spots are different from the ratings as shown

in Table 5.2, which are calculated by the review providers. N i
p and N i

pp represent

the numbers of photos and photo providers of i-th scenic spots, respectively.

No. (i) N i
p N i

pp Ri P i
wp Scenery type

1 4,082 2,324 3.519 0.067 Historic Sites
2 1,900 369 3.680 0.403 Landmarks
3 1,884 475 3.958 0.283 Parks
4 4,080 2,203 3.659 0.294 Landmarks
5 1,791 438 3.493 0.257 Parks
6 1,452 480 3.885 0.312 Neighborhoods
7 7,999 2,193 3.595 0.208 Landmarks
8 1,477 484 3.713 0.631 Landmarks
9 1,415 325 3.711 0.473 Historic Sites
10 1,828 589 3.616 0.313 Neighborhoods
11 1,764 571 3.930 0.497 Landmarks
12 5,587 1,744 3.725 0.329 Museums
13 1,737 442 3.982 0.310 Parks
14 850 176 3.869 0.808 Parks
15 1,647 391 3.693 0.194 Parks
16 3,446 801 3.869 0.399 Nature
17 1,996 321 3.966 0.641 Museums
18 2,593 709 3.788 0.358 Neighborhoods
19 2,125 575 3.744 0.501 Neighborhoods
20 677 205 3.629 0.405 Neighborhoods
21 515 140 3.729 0.564 Parks
22 457 237 3.827 0.335 Parks
23 1,149 254 4.181 0.242 Neighborhoods
24 4,224 1,348 3.775 0.819 Landmarks
25 1,992 388 4.003 0.477 Neighborhoods
26 1,471 530 3.708 0.187 Landmarks
27 4,101 1,311 4.063 0.380 Neighborhoods
28 637 166 4.337 0.418 Museums
29 1,343 376 3.923 0.726 Landmarks
30 2,601 546 4.168 0.414 Neighborhoods
31 1,120 126 4.063 0.554 Landmarks
32 7,727 2,407 4.098 0.377 Museums
33 1,258 352 4.045 0.649 Religious Sites
34 896 192 4.167 0.485 Neighborhoods
35 1,005 272 4.154 0.663 Historic Sites
36 7,996 2,368 4.182 0.606 Neighborhoods
37 1,012 593 4.148 0.311 Landmarks
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No. (i) N i
p N i

pp Ri P i
wp Scenery type

38 836 227 4.137 0.597 Landmarks
39 1,310 125 4.208 0.433 Neighborhoods
40 4,253 1,914 4.197 0.542 walks
41 5,033 1,260 4.189 0.689 Parks
42 988 231 4.087 0.587 Neighborhoods
43 7,062 1,960 4.196 0.616 Landmarks
44 5,710 1,894 4.272 0.572 Neighborhoods
45 3,150 939 4.327 0.670 Landmarks
46 740 202 4.366 0.518 Parks
47 5,312 1,741 4.305 0.732 Historic Sites
48 8,889 2,488 4.282 0.729 Landmarks
49 2,877 1,039 4.286 0.789 Landmarks
50 1,842 533 4.330 0.817 Bridges
51 2,533 625 4.331 0.401 Neighborhoods
52 12,484 4,489 4.327 0.858 Landmarks
53 12,877 3,245 4.343 0.798 Historic Sites
54 5,462 1,938 4.282 0.828 Landmarks
55 992 291 4.354 0.374 Landmarks
56 2,722 857 4.450 0.759 Landmarks
57 24,816 12,023 4.632 0.638 Landmarks
58 3,421 998 4.416 0.709 Historic Sites
59 3,848 937 4.679 0.843 Nature
60 19,045 4,722 4.512 0.728 Historic Sites
61 651 269 4.487 0.935 Bridges
62 9,734 2,243 4.445 0.735 Historic Sites
63 582 131 4.527 0.755 walks
64 1,587 495 4.517 0.887 Landmarks
65 6,606 1,379 4.513 0.728 Historic Sites
66 2,505 779 4.502 0.876 Marinas
67 16,561 5,203 4.680 0.763 Landmarks
68 697 199 4.608 0.845 Parks
69 5,829 1,625 4.725 0.665 Beaches
70 18,805 4,697 4.675 0.819 Historic Sites
71 59,439 18,827 4.681 0.850 Landmarks
72 2,559 508 4.791 0.507 Art Galleries,
73 51,505 16,701 4.682 0.889 Historic Sites
74 9,589 2,863 4.729 0.791 Landmarks
75 4,901 1,490 4.703 0.897 Historic Sites
76 18,651 6,257 4.754 0.851 Historic Sites
77 2,344 723 4.714 0.663 Landmarks
78 4,588 1,094 4.793 0.879 Nature
79 880 271 4.727 0.884 Beaches
80 1,231 364 4.783 0.859 Parks
81 255 101 4.703 0.919 Cemeteries
82 516 63 4.810 0.323 Landmarks
83 16,515 4,382 4.840 0.882 Landmarks
84 15,876 4,355 4.817 0.811 Historic Sites
85 5,774 1,196 4.816 0.780 Neighborhoods
86 942 362 4.831 0.894 Landmarks
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No. (i) N i
p N i

pp Ri P i
wp Scenery type

87 3,262 710 4.848 0.758 Historic Sites
88 5,067 1,211 4.822 0.785 Ancient Ruins,
89 2,424 631 4.875 0.830 Parks
90 8,301 1,837 4.876 0.871 Landmarks
91 16,923 4,271 4.893 0.862 nature
92 3,051 700 4.870 0.676 Parks
93 19,385 5,582 4.906 0.752 Nature
94 6,201 1,413 4.932 0.906 Parks
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Figure B.2: The questionnaire survey provided by TripAdvisor. Firstly, tourists
make an overall rating of the travel experience — ‘Excellent’, ‘Very good’, ‘Average’,
‘Poor’, ‘Terrible’. Secondly, they will be asked to leave a review to describe — “What
are your favorite part of your experience? Any tips for future travelers”. Thirdly,
upload the photos.
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