Classification of generic random holomorphic dynamical systems associated with

analytic families of rational maps

Hiroki Sumi

Graduate School of Human and Environmental Studies Kyoto University Japan

E-mail: sumi@math.h.kyoto-u.ac.jp http://www.math.h.kyoto-u.ac.jp/~sumi/index.html August 17, 2020

Definition 1.

- (1) Let $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\} \cong S^2$ be the Riemann sphere endowed with the spherical distance d.
- (2) Let Rat := $\{f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \mid f \text{ is non-constant and holomorphic}\}$ endowed with the distance η , where $\eta(f,g) = \sup_{z \in \hat{\mathbb{C}}} d(f(z),g(z))$. Note that (Rat, η) is a complete separable metric space.
- (3) For a metric space Y, we denote by $\mathfrak{M}_1(Y)$ the space of all Borel probability measures on Y.
- (4) For a subset Y of Rat, we set

 $\mathfrak{M}_{1,c}(Y) := \{ \tau \in \mathfrak{M}_1(Y) \mid \text{ supp } \tau \text{ is a compact subset of } Y \}.$

(5) For a $\tau \in \mathfrak{M}_{1,c}(\operatorname{Rat})$, we set

 $G_{\tau} := \{ \gamma_n \circ \cdots \circ \gamma_1 \mid n \in \mathbb{N}, \gamma_j \in \operatorname{supp} \tau(\forall j) \}.$

Note that this is a semigroup whose product is the composition of maps.

- (6) We say that an element $\tau \in \mathfrak{M}_{1,c}(\operatorname{Rat})$ is weakly mean stable if there exist an $n \in \mathbb{N}$, an $m \in \mathbb{N}$, non-empty open subsets U_1, \ldots, U_m of $\hat{\mathbb{C}}$, a non-empty compact subset K of $\hat{\mathbb{C}}$ with $K \subset \bigcup_{j=1}^m U_j$, and a constant c with 0 < c < 1 such that the following (a) (b) (c) hold.
 - (a) For each $(\gamma_1, \ldots, \gamma_n) \in (\operatorname{supp} \tau)^n$, we have

 $\gamma_n \circ \cdots \circ \gamma_1(\cup_{j=1}^m U_j) \subset K.$

Moreover, for each j = 1, ..., m, for all $x, y \in U_j$ and for each $(\gamma_1, ..., \gamma_n) \in (\operatorname{supp} \tau)^n$, we have

 $d(\gamma_n \circ \cdots \circ \gamma_1(x), \gamma_n \circ \cdots \circ \gamma_1(y)) \le cd(x, y).$

- (b) Let $D_{\tau} := \bigcap_{h \in G_{\tau}} h^{-1}(\hat{\mathbb{C}} \setminus \bigcup_{j=1}^{m} U_j)$. Then $\sharp D_{\tau} < \infty$.
- (c) For each minimal set L of τ with $L \subset D_{\tau}$, there exist a $z \in L$ and an $\alpha \in G_{\tau}$ such that $\alpha(z) = z$ and $|\alpha'(z)| > 1$ (if $z = \infty$ then we consider the condition $|(\varphi \circ \alpha \circ \varphi^{-1})'(0)| > 1$ instead of the condition $|\alpha'(z)| > 1$, where $\varphi(z) = 1/z$). Here, a non-empty compact subset L of $\hat{\mathbb{C}}$ is said to be a minimal set of τ if for each $z \in L$, $\bigcup_{h \in G_{\tau}} \{h(z)\} = L$.
- (7) For each $Y \subset \text{Rat}$, we endow $\mathfrak{M}_{1,c}(Y)$ with the topology such that a sequence $\{\tau_n\}_{n\in\mathbb{N}}$ in $\mathfrak{M}_{1,c}(Y)$ tends to an element $\tau \in \mathfrak{M}_{1,c}(Y)$ if and only if

(*) for each bounded continuous function $\varphi: Y \to \mathbb{R}$, we have

$$\int_{Y} \varphi \, d\tau_n \to \int_{Y} \varphi \, d\tau \text{ as } n \to \infty,$$

and

(**) $\operatorname{supp} \tau_n \to \operatorname{supp} \tau$ as $n \to \infty$ with respect to the Hausdorff metric in the space of all non-empty compact subsets of Y.

Theorem 2 ([4]). Let Y be one of the following (1)-(4).

- (1) $\{f \in \text{Rat} \mid f \text{ is a polynomial with } \deg(f) \ge 2\}.$
- (2) $\{ z \mapsto \lambda z(1-z) \in \operatorname{Rat} \mid \lambda \in \mathbb{C} \setminus \{0\} \}.$
- (3) { "z → z λ f(z) / f'(z) " ∈ Rat | λ ∈ C, |λ − 1| < 1} where f is a polynomial with deg(f) ≥ 2.
 Remark: This family is related to "random relaxed Newton's methods for f" in which we can find roots of any polynomial f more easily than deterministic Newton's method ([4]).
- (4) { " $z \mapsto z + \lambda f(z)$ " $\in \text{Rat} \mid \lambda \in \mathbb{C} \setminus \{0\}$ } where f is a polynomial with deg(f) ≥ 2 such that for each $z_0 \in \mathbb{C}$ with $f(z_0) = 0$, we have $f'(z_0) \neq 0$.

Then, there exists an open and dense subset A of $\mathfrak{M}_{1,c}(Y)$ such that for each $\tau \in A$, we have the following (I)(II)(III).

- (I) τ is weakly mean stable.
- (II) There exists $c_{\tau} < 0$ s.t. for all but countably many $z \in \hat{\mathbb{C}}$, for $(\bigotimes_{n=1}^{\infty} \tau)$ -a.e. $(\gamma_1, \gamma_2, \ldots) \in Y^{\mathbb{N}}$, we have $\limsup_{n \to \infty} \frac{1}{n} \log \|D(\gamma_n \circ \cdots \circ \gamma_1)_z\| \le c_{\tau} < 0.$
- (III) For all but countably many z ∈ Ĉ, for (⊗_{n=1}[∞]τ)-a.e. γ = (γ₁, γ₂,...) ∈ Y^N, there exists a minimal set L = L(z, γ) of τ which is either

 (a) "attracting for τ", or
 (b) included in D_τ with χ(τ, L) < 0,

where $\chi(\tau, L)$ denotes the Lyapunov exponent of (τ, L) , such that

$$d(\gamma_n \circ \cdots \circ \gamma_1(z), L) \to 0 \text{ as } n \to \infty.$$

Theorem 3. Let f be a polynomial with $\deg(f) \geq 2$ and let $Q := \{x \in \mathbb{C} \mid f(x) = 0\}$. Suppose that $f'(x) \neq 0 \ (\forall x \in Q)$. Suppose also that for each $a, b \in Q$ with $a \neq b$, we have $f'(a) \neq f'(b)$. Let $Y = \{ "z \mapsto z + \lambda f(z)" \in \text{Rat} \mid \lambda \in \mathbb{C} \setminus \{0\} \}$. For each $\tau \in \mathfrak{M}_{1,c}(Y)$ and $x \in Q$, let $\chi(\tau, x) := \int_Y \log |h'(x)| \ d\tau(h)$. Let A be the set of elements $\tau \in \mathfrak{M}_{1,c}(Y)$ satisfying that

- τ is weakly mean stable with $D_{\tau} \subset Q$,
- for each $x \in Q$, we have $\chi(\tau, x) \neq 0$, and
- if $x \in Q$ and $\chi(\tau, x) > 0$, then for each $h \in \operatorname{supp} \tau$, we have $h'(x) \neq 0$.

Then, we have the following (i)(ii).

- (i) A is open and dense in $\mathfrak{M}_{1,c}(Y)$ and statements (II) and (III) in Theorem 2 hold for each $\tau \in A$.
- (ii) For any two subsets Q_1, Q_2 of Q, let $A_{Q_1,Q_2} = \{\tau \in A \mid \chi(\tau, x) > 0 (\forall x \in Q_1) \text{ and } \chi(\tau, x) < 0 (\forall x \in Q_2)\}.$ Then A_{Q_1,Q_2} is a non-empty open subset of A. Moreover, we have $A = \coprod_{(Q_1,Q_2)} A_{Q_1,Q_2}$ (disjoint union).

Theorem 4. Let $a, x_1, x_2 \in \mathbb{C}$ with $x_1 \neq x_2$. Let $f(z) = a(z - x_1)(z - x_2)$. Let $Y = \{ "z \mapsto z + \lambda f(z) " \in \text{Rat} \mid \lambda \in \mathbb{C} \setminus \{0\} \}$. Let A be the set of elements $\tau \in \mathfrak{M}_{1,c}(Y)$ satisfying that

- τ is weakly mean stable with $D_{\tau} \subset \{x_1, x_2\},\$
- for each i = 1, 2, we have $\chi(\tau, x_i) \neq 0$, and
- if $i \in \{1, 2\}$ and $\chi(\tau, x_i) > 0$, then for each $h \in supp \tau$, we have $h'(x_i) \neq 0$.

Then, we have the following (i)–(iii).

- (i) A is open and dense in $\mathfrak{M}_{1,c}(Y)$ and statements (II) and (III) in Theorem 2 hold for each $\tau \in A$.
- (ii) For any $\tau \in A$, we have $D_{\tau} \neq \emptyset$.

(iii) For each $\gamma = (\gamma_1, \gamma_2, ...,) \in Y^{\mathbb{N}}$, let F_{γ} be the set of point $z \in \hat{\mathbb{C}}$ satisfying that there exists a neighborhood U of z in $\hat{\mathbb{C}}$ such that $\{\gamma_n \circ \cdots \circ \gamma_1\}_{n=1}^{\infty}$ is equicontinuous on U. Then for $(\bigotimes_{n=1}^{\infty} \tau)$ -a.e. γ , we have $Leb_2(\hat{\mathbb{C}} \setminus F_{\gamma}) = 0$ (Leb₂ denotes the Lebesgue meas. on $\hat{\mathbb{C}}$).

Theorem 5. Let f, Y, A, F_{γ} be as in Theorem 4. For each $\tau \in \mathfrak{M}_{1,c}(Y)$, let $\operatorname{Min}(\tau)$ be the set of all minimal sets of τ , and we set $\chi(\tau, x_i) := \int_Y \log |h'(x_i)| d\tau(h)$ (i = 1, 2). **Then**, there exist non-empty open subsets A_1, A_2, \ldots, A_5 of A with $A = \coprod_{i=1}^5 A_i$ (disjoint union) such that all of the following (1)–(5) hold.

- (1) Let $\tau \in A_1$. Then we have the following (i)–(iv).
 - (i) $\operatorname{Min}(\tau) = \{\{x_1\}, \{x_2\}, \{\infty\}, L_{\tau}\}, \text{ where } L_{\tau} \text{ is an "attracting min$ $imal set" of <math>\tau$ with $L_{\tau} \subset \mathbb{C} \setminus \{x_1, x_2\}.$
 - (ii) For each i = 1, 2 and each $h \in supp \tau$, we have $|h'(x_i)| > 1$ and $D_{\tau} = \{x_1, x_2\}$.
 - (iii) For all but countably many $z \in \hat{\mathbb{C}}$, for $(\bigotimes_{n=1}^{\infty} \tau)$ -a.e. $\gamma = (\gamma_1, \gamma_2, \ldots) \in Y^{\mathbb{N}}$, we have

 $d(\gamma_n \circ \cdots \circ \gamma_1(z), L_\tau \cup \{\infty\}) \to 0 \text{ as } n \to \infty.$

- (iv) For each $\gamma = (\gamma_1, \gamma_2, \ldots) \in (supp \tau)^{\mathbb{N}}$, we have $L_{\tau} \cup \{\infty\} \subset F_{\gamma}$ and $\{x_1, x_2\} \subset \hat{\mathbb{C}} \setminus F_{\gamma}$.
- (2) Let $\tau \in A_2$. Then we have the following (i)–(v).
 - (i) $\operatorname{Min}(\tau) = \{\{x_1\}, \{x_2\}, \{\infty\}\}\}.$
 - (ii) For each i = 1, 2, we have $\chi(\tau, x_i) > 0$.
 - (iii) $D_{\tau} = \{x_1, x_2\}.$
 - (iv) For all but countably many $z \in \hat{\mathbb{C}}$, for $(\bigotimes_{n=1}^{\infty} \tau)$ -a.e. $\gamma = (\gamma_1, \gamma_2, \ldots) \in Y^{\mathbb{N}}$, we have

$$\gamma_n \circ \cdots \circ \gamma_1(z) \to \infty \text{ as } n \to \infty.$$

(v) For
$$(\bigotimes_{n=1}^{\infty} \tau)$$
-a.e. $\gamma = (\gamma_1, \gamma_2, \ldots) \in Y^{\mathbb{N}}$,
we have
 $\infty \in F_{\gamma}$ and $\{x_1, x_2\} \subset \hat{\mathbb{C}} \setminus F_{\gamma}$.

(3) Let $\tau \in A_3$. Then we have the following (i)–(v).

- (i) $\operatorname{Min}(\tau) = \{\{x_1\}, \{x_2\}, \{\infty\}\}\}.$
- (ii) $\chi(\tau, x_1) < 0$ and $\chi(\tau, x_2) > 0$.
- (iii) Let $A_{3,a} := \{ \tau \in A_3 \mid D_{\tau} = \{x_2\} \}$ and $A_{3,b} = \{ \tau \in A_3 \mid D_{\tau} = \{x_1, x_2\} \}.$ Then $A_{3,a}, A_{3,b}$ are non-empty open subsets of A_3 and

$$A_3 = A_{3,a} \coprod A_{3,b} \ (disjoint \ union).$$

(iv) For all but countably many z ∈ Ĉ, for (⊗_{n=1}[∞]τ) -a.e. γ = (γ₁, γ₂, ...) ∈ Y^N, we have d(γ_n ∘ ··· ∘ γ₁(z), {x₁,∞}) → 0 as n → ∞.
(v) For (⊗_{n=1}[∞]τ)-a.e. γ ∈ Y^N, we have {x₁,∞} ⊂ F_γ and x₂ ∈ Ĉ \ F_γ.

(4) Let $\tau \in A_4$. Then we have the following (i)–(v).

- (i) $\operatorname{Min}(\tau) = \{\{x_1\}, \{x_2\}, \{\infty\}\}\}.$
- (ii) $\chi(\tau, x_1) > 0$ and $\chi(\tau, x_2) < 0$.
- (iii) Let $A_{4,a} := \{ \tau \in A_4 \mid D_{\tau} = \{x_1\} \}$ and $A_{4,b} = \{ \tau \in A_4 \mid D_{\tau} = \{x_1, x_2\} \}.$ Then $A_{4,a}, A_{4,b}$ are non-empty open subsets of A_4 and

$$A_4 = A_{4,a} \coprod A_{4,b} \ (disjoint \ union).$$

(iv) For all but countably many
$$z \in \hat{\mathbb{C}}$$
,
for $(\bigotimes_{n=1}^{\infty} \tau)$ -a.e. $\gamma = (\gamma_1, \gamma_2, \ldots) \in Y^{\mathbb{N}}$, we have
 $d(\gamma_n \circ \cdots \circ \gamma_1(z), \{x_2, \infty\}) \to 0$ as $n \to \infty$

(v) For
$$(\otimes_{n=1}^{\infty} \tau)$$
-a.e. $\gamma \in Y^{\mathbb{N}}$, we have $\{x_2, \infty\} \subset F_{\gamma}$ and $x_1 \in \hat{\mathbb{C}} \setminus F_{\gamma}$.

(5) Let $\tau \in A_5$. Then we have the following (i)–(vi).

- (i) $\operatorname{Min}(\tau) = \{\{x_1\}, \{x_2\}, \{\infty\}\}\}.$
- (ii) For each i = 1, 2, we have $\chi(\tau, x_i) < 0$.
- (iii) $D_{\tau} = \{x_1, x_2\}.$
- (iv) For each $z \in \hat{\mathbb{C}}$, for $(\bigotimes_{n=1}^{\infty} \tau)$ -a.e. $\gamma = (\gamma_1, \gamma_2, \ldots) \in Y^{\mathbb{N}}$, we have $d(\gamma_n \circ \cdots \circ \gamma_1(z), \{x_1, x_2, \infty\}) \to 0$ as $n \to \infty$.
- (v) For $(\bigotimes_{n=1}^{\infty} \tau)$ -a.e. $\gamma \in Y^{\mathbb{N}}$, we have that $\{x_1, x_2, \infty\} \subset F_{\gamma}$.
- (vi) For $(\bigotimes_{n=1}^{\infty} \tau)$ -a.e. $\gamma \in Y^{\mathbb{N}}$, for each i = 1, 2, for each point z in the connected component U_i of F_{γ} with $x_i \in U_i$, we have

 $\gamma_n \circ \cdots \circ \gamma_1(z) \to x_i \text{ as } n \to \infty.$

Remark. For any deterministic iteration dynamics of a single quadratic map f, we CANNOT have a phenomenon such as (vi). In fact, we CANNOT have two attracting minimal sets of f in \mathbb{C} .

Remark 6. Statements of Theorems 2, 3, 4, 5 cannot hold for deterministic dynamics of a single $f \in \text{Rat}$ with $\deg(f) \geq 2$.

In fact, in the Julia set J(f) of f, we have a chaotic phenomenon. See Mañé's paper (1988)[1] etc.

Thus Theorems 2, 3, 4, 5 describe randomness-induced phenomena (new phenomena in random dynamical systems which cannot hold for deterministic dynamical systems).

Idea of Proofs of Theorems 2, 3, 4, 5.

- (1) We use complex analysis, Montel's theorem (a family of uniformly bounded holomorphic functions on a domain is equicontinuous on the domain), hyperbolic metric.
- (2) We classify minimal sets and analyze the bifurcation of minimal sets. etc. By using these, enlarging the support of the original τ a little bit, we destroy non-attracting minimal sets which do not meet D_{τ} .

Summary

- (1) We introduce the notion of weak mean stability in i.i.d. random (holomorphic) 1-dimensional dynamical systems.
- (2) If a random holomorphic dynamical system on $\hat{\mathbb{C}}$ is weakly mean stable and satisfies some mild assumtions, then for all but countably many $z \in \hat{\mathbb{C}}$, for a.e. orbit starting with z, the Lyapunov exponent is negative. Note that this statement cannot hold for deterministic dynamics of a single holo. map f on $\hat{\mathbb{C}}$ with deg $(f) \geq 2$.
- (3) Given an analytic family Y of rational maps (with some mild conditions), generic random holomorphic dynamical systems (with multiplicative noise) of elements of Y are weakly mean stable. Also, we can classify such generic random holomorphic dynamical systems of elements of Y in terms of averaged behavior and quenched dynamics.

References:

- R. Mañé, The Hausdorff dimension of invariant probabilities of rational maps, Dynamical Systems (Valparaiso, 1986) (Lecture Notes in Mathematics vol 1331) (Berlin: Springer) pp 86-117, 1988.
- H. Sumi, Random complex dynamics and semigroups of holomorphic maps, Proc. London Math. Soc. (2011) 102(1), pp 50–112.
- [3] H. Sumi, Cooperation principle, stability and bifurcation in random complex dynamics, Adv. Math., 245 (2013) pp 137–181.

 [4] H. Sumi, Negativity of Lyapunov Exponents and Convergence of Generic Random Polynomial Dynamical Systems and Random Relaxed Newton's Methods, 61 pages, https://arxiv.org/abs/1608.05230.
 Some contents of this talk are included in this paper.