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1 Introduction 

An action evolution is a pair (X, N) of processes X =（ふ）kEZand N = (N.りkEZdefined 
on a probability space (0, F, IP') satisfying the stochastic recursive equation 

Xk=ふxk-l IP'-a.s. for k E.z, (1.1) 

where the observation X =（ふ）kEZtakes values in a measurable space V which evolves 
at each time being acted by the driving process N = (Nk)kEz which is an iid random 

mappings of V into itself. Here NkXぃ meansthe evaluation of a random mapping Nk 
at Xk_1; we always write fv simply for the evaluation f(v). We may call X a two-sided 

random orbit of the random dynamical system generated by the iid random mappings N. 

Let us give a precise definition. Let I: be a measurable space consisting of mappings 
from V to itself and let P（I:) denote the set of probability measures on I:. For μ E P(I:), 
we call (X, N) a μ-evolution if it satisfies (1.1) and Nk at each time k has common lawμ 
and is independent of the past巧竺 definedas 

名竺：＝a(Xj,Nj: jー：：：： k-1). (1.2) 

It is obvious that (X, N) is a μ-evolution if and only if the Markov property 

吋（ふ，ふ） E・ I Ff__'_n = Q((Xk-1,N:い）；・） a.s.for k E.Z (1.3) 

holds with the joint transition probability being given as 

叫(x,g);・) = μ{f E ~: (fx,f) E ・}. (1.4) 

Consider a μ-evolution (X, N). Since for j < k we know that C5(Nk, Nk-I,..., Nj+1) 
is independent of巧f:= C5(Xj, Xj-i,...), the drivirig noise咬：＝ C5(Nk,Nk-1,...) is 
independent of the remote past noiseだぎOO:＝几吟. Ff'. We sometimes encounter a third 
noise, which we define as a sequence of random variables (Uk)kEz such that 

巧ぺ c吟 VF_入 VC5（広） a.s. and C5（広） C巧'{-・N a.s. for k E Z (1.5) 

holds with the three C5-fields 巧~'F_ぎOO andぴ(U砂beingindependent. Here, forびーfields
兄，名，．．．wealways write尻V名V・・ ・ for C5（F1U名U・・・）． In addition, we can sometimes 
find a reduced driving noise, which we define as a sequence of C5-fields (Qf)kEz such that 

巧ざ＝鉗 VF_ぎOOv o(Uり a.s. and Q{: C巧'f a.s. for k E Z (1.6) 

holds. The former identity of (1.6) will be called the resolution of the observation. 
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Iterating the equation (1.1), we have Xk = Nk,jふ with

Nぃ：＝芯Nk-1・ ・ -Nj+l 

for j < k, and thus we may expect in general that 

(1.7) 

吟ct]（吟vrJx)：rい(t]rJx）＝吟VF_ぎ:x,. (1.8) 

This inclusion C, however, is false in general, or in other words, there may exist a non-
trivial third noise; see [6, (1) of Remark 1.4] for the famous errors by Kolmogorov and 
Wiener. See also [2, Section 2.5] for related discussions. 

In many results, the third noise is always a random variable with a uniform law on a 

certain set which is not given a priori. We discuss several examples with proofs, for better 

understanding the third noise problems. 

2 Random translations on a torus 

Let us consider the one-dimensional torus 11'=賊／Z'.:::c[O, 1), which is a compact com-
mutative group with respect to addition in 11', or addition in股mod1. For a probability 

meausure μ on 11', we consider a μ-evolution 

Xk=芯＋xk-1 a.s. for k E z, (2.1) 

where X and N take values in 1'and we understandふ＋xk-1as addition in 1'. Note 
that :Ff'c吟 forall k E Z, since 芯＝ふ— Xk-1 in 1'(or in股mod1). 

The resolution problem itself originates from Yor [9] who did a thorough study about 

this action evolution on a torus with inhomogeneous noise. His results were generalized to 
action evolutions on general compact groups by Akahori-Uenishi-Yano [1] and Hirayama-
Yano [3]; see also [8] for a survey of this topic. 

Let us write μv E P(1') for the convolution ofμ and v E P(1'): 

伽）（A)=J ix'll'IA(x + y)μ(dx)v(dy). (2.2) 

We equip P('lI') with the topology of weak convergence;四→μ if and only if J <pdμn→ 
I凶μ for all continuous function <p on 11'. We write叩 forthe normalized Haar measure 
on G if G is a compact group. We write wv for the uniform law on V if V is a finite set. 
There is no confusion for finite groups. 

Let us present some examples of Yor [9]. 

Example 2.1 (deterministic translation). Consider a μ-evolution (X, N) withμ＝心
for a E 11': 

xk = a+Xk-l a.s. fork E Z. (2.3) 
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Then the driving noise is trivial, i.e., :Ff:= {0, rl} a.s. for k E Z, and we have 

巧〉＝アざ~ a.s. for k E Z, (2.4) 

which gives the resolution of the observation and shows no third noise. In fact, since 
xk -ka = xk-1 -(k -l)a a.s., we have xk = X。+kaa.s. for k E Z, which shows that 
吟＝だ:X,= a(Xo) a.s. 

Example 2.2 (lazy irrational translation). Consider a μ-evolution (X, N) withμ= 

叫o,a}• We call it a lazy translation, because it sometimes stays（ふ＝Xい） ortranslates 
（ふ＝ a+Xい） accordingas芯＝0or a. Suppose a tf-Q. It then holds that the remote 
past noise is trivial, i.e., Fぎ:X,= {0, O} a.s. fork E Z, and that 

巧;=巧~VCJ（ふ） a.s. for k E Z, (2.5) 

where, for each k E Z, the Xk is independent of咬 andhas uniform law on 11'; this gives 
the resolution of the observation and shows that（ふ）kEZis a third noise. 

Let us prove this claim. Set.N,ぃ＝芯＋ Nぃ＋・• • + Ni+l for j < k. Since Xi = 
Xk -Nk,i and Ni = Xi -Xi-I for j < k, the identity (2.5) is obvious. Let us prove the 
independence. We utilize the characters: Xm(z) = e21rimz for z E 11'and m E Z. By the 

irrationality of a, we have判辛 <1for all m cJ 0, and hence we have 

f Xm(z)炉(dz)=(1xm(z)μ(dz)) n = (~) n一0 for any m cJ 0. (2.6) 
T n→CX) 

This shows炉→四 bythe theory of Fourier series. For B E F~00, for any continuous 
function cp on 11', for k > j > l and for A E(J（Nk, Nk-I,..., Ni+1), we have 

瓢 lBcp（ふ）l=lE[l心 (Nぃ＋心＋Xリ］ （2.7) 

=lE［lAlB 1 cp(Nk,j + z + X1)μi-1(dz)] (2.8) 

二 lE[1ABi¢(z)咋 (dz)］] (2 9) 

=lP'(A)lP'(B) 1 cp(z)咋 (dz), (2.10) 
可＇

since for any sequences｛叫，｛叫｝ C11'we haveらμj+n仇→w']]'as n→oo. This shows 
that, for each k E Z, the Xk has uniform law on 11'and that the three(J-fields判¥:FぎCX)
and(J（ふ） areindependent. By the identity (2.5), we have FぎCX)e :FドV(J（ふ） a.s.Since 
the remote past noise :Fぎ~ is independent of咬 V(J（ふ）， wesee that it is independent 
of itself, which shows its triviality. The proof is now complete. 

Example 2.3 (lazy rational translation). Consider a μ-evolution (X, N) with μ = 
噸，a}for a= l/3 E 11'. Set H = {O, a, 2a} and C = [O, a). Note that His a subgroup of 11' 
and C is isomorphic to the quotient set 11'/ H. Define a mapping 11'ぅzf----t (z見zc)E HxC 
so that z = zH + z竺orin other words, if z = (n + t)a for n = 0, l, 2 and t E [O, 1), then 
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zH = na and z0 = ta. Let (X, N) be a μ-evolution. It then holds that there exists a 

C-valued random variable Zc such that Xf = Zc a.s. fork E Z. Moreover, we have the 
decomposition 

Xi= -Nk,i + Xf + Zc a.s. for j < k 

and the resolution of the observation 

巧ざ＝巧fv:FぎOOVび(X{!) a.s. for k E Z, 

(2.11) 

(2.12) 

where Fぎ00= a(Zc) a.s. and, for each k E Z, the X{! is independent of野 vだOOand 
has uniform law on H; as a consequence (X{!)kEz is a third noise. 

Let us prove this claim. Sinceふ＝芯＋Xk-1and Nk E {O, a} CH, we have 

x：： ＝芯＋X：：-1, xf = xf_1 a.s., (2.13) 

which shows existence of Zc(= Xぶ） suchthat Xf = Zc a.s. fork E Z. Identity (2.11) is 
now obvious. Since 

lxm(z)忙(dz)=(¥)n 二~ { ~ ~:: ::;, (2.14) 

we obtain忙→ WHby the theory of Fourier series. For B Eだ:X,,for any continuous 
function <p on H, for l < j < k and for A E a(Nk, Nk-I,..., NH1), we have 

砂 lB<p(X{!)]= lE[lA国 (Nぃ＋Nj,l+ Xfl)l l→ニIP'(A)IP'(B).l<p(z)咋 (dz), (2.15) 

in the same way as the previous example. This shows that, for each k E Z, the X{! has 
uniform law on H and that the three び—fields 巧f, F:!00 and a(X{!) are independent. By -oo 

(2.11), we obtain 

巧ざ =:FfV a-(Zc) Vび(X{!) a.s. for k E Z. (2.16) 

From this identity we obtain だ~ C a-(Zc) V （巧~V a-(X{!)) a.s. By the independence of 
fさ~ and Ff V a-(X{!), we can deduce that :Fぎ~ C a-(Zc) a.s. (see [2, Section 2.2]). We 
now obtain Fと＝a-(Zc)a.s. and thus the proof is complete. 

Example 2.4 (lazy rational-irrational translation on a two-dimensional torus). 
Let us consider the two-dimensional torus 11'2 = 11'x 11', which is also a compact commu-

tative group under componentwise addition. Consider a μ-evolution with μ =叫（0,0),(a,b)}
for a= l/3 and b tf-(Q). Set H = {(O,x), (a,x), (2a,x): x E 11'} and C = {(ta,x): t E 
[O, 1), x E 11'} = [O, 1/3) x 11'. Note that His a subgroup of 11'and C is isomorphic to the 
quotient set巧 H.We can then deduce the same resolution of the observation by the 
same argument as the previous example. 
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3 Finite-state action evolutions 

For a finite set V and for the set :E of mappings of V into itself, we may consider the 
action evolution 

Xk=芯xk-1 IP'-a.s. for k E z, (3.1) 

where X takes values in V and N does in I:. As we have some difficulty in obtaining 
resolution of the observation, we would like to consider a multipa廿icleevolution. For 

m E N, we understand that any mapping f : V→ V operates x = (x1,...，正） EVm 
cornponentwise, i.e., fx = (f x1,..., f xm). We call (X, N) an m-particle μ-evolution if it 
satisfies 

恥＝ Nぶk-1 lP'-a.s. for k E Z, 

or in other words 

X1=芯X1_1 IP'-a.s. fork E Zand i = 1,..., m, 

(3.2) 

(3.3) 

where X =（恥）kEZwith恥＝ （Xf,..., XJ:) takes values in vm and N = (N,りkEZtakes 
X,N values in ~ with Nk at each time k having common law μ and being independent of :Ff;_'_';. 

Write S(μ) = {f : μ{f} > O} for the support ofμ and write <S(µ) >= u~=ls(μr 
for the semigroup generated by S(μ). For monoparticle action evolutions, Yano [7] has 

proved that there is no third noise if and only if S(μ) is sync, i.e., there exists g E〈S(μ)〉
such that #g(V) = 1. Recently lto-Sera-Yano [4] has obtained the resolution of the 
observation for m,,,-particle action evolution where m,,, = min { #g(V) : g E〈S(μ)〉｝．

For μ, v E P(~) and for入EP(V), we define 

(μv)(A) = h h lA(f g)μ(df)v(dg), Ac  I:, 
E JE 

(μ入）（B）＝f f叫）μ(df)入(dx), B c V. 
EJV 
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We sometimes write μf simply for μ釘， etc. Let us present an example of the main 
theorem of lto-Sera-Yano [4]. 

Example 3.1. Let V = {1,2,3,4}. We write [y1,y汽砂砂 forthe mapping f of V into 
itself such that Ji= y'for i = 1, 2, 3, 4. Consider the th ree mappmgs: 

f = [2, 2, 4, 4], g = [3, 3, 1, 1], h = [1, 3, 3, 1]. (3.6) 

Consider μ = W{id,f,g,h}, where id denotes the identity mapping of V. It is obvious that 
S(μ) = {id,f,g,h} and that mμ = 2. 

(i) The unique minimal two-sided ideal K of〈S(μ)〉， whichis called the kernel of〈S(μ)〉，
admits the Rees decomposition given as 

k =〈｛f,g,h}〉＝ LGR, L = {e, f}, G = {e,g}, R = {e, h}, (3.7) 
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where e:＝炉＝ ［1, 1, 3, 3] and the product mapping L x G x Rう (a,b,c)f---+ abc EK  is 
bijective. We denote its inverse by Kぅkf---+ (kL, k叉kR)EL X G X R. 

(ii) The convolution product ofμ satisfies 

n L R L 2 1 
μ → n叩 n, n=  3ふ＋討j,

(iii) It is easy to see that the measure 

n 
R 2 1 = -6 ＋ー似．3ve, 3 

1 1 1 1 
A=―妬，3)+ ;;-6(3,1) + ;;-6(2,4) + ;;-6(4,2) 
3 3 6 6 

(3.8) 

(3.9) 

is a unique μ-invariant probability (i.e., μA= A) on V; = {(x1, xりEV2 : x1 -=/ x2}. Set 

Wμ = S(A) = {(1, 3), (3, 1), (2, 4), (4, 2)} (c V;), (3.10) 

then we easily have the representations 

児＝ LG(l,3) and A = T/L叩 (1,3). (3.11) 

We now obtain that the product mapping L x G 3 (a, b) f--+ ab(l, 3) E Wμ is bijective. 
We denote its inverse by Wμ うのー（叶，砂） ELX G. 

(iv) Let us consider a stationary biparticle μ-evolution (X, N) such that X has a common 
law A. Then we have the factorization 

丸＝認(Mら）―1U{:(1,3) a.s. for j < k (3.12) 

d 
with Uf＝巧＝ WG,MJG ＝認（Xf_1)-1and Mら＝ MりM此・・ •M贔． Consequently,
we obtain the resolution of the observation 

:Ff= Qf V r,(Uf:) a.s. with Qf = r,(Xf, MY: j ~ k), (3.13) 

where :F.ぎ:X,is trivial and the two CJ-fields :Ff:（つ鉗） andr,(Uf) are independent. 

Let us prove these claims. 

(i) Let us write S =〈S(μ)〉． Since炉＝召＝ eand ge = eg = g, the set G = {e,g} is a 
group withe the unit element. Noting that 

ef =he= e, f2 = fe = f, gf = hg =hf= g, h2 =eh= h, (3.14) 

we have so that LGR is a two-sided ideal of S. For any k E LGR, we have e E SkS so 
that LGR is a minimal ideal. Uniqueness of a minimal ideal is a known fact (see, e.g., [5, 
Theorem 2.12]). The injectivity of the product mapping L x G x R 3 (a,b,c) f-+ abc EK  
is obvious because ef = he = e and G is a group. 

(ii) From a known fact (see, e.g., [5, Theorem 2.2]), the set/Cof subsequential limits of 
｛炉｝ isgiven either as [/C ＝{ TJ, μry} with T/ = TJLりRandμry＝がg茄]or as [IC= {TJ} with 
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n ＝が叩茄],where所＝n｛屈： kEK} and茄＝ r,{kR:k EK}. If K, = {r,,μr,} were 
the case, then it would follow that f = ff E S (11) S (r,) = S (μr,) = Lg R, which would 
contradict the fact that戸＝ e.Hence we see that K, = {r,}, which shows μn→ r,. Let 
が＝P心十q釘withp = 1 -q E [O, 1]. Since r,Re＝ふ， wehaveμが叩＝n如 G・ We have 

1 1 
μr,Lwa = ;{2pbe + (1 + q)b1 + (1 + q)Jg} wa = ;{(2 + p)Je + (1 + q)b1} wa, (3.15) 

4 4 

which shows that汁＝砂＋怜． Bythe same way we obtain r,R =砂＋伍・

(iii) Since e(l, 3) = (1, 3) and g(l, 3) = (3, 1), the group G acts on the two-point set {1, 3} 
as permutations. Noting that f(l, 3) = (2, 4) and /(3, 1) = (4, 2), we have obtained the 
injectivity of the product mapping L x G 3 (a, b) f---+ ab(l, 3) E Wμ-

(iv) Let k E.Z be fixed. Since Xk E S(A) = Wμ, we can decompose it as広＝喜巧(1,3). 

Since恥 iA＝が叩(1,3), we see that喜 andXf are independent and Xf i叩・

For j < k, since M,む＝額（認）ー1,we have 

xj =認認(1,3)＝認(Mら）―1xf(1, 3) a.s., (3.16) 

which shows (3.12) and (3.13). We here omit the proof of the fact Qf C野； see[4] for 
the details. 

Let us prove the independence of the two a-fields巧"fand a(Xf). For j < k, let 
AEび(Nk,Nk-l,..., NH1) and let({) be a function on G. We now have 

IE [1紗（認）］ ＝1E[国（Mい］ ＝IP'(A) l t_p(a)叩(da), (3.17) 
G 

since匹 isindependent ofぴ(Nk,Nk-l,..., NH1) and has uniform distribution on G. This 
J 

shows the desired independence. 
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