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Definition 1.

(1) Let C := C U {oo} = S2 be the Riemann sphere endowed with the
spherical distance d.

(2) Let Rat := {f : C — C | f is non-constant and holomorphic}
endowed with the distance 7, where (f, g) = sup,q d(f(2), 9(2)).
Note that (Rat,n) is a complete separable metric space.

(3) For a metric space Y, we denote by 91;(Y") the space of all Borel
probability measures on Y.

(4) For a subset Y of Rat, we set

D (V) = {7 € M (Y) | suppr is a compact subset of Y}.
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(5) For a 7 € My .(Rat), we set
Gr:={mo--om|neN,vy esuppr(Vj)}.
Note that this is a semigroup whose product is the composition of maps.

(6) We say that an element 7 € 9t (Rat) is weakly mean stable if there
exist an n € N, an m € N, non-empty open subsets Uy, ..., U, of C,

a non-empty compact subset K of C with K ¢ U, Uj, and a constant
¢ with 0 < ¢ < 1 such that the following (a) (b) (c) hold.

(a) For each (v1,...,7,) € (supp7)”, we have
Tn© 01 (Uyl:l UJ) C K.

Moreover, for each j =1,...,m, for all z,y € U; and
for each (y1,...,7,) € (supp7)”, we have

)

A0+ 0 (@), 0+ 0 (y)) < ed(, ).

(b) Let D, = yeq, hH(C\ U U;)). Then £D, < cc.

(¢) For each minimal set L of 7 with L C D,, there exist a z € L
and an « € G, such that a(z) = z and |o/(z)| > 1(if 2 = oo then
we consider the condition |(¢ o a0 =) (0)] > 1 instead of the
condition |/ (z)| > 1, where ¢(z) = 1/z).

Here, a non-empty compact subset L of C is said to be a
minimal set of 7 if for each z € L, Upeq, {h(2)} = L.

(7) For each Y C Rat, we endow 9, .(Y) with the topology such that
a sequence {7, tnen in My (V) tends to an element 7 € Ny (V)
if and only if

(%) for each bounded continuous function ¢ : Y — R, we have

/gpdTn—>/<pdTasn—>oo,
Y Y

and



(%) supp T, — suppT as n — oo with respect to the Hausdorfl metric
in the space of all non-empty compact subsets of Y.

Theorem 2 ([4]). Let Y be one of the following (1)—(4).
(1) {f € Rat | f is a polynomial with deg(f) > 2}.

(2) {“2— A2(1—2)” € Rat | A € C\ {0}}.

(3) {2 z—AE " cRat |\ eC, A - 1| <1}

where f is a polynomial with deg(f) > 2.
Remark: This family is related to “random relaxed Newton’s methods

for f7 in which we can find roots of any polynomial f more easily than
deterministic Newton’s method ([4]).

4) {“2—z+Af(2)” € Rat | A € C\ {0}}
where [ is a polynomial with deg(f) > 2

such that for each zy € C with f(zy) =0, we have f'(zy) # 0.

Then, there exists an open and dense subset A of My (Y)
such that for each T € A, we have the following (I)(II)(I1I).

(I) 7 is weakly mean stable.

(IT) There exists c; < 0 s.t.

for all but countably many z € C, for (52,7)-a.e. (11,72,...) € YN,

h 1
e nave limsup = log [ D(7n 0 -+ 0 31):[|< ¢ < 0.

n—oo 1
(IIT) For all but countably many z € C,

for (22°,7)-a.c. v = (71,72,...) € YN,
there exists a minimal set L = L(z,7v) of T
which is either

(a) “attracting for 77, or

(b) included in D, with x (7, L) <0,

where x (7, L) denotes the Lyapunov exponent of (7, L),

such that

d(ypo---oy(z),L) — 0 as n — oo.

13



74

Theorem 3. Let [ be a polynomial with deg(f) > 2 and

let Q) :={x € C| f(x) =0}. Suppose that f'(x) #0 (Vz € Q).

Suppose also that for each a,b € Q with a # b, we have f'(a) # f'(b). Let
Y={“%—z+\f(z)”€Rat | A€ C\ {0}}.

For each 7 € My (Y) and x € Q, let x(7,x) := [, log |l (x)| dr(h).

Let A be the set of elements 7 € My (Y') satisfying that

o 7 is weakly mean stable with D, C @,
o for each x € Q), we have x(1,z) # 0, and

e ifx €@ and x(1,2) > 0, then for each h € suppT, we have h'(x) # 0.
Then, we have the following (1)(ii).

(i) A is open and dense in My (Y) and
statements (11) and (I11) in Theorem 2 hold for each T € A.

(ii) For any two subsets Q1,Qs of Q, let
Aguay = T € A | x(r,2) > 0(¥z € Q1) and x(r,2) < O(¥z € Qu)}.
Then Ag, g, is a non-empty open subset of A.
Moreover, we have A =[] o, Aq..0. (disjoint union).

Theorem 4. Let a, 1,19 € C with 1 # x».

Let f(2) = alz — )(z — 7).

Let Y ={“2— z+ Af(2)” € Rat | A € C\ {0}}.

Let A be the set of elements T € My (Y') satisfying that

o 7 is weakly mean stable with D, C {x1, x5},
e for each i = 1,2, we have x(1,z;) # 0, and

e ific{1,2} and x(r,z;) > 0,
then for each h € supp T, we have W' (x;) # 0.
Then, we have the following (i)—(iii).
(i) A is open and dense in My (Y) and
statements (11) and (I11) in Theorem 2 hold for each T € A.

(ii) For any 7 € A, we have D, # ().



(iii) For each v = (1,72,...,) € YN, let I, be the set of pointz z € C
satisfying that there exists a neighborhood U of z in C such that
{n o omlpe, is equicontinuous on U. Then for (®72,7)-a.c. 7,
we have Leby(C\ F) = 0 (Leby denotes the Lebesgue meas. on C).

Theorem 5. Let f,Y, A, F, be as in Theorem 4.
For each 7 € My .(Y), let Min(7) be the set of all minimal sets of T,
and we set x(7,1;) := [, log|h/(z;)] dr(h) (i =1,2).

Then, there exist non-empty open subsets Ay, Ao, ..., As of A with
A =11, A (disjoint union) such that all of the following (1)(5) hold.

(1) Let 7 € Ay. Then we have the following (1)-(iv).

(i) Min(1) = {{x1}, {z2}, {c0}, L.}, where L. is an “attracting min-
imal set” of T with L, C C\ {zy,x2}.

(ii) For eachi=1,2 and each h € suppT,
we have |/ (x;)| > 1 and D, = {x, x5}.

(iii) For all but countably many z € C,
for (22°,7) -a.e. v= (71,72,...) € YN, we have

d(ypo---ov(z), Ly U{co}) = 0 as n — oo.

(iv) For each v = (7y1,72,...) € (supng)N, we have
L.U{oo} C F, and {z1,22} C C\ F,.

(2) Let T € Ay. Then we have the following (i)—(v) .
(1) Min(r) = {{z1}, {2}, {o0}},
(ii) For eachi = 1,2, we have \(7,x;) > 0.
(iii)
)

DT = {.’L’] s IL'Q}.

(iv) For all but countably many z € @,
for (25247) -~a.e. v=(11,7%,...) € YN, we have

YO0y (z) = 00 as n — oo.
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(v) For (®%,7)-a.c. v=(7,7Y2,...) € YN,
we have A
o €F, and {x, 22} C C\F,.

(3) Let 7 € Az. Then we have the following (1)-(v).

() Min(7) = {{z1}, {2}, {o0}}.
(i) x(7,21) <0 and x(1,22) > 0.

(iii) Let As, = {7 € A3 | D, = {x2}} and
A37b = {T € A; | D, = {ZIIl,l'Q}}.
Then As,, Asp are non-empty open subsets of As and

Az = Az, H Asy, (disjoint union).

(iv) For all but countably many z € C,
for (22°,7) -a.e. v = (71,72,...) € YN, we have

d(ypo---ov(z),{x1,00}) = 0 as n — oo.

(v) For (2°2,7)-a.e. v € YN, we have {x,,00} C F, and z, € C\ F,.

(4) Let 7 € Ay. Then we have the following (i)-(v).

(1) Min(r) = {{z1}, {2}, {o0}},
(ii) x(7,21) > 0 and x(7,22) < 0.

(iii) Let Ay, :={1 € Ay | D, = {x1}} and
A47b = {’7’ c A4 | DT = {1'1,.%'2}}.

Then Ay g, Asp are non-empty open subsets of Ay and
Ay = Ay, H Ay (disjoint union).

(iv) For all but countably many z € @,
for (R82,7) ~a.e. v = (1,72, -..) € YN, we have

d(yn 0+ oy (2),{xe,00}) = 0 as n — oo.
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(v) For (®22,7)-a.e. v € YN, we have {xy, 00} C F, andz, € C\ F,.

(5) Let 7 € As. Then we have the following (1)-(vi).

(1) Min(r) = {{z1}, {22}, {o0}}.

(i)

(i) D, = {1, x2}.
)

For each z € C,
Jor (®2,7) -a.e. v = (71,72, ..) € YN, we have

For each i = 1,2, we have x(1,7;) < 0.

(iv

d(ypo---ov(z),{x,z9,00}) = 0 as n — oo.

(vi) For (2% 7)-a.e. v € YN, for each i = 1,2, for each point z in
the connected component U; of F., with x; € U;, we have

Yoo oy (z) = z; asn — oo.

Remark. For any deterministic iteration dynamics of a single
quadratic map f, we CANNOT have a phenomenon such as (vi).

In fact, we CANNOT have two attracting minimal sets of f in C.

Remark 6. Statements of Theorems 2, 3, 4, 5 cannot hold for deterministic
dynamics of a single f € Rat with deg(f) > 2.

In fact, in the Julia set J(f) of f, we have a chaotic phenomenon.

See Mané’s paper (1988)[1] etc.

Thus Theorems 2, 3, 4, 5 describe randomness-induced phenomena
(new phenomena in random dynamical systems which cannot hold for deter-
ministic dynamical systems).

Idea of Proofs of Theorems 2, 3, 4, 5.
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(1) We use complex analysis, Montel’s theorem (a family of uniformly

bounded holomorphic functions on a domain is equicontinuous on the
domain), hyperbolic metric.

(2) We classify minimal sets and analyze the bifurcation of minimal sets.

etc. By using these, enlarging the support of the original 7 a little bit,
we destroy non-attracting minimal sets which do not meet D,.

Summary

(1)

(2)

1]

2]

3]

We introduce the notion of weak mean stability in i.i.d. random (holo-
morphic) 1-dimensional dynamical systems.

If a random holomorphic dynamical system on C is weakly mean stable
and satisfies some mild assumtions, then for all but countably many
z € @, for a.e. orbit starting with z, the Lyapunov exponent is negative.
Note that this statement cannot hold for deterministic dynamics of a
single holo. map f on C with deg(f) > 2.

Given an analytic family Y of rational maps (with some mild condi-
tions), generic random holomorphic dynamical systems (with multi-
plicative noise) of elements of Y are weakly mean stable. Also, we
can classify such generic random holomorphic dynamical systems of
elements of Y in terms of averaged behavior and quenched dynamics.
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