Examples of third noise problems for action evolutions with infinite past

Yu Ito (Kyoto Sangyo University)
Toru Sera (Kyoto University)
Kouji Yano (Kyoto University)

1 Introduction

An action evolution is a pair (X, N) of processes $X=\left(X_{k}\right)_{k \in \mathbb{Z}}$ and $N=\left(N_{k}\right)_{k \in \mathbb{Z}}$ defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying the stochastic recursive equation

$$
\begin{equation*}
X_{k}=N_{k} X_{k-1} \quad \mathbb{P} \text {-a.s. for } k \in \mathbb{Z}, \tag{1.1}
\end{equation*}
$$

where the observation $X=\left(X_{k}\right)_{k \in \mathbb{Z}}$ takes values in a measurable space V which evolves at each time being acted by the driving process $N=\left(N_{k}\right)_{k \in \mathbb{Z}}$, which is an iid random mappings of V into itself. Here $N_{k} X_{k-1}$ means the evaluation of a random mapping N_{k} at X_{k-1}; we always write $f v$ simply for the evaluation $f(v)$. We may call X a two-sided random orbit of the random dynamical system generated by the iid random mappings N.

Let us give a precise definition. Let Σ be a measurable space consisting of mappings from V to itself and let $\mathcal{P}(\Sigma)$ denote the set of probability measures on Σ. For $\mu \in \mathcal{P}(\Sigma)$, we call (X, N) a μ-evolution if it satisfies (1.1) and N_{k} at each time k has common law μ and is independent of the past $\mathcal{F}_{k-1}^{X, N}$ defined as

$$
\begin{equation*}
\mathcal{F}_{k-1}^{X, N}:=\sigma\left(X_{j}, N_{j}: j \leq k-1\right) \tag{1.2}
\end{equation*}
$$

It is obvious that (X, N) is a μ-evolution if and only if the Markov property

$$
\begin{equation*}
\mathbb{P}\left(\left(X_{k}, N_{k}\right) \in \cdot \mid \mathcal{F}_{k-1}^{X, N}\right)=Q\left(\left(X_{k-1}, N_{k-1}\right) ; \cdot\right) \quad \text { a.s. for } k \in \mathbb{Z} \tag{1.3}
\end{equation*}
$$

holds with the joint transition probability being given as

$$
\begin{equation*}
Q((x, g) ; \cdot)=\mu\{f \in \Sigma:(f x, f) \in \cdot\} \tag{1.4}
\end{equation*}
$$

Consider a μ-evolution (X, N). Since for $j<k$ we know that $\sigma\left(N_{k}, N_{k-1}, \ldots, N_{j+1}\right)$ is independent of $\mathcal{F}_{j}^{X}:=\sigma\left(X_{j}, X_{j-1}, \ldots\right)$, the driving noise $\mathcal{F}_{k}^{N}:=\sigma\left(N_{k}, N_{k-1}, \ldots\right)$ is independent of the remote past noise $\mathcal{F}_{-\infty}^{X}:=\bigcap_{j} \mathcal{F}_{j}^{X}$. We sometimes encounter a third noise, which we define as a sequence of random variables $\left(U_{k}\right)_{k \in \mathbb{T}}$, such that

$$
\begin{equation*}
\mathcal{F}_{k}^{X} \subset \mathcal{F}_{k}^{N} \vee \mathcal{F}_{-\infty}^{X} \vee \sigma\left(U_{k}\right) \quad \text { a.s. and } \quad \sigma\left(U_{k}\right) \subset \mathcal{F}_{k}^{X, N} \quad \text { a.s. for } k \in \mathbb{Z} \tag{1.5}
\end{equation*}
$$

holds with the three σ-fields $\mathcal{F}_{k}^{N}, \mathcal{F}_{-\infty}^{X}$ and $\sigma\left(U_{k}\right)$ being independent. Here, for σ-fields $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ we always write $\mathcal{F}_{1} \vee \mathcal{F}_{2} \vee \cdots$ for $\sigma\left(\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \cdots\right)$. In addition, we can sometimes find a reduced driving noise, which we define as a sequence of σ-fields $\left(\mathcal{G}_{k}^{N}\right)_{k \in \mathbb{Z}}$ such that

$$
\begin{equation*}
\mathcal{F}_{k}^{X}=\mathcal{G}_{k}^{N} \vee \mathcal{F}_{-\infty}^{X} \vee \sigma\left(U_{k}\right) \quad \text { a.s. and } \quad \mathcal{G}_{k}^{N} \subset \mathcal{F}_{k}^{N} \quad \text { a.s. for } k \in \mathbb{Z} \tag{1.6}
\end{equation*}
$$

holds. The former identity of (1.6) will be called the resolution of the observation.

Iterating the equation (1.1), we have $X_{k}=N_{k, j} X_{j}$ with

$$
\begin{equation*}
N_{k, j}:=N_{k} N_{k-1} \cdots N_{j+1} \tag{1.7}
\end{equation*}
$$

for $j<k$, and thus we may expect in general that

$$
\begin{equation*}
\mathcal{F}_{k}^{X} \subset \bigcap_{j<k}\left(\mathcal{F}_{k}^{N} \vee \mathcal{F}_{j}^{X}\right) \stackrel{?}{\subset} \mathcal{F}_{k}^{N} \vee\left(\bigcap_{j<k} \mathcal{F}_{j}^{X}\right)=\mathcal{F}_{k}^{N} \vee \mathcal{F}_{-\infty}^{X} \tag{1.8}
\end{equation*}
$$

This inclusion $\stackrel{?}{\subset}$, however, is false in general, or in other words, there may exist a nontrivial third noise; see [6, (1) of Remark 1.4] for the famous errors by Kolmogorov and Wiener. See also [2, Section 2.5] for related discussions.

In many results, the third noise is always a random variable with a uniform law on a certain set which is not given a priori. We discuss several examples with proofs, for better understanding the third noise problems.

2 Random translations on a torus

Let us consider the one-dimensional torus $\mathbb{T}=\mathbb{R} / \mathbb{Z} \simeq[0,1)$, which is a compact commutative group with respect to addition in \mathbb{T}, or addition in $\mathbb{R} \bmod 1$. For a probability meausure μ on \mathbb{T}, we consider a μ-evolution

$$
\begin{equation*}
X_{k}=N_{k}+X_{k-1} \quad \text { a.s. for } k \in \mathbb{Z} \tag{2.1}
\end{equation*}
$$

where X and N take values in \mathbb{T} and we understand $N_{k}+X_{k-1}$ as addition in \mathbb{T}. Note that $\mathcal{F}_{k}^{N} \subset \mathcal{F}_{k}^{X}$ for all $k \in \mathbb{Z}$, since $N_{k}=X_{k}-X_{k-1}$ in $\mathbb{T}($ or in $\mathbb{R} \bmod 1)$.

The resolution problem itself originates from Yor [9] who did a thorough study about this action evolution on a torus with inhomogeneous noise. His results were generalized to action evolutions on general compact groups by Akahori-Uenishi-Yano [1] and HirayamaYano [3]; see also [8] for a survey of this topic.

Let us write $\mu \nu \in \mathcal{P}(\mathbb{T})$ for the convolution of μ and $\nu \in \mathcal{P}(\mathbb{T})$:

$$
\begin{equation*}
(\mu \nu)(A)=\iint_{\mathbb{T} \times \mathbb{T}} 1_{A}(x+y) \mu(\mathrm{d} x) \nu(\mathrm{d} y) \tag{2.2}
\end{equation*}
$$

We equip $\mathcal{P}(\mathbb{T})$ with the topology of weak convergence; $\mu_{n} \rightarrow \mu$ if and only if $\int \varphi \mathrm{d} \mu_{n} \rightarrow$ $\int \varphi \mathrm{d} \mu$ for all continuous function φ on \mathbb{T}. We write ω_{G} for the normalized Haar measure on G if G is a compact group. We write ω_{V} for the uniform law on V if V is a finite set. There is no confusion for finite groups.

Let us present some examples of Yor [9].
Example 2.1 (deterministic translation). Consider a μ-evolution (X, N) with $\mu=\delta_{a}$ for $a \in \mathbb{T}$:

$$
\begin{equation*}
X_{k}=a+X_{k-1} \quad \text { a.s. for } k \in \mathbb{Z} \tag{2.3}
\end{equation*}
$$

Then the driving noise is trivial, i.e., $\mathcal{F}_{k}^{N}=\{\emptyset, \Omega\}$ a.s. for $k \in \mathbb{Z}$, and we have

$$
\begin{equation*}
\mathcal{F}_{k}^{X}=\mathcal{F}_{-\infty}^{X} \quad \text { a.s. for } k \in \mathbb{Z} \tag{2.4}
\end{equation*}
$$

which gives the resolution of the observation and shows no third noise. In fact, since $X_{k}-k a=X_{k-1}-(k-1) a$ a.s., we have $X_{k}=X_{0}+k a$ a.s. for $k \in \mathbb{Z}$, which shows that $\mathcal{F}_{k}^{X}=\mathcal{F}_{-\infty}^{X}=\sigma\left(X_{0}\right)$ a.s.

Example 2.2 (lazy irrational translation). Consider a μ-evolution (X, N) with $\mu=$ $\omega_{\{0, a\}}$. We call it a lazy translation, because it sometimes stays ($X_{k}=X_{k-1}$) or translates $\left(X_{k}=a+X_{k-1}\right)$ according as $N_{k}=0$ or a. Suppose $a \notin \mathbb{Q}$. It then holds that the remote past noise is trivial, i.e., $\mathcal{F}_{-\infty}^{X}=\{\emptyset, \Omega\}$ a.s. for $k \in \mathbb{Z}$, and that

$$
\begin{equation*}
\mathcal{F}_{k}^{X}=\mathcal{F}_{k}^{N} \vee \sigma\left(X_{k}\right) \quad \text { a.s. for } k \in \mathbb{Z} \tag{2.5}
\end{equation*}
$$

where, for each $k \in \mathbb{Z}$, the X_{k} is independent of \mathcal{F}_{k}^{N} and has uniform law on \mathbb{T}; this gives the resolution of the observation and shows that $\left(X_{k}\right)_{k \in \mathbb{M}}$ is a third noise.

Let us prove this claim. Set $N_{k, j}=N_{k}+N_{k-1}+\cdots+N_{j+1}$ for $j<k$. Since $X_{j}=$ $X_{k}-N_{k, j}$ and $N_{j}=X_{j}-X_{j-1}$ for $j<k$, the identity (2.5) is obvious. Let us prove the independence. We utilize the characters: $\chi_{m}(z)=\mathrm{e}^{2 \pi i m z}$ for $z \in \mathbb{T}$ and $m \in \mathbb{Z}$. By the irrationality of a, we have $\left|\frac{1+\chi_{m}(a)}{2}\right|<1$ for all $m \neq 0$, and hence we have

$$
\begin{equation*}
\int_{\mathbb{T}} \chi_{m}(z) \mu^{n}(\mathrm{~d} z)=\left(\int_{\mathbb{T}} \chi_{m}(z) \mu(\mathrm{d} z)\right)^{n}=\left(\frac{1+\chi_{m}(a)}{2}\right)^{n} \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \text { for any } m \neq 0 \tag{2.6}
\end{equation*}
$$

This shows $\mu^{n} \rightarrow \omega_{\mathbb{T}}$ by the theory of Fourier series. For $B \in \mathcal{F}_{-\infty}^{X}$, for any continuous function φ on \mathbb{T}, for $k>j>l$ and for $A \in \sigma\left(N_{k}, N_{k-1}, \ldots, N_{j+1}\right)$, we have

$$
\begin{align*}
& \mathbb{E}\left[1_{A} 1_{B} \varphi\left(X_{k}\right)\right]=\mathbb{E}\left[1_{A} 1_{B} \varphi\left(N_{k, j}+N_{j, l}+X_{l}\right)\right] \tag{2.7}\\
&=\mathbb{E}\left[1_{A} 1_{B} \int_{\mathbb{T}} \varphi\left(N_{k, j}+z+X_{l}\right) \mu^{j-l}(\mathrm{~d} z)\right] \tag{2.8}\\
& \xrightarrow[l \rightarrow-\infty]{\longrightarrow}\left[1_{A} 1_{B} \int_{\mathbb{T}} \varphi(z) \omega_{\mathbb{T}}(\mathrm{d} z)\right] \tag{2.9}\\
&=\mathbb{P}(A) \mathbb{P}(B) \int_{\mathbb{T}} \varphi(z) \omega_{\mathbb{T}}(\mathrm{d} z) \tag{2.10}
\end{align*}
$$

since for any sequences $\left\{x_{n}\right\},\left\{x_{n}^{\prime}\right\} \subset \mathbb{T}$ we have $\delta_{x_{n}} \mu^{j+n} \delta_{x_{n}^{\prime}} \rightarrow \omega_{\mathbb{T}}$ as $n \rightarrow \infty$. This shows that, for each $k \in \mathbb{Z}$, the X_{k} has uniform law on \mathbb{T} and that the three σ-fields $\mathcal{F}_{k}^{N}, \mathcal{F}_{-\infty}^{X}$ and $\sigma\left(X_{k}\right)$ are independent. By the identity (2.5), we have $\mathcal{F}_{-\infty}^{X} \subset \mathcal{F}_{k}^{N} \vee \sigma\left(X_{k}\right)$ a.s. Since the remote past noise $\mathcal{F}_{-\infty}^{X}$ is independent of $\mathcal{F}_{k}^{N} \vee \sigma\left(X_{k}\right)$, we see that it is independent of itself, which shows its triviality. The proof is now complete.

Example 2.3 (lazy rational translation). Consider a μ-evolution (X, N) with $\mu=$ $\omega_{\{0, a\}}$ for $a=1 / 3 \in \mathbb{T}$. Set $H=\{0, a, 2 a\}$ and $C=[0, a)$. Note that H is a subgroup of \mathbb{T} and C is isomorphic to the quotient set \mathbb{T} / H. Define a mapping $\mathbb{T} \ni z \mapsto\left(z^{H}, z^{C}\right) \in H \times C$ so that $z=z^{H}+z^{C}$, or in other words, if $z=(n+t) a$ for $n=0,1,2$ and $t \in[0,1)$, then
$z^{H}=n a$ and $z^{C}=t a$. Let (X, N) be a μ-evolution. It then holds that there exists a C-valued random variable Z_{C} such that $X_{k}^{C}=Z_{C}$ a.s. for $k \in \mathbb{Z}$. Moreover, we have the decomposition

$$
\begin{equation*}
X_{j}=-N_{k, j}+X_{k}^{H}+Z_{C} \quad \text { a.s. for } j<k \tag{2.11}
\end{equation*}
$$

and the resolution of the observation

$$
\begin{equation*}
\mathcal{F}_{k}^{X}=\mathcal{F}_{k}^{N} \vee \mathcal{F}_{-\infty}^{X} \vee \sigma\left(X_{k}^{H}\right) \quad \text { a.s. for } k \in \mathbb{Z}, \tag{2.12}
\end{equation*}
$$

where $\mathcal{F}_{-\infty}^{X}=\sigma\left(Z_{C}\right)$ a.s. and, for each $k \in \mathbb{Z}$, the X_{k}^{H} is independent of $\mathcal{F}_{k}^{N} \vee \mathcal{F}_{-\infty}^{X}$ and has uniform law on H; as a consequence $\left(X_{k}^{H}\right)_{k \in \Pi_{1}}$ is a third noise.

Let us prove this claim. Since $X_{k}=N_{k}+X_{k-1}$ and $N_{k} \in\{0, a\} \subset H$, we have

$$
\begin{equation*}
X_{k}^{H}=N_{k}+X_{k-1}^{H}, \quad X_{k}^{C}=X_{k-1}^{C} \quad \text { a.s. } \tag{2.13}
\end{equation*}
$$

which shows existence of $Z_{C}\left(=X_{0}^{C}\right)$ such that $X_{k}^{C}=Z_{C}$ a.s. for $k \in \mathbb{Z}$. Identity (2.11) is now obvious. Since

$$
\int_{\mathbb{T}} \chi_{m}(z) \mu^{n}(\mathrm{~d} z)=\left(\frac{1+\chi_{m}(a)}{2}\right)^{n} \underset{n \rightarrow \infty}{\longrightarrow} \begin{cases}1 & (m \in 3 \mathbb{Z}) \tag{2.14}\\ 0 & (m \notin 3 \mathbb{Z})\end{cases}
$$

we obtain $\mu^{n} \rightarrow \omega_{H}$ by the theory of Fourier series. For $B \in \mathcal{F}_{-\infty}^{X}$, for any continuous function φ on H, for $l<j<k$ and for $A \in \sigma\left(N_{k}, N_{k-1}, \ldots, N_{j+1}\right)$, we have

$$
\begin{equation*}
\mathbb{E}\left[1_{A} 1_{B} \varphi\left(X_{k}^{H}\right)\right]=\mathbb{E}\left[1_{A} 1_{B} \varphi\left(N_{k, j}+N_{j, l}+X_{l}^{H}\right)\right] \underset{l \rightarrow-\infty}{\longrightarrow} \mathbb{P}(A) \mathbb{P}(B) \int_{H} \varphi(z) \omega_{H}(\mathrm{~d} z) \tag{2.15}
\end{equation*}
$$

in the same way as the previous example. This shows that, for each $k \in \mathbb{Z}$, the X_{k}^{H} has uniform law on H and that the three σ-fields $\mathcal{F}_{k}^{N}, \mathcal{F}_{-\infty}^{X}$ and $\sigma\left(X_{k}^{H}\right)$ are independent. By (2.11), we obtain

$$
\begin{equation*}
\mathcal{F}_{k}^{X}=\mathcal{F}_{k}^{N} \vee \sigma\left(Z_{C}\right) \vee \sigma\left(X_{k}^{H}\right) \quad \text { a.s. for } k \in \mathbb{Z} \tag{2.16}
\end{equation*}
$$

From this identity we obtain $\mathcal{F}_{-\infty}^{X} \subset \sigma\left(Z_{C}\right) \vee\left(\mathcal{F}_{k}^{N} \vee \sigma\left(X_{k}^{H}\right)\right)$ a.s. By the independence of $\mathcal{F}_{-\infty}^{X}$ and $\mathcal{F}_{k}^{N} \vee \sigma\left(X_{k}^{H}\right)$, we can deduce that $\mathcal{F}_{-\infty}^{X} \subset \sigma\left(Z_{C}\right)$ a.s. (see [2, Section 2.2]). We now obtain $\mathcal{F}_{-\infty}^{X}=\sigma\left(Z_{C}\right)$ a.s. and thus the proof is complete.

Example 2.4 (lazy rational-irrational translation on a two-dimensional torus).
Let us consider the two-dimensional torus $\mathbb{T}^{2}=\mathbb{T} \times \mathbb{T}$, which is also a compact commutative group under componentwise addition. Consider a μ-evolution with $\mu=\omega_{\{(0,0),(a, b)\}}$ for $a=1 / 3$ and $b \notin \mathbb{Q}$. Set $H=\{(0, x),(a, x),(2 a, x): x \in \mathbb{T}\}$ and $C=\{(t a, x): t \in$ $[0,1), x \in \mathbb{T}\}=[0,1 / 3) \times \mathbb{T}$. Note that H is a subgroup of \mathbb{T} and C is isomorphic to the quotient set \mathbb{T}^{2} / H. We can then deduce the same resolution of the observation by the same argument as the previous example.

3 Finite-state action evolutions

For a finite set V and for the set Σ of mappings of V into itself, we may consider the action evolution

$$
\begin{equation*}
X_{k}=N_{k} X_{k-1} \quad \mathbb{P} \text {-a.s. for } k \in \mathbb{Z}, \tag{3.1}
\end{equation*}
$$

where X takes values in V and N does in Σ. As we have some difficulty in obtaining resolution of the observation, we would like to consider a multiparticle evolution. For $m \in \mathbb{N}$, we understand that any mapping $f: V \rightarrow V$ operates $\boldsymbol{x}=\left(x^{1}, \ldots, x^{m}\right) \in V^{m}$ componentwise, i.e., $f \boldsymbol{x}=\left(f x^{1}, \ldots, f x^{m}\right)$. We call (\mathbb{X}, N) an m-particle μ-evolution if it satisfies

$$
\begin{equation*}
\mathbb{X}_{k}=N_{k} \mathbb{X}_{k-1} \quad \mathbb{P} \text {-a.s. for } k \in \mathbb{Z} \tag{3.2}
\end{equation*}
$$

or in other words

$$
\begin{equation*}
X_{k}^{i}=N_{k} X_{k-1}^{i} \quad \mathbb{P} \text {-a.s. for } k \in \mathbb{Z} \text { and } i=1, \ldots, m \tag{3.3}
\end{equation*}
$$

where $\mathbb{X}=\left(\mathbb{X}_{k}\right)_{k \in \mathbb{T}}$ with $\mathbb{X}_{k}=\left(X_{k}^{1}, \ldots, X_{k}^{m}\right)$ takes values in V^{m} and $N=\left(N_{k}\right)_{k \in \mathbb{T}}$ takes values in Σ with N_{k} at each time k having common law μ and being independent of $\mathcal{F}_{k-1}^{\mathbb{X}, N}$.

Write $S(\mu)=\{f: \mu\{f\}>0\}$ for the support of μ and write $\langle S(\mu)\rangle=\bigcup_{n=1}^{\infty} S(\mu)^{n}$ for the semigroup generated by $S(\mu)$. For monoparticle action evolutions, Yano [7] has proved that there is no third noise if and only if $S(\mu)$ is sync, i.e., there exists $g \in\langle S(\mu)\rangle$ such that $\# g(V)=1$. Recently Ito-Sera-Yano [4] has obtained the resolution of the observation for m_{μ}-particle action evolution where $m_{\mu}=\min \{\# g(V): g \in\langle S(\mu)\rangle\}$.

For $\mu, \nu \in \mathcal{P}(\Sigma)$ and for $\lambda \in \mathcal{P}(V)$, we define

$$
\begin{array}{ll}
(\mu \nu)(A)=\int_{\Sigma} \int_{\Sigma} 1_{A}(f g) \mu(\mathrm{d} f) \nu(\mathrm{d} g), & A \subset \Sigma \\
(\mu \lambda)(B)=\int_{\Sigma} \int_{V} 1_{B}(f x) \mu(\mathrm{d} f) \lambda(\mathrm{d} x), & B \subset V \tag{3.5}
\end{array}
$$

We sometimes write μf simply for $\mu \delta_{f}$, etc. Let us present an example of the main theorem of Ito-Sera-Yano [4].
Example 3.1. Let $V=\{1,2,3,4\}$. We write $\left[y^{1}, y^{2}, y^{3}, y^{4}\right]$ for the mapping f of V into itself such that $f i=y^{i}$ for $i=1,2,3,4$. Consider the three mappings:

$$
\begin{equation*}
f=[2,2,4,4], \quad g=[3,3,1,1], \quad h=[1,3,3,1] . \tag{3.6}
\end{equation*}
$$

Consider $\mu=\omega_{\{\mathrm{id}, f, g, h\}}$, where id denotes the identity mapping of V. It is obvious that $S(\mu)=\{\mathrm{id}, f, g, h\}$ and that $m_{\mu}=2$.
(i) The unique minimal two-sided ideal K of $\langle S(\mu)\rangle$, which is called the kernel of $\langle S(\mu)\rangle$, admits the Rees decomposition given as

$$
\begin{equation*}
K=\langle\{f, g, h\}\rangle=L G R, \quad L=\{e, f\}, \quad G=\{e, g\}, \quad R=\{e, h\} \tag{3.7}
\end{equation*}
$$

where $e:=g^{2}=[1,1,3,3]$ and the product mapping $L \times G \times R \ni(a, b, c) \mapsto a b c \in K$ is bijective. We denote its inverse by $K \ni k \mapsto\left(k^{L}, k^{G}, k^{R}\right) \in L \times G \times R$.
(ii) The convolution product of μ satisfies

$$
\begin{equation*}
\mu^{n} \rightarrow \eta^{L} \omega_{G} \eta^{R}, \quad \eta^{L}=\frac{2}{3} \delta_{e}+\frac{1}{3} \delta_{f}, \quad \eta^{R}=\frac{2}{3} \delta_{e}+\frac{1}{3} \delta_{h} . \tag{3.8}
\end{equation*}
$$

(iii) It is easy to see that the measure

$$
\begin{equation*}
\Lambda=\frac{1}{3} \delta_{(1,3)}+\frac{1}{3} \delta_{(3,1)}+\frac{1}{6} \delta_{(2,4)}+\frac{1}{6} \delta_{(4,2)} \tag{3.9}
\end{equation*}
$$

is a unique μ-invariant probability (i.e., $\mu \Lambda=\Lambda$) on $V_{\times}^{2}=\left\{\left(x^{1}, x^{2}\right) \in V^{2}: x^{1} \neq x^{2}\right\}$. Set

$$
\begin{equation*}
W_{\mu}=S(\Lambda)=\{(1,3),(3,1),(2,4),(4,2)\}\left(\subset V_{\times}^{2}\right) \tag{3.10}
\end{equation*}
$$

then we easily have the representations

$$
\begin{equation*}
W_{\mu}=L G(1,3) \quad \text { and } \quad \Lambda=\eta^{L} \omega_{G}(1,3) \tag{3.11}
\end{equation*}
$$

We now obtain that the product mapping $L \times G \ni(a, b) \mapsto a b(1,3) \in W_{\mu}$ is bijective. We denote its inverse by $W_{\mu} \ni \boldsymbol{x} \mapsto\left(\boldsymbol{x}^{L}, \boldsymbol{x}^{G}\right) \in L \times G$.
(iv) Let us consider a stationary biparticle μ-evolution (\mathbb{X}, N) such that \mathbb{X} has a common law Λ. Then we have the factorization

$$
\begin{equation*}
\mathbb{X}_{j}=\mathbb{X}_{j}^{L}\left(M_{k, j}^{G}\right)^{-1} U_{k}^{G}(1,3) \quad \text { a.s. for } j<k \tag{3.12}
\end{equation*}
$$

with $U_{k}^{G}=\mathbb{X}_{k}^{G} \stackrel{\mathrm{~d}}{=} \omega_{G}, M_{j}^{G}=\mathbb{X}_{j}^{G}\left(\mathbb{X}_{j-1}^{G}\right)^{-1}$ and $M_{k, j}^{G}=M_{k}^{G} M_{k-1}^{G} \cdots M_{j+1}^{G}$. Consequently, we obtain the resolution of the observation

$$
\begin{equation*}
\mathcal{F}_{k}^{\mathbb{X}}=\mathcal{G}_{k}^{N} \vee \sigma\left(U_{k}^{G}\right) \quad \text { a.s. with } \mathcal{G}_{k}^{N}=\sigma\left(\mathbb{X}_{j}^{L}, M_{j}^{G}: j \leq k\right), \tag{3.13}
\end{equation*}
$$

where $\mathcal{F}_{-\infty}^{X}$ is trivial and the two σ-fields $\mathcal{F}_{k}^{N}\left(\supset \mathcal{G}_{k}^{N}\right)$ and $\sigma\left(U_{k}^{G}\right)$ are independent.
Let us prove these claims.
(i) Let us write $S=\langle S(\mu)\rangle$. Since $g^{2}=e^{2}=e$ and $g e=e g=g$, the set $G=\{e, g\}$ is a group with e the unit element. Noting that

$$
\begin{equation*}
e f=h e=e, \quad f^{2}=f e=f, \quad g f=h g=h f=g, \quad h^{2}=e h=h \tag{3.14}
\end{equation*}
$$

we have so that $L G R$ is a two-sided ideal of S. For any $k \in L G R$, we have $e \in S k S$ so that $L G R$ is a minimal ideal. Uniqueness of a minimal ideal is a known fact (see, e.g., [5, Theorem 2.12]). The injectivity of the product mapping $L \times G \times R \ni(a, b, c) \mapsto a b c \in K$ is obvious because $e f=h e=e$ and G is a group.
(ii) From a known fact (see, e.g., [5, Theorem 2.2]), the set \mathcal{K} of subsequential limits of $\left\{\mu^{n}\right\}$ is given either as $\left[\mathcal{K}=\{\eta, \mu \eta\}\right.$ with $\eta=\eta^{L} \eta^{R}$ and $\left.\mu \eta=\eta^{L} g \eta^{R}\right]$ or as $[\mathcal{K}=\{\eta\}$ with
$\left.\eta=\eta^{L} \omega_{G} \eta^{R}\right]$, where $\eta^{L}=\eta\left\{k^{L}: k \in K\right\}$ and $\eta^{R}=\eta\left\{k^{R}: k \in K\right\}$. If $\mathcal{K}=\{\eta, \mu \eta\}$ were the case, then it would follow that $f=f f \in S(\mu) S(\eta)=S(\mu \eta)=L g R$, which would contradict the fact that $f^{G}=e$. Hence we see that $\mathcal{K}=\{\eta\}$, which shows $\mu^{n} \rightarrow \eta$. Let $\eta^{L}=p \delta_{e}+q \delta_{f}$ with $p=1-q \in[0,1]$. Since $\eta^{R} e=\delta_{e}$, we have $\mu \eta^{L} \omega_{G}=\eta^{L} \omega_{G}$. We have

$$
\begin{equation*}
\mu \eta^{L} \omega_{G}=\frac{1}{4}\left\{2 p \delta_{e}+(1+q) \delta_{f}+(1+q) \delta_{g}\right\} \omega_{G}=\frac{1}{4}\left\{(2+p) \delta_{e}+(1+q) \delta_{f}\right\} \omega_{G}, \tag{3.15}
\end{equation*}
$$

which shows that $\eta^{L}=\frac{2}{3} \delta_{e}+\frac{1}{3} \delta_{f}$. By the same way we obtain $\eta^{R}=\frac{2}{3} \delta_{e}+\frac{1}{3} \delta_{h}$.
(iii) Since $e(1,3)=(1,3)$ and $g(1,3)=(3,1)$, the group G acts on the two-point set $\{1,3\}$ as permutations. Noting that $f(1,3)=(2,4)$ and $f(3,1)=(4,2)$, we have obtained the injectivity of the product mapping $L \times G \ni(a, b) \mapsto a b(1,3) \in W_{\mu}$.
(iv) Let $k \in \mathbb{Z}$ be fixed. Since $\mathbb{X}_{k} \in S(\Lambda)=W_{\mu}$, we can decompose it as $\mathbb{X}_{k}=\mathbb{X}_{k}^{L} \mathbb{X}_{k}^{G}(1,3)$. Since $\mathbb{X}_{k} \stackrel{\mathrm{~d}}{=} \Lambda=\eta^{L} \omega_{G}(1,3)$, we see that \mathbb{X}_{k}^{L} and \mathbb{X}_{k}^{G} are independent and $\mathbb{X}_{k}^{G} \stackrel{\mathrm{~d}}{=} \omega_{G}$.

For $j<k$, since $M_{k, j}^{G}=\mathbb{X}_{k}^{G}\left(\mathbb{X}_{j}^{G}\right)^{-1}$, we have

$$
\begin{equation*}
\mathbb{X}_{j}=\mathbb{X}_{j}^{L} \mathbb{X}_{j}^{G}(1,3)=\mathbb{X}_{j}^{L}\left(M_{k, j}^{G}\right)^{-1} \mathbb{X}_{k}^{G}(1,3) \quad \text { a.s. } \tag{3.16}
\end{equation*}
$$

which shows (3.12) and (3.13). We here omit the proof of the fact $\mathcal{G}_{k}^{N} \subset \mathcal{F}_{k}^{N}$; see [4] for the details.

Let us prove the independence of the two σ-fields \mathcal{F}_{k}^{N} and $\sigma\left(\mathbb{X}_{k}^{G}\right)$. For $j<k$, let $A \in \sigma\left(N_{k}, N_{k-1}, \ldots, N_{j+1}\right)$ and let φ be a function on G. We now have

$$
\begin{equation*}
\mathbb{E}\left[1_{A} \varphi\left(\mathbb{X}_{k}^{G}\right)\right]=\mathbb{E}\left[1_{A} \varphi\left(M_{k, j}^{G} \mathbb{X}_{j}^{G}\right)\right]=\mathbb{P}(A) \int_{G} \varphi(a) \omega_{G}(\mathrm{~d} a) \tag{3.17}
\end{equation*}
$$

since \mathbb{X}_{j}^{G} is independent of $\sigma\left(N_{k}, N_{k-1}, \ldots, N_{j+1}\right)$ and has uniform distribution on G. This shows the desired independence.

References

[1] J. Akahori, C. Uenishi, and K. Yano. Stochastic equations on compact groups in discrete negative time. Probab. Theory Related Fields, 140(3-4):569-593, 2008.
[2] L. Chaumont and M. Yor. Exercises in probability. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, second edition, 2012. A guided tour from measure theory to random processes, via conditioning.
[3] T. Hirayama and K. Yano. Extremal solutions for stochastic equations indexed by negative integers and taking values in compact groups. Stochastic Process. Appl., 120(8):1404-1423, 2010.
[4] Y. Ito, T. Sera, and K. Yano. Resolution of sigma-fields for multiparticle finite-state action evolutions with infinite past. Preprint, arXiv:2008.12407.
[5] A. Mukherjea and N. A. Tserpes. Measures on topological semigroups: convolution products and random walks. Lecture Notes in Mathematics, Vol. 547. Springer-Verlag, Berlin-New York, 1976.
[6] R. van Handel. On the exchange of intersection and supremum of σ-fields in filtering theory. Israel J. Math., 192(2):763-784, 2012.

7] K. Yano. Random walk in a finite directed graph subject to a road coloring. J. Theoret. Probab., 26(1):259-283, 2013.
[8] K. Yano and M. Yor. Around Tsirelson's equation, or: The evolution process may not explain everything. Probab. Surv., 12:1-12, 2015.
[9] M. Yor. Tsirel'son's equation in discrete time. Probab. Theory Related Fields, 91(2):135-152, 1992.

