
37

THE HAUSDORFF DIMENSION OF THE REGION OF 
MULTIPLICITY ONE OF OVERLAPPING ITERATED FUNCTION 

SYSTEMS ON THE INTERVAL 

KENGO SHIMOMURA 

1. INTRODUCTION 

Let us consider iterated function systems on the unit interval I = [O, 1] generated by 
two contractive similarity transformations 

(1) fo(x) = ax, fi(x) =ax+ (1 -a) 

with similarity ratio O < a < l. If a is grater than or eq叫 to1/2, the limit set of 
the iterated function system S(a) = {Jo, Ji} is the interval itself and we say that such 
an iterated function system is overlapping. We consider overlapping iterated function 
systems, and study the subset of points of the limit set having unique addresses which 
we denote by J1(S(a)). Fig.1 showsみ(S(a))for values of a between 1/2 and the golden 

ratio g =（嘉ー 1)/2.
We explicitly determine the Hausdorff dimension ofみ(S(a)) for values of a described 

below. For k = l, 2,..., let bk denote the unique value of 1/2 < a < l satisfying 

(2) !off fo(l) = !1(0). 

Likewise, let ck denote the unique value of 1/2 < a < 1 satisfying 

(3) !of戸(0)= fi(O). 

The main theorem of this paper is the following. 

0.0 1.0 

FIGURE 1. J1(S(a)) for a between 1/2 and the golden ratio g 
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k bk Ck 入k log入k log(2k+2 -6)/(k + 3) 
1 0.5698402822 0.6180339754 1.0 0.0 
2 0.5356873572 0.5436890423 l.6180339887 0.4812118251 0.4605170186 

3 0.5172810853 0.5187900364 1.8392867552 0. 6093 778634 0.5430160897 
4 0.5083449185 0.5086604059 1.9275619755 0.6562559792 0.5800632872 
5 0.5040674508 0.5041382611 1.9659482366 0.6759746921 0. 6005026306 

6 0.5020004213 0.5020170510 1.9835828434 0.6849047264 0.6134956575 

7 0.5009901822 0.5009941757 1.9919641966 0.6891211854 0.6226536669 
8 0.5004921257 0.5004931390 1.9960311797 0.6911607989 0.6295995634 ， 0.5002452433 0.5002454817 1.9980294703 0.6921614300 0.6351404166 
10 0.500122398 0.50012245 77 1.9990186327 0.6926563765 0.6397154038 

TABLE 1. b如保，心logふ andlog(2k+2 -6)/(k + 3) 

Theorem 1. 1. For any a with bk :S a :S保 (k~ 2), the Hausdorff dimension of』(S(a))
is given by 

dimH J1(S(a)) 
logふ

=-
loga' 

where入kis the largest eigenvalue of the matrix Ak given in Section 3. 

Theorem 1.2. For any a with bk :S aさck(k ~ 2), the Hausdorff dimension of J1(S(a)) 
satisfies 

dimH J1(S(a)) ~ 
log(2k+2 -6) 

一 (k+ 3) log a ・ 

Table 1 shows the values of bk, ck,ふ， logふ andlog(2k+2 -6)/(k + 3) fork up to 10. 
To prove the theorem, we define a graph directed Markov system. The matrixふ isits 
incidence matrix. 

2. PRELIMINARY 

2.1. Multiplicity function. Let :Ebe a finite set of symbols. We denote by :En the set of 
codes of length n of symbols in :E. The set of all finite codes is denoted byゞ ＝ U DO n=O 

汀．

The length of w Eゞ isdenoted by|叫.Givenan infinite code 

W=切．．． E:EDO' 

we denote the finite code consisting of the first n symbols of w by 

叫＝ W1W2・ ・ ・ Wn. 

We deal with iterated function systems (IFS). Let X be a non-empty compact subset of 
the Euclidean space Rd. A similarity iterated function system is a family of contracting 
similarity transformations 

fi:X→X (iE:E). 

Let S = {Ji : J→J I i E :E} be a similarity iterated function system of the unit 
interval. Given a code w = w四2・ ・ ・ Wn E :E叫wedefine f w : J→I by 

fw = fw1 O fw2 O • • • O fwn・ 
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The code map 

7f：四°°→ I

is defined by 
00 

心）＝nぃI) (w E戸）．
n=l 

Its image w(~00) is called the limit set of the iterated function system, which we denote 
by J(S). 

If an iterated function system S satisfies 

fi(J(S)) n fi(J(S)) = 0 
for any i, j with i -/-j, we say that S is totally disconnected. If not, we say that S is 
overlapping. If S is totally disconnected, the code map 1r is one-to-one and every point 
x E J(S) has a unique address 1r―1(x). But in case of overlapping iterated function 
system, 1r is not one-to-one and some limit points x E J(S) have more than one address. 
The multiplicity function 

m:I→NU{oo} 

is given by 
m(x) = Hw E ~00 I w(w) = x} (x EI). 

For k = 0, 1,..., we define Jk(S) by 

Jk(S) = {x EI I m(x) = k}. 

Then the limit set decomposes into a disjoint union as 

J(S) = J1(S) U J2(S) U ・ ・ ・ U J00(S). 

For totally disconnected iterated function systems, we haveみ(S)= J(S). Here we are 
interested inみ(S)for overlapping iterated function systems. 

Now let us consider the iterated function system given by (1). If a < 1/2, the system 
is totally disconnected. The limit set J (S (a))＝み(S(a))is the Cantor set, and its 
Hausdorff dimension is given by the Hutchinson's theorem ([3]). For a = 1/2, J(S) = 
I= J1(S(l/2)) U J2(S(l/2)) where J2(S(l/2)) is countable. The Hausdorff dimension of 
み(S(l/2))is therefore 1. When a> 1/2, the Hausdorff dimension ofみ(S(a))is generally 
difficult to determine. But in the cases described in Theorem 1.1 we can determine the 
Hausdorff dimension. 

Assume that a > 1/2. We define 

F = fo(I) n fi(I) = [1 -a, a], 

and 

『 =LJJμ(F). 
底 {0,1}*

Proposition 2.1. Consider an iterated function system S(a) = {Jo, Ji} given by (1). If 
a > 1/2, then we have 

LJ Jm(S(a)) = F*. 
m>2 

Proposition 2.2. If a is greater than or equal to the golden ratio g, then J1(S(a)) = 
{O, 1}. 
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2.2. Graph directed Markov systems. In the proof of the main theorem we use the 
concept of graph directed Markov system. A graph directed Markov system is based 
on a directed multigraph and an associated incidence matrix, (V, E, A, i, t). The set 
of vertices V and the set of directed edges E are assumed to be finite. The function 
A: Ex E→{ 0, 1} is called an incidence matrix. It determines which edges may follow 
a given edge. For each edge e, i(e) is the initial vertex of e and t(e) is the terminal vertex 
of e. So, it holds that Auv = l if and only if t(u) = i(v). We will consider finite and 
infinite code spaces of edges consistent with the incidence matrix. We define the infinite 
code space by 

靡＝｛rJE E00 I A応＋1= 1 for all i ~ 1}. 

We also define 

EA= {TJ E En I A鱈 ＋1= 1 for all iミ1}.

The space of codes of finite length is denoted by EA = u~=l EA. 
We say that A is irreducible if for all a, b EE, there exists T/ E EA such that aryb E E,4. 
A graph directed Markov system (GDMS) consists of the following 

• a directed multigraph, (V, E, i, t), 
• an incidence matrix A 
• a set of nonempty compact spaces {Xv C Rd Iv EV}, 
• for every e E E, a similarity transformation fe : Xi(e)→Xt(e) with a Lipschitz 
constant K (0 < K < l). 

Briefly the set 

S = {fe: Xt(e)→xi(e) I e EE} 

is called a GDMS. When the vertex set Vis a singleton, Sis an iterated function system. 
We can generalize the code map to GDMS. 

Definition 2.3. The code map 1r : E%'→UvEVふ isdefined by 

CX) 

叫）＝n九(Xt(m) （n EE?）． 
l=l 

The limit set of the graph directed Markov system S is defined to be the image of the code 
map, 

J(S) = LJ 1r(ry). 
1)EEA 

With respect to the product topology, the code space E芹iscompact and the code map 
1r is continuous. Hence, the limit set J(S) is compact. Since f'71z (Xt(1Jz)) shrinks to a point 
uniformly as l→oo, we can also express the limit set as 

00 

J(S) = n LJ fri(Xt(ritl)-
l=l ryEE~ 

2.3. The Hausdorff dimension. We need a couple of conditions to evaluate the Haus-
dorff dimension of the limit set. The first one is the open set condition. 
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Definition 2.4. We say that a GDMS S = {fe : Xt(e)→Xi(e) I e E E} satisfies the 
open set condition if there exists a nonempty open set U C UvEVふ suchthat for all 
e, e'EE (eヂe'),

fe(U n Xt(e)) n fe1(U n Xt(e')) = 0 and LJ fe(U n Xt(e)) C U. 
eEE 

The second condition we need is the bounded distortion property. We denote the 
derivative off at x by J;, and define lf'(x)I = max{IJ;(y)I}, where the maximum is 
taken over all unit vectors y in the tangent space. 

Definition 2.5. A GDMS S = {fe : Xt(e)→Xi(e) I e E E} satisfies the bounded distortion 
If如）1prope廿yif there exists K 2: 1 such that ½'!B-/'.S K for all 77 E EA (n = 1, 2,...) and lf4(Y)I ~ 

x,y E Xt(rin)・

If a GDMS satisfies these conditions and the incidence matrix is irreducible, we can 
evaluate the Hausdorff dimension of the limit set as follows ([2]). 

Theorem 2.6 (Mauldin and Urbanski). Suppose that a GDMS S = {fe : Xt(e)→ 
Xi(e) I e E E} satisfies the open set condition and the bounded distortion property, and 
that the incidence matrix A is irreducible. Define P(t) by 

1 
P(t) = lim -=-log 

n→oon 
LI|片||t.
r,EEA 

Then the Hausdorff dimension of the limit set is given by 

dimHJ(S) = sup{t > 0 I P(t) > O} = inf{t > 0 I P(t) < O}. 

When all the transformations are similarity transformations, we note that it is also pos-
sible to evaluate the Hausdorff dimension by a method similar to the proof of Hutchinson's 
theorem ([3]). 

3. THE STRUCTURE OF THE GDMS 

First, we say the following. 

Lemma 3.1. Let bk denote the unique value of 1/2 <a< l satisfying (2). Likewise, let 
ck denote the unique value of 1/2 <a< l satisfying (3). Then, 

1 

2 
~<... <bk <保＜...<妬 <C2< b1 < C1・

Furthermore, the sequences bk and ck converge to 1/2 as k increases. 

Now we consider the iterated function system S(a) = {fo, fi} defined by (1). We denote 
its limit set by J(S(a)). 

If a= 1/2, for any k, we have 

(4) J(S(a)) =I= LJ fw(I), 
wE{O,l}k 

where the intervals fw(I) line up from O to 1 according to the order of binary integers 
囚1吟・・・咄 (2).(See Fig. 2(top).) 
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fooo(I) 

fooo(l) 

foo, (I) 

f001(I) 

f010(I) !011 (I) 

fOIO(I) !011 (/) 

f100(I) f101(I) fuoU) f111 (I) 

f100U) f101(I) fuo(I) fm(I) 

1000(I) JOO1(／） jm。(/) f如(l)fioo(l) fl O l (／） fi 1 0 (i) fi l l (l) 

FIGURE 2. The intervals fw(I) for w E {O, 1}3 when a= 0.5 (top), a= 0.52 
(middle), and a= 0.58 (bottom). 

fw-1(/) x(J) fW+l(l) 

fw(J) 

FIGURE 3. Xw 

If a is slightly larger than 1/2, (4) still holds with slightly overlapping intervals as shown 
in Fig. 2(middle). In the following, for any intervals I and I', we define I< I'if and only 
if x < y for any x E I and y E I'. 

Lemma 3.2. Suppose that 1/2 < a < bk-1・ Then, we have fw-1(I) < fw+1(I) for all 
w E {0, 1 }k+l ¥ {0 ・ ・ ・ 0, 1・・・ 1}.

We define Xw to be the interval between fw-i(I) and fw+1(I). (See Fig. 3.) 

Definition 3.3. Suppose that 1/2 < a < bk-l・ For any w E {O, l}k+l, we define the 
interval Xw by 

ぷ＝ fw(I)-int(fw-1(/)) -int(fw+1(I)) (w-/-0 ・ ・ ・ 0, 1・・・ 1),

X。...o= fo... o(I) -int(fa... 01(!)), 

X1... 1 = fi... 1(I) -int(fi…lo (I)）． 

Now we define the GDMS Sk(a) for bk S:: a S:: ck (k = 1, 2,...). The multigraph with 
associated incidence matrix (Vi, Ek, Ak, i, t) is defined as follows. The vertex set is 

怜＝｛0，1}K+1.

Elements of怜 arecodes of length k + 1; we also regard them as (k + 1)-digit binary 
numbers. The edge set属 isthen defined by 

品＝｛（W，ゆ0(w)) E Vi X Vi I w -1-1... 1} u { (w, ¢1 (w)) E Vi X Vi I w -1-0... 0}, 

where the maps¢。，例：怜→ Viare defined by 

叫）＝［〗］，叫w) = l~J + 2k. 

Here, l ~ J is the maximum integer not greater than w /2. The incidence matrix 

Ak: Ek X品 → {0,1}
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is given by 

山((w航 (w)),(w'，如(w')))= { 
1 （切（w)= w') 
0 (otherwise). 

We define Sk(a) by 

where 

品(a)={Je : Xt(e)→xi(e) I e EE吐

fe = ｛ fo|xt(e) ife = （W，伽（W））
f叶x,(e)if e = (w,釘（w)).

That the image of f e is contained in Xi(e) is seen from the following lemma. 

Lemma 3.4. The GDMS Sk(a) satisfies the open set condition. In fact, the open set 

U = LJ int（ふ），

satisfies 

(5) 

fore, e'EE (e -/c e'), and 

(6) 

wEVk 

fe(U n Xt(e)) n fe1(U n Xt(e')) = 0 

LJ fe(U n Xt(e)) C U. 
eEEk 

Lemma 3.5. Suppose that bk::; a< ck. Then, for l = 0, 1,..., we have 

(7) LJ fri(Xt(ri1)) U LJ Jμ(F) = I. 
riEE~k Iμ|:<;l+k 

Moreover, fri(Xt(ri1)) for'f/ E Et and fμ(F) for lμIさl+ k can meet only at a boundary 
point. 

Lemma 3.6. Suppose that bk:::; a< ck. Then we have J(Sk(a)) =み（S(a)).

4. PROOF OF THE THEOREMS 

Suppose that bk :::; a:::; ck. By Lemma 3.6, if bk :::; a< ck, then we have J1(S(a)) = 
J(Sk(a)). If a= ck, J1(S(a)) C J(Sk(a)) and their difference J(Sk(a)) ¥ J1(S(a)) consists 
of boundary points of f,,(F) (v E {O, 1}*), and is countable. In either case, we have 

dimH人(S(a))= dimH J(Sk(a)). 

Recall that we define the multigraph with the associated incidence matrix（怜，Ek,Ak, i, t) 
in Section 3. First, we can show that 

logふ
(8) dimH J(Sk(a)):::; -~-

- loga 

The GDMS satisfies the open set condition by Lemma 3.4. It also satisfies the bounded 
distortion property since all of the transformations are similarity transformations. Theo-
rem 2.6 asserts that the equality would hold in (8) if Ak were irreducible. 

Since the incidence matrix Ak is not irreducible, we modify the GDMS. The multigraph 
with the associated incidence matrix, (V{, EL A~, i, t), is defined as follows. The vertex 
set is given by V{ = ½ ¥ {O・ ・ -0, 1・・・ 1}.The edges of E£ are those of Ek not involving 
the vertices O ・ ・ ・ 0, 1・・・ 1.The incidence matrix A~ is the restriction of Ak to E£ x E£. 
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Given w E {O, 1 }k+l, the map¢。(resp.釘 shiftsthe digits of w to the right and append 
0 (resp. 1) to the left: 

伽(w1...Wk呼＋1)= Ow1... wk 

釘(w1...Wk咄＋1)= lw1... wk 

To see that the modified incidence matrix位 isirreducible, we show for any p, q E V£, 
there exists a path from p to q within E~~. Define r0, r1 E {O, 1} by 

r。#Pl, rl # qK+1・ 

Then we have 

％・・・ r/>qk+l位％（p)= q, 

and for all i = 1,..., k, we have 

％・・・¢知＋1<Pr1 <Pro (p) E V{ 

This shows that A~ is irreducible. 
We have 

(9) dimH J(Sい（a)):::;dimH J(Sk(a)), 

and 

(10) dimH J(St(a)) = -
log入；
loga' 

where 入~ is the largest eigenvalue of A~. 
The eigenvalues of Ak are 0, 1, and the eigenvalues of A~. This can be seen by 

det(Ak -sE) 

1-s 1 

゜
... 

゜゚゜゚゜
-s 1 1 0... 

゜゚゜゚ ゜゚= det 
A~ -sE' 

゜゚
゜゚ ゜゚゜゚

．．． 

゜
1 1 -s 

゜゜゚ ゜
．．． 

゜゚
1 l-s 

= s2(1 -s)2 det(A~ -sE'). 

Combining (8), (9), and (10), we obtain 

logふ log入； logふ
= -~ = dimH J(Sい（a)）＜・＜ー_ dl叩 J(Sk(a))~ 

log a log a log a 

This completes the proof of Theorem 1. 1. 
The proof of Theorem 1.2 is as follows. Since all elements of (AU(k+3) are greater than 

or equal to 1, for every integer m, we have 

tr(A~)(k+3)m ~ (2k+2 -6)匹
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Therefore, by the Perron-Frobenius theorem, we obtain 

(k + 3) log 入~ = lim A-log tr(A~)(k+3)m 
m→oom、

2: log(2k+2 -6). 
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