Centre manifold analysis of plateau phenomena in learning of three-layer perceptron

Daiji Tsutsui
Department of Mathematics, Osaka University
Toyonaka, Osaka 560-0043, Japan
E-mail: d-tsutsui@cr.math.sci.osaka-u.ac.jp

Abstract

A three-layer perceptron is the most basic model of hierarchical neural networks. We treat a gradient system representing the learning process of the three-layer perceptron. In its parameter space, a three-layer perceptron has one-dimensional singular regions comprising both attractive and repulsive parts, which is often called a Milnor-like attractor. In this paper, we introduce an analysis of the learning process in the vicinity of a Milnor-like attractor based on the centre manifold theory.

This paper is related to the article [3], which is published in Neural Computation.

1 Backgrounds

1.1 Gradient descent method

Mathematically, a three-layer perceptron is a family of functions given by

$$
\begin{align*}
& \boldsymbol{f}_{(d)}(\boldsymbol{x} ; \boldsymbol{\theta})=\sum_{i=1}^{d} \boldsymbol{v}_{i} \varphi\left(\boldsymbol{w}_{i} \cdot \boldsymbol{x}+b_{i}\right), \quad \boldsymbol{x} \in \mathbb{R}^{n}, \tag{1}\\
& \boldsymbol{\theta}=\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{d}, b_{1}, \ldots, b_{d}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{d}\right),
\end{align*}
$$

where $\boldsymbol{\theta}$ is a system parameter with $\boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{d} \in \mathbb{R}^{n}$ being the weight vectors for the second layer, $b_{1}, \ldots, b_{d} \in \mathbb{R}$ the bias terms for the second, $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{d} \in \mathbb{R}^{m}$ the

Figure 1: A schematic diagram of a three-layer perceptron presented in (2).
weight vectors for the third, and $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is an activation function. Throughout this paper, we assume that the activation function φ is twice differentiable. We shall call the function (1) an ($n-d-m$)-perceptron. The numbers n and m are fixed at the outset as the sizes of input and output vectors, while the number d of hidden units can be varied in our analysis. For notational simplicity, we incorporate the bias b in the weight \boldsymbol{w} as $\boldsymbol{w}=\left(b, w^{1}, \ldots, w^{n}\right)$, and accordingly, we enlarge \boldsymbol{x} as $\boldsymbol{x}=\left(1, x_{1}, \ldots, x_{n}\right)$. By using these conventions, we obtain the abridged presentation of the three-layer perceptron as

$$
\begin{equation*}
\boldsymbol{f}_{(d)}(\boldsymbol{x} ; \boldsymbol{\theta})=\sum_{i=1}^{d} \boldsymbol{v}_{i} \varphi\left(\boldsymbol{w}_{i} \cdot \boldsymbol{x}\right) \tag{2}
\end{equation*}
$$

Figure 1 is a schematic diagram of the three-layer perceptron.
In this paper, we treat the supervised learning, which aims at finding a parameter $\boldsymbol{\theta}$ so that $\boldsymbol{f}_{(d)}(\boldsymbol{x} ; \boldsymbol{\theta})$ approximates a given target function $T(\boldsymbol{x})$. The (averaged) gradient descent method is a standard method to find such $\boldsymbol{\theta}$ numerically. Suppose that a loss function $\ell(\boldsymbol{x}, \boldsymbol{y})$ is non-negative and is equal to zero if and only if $\boldsymbol{y}=T(\boldsymbol{x})$ (e.g. the squared error $\|\boldsymbol{y}-T(\boldsymbol{x})\|^{2}$). In the gradient descent method, we aim at minimising the averaged loss function

$$
\begin{equation*}
L_{(d)}(\boldsymbol{\theta}):=\mathbb{E}_{\boldsymbol{x}}\left[\ell\left(\boldsymbol{x}, \boldsymbol{f}_{(d)}(\boldsymbol{x} ; \boldsymbol{\theta})\right)\right] \tag{3}
\end{equation*}
$$

by changing the parameter $\boldsymbol{\theta}$ according to the gradient system

$$
\begin{equation*}
\frac{d \boldsymbol{\theta}}{d t}=-\frac{\partial L_{(d)}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta}) \tag{4}
\end{equation*}
$$

The parameter $\boldsymbol{\theta}$ descends along the gradient of $L_{(d)}$ to reach a local minimiser. Here, we assume that the input vector \boldsymbol{x} is a random variable drawn according to
an unknown probability distribution, and $\mathbb{E}_{\boldsymbol{x}}$ denotes the expectation with respect to \boldsymbol{x}.

1.2 Singular region and Milnor-like attractor

The parameter space of a hierarchical neural network usually contains a subset whose points correspond to the same input-output relation. Such a subset is referred to as a singular region. For example, let us consider an $(n-2-m)$-perceptron. Then, for $\boldsymbol{w} \in \mathbb{R}^{n+1}, \boldsymbol{v} \in \mathbb{R}^{m}$, the subset

$$
R(\boldsymbol{w}, \boldsymbol{v}):=\left\{\boldsymbol{\theta}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right) \mid \boldsymbol{w}_{1}=\boldsymbol{w}_{2}=\boldsymbol{w}, \boldsymbol{v}_{1}+\boldsymbol{v}_{2}=\boldsymbol{v}\right\}
$$

is a singular region. In fact, on the subset $R(\boldsymbol{w}, \boldsymbol{v})$, an (n-2-m)-perceptron $\boldsymbol{f}_{(2)}(\boldsymbol{x} ; \boldsymbol{\theta})$ is reduced to a $(n-1-m)$-perceptron as

$$
\boldsymbol{f}_{(1)}(\boldsymbol{x} ; \boldsymbol{w}, \boldsymbol{v})=\boldsymbol{v} \varphi(\boldsymbol{w} \cdot \boldsymbol{x})
$$

On such a singular region, some properties of $L_{(1)}$ are inherited by $L_{(2)}$. The following theorem holds, for example.

Theorem $1.1\left([2]\right.$, Theorem 1). Let $\boldsymbol{\theta}^{*}=\left(\boldsymbol{w}^{*}, \boldsymbol{v}^{*}\right)$ be a critical point of $L_{(1)}$. Then, the parameter $\boldsymbol{\theta}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)=\left(\boldsymbol{w}^{*}, \boldsymbol{w}^{*}, \lambda \boldsymbol{v}^{*},(1-\lambda) \boldsymbol{v}^{*}\right)$ is a critical point of $L_{(2)}$ for any $\lambda \in \mathbb{R}$.

When $m=1$, in particular, every point $\boldsymbol{\theta} \in R\left(\boldsymbol{w}^{*}, v^{*}\right)$ is a critical point of $L_{(2)}$. Further, in this case, the second order property of $L_{(1)}$ is also inherited by $L_{(2)}$ to some extent, and the singular region $R\left(\boldsymbol{w}^{*}, v^{*}\right)$ may have an interesting structure which causes serious stagnation of learning.

Theorem 1.2 ([2], Theorem 3). Let $m=1$ and $\boldsymbol{\theta}^{*}=\left(\boldsymbol{w}^{*}, v^{*}\right)$ be a strict local minimiser of $L_{(1)}$ with $v^{*} \neq 0$. Define an $(n+1) \times(n+1)$ matrix

$$
\begin{equation*}
H:=\mathbb{E}_{\boldsymbol{x}}\left[\frac{\partial \ell\left(\boldsymbol{x}, f_{(1)}\left(\boldsymbol{x} ; \boldsymbol{\theta}^{*}\right)\right)}{\partial y} v^{*} \varphi^{\prime \prime}\left(\boldsymbol{w}^{*} \cdot \boldsymbol{x}\right) \boldsymbol{x} \boldsymbol{x}^{T}\right] \tag{5}
\end{equation*}
$$

and for $\lambda \in \mathbb{R}$

$$
\boldsymbol{\theta}_{\lambda}:=\left(\boldsymbol{w}^{*}, \boldsymbol{w}^{*}, \lambda v^{*},(1-\lambda) v^{*}\right) .
$$

If the matrix H is positive (resp. negative) definite, then $\boldsymbol{\theta}=\boldsymbol{\theta}_{\lambda}$ is a local minimiser (resp. saddle point) of $L_{(2)}$ for any $\lambda \in(0,1)$, and is a saddle point (resp. local minimiser) for any $\lambda \in \mathbb{R} \backslash[0,1]$. On the other hand, if the matrix H is indefinite, then the point $\boldsymbol{\theta}_{\lambda}$ is a saddle point of $L_{(2)}$ for all $\lambda \in \mathbb{R} \backslash\{0,1\}$.

This theorem implies that the one-dimensional region $R\left(\boldsymbol{w}^{*}, v^{*}\right)=\left\{\boldsymbol{\theta}_{\lambda} \mid \lambda \in \mathbb{R}\right\}$ may have both attractive parts and repulsive parts in the gradient descent method. Such a region is referred to as a Milnor-like attractor [4]. The parameter $\boldsymbol{\theta}$ near the attractive part flows into the Milnor-like attractor; however, since there are some stochastic effects in practical learning, it fluctuates around the Milnor-like attractor. When it reaches the repulsive part by such fluctuation, the parameter escapes from the Milnor-like attractor, and the loss starts to decrease again. Figure 2 is a schematic diagram of a Milnor-like attractor.

Figure 2: A schematic diagram of a Milnor-like attractor $R\left(\boldsymbol{w}^{*}, v^{*}\right)$. A parameter fluctuates around the attractive part of a Milnor-like attractor for a long time by some stochastic effects, until it reaches the repulsive part.

When $m \geq 2$, there also exists a one-dimensional region consisting of critical points due to Theorem 1.1; however, the region becomes simply repulsive, and does not have an attractive part as the following theorem asserts.

Theorem 1.3 ([3], Theorem 2.3). Let $\boldsymbol{\theta}^{*}=\left(\boldsymbol{w}^{*}, \boldsymbol{v}^{*}\right)$ be a local minimiser of $L_{(1)}$. If the $m \times(n+1)$ matrix

$$
\mathbb{E}_{\boldsymbol{x}}\left[\frac{\partial \ell\left(\boldsymbol{x}, \boldsymbol{f}_{(1)}\left(\boldsymbol{x} ; \boldsymbol{\theta}^{*}\right)\right)}{\partial \boldsymbol{y}} \varphi^{\prime}\left(\boldsymbol{w}^{*} \cdot \boldsymbol{x}\right) \boldsymbol{x}^{T}\right]
$$

is non-zero, then $\boldsymbol{\theta}_{\lambda}=\left(\boldsymbol{w}^{*}, \boldsymbol{w}^{*}, \lambda \boldsymbol{v}^{*},(1-\lambda) \boldsymbol{v}^{*}\right)$ is a saddle point of $L_{(2)}$ for any $\lambda \in \mathbb{R}$, where we regard the derivative $\partial \ell / \partial \boldsymbol{y}$ as a column vector.

In their article [1], Amari et al. stated a prototype of Theorem 1.3.

2 Centre Manifold of Milnor-like Attractor

In their analysis of an (n-2-1)-perceptron, Wei et al. [4] introduced a coordinate transformation of the parameter space

$$
\left\{\begin{array}{l}
\boldsymbol{w}=\frac{v_{1} \boldsymbol{w}_{1}+v_{2} \boldsymbol{w}_{2}}{v_{1}+v_{2}} \tag{6}\\
v=v_{1}+v_{2} \\
\boldsymbol{u}=\boldsymbol{w}_{1}-\boldsymbol{w}_{2} \\
z=\frac{v_{1}-v_{2}}{v_{1}+v_{2}}
\end{array}\right.
$$

and claimed, based on evidences found in numerical simulations, that the parameters (\boldsymbol{w}, v) quickly converge to $\left(\boldsymbol{w}^{*}, v^{*}\right)$ when the initial point is taken near a Milnor-like attractor. Amari et al. [1] mentioned that the dynamics in this coordinate system should be analysed by using the centre manifold theory, and they analysed only the reduced dynamical system for the sub-parameters (\boldsymbol{u}, z), setting the remaining parameters (\boldsymbol{w}, v) to be $\left(\boldsymbol{w}^{*}, v^{*}\right)$.

While the coordinate system (6), in fact, does not admit any centre manifold structure, it is the case that there exists a coordinate system that admits a centre manifold structure. Such a coordinate system $\boldsymbol{\xi}=(\boldsymbol{w}, v, \boldsymbol{u}, z)$ is, for example, given as follows.

$$
\left\{\begin{array}{l}
\boldsymbol{w}=\frac{v_{1}\left(\boldsymbol{w}_{1}-\boldsymbol{w}^{*}\right)+v_{2}\left(\boldsymbol{w}_{2}-\boldsymbol{w}^{*}\right)}{v^{*}}+\boldsymbol{w}^{*} \tag{7}\\
v=v_{1}+v_{2} \\
\boldsymbol{u}=\frac{v_{2}\left(\boldsymbol{w}_{1}-\boldsymbol{w}^{*}\right)-v_{1}\left(\boldsymbol{w}_{2}-\boldsymbol{w}^{*}\right)}{v^{*}} \\
z=v_{1}-v_{2}
\end{array} .\right.
$$

This formula defines a coordinate system on the region $\left\{v_{1}^{2}+v_{2}^{2} \neq 0\right\}$. Now the following theorem holds.

Theorem 2.1 ([3], Theorem 3.5). In the coordinate system $\boldsymbol{\xi}=(\boldsymbol{w}, v, \boldsymbol{u}, z)$, the dynamical system (4) admits a centre manifold structure around the critical points $\boldsymbol{\theta}=\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{1}$ in which (\boldsymbol{w}, v) converge exponentially fast.

Let us remark that the two points $\boldsymbol{\theta}=\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{1}$ are the boundaries of repulsive and attractive parts of the Milnor-like attractor $\left\{\boldsymbol{\theta}_{\lambda} \mid \lambda \in \mathbb{R}\right\}$. Thus, when passing nearby these points, a parameter evolving around the Milnor-like attractor changes
the mode of dynamics. Due to this theorem, we can perform a detailed analysis by using the centre manifold reduction.

Due to the standard method from the centre manifold theory, we obtain the reduced dynamical system around $\boldsymbol{\theta}=\boldsymbol{\theta}_{1}$ as

$$
\begin{align*}
\dot{\boldsymbol{u}} & =\frac{1}{2 v^{*}}\left(z-v^{*}\right) H \boldsymbol{u}+O\left(\left\|\boldsymbol{u}, z-v^{*}\right\|^{3}\right) \\
\dot{z} & =\frac{1}{2 v^{*}} \boldsymbol{u}^{T} H \boldsymbol{u}+O\left(\left\|\boldsymbol{u}, z-v^{*}\right\|^{3}\right) \tag{8}
\end{align*}
$$

Note that the point $\boldsymbol{\theta}=\boldsymbol{\theta}_{1}$ is denoted as $\boldsymbol{\xi}=\boldsymbol{\xi}_{1}=\left(\boldsymbol{w}^{*}, v^{*}, \mathbf{0}, v^{*}\right)$ under the coordinate system (7). Neglecting the higher order terms, we can integrate this equation to obtain

$$
\begin{equation*}
\|\boldsymbol{u}\|^{2}=\left(z-v^{*}\right)^{2}+C \tag{9}
\end{equation*}
$$

where C is an integral constant.
Around the point $\boldsymbol{\theta}=\boldsymbol{\theta}_{0}$, or equivalently $\boldsymbol{\xi}=\boldsymbol{\xi}_{0}=\left(\boldsymbol{w}^{*}, v^{*}, \mathbf{0},-v^{*}\right)$, the similar reduced dynamical system:

$$
\begin{aligned}
\dot{\boldsymbol{u}} & =-\frac{1}{2 v^{*}}\left(z+v^{*}\right) H \boldsymbol{u}+O\left(\left\|\boldsymbol{u}, z+v^{*}\right\|^{3}\right) \\
\dot{z} & =-\frac{1}{2 v^{*}} \boldsymbol{u}^{T} H \boldsymbol{u}+O\left(\left\|\boldsymbol{u}, z+v^{*}\right\|^{3}\right)
\end{aligned}
$$

is obtained.

3 Numerical simulations

We shall verify the fact that the dynamics of (\boldsymbol{w}, v) are fast and those of (\boldsymbol{u}, z) are slow under the coordinate system (7) by numerical simulations.

We set the input dimension to be $n=1$, and choose the teacher function T : $\mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
T(x):=2 \tanh (x)-\tanh (4 x)
$$

We set the activation function φ as tanh. Thus, the target function T can be represented by the (1-2-1)-perceptron with no bias terms:

$$
f_{(2)}(x ; \boldsymbol{\theta})=v_{1} \varphi\left(w_{1} x\right)+v_{2} \varphi\left(w_{2} x\right),
$$

and the true parameter is $\left(w_{1}, w_{2}, v_{1}, v_{2}\right)=(1,4,2,-1)$. We also discard the bias terms of the student (1-1-1)-perceptron. This makes the matrix H defined by (5) scalar valued, and it becomes positive or negative definite trivially.

We set the probability distribution of the input x to be the Gaussian distribution $N\left(0,2^{2}\right)$. Taking a large size of dataset $\left\{x_{s}\right\}_{s=1}^{S}$ according to $N\left(0,2^{2}\right)$ for each iteration, we compute the arithmetic mean of the instantaneous loss $\ell\left(x, f_{(2)}(x ; \boldsymbol{\theta})\right)$ over $\left\{x_{s}\right\}_{s=1}^{S}$, which approximates the averaged loss function (3). Thus, the transition formula of the parameter $\boldsymbol{\theta}$ is written as

$$
\begin{equation*}
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}-\left.\varepsilon \frac{1}{S} \sum_{s=1}^{S} \frac{\partial \ell\left(x_{s}^{(t)}, f_{(2)}\left(x_{s}^{(t)} ; \boldsymbol{\theta}\right)\right)}{\partial \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}^{(t)}} \tag{10}
\end{equation*}
$$

Here, $\varepsilon>0$ is a small number for the Euler method. In this simulation, we set $S=500, \varepsilon=0.05$, and the loss function ℓ to be the squared error.

In this setting, we obtained a local minimiser $\boldsymbol{\theta}^{*}=\left(w^{*}, v^{*}\right) \approx(0.472,1.134)$ of $L_{(1)}$. The value of H is approximately 0.050 . Since $H>0$, the attractive region is $\left\{\boldsymbol{\theta}_{\lambda} \mid \lambda \in(0,1)\right\}$, due to Theorem 1.2.

Figure 3: Time evolutions of each parameter in the first 1,000 iterations. Each trajectory of (w, v) quickly converges to $\left(w^{*}, v^{*}\right) \approx(0.472,1.134)$, while trajectories of u and z evolve very slowly.

Figures 3(a-d) display time evolutions of each parameter in the first 1,000 iterations from 50 different initial points. We chose an initial parameter $\boldsymbol{\theta}^{(0)}=$ $\left(w_{1}^{(0)}, w_{2}^{(0)}, v_{1}^{(0)}, v_{2}^{(0)}\right)$ randomly by

$$
\begin{aligned}
w_{1}^{(0)} & =w^{*}+\zeta_{1}, \quad w_{2}^{(0)}=w^{*}+\zeta_{2}, \\
v_{1}^{(0)} & =v^{*}+\frac{1}{2}\left(\zeta_{3}+\zeta_{4}\right), \quad v_{2}^{(0)}=\frac{1}{2}\left(\zeta_{3}-\zeta_{4}\right),
\end{aligned}
$$

so that $v=v^{*}+\zeta_{3}$, and $z=v^{*}+\zeta_{4}$, where $\zeta_{1}, \zeta_{2} \sim U(-0.2,0.2)$, and $\zeta_{3}, \zeta_{4} \sim$ $U(-0.2,0.2)$. Here, $U(a, b)$ denotes the uniform distribution on the interval $[a, b] \subset$ \mathbb{R}. We can see that the parameters w and v converge to their equilibriums exponentially fast ((a) and (b)), while u and z evolve slowly ((c) and (d)).

Figure 4: Trajectories on the (z, u)-plane obtained by learning for 20,000 iterations (solid black curves) and analytical trajectories (9) (dashed blue curves) near $\boldsymbol{\theta}=\boldsymbol{\theta}_{1}=\left(w^{*}, w^{*}, v^{*}, 0\right)$. Red circles represent initial points.

Figure 4 shows evolutions on the (z, u)-plane. The red circles in the figure represent initial points. When $(w, v)=\left(w^{*}, v^{*}\right)$, the z-axis is a Milnor-like attractor, and the region $|z|<v^{*}$ is the attractive part of it. The intersection point of the line $z=v^{*}$ and the z-axis corresponds to the point $\boldsymbol{\theta}=\boldsymbol{\theta}_{1}$. The analytical trajectories (9) are plotted as dashed blue curves. Numerical evolutions of the parameter follow the analytical trajectories considerably well around $\boldsymbol{\theta}_{1}$.

References

[1] S.-I. Amari, T. Ozeki, R. Karakida, Y. Yoshida and M. Okada, "Dynamics of learning in MLP: Natural gradient and singularity revisited," Neural Computation 30(1), 1-33 (2018).
[2] K. Fukumizu and S.-I. Amari, "Local minima and plateaus in hierarchical structures of multilayer perceptrons," Neural Networks 13(3), 317-327 (2000).
[3] D. Tsutsui, "Centre manifold analysis of plateau phenomena caused by degeneration of three-layer perceptron," Neural Computation 32(4), 683-710 (2020).
[4] H. Wei, J. Zhang, F. Cousseau, T. Ozeki, and S.-I. Amari, "Dynamics of learning near singularities in layered networks," Neural Computation 20(3), 813-843 (2008).

