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Abstract 

We study the asymptotic solution of the equation of the pressure function s→ P（弘） fora 
perturbed potential ¢,, defined on a shift space with countable state. We show that if the perturbed 
potential ¢,, has an asymptotic expansion for a small parameter c and some conditions arc satisfied, 
then the solution s = s(e) of P（尋） ＝0 has also an asymptotic behaviour with same order. In 
addition, we also give the case where the order of the expansion of the solutions= s(e) is less than 

the order of the expansion of the perturbed potential似 Ourresults can be applied to problems 

concerning asymptotic behaviors of Hausdorff dimensions obtained from Bowen formula. 

1 Preliminaries 

In this section we will recall the notion of thermodynamic formalism and some facts of 

Ruelle transfer operators which were manly introduced by Sarig [4, 5, 6]. 

Let G = (V, E, i(-), t(•)) be a directed multigraph endowed with countable vertex set 
V, countable edge set E, and two maps i(-) and t(-) from E to V. For each e E E, i(e) 

is called the initial vertex of e and t(e) called the terminal vertex of e. Denoted by E00 

the one-sided shift space { w = w0w1 ・ ・ ・ E IT~o E : t（叫＝ i(wk+i)for any k ~ O}. The 
shift transformation a : E00→ E00 is defined by (a叫＝叫1for any k ~ 0. For 
0 E (0, 1), a metric d。onE00 is given by d0(w, v) = einf{k2::0:w豆毀｝． Themetric space 
(E00, d0) is compact if E is finitc. On thc othcr hand, this mctric spacc is complctc and 

separable and however may be not compact when E is infinite. 

For lK =政 orC, let C(E00狐） bethe set of all応 valuedcontinuous functions on E00, 

and Fe(E00瓜）theset of all応 valuedd0-Lipschitz continuous functions on E00. We define 

Cb(E00爪） asthe set of all functions f E C (E00狐） withllf llcoく ooand F。,b(E00，応）
as the set of all functions f E F0 (E00瓜） withII!||。＜ oo,where llf 110 = llfllco + [f]e, 
llfllco = supwEE"° lf(w)I and [!]0 = sup{lf(w)-f(v)l/d0(w, v) : w, v E E00, w-=/-v, Wo = 
v0}. It is known that if E is finite then the equalities C(E00広） ＝Cb(E00広） and

F0(E00瓜:)= F0,b(E00エ） hold. For simplicity, the notation阪 isomitted from these 
definitions when応＝ C． 
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The incidence matrix A = (A(ee')) of E00 is an E x E zero-one matrix defined by 
A(ee') = 1 if t(e) = i(e') and A(ee') = 0 if t(e)ナi(e').The matrix A is said to be finitely 
irreducible if there exists a finite subset F of LJ乙Eksuch that for any e, e'E E, ewe' 
is a path on the graph G for some w E F. This matrix A is called finitely primitive if 

there exist an integer n 2='. 1 and a finite subset F of Ek for some k 2='. 0 such that for 

any e, e'E E, ewe'is a path on the graph G for some w E F. Note that A is finitely 

irreducible if and only if the dynamics (E00, a) is topologically transitive and A has the 

big images and pre-images property [5], i.e. there exists a finite set F of E such that for 

any e EE, A(e'e)A(ee") = 1 for some e', e" E F. Similarity, A is finitely primitive if and 

only if (E00, a) is topologically mixing and A has the big images and pre-images property. 

Assume that the incidence matrix of E00 is finitely irreducible and心： Eoo→股isin 

恥(Eoo，股）． Werecall the topological pressure I'（ゆ） of心definedby 

k-l 
1 

P（'i/J) = k I児m00ilog 区 exp(sup〉心（心）），
WEEと［叫翡 WE[w] J=0 

where［叫＝ ｛w E E00 : w0 ・ ・ ・ Wk-I = w} denotes the cylinder of a word w E Ek. This 
limit exists in (-oo, +oo] (see [2]). A <JーinvariantBorel probability measure μ on E00 is 

said to be a Gibbs measure of a function 1j; : E00→股ifthere exist constants c 2: 1 and 

PE股suchthat for any w E E00 and k 2: 1 

μ([woW1 ・ ・ ・ Wk-l]) c-1 < < C. 
―exp(-kP＋区：二註（叫）） ― 

For the existence of this measure, see Theorem 1.1 below (see also [5]). 

For a real-valued functionゆdefinedon E00, the Ruelle operator.Cゅassociatedtoゆis

defined by 

らf(w)＝ I: e心(e•w)f(e. w) 
eEE: t(e)=i(wo) 

if this series converges in C for a complex-valued function f on E00 and for w E E00. Here 

e ・ w is the concatenation of e and w, i.e. e ・ w = ew0w1 ・ ・ ・ E E00. It is known that if E00 
is finitely irreducible andゆisin Fe(E00 」~) with finite pressure, then.C心isa bounded 

linear operator both on Fe,b(E00) and on Cb(E00). 

The following is a version of Ruelle-Perron-Frobenius Theorem for.c炉

Theorem 1.1 ([1, 4]) Let G = (V, E, i(•), t(•)) be a directed multigraph such that A is 
finitely irreducible. Assume thatゆEFe(E00，政） withP（ゆ） ＜ oo. Then there exists a 

unique triplet（入，h,v) E恥 xFe,b(E00) x Cb(E00)* such that the following are satisfied: 
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(1) The numbeT入ispositive and a simple maximal eigenvalue of the opemtoTら
恥 (Eoo)→F0,b(E00).

(2) The opemtoTら： F0,b(E00)→F0,b(E00)has the decomposition 

ら＝ゆ＋R

with PR = RP = 0. H eTe the opemto'r P is a prnjection onto the one-dimensional 

eigenspace of the eigenvalue入． MoTeoveT,this has the foTm町＝ JEoofhdv fo'r 
f E Cb(E00), wheTe h E Fe,b(E00 」~) is the corresponding eigenfunction of入andv 

is the corresponding eigenvectoT of入ofthe dual c; with v(h) = 1. In pa廿iculaT,h 
satisfies O < infw h(w):S supw h(w) < oo and v is a BoTel prnbability measuTe on E00. 

(3) The spectrum ofR: F0,b(E00)→F0,b(E00) is contained in {z E <C : lz -入|：：：： p} 
foT some small p > 0. 

Note that the eigenvalue入isequal to exp(P（心）） andhv becomes the Gibbs measure of 

the potentialゆ． Forsimplicity, we sometimes call h the Perron eigenfunction of L'P and 

v the Perron eigenvalue of c;. 

2 Known result : the case when E is finite 

We give an asymptotic solution of P(sr.p(E, •)) = 0 for s E恥 underthe finite state space 

given in [7]. Recall that if ~E < +oo, r.p E F0(E00皇） andr.p < 0 are satisfied, then the 

eq叫 ionP(sr.p) = 0 has a unique solutions~ 0. Then we have the following. 

Theorem 2.1 ([7, Theorem 2.6]) Assume that E is finite and the incidence matrix 

A of E00 is (finitely) irreducible. Assume also that functions g(E, ・) : E00 →訊 has

the form g(E, ・) = g + 91 E + ・ ・ ・ + 9nび＋釦(C,)n f •)En for some Holder continuous functions 

g = 9o, 91, 92, • • •, gか釦(E,・) from the metric space (E00, d0) to恥 withO < llglloo < 1 and 
lim€ → o ||島(c,・)1100 = 0. Take a unique solutions= s0ミ0of the equation P(s log lgl) = 

0. Then for any small E > 0, the solutions= s(E) of the equation P(sloglg(c,・)I) = 0 

exists uniquely. Moreover, there exist numbers s1, s2,..., Sn E艮 suchthat s (E) has an 

n-order asymptotic expansion 

s(c:) =So+ S1E + ・ ・ ・ + SnEn + o(c:n). 

as E ---+ 0. 

Corollary 2.2 Under the same conditions of Theorem 2.1, we also assume that the re-

mainder ?Jn(E, ・) of g(E, ・) is equal to zero. Then the solution s(E) has an m-order asymp-

totic expansion for any m ?:: 1. 
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Remark 2.3 Each coefficient sk in Theorem 2.1 is precisely decided (see the proof of 

Theorem 2.6 in [7]). Indeed, this number is given for k = l, 2,..., n inductively by 

媒＝ μ（log 1 |g|） （苫叫(£s0log IYI ((log lgl)h)）ふ＋言い（い）），
where μ is the Gibbs me⑱ ure of s。loglgl, M1,..., Mn  are coefficients of the expan-
sion,Cs(e) log lg(e,-)1 =,Cso log IYI＋区]=1M戸＋ （s(E) -so),Csologlgl((log lgl) ・) + a（び） of
the Ruelle operator,Cs(e)loglg(e,-)1, Vo,・・・, Vn are coefficients of the expansion v(E, J) = 

vo(f)＋区言玖(f)せ十 o(En-l)for f E Fi。,b(E00)of the Perron eigenvector v(E, •) of the 
dual of,Cs(e)loglg(e,-)1, and his the Perron eigenfunction of,Csologlgl・ 

3 Main results : the case when E is infinite 

First we will state one of our main results. Assume that there exist functions g, g1,..., gn E 

F。,b(E00，恨）， g(E,・), 9n(E, ・) E F;。い(Eoo，恨） andnumbers c1, c2, c3 > 0, q E (0, 1] and 
叫E)> 0 with lim,→oCん） ＝0 such that 

g(E, ・) = g + g1E + ・ ・ ・ + gn砂＋釦(€, •)げ

llglloo < 1 

either inr g(w) > 0 or sup g(w) < 0 for each e EE  
山E[e] W€[el 

(1) 

(2) 

(3) 

llg(w)I -lg(v)II::; c1lg(w)ld0(w,v) for w,v E E00 with Wo = Vo (4) 

and the inequalities 

lgk(w)Iさc2lg(wW fork= 1, 2,..., n and w E E00 (5) 

如(w)-9k(v)I:::; c3lg(wWd0(w,v) for w,v E E00 with Wo = Vo (6) 

伽(€,W)| さ仇(E)lg(wW for w E E00 (7) 

hold for any w E E00, k = l, 2,..., n and any small E > 0. Let 

§_ := i直｛s：：：：： 0 : P(s log lgl) < +oo} 

and put S(n) := max（旦＋（1―q)n,§./q). We also assume that 

there exists s0 > S(n) such that P(s0 log lgl) = 0. 

Then we have the following: 

(8) 

Theorem 3.1 ([8]) Fix a nonnegative integer n. Let G = (V, E, i(・), t(・)) be a graph 

multigraph satisfying that V, E are countable and the incidence matrix of E00 is finitely 
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i汀educible.Assume that the conditions (1)-(8) are satisfied. Then exists a unique solution 

s = s(E) of the equation P(slog lg(E, ・) I) = 0 for any small E > 0, and there exist numbers 

S1,...,Sn E恥 suchthat s(E) has an n-order asymptotic expansion 

s(E) =So+ S1E +・・・+Snげ十snに）げ

with 祝(€) →0 as E→0. 
Note that each coefficient sk is decided as well as in Remark 2.3. 

Next we give a sufficient condition for a case that s(E) does not have an (n + 1)-order 

asymptotic expansion under the conditions the conditions (1)-(8). We introduce the 

following conditions: 

E is infinitely countable (9) 

島(€, •)三 0 (10) 

q < l (11) 

lg(w)I：：：：： |g(E, w) I for any w E E00 and for any small E > 0 (12) 

呵＋1 |g（w)|qo 
there exist q。E[q, ~) and窃＞ 0such that g1(w):::,: c5~ (13) 

n+l 
_ C5. 
sign(g(w)) 

s0 < q_ + (1 -q0)(n + 1). (14) 

Proposition 3.2 ([8]) Under the same conditions of Theorem 3.1, we also assume the 

conditions (9)-(14) are satisfied. Then the remainder of the expansion s(E) = s0 + s1E + 

・・・ +snび＋snに）Ensatisfies lim,→ oo応(E)I/E= +oo. (Compare with Corollary 2.2). 

4 Exmaples 

4.1 Nussbaum-Priyadarshi-Lunel's infinite iterative function systems 

We refer to [3]. We assume the following (i)-(ix): 

(i) G = ({ v }, E = {1, 2, • • •}) is an infinitely directed graph with singleton vertex. 

(ii) (J, d) is a compact metric space. Moreover, J is perfect set, namely for any x E J 

there exists a sequence Xk E J with Xk =J x (k ~ 1) such that limk→oo d(xk, x) = 0. 

(iii) For any e E E, Te : J→J is a Lipschitz map satisfying supeEE Lip(Te) =: r < 1. 

(iv) Each Te is an infinitesimal similitude on J, i.e. for each x E J, for any sequences（叫

and (yりonJ with XkヂYkfor each k ~ 1 and牧→ xand Yk→x, the limit 

lim 
d(Tい），Te(Y砂）

=: DTe(x) 
K •~ d(xk, y砂

exists in股andis independent of the particular sequences (x砂and(y砂
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(v) DTe(x) > 0 For any e EE  and x E J. 

(vi) There exist constants c > 0 and /3 > 0 such that for any x, y E J, IDT.パx)-D九(y)I~ 
clDTe(x)ld(x, y)互

(vii) There exist t > 0 and x E J such that区eEE(DTe(x))t< +oo. 

(viii) For any T/ > 0 there exists c(rJ)~ 1 with lim,,,→ +0 c(TJ) = 1 such that for each e EE  
and x,y E J with O < d(x,y) < TJ, 

d(Te(x), Te(Y)) 
c(T/) ―1DTe(x)さ~ c(rJ)DTe(x). 

d(x,y) 

(ix) For each k ~ l, the limit set Kk of the finite iterated function system (T1, T.公・ •.,Tk)

satisfies that the restricted map冗(K砂nTe,(Kり＝ 0for each 1 ~ e < e'~ k with 

eヂe',and T,心： Kk→Jis one to one for 1 ~ e ~ k. 

Such a system is firstly introduced by Nussbaum, Priyadarshi and Lunel in [3]. For 

convenience, we call such a system (J, (Te)) an NPL system. 

The coding map 1r : E00 → J is defined as｛加｝ ＝ ｛nこ。仁 0..・ 0に（J)}.
Let K be the limit set of the system (G, J, (Oe)) which is given by K = 1r(E00). Put 
叫W)= log DTw0 (7fびw).Then a version of Bowen's formula is described as follows: 

Theorem 4.1 Assume that (J, (T.り） isan NFL system and K is its limit set. Then we 

have dimH K = inf{s > 0 : P(scp) < O}. Moreover, if (J, (Te)) is strongly regular, i.e. 

0 < P(scp) < +oo for some s > 0, then dimH K = s if and only if P(scp) = 0. 

Fix n ~ 0. To formulate asymptotic perturbation of NPL systems, we consider the 

following conditions: 

(I) A pair (J, (Te)) is a strongly regular NPL system satisfying that J is a compact 

subset of a Banach space (X, II・ II). Moreover, there exists an open connected subset 

0 of X containing J such that Te is extended to a map of en (0, X) and DTe is 

extended to a map of cn+/3 (0皇）．

(II) A pair (J, (T.ふ，・））） isan NPL system with a small parameter E > 0 satisfying that 

there exists a number s E（旦／dimHK,1] if n = 0 ors E (1-(dimHK -且)／n,1] if 
n ~ l such that the following conditions (a)-(d) are satisfied: 

(a) For each e EE, Te( ~(E, •) has then-asymptotic expansion: 

Tふ，・） ＝冗＋ど;=1 九，K€K+ t,n(€，•)び on J 

for some mappings Te,k E cn-k+l(O, X) (k = l, 2,..., n) and Te,n(E, ・) E 01(0, X) 

with supeEESUPxEJ IIT'e,n(E,x)II→0. 
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(b) For each e EE, DTe(E, ・) has an n-order asymptotic expansion: 

DTふ•) ＝DTe+ 区；＝1 品，K€K ＋幻（€，・）げ on J 

for some mappings Se,k E cn-k+fJ (0晨） （k=l,2,...,n)and幻(E,・) E CfJ(<l(O,恥）
with supeEE sup衣 J虚，n(E,x)I→0 with(3 (€) ＞ 0 for € > O. 

(c) There exist q E (max(1-(dimH K -§.)/n,§./ dimH K), 1] and a constant c > 0 

such that for any e EE, l = 0, 1,..., n, x E J, y E O and k = 1, 2,..., n -l + 1, 

IIT;,7―l+I¥x) -T;,7-1+1)(y)II ごこc(DTe(x))qllx-y||見

||T駅x)||~c(DTe(x))q.

(d) There exists a map c(E) > 0 with lime→0 c(E) = 0 such that for any e E E, 

x E J and E > 0 

IISe,n(E, x)IIさ:c(E)(DTe(x))q.

By applying Theorem 3.1 to the function g(E,w) := logDTw0(E,1r(E,uw)), we obtain the 

following, where 1r(E, •) denotes the coding map of (J, (Te(E, •))). 

Theorem 4.2 ([8]) Under-the above conditions (I) and (II) for-NPL systems (J, (T,ふ，・）））

with small parameter-E > 0, the Hausdorff dimension of the limit set K(E) of (J, (T,ふ・）））

has the form dimH K(E) = dimH K +s1E+・ ・ • +snび＋o（び） for-some numbers s1,..., Sn E 

股．

4.2 Linear countable IFS 

Let a > l. Let E be the set of all positive integers. We take an infinite graph G = 

({v},E), lv = [O, 1] and Ov = (-rJ, l + rJ) for a small rJ > 0. Fore EE  and E 2': 0, we 

define a function T,ふ，•） ：Ov→仇 by

九(E,x) =（贔＋峠＋b(e),
where we choose b(e) = l-l/2e-1. Put g(E,w) = (l/5w0) + l/aw0E. Denoted by K(c) the 

limit set of the IFS (T,ふ，・））eEEwhich is defined as K(c) = UwEE= n::=0 Two(E, ・) 0'''0 

1ら(c,・)(JサItis not hard to check that the function g(E, •) satisfies all conditions (1)-(8) 
by putting g(w) = l/5w0, g1(w) = l/awo, g2 = ・ ・ ・ = gn = 0, and釦(E,・) = 0. Moreover 

the topological pressure of slog 191 has the equation P(s log lgl) = log区eEE(l/Se「for
s > 0. Therefore, a Bowen formula [2] implies that P(s(O) log lgl) = 0 if and only if 

区eEE(l/Sりs(o)= 1 if and only if dimH K(O) = s(O) = log 2/ log 5. Moreover,旦＝ inf{s: 
P(sloglgl) < +oo} is equal to 0. 
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Theorem 4.3 ([8]) Assume the above conditions for Te(E, ・). Then we have the following: 

(1) If a ~ 5 then the Hausdorff dimension s(E) = dimH K(E) has an n-order asymptotic 

expansion s(E) = s(O) + s1E +・・・+Snび＋ o（伊） forany n ~ 0. Each coefficient sk 
(k = 1, 2,..., n) is decided as 

min(v,q) 

媒＝ L "'f'! Sq,u-v ~ (-log 5)q-j f= eq-j (fv) e 00 5v 

°汽富靡" 1=0 q,u-V (q -J)！ (log 5)q J苫閃］に）， (15) 

where Sq,u-v and av,j,s(O) are defined by 

(s(E) 
k j 81,0 + 81,1 E + ・ ・ ・ + 81,n-l En-l + o(En-l) 

-s(O)） ＝｛料，o＋ sk,1€ 十・· • + skn-1戸＋sk,nび＋ 0（り

(k = 1) 

(k 2: 2) 
wtth 

ー

Sk,i = >] J1, ---，J9-1 20 れ＋…十j9-1=K•

11 +2;,+-・-+(i-l)ji-l ~, 

s{'・ ・ ・ si胄
j1!... J;-1! 

(k = i = 0) 

(k 2 1 and k :=; iさn)

゜
(othe加 ise),

and 

（：） ＝立，j,s(o)(t-s(O))l with 
J=0 (Sり） （j ＝ 0) 

>] av,j,s(O) = O<:i1,…，iv-j<:v-1 
紅く・・・<iv-j

1 
V-J 

~ IJ (s(O) -ip) (l ~ l and 0さj<v
v. 

） 
p=l 

1/v! 

゜
(v ~ l and j = v) 

(v < j), 

whereじ） i8the binomial coefficient. In particular, 

log2 5 
釘＝
(log 5)2 4a -10 

25log2 (l alog2 log(2/5) 

吟＝（log 5)3 2(2a-5)2―(2a -5)（4a2 -5)2 + 8砂— 100) ．
(2) Ijl < a < 5 then take the largest integer k ~ 0 satisfying aさ5/21/(k+i).In this case, 
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s(e) has the form 

s(€) ＝ ｛s(O) ＋ s1€ + ・ • • + sk€K + 8(€)€k+1 log€ (a = 5/21/（K+1) for some k2 0) 

s(O) + S1E + ・ ・ ・ + Sk注＋ 8(€）€占麟 ( otherwise) 

with ls(e)I :::=: 1 as e ---+ 0, i.e. c―1 ~こ |8(€）|さ:c for any E > 0 for some c 2". 1, where 
each s; is defined by (15). 
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