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Abstract 

A three-layer perceptron is the most basic model of hierarchical neural 

networks. We treat a gradient system representing the learning process of 

the three-layer perceptron. In its parameter space, a three-layer perceptron 

has one-dimensional singular regions comprising both attractive and repulsive 

parts, which is often called a Milnor-like attractor. In this paper, we introduce 

an analysis of the learning process in the vicinity of a Milnor-like attractor 

based on the centre manifold theory. 

This paper is related to the article [3], which is published in Neural Computation. 

1 Backgrounds 

1.1 Gradient descent method 

Mathematically, a three-layer perceptron is a family of functions given by 

d 

f(d)(x; 0) =とい(w;・尤十 b』， XE町，
i=l 

0 = (w1,..., wd, b1,..., bd, v1,...,叫），

(1) 

where 0 is a system parameter with wぃ・・・,wdE町 beingthe weight vectors for 

the second layer, b1,..., bd E艮 thebias terms for the second, v1, ・ ・ ・, vd E町m the 



88

input x output 

Figure 1: A schematic diagram of a three-layer perceptron presented in (2). 

weight vectors for the third, and'P :艮→股 isan activation function. Throughout 

this paper, we assume that the activation function'P is twice differentiable. We 

shall call the function (1) an (n-d-m)-perceptron. The numbers n and m are fixed 

at the outset as the sizes of input and output vectors, while the number d of hidden 

units can be varied in our analysis. For notational simplicity, we incorporate the 

bias b in the weight w as w = (b, w1,..., wn), and accordingly, we enlarge x as 

尤＝（1,x1,..., Xn)-By using these conventions, we obtain the abridged presentation 

of the three-layer perceptron as 

d 

f(d)（尤；〇） ＝と戸(wi・x). (2) 
i=l 

Figure 1 is a schematic diagram of the three-layer perceptron. 

In this paper, we treat the supervised learning, which aims at finding a parameter 

0 so that f(d)（x; 0) approximates a given target function T(x). The (averaged) 

gradient descent method is a standard method to find such 0 numerically. Suppose 

that a loss function£（工，y)is non-negative and is equal to zero if and only if y = T（x) 

(e.g. the squared error I IY -T（x)ll2). In the gradient descent method, we aim at 

minimising the averaged loss function 

L(d)(0) := IE"'[£(x, f(d)(x; 0))] (3) 

by changing the parameter 0 according to the gradient system 

d0 OL(d) 
- ＝ - （O)． 
dt 80 

(4) 

The parameter 0 descends along the gradient of L(d) to reach a local minimiser. 

Here, we assume that the input vectorェisa random variable drawn according to 
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an unknown probability distribution, and lE。denotesthe expectation with respect 

to X. 

1.2 Singular region and Milnor-like attractor 

The parameter space of a hierarchical neural network usually contains a subset whose 

points correspond to the same input-output relation. Such a subset is referred to 

as a singular region. For example, let us consider an (n-2-m)-perceptron. Then, for 

WE町＋1，VE応， thesubset 

R(w, v) := { 0 = (w1, w2, v1, v2) I w1 = w2 = w, v1 + v2 = v} 

is a singular region. In fact, on the subset R(w, v), an (n-2-m)-perceptron fc2)（x;〇）

is reduced to a (n-1-m)-perceptron as 

恥（x;w,v)=vcp(w-x).

On such a singular region, some properties of L(l) are inherited by £(2). The 

following theorem holds, for example. 

Theorem 1.1 ([2], Theorem 1). Let 0* = (w*, v*) be a critical point of L(I)・ Then, 

the parameter 0 = (w1, w2, vぃv2)= (w*, w*，入v*,(1 —入）v*) is a critical point of 

L(2) for any 入€股．

When m = 1, in particular, every point 0 E R(w*, v*) is a critical point of £(2)・

Further, in this case, the second order property of L(l) is also inherited by £(2) to 

some extent, and the singular region R(w*, v*) may have an interesting structure 

which causes serious stagnation of learning. 

Theorem 1.2 ([2], Theorem 3). Let m = 1 and 0* = (w*,v*) be a strict local 

minimiser of L(l) with v* =f-0. Define an (n + 1) x ( x (n + 1) matrix 

祝(x,f(l)（尤；〇＊））H:=lEx[~ 心”(w* ・ X)口 T]' (5) 

and for入E股

。入：＝ （w*,w*，知＊，（1-珈＊）．

If the matrix H is positive (resp. negative) definite, then 0 = 0入 isa local minimiser 

(resp. saddle point) of Lc2i for any入E(0, 1), and is a saddle point (resp. local 

minimiser) for any入e艮＼ ［0, 1]. On the other hand, if the matrix H is indefinite, 

then the point 0入 isa saddle point of Lc2J for all 入€股＼｛0,1}. 
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This theorem implies that the one-dimensional region R(w*, v*) = { 0入 I入E股｝

may have both attractive parts and repulsive parts in the gradient descent method. 

Such a region is referred to as a Milnor-like attractor [4]. The parameter 0 near 

the attractive part flows into the Milnor-like attractor; however, since there are 

some stochastic effects in practical learning, it fluctuates around the Milnor-like 

attractor. When it reaches the repulsive part by such fluctuation, the parameter 

escapes from the Milnor-like attractor, and the loss starts to decrease again. Figure 

2 is a schematic diagram of a Milnor-like attractor. 
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Figure 2: A schematic diagram of a Milnor-like attractor R(w*, v*). A parameter 

fluctuates around the attractive part of a Milnor-like attractor for a long time by 

some stochastic effects, until it reaches the repulsive part. 

When m ~ 2, there also exists a one-dimensional region consisting of critical 

points due to Theorem 1.1; however, the region becomes simply repulsive, and does 

not have an attractive part as the following theorem asserts. 

Theorem 1.3 ([3], Theorem 2.3). Let 0* = (w*,v*) be a local minimiser of L(1)・

If them x ( e m x (n + 1) matrix 

lE"'［況(x,fm(x;O*）），
8y 

cp'(w* • x) xT] 

is non-zero, then 0入 =(w*,w*，入v*,(1 —入）v*) is a saddle point of £(2) for any 

入E股， wherewe regard the derivative祝／8yas a column vector. 

In their article [1], Amari et al. stated a prototype of Theorem 1.3. 
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2 Centre Manifold of Milnor-like Attractor 

In their analysis of an (n-2-1)-perceptron, Wei et al. [4] introduced a coordinate 

transformation of the parameter space 

V1W1十四W2
W=  

町＋ V2

v=釘 十 V2

U = W1 -W2 

V1 -V2 
Z =  

釘 十 V2

(6) 

and claimed, based on evidences found in numerical simulations, that the parameters 

(w, v) quickly converge to (w*, v*) when the initial point is taken near a Milnor-like 

attractor. Amari et al. [1] mentioned that the dynamics in this coordinate system 

should be analysed by using the centre manifold theory, and they analysed only 

the reduced dynamical system for the sub-parameters (u, z), setting the remaining 

parameters (w,v) to be (w*,v*). 

While the coordinate system (6), in fact, does not admit any centre manifold 

structure, it is the case that there exists a coordinate system that admits a centre 

manifold structure. Such a coordinate system e = (w'V'u, z) is, for example, given 

as follows. 

釘 (w1-w*)＋四 (w2-w*), * 
w=  ＋w 

v* 

V=町＋ V2

四 (w1-w*)一釘 (w2-w*) 
U=  

v* 

Z = V1 -V2 

(7) 

This formula defines a coordinate system on the region { vf + v~ # O}. Now the 

following theorem holds. 

Theorem 2.1 ([3], Theorem 3.5). In the coordinate sリsteme = (w,v,u,z), the 

dynamical system (4) admits a centre manifold structure around the critical points 

0 = 0。,01in which (w, v) converge exponentially fast. 

Let us remark that the two points 0 = 0。,01are the boundaries of repulsive 

and attractive parts of the Milnor-like attractor { 0入I入E罠｝． Thus,when passing 

nearby these points, a parameter evolving around the Milnor-like attractor changes 
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the mode of dynamics. Due to this theorem, we can perform a detailed analysis by 

using the centre manifold reduction. 

Due to the standard method from the centre manifold theory, we obtain the 

reduced dynamical system around 0 = 01 as 

1 
it= i:-:; (z -v*)Hu + O(llu, z -v* 113), 

2v* 
1 

之＝ uTHu+ O(llu, z -v*ll3). 
2v* 

(8) 

Note that the point 0 = 01 is denoted as e =も＝（w*,v*, 0, v*) under the coordi-

nate system (7). Neglecting the higher order terms, we can integrate this equation 

to obtain 

llull2 = (z -v＊戸＋C, (9) 

where C is an integral constant. 

Around the point 0 = 0。,orequivalently { = {0 = (w*, v*, 0, -v*), the similar 

reduced dynamical system: 

1 
U=--

2v* 
(z + v*)Hu + O(llu, z + v*ll3), 

1 
Z =  -

T 

2v* 
uT Hu+ O(llu, z + v*ll3), 

is obtained. 

3 Numerical simulations 

We shall verify the fact that the dynamics of (w, v) are fast and those of (u, z) are 

slow under the coordinate system (7) by numerical simulations. 

We set the input dimension to be n = l, and choose the teacher function T : 

良→良 definedby 

T(x) := 2 tanh(x) -tanh(4x). 

We set the activation function <p as tanh. Thus, the target function T can be 

represented by the (1-2-1)-perceptron with no bias terms: 

f(2)(x; 0) = v1c.p(w叫＋ V坪 (w坪），

and the true parameter is (w1, w2, v1心） ＝ （1, 4, 2, -1). We also discard the bias 

terms of the student (1-1-1)-perceptron. This makes the matrix H defined by (5) 

scalar valued, and it becomes positive or negative definite trivially. 
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We set the probability distribution of the input x to be the Gaussian distribution 

N(O, 22). Taking a large size of dataset｛叩｝r=laccording to N(O, 2りforeach itera— 

tion, we compute the arithmetic mean of the instantaneous loss £(x, fc2i (x; 0)) over 

｛叩｝r=llwhich approximates the averaged loss function (3). Thus, the transition 

formula of the parameter 0 is written as 

o(t+1) ＝ 0(t) ＿ e -1 s 況(xit),fc2)（か；〇））
sこ 00.
s=l.  10=0(t) 

(10) 

Here, c > 0 is a small number for the Euler method. In this simulation, we set 

S = 500, c = 0.05, and the loss function£ to be the squared error. 

In this setting, we obtained a local minimiser 0* = (w*, v*)~ (0.472, 1.134) of 

L(i)• The value of His approximately 0.050. Since H > 0, the attractive region is 

{O入 I入E(0, 1)}, due to Theorem 1.2. 
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Figure 3: Time evolutions of each parameter in the first 1,000 iterations. Each 

trajectory of (w, v) quickly converges to (w*, v*)~ (0.472, 1.134), while trajectories 

of u and z evolve very slowly. 
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Figures 3(a-d) display time evolutions of each parameter in the first 1,000 it-

erations from 50 different initial points. We chose an initial parameter 0<0) = 
(（O) （O) （O) （O) W1,W2,v1,%) randomly by 

叫0)=記＋〈1, W四＝記＋立

亭＝v*＋賛＋＜4), 吟0)= ~ 
2 
（ふ—叫

so that v = v* + (3, and z = v* + (4, where〈1,(2 ~ U(-0.2, 0.2), and (ふく4~ 
U(-0.2, 0.2). Here, U(a, b) denotes the uniform distribution on the interval [a, b] C 

艮． Wecan see that the parameters w and v converge to their equilibriums expo-

nentially fast ((a) and (b)), while u and z evolve slowly ((c) and (d)). 
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Figure 4: Trajectories on the (z, u)-plane obtained by learning for 

20,000 iterations (solid black curves) and analytical trajectories (9) 

(dashed blue curves) near 0 = 01 = (w*, w*, v*, 0). Red circles 

represent initial points. 

Figure 4 shows evolutions on the (z, u)-plane. The red circles in the figure 

represent initial points. When (w, v) = (w*, v*), the z-axis is a Milnor-like attractor, 

and the region lzl < v* is the attractive part of it. The intersection point of the line 

z = v* and the z-axis corresponds to the point 0 = 01. The analytical trajectories 

(9) are plotted as dashed blue curves. Numerical evolutions of the parameter follow 

the analytical trajectories considerably well around 01・
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