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ABSTRACT

In this study, we prove that a countably infinite number of one-parameterized one-dimensional dynamical systems preserve the Lebesgue
measure and are ergodic for the measure. The systems we consider connect the parameter region in which dynamical systems are exact and
the one in which almost all orbits diverge to infinity and correspond to the critical points of the parameter in which weak chaos tends to occur
(the Lyapunov exponent converging to zero). These results are a generalization of the work by Adler and Weiss. Using numerical simulation,
we show that the distributions of the normalized Lyapunov exponent for these systems obey the Mittag–Leffler distribution of order 1/2.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0029751

Time and space averages demonstrate an equality as a typical
characteristic of ergodicity. However, the time average is not
equivalent to the space average in infinite ergodic systems.1 The
Boole transformation is known as a one-dimensional map2 that
preserves the Lebesgue measure (infinite measure) and is ergodic.
Here, the infinite measure means a measure that cannot be nor-
malized as the standard probability measure. We call the invari-
ant measure an infinite ergodic measure when the systems are
ergodic with the infinite invariant measure. In this paper, we
prove that a countably infinite number of one-parameterized
one-dimensional maps that are generalized from the Boole trans-
formation exactly preserve the Lebesgue measure (infinite mea-
sure) and are ergodic at certain parameters. Additionally, we
show that in these maps, the normalized Lyapunov exponent
obeys the Mittag–Leffler distribution of order 1/2 as well as the
Boole transformation.

I. INTRODUCTION

Chaos theory has developed statistical physics through ergodic
theory. In chaotic dynamics, future orbital states are difficult to
predict from past information because the system is unstable or

characterized by sensitivity to initial conditions. However, from its
mixing property, a system can be characterized statistically using
the invariant density function. Density function relates to micro-
scopic dynamics, and their relation is important when macroscopic
properties are derived from microscopic dynamics. Ergodicity plays
a significant role in this derivation.

In the case of a dynamical system (X, T, µ) with a normalized
ergodic invariant measure µ, which can be normalized to the unity,
where X and T represent the phase space and a map, respectively, for

an observable f ∈ L1(µ), the time average limn→∞
1
n

∑n−1
i=0 f ◦ Ti(x)

converges with the phase average
∫

X
fdµ in almost all regions.3 Here,

L1(µ) is a set of functions that are integrable in terms of the measure
µ.

In systems with a normalized ergodic measure, their stabil-
ity can be characterized using the Lyapunov exponent λ, which is

defined as λ
def= limn→∞

1
n

∑n−1
i=0 log |T′(xi)| when log |T′(xi)| ∈ L1(µ)

in a one-dimensional case. Normally, an orbit can be concluded
as chaotic when the corresponding Lyapunov exponent is positive
(λ > 0) and as stable when λ < 0.

The behavior of the Lyapunov exponent whose value is around
zero characterizes the onset of chaos. In particular, for logistic
map xn+1 = axn(1 − xn), at a ' 3.57, we can observe the universal
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TABLE I. Statistical properties and invariant measures for α in the case of K = 2N (or 2N+ 1).

α 0(1/K2) < α < 1 α = 1 1 < α

Statistical properties Exact7 The present work Almost all orbits diverge to infinity7

Invariant measures Normalized ergodic measure7 The present work
Lyapunov exponent Positive7 Convergence to 0 as α → 17 Positive7

critical phenomenon4,5 at which the system becomes unstable from
stable, called routes to chaos, and such kinds of critical phenom-
ena have appeared in the fields of chaotic maps,6,7 Hamiltonian
dynamics,8 intermittent systems,9–12 differential equations,13 coupled
chaotic oscillators,14 noise-induced systems,15 certain experiments
(Belousov–Zhabotinskii reaction, Rayleigh–Bénard convection, and
Couette–Taylor flow),16 and optomechanics.17–19

As maps that characterize the intermittent critical phe-
nomenon, generalized Boole (GB) transformations were studied,6

and we obtained the critical exponent of the Lyapunov exponent
analytically. For GB transformations, at the onset of chaos, the Lya-
punov exponent defined by the time average converges to zero as
α → 1. The point αc = 1 is referred to as the critical point at which
Type 1 intermittency (intermittency in which we have an eigenvalue
of the Jacobian whose value is unity at the fixed point) occurs.6

The current authors proposed a countably infinite number of
one-parameterized maps, which are called super-generalized Boole
(SGB) transformations7 SK,α , K ∈ N\{1}, |α| > 0, and showed that
the Lyapunov exponent converges to zero from a positive value as
α → 1, and Type 1 intermittency occurs at α = 1 for a countably
infinite number of maps (SGB). That means at the critical point
α = 1, the onset of chaos appears. In addition, the statistical prop-
erties change drastically at α = 1 as a boundary as shown in Table I.
Thus, the property at α = 1 is important from the viewpoints of
the onset of chaos and ergodicity. However, the ergodic property at
the critical point (α = 1) is unsettled except for K = 2, which corre-

sponds to the Boole transformation2,20 xn+1 = S2,1(xn)
def= xn − 1/xn,

where the dynamical system is proven to preserve the Lebesgue mea-
sure (infinite measure) and to be ergodic; the Boole transformation
has the infinite ergodic measure (see Table II). Thus, it holds that∫ ∞

−∞ f1(x) dx =
∫ ∞

−∞ f1
(
x − 1

x

)
dx for any L1 function f1 with respect

to dx.
The Boole transformation S2,1 is the critical map that con-

nects the two different phases (the phase of α < 1 and the one of
α > 1). With reference to the foundation of statistical mechanics,
the Liouville measure on R

2N is vitally important and be regarded
as the Lebesgue measure, which is invariant under the Hamiltonian
dynamical system with N degrees of freedom.21,22 Thus, it is of great
interest to investigate the ergodic Lebesgue measure on R, which is

invariant under nonlinear transformations from a physical point of
view.

For Boole transformation, the following interesting incon-
sistency can be observed because of the infinite ergodicity.
For an observable log

∣∣S′
2,1

∣∣, although the usual time average

limn→∞
1
n

∑n−1
i=0 log

∣∣S′
2,1(xi)

∣∣ converges to zero,1 the phase average

is
∫ ∞

−∞ log
∣∣S′

2,1(x)
∣∣ dx = 2π .1 As such, although the system is con-

sidered ergodic, the time average does not coincide with the phase
average.

In infinite ergodic systems, instead of the equality between the
time average and the space average, distributional limit theorems23–25

hold. For example, the Darling–Kac–Aaronson theorem states that
if the observable f2 is positive and f2 ∈ L1(ν), where ν is an infi-
nite invariant measure, then the time average converges in a
distribution.23 These are examples of interesting phenomena that
deviate from usual ergodic theory and standard statistical mechan-
ics.

In an infinite ergodic measure system, following L1 class
observables converge to the Mittag–Leffler distribution, such as
the Lempel–Ziv complexity,26 the transformed observation function
for the correlation function,27 the normalized Lyapunov exponent,1

and the normalized diffusion coefficient.28 Moreover, non-L1 class
observables, such as the time average of position,29 converge to a
generalized arcsine distribution24,25,30 or another distribution.31

Infinite densities that correspond to the infinite measure have
been observed in physical systems in the context of the long time
limit of the solution to the Fokker–Planck equation for Brownian
motion,32,33 semiclassical Monte Carlo simulations of cold atoms,34

laser cooling,35 and semi-Markov process.36 Thus, infinite measure
systems play an important role in not only mathematical but also
physical systems.

To characterize the instability of systems with infinite mea-
sures, several quantities have been invented, such as Lyapunov pairs1

and a generalized Lyapunov exponent.37–39

Regarding the above discussion, this study aims to clarify the
ergodic properties of SGB transformations at the critical points for
general K to connect continuously the parameter region in which the
dynamical systems are mixing (α < 1) and the one in which almost
all orbits diverge to infinity (α > 1). First, we extend the results

TABLE II. Statistical properties and invariant measures for α in the case of K = 2 in the previous studies.

α 0 < α < 1 α = 1 1 < α

Statistical properties Exact7 Ergodic2 Almost all orbits diverge to infinity7

Invariant measures Normalized ergodic measure7 Infinite ergodic measure2

Lyapunov exponent Positive7 Zero1 Positive7
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TABLE III. SK,±1(x) for K = 2, 3, 4, 5, and 6.

K = 2 3 4 5 6

SK,±1(x) ±
(
x − 1

x

)
±3 x3−3x

3x2−1
±4 x4−6x2+1

4x3−4x
±5 x5−10x3+5x

5x4−10x2+1
±6 x6−15x4+15x2−1

6x5−20x3+6x

of our previous study. Second, as the main result in the current
study, we prove that the SGB transformations at α = ±1 preserve
the Lebesgue measure as an infinite measure and are ergodic. That
is, we prove the infinite ergodicity for a countably infinite number
of maps. Third, we clarify that a distributional limit theorem holds
at these critical points by numerical experiments.

II. SUPERGENERALIZED BOOLE TRANSFORMATIONS

Before we present the main proof, we define the concept of
SGB transformations,7 introduce some definitions of ergodic prop-
erties, and explain the extension of previous results regarding the
parameter range of exactness.

We define a function FK : R\B′ → R\B′ such as

FK(cot θ)
def= cot(Kθ), (1)

where K ∈ N\{1} and B′ represent a set of points x ∈ R such that
for finite iteration n ∈ Z, Fn

K(x) reaches the singular point. FK cor-
responds to the K-angle formula of the cot function. For example,
F2(x) = 1

2
(x − 1

x
) corresponds to the cot(2θ) = 1

2

(
cot θ − 1

cot θ

)
.40

Subsequently, SGB transformations SK,α : R\B → R\B are
defined as follows:

xn+1 = SK,α(xn)
def= αKFK(xn), (2)

where |α| > 0, K ∈ N\{1}, and B represent a set of points x ∈ R such
that for finite iteration n ∈ Z, Sn

K,α(x) reaches the singular point.
We define some ergodic properties and some concepts as

follows.
Definition II.1 (measurable41). Let (X, A , µ) be a measure

space. A transformation S : X → X is measurable if S−1(A) ∈ A for
all A ∈ A , where S−1 denotes the inverse map of S.

Definition II.2 (nonsingular41). A measurable transforma-
tion S : X → X on a measure space (X, A , µ) is nonsingular if
µ(S−1(A)) = 0 for all A ∈ A such that µ(A) = 0, where µ(A)

denotes the measure of A.
Definition II.3 (measure preserving41). Let (X, A , µ) be a

measure space and S : X → X a measurable transformation. Then, S
is said to be measure preserving if

µ(S−1(A)) = µ(A) for all A ∈ A .

Definition II.4 (wandering set23). Let S be a nonsingular
transformation of the measure space (X, A , µ). A set W ⊂ X is
called a wandering set if the sets {S−nW}∞

n=0 are disjoint.
According to Aaronson,23 define W = W(S) as the collection

of measurable wandering sets.
Definition II.5 (conservative23). Let D(S) =

⋃
(W(S)) be a

measurable union of the collection of wandering sets for S. The
nonsingular transformation S is called conservative if µ(X\D(S)) =
µ(X).

Definition II.6 (ergodic41). Let (X, A , µ) be a measure space
and let a nonsingular transformation S : X → X be given. Then S
is called ergodic if every invariant set A ∈ A is such that either
µ(A) = 0 or µ(X\A) = 0.

Definition II.7 (mixing41). Let (X, A , µ) be a normalized
measure space (µ(X) = 1) and S : X → X a measure preserving
transformation. S is called mixing if

lim
n→∞

µ(A ∩ S−n(B)) = µ(A)µ(B) for all A, B ∈ A .

Definition II.8 (exact41). Let (X, A , µ) be a normalized mea-
sure space and S : X → X a measure preserving transformation such
that S(A) ∈ A for each A ∈ A . If

lim
n→∞

µ(Sn(A)) = 1 for every A ∈ A , µ(A) > 0,

then S is called exact.
Among these ergodic properties, the following hierarchy holds:

exact ⇒ mixing ⇒ ergodic.41

In a previous study, the authors proved7 that SGB transforma-
tions preserve the Cauchy distribution corresponding to the normal-
ized ergodic invariant measure (in this case, the ergodic invariant
measure of the whole space is finite so that it can be normalized)
and are exact41 (stronger condition than mixing property) when
parameters (K, α) are in Range A, as follows:

{
0 < α < 1 in the case of K = 2N, N ∈ N,
1

K2 < α < 1 in the case of K = 2N + 1,

and that almost all orbits diverge to infinity for α > 1, as shown in
Table I.

We mention briefly the extension of previous results.7 That is, it
is proven that SGB transformations preserve the normalized ergodic
invariant measure and are exact when the parameters (K, α) are in
Range B, defined as

{
0 < |α| < 1 in the case of K = 2N,
1

K2 < |α| < 1 in the case of K = 2N + 1.

Moreover, orbits can diverge to infinity for |α| > 1. The details of
the proof are given in Appendix A.

As such, SGB transformations preserve the normalized ergodic
invariant measure when the parameters (K, α) are in Range B (|α| <

1), and the statistical properties of the systems change for |α| > 1.
However, the ergodic property at the critical points α = ±1 has been
unsettled so far.

What happens at α = ±1? Given the drastic change in statis-
tical properties before and after the value of α = ±1, the ergodic
property of the critical SGB transformations at α = ±1 is impor-
tant. The Boole transformation, which corresponds to the case of
K = 2, α = 1, is known that it preserves the Lebesgue measure and
is ergodic.2 In Sec. III, we show that all the SGB transformations at
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FIG. 1. Return maps of S3,1, S4,1, and S5,1. The function h(x) = x represents the
set of fixed points.

α = ±1 preserve the Lebesgue measure for any K ∈ N\{1}. Table III
shows the explicit forms of SK,±1 for K = 2, 3, 4, 5, and 6. The forms
of SK,1 are shown in Fig. 1 for K = 3, 4, and 5.

III. INFINITE ERGODICITY FOR α =1,−1

In this section, we prove that SGB transformations preserve the
Lebesgue measure and are ergodic at α = ±1.

Theorem III.1. The SGB transformations at α = ±1 preserve
the Lebesgue measure.

Proof. The goal is to prove that
∣∣S−1

K,±1I
∣∣ = |I| (3)

for any interval I⊂ R\B, where |·| denotes the length of an interval
(the Lebesgue measure of ·) and S−1

K,±1 denotes the inverse map of
SK,±1. It is sufficient to verify this for intervals of I = (0, η), η > 0,
and I = (η, 0), η < 0.2

(I) Case of α = 1.
[In the following, we prove that Eq. (3) holds for η > 0; the

proof for η < 0 is similar.] To simplify the proof, we introduce a

variable θ defined as cot θ
def= x, where θ ∈ arccot(R\B) ⊂ [0, π]. We

state that

SK,1(x) = K cot(Kθ). (4)

For SK,1(y) = K cot(Kθ1) = 0, y = cot θ1 = S−1
K,1(0) satisfies the fol-

lowing relation:

Kθ1 =
π

2
mod π ,

∴ Kθ1(m) =
π

2
+ mπ , m ∈ Z,

θ1(m) =
π

2K
+

m

K
π .

(5)

Given that θ1(m) ∈ arccot(R\B) ⊂[0, π], θ1(m) has to satisfy 0 ≤
θ1(m) = π

2K
+ m

K
π ≤ π . Thus, the range of possible values for m is

FIG. 2. Relation between xn and φn.

m = 0, 1, 2, . . . , K − 1. For y, such that SK,1(y) = 0, it follows that

y(m) = cot
( π

2K
+

m

K
π

)
, m = 0, 1, 2, . . . , K − 1. (6)

For x = cot θ2 = S−1
K,1(η), it follows that

Kθ2 = cot−1
( η

K

)
mod π ,

∴ Kθ2(m) = cot−1
( η

K

)
+ mπ ,

θ2(m) =
1

K
cot−1

( η

K

)
+

m

K
π .

(7)

Here, given that

0 < cot−1
( η

K

)
<

π

2
, (8)

the variable θ2(m) has to satisfy the following:
0 ≤ θ2(m) = 1

K
cot−1

(
η

K

)
+ m

K
π ≤ π , and the range of possible

values for m is given by

−
1

2
< −

1

π
cot−1

( η

K

)
≤ m ≤ K −

1

π
cot−1

( η

K

)
< K; (9)

that is, m = 0, 1, 2, . . . , K − 1. Consequently, θ2 and x are given by

θ2(m) =
1

K
cot−1

( η

K

)
+

m

K
π , m = 0, 1, 2, . . . , K − 1,

x(m) = cot

{
1

K
cot−1

( η

K

)
+

m

K
π

}
,

(10)

where η = Sk,1(x(m)) = K cot(Kθ2(m)). The SK,1 increases mono-
tonically and the cot function decreases monotonically for θ ∈
[0, π], and as such, the interval that is mapped from (0, η) by S−1

K,1

is
⋃K−1

m=0

(
y(m), x(m)

)
=

⋃K−1

m=0

(
cot

( π

2K
+

m

K
π

)
,

cot

{
1

K
cot−1

( η

K

)
+

m

K
π

})
. (11)
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Then, the following is derived:

∣∣S−1
K,1(0, η)

∣∣ =
K−1∑

m=0

[
cot

{
1

K
cot−1

( η

K

)
+

m

K
π

}
− cot

( π

2K
+

m

K
π

)]
.

(12)
Now we consider

∑K−1
m=0 cot

(
π

2K
+ m

K
π

)
as follows:

(i) Case of K = 2N.

For
∑K−1

m=0 cot
(

π

2K
+ m

K
π

)
, adding the terms corresponding to

m = l and m = K − 1 − l, l = 0, . . . , K
2

− 1, we obtain

cot

(
π

2K
+

l

K
π

)
+ cot

{
π

2K
+

(K − 1) − l

K
π

}

= cot

(
(2l + 1)π

2K

)
+ cot

(
π −

(2l + 1)π

2K

)
= 0. (13)

Thus, for K = 2N, the following relation holds:

K−1∑

m=0

cot
( π

2K
+

m

K
π

)
= 0. (14)

(ii) Case of K = 2N + 1.
We have

K−1∑

m=0

cot
( π

2K
+

m

K
π

)
=

K−3
2∑

m=0

cot
( π

2K
+

m

K
π

)
+ cot

(
K − 1 + 1

2K
π

)
+

K−1∑

m= K+1
2

cot
( π

2K
+

m

K
π

)

=
K−3

2∑

m=0

cot
( π

2K
+

m

K
π

)
+

K−1∑

m= K+1
2

cot
( π

2K
+

m

K
π

)
. (15)

Much as in (i), because the term corresponding to m = l
negates the term corresponding to m = K − 1 − l, l = 0, . . . , K−3

2
,

it follows that
K−1∑

m=0

cot
( π

2K
+

m

K
π

)
= 0. (16)

Thus, we have

∣∣S−1
K,1(0, η)

∣∣ =
K−1∑

m=0

cot

{
1

K
cot−1

( η

K

)
+

m

K
π

}
. (17)

Now we calculate Eq. (17). {x(m)}K−1
m=0 are the K roots of the

equation η = SK,1(x). Given that the map SK,1(x) corresponds to the
K-angle formula of the cot function, η is given by

η = SK,1(x(m))

= K
xK(m) + (K − 2 th and the smaller order terms)

KxK−1(m) + (K − 3 th and the smaller order terms)
. (18)

Then, it follows that

xK(m) − ηxK−1(m) + (K − 2th and the smaller order terms) = 0.
(19)

By definition, x(m) is a root of the above Kth-degree equation.
According to the relation between the roots and coefficients of a
Kth-degree equation, we can derive

η =
K−1∑

m=0

x(m) =
K−1∑

m=0

cot

{
1

K
cot−1

( η

K

)
+

m

K
π

}
. (20)

Therefore, given that

∣∣S−1
K,1(0, η)

∣∣ = η, (21)

Eq. (3) holds.
(II) Case of α = −1.
Consider the case of η > 0 as in (I). In the case of α = −1, we

have that x(m) = cot
{

1
K

cot−1
(−η

K

)
+ m

K
π

}
= S−1

K,−1(η). As the map
SK,−1 decreases monotonically,

∣∣S−1
K,−1(0, η)

∣∣ =
K−1∑

m=0

[
cot

( π

2K
+

m

K
π

)

− cot

{
1

K
cot−1

(
−η

K

)
+

m

K
π

}]

= −
K−1∑

m=0

cot

{
1

K
cot−1

(
−η

K

)
+

m

K
π

}
. (22)

For the map SK,−1, the following relation holds:

η = −K
xK(m) + (K − 2th and the smaller order terms)

KxK−1(m) + (K − 3th and the smaller order terms)

xK(m) + ηxK−1(m) + (K − 2th and the smaller order terms) = 0.
(23)
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According to the relation between the roots and coefficients of a
Kth-degree equation, we have the relation

−η =
K−1∑

m=0

x(m) =
K−1∑

m=0

cot

{
1

K
cot−1

(
−η

K

)
+

m

K
π

}
,

∴ −
K−1∑

m=0

cot

{
1

K
cot−1

(
−η

K

)
+

m

K
π

}
= η. (24)

It follows that

∣∣S−1
K,−1(0, η)

∣∣ = −
K−1∑

m=0

cot

{
1

K
cot−1

(
−η

K

)
+

m

K
π

}
= η, (25)

and Eq. (3) holds. �

At α = ±1, SGB transformations preserve the Lebesgue mea-
sure for any K ≥ 2. Thus, for SGB transformations, the measure for
the entire set cannot be normalized to unity (infinite measure). Con-
sequently, we define the ergodicity for the system with the infinite
measure as Definition II.6.

Theorem III.2. SGB transformations at α = ±1 are ergodic.
Proof. For the map SK,±1, substituting cot(πφn) with xn ∈ R\B

gives the induced map S̄K,±1 : X1
def= 1

π
arccot(R\B) → X1 such that

φn+1 = S̄K,±1(φn) =
1

π
cot−1 {±K cot(πKφn)} . (26)

Figure 2 shows the relation between R\B and X1 in the range of
−10 < xn < 10.

We eliminate a countably infinite number of points whose
measure is 0 from (0, 1) to obtain the set X1, deriving X1 ⊂ (0, 1).
Consider the measure space (X1, B, µ1), where B and µ1 are the
σ -algebra and the measure transformed from the Lebesgue measure
by xn = cot(πφn), respectively. The map S̄K,±1 has topological con-
jugacy with the map SK,±1 such that the ergodic properties of S̄K,±1

are the same as those of SK,±1. In terms of the absolute value of the
derivative of S̄K,±1, the following holds:

∣∣S̄′
K,±1(φ)

∣∣ =
K2

{
1 + cot2(πKφ)

}

K2 cot2(πKφ) + 1
> 1, ∀φ ∈ X1. (27)

Regarding the contraposition for Definition II.6, we show that

for any set A ∈ B s.t. µ1(A) 6= 0, and µ1(A
c) 6= 0,

⇒ A is an not invariant, (28)

where µ1(A) and µ1(A
c) denote the measure of A and Ac, respec-

tively. Similar to the proof for the mixing property in generalized
Boole transformations6 and exactness in SGB transformations,7 we
define the open intervals

{
Ij,n

}
for which the following relations

hold:

Ij,n ⊂
(
ηj,n, ηj+1,n

)
, ηj,n < ηj+1,n,

n ∈ N,

0 ≤ j ≤ Kn − 1,

η0,n = 0 and ηKn ,n = 1,

S̄n
K,±1(Ij,n) = X1.

(29)

Figure 3 illustrates the case of {Ij,1} for K = 3, 4, and 5 at α = 1.

FIG. 3. The solid lines correspond to the transformation S̄K,1, which has exact
topological conjugacy with the SGB transformation SK,1, where K = 3, 4, and 5.
The dashed line corresponds to the line φn+1 = φn. (a), (b), and (c) correspond
to the case of K = 3, 4, and 5, respectively.
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FIG. 4. Relation between density functions P(λ′) and the normalized Lyapunov
exponents λ′ in SGB transformations for K = 3, 4, and 5 (α = 1). The num-
ber of initial points is 105, and the number of iterations is 105. The initial points
are distributed to obey a normal distribution with mean and variance values of 0
and 1, respectively. The bar graph represents the numerical simulation of the nor-
malized Lyapunov exponents, whereas the solid line represents the normalized
Mittag–Leffler distributions of the order 1

2
. (a), (b), and (c) correspond to the case

of K = 3, 4, and 5, respectively.

FIG. 5. Relation between density functions P(λ′) and the normalized Lyapunov
exponents λ′ in SGB transformations for K = 3, 4, and 5 (α = −1). The num-
ber of initial points is 105, and the number of iterations is 105. The initial points
are distributed to obey a normal distribution with mean and variance values of 0
and 1, respectively. The bar graph represents the numerical simulation of the nor-
malized Lyapunov exponents, whereas the solid line represents the normalized
Mittag–Leffler distributions of the order 1

2
. (a), (b), and (c) correspond to the case

of K = 3, 4, and 5, respectively.
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Because the absolute value of the derivative S̄′
K,±1 on any Ij,n is

larger than unity (∵ {φ| cot2(πKφ) = ∞} /∈ X1), the length of the
interval Ij,n becomes infinitesimal, n → ∞. Subsequently, given that
the measure µ1 is absolutely continuous to the Lebesgue measure,
for any set A, such that µ1(A) 6= 0, it follows that

∃p, q s.t.Ip,q ⊂ A. (30)

From the definition of Ip,q, it follows that

S̄
q
K,±1Ip,q = X1,

∴ S̄
q
K,±1A = X1.

(31)

Next, for any set A, such that µ1(A
c) 6= 0, it follows that

A 6= X1. (32)

Then, for any set A⊂ X1 such that µ1(A) 6= 0 and µ1(A
c) 6= 0, it

follows that

∃q ∈ N s.t. S̄
q
K,±1A = X1 and A 6= X1. (33)

The implication is that the set A is not invariant. Therefore, Theorem
III.2 holds. �

IV. NORMALIZED LYAPUNOV EXPONENT

The above discussion has clarified that SGB transformations
preserve the infinite ergodic measure at α = ±1. In this section, we
confirm the statistical properties of SGB transformations at α = ±1,
which is a characteristic of infinite ergodic systems.

According to the Darling–Kac–Aaronson theorem,23 the nor-
malized time average of f2 converges to the normalized Mit-
tag–Leffler distribution (see the definition at Appendix B), as pre-
viously given1,28,42 for the following: an infinite measure ν; a conser-
vative, ergodic, measure preserving map T2; a function f2, such as
f2 ∈ L1(ν), f2 ≥ 0,

∫
X2

f2dν > 0, where X2 is a set on which the map

T2 is defined,

1

an

n−1∑

i=0

f2 ◦ T2
i →

(∫

X2

f2dν

)
Yγ , (34)

where an is the return sequence (which is used to calculate the time
average in order to derive the distributional limit theorems23) and
Yγ is a random variable that obeys the normalized Mittag–Leffler
distribution of the order γ . In the case of the Boole transforma-

tion, by defining the return sequence an
def=

√
2n
π

, the distribution of
1

an

∑n−1
i=0 log

∣∣S′
2,1(xi)

∣∣, whose average is normalized to unity, con-

verges to the normalized Mittag–Leffler distribution of order 1/2.23

In the case of this SGB transformation at α = ±1, consider f2

as log
∣∣∣ dSK,±1

dx

∣∣∣. We clarify whether the normalized Lyapunov expo-

nent converges to the normalized Mittag–Leffler distribution by
numerical simulation.

FIG. 6. Relation between normalization constant c(K) and parameter K. The
function g(K) is rewritten as g(K) = 1

2
√
K
.

As previously established, log
∣∣∣ dSK,±1

dx

∣∣∣ ≥ 0.7 In the following, we

assume such conditions as

(1) transformations SK,±1 are conservative,

(2) an ∝ n
1
2 , and

(3) log

∣∣∣∣
dSK,±1

dx

∣∣∣∣ ∈ L1(µ2),

(35)

as in the case of (K, α) = (2, 1),23 where µ2 is the Lebesgue measure.
We calculate the normalized Lyapunov exponents such as

λ′ =
c(K)
√

n

n−1∑

i=0

log

∣∣∣∣
dSK,±1

dx
(xi)

∣∣∣∣ , (36)

where c(K) indicates the normalization constants to make the mean
values of the Lyapunov exponent equal to unity. Figures 4(a)–4(c)
and 5(a)–5(c) show the density function of the normalized Lya-
punov exponents for (K, α) = (3, 1), (4, 1), (5, 1), (3, −1), (4, −1),
and (5, −1), respectively, which confirms that their normalized
Lyapunov exponents are distributed according to the normalized
Mittag–Leffler distribution of the order 1/2.

Figure 6 shows the relation between normalization constants
c(K) and K at α = ±1. It shows that c(K) tends to decrease as K
increases. At (K, α) = (2, 1), c(K) = 1

2
√

2
' 0.354, based on an =

√
2n
π

.1 Figure 6 is consistent with this result and from the fact that the

points at (K, α) = (2, −1), (3, 1), and (3, −1) are on g(K)
def= 1

2
√

K
, and

that
∫

ln |S′
2,−1(x)| dx =

∫
ln |S′

3,±1(x)| dx = 2π , we conjecture that

for S2,−1, the return sequence an is given by an =
√

2n
π

and that for

S3,±1, an =
√

3n
π

.

V. CONCLUSION

We showed the statistical ergodic properties of one-dimensional
chaotic maps and the SGB transformations SK,α at α = ±1 as shown
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TABLE IV. Statistical properties and invariant measures for α in the case of K = 2N (or 2N+ 1) proven in the current study.

|α| 0(1/K2) < |α| < 1 |α| = 1 1 < |α|

Statistical properties Exact Ergodic Almost all orbits diverge to infinity7

Invariant measures Normalized ergodic measure Infinite ergodic measure

in Table IV. That is, we proved that for an infinite number of K,
SK,±1 preserves the Lebesgue measure and that the dynamical sys-
tems are ergodic for K ≥ 2. Given these results, we can obtain a class
of countably infinite number of critical maps in the sense of the
intermittency, which preserves the Lebesgue measure and is proven
to be ergodic with respect to the Lebesgue measure.

Infinite measure systems play important roles in physical sys-
tems. Because of the existence of SK,±1, we can explain the natural
change from the parameter region in which systems are exact (with
a normalized ergodic measure) to the one in which orbits diverge to
infinity, and at these points, we can observe the onset of chaos and
intermittency. Thus, we can say that SGB transformations at α = ±1
are ideal models for connecting infinite ergodic theory and physics.

In the case of K = 2 (the Boole transformation), Adler and
Weiss proved its ergodicity in the unbounded region.2 In our
method, we proved the ergodicity by transforming the unbounded
domain to the bounded domain using topological conjugacy. In
a previous study,7 we proved that SGB transformations are exact
for 0 < α < 1 (K = 2N) or 1

K2 < α < 1 (K = 2N + 1), N ∈ N, and
change their statistical properties for α > 1. The results of our study
connect these two phases in the same way as previously reported for
generalized Boole transformations.6 We also demonstrated that the
normalized Lyapunov exponents obey the Mittag–Leffler distribu-
tion of the order 1

2
for (K, α) = (3, 1), (4, 1), (5, 1), (3, −1), (4, −1),

and (5, −1). In these numerical experiments, the form of the Mit-
tag–Leffler distribution does not depend on the value of K, although
there is a relation between c(K) and K.

Various indicators have been proposed to characterize the
instability when the corresponding Lyapunov exponent is zero,
including the generalized Lyapunov exponent37,38 and the Lyapunov
pair.1 These infinite critical SGB transformations can be expected
to be used as representative indicator maps for detecting chaotic
criticality because the ergodic properties are exactly obtained.
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APPENDIX A: PROOF OF EXACTNESS IN RANGE B

In this section, we extend the results of our previous study7

related to exactness. In particular, we prove that SGB transforma-
tions preserve the ergodic invariant density function corresponding
to the normalized ergodic invariant measure and are exact in Range
B, which is newly defined as

{
0 < |α| < 1 in the case of K = 2N,
1

K2 < |α| < 1 in the case of K = 2N + 1.

We likewise prove that orbits diverge to infinity for |α| > 1. To
simplify the proof, we define Range A′ as

{
−1 < |α| < 0 in the case of K = 2N,
−1 < |α| < − 1

K2 in the case of K = 2N + 1.

We already know that SGB transformations preserve the Cauchy
distribution and are exact when the parameters (K, α) are in Range
A {

0 < α < 1 in the case of K = 2N,
1

K2 < α < 1 in the case of K = 2N + 1.

We have also determined that orbits diverge to infinity for α > 1.7

Here, we hoped to prove similar tendencies in the case of Range A′

or α < −1.
In the following, the extension from α to |α| can be proven in a

similar manner as in our previous study.7

First, we show that SGB transformations preserve the Cauchy
distribution when the parameters (K, α) are in Range B. If the
density function at time n (ρn(x)) is denoted as

ρn(x) =
1

π

γ

x2 + γ 2
,

then the density function at time n + 1, ρn+1(x) is given by

ρn+1(x) =
1

π

|α|KGK(γ )

x2 + |α|2K2G2
K(γ )

according to the Perron–Frobenius equation, where GK(γ ) cor-
responds to the K-angle formula of the coth function defined as

GK(coth θ)
def= coth(Kθ).7 The scale parameter γ is then changed in

a single iteration as

γ 7→ |α|KGK(γ ).

In our previous study, the change in scale parameter γ is denoted as

γ 7→ αKGK(γ ), (K, α) ∈ Range A.

By changing the parameter from α to |α|, we can prove straight-
forwardly that SGB transformations {SK,α} preserve the Cauchy
distribution, and the scale parameter can be chosen uniquely when
the parameters (K, α) are in Range B.

In terms of exactness, we apply a method similar to that in our
previous study.7 To prove the exactness, we consider the maps S̄K,α ,
which are topologically conjugate with the maps SK,α , by changing
the variables as xn = cot(πφn). In terms of S̄K,α , it holds that

S̄K,α(φ) =
αK{1 + cot2(πKφ)}
α2K2 cot2(πKφ) + 1

< 0

when the parameters (K, α) are in Range A′. In this way, S̄K,α(φ) is
also the monotonic function. Thus, we can prove that SGB transfor-
mations {SK,α} are exact when the parameters (K, α) are in Range A′
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considering the intervals {Ij,n}, defined as

Ij,n ⊂
(
ηj,n, ηj+1,n

)
, ηj,n < ηj+1,n,

n ∈ N,

0 ≤ j ≤ Kn − 1,

η0,n = 0 and ηKn ,n = 1,

S̄n
K,±1(Ij,n) = X1.

(A1)

In the case of α < −1, changing the variable to zn = 1/xn gives

the map zn+1 = S̃K,α(zn). It is clear that
∣∣∣ d̃SK,α

dz
(0)

∣∣∣ = 1
|α| < 1; here,

orbits diverge to infinity.
From the above discussion, we know that SGB transformations

preserve the Cauchy distribution corresponding to the normalized
ergodic invariant measure and are exact when the parameters (K, α)

are in Range B.

APPENDIX B: DEFINITION OF THE MITTAG–LEFFLER

DISTRIBUTION

Definition B.1 Mittag–Leffler distribution23. Let α ∈ [0, 1].
The random variable Yα on R+ has the normalized Mittag–Leffler
distribution of order α if

E
(
ezYα

)
=

∞∑

p=0

0(1 + α)pzp

0(1 + pα)
,

where E(·) denotes the expectation value of · and 0 denotes the
Gamma function. The density function at α = 1/2 is denoted as

fY 1
2

(y) =
2

π
e− y2

π .
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