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1 Introduction

An action evolution is a pair (X, N) of processes X = (X )rez and N = (Ny)gez defined
on a probability space (2, F,P) satisfying the stochastic recursive equation

Xk = Nka,1 P-a.s. for k € Z7 (11)

where the observation X = (Xj)rez takes values in a measurable space V' which evolves
at each time being acted by the driving process N = (Nj)pez which is an iid random
mappings of V into itself. Here N, X} 1 means the evaluation of a random mapping Ny
at Xy_1; we always write fv simply for the evaluation f(v). We may call X a two-sided
random orbit of the random dynamical system generated by the iid random mappings N.

Let us give a precise definition. Let 3 be a measurable space consisting of mappings
from V to itself and let P(X) denote the set of probability measures on 3. For u € P(X),
we call (X, N) a p-evolution if it satisfies (1.1) and Ny, at each time k has common law
and is independent of the past }",fflv defined as

Foli=0(X;,Nj 1 j<k—1). (1.2)
It is obvious that (X, N) is a g-evolution if and only if the Markov property
P((Xk,Nk) €| .7:,5(_11\’) = Q((Xk,l, Ni_1); ) a.s. forkeZ (1.3)
holds with the joint transition probability being given as

Q@.9)-) =n{fex:(fr.f) e}, (14)

Consider a p-evolution (X, N). Since for j < k we know that o(Nyg, Ny_1,..., Nj11)
is independent of X := o(X;, X; 1,...), the driving noise F\ := o(Ng, Ny_y,...) is
independent of the remote past noise F*,, := [, F;*. We sometimes encounter a third
noise, which we define as a sequence of random variables (Uy)gez such that

FXc FNVFX Vo(U,) as and o(U,) C FXV as forkeZ (1.5)

holds with the three o-fields F}¥, FX_ and o(Uy) being independent. Here, for o-fields

Fi, Fa, ... we always write F1 VI V- - - for o(FyUFU- -+ ). In addition, we can sometimes
find a reduced driving noise, which we define as a sequence of o-fields (G})xez such that

FX=GYVvFX Vo) as and GY CcF) as forkeZ (1.6)
holds. The former identity of (1.6) will be called the resolution of the observation.



Iterating the equation (1.1), we have X = N, ;X; with

Nk,j = Nka,l"'NjJrl (17)
for j < k, and thus we may expect in general that
Fc((FYvFY) c FNv (ﬂ J—"X) =FNvFX,. (1.8)
i<k i<k

?

This inclusion C, however, is false in general, or in other words, there may exist a non-
trivial third noise; see [6, (1) of Remark 1.4] for the famous errors by Kolmogorov and
Wiener. See also [2, Section 2.5] for related discussions.

In many results, the third noise is always a random variable with a uniform law on a
certain set which is not given a priori. We discuss several examples with proofs, for better
understanding the third noise problems.

2 Random translations on a torus

Let us consider the one-dimensional torus T = R/Z ~ [0, 1), which is a compact com-
mutative group with respect to addition in T, or addition in R mod 1. For a probability
meausure ;i on T, we consider a p-evolution

X =N, + X1 as. forkeZ, (2.1)
where X and N take values in T and we understand N;, + Xj,_; as addition in T. Note
that F¥ C F¥ for all k € Z, since Ny = X — X in T (or in R mod 1).

The resolution problem itself originates from Yor [9] who did a thorough study about
this action evolution on a torus with inhomogeneous noise. His results were generalized to
action evolutions on general compact groups by Akahori-Uenishi—Yano [1] and Hirayama—
Yano [3]; see also [8] for a survey of this topic.

Let us write pv € P(T) for the convolution of p and v € P(T):

A= [ i+ putanma) (2:2)

We equip P(T) with the topology of weak convergence; 1, — i if and only if [ du, —
J @dp for all continuous function ¢ on T. We write wg for the normalized Haar measure
on G if G is a compact group. We write wy for the uniform law on V if V' is a finite set.
There is no confusion for finite groups.

Let us present some examples of Yor [9].

Example 2.1 (deterministic translation). Consider a p-evolution (X, N) with p = ¢,
fora e T:

Xy =a+ X, as. forkeZ. (2.3)
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Then the driving noise is trivial, i.e., F¥ = {0, Q} a.s. for k € Z, and we have
Ff=F*, as forkeZ, (2.4)

which gives the resolution of the observation and shows no third noise. In fact, since
Xi — ka= X1 — (k— 1a a.s., we have Xy = Xy + ka a.s. for k € Z, which shows that
FX=FX_ =o0(Xp) as.

—00

Example 2.2 (lazy irrational translation). Consider a p-evolution (X, N) with pu =
wio,a}- We call it a lazy translation, because it sometimes stays (X, = Xj;_1) or translates
(X = a+ Xx_1) according as Ny = 0 or a. Suppose a ¢ Q. It then holds that the remote
past noise is trivial, i.e., FX_ = {0,Q} a.s. for k € Z, and that

FX=FNvo(Xy) as. forke€Z, (2.5)

where, for each k € Z, the X, is independent of F} and has uniform law on T; this gives
the resolution of the observation and shows that (Xj)rez is a third noise.

Let us prove this claim. Set Nj; = N + Ny_1 4+ --- 4+ N;yq for j < k. Since X; =
Xy — Nyj and N; = X; — X;_; for j < k, the identity (2.5) is obvious. Let us prove the
independence. We utilize the characters: x,,(z) = > for z € T and m € Z. By the

. . . 1
irrationality of a, we have ’“‘T@

/Txm(z)un(dz) _ (/Txm(z)u(dz)>n _ (”Xfm(“)y — 0 forany m#£0. (2.6)

n—oo

< 1 for all m # 0, and hence we have

This shows p™ — wr by the theory of Fourier series. For B € FX_| for any continuous
function ¢ on T, for k& > j > [ and for A € o(Ny, Ny_1, ..., Nj+1), we have

E1alpp(Xy)] =E[lalpp(Ny; + Nji + Xi)] (2.7)
=E [lAlB /11‘ O(Ngj + 2 + Xl),ujl(dz)} (2.8)

l:oE [IAIB /T @(Z)ww(dz)} (2.9)
~PAR(B) [ ple)un(d), (2.10)

since for any sequences {x,,}, {2} C T we have d,, 1" *"0,; — wr as n — oo. This shows
that, for each k € Z, the X} has uniform law on T and that the three o-fields F}, F*
and o(Xy) are independent. By the identity (2.5), we have F~ C F¥ Vo(X}) a.s. Since
the remote past noise = is independent of F} V o(X},), we see that it is independent
of itself, which shows its triviality. The proof is now complete.

Example 2.3 (lazy rational translation). Consider a p-evolution (X, N) with u =
wio,ay fora=1/3 € T. Set H = {0,a,2a} and C' = [0, a). Note that H is a subgroup of T
and (' is isomorphic to the quotient set T/H. Define a mapping T > 2 +— (27, 29) € HxC
so that z = 2% 4 2¢ or in other words, if z = (n +t)a for n = 0,1,2 and ¢ € [0,1), then



2 = na and 2¢ = ta. Let (X,N) be a p-evolution. It then holds that there exists a
C-valued random variable Zx such that X¢ = Z¢ a.s. for k € Z. Moreover, we have the
decomposition

X;j=-Noj+ X' +Zc as forj<k (2.11)
and the resolution of the observation
Fr=FNvFE _vo(X{) as. forkeZ, (2.12)

where F* = o(Z¢) a.s. and, for each k € Z, the X} is independent of F VvV F*_ and
has uniform law on H; as a consequence (X/?)icz is a third noise.

Let us prove this claim. Since X = Ni, + Xy_1 and Ny € {0,a} C H, we have
X =N+ X2, XZ=XT, as, (2.13)

which shows existence of Z¢(= X§') such that X' = Zo a.s. for k € Z. Identity (2.11) is
now obvious. Since

n {1+ Xmla) n_} 1 (me3z)

we obtain " — wy by the theory of Fourier series. For B € FX_ for any continuous
function ¢ on H, for | < j < k and for A € o(Ny, Ny_1, ..., Nj+1), we have

BlLuLep(X{)] = ElLalap(Nuy + Ny + X)) — PARB) [ plelon(ds), (215)
——00 H
in the same way as the previous example. This shows that, for each k € Z, the X7 has
uniform law on H and that the three o-fields 7', F*_ and o(X}) are independent. By
(2.11), we obtain

FX=FNVva(Ze)Vo(XH) as forkeZ (2.16)

From this identity we obtain =~ C o(Z¢) V (FY Vo (X})) a.s. By the independence of
FX o and FY¥ Vo(XH), we can deduce that F*_ C 0(Z¢) a.s. (see [2, Section 2.2]). We
now obtain F*_ = o(Z¢) a.s. and thus the proof is complete.

Example 2.4 (lazy rational-irrational translation on a two-dimensional torus).
Let us consider the two-dimensional torus T? = T x T, which is also a compact commu-
tative group under componentwise addition. Consider a p-evolution with p1 = wy(0,0),(a,b)}
fora =1/3 and b ¢ Q. Set H = {(0,2), (a,z), (2a,2) : € T} and C = {(ta,z) : t €
[0,1),2 € T} =[0,1/3) x T. Note that H is a subgroup of T and C' is isomorphic to the
quotient set T?/H. We can then deduce the same resolution of the observation by the
same argument as the previous example.

23



24

3 Finite-state action evolutions

For a finite set V' and for the set ¥ of mappings of V into itself, we may consider the
action evolution

Xp = Ny Xj_1 P-as. for k € Z, (31)

where X takes values in V' and N does in 3. As we have some difficulty in obtaining
resolution of the observation, we would like to consider a multiparticle evolution. For
m € N, we understand that any mapping f : V — V operates = (z%,...,2™) € V™
componentwise, i.e., fe = (fz',..., fa™). We call (X, N) an m-particle u-evolution if it
satisfies

Xi = N X1 P-as. for k € Z, (3.2)
or in other words
Xi=NX; , Pas fork€Zandi=1,...,m, (3.3)

where X = (Xj)rez with X, = (X}, ..., X]") takes values in V™ and N = (Ny)pez takes
values in ¥ with Vy, at each time £ having common law p and being independent of F, ,ig_’]f.

Write S(u) = {f : p{f} > 0} for the support of p and write (S(u)) = U2, S(p)"

n=1
for the semigroup generated by S(u). For monoparticle action evolutions, Yano [7] has
proved that there is no third noise if and only if S(u) is sync, i.e., there exists g € (S(u))
such that #¢(V) = 1. Recently Ito-Sera—Yano [4] has obtained the resolution of the
observation for m,-particle action evolution where m,, = min{#g(V) : g € (S(n))}.

For y,v € P(X) and for A € P(V), we define
() (A) = / / Li(fou(df)n(dg), AcCS, (3.4)
(N)(B) = / / Lp(fo)u(dP)A(dz), BCV. (3.5)

We sometimes write pf simply for pudy, etc. Let us present an example of the main
theorem of Ito-Sera—Yano [4].

Example 3.1. Let V = {1,2,3,4}. We write [y*,y?, y3, y¥] for the mapping f of V into
itself such that fi =y’ for i = 1,2, 3,4. Consider the three mappings:

f = [272747 4]7 g = [37 3717 1]7 h = [173737 1]' (3'6)

Consider p = wyiq,f,9,n}, Where id denotes the identity mapping of V. It is obvious that
S(p) ={id, f, g, h} and that m, = 2.

(i) The unique minimal two-sided ideal K of (S(p)), which is called the kernel of (S(u)),
admits the Rees decomposition given as

K:<{f7g7h}>:LGR7 L:{€7f}7 G:{e,g}7 R:{eﬂh}7 (3'7)



where e := ¢g? = [1, 1, 3, 3] and the product mapping L x G x R > (a,b,c) — abc € K is
bijective. We denote its inverse by K 2 k +— (kX k¢ k%) € L x G x R.

(il) The convolution product of yu satisfies

2 1 2 1
n L Boopl =25 4+ 26 B =26, 4+ 26, .
Pt ntwen”, 0T = g0+ 28, 0t =0+ 2o (3.8)

(iii) It is easy to see that the measure
1 1 1 1
A = 55(173) + 56(3’1) + 66@’4) + 65(4’2) (39)
is a unique p-invariant probability (i.e., uA = A) on V2 = {(z},2%) € V?: 2! # 2?}. Set
W, =S(A) ={(1,3),(3,1),(2,4),(4,2)} (C V), (3.10)
then we easily have the representations
W, =LG(1,3) and A =nfws(1,3). (3.11)

We now obtain that the product mapping L x G 5 (a,b) — ab(1,3) € W, is bijective.
We denote its inverse by W, 3 x — (x¥,2%) € L x G.

(iv) Let us consider a stationary biparticle p-evolution (X, N) such that X has a common
law A. Then we have the factorization

X; = XH(MZ) U (1,3) as. for j <k (3.12)

with UF = X§ £ wg, MY = X¢(X§ )" and MY, = MEME -~ M. Consequently,
we obtain the resolution of the observation

Fe=GVo(UY) as. with GY =X M7 :j<k), (3.13)
where FX_ is trivial and the two o-fields FY (D GY) and o(U{) are independent.

Let us prove these claims.

(i) Let us write S = (S(u)). Since g? = ¢* = e and ge = eg = g, the set G = {e, g} is a
group with e the unit element. Noting that

ef=he=e, [f'=fe=f gf=hg=hf=g, W =ch=h, (3.14)

we have so that LGR is a two-sided ideal of S. For any k € LGR, we have e € SkS so
that LG R is a minimal ideal. Uniqueness of a minimal ideal is a known fact (see, e.g., [5,
Theorem 2.12]). The injectivity of the product mapping L x G x R 3 (a,b,¢) — abc € K
is obvious because ef = he = e and G is a group.

(ii) From a known fact (see, e.g., [5, Theorem 2.2]), the set K of subsequential limits of
{u"} is given either as [KC = {n, un} with n = n=n® and un = n*gn"| or as [K = {n} with
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n = ntwen®], where n* = n{k’ : k € K} and n® = n{k® : k € K}. If K = {n, un} were
the case, then it would follow that f = ff € S(u)S(n) = S(un) = LgR, which would
contradict the fact that f¢ = e. Hence we see that K = {n}, which shows u" — 7. Let
nt = pd. + qd; with p =1—q € [0,1]. Since nfie = 6., we have unws = n*wg. We have

1 1
pntwe = Z{2p<5e + 1+ +(1+q), we = Z{(2 +p)oe + (1 +q)dstwe,  (3.15)

which shows that n’ = %56 + %6/:. By the same way we obtain 7% = %56 + %5h.

(iii) Since e(1,3) = (1,3) and ¢(1,3) = (3,1), the group G acts on the two-point set {1, 3}
as permutations. Noting that f(1,3) = (2,4) and f(3,1) = (4,2), we have obtained the
injectivity of the product mapping L x G 3 (a,b) — ab(1,3) € W,,.

(iv) Let k € Z be fixed. Since X; € S(A) = W,,, we can decompose it as X;, = XFX7(1, 3).
Since Xj, £ A = nlwg(1,3), we see that X2 and X are independent and X¢ £ w.

For j < k, since Mg, = X{(X§)~!, we have
X; = XIXE(1,3) = XF (M) 'XF(1,3) as., (3.16)

which shows (3.12) and (3.13). We here omit the proof of the fact Gi¥ C F}; see [4] for
the details.

Let us prove the independence of the two o-fields F¥ and o(X¢). For j < k, let
A€ 0(Ng, Ny_1,...,Nj11) and let ¢ be a function on G. We now have

E[Lp(K0)] = E[Lag(ME XS] = P(4) | la)uia(da), (3.17)

since X]G is independent of o(Ng, Ni_1, ..., Nj1+1) and has uniform distribution on G. This
shows the desired independence.
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